Comprehensive Pipeline for Analyz-
ing and Visualizing Array-Based CGH
Data

Frederic Commo*

*fredcommo@gmail.com

October 21, 2024

1 Introduction

Genomic profiling using array-based comparative genomic hybridization (aCGH)
is widely used within precision medicine programs, in combination with DNA
sequencing, to match specific molecular alterations (amplifications or deletions)
with therapeutic orientations.

We present rCGH, a comprehensive array-based CGH analysis workflow, inte-
grating functionalities specifically designed for precision medicine. rCGH ensures
a full traceability by saving all the process parameters , and facilitates genomic
profiles interpretation and decision-making through interactive visualizations.
rCGH supports commercial arrays : Agilent (from 44K to 400K arrays), and
Affymetrix SNP6.0 and cytoScanHD. Custom arrays can also be supported,
provided a suitable data format is passed. See subsection 4.1 for details, and

[1]

2 Quick start

A typical workflow is of the form:

> cgh <- readAffyCytoScan("path/to/cytoScan.CNCHP.txt")
> cgh <- adjustSignal(cgh)

> cgh <- segmentCGH(cgh)

> cgh <- EMnormalize(cgh)

Then, the genomic profile can be visualized or stored as any R object. The
segmentation table can be extracted, then transformed into a by-gene table, or
used for any further analysis. All these functions and features are detailed in
the next sections.

mailto:fredcommo@gmail.com

rCGH package

3

rCGH object structure

In order to store (or update) data, sample information, and the workflow param-
eters all along a genomic profile analysis process, rCGH objects are structured
as follow:

= info: the sample information.

= cnSet: the full by-probe dataset.

= param: the workflow parameters, for traceability.
= segTable: the segmentation data.

All these slots are accessible through specific functions, as described in the next
sections.

Notice that rCGH is a superclass designed for calling common methods. De-
pending on the type of array and the read functions used, the resulting ob-
jects will be assigned to classes rCGH-Agilent, rCGH-SNP6, rCGH-cytoScan,
or rCGH-generic. These classes inherit from the superclass, and allow array-
specific pre-parametrizations.

rCGH-generic is a particular class, not dedicated to a specific platform. The as-
sociated readGeneric read function allows the creation of a rCGH object from
custom arrays, provided the data contains mandatory columns, as described in
the next section.

rCGH functions

4.1
411

rCGH provides functions for each of the analysis steps, from reading files to
visualizing genomic profiles. Several get functions allow the user to get access
to specific results and workflow parameters, saved and stored at each step.

Reading files

Commercial arrays

Agilent Feature Exraction files (from 44K to 400K arrays), and Affymetrix
SNP6.0 and cytoScanHD data are supported.

To keep more flexibility, Affymetrix CEL files have to be first read using ChAS or
Affymetrix Power Tools (APT) [2], and then exported as cychp.txt or cnchp.txt
files. Notice that cnchp.txt files contain Allelic differences, that allow the loss
of heterozygosity (LOH) to be estimated, while cychp.txt files do not.

rCGH package

41.2

Due to specific files structures, and since preambles may be missing (depending
on ChAS and APT versions), rCGH provides specific read/build-object func-
tions:

= readAgilent(): 44K to 400K FE (.txt) files.

= readAffySNP6(): cychp, cnchp and probeset (.txt) files, exported from
SNP6.0 CEL, through ChAS or APT.

= readAffyCytoScan(): cychp, cnchp and probeset (.txt) files, exported
from CytoScanHD CEL, through ChAS or APT.

Notice that these read functions have a genome, which allow the user to specify
what genome build to use with the current array. The supported genome builds
are hgl8, hgl9 (default) and hg38. This value is stored, then used in the plot
functions.

Custom arrays

Custom arrays can be read using readGeneric(), which leads to construct an
object of class rCGH-generic. Data as to be provided as a text file, with the
following mandatory information.

Mandatory columns for custom arrays:
= ProbeName: Character strings. Typicaly the probe ids.

= ChrNum: numeric. The chromosome numbers. In case Chr X and Y are
used and named as “X" and "Y" these notations will be converted into
"23" and "24", respectively.

= ChrStart: numeric. The chromosomal probe locations.

= Log2Ratio: numeric. The corresponding Log2Ratios.

