Package: a4 Version: 1.54.0 Depends: a4Base, a4Preproc, a4Classif, a4Core, a4Reporting Suggests: MLP, nlcv, ALL, Cairo, Rgraphviz, GOstats, hgu95av2.db License: GPL-3 MD5sum: 40f370dbf39df0f5d4182463c5bbd9d7 NeedsCompilation: no Title: Automated Affymetrix Array Analysis Umbrella Package Description: Umbrella package is available for the entire Automated Affymetrix Array Analysis suite of package. biocViews: Microarray Author: Willem Talloen [aut], Tobias Verbeke [aut], Laure Cougnaud [cre] Maintainer: Laure Cougnaud git_url: https://git.bioconductor.org/packages/a4 git_branch: RELEASE_3_20 git_last_commit: 56cb1bc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/a4_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/a4_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/a4_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/a4_1.54.0.tgz vignettes: vignettes/a4/inst/doc/a4vignette.pdf vignetteTitles: a4vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/a4/inst/doc/a4vignette.R dependencyCount: 87 Package: a4Base Version: 1.54.0 Depends: a4Preproc, a4Core Imports: methods, graphics, grid, Biobase, annaffy, mpm, genefilter, limma, multtest, glmnet, gplots Suggests: Cairo, ALL, hgu95av2.db, nlcv Enhances: gridSVG, JavaGD License: GPL-3 MD5sum: 4771171aad0490cd8cbde8837845b9a7 NeedsCompilation: no Title: Automated Affymetrix Array Analysis Base Package Description: Base utility functions are available for the Automated Affymetrix Array Analysis set of packages. biocViews: Microarray Author: Willem Talloen [aut], Tine Casneuf [aut], An De Bondt [aut], Steven Osselaer [aut], Hinrich Goehlmann [aut], Willem Ligtenberg [aut], Tobias Verbeke [aut], Laure Cougnaud [cre] Maintainer: Laure Cougnaud git_url: https://git.bioconductor.org/packages/a4Base git_branch: RELEASE_3_20 git_last_commit: e45169b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/a4Base_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/a4Base_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/a4Base_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/a4Base_1.54.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: a4 suggestsMe: epimutacions dependencyCount: 78 Package: a4Classif Version: 1.54.0 Depends: a4Core, a4Preproc Imports: methods, Biobase, ROCR, pamr, glmnet, varSelRF, utils, graphics, stats Suggests: ALL, hgu95av2.db, knitr, rmarkdown License: GPL-3 MD5sum: 05f58ff9cc5356d54f099b548556f1de NeedsCompilation: no Title: Automated Affymetrix Array Analysis Classification Package Description: Functionalities for classification of Affymetrix microarray data, integrating within the Automated Affymetrix Array Analysis set of packages. biocViews: Microarray, GeneExpression, Classification Author: Willem Talloen [aut], Tobias Verbeke [aut], Laure Cougnaud [cre] Maintainer: Laure Cougnaud VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/a4Classif git_branch: RELEASE_3_20 git_last_commit: 9540e62 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/a4Classif_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/a4Classif_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/a4Classif_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/a4Classif_1.54.0.tgz vignettes: vignettes/a4Classif/inst/doc/a4Classif-vignette.html vignetteTitles: a4Classif package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/a4Classif/inst/doc/a4Classif-vignette.R dependsOnMe: a4 dependencyCount: 32 Package: a4Core Version: 1.54.0 Imports: Biobase, glmnet, methods, stats Suggests: knitr, rmarkdown License: GPL-3 MD5sum: 5d5ce981344b7e509946fdf02ac78498 NeedsCompilation: no Title: Automated Affymetrix Array Analysis Core Package Description: Utility functions for the Automated Affymetrix Array Analysis set of packages. biocViews: Microarray, Classification Author: Willem Talloen [aut], Tobias Verbeke [aut], Laure Cougnaud [cre] Maintainer: Laure Cougnaud VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/a4Core git_branch: RELEASE_3_20 git_last_commit: 247927f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/a4Core_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/a4Core_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/a4Core_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/a4Core_1.54.0.tgz vignettes: vignettes/a4Core/inst/doc/a4Core-vignette.html vignetteTitles: a4Core package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/a4Core/inst/doc/a4Core-vignette.R dependsOnMe: a4, a4Base, a4Classif, nlcv dependencyCount: 19 Package: a4Preproc Version: 1.54.0 Imports: BiocGenerics, Biobase Suggests: ALL, hgu95av2.db, knitr, rmarkdown License: GPL-3 MD5sum: b3655d08032f31ffc898cb0904221173 NeedsCompilation: no Title: Automated Affymetrix Array Analysis Preprocessing Package Description: Utility functions to pre-process data for the Automated Affymetrix Array Analysis set of packages. biocViews: Microarray, Preprocessing Author: Willem Talloen [aut], Tobias Verbeke [aut], Laure Cougnaud [cre] Maintainer: Laure Cougnaud VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/a4Preproc git_branch: RELEASE_3_20 git_last_commit: 8b1a156 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/a4Preproc_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/a4Preproc_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/a4Preproc_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/a4Preproc_1.54.0.tgz vignettes: vignettes/a4Preproc/inst/doc/a4Preproc-vignette.html vignetteTitles: a4Preproc package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/a4Preproc/inst/doc/a4Preproc-vignette.R dependsOnMe: a4, a4Base, a4Classif suggestsMe: graphite dependencyCount: 6 Package: a4Reporting Version: 1.54.0 Imports: methods, xtable Suggests: knitr, rmarkdown License: GPL-3 MD5sum: 9c1304a0bcbb5f174e3d4d3a59870d87 NeedsCompilation: no Title: Automated Affymetrix Array Analysis Reporting Package Description: Utility functions to facilitate the reporting of the Automated Affymetrix Array Analysis Reporting set of packages. biocViews: Microarray Author: Tobias Verbeke [aut], Laure Cougnaud [cre] Maintainer: Laure Cougnaud VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/a4Reporting git_branch: RELEASE_3_20 git_last_commit: 87a5a74 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/a4Reporting_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/a4Reporting_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/a4Reporting_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/a4Reporting_1.54.0.tgz vignettes: vignettes/a4Reporting/inst/doc/a4reporting-vignette.html vignetteTitles: a4Reporting package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/a4Reporting/inst/doc/a4reporting-vignette.R dependsOnMe: a4 dependencyCount: 4 Package: ABarray Version: 1.74.0 Imports: Biobase, graphics, grDevices, methods, multtest, stats, tcltk, utils Suggests: limma, LPE License: GPL MD5sum: 429b9e4d49fd5fba698e47e172f4fb76 NeedsCompilation: no Title: Microarray QA and statistical data analysis for Applied Biosystems Genome Survey Microrarray (AB1700) gene expression data. Description: Automated pipline to perform gene expression analysis for Applied Biosystems Genome Survey Microarray (AB1700) data format. Functions include data preprocessing, filtering, control probe analysis, statistical analysis in one single function. A GUI interface is also provided. The raw data, processed data, graphics output and statistical results are organized into folders according to the analysis settings used. biocViews: Microarray, OneChannel, Preprocessing Author: Yongming Andrew Sun Maintainer: Yongming Andrew Sun git_url: https://git.bioconductor.org/packages/ABarray git_branch: RELEASE_3_20 git_last_commit: ddd0046 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ABarray_1.74.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ABarray_1.74.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ABarray_1.74.