
baySeq: Empirical Bayesian analysis of pat-
terns of differential expression in count data

Thomas J. Hardcastle

October 27, 2024

1 Introduction
This vignette is intended to give a rapid introduction to the commands used in implementing
empirical Bayesian methods of evaluating differential expression in high-throughput sequenc-
ing data by means of the baySeq R package. For fuller details on the methods being used,
consult Hardcastle & Kelly (2010) [1] and Hardcastle (2015) [2].

We assume that we have data from a set of sequencing or other high-throughput experiments,
arranged in an array such that each column describes a sample and each row describes some
genomic event for which data have been acquired. For example, the rows may correspond to
the different sequences observed in a sequencing experiment. The data then consists of the
number of times each sequence is observed in each sample. We wish to determine which,
if any, rows of the data correspond to some patterns of differential expression across the
samples.

baySeq uses empirical Bayesian methods to estimate the posterior likelihoods of each of a set
of models that define patterns of differential expression for each row. This approach begins
by considering a distribution for the row defined by a set of underlying parameters for which
some prior distribution exists. By estimating this prior distribution from the data, we are able
to assess, for a given model about the relatedness of our underlying parameters for multiple
libraries, the posterior likelihood of the model.

In forming a set of models upon the data, we consider which patterns are biologically likely
to occur in the data. For example, suppose we have count data from some organism in
condition A and condition B. Suppose further that we have two biological replicates for
each condition, and hence four libraries A1, A2, B1, B2, where A1, A2 and B1, B2 are the
replicates. It is reasonable to suppose that at least some of the rows may be unaffected by
our experimental conditions A and B, and the count data for each sample in these rows
will be equivalent. These data need not in general be identical across each sample due to
random effects and different library sizes, but they will share the same underlying parameters.
However, some of the rows may be influenced by the different experimental conditions A and
B. The count data for the samples A1 and A2 will then be equivalent, as will the count
data for the samples B1 and B2. However, the count data between samples A1, A2, B1, B2

will not be equivalent. For such a row, the data from samples A1 and A2 will then share
the same set of underlying parameters, the data from samples B1 and B2 will share the
same set of underlying parameters, but, crucially, the two sets will not be identical. However,
baySeq takes an alternative approach to analysis that allows more complicated patterns of
differential expression than simple pairwise comparison, and thus is able to cope with more
complex experimental designs (Section 5.5).

In this initial vignette, we consider RNA-seq type data assumed to follow a negative binomial
distribution. Alternative scenarios are discussed in the vignette Advanced analysis using
baySeq; generic distribution definitions.

2 Preparation
We begin by loading the baySeq package.

> library(baySeq)

Note that because the experiments that baySeq is designed to analyse are usually massive,
we should use (if possible) parallel processing as implemented by the snow package. We use
the parallel package (if it exists), and define a cluster. If parallel is not present, we can
proceed anyway with a NULL cluster. Results may be slightly different depending on whether
or not a cluster is used owing to the non-deterministic elements of the method.

> if(TRUE) { # set to FALSE if you don't want parallelisation

+ library(parallel) # explicit use, assume installed because in "Imports"

+ cl <- makeCluster(4)

+ } else {

+ cl <- NULL

+ }

We load a simulated data set consisting of count data on one thousand counts.

> data(simData)

> simData[1:10,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 4 1 5 2 3 0 1 1 1 0

[2,] 1 0 9 6 5 0 1 0 0 1

[3,] 9 2 5 5 14 2 3 1 0 4

[4,] 7 3 8 2 2 0 1 0 1 0

[5,] 2 2 4 7 0 0 0 0 0 1

[6,] 2 1 0 1 0 4 3 5 5 3

[7,] 9 8 8 8 9 1 2 1 0 0

[8,] 9 5 7 8 7 1 2 0 1 2

[9,] 6 2 2 3 0 0 0 0 0 0

[10,] 1 0 2 0 1 3 17 2 2 10

The data are simulated such that the first hundred counts show differential expression between
the first five libraries and the second five libraries. Our replicate structure, used to estimate
the prior distributions on the data, can thus be defined as

> replicates <- c("simA", "simA", "simA", "simA", "simA",

+ "simB", "simB", "simB", "simB", "simB")

We can also establish two group structures for the data.

