blima - R package for Bead Level lllumina
Microarray Analysis

Vojtéch Kulvait'

October 21, 2024

1 Introduction

blima has been created for the bead (detector) level analysis of lllumina Microarray data.
It is R/Bioconductor package. The package blima contains several functions implementing
algorithms to preprocess lllumina Microarray data on the bead level. It also provides functions
for probe level analysis and basic methods for differential expression testing.

For the background correction it contains implementation of background outlier correction
method. From the standard methods there is implemented graphical background subtraction
and RMA-like convolution model described in the work [1] as non parametric model. It
implements variance stabilizing method and log transformation on the bead level to remove
heteroskedasticity from the data. Then it also implements quantile normalization method for
vectors of unequal lengths.

The blima uses the object beadLevelData from the package beadarray (see [2]) to store and
manipulate with the data. blima functions take the beadLevelData object or list of such
objects as input. By providing the list of such objects we can simply do the preprocessing
based on multiple array kits. The beadLevelData contains records for each array and those
arrays contains itself so called slots. These slots are storage units for bead level data on the
array which we utilize.

To use this manual and follow examples, please also install the package blimaTestingData
and load blimatesting object.

library(blima)
library(blimaTestingData)
data(blimatesting)
library(Biobase)

Loading required package: BiocGenerics

##
Attaching package: ’BiocGenerics’

The following objects are masked from ’package:stats’:

##

IOR, mad, sd, var, xtabs

The following objects are masked from ’package:base’:

#i#

Filter, Find, Map, Position, Reduce, anyDuplicated, aperm,
append, as.data.frame, basename, cbind, colnames, dirname,

1kuLvait@gmail.com

http://bioconductor.org/packages/blima
http://bioconductor.org/packages/blima
http://bioconductor.org/packages/blima
http://bioconductor.org/packages/blima
http://bioconductor.org/packages/beadarray
http://bioconductor.org/packages/blima
http://bioconductor.org/packages/blimaTestingData
mailto:kulvait@gmail.com

blima - R package for Bead Level lllumina Microarray Analysis

##
##
##
##
##

##
##
##
##
##

do.call, duplicated, eval, evalq, get, grep, grepl, intersect,

is.unsorted,

pmax.int, pmin, pmin.int, rank,

saveRDS,

Welcome to Bioconductor

setdiff, table,
which.max, which.min

rbind,

rownames, sapply,

tapply, union, unique, unsplit,

Vignettes contain introductory material; view with
To cite Bioconductor, see
‘citation("Biobase")’, and for packages ’citation("pkgname")’.

"browseVignettes()’.

library(xtable)

First we could print an overview of the data we have.

lapply, mapply, match, mget, order, paste, pmax,

arraylstats = chipArrayStatistics(blimatesting[[1]], includeBeadStatistic=TRUE,
excludedOnSDMultiple=3)

arraylpheno = pData(blimatesting[[1l]]@experimentData$phenoData)
arraylstats = data.frame(arraylpheno$Name, arraylstats)

colnames (arraylstats)[1] <- "Array";

table = xtable(arraylstats, align="|c|c|c|c|c|c|c|c|c|c|", caption="Array 1 statistic."

digits(table)[c(2,3)]<-0
digits(table)[c(4:9)]<-1
print(table, include.rownames=FALSE)

Array | Beads | Mean.FG | SD.FG | Mean.BG | SD.BG | Mean.BPP | SD.BPP | PCT
Al 1074567 808.2 513.7 698.2 1.7 222 5.4 0.50
A2 | 1081885 804.0 523.7 698.4 1.7 22.4 55 0.54
A3 | 1081138 811.5 536.9 697.9 1.7 224 5.3 0.58
A4 | 1090648 803.2 485.0 698.0 1.7 22.6 55 0.20

Table 1: Array 1 statistic.

array2stats = chipArrayStatistics(blimatesting[[2]], includeBeadStatistic=TRUE,
excludedOnSDMultiple=3)

array2pheno = pData(blimatesting[[2]]@experimentData$phenoData)
array2stats = data.frame(array2pheno$Name, array2stats)

colnames (array2stats)[1] <- "Array";

table = xtable(array2stats, align="|c|c|c|c|c|c]|c|c|c|c|", caption="Array 2 statistic."

