HELP Microarray Analytical Tools

Reid F. Thompson
October 21, 2024

Contents

(1 _Introduction|

2 Changes for HELP in current BioC release|

(3 Data import and Design information|
[3.1 Pair files and probe-level data]
[3.2 Sample Key|
[3.3 Design files and information| 0000
B.4 Melting temperature (Tm) and GC content|.

[4 Quality Control and Data Exploration|
[4.1 Calculating prototypes| oo oo
(4.2 Chip image plots|

[4.3 Fragment size v. signal intensity|.

Single-sample quantile normalization|

b.1 Concept| e
(6.2 Application|

6D ation

7D Visnalizationl

17

18

19

1 Introduction

The HELP package provides a number of tools for the analysis of microarray data,
with particular application to DNA methylation microarrays using the Roche Nimblegen
format and HELP assay protocol (Khulan et al., 2006). The package includes plotting
functions for the probe level data useful for quality control, as well as flexible functions
that allow the user to convert probe level data to methylation measures.

In order to use these tools, you must first load the HELP package:

> library (HELP)

It is assumed that the reader is already familiar with oligonucleotide arrays and with
the design of Roche Nimblegen arrays in particular. If this is not the case, consult the
NimbleScan User’s Guide for further information (NimbleGen, 2007)).

Throughout this vignette, we will be exploring actual data for 3 samples from a small
corner of a larger microarray chip.

2 Changes for HELP in current BioC release

e This is the first public release of the HELP package.

3 Data import and Design information

3.1 Pair files and probe-level data

The package is designed to import matched Roche Nimblegen formatted .pair files, which
contain the raw numerical output for each signal channel from each microarray scan. For
applications to the HELP assay in particular, the Cy3 (532nm) channel is reserved for the
reference sample (Mspl) and the Cy5 (635nm) channel is reserved for the experimental
half of the co-hybridization (Hpall).

In addition to gridding and other technical controls supplied by Roche NimbleGen,
the microarrays also report random probes (50-mers of random nucleotides) which serve
as a metric of non-specific annealing and background fluorescence. By design, all probes
are randomly distributed across each microarray.

Signal intensity data for every spot on the array is read from each .pair file and stored
in an object of class ExpressionSet, described in the Biobase vignette. The following
code will import three sets of example .pair files included with the HELP package:

> mspl.files <- dir(data.path, pattern="532[._lpair", full.names=TRUE)
> hpa2.files <- dir(data.path, pattern="635[._Jlpair", full.names=TRUE)
> N <- length(mspl.files)

> for (i in 1:N) {

+ if (i == 1) {

+ pairs <- readPairs(mspl.files[i],hpa2.files[i])

+ }

+ else {

+ pairs <- readPairs(mspl.files[i],hpa2.files[i],pairs)
+ }

+ }

> class(pairs)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"

> dim(pairs)

Features Samples
1109 3

> sampleNames (pairs)

[1] "70989" "71083" "71420"

3.2 Sample Key

The readSampleKey () function, which can be used at any point in time, provides the
ability to apply a user-defined map of chip names to numeric identifiers, so as to provide
human-readable aliases for each set of pair files that are imported. The format of a
standard sample key file is tab-delimited text, and contains two columns, CHIP ID
and SAMPLE, with CHIP ID representing the numeric chip identifier (supplied by
NimbleGen) and SAMPLE representing the user-defined alias or human-readable chip
name.

> chips <- sub("[_.]*532[_.]*pair.*","" basename(mspl.files))
> chips ## CHIP_IDs

[1] "70989" "71083" "71420"

> samplekey <- file.path(data.path, "sample.key.txt")
> chips <- readSampleKey(file=samplekey,chips=chips)
> chips ## SAMPLEs (from supplied key)

[1] "Brainl" "Brain2" "Brain3"

> sampleNames (pairs) <- chips

3.3 Design files and information

Roche NimbleGen formatted design files (.ndf and .ngd) are then used to link probe
identifiers to their corresponding Hpall fragments, and provide genomic position and
probe sequence information, stored as featureData. Design file import should be used
following .pair file import. File names should end with either .ndf or .ngd, but can
contain additional extensions so long as the file formats are appropriate to the relevant
design file.