2

Each member (vector) contained within the ’groups’ list corresponds to one model upon the
data. In this setting, a model describes the patterns of data we expect to see at least some
of the tags correspond to. In this simple example, we expect that some of the tags will be
equivalently expressed between all ten libraries. This corresponds to the ’NDE’ model, or
vector c(1,1,1,1,1,1,1,1,1,1) - all libraries belong to the same group for these tags.

We also expect that some tags will show differential expression between the first five libraries
and the second five libraries. For these tags, the two sets of libraries belong to different
groups, and so we have the model ’DE’, or vector c(1,1,1,1,1,2,2,2,2,2) - the first five
libraries belong to group 1 and the second five libraries to group 2. We thus have the following
group structure

> groups <- list(NDE = c(1,1,1,1,1,1,1,1,1,1),

+ DE = c(1,1,1,1,1,2,2,2,2,2))

In a more complex experimental design (Section ??) we might have several additional models.
The key to constructing vectors corresponding to a model is to see for which groups of libraries
we expect equivalent expression of tags.

We note that the group for DE corresponds to the replicate structure. This will often be the
case, but need not be in more complex experimental designs.

The ultimate aim of the baySeq package is to evaluate posterior likelihoods of each model
for each row of the data.

We begin by combining the count data and user-defined groups into a countData object.

> CD <- new("countData", data = simData, replicates = replicates, groups = groups)

Library sizes can be inferred from the data if the user is not able to supply them.

> libsizes(CD) <- getLibsizes(CD)

> libsizes(CD)

[1] 1424 944 1519 744 1277 1186 1588 818 870 1406

We can then plot the data in the form of an MA-plot, suitable modified to plot those data
where the data are uniformly zero (and hence the log-ratio is infinite) (Figure 1). Truly
differentially expressed data can be identified in the plot by coloring these data red, while
non-differentially expressed data are colored black.

> plotMA.CD(CD, samplesA = "simA", samplesB = "simB",

+ col = c(rep("red", 100), rep("black", 900)))

We can also optionally add annotation details into the @annotation slot of the countData

object.

> CD@annotation <- data.frame(name = paste("count", 1:1000, sep = "_"))

3

A

M

−2 0 2 4 6 8

−
In

f
−

5
0

5
In

f

Figure 1: ’MA’-plot for count data. Where the log-ratio would be infinite (because the data in one of the
sample groups consists entirely of zeros, we plot instead the log-values of the other group. Truly differen-
tially expressed data are colored red, and non-differentially expressed data black.

3 Negative-Binomial Approach
We first estimate an empirical distribution on the parameters of the Negative Binomial dis-
tribution by bootstrapping from the data, taking individual counts and finding the quasi-
likelihood parameters for a Negative Binomial distribution. By taking a sufficiently large
sample, an empirical distribution on the parameters is estimated. A sample size of around
10000 iterations is suggested, depending on the data being used), but 1000 is used here to
rapidly generate the plots and tables.

> CD <- getPriors.NB(CD, samplesize = 1000, estimation = "QL", cl = cl)

The calculated priors are stored in the @priors slot of the countData object produced as be-
fore. For the negative-binomial method, we are unable to form a conjugate prior distribution.
Instead, we build an empirical prior distribution which we record in the list object $priors of
the slot @priors. Each member of this list object corresponds to one of the models defined
by the group slot of the countData object and contains the estimated parameters for each of
the individual counts selected under the models. The vector $sampled contained in the slot
@priors describes which rows were sampled to create these sets of parameters.