digits(table)[c(2,3)]1<-0
digits(table)[c(4:9)]<-1
print(table, include.rownames=FALSE)

Array | Beads | Mean.FG | SD.FG | Mean.BG | SD.BG | Mean.BPP | SD.BPP | PCT
D4 | 1080439 818.5 573.0 698.1 2.7 22.4 54 0.04
El 1057564 809.9 527.8 697.7 1.7 21.9 5.2 0.53
E2 1091118 822.0 577.7 697.9 1.7 22.6 55 0.30
E3 1063812 811.0 523.0 697.8 1.8 22.0 5.2 0.28
E4 | 1099047 806.6 546.0 697.8 1.7 22.7 53 0.49

Table 2: Array 2 statistic.

http://bioconductor.org/packages/blima

blima - R package for Bead Level lllumina Microarray Analysis

In the next sections we are going to provide you with a basic functionality of the blima
package by performing simple task of exporting data to the format acceptable for NCBI Gene
Expression Omnibus submission. In fact supporting data for this package in the GSE56129
dataset were prepared that way. The preprocessing shown in this manual is negative probes
exclusion and background outlier correction with no other background correction step followed
by variance stabilizing transformation (bead level) and quantile normalization (bead level for
the vectors of unequal lengths). However in the manual there is also described how to utilize
other preprocessing functions such as background subtraction, RMA like convolution and log2
transformation.

Data annotation

2.1

In the next chapters, it is necesery to have annotation data. Individual beads in the objects
derived from the class beadLevelData are identified by "Array Address Id" more usual identifier
in the databases and various sources is "lllumina Probe Id". So we would like to have the
mapping from "Array Address Id" to "lllumina Probe Id". We also usually need an object to
map "lllumina Probe Id" to "Symbol".

If we want to use background correction we will also need object to store "Array Address Ids"
of negative control probes.

Working with Bioconductor annotation objects

First possibility is to use an annotation package such as illuminaHumanv4.db. In this case
we can obtain objects with a mappings by following way

library(illuminaHumanv4.db)

Loading required package: AnnotationDbi

Loading required package: stats4

Loading required package: IRanges

Loading required package: S4Vectors

#i#
Attaching package: ’S4Vectors’

The following object is masked from ’'package:utils’:
##
#it findMatches

The following objects are masked from ’package:base’:
##
I, expand.grid, unname

##
Attaching package: 'IRanges’

’

The following object is masked from ’package:grDevices’:
##t
windows

Loading required package: org.Hs.eg.db

http://bioconductor.org/packages/blima
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56129
http://bioconductor.org/packages/illuminaHumanv4.db

blima - R package for Bead Level lllumina Microarray Analysis

##
##

adrToIllumina = toTable(illuminaHumanv4ARRAYADDRESS)

adrToIllumina = adrToIlluminal[, c("ArrayAddress", "I1lluminaID")]

colnames(adrToIllumina) = c("Array_Address Id", "Probe Id")

illuminaToSymbol = toTable(illuminaHumanv4SYMBOLREANNOTATED)

adrToSymbol = merge(adrToIllumina, illuminaToSymbol, by.x="Probe Id", by.y="IlluminaID")
adrToSymbol = adrToSymbol[,c("Array_Address_Id", "SymbolReannotated")]

colnames (adrToSymbol) = c("Array_Address_Id", "Symbol")

negIl = mappedLkeys (revmap(illuminaHumanv4REPORTERGROUPNAME) ["negative"])

negAdr = mappedRkeys (illuminaHumanv4ARRAYADDRESS[negIl])

2.2 Working with manufacturer annotation objects

Illumina annotation in the last subsection provides reanotated data meaning that some data
may not match manufacturer annotation. For some applications like submission to Gene
Expression Omnibus it should be necesery to work with default manufacturer annotation
files. For this purpose is explained in the vignette for blimaTestingData package how to create
annotation object called annotationHumanHT12V4 which is R representation of text annotation
provided by Illumina in file HumanHT-12_V4_0_R2_15002873_B.txt available for download
from http://support.illumina.com/array/array_ kits/humanht-12_v4_ expression__beadchip_
kit/downloads.ilmn. Provided you have prepared this object you can construct mappings by
following way:

if(exists("annotationHumanHT12V4"))