> ndf.file <- file.path(data.path, "HELP.ndf.txt")

> ngd.file <- file.path(data.path, "HELP.ngd.txt")

> pairs <- readDesign(ndf.file, ngd.file, pairs)

> pData(featureData(pairs))[1:10,c("CHR","START","STOP")]

CHR START STOP
CHRXP81294872_1_1 chrX 81294565 81295582
CHR7P94610020_25_1 chr7 94609060 94610216
CHR7P774935628_27_1 chr7 77493338 77494071
CHR6P06276136_29_1 chr6 6275566 6276664
CHRXP99065670_31_1 «chrX 99064104 99065795
CHRXP133973448_33_1 chrX 133973208 133974942
CHR6P07762362_35_1 chr6 7761911 77629456
CHRXP33314570_37_1 chrX 33314570 33314771
CHR7P61447495_39_1 «chr7 61447137 61448980
CHR7P61243254_41_1 chr7 61243100 61243312

> getFeatures (pairs, "SEQUENCE") [1]

[1] "ATCTAGGAAGATTTAGAGAGGCAATGTGTCATTTAGCATCTAATTTTACC"

3.4 Melting temperature (Tm) and GC content

Oligonucleotide melting temperatures can be calculated with the calcTm() function.
Currently, the only supported method for Tm calculation is the nearest-neighbor base-
stacking algorithm (Allawi and Jr., [1997) and the unified thermodynamic parameters
(Jr., 1998). This functionality can be used for individual or groups of sequences; how-
ever, it can also be applied to an object of class ExpressionSet containing sequence
information.

> calcTm("ATCTAGGAAGATTTAGAGAGGCAATGTGTCATTTAGCATCTAATTTTACC")

[1] 76.9773

> calcTm(getFeatures (pairs, "SEQUENCE") [1:4])

[1] 76.97730 89.14768 83.89483 80.47045

GC content can be calculated with the calcGC() function, which returns values ex-
pressed as a percent. This functionality can be used for individual or groups of sequences,
and may also be applied to ExpressionSet objects containing sequence information.

> calcGC("ATCTAGGAAGATTTAGAGAGGCAATGTGTCATTTAGCATCTAATTTTACC")
[1] 0.34
> calcGC(getFeatures (pairs, "SEQUENCE") [1:4])

[1] 0.34 0.60 0.46 0.40

4 Quality Control and Data Exploration

4.1 Calculating prototypes

Consideration of probe signal in the context of its performance across multiple arrays
improves the ability to discriminate finer deviations in performance. Prototypical signal
intensities and ratios can be defined using the calcPrototype() function provided with
this package. The approach is analagous to one described by Reimers and Weinstein
(Reimers and Weinstein, 2005). Data from each array are (optionally) mean-centered
and each probe is then assigned a summary measure equivalent to the (20%-) trimmed
mean of its values across all arrays. This defines a prototype with which each individual
array can be compared.

> getSamples(pairs)[1:4,]

Brainl Brain2 Brain3
CHRXP81294872_1_1 2182.33 2093.89 2002.56
CHR7P94610020_25_1 4595.11 4822.11 3435.00
CHR7P77493528_27_1 2430.44 1663.56 2246.33
CHR6P06276136_29_1 5897.11 8591.00 4895.33

> calcPrototype(pairs,center=FALSE) [1:4]

CHRXP81294872_1_1 CHR7P94610020_25_1 CHR7P77493528_27_1 CHR6P06276136_29_1
2092.927 4284.073 2113.443 6461.147

4.2 Chip image plots

The plotChip() function can be used to display spatial variation of microarray data
contained in ExpressionSet objects or in a matrix format. As noted previously, the
data being explored throughout this vignette represents only a small corner from a larger
microarray chip.

The figure shown below is produced using default parameters and therefore shows the
data from signal channel 1 (Mspl) for the specified sample (Brain2). Note the white
blocks on the chip plot, which correspond to coordinates on the array that do not
contain probe-level measurements (this is due to the use of .pair file reports, which
typically exclude gridding controls).