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ABarray_1.74.0.tgz vignettes: vignettes/ABarray/inst/doc/ABarrayGUI.pdf, vignettes/ABarray/inst/doc/ABarray.pdf vignetteTitles: ABarray gene expression GUI interface, ABarray gene expression hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 16 Package: abseqR Version: 1.24.0 Depends: R (>= 3.5.0) Imports: ggplot2, RColorBrewer, circlize, reshape2, VennDiagram, plyr, flexdashboard, BiocParallel (>= 1.1.25), png, grid, gridExtra, rmarkdown, knitr, vegan, ggcorrplot, ggdendro, plotly, BiocStyle, stringr, utils, methods, grDevices, stats, tools, graphics Suggests: testthat License: GPL-3 | file LICENSE MD5sum: b5c8029b788cd97456e272dc515fd35e NeedsCompilation: no Title: Reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries Description: AbSeq is a comprehensive bioinformatic pipeline for the analysis of sequencing datasets generated from antibody libraries and abseqR is one of its packages. abseqR empowers the users of abseqPy (https://github.com/malhamdoosh/abseqPy) with plotting and reporting capabilities and allows them to generate interactive HTML reports for the convenience of viewing and sharing with other researchers. Additionally, abseqR extends abseqPy to compare multiple repertoire analyses and perform further downstream analysis on its output. biocViews: Sequencing, Visualization, ReportWriting, QualityControl, MultipleComparison Author: JiaHong Fong [cre, aut], Monther Alhamdoosh [aut] Maintainer: JiaHong Fong URL: https://github.com/malhamdoosh/abseqR SystemRequirements: pandoc (>= 1.19.2.1) VignetteBuilder: knitr BugReports: https://github.com/malhamdoosh/abseqR/issues git_url: https://git.bioconductor.org/packages/abseqR git_branch: RELEASE_3_20 git_last_commit: 297f266 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/abseqR_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/abseqR_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/abseqR_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/abseqR_1.24.0.tgz vignettes: vignettes/abseqR/inst/doc/abseqR.pdf vignetteTitles: Introduction to abseqR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/abseqR/inst/doc/abseqR.R dependencyCount: 110 Package: ABSSeq Version: 1.60.0 Depends: R (>= 2.10), methods Imports: locfit, limma Suggests: edgeR License: GPL (>= 3) MD5sum: f3c08b1ca4057368a9697c1c4b457ad2 NeedsCompilation: no Title: ABSSeq: a new RNA-Seq analysis method based on modelling absolute expression differences Description: Inferring differential expression genes by absolute counts difference between two groups, utilizing Negative binomial distribution and moderating fold-change according to heterogeneity of dispersion across expression level. biocViews: DifferentialExpression Author: Wentao Yang Maintainer: Wentao Yang git_url: https://git.bioconductor.org/packages/ABSSeq git_branch: RELEASE_3_20 git_last_commit: 39efc10 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ABSSeq_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ABSSeq_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ABSSeq_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ABSSeq_1.60.0.tgz vignettes: vignettes/ABSSeq/inst/doc/ABSSeq.pdf vignetteTitles: ABSSeq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ABSSeq/inst/doc/ABSSeq.R importsMe: metaseqR2 dependencyCount: 10 Package: acde Version: 1.36.0 Depends: R(>= 3.3), boot(>= 1.3) Imports: stats, graphics Suggests: BiocGenerics, RUnit License: GPL-3 MD5sum: df39a71c8b906769d5894ea2ffab69cb NeedsCompilation: no Title: Artificial Components Detection of Differentially Expressed Genes Description: This package provides a multivariate inferential analysis method for detecting differentially expressed genes in gene expression data. It uses artificial components, close to the data's principal components but with an exact interpretation in terms of differential genetic expression, to identify differentially expressed genes while controlling the false discovery rate (FDR). The methods on this package are described in the vignette or in the article 'Multivariate Method for Inferential Identification of Differentially Expressed Genes in Gene Expression Experiments' by J. P. Acosta, L. Lopez-Kleine and S. Restrepo (2015, pending publication). biocViews: DifferentialExpression, TimeCourse, PrincipalComponent, GeneExpression, Microarray, mRNAMicroarray Author: Juan Pablo Acosta, Liliana Lopez-Kleine Maintainer: Juan Pablo Acosta git_url: https://git.bioconductor.org/packages/acde git_branch: RELEASE_3_20 git_last_commit: d779819 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/acde_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/acde_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/acde_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/acde_1.36.0.tgz vignettes: vignettes/acde/inst/doc/acde.pdf vignetteTitles: Identification of Differentially Expressed Genes with Artificial Components hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/acde/inst/doc/acde.R dependencyCount: 3 Package: ACE Version: 1.24.0 Depends: R (>= 3.4) Imports: Biobase, QDNAseq, ggplot2, grid, stats, utils, methods, grDevices, GenomicRanges Suggests: knitr, rmarkdown, BiocStyle License: GPL-2 MD5sum: 046bdc85e9ed95204bb696c7f0a14700 NeedsCompilation: no Title: Absolute Copy Number Estimation from Low-coverage Whole Genome Sequencing Description: Uses segmented copy number data to estimate tumor cell percentage and produce copy number plots displaying absolute copy numbers. biocViews: CopyNumberVariation, DNASeq, Coverage, WholeGenome, Visualization, Sequencing Author: Jos B Poell Maintainer: Jos B Poell URL: https://github.com/tgac-vumc/ACE VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ACE git_branch: RELEASE_3_20 git_last_commit: 6ba554e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ACE_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ACE_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ACE_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ACE_1.24.0.tgz vignettes: vignettes/ACE/inst/doc/ACE_vignette.html vignetteTitles: ACE vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ACE/inst/doc/ACE_vignette.R dependencyCount: 88 Package: aCGH Version: 1.84.0 Depends: R (>= 2.10), cluster, survival, multtest Imports: Biobase, grDevices, graphics, methods, stats, splines, utils License: GPL-2 Archs: x64 MD5sum: c2acef2cc478e54d29de890b7d12c146 NeedsCompilation: yes Title: Classes and functions for Array Comparative Genomic Hybridization data Description: Functions for reading aCGH data from image analysis output files and clone information files, creation of aCGH S3 objects for storing these data. Basic methods for accessing/replacing, subsetting, printing and plotting aCGH objects. biocViews: CopyNumberVariation, DataImport, Genetics Author: Jane Fridlyand , Peter Dimitrov Maintainer: Peter Dimitrov git_url: https://git.bioconductor.org/packages/aCGH git_branch: RELEASE_3_20 git_last_commit: e992a61 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/aCGH_1.84.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/aCGH_1.84.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/aCGH_1.84.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/aCGH_1.84.0.tgz vignettes: vignettes/aCGH/inst/doc/aCGH.pdf vignetteTitles: aCGH Overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/aCGH/inst/doc/aCGH.R dependsOnMe: CRImage importsMe: ADaCGH2 dependencyCount: 16 Package: ACME Version: 2.62.0 Depends: R (>= 2.10), Biobase (>= 2.5.5), methods, BiocGenerics Imports: graphics, stats License: GPL (>= 2) Archs: x64 MD5sum: daf938706b80e3ef74ee6d3aa5b4e247 NeedsCompilation: yes Title: Algorithms for Calculating Microarray Enrichment (ACME) Description: ACME (Algorithms for Calculating Microarray Enrichment) is a set of tools for analysing tiling array ChIP/chip, DNAse hypersensitivity, or other experiments that result in regions of the genome showing "enrichment". It does not rely on a specific array technology (although the array should be a "tiling" array), is very general (can be applied in experiments resulting in regions of enrichment), and is very insensitive to array noise or normalization methods. It is also very fast and can be applied on whole-genome tiling array experiments quite easily with enough memory. biocViews: Technology, Microarray, Normalization Author: Sean Davis Maintainer: Sean Davis URL: http://watson.nci.nih.gov/~sdavis git_url: https://git.bioconductor.org/packages/ACME git_branch: RELEASE_3_20 git_last_commit: f631445 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ACME_2.