Clustering high-throughput sequencing data
based on patterns of co-expression

Thomas J. Hardcastle

October 21, 2024

1 Introduction

This vignette outlines two possibilities for clustering gene expression based on patterns of
co-expression between samples, optionally accounting for the replicate structure of the data.

The package can be installed as

> if (!requireNamespace("BiocManager", quietly=TRUE))
+ install.packages("BiocManager")
> BiocManager: :install("clusterSeq")

> library(clusterSeq)

We demonstrate these analyses on a set of time series data in female rat thymus tissues taken
from the Rat Bodymap project [1]. By identifying clusters of genes that demonstrate similar
patterns of expression over time we can identify patterns of time dependence within the data.

We first load in the processed data of observed read counts at each gene for each sample.
> data(ratThymus, package = "clusterSeq")

> head(ratThymus)

We define the replicate structure of the data in a vector whose members correspond to the
columns of the data matrix.

> replicates <- c("2week", "2week", "2week", "2week",

+ "6week", "6week", "6week", "6week",
+ "21week", "21week", "21week", "21week",
+ "104week", "104week", "104week", "104week" )

Library scaling factors are acquired here using the baySeq: :getLibsizes function but might
be acquired through any other means.

> library(baySeq)
> libsizes <- getlLibsizes(data = ratThymus)

2 K-means based clustering

For k-means based clustering, we assume an approximately log-normal distribution. We adjust
the data to remove zeros and rescale by the library scaling factors.



> ratThymus[ratThymus == 0] <- 1
> normRT <- log2(ratThymus %+*% diag(1l/libsizes) * mean(libsizes))

For speed purposes, we will consider only the first 1000 genes in the data.

> normRT <- normRT[1:1000, ]

K-means based clustering compares two genes by separately clustering the expression values
of each gene using all possible values of &k (or, if the sample size is exceptionally large, all
values of k from 1 to some large maximum permitted value.). The genes are then compared
to find the maximum k for which the average expression of the identified clusters is monotonic
between the two genes. For this value of k, the the maximum difference between expression
levels observed within a cluster of either gene is reported as a measure of the dissimilarity
between the two genes.

However, a problem arises for genes that are non-differentially expressed across all samples.
For these genes, the appropriate number of clusters is 1; however, choices of k£ > 1 often
lead to false assignment of genes to clusters exhibiting differential expression. To resolve
this, the clustering incorporates a bootstrapping stage based on Tibshirani's gap statistic.
Bootstrapping uniformly distributed data on the same range as the observed data, we calculate
the the dissimilarity score as above, and find those cases for which the gap between the
bootstrapped mean dissimilarity and the observed dissimilarity for k = 1 exceeds that for k
= 2 by more than some multiple of the standard error of the bootstrapped dissimilarities of
k = 2. These cases are forced to be treated as non-differentially expressed by discarding all
dissimilarity data for k > 1.

We generate a matrix of dissimilarity scores between each pair of genes using the kCluster
function. The full matrix can be reported to (gzipped) file; the function returns a data.frame
which for each gene defines its nearest neighbour of higher row index, and the dissimilarity
with that neighbour. This is sufficient for a clustering based on singleton agglomeration (see
hclust).

> kClust <- kCluster(normRT, matrixFile = "kclust_matrix.txt.gz", B = 1000)

> head(kClust)

Using the output from 'kCluster’ we construct a clustering of genes by singleton agglomeration
of those genes with dissimilarity scores lower than a specified threshold.

> mkClust <- makeClusters(kClust, normRT, threshold = 1)

We can repeat this analysis forcing members of the same replicate groups to cluster together
at the k-means stage.

> kClustR <- kCluster(normRT, replicates = replicates, matrixFile = "kclust_matrix_newForceReps.txt.gz", B
> mkClustR <- makeClusters(kClustR, normRT, threshold = 1)

As an alternative to singleton agglomeration, we can use the full matrix and any agglomerative
method defined in the hclust heirarchical analysis function.

> mkClustRC <- makeClustersFF("kclust_matrix_newForceReps.txt.gz", method = "complete", cut.height = 5)



3 Posterior likelihood analyses

As an alternative to the K-means based clustering, we can use empirical Bayesian likelihoods
on all possible models for the structure of the data at each gene, and from these estimate
the likelihood that two genes share the same structure. We estimate these likelihoods using
the baySeq package.

We first create a countData object to contain the data and find all possible models that
preserve the replicate structure.

library(baySeq)

cD.ratThymus <- new("countData", data = ratThymus, replicates = ¢(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4))
densityFunction(cD.ratThymus) <- nbinomDensity

libsizes(cD.ratThymus) <- getLibsizes(cD.ratThymus)

cD.ratThymus <- allModels(cD.ratThymus)
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The commented out code is for the analysis of the data with baySeq. Since this takes
some time, this has already been performed and can be loaded in with the analysis already

performed.

> #cl <- makeCluster(4)

> #cD.ratThymus <- getPriors(cD.ratThymus, consensus = TRUE, cl = cl)
> #cD.ratThymus <- getLikelihoods(cD.ratThymus, cl = cl)

>

> data(cD.ratThymus, package = "clusterSeq")

Given the estimated posteriors for each gene to have each model, we estimate the likelihood
that two genes have identical models, and that the ordering of average expression in the
groups defined by those models is monotonic between the two genes. As before, the function
associatePosteriors returns a data.frame which for each gene defines its nearest neighbour
of higher row index, and the dissimilarity with that neighbour. This is sufficient for a clustering
based on singleton agglomeration using the makeClusters function.

> cD.ratThymus <- cD.ratThymus[1:1000, ]
> aM <- associatePosteriors(cD.ratThymus)
> sX <- makeClusters(aM, cD.ratThymus, threshold = 0.5)

Likelihoods of a pair being clustered together in one clustering given that they are clustered
in that way in the other.
> wallace(sX, mkClustRC)

P.vl_given_v2 P.v2_given_vl
1.0000000 0.2787628

> par(mfrow = c(2,3))
> plotCluster(sX[1:6], cD.ratThymus)

«label=plotClusterBS-fig, fig=TRUE,echo=FALSE»= «plotClusterBS» @

Figure 1: Profiles of gene expression in top six clusters acquired from baySeq analysis.



Session Info

> sessionInfo()

R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows Server 2022 x64 (build 20348)

Matrix products: default

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.utf8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] clusterSeq_1.29.0 baySeq_2.39.0 BiocParallel _1.39.0

loaded via a namespace (and not attached):

[1] httr_1.4.7 cli_3.6.3 knitr_1.48

[4] rlang_1.1.4 xfun_0.48 UCSC.utils_1.1.0

[7] jsonlite_1.8.9 statmod_1.5.0 S4Vectors_0.43.2
[10] BiocStyle 2.33.1 htmltools_0.5.8.1 snow_0.4-4

[13] stats4_4.4.1 locfit_1.5-9.10 rmarkdown_2.28
[16] grid_4.4.1 abind_1.4-8 evaluate_1.0.1
[19] fastmap_1.2.0 yaml_2.3.10 IRanges_2.39.2
[22] GenomeInfoDb_1.41.2 BiocManager_1.30.25 compiler_4.4.1
[25] codetools_0.2-20 limma_3.61.12 edgeR_4.3.20
[28] XVector_0.45.0 lattice_0.22-6 digest_0.6.37
[31] R6_2.5.1 parallel_4.4.1 GenomeInfoDbData_1.2.13
[34] GenomicRanges_1.57.2 tools_4.4.1 zlibbioc_1.51.2

[37] BiocGenerics_0.51.3
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