Each of the read functions take the file's path as the unique mandatory argu-
ment. Other optional arguments allow the user to save supplementary informa-
tion: sampleName, labName:

library(rCGH)
filePath <- system.file("extdata",
"Affy_cytoScan.cyhd.CN5.CNCHP.txt.bz2",
package = "rCGH")
cgh <- readAffyCytoScan(filePath, sampleName = "CSc-Example",
labName = "myLab")

+ VvV + + VvV V

rCGH package

> cgh

info
fileName Affy_cytoScan.cyhd.CN5.CNCHP.txt.bz2
sampleName CSc-Example
labName myLab
analysisDate 2024-10-21
usedProbes snp
genome hgl9
ploidy 2
platform CytoScanHD_Array
barCode @52082500958167113016424803602715
gridName CytoScanHD_Array.na33.annot.db
scanDate 2015-01-22
programVersion 5.0.0
gridGenomicBuild hg19/GRCh37
reference CytoScanHD_Array.na33.r1l.REF_MODEL
rCGH_version 1.35.0

In complement, any kind of useful annotation (logical, string or numeric) can
be added, with setInfo():

> setInfo(cgh, "iteml") <- 35
> setInfo(cgh, "item2") <- TRUE
> setInfo(cgh, "item3") <- "someComment"

At any time, the full (or specific) annotations stored can be accessed:

> getInfo(cgh)

info
fileName Affy_cytoScan.cyhd.CN5.CNCHP.txt.bz2
sampleName CSc-Example
labName myLab
analysisDate 2024-10-21
usedProbes snp
genome hgl9
ploidy 2
platform CytoScanHD_Array
barCode @52082500958167113016424803602715

gridName CytoScanHD_Array.na33.annot.db

rCGH package

4.2

scanDate 2015-01-22
programVersion 5.0.0
gridGenomicBuild hg19/GRCh37
reference CytoScanHD_Array.na33.rl.REF_MODEL
rCGH_version 1.35.0
iteml 35
item?2 TRUE
item3 someComment

> getInfo(cgh, c("iteml", "item3"))

iteml item3
"35" "someComment"

Adjusting signals

When Agilent dual-color hybridization are used, GC content and the cy3/cy5
bias are necessary adjustments. adjustSignal() handle these steps before
computing the log, (Relative Ratios) (LRR). In both cases, a local regression
(loessFit, R package limma) is used [3].

Note that by default, the cyanine3 signal is used as the reference. Use Ref=cy5
if cyanineb signal has to be used as the reference.

In case of Affymetrix cychp or cnchp files, these steps have already been pro-
cessed, and adjustSignal() simply rescale the LRR, when Scale=TRUE (de-
fault). As for Agilent data, some useful quality scores: the derivative Log Ratio
Spread (dLRs) and the LRR Median Absolute Deviation (MAD), are stored in
the object.

> cgh <- adjustSignal(cgh, nCores=1)
Log2Ratios QCs:
dLRs: 0.162

MAD: 0.128

Scaling. ..
Signal filtering...

Modeling allelic Difference. ..

rCGH package

4.3

Segmenting

One possible strategy for segmenting the genome profile consists in identifying
breakpoints all along the genome, when exist. These breakpoints define the
DNA segments start and end positions. To do so, rCGH uses the Circular
Binary Segmentation algorithm (CBS) [4] from the DNAcopy package [5].

All the steps are wrapped into one unique easy-to-use function,

In order to faclitate its use, all the parameters but one are predefined: UndoSD
is kept free. When this parameter is set to NULL (default), its optimal value is
estimated directly from the values. However, the user can specify its own value,
generaly from 0.5 to 1.5.

The resulting segmentation table is of the form of a standard DNAcopy output,
plus additional columns:

= |ID : sample Id.

= chrom : chromosome number.

= loc.start : segment start position.

= loc.end : segment end position.

= num.mark : number of markers within each segment.

= seg.mean : the mean LRR along each segment.

= seg.med : the median LRR along each segment.

= probes.Sd : the LRR probes’ standard deviation along each segment.

= estimCopy : a copy number estimation, given the expected values for
copy = 0,...,n

rCGH package

4.4

> cgh <- segmentCGH(cgh, nCores=1)

Computing LRR segmentation using UndoSD: 0.179
Merging segments shorter than 10Kb.