4

> CD@groups

$NDE

[1] 1 1 1 1 1 1 1 1 1 1

Levels: 1

$DE

[1] 1 1 1 1 1 2 2 2 2 2

Levels: 1 2

> sapply(names(CD@groups), function(group) lapply(CD@priors$priors[[group]], head, 5))

$NDE

$NDE[[1]]

1

[1,] 0.0005535903 7.887362e-01

[2,] 0.0002547554 1.717391e-08

[3,] 0.0007454744 6.117239e-01

[4,] 0.0003396739 6.775168e-09

[5,] 0.0023315680 9.364410e-01

$DE

$DE[[1]]

1

[1,] 0.0001263541 7.887362e-01

[2,] 0.0001263541 1.717391e-08

[3,] 0.0001263541 6.117239e-01

[4,] 0.0001263541 6.775168e-09

[5,] 0.0001263541 9.364410e-01

$DE[[2]]

2

[1,] 0.0011571814 7.887362e-01

[2,] 0.0005112474 1.717391e-08

[3,] 0.0014791693 6.117239e-01

[4,] 0.0006816633 6.775168e-09

[5,] 0.0046124819 9.364410e-01

We then acquire posterior likelihoods, estimating the proportions of differentially expressed
counts.

> CD <- getLikelihoods(CD, cl = cl, bootStraps = 3, verbose = FALSE)

...

> CD@estProps

NDE DE

0.881738 0.118262

> CD@posteriors[1:10,]

NDE DE

[1,] -0.7182509 -0.668658235

5

[2,] -1.1044953 -0.402536516

[3,] -1.0081651 -0.453953779

[4,] -2.8017825 -0.062622239

[5,] -0.7890052 -0.605679477

[6,] -1.0411667 -0.435474740

[7,] -6.4331196 -0.001608722

[8,] -4.4751954 -0.011453337

[9,] -1.1732792 -0.370123309

[10,] -1.8065428 -0.179390935

> CD@posteriors[101:110,]

NDE DE

[1,] -3.509570e-02 -3.367173

[2,] -3.456222e-10 -21.785679

[3,] -4.959439e-02 -3.028572

[4,] -2.507815e-02 -3.698271

[5,] -2.022689e-05 -10.808508

[6,] -2.900704e-02 -3.554685

[7,] -5.219352e-02 -2.978780

[8,] -1.773987e-02 -4.040798

[9,] -4.623394e-02 -3.097069

[10,] -1.502412e-02 -4.205601

Here the assumption of a Negative Binomial distribution with priors estimated by maximum
likelihood gives an estimate of

DE

0.118262

as the proportion of differential expressed counts in the simulated data, where in fact the
proportion is known to be 0.1.

4 Results
We can ask for the top candidates for differential expression using the topCounts function.

> topCounts(CD, group = "DE")

name simA.1 simA.2 simA.3 simA.4 simA.5 simB.1 simB.2 simB.3 simB.4 simB.5

80 count_80 1 1 0 1 1 13 21 8 6 20

78 count_78 1 1 0 1 1 8 13 7 9 10

66 count_66 0 0 0 0 0 15 10 4 4 10

21 count_21 2 0 1 1 0 15 15 6 5 11

7 count_7 9 8 8 8 9 1 2 1 0 0

26 count_26 13 4 11 5 7 1 1 1 0 0

64 count_64 6 6 8 11 9 1 1 0 0 1

72 count_72 0 0 1 0 0 7 6 4 3 8

83 count_83 14 6 9 2 9 1 0 0 1 1

27 count_27 5 3 6 4 7 0 0 0 1 0

likes DE FDR.DE FWER.DE

80 0.9995791 2>1 0.0004208781 0.0004208781

6

78 0.9992829 2>1 0.0005689902 0.0011376785

66 0.9990943 2>1 0.0006812318 0.0020423631

21 0.9985733 2>1 0.0008675879 0.0034661055

7 0.9983926 1>2 0.0010155560 0.0050679624

26 0.9980266 1>2 0.0011752048 0.0070314101

64 0.9962283 1>2 0.0015461322 0.0107765863

72 0.9957691 2>1 0.0018817294 0.0149619013

83 0.9954451 1>2 0.0021787486 0.0194486538

27 0.9941751 1>2 0.0025433681 0.0251603097

We can plot the posterior likelihoods against the log-ratios of the two sets of samples using
the plotPosteriors function, coloring the truly differentially expressed data red and the
non-differentially expressed data black (Figure 2).

