## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = TRUE, warning = FALSE, fig.width=8, fig.height =6 ) ## ----setup, message = FALSE--------------------------------------------------- library(PRONE) ## ----load_real_tmt------------------------------------------------------------ data("tuberculosis_TMT_se") se <- tuberculosis_TMT_se ## ----------------------------------------------------------------------------- se_norm <- normalize_se(se, c("IRS_on_RobNorm", "IRS_on_Median", "IRS_on_LoessF", "IRS_on_Quantile"), combination_pattern = "_on_") ## ----------------------------------------------------------------------------- se_norm <- remove_reference_samples(se_norm) ## ----------------------------------------------------------------------------- comparisons <- specify_comparisons(se_norm, condition = "Group", sep = NULL, control = NULL) comparisons <- c("PTB-HC", "TBL-HC", "TBL-PTB", "Rx-PTB") ## ----------------------------------------------------------------------------- de_res <- run_DE(se = se_norm, comparisons = comparisons, ain = NULL, condition = NULL, DE_method = "limma", logFC = TRUE, logFC_up = 1, logFC_down = -1, p_adj = TRUE, alpha = 0.05, covariate = NULL, trend = TRUE, robust = TRUE, B = 100, K = 500 ) ## ----------------------------------------------------------------------------- new_de_res <- apply_thresholds(de_res = de_res, logFC = FALSE, p_adj = TRUE, alpha = 0.05) ## ----------------------------------------------------------------------------- new_de_res <- apply_thresholds(de_res = de_res, logFC = TRUE, logFC_up = 0, logFC_down = 0, p_adj = TRUE, alpha = 0.05) ## ----fig.cap = "Barplot showing the number of DE proteins per normalization method colored by comparison and facetted by up- and down-regulation."---- plot_overview_DE_bar(de_res, ain = NULL, comparisons = comparisons, plot_type = "facet_regulation") ## ----fig.cap = "Barplot showing the number of DE proteins per normalization method faceted by comparison."---- plot_overview_DE_bar(de_res, ain = NULL, comparisons = comparisons[seq_len(2)], plot_type = "facet_comp") ## ----fig.cap = "Heatmap showing the number of DE proteins per comparison and per normalization method."---- plot_overview_DE_tile(de_res) ## ----fig.cap = "Volcano plots per normalization method for a single comparison."---- plot_volcano_DE(de_res, ain = NULL, comparisons = comparisons[1], facet_norm = TRUE) ## ----fig.cap = "Individual heatmap of the DE results for a specific comparison and a selection of normalization methods. The adjusted p-values are added as row annotation, while the condition of each sample is shown as column annotation."---- plot_heatmap_DE(se_norm, de_res, ain = c("RobNorm", "IRS_on_RobNorm"), comparison = "PTB-HC", condition = NULL, label_by = NULL, pvalue_column = "adj.P.Val") ## ----fig.cap = "Upset plot showing the overlapping DE proteins of different normalization methods colored by comparison.", fig.height = 12---- intersections <- plot_upset_DE(de_res, ain = NULL, comparisons = comparisons[seq_len(3)], min_degree = 6, plot_type = "stacked") # put legend on top due to very long comparisons intersections$upset[[2]] <- intersections$upset[[2]] + ggplot2::theme(legend.position = "top", legend.direction = "vertical") intersections$upset ## ----fig.cap = "Heatmap showing the Jaccard similarity indices of the DE results between different normalization methods for all comparisons."---- plot_jaccard_heatmap(de_res, ain = NULL, comparisons = comparisons, plot_type = "all") ## ----------------------------------------------------------------------------- DT::datatable(extract_consensus_DE_candidates(de_res, ain = NULL, comparisons = comparisons, norm_thr = 0.8, per_comparison = TRUE), options = list(scrollX = TRUE)) ## ----------------------------------------------------------------------------- utils::sessionInfo()