Number of segments: 25

> segTable <- getSegTable(cgh)

> head(segTable)

ID chrom loc.start loc.end num.mark seg.mean seg.med probes.Sd

1 CSc.Example 1 882803 249116709 1209 0.0087 -0.0504 0

2 CSc.Example 2 15703 242497851 1317 0.8874 0.8791 0

3 CSc.Example 3 62614 197683938 1100 0.8791 0.8791 0

4 CSc.Example 4 46691 190921709 1042 -0.0075 -0.0504 0

5 CSc.Example 5 113577 180579439 986 0.8502 0.8791 0

6 CSc.Example 6 184719 170849100 1103 -0.0105 -0.0504 1
estimCopy

1 2

2 4

3 4

4 2

5 4

6 2

Note that such data format allows GISTIC-compatible inputs to be exported

[6].

Centering LRR

Centering LRR is a key step in the genomic analysis process since it defines the
base line (the expected 2-copies level) from where gains ad losses are estimated.
To do so, LRRs are considered as a mixture of several gaussian populations ,
and an expectation-maximization (EM) algorithm is used to estimate their pa-
rameters.

In order to increase the EM efficacy, we use the segmentation results, and model
the LRR distributions, given each segment mean and sd (estimated from probes
assigned to each given segment).

The centralization value is chosen according to the user specification: the mean
of the sub-population with a density peak higher than a given proportion of the
highest density peak [7]. The default value is 0.5. Setting peakThresh = 1 leads
to choose the highest density peak.

.9799602
.9901649
.9786349
.9883702
.9907562
.0052332

rCGH package

The plotbensity() function gives access to a graphical check on how the cen-
tralization step worked, and what LRR population has been chosen for centering
the profile:

> cgh <- EMnormalize(cgh)
Merging peaks closer than 0.1 ...
Gaussian mixture estimation:

n.peaks = 3

Group parameters:

Grp 1:
prop: 0.504, mean: -0.061, Sd: 0.149, peak height: 1.344

Grp 2:
prop: 0.481, mean: 0.861, Sd: 0.149, peak height: 1.284

Grp 3:
prop: 0.015, mean: 2.04, Sd: 0.149, peak height: 0.041

Correction value: -0.061

Use plotDensity() to visualize the LRR densities.

> plotDensity(cgh)

CSc-Example
Correction value = -0.061

Density

Log,(Ratio)

Figure 1: plotDensity. plotDensity() shows how EM models the LRR distribution, and
what peak is chosen for centralizing the profile (in bold).

rCGH package

4.5 Parallelization

rCGH allows parallelization within EMnormalise() and segmentCGH(), through
mclapply () from R package parallel.

By default, nCores will be set to half of the available cores, but any value, from
1to detectCores(), is allowed. However, this feature is currently only available
on Linux and 0SX: nCores will be automatically set to 1 when a Windows system
is detected.

4.6 Getting the by-gene table

This step converts a segmentation table into a by-genes table. byGeneTable()
extracts the list of genes included in each segment, and constructs a dataset
easy to export and to manipulate outside R. The final genes’ list reports the
corresponding segmentation values (expressed in Log2Ratio), and the official
positions and annotations, with respect to the genome build specified by the
user. As for the read functions, the supported genome builds are hgl8, hgl9
(default) and hg38. For hgl9, locations and annotations are exported from
TxDb.Hsapiens.UCSC.hgl19.knownGene and org.Hs.eg.db. The corresponding
TxDb is used in case another genome build is specified with the genome argu-
ment.

> geneTable <- byGeneTable(segTable)

403 genes were dropped because they have exons located on both strands
of the same reference sequence or on more than one reference sequence,
so cannot be represented by a single genomic range.

Use ’single.strand.genes.only=FALSE’ to get all the genes in a
GRangesList object, or use suppressMessages() to suppress this message.

Creating byGene table. ..

> head(geneTable, n=3)

entrezid symbol fullName cytoband chr chrStart

1 1 A1BG alpha-1-B glycoprotein 19q13.43 19 58858172

503538 A1BG-AS1 A1BG antisense RNA 1 19q13.43 19 58859117

3 29974 A1CF APOBEC1 complementation factor 10q11.23 10 52559169
chreEnd width strand Log2Ratio num.mark segNum seglLength(kb) estimCopy
1 58874214 16043 - 0.80185 231 21 58810.89 4
2 58866549 7433 + 0.80185 231 21 58810.89 4
3 52645435 86267 - 0.94135 751 10 135239.66 4

relativeLog genomeStart

http://bioconductor.org/packages/TxDb.Hsapiens.UCSC.hg19.knownGene
http://bioconductor.org/packages/org.Hs.eg.db

rCGH package

4.7

1 0 2718302494
0 2718303439
3 0 1732932312

Notice that the byGeneTable() function takes a segmentation table as its first
argument, and not a rCGH object. This means that this function can be used
to extract genes from any other segmentation table, provided this table is of
the same format, and the genome build to use is specified (default setting is
"hg19").