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ACME_2.62.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ACME_2.62.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ACME_2.62.0.tgz vignettes: vignettes/ACME/inst/doc/ACME.pdf vignetteTitles: ACME hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ACME/inst/doc/ACME.R suggestsMe: oligo dependencyCount: 6 Package: ADaCGH2 Version: 2.46.0 Depends: R (>= 3.2.0), parallel, ff, GLAD Imports: bit, DNAcopy, tilingArray, waveslim, cluster, aCGH Suggests: CGHregions, Cairo, limma Enhances: Rmpi License: GPL (>= 3) Archs: x64 MD5sum: 329f00761ec18e4670f9f057caa37556 NeedsCompilation: yes Title: Analysis of big data from aCGH experiments using parallel computing and ff objects Description: Analysis and plotting of array CGH data. Allows usage of Circular Binary Segementation, wavelet-based smoothing (both as in Liu et al., and HaarSeg as in Ben-Yaacov and Eldar), HMM, GLAD, CGHseg. Most computations are parallelized (either via forking or with clusters, including MPI and sockets clusters) and use ff for storing data. biocViews: Microarray, CopyNumberVariants Author: Ramon Diaz-Uriarte and Oscar M. Rueda . Wavelet-based aCGH smoothing code from Li Hsu and Douglas Grove . Imagemap code from Barry Rowlingson . HaarSeg code from Erez Ben-Yaacov; downloaded from . Code from ffbase by Edwin de Jonge , Jan Wijffels, Jan van der Laan. Maintainer: Ramon Diaz-Uriarte URL: https://github.com/rdiaz02/adacgh2 git_url: https://git.bioconductor.org/packages/ADaCGH2 git_branch: RELEASE_3_20 git_last_commit: 831a7a7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ADaCGH2_2.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ADaCGH2_2.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ADaCGH2_2.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ADaCGH2_2.46.0.tgz vignettes: vignettes/ADaCGH2/inst/doc/ADaCGH2-long-examples.pdf, vignettes/ADaCGH2/inst/doc/ADaCGH2.pdf, vignettes/ADaCGH2/inst/doc/benchmarks.pdf vignetteTitles: ADaCGH2-long-examples.pdf, ADaCGH2 Overview, benchmarks.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ADaCGH2/inst/doc/ADaCGH2.R dependencyCount: 99 Package: ADAM Version: 1.22.0 Depends: R(>= 3.5), stats, utils, methods Imports: Rcpp (>= 0.12.18), GO.db (>= 3.6.0), KEGGREST (>= 1.20.2), knitr, pbapply (>= 1.3-4), dplyr (>= 0.7.6), DT (>= 0.4), stringr (>= 1.3.1), SummarizedExperiment (>= 1.10.1) LinkingTo: Rcpp Suggests: testthat, rmarkdown, BiocStyle License: GPL (>= 2) Archs: x64 MD5sum: 7f115ef3a54bf9fdc0100faa1ca78650 NeedsCompilation: yes Title: ADAM: Activity and Diversity Analysis Module Description: ADAM is a GSEA R package created to group a set of genes from comparative samples (control versus experiment) belonging to different species according to their respective functions (Gene Ontology and KEGG pathways as default) and show their significance by calculating p-values referring togene diversity and activity. Each group of genes is called GFAG (Group of Functionally Associated Genes). biocViews: GeneSetEnrichment, Pathways, KEGG, GeneExpression, Microarray Author: André Luiz Molan [aut], Giordano Bruno Sanches Seco [ctb], Agnes Takeda [ctb], Jose Rybarczyk Filho [ctb, cre, ths] Maintainer: Jose Luiz Rybarczyk Filho SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ADAM git_branch: RELEASE_3_20 git_last_commit: 5f59a12 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ADAM_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ADAM_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ADAM_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ADAM_1.22.0.tgz vignettes: vignettes/ADAM/inst/doc/ADAM.html vignetteTitles: "Using ADAM" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ADAM/inst/doc/ADAM.R dependsOnMe: ADAMgui dependencyCount: 94 Package: ADAMgui Version: 1.22.0 Depends: R(>= 3.6), stats, utils, methods, ADAM Imports: GO.db (>= 3.5.0), dplyr (>= 0.7.6), shiny (>= 1.1.0), stringr (>= 1.3.1), stringi (>= 1.2.4), varhandle (>= 2.0.3), ggplot2 (>= 3.0.0), ggrepel (>= 0.8.0), ggpubr (>= 0.1.8), ggsignif (>= 0.4.0), reshape2 (>= 1.4.3), RColorBrewer (>= 1.1-2), colorRamps (>= 2.3), DT (>= 0.4), data.table (>= 1.11.4), gridExtra (>= 2.3), shinyjs (>= 1.0), knitr, testthat Suggests: markdown, BiocStyle License: GPL (>= 2) MD5sum: a136c41aed3a65f212e744caf5c8d9db NeedsCompilation: no Title: Activity and Diversity Analysis Module Graphical User Interface Description: ADAMgui is a Graphical User Interface for the ADAM package. The ADAMgui package provides 2 shiny-based applications that allows the user to study the output of the ADAM package files through different plots. It's possible, for example, to choose a specific GFAG and observe the gene expression behavior with the plots created with the GFAGtargetUi function. Features such as differential expression and foldchange can be easily seen with aid of the plots made with GFAGpathUi function. biocViews: GeneSetEnrichment, Pathways, KEGG Author: Giordano Bruno Sanches Seco [aut], André Luiz Molan [ctb], Agnes Takeda [ctb], Jose Rybarczyk Filho [ctb, cre, ths] Maintainer: Jose Luiz Rybarczyk Filho URL: TBA VignetteBuilder: knitr BugReports: https://github.com/jrybarczyk/ADAMgui/issues git_url: https://git.bioconductor.org/packages/ADAMgui git_branch: RELEASE_3_20 git_last_commit: d8bf6b2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ADAMgui_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ADAMgui_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ADAMgui_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ADAMgui_1.22.0.tgz vignettes: vignettes/ADAMgui/inst/doc/ADAMgui.html vignetteTitles: "Using ADAMgui" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ADAMgui/inst/doc/ADAMgui.R dependencyCount: 163 Package: ADAPT Version: 1.0.0 Depends: R (>= 4.1.0) Imports: Rcpp (>= 1.0.8), RcppArmadillo (>= 0.10.8), RcppParallel (>= 5.1.5), phyloseq (>= 1.39.0), methods, stats, ggplot2 (>= 3.4.1), ggrepel (>= 0.9.1) LinkingTo: Rcpp, RcppArmadillo, RcppParallel Suggests: rmarkdown (>= 2.11), knitr (>= 1.37), testthat (>= 3.0.0) License: MIT + file LICENSE Archs: x64 MD5sum: 707165726b7a8d2cbc4e1aca5c663318 NeedsCompilation: yes Title: Analysis of Microbiome Differential Abundance by Pooling Tobit Models Description: ADAPT carries out differential abundance analysis for microbiome metagenomics data in phyloseq format. It has two innovations. One is to treat zero counts as left censored and use Tobit models for log count ratios. The other is an innovative way to find non-differentially abundant taxa as reference, then use the reference taxa to find the differentially abundant ones. biocViews: DifferentialExpression, Microbiome, Normalization, Sequencing, Metagenomics, Software, MultipleComparison Author: Mukai Wang [aut, cre] (), Simon Fontaine [ctb], Hui Jiang [ctb], Gen Li [aut, ctb] Maintainer: Mukai Wang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ADAPT git_branch: RELEASE_3_20 git_last_commit: d0f8248 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ADAPT_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ADAPT_1.0.0.zip vignettes: vignettes/ADAPT/inst/doc/ADAPT-manual.html vignetteTitles: ADAPT Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ADAPT/inst/doc/ADAPT-manual.R dependencyCount: 85 Package: adductomicsR Version: 1.22.0 Depends: R (>= 3.6), adductData, ExperimentHub, AnnotationHub Imports: parallel (>= 3.3.2), data.table (>= 1.10.4), OrgMassSpecR (>= 0.4.6), foreach (>= 1.4.3), mzR (>= 2.14.0), ade4 (>= 1.7.6), rvest (>= 0.3.2), pastecs (>= 1.3.18), reshape2 (>= 1.4.2), pracma (>= 2.0.4), DT (>= 0.2), fpc (>= 2.1.10), doSNOW (>= 1.0.14), fastcluster (>= 1.1.22), RcppEigen (>= 0.3.3.3.0), bootstrap (>= 2017.2), smoother (>= 1.1), dplyr (>= 0.7.5), zoo (>= 1.8), stats (>= 3.5.0), utils (>= 3.5.0), graphics (>= 3.5.0), grDevices (>= 3.5.0), methods (>= 3.5.0), datasets (>= 3.5.0) Suggests: knitr (>= 1.15.1), rmarkdown (>= 1.5), Rdisop (>= 1.34.0), testthat License: Artistic-2.0 MD5sum: c5599996505f3e49b095bd755f11fbed NeedsCompilation: no Title: Processing of adductomic mass spectral datasets Description: Processes MS2 data to identify