> plotPosteriors(CD, group = "DE", col = c(rep("red", 100), rep("black", 900)))

P
os

te
rio

r
lik

el
ih

oo
d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4 −1 −Inf −2 0 2 Inf −1 4

log B log ratio log A

Figure 2: Posterior likelihoods of differential expression against log-ratio (where this would be non-infinite)
or log values (where all data in the other sample group consists of zeros). Truly differentially expressed
data are colored red, and non-differentially expressed data black.

7

5 Case Study: Analysis of sRNA-Seq Data

5.1 Introduction
We will look at data sequenced from small RNAs acquired from six samples of root stock
from Arabidopsis thaliana in a grafting experiment [3]. Three different biological conditions
exist within these data; one in which a Dicer 2,3,4 triple mutant shoot is grafted onto a Dicer
2,3,4 triple mutant root (SL236 & SL260), one in which a wild-type shoot is grafted onto a
wild-type root (SL239 & SL240), and one in which a wild-type shoot is grafted onto a Dicer
2,3,4 triple mutant root (SL237 & SL238). Dicer 2,3,4 is required for the production of 22nt
and 24nt small RNAs, as well as some 21nt ones. Consequently, if we detect differentially
expressed sRNA loci in the root stock of the grafts, we can make inferences about the mobility
of small RNAs.

5.2 Reading in data
The data and annotation are stored in two text files. We can read them in using R’s standard
functions.

> data(mobData)

> data(mobAnnotation)

5.3 Making a countData object
We can create a countData object containing all the information we need for a first attempt
at a differential expression analysis.

5.3.1 Including lengths

If two genes are expressed at the same level, but one is twice the length of the other, then (on
average) we will sequence twice as many reads from the longer gene. The same is true for
sRNA loci, and so in these analyses it is often useful to include the lengths of each feature.
The lengths can be derived from the annotation of each feature, but we need to explicitly
declare them within the ‘countData’ object.

> seglens <- mobAnnotation$end - mobAnnotation$start + 1

> cD <- new("countData", data = mobData, seglens = seglens, annotation = mobAnnotation)

Determining the best library scaling factor to use is a non-trivial task. The simplest approach
would be to use the total number of sequenced reads aligning to the genome. However, this
approach meas that a few sequences that appear at very high levels can drastically skew the
size of the scaling factor. Bullard et al suggest that good results can be obtained by taking
the sum of the reads below the nth percentile of the data.

> libsizes(cD) <- getLibsizes(cD, estimationType = "quantile")

5.4 Pairwise Differential Expression
We start by looking at a pairwise differential expression analysis between two of the sample
types. The analysis between samples ‘SL236’, ‘SL260’ and ‘SL237’, ‘SL238’ should be a first
step in discovering sRNA loci associated with mobility.

8

We begin by selecting a subset of the available data:

> cDPair <- cD[,1:4]

We then need to define the replicate structure of the countData object. We do this by
creating a vector that defines the replicate group that each sample belongs to.

> replicates(cDPair) <- as.factor(c("D3/D3", "D3/D3", "WT/D3", "WT/D3"))

We next need to define each of the models applicable to the data. In the first case, it
is reasonable to suppose that at least some of the loci will be unaffected by the different
experimental conditions prevailing in our replicate groups, and so we create one model of no
differential expression.

We do this by defining a vector NDE.

> NDE <- c(1,1,1,1)

Each member of the NDE vector represents one sample in our experiment. By giving each item
in the NDE vector the same number, we indicate that, under the hypothesis of no differential
expression, all the samples belong to the same group.

We may also conjecture that some of the loci will be affected depending on whether the
shoot is a Dicer mutant or a wild-type Arabidopsis sample.