> byGeneTable(segTable, "erbb2", genome = "hgl9")[,1:6]

403 genes were dropped because they have exons located on both strands
of the same reference sequence or on more than one reference sequence,
so cannot be represented by a single genomic range.

Use ’single.strand.genes.only=FALSE’ to get all the genes in a
GRangesList object, or use suppressMessages() to suppress this message.

symbol entrezid fullName cytoband chr chrStart
1 ERBB2 2064 erb-b2 receptor tyrosine kinase 2 17912 17 37844393

> byGeneTable(segTable, "erbb2", genome = "hgl8")[,1:6]

379 genes were dropped because they have exons located on both strands
of the same reference sequence or on more than one reference sequence,
so cannot be represented by a single genomic range.

Use ’single.strand.genes.only=FALSE’ to get all the genes in a
GRangesList object, or use suppressMessages() to suppress this message.

symbol entrezid fullName cytoband chr chrStart
1 ERBB2 2064 erb-b2 receptor tyrosine kinase 2 17q12 17 35097919

Accessing the analysis parameters

For traceability and reproducibility, it may be useful to keep track to a profile
analysis parameters. At each step, the workflow parameters, defined by default
or specified by the user, are stored in a params slot. They are accessible at any
time using getParam().

> getParam(cgh)[1:3]

$ksmooth
[1] 39

10

rCGH package

$Kmax
[1] 20

$Nmin
[1] 160

11

rCGH package

4.8

4.8.1

Visualizing the genomic profile

In a context of Precision Medicine, visualizing and manipulating a genomic
profile is crucial to interpret imbalances, to identify targetable genes, and to
make decisions regarding a potential therapeutic orientation. In many situations,
considering LOH can also help to better interpret imbalances.

rCGH provides 2 ways for visualizing a genomic profile: plotProfile(), plot
LOH() and multiplot() are simple static ways to visualize a profile, possibly
with some tagged gene, while view() is a more sophisticated and interactive
visualization method, build on top of shiny. A control panel allows the user to
interact with the profile, and to export the results.

Notice that plotLOH() and multiplot() are relevant only in case the allelic
difference is available, namely when Affymetrix cnchp.txt files are used.

Static profile visualizations

plotProfile() allows the genomic profile visualization. Any gene(s) of interest
can be added to the plot by passing a valid HUGO symbol. Other arguments
can be used to color the segments according to specified gain/loss thresholds,
or to change the plot title.

Two other static functions can be useful for reporting alterations: plotLOH()
to visualize LOH, and multiplot() to build a full report, including both the
genomic profile and LOH plot.

Comment: Notice that genes will be located with respect to the genome build
version stored in the rCGH object. See subsection 4.1 for details.

Comment: By default, multiplot() will combine all the visualizations available:
profile by LRR, profile by copy numbers, and B-allele differences. The p argu-
ment, which specifies the proportion of each plot within the layout, can be used
to remove the 2nd and/or the 3rd plot from the output, e.g. p = c(1/2, 0,
1/2) would remove the profile by copy numbers.

12

rCGH package

> multiplot(cgh, symbol = c("egfr", "erbb2"))

403 genes were dropped because they have exons located on both strands
of the same reference sequence or on more than one reference sequence,
so cannot be represented by a single genomic range.

Use ’single.strand.genes.only=FALSE’ to get all the genes in a
GRangesList object, or use suppressMessages() to suppress this message.
403 genes were dropped because they have exons located on both strands
of the same reference sequence or on more than one reference sequence,
so cannot be represented by a single genomic range.

Use ’single.strand.genes.only=FALSE’ to get all the genes in a
GRangesList object, or use suppressMessages() to suppress this message.

Warning in geom_segment(aes_string(x = bg$genomeStart[ii], xend = bg$genomeStart[ii],
All aesthetics have length 1, but the data has 1824 rows.

i Please consider using ‘annotate()‘ or provide this layer with data

containing

a single row.

All aesthetics have length 1, but the data has 1824 rows.

i Please consider using ‘annotate()‘ or provide this layer with data

containing

a single row.