potentially adducted peptides from spectra that has been corrected for mass drift and retention time drift and quantifies MS1 level mass spectral peaks. biocViews: MassSpectrometry,Metabolomics,Software,ThirdPartyClient,DataImport, GUI Author: Josie Hayes Maintainer: Josie Hayes VignetteBuilder: knitr BugReports: https://github.com/JosieLHayes/adductomicsR/issues git_url: https://git.bioconductor.org/packages/adductomicsR git_branch: RELEASE_3_20 git_last_commit: 6cb706f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/adductomicsR_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/adductomicsR_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/adductomicsR_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/adductomicsR_1.22.0.tgz vignettes: vignettes/adductomicsR/inst/doc/adductomicsRWorkflow.html vignetteTitles: Adductomics workflow hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/adductomicsR/inst/doc/adductomicsRWorkflow.R dependencyCount: 137 Package: ADImpute Version: 1.16.0 Depends: R (>= 4.0) Imports: checkmate, BiocParallel, data.table, DrImpute, kernlab, MASS, Matrix, methods, rsvd, S4Vectors, SAVER, SingleCellExperiment, stats, SummarizedExperiment, utils Suggests: BiocStyle, knitr, rmarkdown, testthat License: GPL-3 + file LICENSE MD5sum: 412ef2483765b22093eb394039ff6c20 NeedsCompilation: no Title: Adaptive Dropout Imputer (ADImpute) Description: Single-cell RNA sequencing (scRNA-seq) methods are typically unable to quantify the expression levels of all genes in a cell, creating a need for the computational prediction of missing values (‘dropout imputation’). Most existing dropout imputation methods are limited in the sense that they exclusively use the scRNA-seq dataset at hand and do not exploit external gene-gene relationship information. Here we propose two novel methods: a gene regulatory network-based approach using gene-gene relationships learnt from external data and a baseline approach corresponding to a sample-wide average. ADImpute can implement these novel methods and also combine them with existing imputation methods (currently supported: DrImpute, SAVER). ADImpute can learn the best performing method per gene and combine the results from different methods into an ensemble. biocViews: GeneExpression, Network, Preprocessing, Sequencing, SingleCell, Transcriptomics Author: Ana Carolina Leote [cre, aut] () Maintainer: Ana Carolina Leote VignetteBuilder: knitr BugReports: https://github.com/anacarolinaleote/ADImpute/issues git_url: https://git.bioconductor.org/packages/ADImpute git_branch: RELEASE_3_20 git_last_commit: fc250fa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ADImpute_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ADImpute_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ADImpute_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ADImpute_1.16.0.tgz vignettes: vignettes/ADImpute/inst/doc/ADImpute_tutorial.html vignetteTitles: ADImpute tutorial hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ADImpute/inst/doc/ADImpute_tutorial.R dependencyCount: 65 Package: adSplit Version: 1.76.0 Depends: R (>= 2.1.0), methods (>= 2.1.0) Imports: AnnotationDbi, Biobase (>= 1.5.12), cluster (>= 1.9.1), GO.db (>= 1.8.1), graphics, grDevices, KEGGREST (>= 1.30.1), multtest (>= 1.6.0), stats (>= 2.1.0) Suggests: golubEsets (>= 1.0), vsn (>= 1.5.0), hu6800.db (>= 1.8.1) License: GPL (>= 2) Archs: x64 MD5sum: 4dba31266eac16ec5639cc0fa671532c NeedsCompilation: yes Title: Annotation-Driven Clustering Description: This package implements clustering of microarray gene expression profiles according to functional annotations. For each term genes are annotated to, splits into two subclasses are computed and a significance of the supporting gene set is determined. biocViews: Microarray, Clustering Author: Claudio Lottaz, Joern Toedling Maintainer: Claudio Lottaz URL: http://compdiag.molgen.mpg.de/software/adSplit.shtml git_url: https://git.bioconductor.org/packages/adSplit git_branch: RELEASE_3_20 git_last_commit: 3bfef6d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/adSplit_1.76.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/adSplit_1.76.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/adSplit_1.76.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/adSplit_1.76.0.tgz vignettes: vignettes/adSplit/inst/doc/tr_2005_02.pdf vignetteTitles: Annotation-Driven Clustering hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/adSplit/inst/doc/tr_2005_02.R dependencyCount: 54 Package: adverSCarial Version: 1.4.0 Depends: R (>= 3.5.0) Imports: gtools, S4Vectors, methods, DelayedArray Suggests: knitr, RUnit, BiocGenerics, TENxPBMCData, CHETAH, stringr, LoomExperiment License: MIT + file LICENSE MD5sum: 2c56a48a86bb4ee673b7db23b852d94e NeedsCompilation: no Title: adverSCarial, generate and analyze the vulnerability of scRNA-seq classifier to adversarial attacks Description: adverSCarial is an R Package designed for generating and analyzing the vulnerability of scRNA-seq classifiers to adversarial attacks. The package is versatile and provides a format for integrating any type of classifier. It offers functions for studying and generating two types of attacks, single gene attack and max change attack. The single-gene attack involves making a small modification to the input to alter the classification. The max-change attack involves making a large modification to the input without changing its classification. The package provides a comprehensive solution for evaluating the robustness of scRNA-seq classifiers against adversarial attacks. biocViews: Software, SingleCell, Transcriptomics, Classification Author: Ghislain FIEVET [aut, cre] (), Sébastien HERGALANT [aut] () Maintainer: Ghislain FIEVET VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/adverSCarial git_branch: RELEASE_3_20 git_last_commit: c51e636 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/adverSCarial_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/adverSCarial_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/adverSCarial_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/adverSCarial_1.4.0.tgz vignettes: vignettes/adverSCarial/inst/doc/vign01_adverSCarial.html, vignettes/adverSCarial/inst/doc/vign02_overView_analysis.html, vignettes/adverSCarial/inst/doc/vign03_adapt_classifier.html, vignettes/adverSCarial/inst/doc/vign04_advRandWalkMinChange.html vignetteTitles: Vign01_adverSCarial, Vign02_overView_analysis, Vign03_adapt_classifiers, Vign04_advRandWalkMinChange hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/adverSCarial/inst/doc/vign01_adverSCarial.R, vignettes/adverSCarial/inst/doc/vign02_overView_analysis.R dependencyCount: 23 Package: AffiXcan Version: 1.24.0 Depends: R (>= 3.6), SummarizedExperiment Imports: MultiAssayExperiment, BiocParallel, crayon Suggests: BiocStyle, knitr, rmarkdown License: GPL-3 MD5sum: 9a5927d91abde2bc1c6f49c20372855a NeedsCompilation: no Title: A Functional Approach To Impute Genetically Regulated Expression Description: Impute a GReX (Genetically Regulated Expression) for a set of genes in a sample of individuals, using a method based on the Total Binding Affinity (TBA). Statistical models to impute GReX can be trained with a training dataset where the real total expression values are known. biocViews: GeneExpression, Transcription, GeneRegulation, DimensionReduction, Regression, PrincipalComponent Author: Alessandro Lussana [aut, cre] Maintainer: Alessandro Lussana VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/AffiXcan git_branch: RELEASE_3_20 git_last_commit: 715b224 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AffiXcan_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AffiXcan_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AffiXcan_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AffiXcan_1.24.0.tgz vignettes: vignettes/AffiXcan/inst/doc/AffiXcan.html vignetteTitles: AffiXcan hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AffiXcan/inst/doc/AffiXcan.R dependencyCount: 67 Package: affxparser Version: 1.78.0 Depends: R (>= 2.14.0) Suggests: R.oo (>= 1.22.0), R.utils (>= 2.7.0), AffymetrixDataTestFiles License: LGPL (>= 2) Archs: x64 MD5sum: 