{
adrToIllumina = annotationHumanHT12V4$Probes[, c("Array Address Id", "Probe Id")]
adrToSymbol = annotationHumanHT12V4$Probes[, c("Array Address Id", "Symbol")]
negAdr = unique(annotationHumanHT12V4$Controls[
annotationHumanHT12V4$Controls$Reporter_Group_Name=="negative",
"Array_Address_Id"])
}

3 Background correction

In the blima package | developed a special approach to the background correction of Illumina
microarray data. In this approach there is no background subtraction. Instead we search for
the beads for which the background value is out of range of 3 standard deviations from the
mean of background values on the chip. We filter out these beads by creating slot with the
value 1 for the beads passing background correction and 0 for those beads that do not pass.

Next we create background correction slot called "bgf" in the blimatesting object by calling
function bacgroundCorrect. We also want to exclude any beads with negative values from
the downstream analysis. This is possible by the function nonPositiveCorrect. We can
create a new slot called "bgfnonnegative" but typically we would like to bitwise add these
two channels. This addition is possible by setting parameter channelAndVector of functions
bacgroundCorrect and nonPositiveCorrect to the name of the slot to perform logical and
with. Our background correction code reads

http://bioconductor.org/packages/blima
http://bioconductor.org/packages/blimaTestingData
http://support.illumina.com/array/array_kits/humanht-12_v4_expression_beadchip_kit/downloads.ilmn
http://support.illumina.com/array/array_kits/humanht-12_v4_expression_beadchip_kit/downloads.ilmn
http://bioconductor.org/packages/blima

blima - R package for Bead Level lllumina Microarray Analysis

blimatestingall = bacgroundCorrect(blimatesting, channelBackground = "GrnB",
channelBackgroundFilter="bgf")

blimatestingall = nonPositiveCorrect(blimatestingall, normalizationMod=NULL,
channelCorrect="GrnF", channelBackgroundFilter="bgf", channelAndVector="bgf")

The blima package also contain methods for standard background correction. We can use the
function backgroundChannelSubtract for background subtraction and xieBacgroundCorrect
for RMA-like background convolution. If we want to create slot "BGS" for the graphical
background subtracted data (subtract "GrnF - GrnB") we may call

blimatestingall = backgroundChannelSubtract(blimatestingall, normalizationMod = NULL,
channelSubtractFrom = "GrnF", channelSubtractWhat = "GrnB", channelResult = "BGS")

There is also function for RMA-like background convolution. Method xieBacgroundCorrect
do in fact use negative control probes information and is based on non parametric model
described in the work [1]. To use this model we first have to prepare array addresses of
negative control probes in the array. Then we can perform the convolution. If we want to
create slot "XIE" processed by the algorithm we call

blimatestingall = xieBacgroundCorrect(blimatestingall, normalizationMod = NULL,
negativeArrayAddresses=negAdr, channelCorrect="GrnF", channelResult="XIE",
channelInclude="bgf")

4 Variance Stabilizing Method

Next we do the variance stabilizing step (based on the model from [3] modified for bead level
analysis) by calling the function varianceBeadStabilise. We use the channel "GrnF" as a
quality to stabilize, we include only those beads to vst analysis having channellnclude "bgf"
equals 1 for a given bead and we produce a new channel channelOutput="vst".

blimatestingall = varianceBeadStabilise(blimatestingall, quality="GrnF",
channelInclude="bgf", channelOutput="vst")

If we do like to perform log2 transformation instead of variance stabilization for example of the
slot "GrnF" we can call function selectedChannelTransform with transformation parameter
set to log2TransformPositive we call the result "LOG"

blimatestingall = selectedChannelTransform(blimatestingall, normalizationMod=NULL,
channelTransformFrom="GrnF", channelResult="L0G",
transformation=1log2TransformPositive)

5 Quantile normalization

In the next step we perform the quantile normalization of the bead level data. We use the
bead level quantile normalization algorithm implemented in the function quantileNormalize.