> plotChip(pairs, sample='"Brain2")

50

40

30

10

0 10 20 30 40 50

Figure 1: Plot of actual microarray data

The magnitude of data needed to demonstrate quality control analysis for an entire
microarray set is too large to include within the scope of this vignette and package
distribution. However, please refer to our published work for a further discussion of chip
plots and quality control of Roche NimbleGen microarrays (Thompson et al., 2008). The
following code, included as an example within the R documentation for the plotChip()
function, demonstrates what one may see in some cases of poor hybridization with
high spatial heterogeneity. However, it is important to note that the following figure is
generated from synthetic data, as follows:

> x <- rep(1:100,100)

>y <- rep(1:100,each=100)

> z <- x*(1001:11000/1000)

> z <- z-mean(z)

> z <- z*(sample(1:10000/10000)+1)

> plotChip(x,y,z,main="Curved gradient",xlab="x",ylab="y")

Curved gradient

100
|

80

60
|

40

20

0 20 40 60 80 100

Figure 2: Spatial heterogeneity
10

4.3 Fragment size v. signal intensity

Visualization of signal intensities as a function of fragment size reveals important behav-
ioral characteristics of the HELP assay. Mspl-derived representations show amplification
of all Hpall fragments (HTFs) and therefore high signal intensities across the fragment
size distribution. The Hpall-derived representation shows a second variable population
of probes with low signal intensities across all fragment sizes represented, corresponding
to DNA sequences that are methylated (figure below). For a further discussion, refer
to Khulan et al.| (2006) and/or Thompson et al| (2008)). Background signal intensity
is measured by random probes. “Failed” probes are defined as those where the level of
Mspl and Hpall signals are indistinguishable from random probe intensities, defined by
a cutoff of 2.5 median absolute deviations above the median of random probe signals.

> plotFeature(pairs[,"Brain2"],cex=0.5)

3 3 S
=]]
g o =i
@ T @ T T T T
0.00 0.20 500 1000 1500 2000
Density Fragment size (bp)
©o _] © _]
— —
f__ﬁ — —
o o~ o~
T ~ ~
§ . .
L 5 _g‘ 0 —
TT T T 111 T T T T
0.00 0.20 500 1000 1500 2000
Density Fragment size (bp)
3
0
é N N
j=2)
o - -
| o~ o~
= | !
g . .
. ¢ - :
2 UL T T T T
0.0 02 04 500 1000 1500 2000
Density Fragment size (bp)

Figure 3: Fragment size v. intensity

11

5 Single-sample quantile normalization

5.1 Concept

Fragment size v. signal intensity plots demonstrate a size bias that can be traced back to
the LM-PCR used in the HELP assay. The HELP package makes use of a novel quan-
tile normalization approach, similar to the RMA method described by [rizarry et al.
(2003)). The quantileNormalize() function, which performs intra-array quantile nor-
malization, is used to align signal intensities across density-dependent sliding windows of
size-sorted data. The algorithm can be used for any data whose distribution within each
binning window should be identical (i.e. the data should not depend upon the binning
variable). For a further discussion of the actual algorithm, please refer to [Thompson
et al.| (2008). The figure shown (below) demonstrates a single sample (black distribu-
tion) whose components divide into 20 color-coded bins, each of which has a different
distribution.

12

Density

5 10

-10

N = 2000 Bandwidth =0.2319

Figure 4: Twenty bins with different distributions, before normalization

13

With normalization, the different bins are each adjusted to an identical distribution,
calculated as the average distribution for all of the component bins. This gives a new
sample, normalized across its component bins, shown in the figure (below). Note that
the plotBins () function (included) can be used to explore bin distributions in a manner
similar to the figure depicted (below). Also note that the individual bin densities are
stacked (for easier visualization), the alternative being complete overlap and a loss of
ability to visually resolve independent bin distributions.

> quantileNormalize(x, y, num.bins=20, num.steps=1, ...)