594e4fd69853dece7646c5356fabc31a NeedsCompilation: yes Title: Affymetrix File Parsing SDK Description: Package for parsing Affymetrix files (CDF, CEL, CHP, BPMAP, BAR). It provides methods for fast and memory efficient parsing of Affymetrix files using the Affymetrix' Fusion SDK. Both ASCII- and binary-based files are supported. Currently, there are methods for reading chip definition file (CDF) and a cell intensity file (CEL). These files can be read either in full or in part. For example, probe signals from a few probesets can be extracted very quickly from a set of CEL files into a convenient list structure. biocViews: Infrastructure, DataImport, Microarray, ProprietaryPlatforms, OneChannel Author: Henrik Bengtsson [aut], James Bullard [aut], Robert Gentleman [ctb], Kasper Daniel Hansen [aut, cre], Jim Hester [ctb], Martin Morgan [ctb] Maintainer: Kasper Daniel Hansen URL: https://github.com/HenrikBengtsson/affxparser BugReports: https://github.com/HenrikBengtsson/affxparser/issues git_url: https://git.bioconductor.org/packages/affxparser git_branch: RELEASE_3_20 git_last_commit: fab9ee2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/affxparser_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/affxparser_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/affxparser_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/affxparser_1.78.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: ITALICS, pdInfoBuilder importsMe: affyILM, cn.farms, EventPointer, GeneRegionScan, ITALICS, oligo suggestsMe: TIN, aroma.affymetrix, aroma.apd dependencyCount: 0 Package: affy Version: 1.84.0 Depends: R (>= 2.8.0), BiocGenerics (>= 0.1.12), Biobase (>= 2.5.5) Imports: affyio (>= 1.13.3), BiocManager, graphics, grDevices, methods, preprocessCore, stats, utils, zlibbioc LinkingTo: preprocessCore Suggests: tkWidgets (>= 1.19.0), affydata, widgetTools, hgu95av2cdf License: LGPL (>= 2.0) Archs: x64 MD5sum: 82c2e7dafd9b513f793df8455b53570c NeedsCompilation: yes Title: Methods for Affymetrix Oligonucleotide Arrays Description: The package contains functions for exploratory oligonucleotide array analysis. The dependence on tkWidgets only concerns few convenience functions. 'affy' is fully functional without it. biocViews: Microarray, OneChannel, Preprocessing Author: Rafael A. Irizarry , Laurent Gautier , Benjamin Milo Bolstad , and Crispin Miller with contributions from Magnus Astrand , Leslie M. Cope , Robert Gentleman, Jeff Gentry, Conrad Halling , Wolfgang Huber, James MacDonald , Benjamin I. P. Rubinstein, Christopher Workman , John Zhang Maintainer: Robert D. Shear URL: https://bioconductor.org/packages/affy BugReports: https://github.com/rafalab/affy/issues git_url: https://git.bioconductor.org/packages/affy git_branch: RELEASE_3_20 git_last_commit: 1174adf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/affy_1.84.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/affy_1.84.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/affy_1.84.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/affy_1.84.0.tgz vignettes: vignettes/affy/inst/doc/affy.pdf, vignettes/affy/inst/doc/builtinMethods.pdf, vignettes/affy/inst/doc/customMethods.pdf, vignettes/affy/inst/doc/vim.pdf vignetteTitles: 1. Primer, 2. Built-in Processing Methods, 3. Custom Processing Methods, 4. Import Methods hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/affy/inst/doc/affy.R, vignettes/affy/inst/doc/builtinMethods.R, vignettes/affy/inst/doc/customMethods.R, vignettes/affy/inst/doc/vim.R dependsOnMe: affyContam, affyPLM, AffyRNADegradation, altcdfenvs, arrayMvout, Cormotif, DrugVsDisease, ExiMiR, frmaTools, gcrma, maskBAD, panp, prebs, qpcrNorm, RPA, SCAN.UPC, webbioc, affydata, ALLMLL, AmpAffyExample, bronchialIL13, CLL, curatedBladderData, ecoliLeucine, Hiiragi2013, MAQCsubset, mvoutData, PREDAsampledata, SpikeIn, SpikeInSubset, XhybCasneuf, RobLoxBioC importsMe: affycoretools, affyILM, affylmGUI, arrayQualityMetrics, bnem, CAFE, ChIPXpress, Cormotif, Doscheda, ffpe, frma, gcrma, GEOsubmission, Harshlight, iCheck, lumi, makecdfenv, mimager, MSnbase, PECA, plier, puma, pvac, Rnits, STATegRa, tilingArray, TurboNorm, vsn, rat2302frmavecs, DeSousa2013, signatureSearchData, bapred, seeker suggestsMe: AnnotationForge, ArrayExpress, autonomics, beadarray, BiocGenerics, Biostrings, BufferedMatrixMethods, categoryCompare, ecolitk, factDesign, GeneRegionScan, limma, made4, piano, PREDA, qcmetrics, runibic, siggenes, TCGAbiolinks, ath1121501frmavecs, estrogen, ffpeExampleData, arrays, aroma.affymetrix, hexbin, isatabr, maGUI dependencyCount: 11 Package: affycomp Version: 1.82.0 Depends: R (>= 2.13.0), methods, Biobase (>= 2.3.3) Suggests: splines, affycompData License: GPL (>= 2) MD5sum: 9dd57ca955c7b4b9bf7e5787e060de4a NeedsCompilation: no Title: Graphics Toolbox for Assessment of Affymetrix Expression Measures Description: The package contains functions that can be used to compare expression measures for Affymetrix Oligonucleotide Arrays. biocViews: OneChannel, Microarray, Preprocessing Author: Rafael A. Irizarry and Zhijin Wu with contributions from Simon Cawley Maintainer: Robert D. Shear URL: https://bioconductor.org/packages/affycomp BugReports: https://github.com/rafalab/affycomp/issues git_url: https://git.bioconductor.org/packages/affycomp git_branch: RELEASE_3_20 git_last_commit: 646461c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/affycomp_1.82.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/affycomp_1.82.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/affycomp_1.82.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/affycomp_1.82.0.tgz vignettes: vignettes/affycomp/inst/doc/affycomp.pdf vignetteTitles: affycomp primer hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/affycomp/inst/doc/affycomp.R dependsOnMe: affycompData dependencyCount: 6 Package: affyContam Version: 1.64.0 Depends: R (>= 2.7.0), tools, methods, utils, Biobase, affy, affydata Suggests: hgu95av2cdf License: Artistic-2.0 MD5sum: 54580b1d9c057863579b3cb9582366ba NeedsCompilation: no Title: structured corruption of affymetrix cel file data Description: structured corruption of cel file data to demonstrate QA effectiveness biocViews: Infrastructure Author: V. Carey Maintainer: V. Carey git_url: https://git.bioconductor.org/packages/affyContam git_branch: RELEASE_3_20 git_last_commit: c7cf836 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/affyContam_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/affyContam_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/affyContam_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/affyContam_1.64.0.tgz vignettes: vignettes/affyContam/inst/doc/affyContam.pdf vignetteTitles: affy contamination tools hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/affyContam/inst/doc/affyContam.R importsMe: arrayMvout dependencyCount: 14 Package: affycoretools Version: 1.78.0 Depends: Biobase, methods Imports: affy, limma, GOstats, gcrma, splines, xtable, AnnotationDbi, ggplot2, gplots, oligoClasses, ReportingTools, hwriter, lattice, S4Vectors, edgeR, RSQLite, BiocGenerics, DBI, Glimma Suggests: affydata, hgfocuscdf, BiocStyle, knitr, hgu95av2.db, rgl, rmarkdown License: Artistic-2.0 MD5sum: 89eb1dc5c507584e34f3b67322d9b455 NeedsCompilation: no Title: Functions useful for those doing repetitive analyses with Affymetrix GeneChips Description: Various wrapper functions that have been written to streamline the more common analyses that a core Biostatistician might see. biocViews: ReportWriting, Microarray, OneChannel, GeneExpression Author: James W. MacDonald Maintainer: James W. MacDonald VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/affycoretools git_branch: RELEASE_3_20 git_last_commit: 2eb1cc5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/affycoretools_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/affycoretools_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/affycoretools_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/affycoretools_1.78.0.tgz vignettes: vignettes/affycoretools/inst/doc/RefactoredAffycoretools.html vignetteTitles: Creating annotated output with \Biocpkg{affycoretools} and