blimatestingall = quantileNormalize(blimatestingall, normalizationMod=NULL,
channelNormalize="vst", channelOutput="qua", channelInclude="bgf")

http://bioconductor.org/packages/blima

blima - R package for Bead Level lllumina Microarray Analysis

6

Data testing

The package blima provides a basic infrastructure for performing bead level and probe level
testing of the data by means of functions doTTests and doProbeTTests

Here we show how to proceed if we want to know 10 most differentially expressed probes
(and associate genes) between groups A and E. We know that in the object blimatesting
from the blimaTestingData package there is one extra array. We have no intention to include
this array into the analysis. By means of the parameter normalizationMod of the functions
bacgroundCorrect, nonPositiveCorrect, varianceBeadStabilise and quantileNormalize
we can choose a subset of the arrays in our list of beadLevelData objects for the further
processing. The normalizationMod specifies a list of logical vectors with the same structure
as the first input object of given function, typically list of beadLevelData objects or single
beadLevelData object. In the normalizationMod object the logical value TRUE at certain
position means to process corresponding chip spot, logical value FALSE means to exclude
corresponding chip slot from processing.

First we make logical lists corresponding to arrays to process and groups of arrays.

data("blimatesting")

groupsl = "A";

groups2 = "E";

sampleNames = list()

groupslMod = Llist()

groups2Mod = Llist()
processingMod = list()

for(i in 1l:length(blimatesting))

{
p = pbData(blimatesting[[i]]@experimentData$phenoData)
groupslMod[[i]] = p$Group %in% groupsl;
groups2Mod[[i]] = p$Group %in% groups2;
processingMod[[i]] = p$Group %in% c(groupsl, groups2);
sampleNames[[i]] = p$Name

}

Then we process only those microarrays in the processingMod by our pipeline.

blimatesting = bacgroundCorrect(blimatesting, normalizationMod = processingMod,
channelBackgroundFilter="bgf")

blimatesting = nonPositiveCorrect(blimatesting, normalizationMod = processingMod,
channelCorrect="GrnF", channelBackgroundFilter="bgf", channelAndVector="bgf")

blimatesting = varianceBeadStabilise(blimatesting, normalizationMod = processingMod,
quality="GrnF", channelInclude="bgf", channelOutput="vst")

blimatesting = quantileNormalize(blimatesting, normalizationMod = processingMod,
channelNormalize="vst", channelOutput="qua", channelInclude="bgf")

Then we do the tests. We have to decide what a good measure of differential expression is.
In this example we choose (1 — pagjustea)|F'C|. Then we list 10 most differentially expressed
probes with corresponding genes according to this measure.

probeTest <- doProbeTTests(blimatesting, groupslMod, groups2Mod,
transformation=NULL, quality="qua", channelInclude="bgf")
beadTest <- doTTests(blimatesting, groupslMod, groups2Mod,

http://bioconductor.org/packages/blima
http://bioconductor.org/packages/blima

blima - R package for Bead Level lllumina Microarray Analysis

transformation=NULL, quality="qua", channelInclude="bgf")
probeTestID = probeTest[,"ProbeID"]
beadTestID = beadTest[,"ProbeID"]
probeTestFC = abs(probeTest[, "meanl"]-probeTest[, "mean2"])
beadTestFC = abs(beadTest[, "meanl"]-beadTest[, "mean2"])
probeTestP = probeTest[,"adjustedp"]
beadTestP = beadTest[,"adjustedp"]
probeTestMeasure = (1l-probeTestP)x*probeTestFC
beadTestMeasure = (1-beadTestP)x*beadTestFC
probeTest = cbind(probeTestID, probeTestMeasure)
beadTest = chind(beadTestID, beadTestMeasure)
colnames(probeTest) <- c("ArrayAddressID", "difexPL")
colnames (beadTest) <- c("ArrayAddressID", "difexBL")
tocmp <- merge(probeTest, beadTest)
tocmp = merge(tocmp, adrToSymbol, by.x="ArrayAddressID", by.y="Array Address Id")
tocmp = tocmp[, c("ArrayAddressID", "Symbol", "difexPL", "difexBL")]
sortPL = sort(-tocmp[,"difexPL"], index.return=TRUE)$ix
sortBL = sort(-tocmp[,"difexBL"], index.return=TRUE)$ix
beadTopl® = tocmp[sortBL[1:10],]
probeTopl® = tocmp[sortPL[1:10],]
beadTopl® = xtable(beadTopl@®, align="|c|c|c|c|c|", caption="Top 10 probes on bead level.")
probeTopl® = xtable(probeTopl®, align="|c|c|c|c|c|", caption="Top 10 probes on probe level.")
digits(beadTopl0)[2] = O
digits(probeTopl0)[2] = 0O
print(beadTopl@®, include.rownames=FALSE)

