chevreulPlot 1.2.0
chevreulPlotR is an open-source statistical environment which can be easily modified
to enhance its functionality via packages. chevreulPlot is a R
package available via the Bioconductor repository
for packages. R can be installed on any operating system from
CRAN after which you can install
chevreulPlot by using the following commands in your R session:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("chevreulPlot")
The chevreulPlot package is designed for single-cell RNA sequencing
data. The functions included within this package are derived from other
packages that have implemented the infrastructure needed for RNA-seq data
processing and analysis. Packages that have been instrumental in the
development of chevreulPlot include,
Biocpkg("SummarizedExperiment") and Biocpkg("scater").
R and Bioconductor have a steep learning curve so it is critical to
learn where to ask for help. The
Bioconductor support site is the main
resource for getting help: remember to use the chevreulPlot tag and check
the older posts.
chevreulPlotThe chevreulPlot package contains functions to preprocess, cluster, visualize, and
perform other analyses on scRNA-seq data. It also contains a shiny app for easy
visualization and analysis of scRNA data.
chvereul uses SingelCellExperiment (SCE) object type
(from SingleCellExperiment)
to store expression and other metadata from single-cell experiments.
This package features functions capable of:
library("chevreulPlot")
# Load the data
data("small_example_dataset")
sessionInfo()
#> R version 4.5.1 Patched (2025-08-23 r88802)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.3 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] chevreulPlot_1.2.0 chevreulProcess_1.2.0
#> [3] scater_1.38.0 ggplot2_4.0.0
#> [5] scuttle_1.20.0 SingleCellExperiment_1.32.0
#> [7] SummarizedExperiment_1.40.0 Biobase_2.70.0
#> [9] GenomicRanges_1.62.0 Seqinfo_1.0.0
#> [11] IRanges_2.44.0 S4Vectors_0.48.0
#> [13] BiocGenerics_0.56.0 generics_0.1.4
#> [15] MatrixGenerics_1.22.0 matrixStats_1.5.0
#> [17] BiocStyle_2.38.0
#>
#> loaded via a namespace (and not attached):
#> [1] RColorBrewer_1.1-3 jsonlite_2.0.0
#> [3] shape_1.4.6.1 magrittr_2.0.4
#> [5] ggbeeswarm_0.7.2 GenomicFeatures_1.62.0
#> [7] farver_2.1.2 rmarkdown_2.30
#> [9] GlobalOptions_0.1.2 fs_1.6.6
#> [11] BiocIO_1.20.0 vctrs_0.6.5
#> [13] memoise_2.0.1 Rsamtools_2.26.0
#> [15] DelayedMatrixStats_1.32.0 RCurl_1.98-1.17
#> [17] forcats_1.0.1 htmltools_0.5.8.1
#> [19] S4Arrays_1.10.0 curl_7.0.0
#> [21] BiocNeighbors_2.4.0 SparseArray_1.10.0
#> [23] sass_0.4.10 bslib_0.9.0
#> [25] htmlwidgets_1.6.4 plotly_4.11.0
#> [27] cachem_1.1.0 ResidualMatrix_1.20.0
#> [29] GenomicAlignments_1.46.0 igraph_2.2.1
#> [31] iterators_1.0.14 lifecycle_1.0.4
#> [33] pkgconfig_2.0.3 rsvd_1.0.5
#> [35] Matrix_1.7-4 R6_2.6.1
#> [37] fastmap_1.2.0 clue_0.3-66
#> [39] digest_0.6.37 colorspace_2.1-2
#> [41] patchwork_1.3.2 AnnotationDbi_1.72.0
#> [43] dqrng_0.4.1 irlba_2.3.5.1
#> [45] RSQLite_2.4.3 beachmat_2.26.0
#> [47] httr_1.4.7 abind_1.4-8
#> [49] compiler_4.5.1 doParallel_1.0.17
#> [51] bit64_4.6.0-1 withr_3.0.2
#> [53] S7_0.2.0 BiocParallel_1.44.0
#> [55] viridis_0.6.5 DBI_1.2.3
#> [57] DelayedArray_0.36.0 rjson_0.2.23
#> [59] bluster_1.20.0 tools_4.5.1
#> [61] vipor_0.4.7 beeswarm_0.4.0
#> [63] glue_1.8.0 restfulr_0.0.16
#> [65] batchelor_1.26.0 grid_4.5.1
#> [67] cluster_2.1.8.1 megadepth_1.20.0
#> [69] gtable_0.3.6 tzdb_0.5.0
#> [71] tidyr_1.3.1 ensembldb_2.34.0
#> [73] data.table_1.17.8 hms_1.1.4
#> [75] metapod_1.18.0 BiocSingular_1.26.0
#> [77] ScaledMatrix_1.18.0 XVector_0.50.0
#> [79] foreach_1.5.2 stringr_1.5.2
#> [81] ggrepel_0.9.6 pillar_1.11.1
#> [83] limma_3.66.0 circlize_0.4.16
#> [85] dplyr_1.1.4 lattice_0.22-7
#> [87] rtracklayer_1.70.0 bit_4.6.0
#> [89] tidyselect_1.2.1 ComplexHeatmap_2.26.0
#> [91] locfit_1.5-9.12 Biostrings_2.78.0
#> [93] knitr_1.50 gridExtra_2.3
#> [95] bookdown_0.45 ProtGenerics_1.42.0
#> [97] edgeR_4.8.0 cmdfun_1.0.2
#> [99] xfun_0.53 statmod_1.5.1
#> [101] stringi_1.8.7 UCSC.utils_1.6.0
#> [103] EnsDb.Hsapiens.v86_2.99.0 lazyeval_0.2.2
#> [105] yaml_2.3.10 evaluate_1.0.5
#> [107] codetools_0.2-20 cigarillo_1.0.0
#> [109] tibble_3.3.0 wiggleplotr_1.34.0
#> [111] BiocManager_1.30.26 cli_3.6.5
#> [113] jquerylib_0.1.4 dichromat_2.0-0.1
#> [115] Rcpp_1.1.0 GenomeInfoDb_1.46.0
#> [117] png_0.1-8 XML_3.99-0.19
#> [119] parallel_4.5.1 readr_2.1.5
#> [121] blob_1.2.4 AnnotationFilter_1.34.0
#> [123] scran_1.38.0 sparseMatrixStats_1.22.0
#> [125] bitops_1.0-9 viridisLite_0.4.2
#> [127] scales_1.4.0 purrr_1.1.0
#> [129] crayon_1.5.3 GetoptLong_1.0.5
#> [131] rlang_1.1.6 KEGGREST_1.50.0