ReportingTools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/affycoretools/inst/doc/RefactoredAffycoretools.R suggestsMe: EnMCB dependencyCount: 198 Package: affyILM Version: 1.58.0 Depends: R (>= 2.10.0), methods, gcrma Imports: affxparser (>= 1.16.0), affy, graphics, Biobase Suggests: AffymetrixDataTestFiles, hgfocusprobe License: GPL-3 MD5sum: 0ce1033e222cfc11db61d1a6fb09c4f3 NeedsCompilation: no Title: Linear Model of background subtraction and the Langmuir isotherm Description: affyILM is a preprocessing tool which estimates gene expression levels for Affymetrix Gene Chips. Input from physical chemistry is employed to first background subtract intensities before calculating concentrations on behalf of the Langmuir model. biocViews: Microarray, OneChannel, Preprocessing Author: K. Myriam Kroll, Fabrice Berger, Gerard Barkema, Enrico Carlon Maintainer: Myriam Kroll and Fabrice Berger git_url: https://git.bioconductor.org/packages/affyILM git_branch: RELEASE_3_20 git_last_commit: 0ceee74 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/affyILM_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/affyILM_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/affyILM_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/affyILM_1.58.0.tgz vignettes: vignettes/affyILM/inst/doc/affyILM.pdf vignetteTitles: affyILM1.3.0 hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/affyILM/inst/doc/affyILM.R dependencyCount: 33 Package: affyio Version: 1.76.0 Depends: R (>= 2.6.0) Imports: zlibbioc, methods License: LGPL (>= 2) Archs: x64 MD5sum: c1504546527ab09831f56b7d34ba4a34 NeedsCompilation: yes Title: Tools for parsing Affymetrix data files Description: Routines for parsing Affymetrix data files based upon file format information. Primary focus is on accessing the CEL and CDF file formats. biocViews: Microarray, DataImport, Infrastructure Author: Ben Bolstad Maintainer: Ben Bolstad URL: https://github.com/bmbolstad/affyio git_url: https://git.bioconductor.org/packages/affyio git_branch: RELEASE_3_20 git_last_commit: ed8b074 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/affyio_1.76.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/affyio_1.76.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/affyio_1.76.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/affyio_1.76.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: makecdfenv, SCAN.UPC importsMe: affy, affylmGUI, crlmm, ExiMiR, gcrma, oligo, oligoClasses, puma suggestsMe: BufferedMatrixMethods dependencyCount: 2 Package: affylmGUI Version: 1.80.0 Imports: grDevices, graphics, stats, utils, tcltk, tkrplot, limma, affy, affyio, affyPLM, gcrma, BiocGenerics, AnnotationDbi, BiocManager, R2HTML, xtable License: GPL (>=2) MD5sum: 46c5dbc922f7355302276f37495a7cee NeedsCompilation: no Title: GUI for limma Package with Affymetrix Microarrays Description: A Graphical User Interface (GUI) for analysis of Affymetrix microarray gene expression data using the affy and limma packages. biocViews: GUI, GeneExpression, Transcription, DifferentialExpression, DataImport, Bayesian, Regression, TimeCourse, Microarray, mRNAMicroarray, OneChannel, ProprietaryPlatforms, BatchEffect, MultipleComparison, Normalization, Preprocessing, QualityControl Author: James Wettenhall [cre,aut], Gordon Smyth [aut], Ken Simpson [aut], Keith Satterley [ctb] Maintainer: Gordon Smyth URL: http://bioinf.wehi.edu.au/affylmGUI/ git_url: https://git.bioconductor.org/packages/affylmGUI git_branch: RELEASE_3_20 git_last_commit: c05564b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/affylmGUI_1.80.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/affylmGUI_1.80.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/affylmGUI_1.80.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/affylmGUI_1.80.0.tgz vignettes: vignettes/affylmGUI/inst/doc/affylmGUI.pdf, vignettes/affylmGUI/inst/doc/extract.pdf, vignettes/affylmGUI/inst/doc/about.html, vignettes/affylmGUI/inst/doc/CustMenu.html, vignettes/affylmGUI/inst/doc/index.html, vignettes/affylmGUI/inst/doc/windowsFocus.html vignetteTitles: affylmGUI Vignette, Extracting affy and limma objects from affylmGUI files, about.html, CustMenu.html, index.html, windowsFocus.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/affylmGUI/inst/doc/affylmGUI.R dependencyCount: 58 Package: affyPLM Version: 1.82.0 Depends: R (>= 2.6.0), BiocGenerics (>= 0.3.2), affy (>= 1.11.0), Biobase (>= 2.17.8), gcrma, stats, preprocessCore (>= 1.5.1) Imports: zlibbioc, graphics, grDevices, methods LinkingTo: preprocessCore Suggests: affydata, MASS, hgu95av2cdf License: GPL (>= 2) Archs: x64 MD5sum: 0f9e6db33cf6d5d8ed16a0885d59ffe0 NeedsCompilation: yes Title: Methods for fitting probe-level models Description: A package that extends and improves the functionality of the base affy package. Routines that make heavy use of compiled code for speed. Central focus is on implementation of methods for fitting probe-level models and tools using these models. PLM based quality assessment tools. biocViews: Microarray, OneChannel, Preprocessing, QualityControl Author: Ben Bolstad Maintainer: Ben Bolstad URL: https://github.com/bmbolstad/affyPLM git_url: https://git.bioconductor.org/packages/affyPLM git_branch: RELEASE_3_20 git_last_commit: 16d7387 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/affyPLM_1.82.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/affyPLM_1.82.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/affyPLM_1.82.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/affyPLM_1.82.0.tgz vignettes: vignettes/affyPLM/inst/doc/AffyExtensions.pdf, vignettes/affyPLM/inst/doc/MAplots.pdf, vignettes/affyPLM/inst/doc/QualityAssess.pdf, vignettes/affyPLM/inst/doc/ThreeStep.pdf vignetteTitles: affyPLM: Fitting Probe Level Models, affyPLM: Advanced use of the MAplot function, affyPLM: Model Based QC Assessment of Affymetrix GeneChips, affyPLM: the threestep function hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/affyPLM/inst/doc/AffyExtensions.R, vignettes/affyPLM/inst/doc/MAplots.R, vignettes/affyPLM/inst/doc/QualityAssess.R, vignettes/affyPLM/inst/doc/ThreeStep.R dependsOnMe: bapred importsMe: affylmGUI, arrayQualityMetrics, mimager suggestsMe: arrayMvout, BiocGenerics, frmaTools, metahdep, piano, aroma.affymetrix dependencyCount: 32 Package: AffyRNADegradation Version: 1.52.0 Depends: R (>= 2.9.0), methods, affy Suggests: AmpAffyExample, hgu133acdf License: GPL-2 MD5sum: cadf0ca1b06dd4db0aad5357277b3967 NeedsCompilation: no Title: Analyze and correct probe positional bias in microarray data due to RNA degradation Description: The package helps with the assessment and correction of RNA degradation effects in Affymetrix 3' expression arrays. The parameter d gives a robust and accurate measure of RNA integrity. The correction removes the probe positional bias, and thus improves comparability of samples that are affected by RNA degradation. biocViews: GeneExpression, Microarray, OneChannel, Preprocessing, QualityControl Author: Mario Fasold Maintainer: Mario Fasold git_url: https://git.bioconductor.org/packages/AffyRNADegradation git_branch: RELEASE_3_20 git_last_commit: 14b087a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AffyRNADegradation_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AffyRNADegradation_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AffyRNADegradation_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AffyRNADegradation_1.52.0.tgz vignettes: vignettes/AffyRNADegradation/inst/doc/vignette.pdf vignetteTitles: AffyRNADegradation Example hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AffyRNADegradation/inst/doc/vignette.R dependencyCount: 12 Package: AGDEX Version: 1.54.0 Depends: R (>= 2.10), Biobase, GSEABase Imports: stats License: GPL Version 2 or later MD5sum: a4c17a430f2da1e099c8358960401e6a NeedsCompilation: no Title: Agreement of Differential Expression Analysis Description: A tool to evaluate agreement of differential expression for cross-species genomics biocViews: Microarray, Genetics, GeneExpression Author: Stan Pounds ; Cuilan Lani Gao Maintainer: Cuilan lani Gao git_url: https://git.bioconductor.org/packages/AGDEX git_branch: RELEASE_3_20 git_last_commit: 