> mobile <- c("non-mobile","non-mobile","mobile","mobile")

This vector indicates that the third and fourth samples, which consist of the wild-type shoot
samples, are in a separate expression group to the first and second samples, corresponding
to the Dicer 2,3,4 mutant shoot.

We can now add these models to the locus data by modfiying the @groups slot

> groups(cDPair) <- list(NDE = NDE, mobile = mobile)

Now that we have defined our models, we need to establish prior distributions for the data.
We do this using the getPriors.NB function.

> cDPair <- getPriors.NB(cDPair, samplesize = 1e4, cl = cl)

The accuracy of the distribution is determined by the number of data points used to esti-
mate the distribution; the ‘samplesize’. Here we’ve used a small sample size to reduce the
computational effort required, but higher values will give more accurate results (the default
is 1e5).

Having found prior distributions for the data, we can identify posterior likelihoods for the
data using the getLikelihoods function. Before we do this, however, it is worth considering
the possibility that some loci will not be expressed at all in our data.

5.4.1 Null Data

We first examine the priors to see if any ‘null’ data, consisting of un-expressed sRNA loci,
are present. If the distribution of priors for the non-differentially expressed group is bimodal,
it is likely that some of the loci are expressed at substantially lower levels than others.

9

> plotNullPrior(cDPair)

There is some evidence for bimodality, with a small peak of lowly expressed data to the left
of the distribution.

−15 −10 −5

0.
0

0.
1

0.
2

0.
3

Density of null function

N = 3000 Bandwidth = 0.2574

D
en

si
ty

Figure 3: Distribution of µij . Bimodality suggests the presence of ‘null’, or un-expressed, data.

We can use the nullData = TRUE option in the getLikelihoods function to allow for the
possibility that some of the loci are miscalled in our locus map, and should properly be
identified as nulls.

> cDPair <- getLikelihoods(cDPair, nullData = TRUE, cl = cl)

If we now look at the cDPair object, we can see that we have acquired posterior likelihoods
for the data

> cDPair

An object of class "countData"

3000 rows and 4 columns

Slot "replicates"

D3/D3 D3/D3 WT/D3 WT/D3

10

Slot "groups":

$NDE

[1] 1 1 1 1

Levels: 1

$mobile

[1] non-mobile non-mobile mobile mobile

Levels: mobile non-mobile

Slot "data":

SL236 SL260 SL237 SL238

[1,] 0 0 0 0

[2,] 18 21 1 5

[3,] 1 2 2 3

[4,] 68 87 270 184

[5,] 68 87 270 183

2995 more rows...

Slot "annotation":

chr start end

1 1 789 869

2 1 8641 8700

3 1 10578 10599

4 1 17041 17098

5 1 17275 17318

2995 more rows...

Slot "posteriors":

NDE mobile

[1,] 0.002100924 0.0235143

[2,] 0.132668688 0.8672543

[3,] 0.839641267 0.1406516

[4,] 0.277694727 0.7223053

[5,] 0.365355942 0.6346441

2995 more rows...

Slot "estProps":

NDE mobile

0.4452675 0.2997288

The estimated posterior likelihoods for each model are stored in the natural logarithmic scale
in the @posteriors slot of the countDataPosterior object. The nth column of the posterior
likelihoods matrix corresponds to the nth model as listed in the group slot of CDPair. In
general, what we would like to do with this information is form a ranked list in which the loci
most likely to be differentially expressed are at the top of the list.

Try looking at the proportions of data belonging to each group. Note that these no longer
sum to 1, as some data are now classified as ‘null’.

> summarisePosteriors(cD)

numeric(0)

11

The value contained in the @estProps slot is a best-guess figure for the proportion of data
belonging to each model defined by the @groups slot. In this case, it is is estimated that
approximately 65% of the loci are not differentially expressed, while 35% are differentially
expressed. These estimates should not be relied upon absolutely, but are a useful indicator
of the global structure of the data.