ArrayAddressID Symbol difexPL | difexBL
6590132 IGFBP3 3.82 3.84
6840372 IGFBP3 3.56 3.56
730414 APOE 2.73 341
150373 FABP4 1.93 3.29
5810685 THBS1 3.18 3.27
2360326 TAGLN 1.84 3.23
6960142 COL1A1 2.34 2.90
4900520 SCG2 1.13 2.81
110181 KIAA1199 2.13 2.73
4260139 AKR1B1 2.40 2.73

Table 3: Top 10 probes on bead level.
print(probeTopl@®, include.rownames=FALSE)

You can see that the bead level analysis and the probe level analysis in fact do produce
comparable results.

http://bioconductor.org/packages/blima

blima - R package for Bead Level lllumina Microarray Analysis

ArrayAddressID | Symbol | difexPL | difexBL
6590132 IGFBP3 3.82 3.84
6840372 IGFBP3 3.56 3.56
5810685 THBS1 3.18 3.27
730414 APOE 2.73 341
7210632 AKR1C3 2.47 2.61
610519 TPM1 2.43 251
5560246 TPM1 2.42 2.48
4260139 AKR1B1 2.40 2.73
6960142 COL1A1 2.34 2.90
1400446 PLIN2 2.25 2.26

Table 4: Top 10 probes on probe level.

7 Summarization

Even though the blima provides methods to work with unsummarized data it may be necesery
sometimes to work also with summarized data. In the particular application mentionned in
this manual we export the data to the format accepted by Gene Expression Omnibus. We
need to have data summarized according to the lllumina Probe ID. This summarization the
data from any slot is implemented in the function createSummarizedMatrix.

We allready prepared adrToIllumina mapping thus we create summarized matrix by calling
the createSummarizedVatrix. Then we translate the ArrayAddressID to the ProbelD and
create the output matrces in the form acceptable by the Gene Expression Omnibus. We
prepare two matrices, first based on the data from the "qua" slot and second based on the
"GrnF" slot. The "qua" matrix is called normalized data and "GrnF" matrix is called non
normalized data.

The data for dataset dataset GSE56129 was prepared in the similar fashion using annotation
HumanHT12V4 object.

nonnormalized = createSummarizedMatrix(blimatesting, spotsToProcess=processingMod, quality="GrnF", channelln
annotationTag="Name")

nonnormalized = merge(nonnormalized, adrToIllumina, by.x="ProbeID", by.y="Array_ Address_Id")

nonnormalized = nonnormalized[, c(10, 2:9)]

colnames(nonnormalized)[1] = "ID_REF"
for(i in 2:9)
{
colnames (nonnormalized) [i] = sprintf("%s", colnames(nonnormalized)[i])
b
table = head(nonnormalized)
table = xtable(table, align="|c|c|c|c|c|c|c|c|c|c|", caption="Head of nonnormalized data.")