0dc73a6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AGDEX_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AGDEX_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AGDEX_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AGDEX_1.54.0.tgz vignettes: vignettes/AGDEX/inst/doc/AGDEX.pdf vignetteTitles: AGDEX.pdf hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AGDEX/inst/doc/AGDEX.R dependencyCount: 50 Package: aggregateBioVar Version: 1.16.0 Depends: R (>= 4.0) Imports: stats, methods, S4Vectors, SummarizedExperiment, SingleCellExperiment, Matrix, tibble, rlang Suggests: BiocStyle, magick, knitr, rmarkdown, testthat, BiocGenerics, DESeq2, magrittr, dplyr, ggplot2, cowplot, ggtext, RColorBrewer, pheatmap, viridis License: GPL-3 MD5sum: 9290129272eae2c83034ff774bdc1aba NeedsCompilation: no Title: Differential Gene Expression Analysis for Multi-subject scRNA-seq Description: For single cell RNA-seq data collected from more than one subject (e.g. biological sample or technical replicates), this package contains tools to summarize single cell gene expression profiles at the level of subject. A SingleCellExperiment object is taken as input and converted to a list of SummarizedExperiment objects, where each list element corresponds to an assigned cell type. The SummarizedExperiment objects contain aggregate gene-by-subject count matrices and inter-subject column metadata for individual subjects that can be processed using downstream bulk RNA-seq tools. biocViews: Software, SingleCell, RNASeq, Transcriptomics, Transcription, GeneExpression, DifferentialExpression Author: Jason Ratcliff [aut, cre] (), Andrew Thurman [aut], Michael Chimenti [ctb], Alejandro Pezzulo [ctb] Maintainer: Jason Ratcliff URL: https://github.com/jasonratcliff/aggregateBioVar VignetteBuilder: knitr BugReports: https://github.com/jasonratcliff/aggregateBioVar/issues git_url: https://git.bioconductor.org/packages/aggregateBioVar git_branch: RELEASE_3_20 git_last_commit: df5aec0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/aggregateBioVar_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/aggregateBioVar_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/aggregateBioVar_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/aggregateBioVar_1.16.0.tgz vignettes: vignettes/aggregateBioVar/inst/doc/multi-subject-scRNA-seq.html vignetteTitles: Multi-subject scRNA-seq Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/aggregateBioVar/inst/doc/multi-subject-scRNA-seq.R dependencyCount: 48 Package: agilp Version: 3.38.0 Depends: R (>= 2.14.0) License: GPL-3 MD5sum: dbf0be42e3149d23acd29c60631252ca NeedsCompilation: no Title: Agilent expression array processing package Description: More about what it does (maybe more than one line) Author: Benny Chain Maintainer: Benny Chain git_url: https://git.bioconductor.org/packages/agilp git_branch: RELEASE_3_20 git_last_commit: 5ed3359 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/agilp_3.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/agilp_3.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/agilp_3.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/agilp_3.38.0.tgz vignettes: vignettes/agilp/inst/doc/agilp_manual.pdf vignetteTitles: An R Package for processing expression microarray data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/agilp/inst/doc/agilp_manual.R dependencyCount: 0 Package: AgiMicroRna Version: 2.56.0 Depends: R (>= 2.10),methods,Biobase,limma,affy (>= 1.22),preprocessCore,affycoretools Imports: Biobase Suggests: geneplotter,marray,gplots,gtools,gdata,codelink License: GPL-3 MD5sum: 9a533477c8c2c1ad03148f5a1f3dd8bf NeedsCompilation: no Title: Processing and Differential Expression Analysis of Agilent microRNA chips Description: Processing and Analysis of Agilent microRNA data biocViews: Microarray, AgilentChip, OneChannel, Preprocessing, DifferentialExpression Author: Pedro Lopez-Romero Maintainer: Pedro Lopez-Romero git_url: https://git.bioconductor.org/packages/AgiMicroRna git_branch: RELEASE_3_20 git_last_commit: 5e27712 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AgiMicroRna_2.56.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AgiMicroRna_2.56.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AgiMicroRna_2.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AgiMicroRna_2.56.0.tgz vignettes: vignettes/AgiMicroRna/inst/doc/AgiMicroRna.pdf vignetteTitles: AgiMicroRna hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AgiMicroRna/inst/doc/AgiMicroRna.R dependencyCount: 199 Package: AHMassBank Version: 1.6.0 Depends: R (>= 4.2) Imports: AnnotationHubData (>= 1.5.24) Suggests: BiocStyle, knitr, AnnotationHub (>= 2.7.13), rmarkdown, methods, CompoundDb (>= 1.1.4) License: Artistic-2.0 MD5sum: 771a7ffcb78436003de5c057e9c665de NeedsCompilation: no Title: MassBank Annotation Resources for AnnotationHub Description: Supplies AnnotationHub with MassBank metabolite/compound annotations bundled in CompDb SQLite databases. CompDb SQLite databases contain general compound annotation as well as fragment spectra representing fragmentation patterns of compounds' ions. MassBank data is retrieved from https://massbank.eu/MassBank and processed using helper functions from the CompoundDb Bioconductor package into redistributable SQLite databases. biocViews: MassSpectrometry, AnnotationHubSoftware Author: Johannes Rainer [cre] () Maintainer: Johannes Rainer URL: https://github.com/jorainer/AHMassBank VignetteBuilder: knitr BugReports: https://github.com/jorainer/AHMassBank/issues git_url: https://git.bioconductor.org/packages/AHMassBank git_branch: RELEASE_3_20 git_last_commit: 5c0b0bb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AHMassBank_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AHMassBank_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AHMassBank_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AHMassBank_1.6.0.tgz vignettes: vignettes/AHMassBank/inst/doc/creating-MassBank-CompDbs.html vignetteTitles: Provide EnsDb databases for AnnotationHub hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AHMassBank/inst/doc/creating-MassBank-CompDbs.R dependencyCount: 124 Package: AIMS Version: 1.38.0 Depends: R (>= 2.10), e1071, Biobase Suggests: breastCancerVDX, hgu133a.db, RUnit, BiocGenerics License: Artistic-2.0 MD5sum: 9b22b78928bb98883fb3948fba2b40f8 NeedsCompilation: no Title: AIMS : Absolute Assignment of Breast Cancer Intrinsic Molecular Subtype Description: This package contains the AIMS implementation. It contains necessary functions to assign the five intrinsic molecular subtypes (Luminal A, Luminal B, Her2-enriched, Basal-like, Normal-like). Assignments could be done on individual samples as well as on dataset of gene expression data. biocViews: ImmunoOncology, Classification, RNASeq, Microarray, Software, GeneExpression Author: Eric R. Paquet, Michael T. Hallett Maintainer: Eric R Paquet URL: http://www.bci.mcgill.ca/AIMS git_url: https://git.bioconductor.org/packages/AIMS git_branch: RELEASE_3_20 git_last_commit: b7d238e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AIMS_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AIMS_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AIMS_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AIMS_1.38.0.tgz vignettes: vignettes/AIMS/inst/doc/AIMS.pdf vignetteTitles: AIMS An Introduction (HowTo) hasREADME: TRUE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AIMS/inst/doc/AIMS.R dependencyCount: 11 Package: airpart Version: 1.14.0 Depends: R (>= 4.1) Imports: SingleCellExperiment, SummarizedExperiment, S4Vectors, scater, stats, smurf, apeglm (>= 1.13.3), emdbook, mclust, clue, dynamicTreeCut, matrixStats, dplyr, plyr, ggplot2, ComplexHeatmap, forestplot, RColorBrewer, rlang, lpSolve, grid, grDevices, graphics, utils, pbapply Suggests: knitr, rmarkdown, roxygen2 (>= 6.0.0), testthat (>= 3.0.0), gplots, tidyr License: GPL-2 MD5sum: 44e2b628fbf8a160a72cc01685deee2f NeedsCompilation: no Title: Differential cell-type-specific allelic imbalance Description: Airpart identifies sets of genes displaying differential cell-type-specific allelic imbalance across cell types or states, utilizing single-cell allelic counts. It makes use of a generalized fused lasso with