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Overview

The pcaMethods package [1] provides a set of di�erent PCA implementations,
together with tools for cross validation and visualisation of the results. The
methods basically allow to perform PCA on incomplete data and thus may also
be used for missing value estimation.

When doing PCA one assumes that the data is restricted to a subspace of
lower dimensionality, e.g. correlation patterns between jointly regulated genes.
PCA aims to extract these structures thereby �ltering noise out. If only the most
signi�cant loadings (eigenvectors, also referred to as principal components) are
used for projection this can be written as:

X = 1× x̄T + TPT + V (1)

Where the term 1× x̄T represents the original variable averages, X denotes the
observations, T = t1, t2, . . . , tk the latent variables or scores, P = p1, p2, . . . , pk
the transformation matrix (consisting of the most signi�cant eigenvectors of the
covariance matrix) and V are the residuals.

Missing values may be estimated by projecting the scores back into the
original space using X̂ = 1× x̄T +TPT . Optimally, this produces an estimate of
the missing data based on the underlying correlation structure, thereby ignoring
noise. This will only produce reasonable results if the residuals V are su�ciently
small, implying that most of the important information is captured by the �rst
k components.

In order to calculate the transformation matrix P one needs to determine
the covariance matrix between variables or alternatively calculate P directly via
SVD. In both cases, this can only be done on complete matrices. However, an
approximation may be obtained by use of di�erent regression methods. The
PCA methods provided in this package implement algorithms to accurately
estimate the PCA solution on incomplete data.

Although the focus of this package is clearly to provide a collection of PCA
methods we also provide a cluster based method for missing value imputation.
This allows to better rate and compare the results.
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1 Algorithms

All methods return a common class called pcaRes as a container for the results.
This guarantees maximum �exibility for the user. A wrapper function called
pca() is provided that receives the desired type of pca as a string.

svdPca

This is a wrapper function for R′s standard prcomp function. It delivers the
results as a pcaRes object for compatibility with the rest of the package.

svdImpute

This implements the SVDimpute algorithm as proposed by Troyanskaya et al
[3]. The idea behind the algorithm is to estimate the missing values as a linear
combination of the k most signi�cant eigengenes1. The algorithm works itera-
tively until the change in the estimated solution falls below a certain threshold.
Each step the eigengenes of the current estimate are calculated and used to
determine a new estimate.

An optimal linear combination is found by regressing an incomplete variable
against the k most signi�cant eigengenes. If the value at position j is missing,
the jth value of the eigengenes is not used when determining the regression
coe�cients.
SVDimpute seems to be tolerant to relatively high amount of missing data (>
10%).

Probabilistic PCA (ppca)

Probabilistic PCA combines an EM approach for PCA with a probabilistic
model. The EM approach is based on the assumption that the latent variables
as well as the noise are normal distributed.

In standard PCA data which is far from the training set but close to the
principal subspace may have the same reconstruction error, see Figure 1 for
explanation.

PPCA de�nes a likelihood function such that the likelihood for data far from
the training set is much lower, even if they are close to the principal subspace.
This allows to improve the estimation accuracy.
PPCA is tolerant to amounts of missing values between 10% to 15%. If more
data is missing the algorithm is likely not to converge to a reasonable solution.

The method was implemented after the draft �EM Algorithms for PCA and

Sensible PCA� written by Sam Roweis and after the Matlab ppca script imple-
mented by Jakob Verbeek

2.
Please check also the PPCA help �le.

Bayesian PCA (bpca)

Similar to probabilistic PCA, Bayesian PCA uses an EM approach together
with a Bayesian model to calculate the likelihood for a reconstructed value.

1The term �eigengenes� denotes the loadings when PCA was applied considering variables
(here the genes) as observations.

2http://lear.inrialpes.fr/~verbeek/
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Figure 1: Normal distributed data with the �rst loading plotted in black. The
two red points have the same reconstruction error because PCA does not de�ne
a density model. Thus the only measure of how well new data �ts the model is
the distance from the principal subspace. Data points far from the bulk of data
but still close to the principal subspace will have a low reconstruction error.

The algorithm seems to be tolerant to relatively high amounts of missing data
(> 10%). Scores and loadings obtained with Bayesian PCA slightly di�er from
those obtained with conventional PCA. This is because BPCA was developed
especially for missing value estimation and is based on a variational Bayesian
framework (VBF), with automatic relevance determination (ARD). In BPCA,
ARD leads to a di�erent scaling of the scores, loadings and eigenvalues when
compared to standard PCA or PPCA. The algorithm does not force orthog-
onality between loadings. However, the authors of the BPCA paper found
that including an orthogonality criterion made the predictions worse. They
also state that the di�erence between �real� and predicted Eigenvalues becomes
larger when the number of observation is smaller, because it re�ects the lack of
information to accurately determine true loadings from the limited and noisy
data. As a result, weights of factors to predict missing values are not the same
as with conventional PCA, but the missing value estimation is improved.