We can ask for the rows most likely to be differentially expressed under our different models
using the topCounts function. If we look at the second model, or grouping structure, we
see the top candidates for differential expression. Because the library sizes of the different
libraries differ, it can be unclear as to why some loci are identified as differentially expressed
unless the data are normalised.

> topCounts(cDPair, group = 2, normaliseData = TRUE)

chr start end SL236 SL260 SL237 SL238 likes mobile

74 1 447231 447298 0 0 174 146 0.9999530 mobile>non-mobile

1111 1 8287590 8287674 0 0 107 83 0.9994780 mobile>non-mobile

2500 1 13463357 13463459 12 20 165 140 0.9992603 mobile>non-mobile

1334 1 9254068 9254167 0 0 101 81 0.9990406 mobile>non-mobile

625 1 5056092 5056161 65 184 1 0 0.9989713 non-mobile>mobile

2962 1 14188044 14188079 1 0 47 33 0.9987427 mobile>non-mobile

266 1 2157113 2157287 26 40 751 405 0.9985358 mobile>non-mobile

1696 1 11140107 11140158 0 0 60 38 0.9983326 mobile>non-mobile

1212 1 8766946 8767133 171 487 12 8 0.9982605 non-mobile>mobile

901 1 6880517 6880553 0 0 41 26 0.9981053 mobile>non-mobile

FDR.mobile FWER.mobile

74 4.695759e-05 4.695759e-05

1111 2.844576e-04 5.688906e-04

2500 4.361966e-04 1.308144e-03

1334 5.670011e-04 2.266304e-03

625 6.593351e-04 3.292644e-03

2962 7.590004e-04 4.545831e-03

266 8.597445e-04 6.003384e-03

1696 9.607056e-04 7.660807e-03

1212 1.047233e-03 9.386936e-03

901 1.131984e-03 1.126389e-02

Observe how the data change in the normalised results; the effect is particularly noticable in
the SL236 and SL260 datasets, in which the normalised data is much less variable between
these two samples.

We can also use topCounts to examine the data identified as ‘null’.

> topCounts(cDPair, group = NULL, number = 500)

We can visualise the data in a number of ways. We can first examine the posterior likelihoods
against log-ratio values.

> plotPosteriors(cDPair, group = 2, samplesA = 1:2, samplesB = 3:4)

Also informative is the MA-plot. We can color the data by the posterior likelihoods of
differential expression.

12

P
os

te
rio

r
lik

el
ih

oo
d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

8 −2 −2 2 Inf 8

log B log ratio log A

Figure 4: Posterior likelihoods of differential expression against log-ratios of the data. Where the data in
one of the sample groups consists entirely of zeros, the log-ratio would be infinite. In this case, we plot
instead the log-values of the non-zero group. Note the skew in the data; there are many more loci with a
high-likelihood of differential expression over-expressed in the WT/D3 graft compared to the D3/D3 graft
than vice versa.

> plotMA.CD(cDPair, samplesA = c(1,2), samplesB = c(3,4),

+ col = rgb(red = exp(cDPair@posteriors[,2]), green = 0, blue = 0))

5.5 Multiple Group Comparisons
We next examine all three experimental conditions simultaneously. We first need to define
the replicate structure of the data.

> cD@replicates <- as.factor(c("D3/D3", "D3/D3", "WT/D3", "WT/D3", "WT/WT", "WT/WT"))

As before, we begin by supposing that at least some of the loci will be unaffected by the
different experimental conditions prevailing in our replicate groups, and so we create one
model of no differential expression.

We do this by defining a vector NDE.

13

A

M

−10 −5 0 5

−
In

f
−

6
−

4
−

2
0

2
4

6
In

f

Figure 5: ‘MA’-plot for count data. Where the data in one of the sample groups consists entirely of zeros,
the log-ratio would be infinite. In this case, we plot instead the log-values of the non-zero group. Differen-
tially expressed data are colored red, and non-differentially expressed data black.