Warning in geom_segment(aes_string(x = bg$genomeStart[ii], xend = bg$genomeStart[ii],
All aesthetics have length 1, but the data has 2 rows.

i Please consider using ‘annotate()‘ or provide this layer with data

containing

a single row.

All aesthetics have length 1, but the data has 2 rows.

i Please consider using ‘annotate()‘ or provide this layer with data

containing

a single row.

13

Gain threshold: 0.5 Loss threshold: -0.5

CSc-Example - 2024-10-21

Genomic position (bp)

rCGH package

o o 1 1 (=]
[=] _"IHTu | | nnHTu
b b » 8 p
[ix] c-4-1-1af- [ar] [xx]
Nuuu z r z
nuw.lll - -
e e e o A
Hal-1-1-%- =
= - - - - g
o =)
T-ds - - - =
vl [Tr)
Il 3
o-0L {_®_L hat.
[_nn o
0 = aH|_uH.| B e) o
20 o 2 0 ~ <
fgre) 1-4-{-a-V- & 2 by %
[- = [= 4]
c 11 c 2!
o -4-{-0-L i =
= o = =
w --4-4-1-0- w o
(@] = O =)
o -1 = :
e LML o |-
m w ' m [1=]
= 0 4-1-1-¥-HE © - o
+ £ r + £ o +
B (] Tl e @ - 2
0] 4 1Y U])
[[ar}
b [
=] = i 2
+ 111 ns - +
L] H (=1 = 1 L]
3 & A Ve
1 1
& W © w © uw o= o Scoccog [
I T = = Swwno oo
(oney)zbo Jaquwinu Adoo CRIVEIEN g [E]\Y

14

from left to right)

from 1 to k (

multiplot() provides static visualisations combining the genomic

0.861

Figure 2: Static views.

profile and the LOH.
user to choose another centralization value. The new choice has to be specified

When the profile centering doesn’'t seem appropriate, recenter() allows the

as the peak index to use: peaks are indexed
as they appear on the density plot.
> # Recentering on peak #2

> recenter(cgh) <- 2
Profile recentered on:

4.8.2 Recentering

rCGH package

> plotProfile(cgh, symbol = c("egfr", "erbb2"))

403 genes were dropped because they have exons located on both strands
of the same reference sequence or on more than one reference sequence,
so cannot be represented by a single genomic range.

Use ’single.strand.genes.only=FALSE’ to get all the genes in a
GRangesList object, or use suppressMessages() to suppress this message.

Warning in geom_segment(aes_string(x = bg$genomeStart[ii], xend = bg$genomeStart[ii],
All aesthetics have length 1, but the data has 1824 rows.

i Please consider using ‘annotate()‘ or provide this layer with data

containing

a single row.

All aesthetics have length 1, but the data has 1824 rows.

i Please consider using ‘annotate()‘ or provide this layer with data

containing

a single row.

CSc-Example - 2024-10-21
Gain threshold: 0.5 Loss threshold: -0.5

3

2 84 Chr

e)

n 0.01

B
L

2(Ratio)

Lo

Genomic position (bp)

Figure 3: Recentering. By default, the EM-based normalization choose a possibly optimal
peak to center the profile, but any other peak can be chosen, using recenter().

15

rCGH package

4.8.3

Interactive visualization

The view() function provides a more flexible way for interpreting genomic pro-
file, individually. This application allows interactive manipulations through a
command panel: defining the gain/loss thresholds, displaying a gene, resizing
the y-axis, selecting one unique chromosome, and recentering the entire profile.
Note that the Genes table is updated whenever changes are made through that
command panel, e.g. selecting one unique chromosome on the graph filters the
Genes table on that chromosome, simultaneously.

The Download buttons, Plot, LOH and Table, allow plots and gene table to be
exported, as they have been modified.

rCGH
subsection 4.1

The control panel:

= Gene Symbol : display any existing gene, providing its official HUGO
symbol.

= Show chromosome : display the entire profile (default is 'All’), or one
specific chromosome.

= Gain/Loss colors : choose blue/red or red/blue.

= Recenter profile : recenter the profile on-the-fly. Gene values are updated
in the 'Genes table'.

= Merge segments... : merge segments shorter than the specified value, in
Kb. Gene values are updated in the 'Genes table’.

= Recenter profile : recenter the profile on-the-fly. Gene values are updated
in the 'Genes table'.

