We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.
library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)
# How to convert your excel sheet into vector of static and functional markers
markers
## $input
## [1] "CD3(Cd110)Di" "CD3(Cd111)Di" "CD3(Cd112)Di"
## [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di" "CD45(In115)Di"
## [7] "CD19(Nd142)Di" "CD22(Nd143)Di" "IgD(Nd145)Di"
## [10] "CD79b(Nd146)Di" "CD20(Sm147)Di" "CD34(Nd148)Di"
## [13] "CD179a(Sm149)Di" "CD72(Eu151)Di" "IgM(Eu153)Di"
## [16] "Kappa(Sm154)Di" "CD10(Gd156)Di" "Lambda(Gd157)Di"
## [19] "CD24(Dy161)Di" "TdT(Dy163)Di" "Rag1(Dy164)Di"
## [22] "PreBCR(Ho165)Di" "CD43(Er167)Di" "CD38(Er168)Di"
## [25] "CD40(Er170)Di" "CD33(Yb173)Di" "HLA-DR(Yb174)Di"
##
## $functional
## [1] "pCrkL(Lu175)Di" "pCREB(Yb176)Di" "pBTK(Yb171)Di" "pS6(Yb172)Di"
## [5] "cPARP(La139)Di" "pPLCg2(Pr141)Di" "pSrc(Nd144)Di" "Ki67(Sm152)Di"
## [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di" "pBLNK(Gd160)Di"
## [13] "pP38(Tm169)Di" "pSTAT5(Nd150)Di" "pSyk(Dy162)Di" "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]
# Selection of the k. See "Finding Ideal K" vignette
k <- 30
# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn,
# and the euclidean distance between
# itself and the cell of interest
# Indices
str(wand.nn[[1]])
## int [1:1000, 1:30] 182 815 520 659 67 953 643 845 665 204 ...
wand.nn[[1]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 182 416 869 46 432 576 615 318 359 231
## [2,] 815 143 764 468 965 866 459 953 717 98
## [3,] 520 961 317 83 893 48 841 650 659 900
## [4,] 659 931 153 622 694 287 3 757 977 265
## [5,] 67 784 207 884 345 513 319 490 906 266
## [6,] 953 110 323 346 528 240 960 369 965 345
## [7,] 643 136 781 49 181 616 164 853 208 663
## [8,] 845 594 584 346 749 601 414 39 902 906
## [9,] 665 146 667 982 212 325 812 258 703 424
## [10,] 204 598 636 893 896 153 900 159 855 145
## [11,] 643 663 863 505 112 943 577 270 91 412
## [12,] 717 425 167 67 256 898 24 755 804 343
## [13,] 776 48 58 277 775 74 896 169 900 14
## [14,] 287 13 177 520 538 227 585 776 775 900
## [15,] 958 564 966 198 531 624 674 417 448 483
## [16,] 770 910 681 174 117 668 583 357 464 686
## [17,] 305 175 624 608 364 86 664 15 290 356
## [18,] 363 220 39 150 347 866 459 5 226 311
## [19,] 563 275 624 179 686 117 290 579 175 890
## [20,] 727 761 232 95 76 429 849 288 798 205
# Distance
str(wand.nn[[2]])