20

Density (by bin)

Figure 5: Twenty bins with identical distributions, after normalization

5.2 Application

To apply the normalization to actual HELP data, the data must be considered in terms
of their component signals. Specifically, Hpall and Mspl must be treated individually,
and the signals that exist above background noise must be treated separately from those
that fall within the distribution of noise (defined by random probes). Note that data
should already be loaded appropriately (as above).

e Identify background noise (note that Mspl data is stored in element “exprs” while
Hpall is stored in element “exprs2”):

> rand <- which(getFeatures(pairs, "TYPE")=="RAND")
> msp.rand <- getSamples(pairs, element="exprs'")[rand,]
> hpa.rand <- getSamples(pairs, element="exprs2")[rand,]

e Define background cutoffs:

V V. V V Vv VvV

msp.
msp.
hpa.
hpa.
msp.
hpa.
.meth

hpa

rand.
rand.
rand.
rand.
fail
fail

med <-
mad <-
med <-
mad <-

<- msp.
<- hpa.

apply(msp.rand, 2, median)
apply(msp.rand, 2, mad)
apply(hpa.rand, 2, median)
apply(hpa.rand, 2, mad)
rand.med + 2.5*msp.rand.mad
rand.med + 2.5*hpa.rand.mad

<- apply(hpa.rand, 2, quantile, 0.99)

e Mspl normalization: handle one sample at a time (in this case, “Brain2”) and
remove “failed” probes from consideration:

>
>
>
>
>
>
>

norand <- which(getFeatures(pairs, "TYPE'")=="DATA")

size <- as.numeric(getFeatures(pairs, "SIZE")) [norand]

msp <- getSamples(pairs, "Brain2'", element="exprs") [norand]

hpa <- getSamples(pairs, "Brain2", element="exprs2")[norand]
nofail <- which(msp>msp.fail["Brain2"] | hpa>hpa.fail["Brain2"])
msp.norm <- msp
msp.norm[nofail] <- quantileNormalize(msp[nofaill,size[nofail])

e Hpall normalization: handle probe-level data that fall within background distri-
bution separately from high signals:

>
>
>
>
>

meth <- which(msp>msp.fail["Brain2"] & hpa<=hpa.meth["Brain2"])
hpa.norm <- hpa
hpa.norm[meth] <- quantileNormalize (hpa[meth],size[meth])
nometh <- which(hpa>hpa.meth["Brain2"])

hpa.norm[nometh] <- quantileNormalize (hpa[nometh],size[nometh])

15

e Create normalized ExpressionSet object:

> pairs.norm <- pairs

> exprs(pairs.norm) [norand, "Brain2"] <- msp.norm
> exprs2(pairs.norm) [norand, "Brain2"] <- hpa.norm
> getSamples(pairs, element="exprs")[1:5,]

Brainl Brain2 Brain3
CHRXP81294872_1_1 11.09165 11.03197 10.96763
CHR7P94610020_25_1 12.16588 12.23545 11.74609
CHR7P77493528_27_1 11.24700 10.70006 11.13335
CHR6P06276136_29_1 12.52579 13.06861 12.25719
CHRXP99065670_31_1 10.76377 10.70755 10.89263

> getSamples (pairs.norm, element="exprs")[1:5,]

Brainil Brain2 Brain3
CHRXP81294872_1_1 11.09165 10.95601 10.96763
CHR7P94610020_25_1 12.16588 12.22624 11.74609
CHR7P77493528_27_1 11.24700 10.67728 11.13335
CHR6P06276136_29_1 12.52579 12.89556 12.25719
CHRXP99065670_31_1 10.76377 11.03563 10.89263

16

6 Data summarization

The methylation status of each Hpall fragment is typically measured by a set of probes
(number is variable, depending on the array design). Thus, probe-level data must be
grouped and summarized. The combineData() function employs a simple mean (by
default) to each group of probe-level datapoints. This functionality should be applicable
to any dataset defined by containers consisting of multiple (and potentially variable
numbers of) instances of probe-level data which require summarization. For application
to HELP, Mspl signal intensities are supplied as a weighting matrix and the 20%-trimmed
mean is calculated for each group of probes. Here we show the first five results:

> data <- getSamples(pairs,element="exprs2")

> seqids <- getFeatures(pairs, 'SEQ_ID')

> weight <- getSamples(pairs,element="exprs'")

> combineData(data, seqids, weight, trim=0.2)[1:5,]

Brainl Brain2 Brain3
MMEMSPIS00690755 9.295631 8.688460 8.273516
MMEMSPIS00292185 11.059568 10.962412 10.179499
MMEMSPIS00288594 9.884674 9.382257 9.089239
MM6MSPIS00229944 10.859193 11.190028 10.277287
MMEMSPIS00694154 8.523562 8.429072 7.546894

The summarization can also be applied directly to ExpressionSet objects. The follow-
ing code generates an unweighted summarization of Mspl signal intensity data, again
we show the first five results:

> combineData(pairs, feature.group='SEQ_ID', trim=0.2)[1:5,]

Brainl Brain2 Brain3
MM6MSPIS00690755 11.09165 11.03197 10.96763
MM6MSPIS00292185 12.16588 12.23545 11.74609
MM6MSPIS00288594 11.24700 10.70006 11.13335
MMEMSPIS00229944 12.52579 13.06861 12.25719
MMEMSPIS00694154 10.76377 10.70755 10.89263

17

7 Data Visualization

Sample-to-sample relationships can be explored at the global level using both pairwise
(Pearson) correlation and unsupervised clustering approaches, among other techniques.
However, the

The cor() and hclust() functions perform these tasks in particular.
plotPairs() function included with this package is particularly suited for pairwise vi-
sualization of sample relationships. For instance, Hpall signals are compared in the
following figure:

> plotPairs(pairs,element="exprs2")

14 8
| | |

12
1

Brain3

10
1

' Brainl

Distance

’ Brain2

14

8 10 12

3 samples, 2 groups

Figure 6: Pairwise comparison of samples

18

A Previous Release Notes

e No previous releases to date.

19

References

H.T. Allawi and J. Santallucia Jr. Thermodynamics and NMR, of internal G.'T mis-
matches in DNA. Biochemistry, 36(34):10581-10594, 1997.

R.A. Irizarry, B. Hobbs, F. Collin, Y.D. Beazer-Barclay, K.J. Antonellis, U. Scherf, and
T.P. Speed. Exploration, normalization, and summaries of high density oligonucleotide
array probe level data. Biostatistics, 4(2):249-264, 2003.

J. SantaLucia Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-
neighbor thermodynamics. Proceedings of the National Academy of Science U S A,
95(4):1460-1465, 1998.

B. Khulan, R.F. Thompson, K. Ye, M.J. Fazzari, M. Suzuki, E. Stasiek, M.E. Figueroa,
J.L. Glass, Q. Chen, C. Montagna, E. Hatchwell, R.R. Selzer, T.A. Richmond, R.D.
Green, A. Melnick, and J.M. Greally. Comparative isoschizomer profiling of cytosine
methylation: The HELP assay. Genome Research, 16:1046-1055, 2006.

Roche NimbleGen. NimbleScan User’s Guide. Roche NimbleGen, Inc., Madison, WI,
v2.4 edition, 2007.

M. Reimers and J.N. Weinstein. Quality assessment of microarrays: visualization of
spatial artifacts and quantitation of regional biases. BMC' Bioinformatics, 6:166,
2005.

R.F. Thompson, M. Reimers, B. Khulan, M. Gissot, T.A. Richmond, Q. Chen, X. Zheng,
K. Kim, and J.M. Greally. An analytical pipeline for genomic representations used
for cytosine methylation studies. Bioinformatics, 2008. In press.

20

	Introduction
	Changes for HELP in current BioC release
	Data import and Design information
	Pair files and probe-level data
	Sample Key
	Design files and information
	Melting temperature (Tm) and GC content

	Quality Control and Data Exploration
	Calculating prototypes
	Chip image plots
	Fragment size v. signal intensity

	Single-sample quantile normalization
	Concept
	Application

	Data summarization
	Data Visualization
	Previous Release Notes