BPCA was proposed by Oba et al [5]. The method available in this package
is a port of the bpca Matlab script also provided by the authors3.

Inverse non-linear PCA (NLPCA)

NLPCA [2] is especially suitable for data from experiments where the studied
response is non-linear. Examples of such experiments are ubiquitous in biology
� enzyme kinetics are inherently non-linear as are gene expression responses
in�uenced by the cell cycle or diurnal oscillations. NLPCA is based on training

3http://hawaii.aist-nara.ac.jp/%7Eshige-o/tools/
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an auto-associative neural network composed of a component layer which serves
as the �bottle-neck�, a hidden non-linear layer and an output layer corresponding
to the reconstructed data. The loadings can be seen as hidden in the network.
Missing values in the training data are simply ignored when calculating the
error during back-propagation. Thus NLPCA can be used to impute missing
values in the same way as for conventional PCA. The only di�erence is that the
loadings P are now represented by a neural network.
A shortcoming of the current implementation is that there is no reasonable
stop criterion. The quality of the estimated solution depends on the number of
iterations. This should in most cases be somewhat between 500 and 1500. We
recommend to use kEstimate or kEstimateFast to determine this parameter.

Nipals PCA

Nipals (Nonlinear Estimation by Iterative Partial Least Squares) [6] is an algo-
rithm at the root of PLS regression which can execute PCA with missing values
by simply leaving those out from the appropriate inner products. It is tolerant
to small amounts (generally not more than 5%) of missing data.

1.1 Local least squares (LLS) imputation

The package provides an algorithm called llsImpute for missing value estima-
tion based on a linear combination of the k nearest neighbours of an incomplete
variable (in Microarray experiments normally a gene). The distance between
variables is de�ned as the absolute value of the Pearson, Spearman or Kendall
correlation coe�cient. The optimal linear combination is found by solving a
local least squares problem as described in [7]. In tests performed in the cited
paper the llsImpute algorithm is able to outperform knnImpute[3] and competes
well with BPCA.

In the current implementation two slightly di�erent ways for missing value
estimation are provided. The �rst one is to restrict the neighbour searching
to the subset of complete variables. This is preferable when the number of
incomplete variables is relatively small.

The second way is to consider all variables as candidates. Here, missing
values are initially replaced by the columns wise mean. The method then iter-
ates, using the current estimate as input for the LLS regression until the change
between new and old estimate falls below a certain threshold (0.001).

2 Getting started

Installing the package. To install the package �rst download the appropriate
�le for your platform from the Bioconductor website (http://www.bioconductor.
org/). For Windows, start R and select the Packages menu, then Install

package from local zip file. Find and highlight the location of the zip �le
and click on open.

For Linux/Unix, use the usual command R CMD INSTALL or set the option
CRAN to your nearest mirror site and use the command install.packages from
within an R session.
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Loading the package: To load the pcaMethods package in your R session,
type library(pcaMethods).

Help �les: Detailed information on pcaMethods package functions can be
obtained from the help �les. For example, to get a description of bpca type
help("bpca").

Sample data: Two sample data sets are coming with the package. metaboliteDataComplete
contains a complete subset from a larger metabolite data set. metaboliteData
is the same data set but with 10 % values removed from an equal distribution.

3 Some examples

To load the package and the two sample data sets type:

> library(pcaMethods)

> data(metaboliteData)

> data(metaboliteDataComplete)

Now centre the data

> md <- prep(metaboliteData, scale="none", center=TRUE)

> mdC <- prep(metaboliteDataComplete, scale="none", center=TRUE)

Run SVD pca, PPCA, BPCA, SVDimpute and nipalsPCA on the data, using
the pca() wrapper function. The result is always a pcaRes object.

> resPCA <- pca(mdC, method="svd", center=FALSE, nPcs=5)

> resPPCA <- pca(md, method="ppca", center=FALSE, nPcs=5)

> resBPCA <- pca(md, method="bpca", center=FALSE, nPcs=5)

> resSVDI <- pca(md, method="svdImpute", center=FALSE, nPcs=5)

> resNipals <- pca(md, method="nipals", center=FALSE, nPcs=5)

> resNLPCA <- pca(md, method="nlpca", center=FALSE, nPcs=5, maxSteps=300)

Figure 2 shows a plot of the eigenvalue structure (sDev(pcaRes)). If most
of the variance is captured with few loadings PCA is likely to produce good
missing value estimation results. For the sample data all methods show similar
eigenvalues. One can also see that most of the variance is already captured by
the �rst loading, thus estimation is likely to work �ne on this data. For BPCA,
the eigenvalues are scaled di�erently for reasons discussed above, see Figure 3.
The order of the loadings remains the same.