= Rescale max(y) : adjust the top y-axis (0<y) using a proportion of the
maximum value.

= Rescale min(y) : adjust the bottom y-axis (y<0) using a proportion of
the minimum value.

= Gain threshold (Log2ratio) : define the gain threshold. Segments higher
than this value are colored according to the chosen color code, and the
'Genes table' is filtered, consequently.

= Loss threshold (Log2ratio) : same as 'Gain threshold" but for losses.

= Download - Profile : download the profile as it is displayed on the screen,
including modifications.

16

rCGH package

= Download - LOH : download the LOH plot as it is displayed on the screen,
including modifications.

= Download - Table : download the 'Genes table’, including modifications.

> view(cgh)

A549.Cell.Line
Gain threshold: 0.5, Loss threshold: 0.5

Ea T Lo -

1
i
Log2(Ratio)

Genomic position (bp) e

LR L

Figure 4: Interactive profile. The genomic profile is displayed in the first CGH profile tab
(left). Several changes can be applied using the control panel (in blue). The list of genes is
accessible through the Genes table tab (right). Both are updated simultaneously and can
be exported, after modifications are applied

17

rCGH package

5

Notes regarding the example files

In order to reduce the computation time, we provide subsets of real data for
the 3 supported platforms:

> list.files(system.file("extdata", package = "rCGH"))

[1] "Affy_cytoScan.cyhd.CN5.CNCHP.txt.bz2"
[2] "Affy_snp6_cnchp.txt.bz2"

[3] "Agilent4x180K.txt.bz2"

[4] "generic.txt.bz2"

[5] "oncoscan.tsv.bz2"

Comment:

In order to speed up demos, the provided example files contain only a subset of
the original probes.

Affymetrix example files (cytoScan and SNP6) only contain SNP probes. Set-
ting useProbes = "cn" in readAffy functions should return an error.

Server version

A web browser version of the interactive visualization is available at
https://fredcommo.shinyapps.io/aCGH_viewer

As inputs, this application support the rCGH segmentation tables, or any seg-
mentation table in the same format as the CBS outputs.

For more details about this application, or to install it on your own server, please
visit

https://github.com /fredcommo/aCGH_viewer.

Session information

> sessionInfo()

R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows Server 2022 x64 (build 20348)

Matrix products: default

locale:

18

https://fredcommo.shinyapps.io/aCGH_viewer
https://github.com/fredcommo/aCGH_viewer

rCGH package

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.utf8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods

other attached packages:
[1] rCGH_1.35.0 knitr_1.48

loaded via a namespace (and not attached):
[1] DBI_1.2.3
[2] bitops_1.0-9
[3] rlang_1.1.4
[4] magrittr_2.0.3
[5] matrixStats_1.4.1
[6] compiler_4.4.1
[7] RSQLite 2.3.7
[8] GenomicFeatures_1.57.1
[9] png_0.1-8
[10] vctrs_0.6.5
[11] pkgconfig 2.0.3
[12] crayon_1.5.3
[13] fastmap_1.2.0
[14] magick_2.8.5
[15] XVector_0.45.0
[16] labeling_0.4.3
[17] utf8.1.2.4
[18] Rsamtools_2.21.2
[19] promises_1.3.0
[20] rmarkdown_2.28
[21] UCSC.utils_1.1.0
[22] preprocessCore_1.67.1
[23] tinytex_0.53
[24] bit_4.5.0
[25] xfun_0.48
[26] zlibbioc 1.51.2