digits(table)[c(2:9)]<-1
print(table, include.rownames=FALSE)

normalized = createSummarizedMatrix(blimatesting, spotsToProcess=processingMod, quality="qua", channellInclud
annotationTag="Name")

normalized = merge(normalized, adrToIllumina, by.x="ProbeID", by.y="Array_Address_Id")

normalized = normalized[, c(10, 2:9)]

colnames(normalized)[1] = "ID_REF"

for(i in 2:9)

http://bioconductor.org/packages/blima
http://bioconductor.org/packages/blima
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56129

blima - R package for Bead Level lllumina Microarray Analysis

{

}

ID_REF Al A2 A3 A4 El E2 E3 E4
ILMN_1802380 | 859.6 | 867.6 | 858.6 | 860.1 | 889.9 | 919.4 | 937.1 | 924.94
ILMN_1893287 | 715.7 | 715.8 | 716.7 | 703.9 | 714.7 | 717.0 | 711.3 | 717.44
ILMN_3238331 | 713.9 | 710.5 | 714.3 | 714.4 | 707.4 | 715.2 | 715.8 | 710.99
ILMN_1736104 | 707.6 | 720.8 | 714.1 | 715.4 | 709.4 | 700.2 | 712.6 | 715.53
ILMN_1792389 | 711.0 | 720.6 | 722.8 | 710.6 | 717.5 | 718.2 | 717.9 | 717.87
ILMN_1854015 | 727.9 | 728.8 | 729.4 | 721.0 | 728.4 | 727.1 | 726.1 | 728.90

Table 5: Head of nonnormalized data.

colnames(normalized) [i] = sprintf("%s", colnames(normalized)[i])

table = head(normalized)

table

digits(table)[c(2:10)]<-3
print(table, include.rownames=FALSE)

ID_REF Al A2 A3 A4 El E2 E3 E4
ILMN_1802380 | 9.320 | 9.401 | 9.305 | 9.332 | 9.418 | 9.415 | 9.515 | 9.560
ILMN_1893287 | 8.774 | 8.769 | 8.781 | 8.694 | 8.772 | 8.781 | 8.751 | 8.783
ILMN_3238331 | 8.765 | 8.743 | 8.770 | 8.770 | 8.724 | 8.773 | 8.776 | 8.748
ILMN_1736104 | 8.723 | 8.795 | 8.769 | 8.775 | 8.746 | 8.693 | 8.759 | 8.773
ILMN_1792389 | 8.744 | 8.799 | 8.810 | 8.736 | 8.785 | 8.787 | 8.785 | 8.785
ILMN_1854015 | 8.821 | 8.840 | 8.839 | 8.789 | 8.840 | 8.824 | 8.825 | 8.842

Table 6: Head of normalized data.

Acknowledgement

Thanks to Pavla Jumrova for the language corrections.

References

[1]

2]

(3]

Yang Xie, Xinlei Wang, and Michael Story. Statistical methods of background
correction for illumina BeadArray data. Bioinformatics, 25(6):751-757, March 2009.
PMID: 19193732. URL: http://bioinformatics.oxfordjournals.org/content/25/6 /751,
do0i:10.1093/bioinformatics/btp040.

Mark J. Dunning, Mike L. Smith, Matthew E. Ritchie, and Simon Tavaré. beadarray: R
classes and methods for illumina bead-based data. Bioinformatics, 23(16):2183 —2184,
2007. URL: http://bioinformatics.oxfordjournals.org/content,/23/16/2183.abstract,
doi:10.1093/bioinformatics/btm311.

Simon M Lin, Pan Du, Wolfgang Huber, and Warren A Kibbe. Model-based
variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Research,
36(2):el1-ell, February 2008. URL:
http://nar.oxfordjournals.org/content/36/2/ell.abstract, doi:10.1093/nar/gkm1075.

xtable(table, align="|c|c|c|c|c|c|c|c|c|c|", caption="Head of normalized data."

http://bioconductor.org/packages/blima
http://bioinformatics.oxfordjournals.org/content/25/6/751
http://dx.doi.org/10.1093/bioinformatics/btp040
http://bioinformatics.oxfordjournals.org/content/23/16/2183.abstract
http://dx.doi.org/10.1093/bioinformatics/btm311
http://nar.oxfordjournals.org/content/36/2/e11.abstract
http://dx.doi.org/10.1093/nar/gkm1075

	1 Introduction
	2 Data annotation
	2.1 Working with Bioconductor annotation objects
	2.2 Working with manufacturer annotation objects

	3 Background correction
	4 Variance Stabilizing Method
	5 Quantile normalization
	6 Data testing
	7 Summarization