> NDE <- factor(c(1,1,1,1,1,1))

Each member of the NDE vector represents one sample in our experiment. By giving each item
in the NDE vector the same number, we indicate that, under the hypothesis of no differential
expression, all the samples belong to the same group.

We may also conjecture that some of the loci that are present in the wild-type root will not
be present in the Dicer 2,3,4 mutant roots. We represent this conjecture with the vector

> d3dep <- c("wtRoot","wtRoot","wtRoot","wtRoot","dicerRoot","dicerRoot")

This vector indicates that the fifth and sixth samples, which consist of the wild-type root
samples, are in a separate expression group to the other samples, corresponding to the Dicer
2,3,4 mutant.

Finally, we hypothesise that some of the small RNAs generated in the wild-type shoot will
move to the root. We represent this hypothesis with the vector

14

> mobile <- c("dicerShoot","dicerShoot","wtShoot","wtShoot","wtShoot","wtShoot")

This vector shows that all samples with a wild-type shoot are distinct from those samples
with a Dicer 2,3,4 shoot.

We can now add these models to the locus data by modfiying the @groups slot

> groups(cD) <- list(NDE = NDE, d3dep = d3dep, mobile = mobile)

Note that in this case the replicate structure does not correspond to any biologically plausible
model; we do not expect that any loci will be different between all three experimental groups.

We can now find the priors and likelihoods for this analysis as before.

> cD <- getPriors.NB(cD, cl = cl)

> cD <- getLikelihoods(cD, nullData = TRUE, cl = cl)

We can see if there are any potential candidates for mobile sRNA loci by using the ‘topCounts’
function.

> topCounts(cD, group = "mobile", normaliseData = TRUE)

chr start end SL236 SL260 SL237 SL238 SL239 SL240 likes

74 1 447231 447298 0 0 174 146 226 220 0.9999997

1111 1 8287590 8287674 0 0 107 83 101 156 0.9999980

2962 1 14188044 14188079 1 0 47 33 66 59 0.9999980

764 1 6127755 6127808 0 0 81 42 108 68 0.9999931

901 1 6880517 6880553 0 0 41 26 43 45 0.9999905

1334 1 9254068 9254167 0 0 101 81 111 83 0.9999655

1696 1 11140107 11140158 0 0 60 38 64 43 0.9999573

2298 1 13042720 13042777 2 4 46 31 58 67 0.9999542

1212 1 8766946 8767133 171 487 12 8 28 29 0.9999260

427 1 3440406 3440437 0 0 13 15 19 19 0.9998933

mobile FDR.mobile FWER.mobile

74 wtShoot>dicerShoot 3.056093e-07 3.056093e-07

1111 wtShoot>dicerShoot 1.175909e-06 2.351817e-06

2962 wtShoot>dicerShoot 1.466957e-06 4.400866e-06

764 wtShoot>dicerShoot 2.825973e-06 1.130386e-05

901 wtShoot>dicerShoot 4.151618e-06 2.075795e-05

1334 wtShoot>dicerShoot 9.213773e-06 5.528178e-05

1696 wtShoot>dicerShoot 1.399326e-05 9.794960e-05

2298 wtShoot>dicerShoot 1.796906e-05 1.437447e-04

1212 dicerShoot>wtShoot 2.418928e-05 2.176851e-04

427 wtShoot>dicerShoot 3.243789e-05 3.243373e-04

We can also identify dicer-dependent root specific small RNA loci by examining our alternative
model for differential expression.