base

19

rCGH package

[27] cachem_1.1.0

[28] GenomeInfoDb_1.41.2
[29] jsonlite_1.8.9

[30] blob_1.2.4

[31] highr_0.11

[32] later_1.3.2

[33] DelayedArray_0.31.14
[34] BiocParallel 1.39.0
[35] parallel_4.4.1

[36] cluster_2.1.6

[37] R6_2.5.1

[38] limma_3.61.12

[39] rtracklayer_1.65.0
[40] DNAcopy_1.79.0

[41] GenomicRanges_1.57.2
[42] Rcpp_1.0.13

[43] SummarizedExperiment 1.35.4
[44] IRanges_2.39.2

[45] httpuv_1.6.15

[46] Matrix_1.7-1

[47] splines_4.4.1

[48] tidyselect_1.2.1
[49] abind_1.4-8

[50] yaml_2.3.10

[51] codetools_0.2-20
[52] affy_1.83.1

[53] curl 5.2.3

[54] lattice 0.22-6

[55] tibble_3.2.1

[56] plyr_1.8.9

[57] withr_3.0.1

[58] Biobase_2.65.1

[59] shiny_1.9.1

[60] KEGGREST_1.45.1
[61] evaluate_1.0.1

[62] survival_3.7-0

[63] mclust_6.1.1

[64] Biostrings_2.73.2
[65] pillar_1.9.0

[66] affyio_1.75.1

[67] BiocManager_1.30.25
[68] MatrixGenerics_1.17.0

20

rCGH package

[69] TxDb.Hsapiens.UCSC.hg1l9.knownGene_3.2.2
[70] stats4 4.4.1

[71] generics_0.1.3

[72] RCurl_1.98-1.16

[73] S4Vectors_0.43.2

[74] ggplot2_3.5.1

[75] munsell_0.5.1

[76] scales_1.3.0

[77]1 BiocStyle 2.33.1

[78] xtable_1.8-4

[79] glue_1.8.0

[80] tools_4.4.1

[81] BiocIO_1.15.2

[82] TxDb.Hsapiens.UCSC.hg38.knownGene_3.20.0
[83] GenomicAlignments_1.41.0
[84] XML_3.99-0.17

[85] grid_4.4.1

[86] AnnotationDbi 1.67.0
[87] colorspace_2.1-1

[88] aCGH_1.83.0

[89] GenomeInfoDbData 1.2.13
[90] restfulr_0.0.15

[91] cli 3.6.3

[92] fansi_ 1.0.6

[93] S4Arrays_1.5.11

[94] dplyr_1.1.4

[95] gtable_0.3.5

[96] digest_0.6.37

[97] BiocGenerics_0.51.3
[98] SparseArray_1.5.45

[99] farver_2.1.2
[100] org.Hs.eg.db_3.20.0
[101] rjson_0.2.23
[102] memoise 2.0.1
[103] htmltools_0.5.8.1
[104] multtest 2.61.0
[165] lifecycle_1.0.4
[106] httr_1.4.7
[107] TxDb.Hsapiens.UCSC.hg1l8.knownGene_3.2.2
[108] statmod_1.5.0
[109] mime_0.12
[110] bit64 4.5.2

21

rCGH package

[111] MASS_7.3-61

22

rCGH package

References

[1]

2]

8]

[4]

[5]

[o]

[7]

Commo F, Guinney J, Ferte C, Bot B, Lefebvre C, Soria JC, and Andre F.
rcgh : a comprehensive array-based genomic profile platform for precision
medicine. Bioinformatics, 2015.

URL: http://www.affymetrix.com/estore/partners_programs/programs/
developer/tools/powertools.affx.

Smyth GK and Speed TP. Normalization of cdna microarray data.
Methods, 31:265-273, 2003. URL:
http://www.statsci.org/smyth /pubs/normalize.pdf.

Venkatraman ES and Olshen AB. A faster circular binary segmentation

algorithm for the analysis of array cgh data. Bioinformatics,
15(23):657-663, 2007.

Venkatraman E. Seshan and Adam Olshen. DNAcopy: DNA copy number
data analysis. R package version 1.40.0.

Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, and
Getz G. Gistic2.0 facilitates sensitive and confident localization of the
targets of focal somatic copy-number alteration in human cancers.
Genome Biology, 12(4):R41, 2011.

Commo F, Ferte C, Soria JC, Friend SH, Andre F, and Guinney J. Impact
of centralization on acgh-based genomic profiles for precision medicine in
oncology. Ann Oncol., 2014.

23

http://www.affymetrix.com/estore/partners_programs/programs/developer/tools/powertools.affx
http://www.affymetrix.com/estore/partners_programs/programs/developer/tools/powertools.affx
http://www.statsci.org/smyth/pubs/normalize.pdf

	1 Introduction
	2 Quick start
	3 rCGH object structure
	4 rCGH functions
	4.1 Reading files
	4.1.1 Commercial arrays
	4.1.2 Custom arrays

	4.2 Adjusting signals
	4.3 Segmenting
	4.4 Centering LRR
	4.5 Parallelization
	4.6 Getting the by-gene table
	4.7 Accessing the analysis parameters
	4.8 Visualizing the genomic profile
	4.8.1 Static profile visualizations
	4.8.2 Recentering
	4.8.3 Interactive visualization

	5 Notes regarding the example files
	6 Server version
	7 Session information

