## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.height = 7, fig.width = 12 ) ## ----setup, include=FALSE----------------------------------------------------- library(Damsel) ## ----eval=FALSE--------------------------------------------------------------- # if (!require("BiocManager", quietly = TRUE)) { # install.packages("BiocManager") # } # # BiocManager::install("Damsel") # library(Damsel) ## ----------------------------------------------------------------------------- library(BSgenome.Dmelanogaster.UCSC.dm6) regions_and_sites <- getGatcRegions(BSgenome.Dmelanogaster.UCSC.dm6) regions <- regions_and_sites$regions knitr::kable(head(regions)) knitr::kable(head(regions_and_sites$sites)) ## ----eval=FALSE--------------------------------------------------------------- # path_to_bams <- system.file("extdata", package = "Damsel") # counts.df <- countBamInGATC(path_to_bams, # regions = regions # ) ## ----include=FALSE------------------------------------------------------------ data_env <- new.env(parent = emptyenv()) data("dros_counts", envir = data_env, package = "Damsel") counts.df <- data_env[["dros_counts"]] ## ----------------------------------------------------------------------------- knitr::kable(head(counts.df)) ## ----eval=FALSE--------------------------------------------------------------- # data("dros_counts") ## ----heatmap------------------------------------------------------------------ plotCorrHeatmap(df = counts.df, method = "spearman") ## ----------------------------------------------------------------------------- plotCountsDistribution(counts.df, constant = 1) ## ----coverage3, fig.wide=TRUE------------------------------------------------- plotCounts(counts.df, seqnames = "chr2L", start_region = 1, end_region = 40000, layout = "spread" ) ## ----------------------------------------------------------------------------- dge <- makeDGE(counts.df) head(dge) ## ----mds, fig.height=6, fig.width=6------------------------------------------- group <- dge$samples$group %>% as.character() limma::plotMDS(dge, col = as.numeric(factor(group))) ## ----------------------------------------------------------------------------- dm_results <- testDmRegions(dge, p.value = 0.05, lfc = 1, regions = regions, plot = TRUE) dm_results %>% dplyr::group_by(meth_status) %>% dplyr::summarise(n = dplyr::n()) knitr::kable(head(dm_results), digits = 32) ## ----fig.wide=TRUE------------------------------------------------------------ plotCounts(counts.df, seqnames = "chr2L", start_region = 1, end_region = 40000, log2_scale = FALSE ) + geom_dm(dm_results.df = dm_results) ## ----------------------------------------------------------------------------- gatc_sites <- regions_and_sites$sites knitr::kable(head(gatc_sites)) ## ----fig.wide=TRUE------------------------------------------------------------ plotCounts(counts.df, seqnames = "chr2L", start_region = 1, end_region = 40000, log2_scale = FALSE ) + geom_dm(dm_results) + geom_gatc(gatc_sites) ## ----------------------------------------------------------------------------- peaks <- identifyPeaks(dm_results) nrow(peaks) knitr::kable(head(peaks), digits = 32) ## ----fig.wide=TRUE------------------------------------------------------------ plotCounts(counts.df, seqnames = "chr2L", start_region = 1, end_region = 40000 ) + geom_dm(dm_results) + geom_peak(peaks, peak.label = TRUE) + geom_gatc(gatc_sites) ## ----------------------------------------------------------------------------- plotCountsInPeaks(counts.df, dm_results, peaks, position = "stack") ## ----eval=FALSE--------------------------------------------------------------- # BiocManager::install("TxDb.Dmelanogaster.UCSC.dm6.ensGene") # BiocManager::install("org.Dm.eg.db") ## ----------------------------------------------------------------------------- library("TxDb.Dmelanogaster.UCSC.dm6.ensGene") txdb <- TxDb.Dmelanogaster.UCSC.dm6.ensGene::TxDb.Dmelanogaster.UCSC.dm6.ensGene library("org.Dm.eg.db") genes <- collateGenes(genes = txdb, regions = regions, org.Db = org.Dm.eg.db) knitr::kable(head(genes)) ## ----eval=FALSE--------------------------------------------------------------- # BiocManager::install("biomaRt") ## ----------------------------------------------------------------------------- library(biomaRt) collateGenes(genes = "dmelanogaster_gene_ensembl", regions = regions, version = 109) ## ----------------------------------------------------------------------------- annotation <- annotatePeaksGenes(peaks, genes, regions = regions, max_distance = 5000) knitr::kable(head(annotation$closest), digits = 32) knitr::kable(head(annotation$top_five), digits = 32) knitr::kable(str(annotation$all), digits = 32) ## ----fig.wide=TRUE------------------------------------------------------------ plotCounts(counts.df, seqnames = "chr2L", start_region = 1, end_region = 40000 ) + geom_dm(dm_results) + geom_peak(peaks) + geom_gatc(gatc_sites) + geom_genes_tx(genes, txdb) ## ----fig.wide=TRUE------------------------------------------------------------ plotWrap( id = peaks[1, ]$peak_id, counts.df = counts.df, dm_results.df = dm_results, peaks.df = peaks, gatc_sites.df = gatc_sites, genes.df = genes, txdb = txdb ) ## ----fig.wide=TRUE------------------------------------------------------------ plotWrap( id = genes[1, ]$ensembl_gene_id, counts.df = counts.df, dm_results.df = dm_results, peaks.df = peaks, gatc_sites.df = gatc_sites, genes.df = genes, txdb = txdb ) ## ----------------------------------------------------------------------------- ontology <- testGeneOntology(annotation$all, genes, regions = regions, extend_by = 2000) ## ----------------------------------------------------------------------------- knitr::kable(head(ontology$signif_results), digits = 32) knitr::kable(head(ontology$prob_weights), digits = 32) ## ----fig.height=9, fig.width=10----------------------------------------------- plotGeneOntology(ontology$signif_results) ## ----------------------------------------------------------------------------- sessionInfo()