To get an impression of the correctness of the estimation it is a good idea
to plot the scores / loadings obtained with classical PCA and one of the proba-
bilistic methods against each other. This of course requires a complete data set
from which data is randomly removed. Figure 3 shows this for BPCA on the
sample data.

4 Cross validation

Q2 is the goodness measure used for internal cross validation. This allows to
estimate the level of structure in a data set and to optimise the choice of num-
ber of loadings. Cross validation is performed by removing random elements
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Figure 2: Eigenvalue structure as obtained with di�erent methods
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of the data matrix, then estimating these using the PCA algorithm of choice
and then calculating Q2 accordingly. At the moment, cross-validation can only
be performed with algorithms that allow missing values (i.e. not SVD). Miss-
ing value independent cross-validation is scheduled for implementation in later
versions. Q2 is de�ned as following for the mean centered data (and possibly
scaled) matrix X.

SSX =
∑

(xij)
2

PRESS =
∑

(xij − x̂ij)
2

Q2 = 1− PRESS/SSX

The maximum value for Q2 is thus 1 which means that all variance in X is
represented in the predictions; X = X̂.

> q2SVDI <- Q2(resSVDI, mdC, fold=10)

> q2PPCA <- Q2(resPPCA, mdC, fold=10)
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Figure 4: Boxplot of the Q2 results for BPCA, Nipals PCA, SVDimpute and
PPCA. PPCA and SVDimpute both deliver better results than BPCA and
Nipals in this example.

The second method called kEstimate uses cross validation to estimate the
optimal number of loadings for missing value estimation. The NRMSEP (nor-
malised root mean square error of prediction) [4] or Q2 can be used to de�ne
the average error of prediction. The NRMSEP normalises the square di�erence
between real and estimated values for a certain variable by the variance within
this variable. The idea behind this normalisation is that the error of prediction
will automatically be higher if the variance is higher. The NRMSEP for mean im-

putation is
√

nObs
nObs−1 when cross validation is used, where nObs is the number
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of observations. The exact de�nition is:

NRMSEPk =

√√√√1

g

∑
j∈G

∑
i∈Oj

(xij − x̂ijk)2

ojs2xj

(2)

where s2xj
=

∑n
i=1(xij − xj)

2/(n − 1), this is the variance within a certain
variable. Further, G denotes the set of incomplete variables, g is the number
of incomplete varialbes. Oj is the set of missing observations in variable j and
oj is the number of missing observations in variable j. x̂ijk stands for the
estimate of value i of variable j using k loadings. See Figure 5 for an example.
The NRMSEP should be the error measure of choice. But if the number of
observations is small, the variance within a certain variable may become and
unstable criterion. If so or if variance scaling was applied we recommend to use
Q2 instead.

> errEsti <- kEstimate(md, method = "ppca", evalPcs=1:5, nruncv=1, em="nrmsep")
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Figure 5: Boxplot show-
ing the NRMSEP versus
the number of load-
ings. In this exam-
ple only 1 iteration of
the whole cross valida-
tion were performed. It
is normally advisable to
do more than just one
iteration.

kEstimate also provides information about the estimation error for individ-
ual variables. The Q2 distance or the NRMSEP are calculated separately for
each variable. See the manpage for kEstimate and kEstimateFast for details.
Plotting the variable - wise results gives information about for which variables
missing value estimation makes sense, and for which no imputation or mean
imputation is preferable, see Figure 6. If you are not interested in variable -
wise information we recommend to use the faster kEstimateFast instead.
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Figure 6: Boxplot show-
ing the NRMSEP for all
incomplete variables in
the data set. For the
�rst 7 variables missing
value imputation does
not seem to make too
much sense.

5 Visualisation of the results

5.1 Quick scores and loadings plot

Some methods for display of scores and loadings are also provided. The function
slplot() aims to be a simple way to quickly visualise scores and loadings in
an intuitive way, see Figure 7. Barplots are provided when plotting only one
PC and colours can be speci�ed di�erently for the scores and loadings plots.
For a more speci�c scatter plot it is however recommended to access scores and
loadings slots and de�ne own plot functions.
Another method called plotPcs() allows to visualise many PCs plotted against
each other, see Figure 8.

5.2 Using ggplot2

For using ggplot, the scores and loadings should best be added to a data frame
that add other relevant descriptive factors. For example, after doing PCA on
the Iris dataset, we may add the scores back to the original data frame and use
ggplot to visualise, see Figure 9.
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Figure 7: slplot for scores and loadings obtained with classical SVD based
PCA.
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> pc <- pca(iris)

> irdf <- merge(iris, scores(pc), by=0)

> library(ggplot2)

> ggplot(irdf, aes(PC1, PC2, colour=Species)) +

+ geom_point() +

+ stat_ellipse()
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Figure 9: Score plot using ggplot2
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