## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, message=FALSE----------------------------------------------------- library(concordexR) library(TENxPBMCData) library(BiocNeighbors) library(bluster) library(scater) library(patchwork) library(ggplot2) theme_set(theme_bw()) ## ----------------------------------------------------------------------------- sce <- TENxPBMCData("pbmc3k") ## ----------------------------------------------------------------------------- sce$nCounts <- colSums(counts(sce)) sce$nGenes <- colSums(counts(sce) > 0) mito_inds <- grepl("^MT-", rowData(sce)$Symbol_TENx) sce$pct_mito <- colSums(counts(sce)[mito_inds,])/sce$nCounts * 100 ## ----------------------------------------------------------------------------- plotColData(sce, "nCounts") + plotColData(sce, "nGenes") + plotColData(sce, "pct_mito") ## ----------------------------------------------------------------------------- p1 <- plotColData(sce, x = "nCounts", y = "nGenes") + geom_density2d() p2 <- plotColData(sce, x = "nCounts", y = "pct_mito") + geom_density2d() p1 + p2 ## ----------------------------------------------------------------------------- sce <- sce[, sce$nCounts < 10000 & sce$pct_mito < 8] sce <- sce[rowSums(counts(sce)) > 0,] ## ----------------------------------------------------------------------------- sce <- logNormCounts(sce) ## ----------------------------------------------------------------------------- sce <- runPCA(sce, ncomponents = 30, ntop = 500, scale = TRUE) ## ----------------------------------------------------------------------------- plot(attr(reducedDim(sce, "PCA"), "percentVar"), ylab = "Percentage of variance explained") ## ----------------------------------------------------------------------------- set.seed(29) sce$cluster <- clusterRows(reducedDim(sce, "PCA")[,seq_len(10)], NNGraphParam(k = 10, cluster.fun = "leiden", cluster.args = list( objective_function = "modularity" ))) ## ----fig.width=7, fig.height=6------------------------------------------------ plotPCA(sce, color_by = "cluster", ncomponents = 4) ## ----------------------------------------------------------------------------- sce <- runUMAP(sce, dimred = "PCA", n_dimred = 10, n_neighbors = 10) ## ----------------------------------------------------------------------------- plotUMAP(sce, color_by = "cluster") ## ----------------------------------------------------------------------------- g <- findKNN(reducedDim(sce, "PCA")[,seq_len(10)], k = 10) ## ----------------------------------------------------------------------------- res <- calculateConcordex( sce, labels="cluster", use.dimred="PCA", compute_similarity=TRUE ) ## ----------------------------------------------------------------------------- sim <- attr(res, "similarity") round(sim, 2) ## ----------------------------------------------------------------------------- sessionInfo()