> topCounts(cD, group = "d3dep", normaliseData = TRUE)

chr start end SL236 SL260 SL237 SL238 SL239 SL240 likes d3dep

2166 1 12726934 12726976 3 5 4 6 48 49 0.9987420 dicerRoot>wtRoot

1292 1 9013965 9014013 3 6 4 6 48 49 0.9987387 dicerRoot>wtRoot

1202 1 8741412 8741466 4 5 1 0 55 70 0.9981772 dicerRoot>wtRoot

15

2934 1 14154618 14154660 13 35 12 12 226 302 0.9981501 dicerRoot>wtRoot

2637 1 13689324 13689396 6 9 6 7 59 50 0.9979523 dicerRoot>wtRoot

2200 1 12824336 12824400 0 1 0 0 12 9 0.9944024 dicerRoot>wtRoot

1095 1 8238064 8238106 4 5 6 3 34 27 0.9887337 dicerRoot>wtRoot

795 1 6263246 6263343 0 2 3 0 23 24 0.9870628 dicerRoot>wtRoot

2982 1 14206419 14206455 16 29 29 17 9 13 0.9868232 wtRoot>dicerRoot

1160 1 8472567 8472649 0 3 1 2 25 20 0.9841345 dicerRoot>wtRoot

FDR.d3dep FWER.d3dep

2166 0.001257957 0.001257957

1292 0.001259616 0.002517646

1202 0.001447342 0.004335851

2934 0.001547978 0.006177717

2637 0.001647927 0.008212790

2200 0.002306212 0.013764456

1095 0.003586222 0.024875663

795 0.004755095 0.037491047

2982 0.005690838 0.050173812

1160 0.006708302 0.065243260

By including more experimental conditions in our analyses, increasingly complex patterns of
expression can be detected from sequencing data.

Finally, we shut down the cluster (assuming it was started to begin with).

> if(!is.null(cl)) stopCluster(cl)

Session Info

> sessionInfo()

R version 4.4.1 (2024-06-14 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows Server 2022 x64 (build 20348)

Matrix products: default

locale:

[1] LC_COLLATE=C LC_CTYPE=English_United States.utf8

[3] LC_MONETARY=English_United States.utf8 LC_NUMERIC=C

[5] LC_TIME=English_United States.utf8

time zone: America/New_York

tzcode source: internal

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods base

other attached packages:

[1] baySeq_2.39.1

16

loaded via a namespace (and not attached):

[1] httr_1.4.7 cli_3.6.3 knitr_1.48

[4] rlang_1.1.4 xfun_0.48 UCSC.utils_1.1.0

[7] jsonlite_1.8.9 statmod_1.5.0 S4Vectors_0.43.2

[10] BiocStyle_2.33.1 htmltools_0.5.8.1 stats4_4.4.1

[13] locfit_1.5-9.10 rmarkdown_2.28 grid_4.4.1

[16] evaluate_1.0.1 abind_1.4-8 fastmap_1.2.0

[19] yaml_2.3.10 IRanges_2.39.2 GenomeInfoDb_1.41.2

[22] BiocManager_1.30.25 compiler_4.4.1 limma_3.61.12

[25] edgeR_4.3.21 XVector_0.45.0 lattice_0.22-6

[28] digest_0.6.37 R6_2.5.1 GenomeInfoDbData_1.2.13

[31] GenomicRanges_1.57.2 tools_4.4.1 zlibbioc_1.51.2

[34] BiocGenerics_0.51.3

References
[1] Thomas J. Hardcastle and Krystyna A. Kelly. baySeq: Empirical Bayesian Methods For

Identifying Differential Expression In Sequence Count Data. BMC Bioinformatics
(2010).

[2] Thomas J. Hardcastle. Generalised empirical Bayesian methods for discovery of
differential data in high-throughput biology. bioRχv preprint (2015).

[3] Attila Molnar and Charles W. Bassett and Thomas J. Hardcastle and Ruth Dunn and
David C. Bauclombe Small silencing RNAs in plants are mobile and direct epigenetic
modification in recipient cells. Science (2010).

17

	1 Introduction
	2 Preparation
	3 Negative-Binomial Approach
	4 Results
	5 Case Study: Analysis of sRNA-Seq Data
	5.1 Introduction
	5.2 Reading in data
	5.3 Making a countData object
	5.3.1 Including lengths

	5.4 Pairwise Differential Expression
	5.4.1 Null Data

	5.5 Multiple Group Comparisons