## num [1:1000, 1:30] 2.6 3.13 3.83 5.51 2.21 ...
wand.nn[[2]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 2.600569 3.316723 3.439839 3.651505 3.677320 3.774882 3.854498 4.036284
## [2,] 3.133982 3.196974 3.445301 3.458017 3.478402 3.587734 3.603934 3.766172
## [3,] 3.832430 4.081626 4.116124 4.230996 4.241192 4.241636 4.273084 4.276462
## [4,] 5.505333 5.680063 5.765442 5.908005 6.197790 6.456469 6.585670 6.667373
## [5,] 2.213633 2.548933 2.564574 2.698236 2.873438 2.878373 2.903163 2.956495
## [6,] 2.491643 3.037649 3.381674 3.399999 3.434338 3.511985 3.525676 3.530482
## [7,] 2.688826 2.790624 2.792039 2.814087 2.857515 3.054258 3.109715 3.124076
## [8,] 2.977112 3.115229 3.248057 3.274541 3.291762 3.303733 3.351861 3.361758
## [9,] 5.218843 5.312682 5.317264 5.323891 5.486029 5.544956 5.585368 5.636201
## [10,] 3.171068 3.690300 4.051073 4.102270 4.114573 4.153243 4.286236 4.331974
## [11,] 2.407407 2.637939 2.815737 2.844380 2.919770 2.949460 3.008812 3.071325
## [12,] 3.341104 3.793809 3.805116 3.963862 4.059348 4.116736 4.129074 4.131508
## [13,] 2.551057 2.877558 3.149285 3.246497 3.301250 3.339767 3.431880 3.467129
## [14,] 3.491925 3.537213 3.797314 3.827327 3.904092 3.994113 4.087384 4.093090
## [15,] 2.663812 2.665027 2.920562 3.020810 3.106465 3.141899 3.203740 3.211929
## [16,] 2.539375 2.706849 2.992774 3.045836 3.077080 3.112940 3.184171 3.191709
## [17,] 3.160703 3.264204 3.399980 3.437360 3.569888 3.616157 3.619084 3.645062
## [18,] 3.802450 3.897873 3.912981 3.954685 3.998455 4.008490 4.072789 4.135402
## [19,] 4.097330 4.195101 4.292326 4.388171 4.477444 4.484913 4.514869 4.525190
## [20,] 3.375224 3.529484 3.799120 3.950426 3.982444 4.050666 4.149509 4.196860
## [,9] [,10]
## [1,] 4.061484 4.084623
## [2,] 3.839323 3.873827
## [3,] 4.285681 4.306341
## [4,] 6.741004 6.760492
## [5,] 3.027098 3.038234
## [6,] 3.537609 3.579136
## [7,] 3.134536 3.140842
## [8,] 3.387902 3.415559
## [9,] 5.703959 5.705084
## [10,] 4.414010 4.416711
## [11,] 3.072693 3.082324
## [12,] 4.151666 4.185224
## [13,] 3.528934 3.537213
## [14,] 4.143719 4.188629
## [15,] 3.225933 3.234054
## [16,] 3.203300 3.227914
## [17,] 3.705418 3.743153
## [18,] 4.205364 4.218315
## [19,] 4.596748 4.602671
## [20,] 4.319607 4.352936
This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.
wand.scone <- SconeValues(nn.matrix = wand.nn,
cell.data = wand.combined,
scone.markers = funct.markers,
unstim = "basal")
wand.scone
## # A tibble: 1,000 × 34
## `pCrkL(Lu175)Di.IL7.qvalue` pCREB(Yb176)Di.IL7.qvalu…¹ pBTK(Yb171)Di.IL7.qv…²
## <dbl> <dbl> <dbl>
## 1 1 0.965 0.786
## 2 1 1 1
## 3 1 0.895 0.786
## 4 0.997 0.965 0.742
## 5 1 0.926 0.946
## 6 1 1 0.786
## 7 0.637 0.961 0.786
## 8 1 1 0.946
## 9 1 0.945 1
## 10 1 0.972 0.861
## # ℹ 990 more rows
## # ℹ abbreviated names: ¹`pCREB(Yb176)Di.IL7.qvalue`,
## # ²`pBTK(Yb171)Di.IL7.qvalue`
## # ℹ 31 more variables: `pS6(Yb172)Di.IL7.qvalue` <dbl>,
## # `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## # `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## # `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, …
If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.
I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).
I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.
An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:
# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
## `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(In113)Di`
## <dbl> <dbl> <dbl> <dbl>
## 1 0.264 1.63 -0.225 0.644
## 2 0.361 0.754 1.73 0.339
## 3 0.979 0.413 0.370 0.748
## 4 -0.0733 0.734 1.09 0.514
## 5 0.548 0.632 1.62 0.647
## 6 0.815 0.922 0.293 -0.580
## 7 -0.465 0.662 0.643 0.176
## 8 0.367 0.421 1.35 -0.847
## 9 -0.373 1.01 2.49 0.955
## 10 0.523 0.752 0.664 0.820
## # ℹ 20 more rows
## # ℹ 47 more variables: `CD3(Cd114)Di` <dbl>, `CD45(In115)Di` <dbl>,
## # `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## # `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## # `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## # `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## # `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
## num [1:1000] 0.242 0.259 0.226 0.149 0.322 ...