binomial observations of allelic counts to partition cell types by their allelic imbalance. Alternatively, a nonparametric method for partitioning cell types is offered. The package includes a number of visualizations and quality control functions for examining single cell allelic imbalance datasets. biocViews: SingleCell, RNASeq, ATACSeq, ChIPSeq, Sequencing, GeneRegulation, GeneExpression, Transcription, TranscriptomeVariant, CellBiology, FunctionalGenomics, DifferentialExpression, GraphAndNetwork, Regression, Clustering, QualityControl Author: Wancen Mu [aut, cre] (), Michael Love [aut, ctb] () Maintainer: Wancen Mu URL: https://github.com/Wancen/airpart VignetteBuilder: knitr BugReports: https://github.com/Wancen/airpart/issues git_url: https://git.bioconductor.org/packages/airpart git_branch: RELEASE_3_20 git_last_commit: d015767 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/airpart_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/airpart_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/airpart_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/airpart_1.14.0.tgz vignettes: vignettes/airpart/inst/doc/airpart.html vignetteTitles: Differential allelic imbalance with airpart hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/airpart/inst/doc/airpart.R dependencyCount: 142 Package: alabaster Version: 1.6.0 Depends: alabaster.base Imports: alabaster.matrix, alabaster.ranges, alabaster.se, alabaster.sce, alabaster.spatial, alabaster.string, alabaster.vcf, alabaster.bumpy, alabaster.mae Suggests: knitr, rmarkdown, BiocStyle License: MIT + file LICENSE MD5sum: dcb396e0287261019fe05475bdb03c70 NeedsCompilation: no Title: Umbrella for the Alabaster Framework Description: Umbrella for the alabaster suite, providing a single-line import for all alabaster.* packages. Installing this package ensures that all known alabaster.* packages are also installed, avoiding problems with missing packages when a staging method or loading function is dynamically requested. Obviously, this comes at the cost of needing to install more packages, so advanced users and application developers may prefer to install the required alabaster.* packages individually. biocViews: DataRepresentation, DataImport Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/alabaster git_branch: RELEASE_3_20 git_last_commit: c4f87bb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/alabaster_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/alabaster_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alabaster_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alabaster_1.6.0.tgz vignettes: vignettes/alabaster/inst/doc/userguide.html vignetteTitles: alabaster umbrella hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/alabaster/inst/doc/userguide.R dependencyCount: 119 Package: alabaster.base Version: 1.6.1 Imports: alabaster.schemas, methods, utils, S4Vectors, rhdf5 (>= 2.47.6), jsonlite, jsonvalidate, Rcpp LinkingTo: Rcpp, Rhdf5lib Suggests: BiocStyle, rmarkdown, knitr, testthat, digest, Matrix, alabaster.matrix License: MIT + file LICENSE Archs: x64 MD5sum: a18440b482d01c02b755ef4077f85b25 NeedsCompilation: yes Title: Save Bioconductor Objects To File Description: Save Bioconductor data structures into file artifacts, and load them back into memory. This is a more robust and portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties. biocViews: DataRepresentation, DataImport Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun URL: https://github.com/ArtifactDB/alabaster.base SystemRequirements: C++17, GNU make VignetteBuilder: knitr BugReports: https://github.com/ArtifactDB/alabaster.base/issues git_url: https://git.bioconductor.org/packages/alabaster.base git_branch: RELEASE_3_20 git_last_commit: 7737f18 git_last_commit_date: 2024-11-09 Date/Publication: 2024-11-10 source.ver: src/contrib/alabaster.base_1.6.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/alabaster.base_1.6.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alabaster.base_1.6.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alabaster.base_1.6.1.tgz vignettes: vignettes/alabaster.base/inst/doc/userguide.html vignetteTitles: Saving and loading artifacts hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/alabaster.base/inst/doc/userguide.R dependsOnMe: alabaster, alabaster.bumpy, alabaster.mae, alabaster.matrix, alabaster.ranges, alabaster.sce, alabaster.se, alabaster.spatial, alabaster.string, alabaster.vcf importsMe: celldex, scRNAseq dependencyCount: 16 Package: alabaster.bumpy Version: 1.6.0 Depends: BumpyMatrix, alabaster.base Imports: methods, rhdf5, Matrix, BiocGenerics, S4Vectors, IRanges Suggests: BiocStyle, rmarkdown, knitr, testthat, jsonlite License: MIT + file LICENSE MD5sum: 57b7d691a5513b65c5b6867154af3d3b NeedsCompilation: no Title: Save and Load BumpyMatrices to/from file Description: Save BumpyMatrix objects into file artifacts, and load them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties. biocViews: DataImport, DataRepresentation Author: Aaron Lun [cre, aut] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/alabaster.bumpy git_branch: RELEASE_3_20 git_last_commit: 901aad8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/alabaster.bumpy_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/alabaster.bumpy_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alabaster.bumpy_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alabaster.bumpy_1.6.0.tgz vignettes: vignettes/alabaster.bumpy/inst/doc/userguide.html vignetteTitles: Saving and loading BumpyMatrices hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/alabaster.bumpy/inst/doc/userguide.R importsMe: alabaster dependencyCount: 23 Package: alabaster.files Version: 1.4.0 Depends: alabaster.base, Imports: methods, S4Vectors, BiocGenerics, Rsamtools Suggests: BiocStyle, rmarkdown, knitr, testthat, VariantAnnotation, rtracklayer, Biostrings License: MIT + file LICENSE MD5sum: 64bb711a5c17a08b033e7f8ff7fc36a2 NeedsCompilation: no Title: Wrappers to Save Common File Formats Description: Save common bioinformatics file formats within the alabaster framework. This includes BAM, BED, VCF, bigWig, bigBed, FASTQ, FASTA and so on. We save and load additional metadata for each file, and we support linkage between each file and its corresponding index. biocViews: DataRepresentation, DataImport Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/alabaster.files git_branch: RELEASE_3_20 git_last_commit: 2d4c21e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/alabaster.files_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/alabaster.files_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alabaster.files_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alabaster.files_1.4.0.tgz vignettes: vignettes/alabaster.files/inst/doc/userguide.html vignetteTitles: Saving common file formats hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/alabaster.files/inst/doc/userguide.R dependencyCount: 47 Package: alabaster.mae Version: 1.6.0 Depends: MultiAssayExperiment, alabaster.base Imports: methods, alabaster.se, S4Vectors, jsonlite, rhdf5 Suggests: testthat, knitr, SummarizedExperiment, BiocParallel, BiocStyle, rmarkdown License: MIT + file LICENSE MD5sum: 3dde2c4194478c89d796cec1bb5b8a31 NeedsCompilation: no Title: Load and Save MultiAssayExperiments Description: Save MultiAssayExperiments into file artifacts, and load them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties. biocViews: DataImport, DataRepresentation Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/alabaster.mae git_branch: RELEASE_3_20 git_last_commit: a736e9b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/alabaster.mae_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/alabaster.mae_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alabaster.mae_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alabaster.mae_1.6.0.tgz vignettes: vignettes/alabaster.mae/inst/doc/userguide.html vignetteTitles: Saving and loading MultiAssayExperiments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/alabaster.mae/inst/doc/userguide.R importsMe: alabaster dependencyCount: 70 Package: alabaster.matrix Version: 1.6.1 Depends: alabaster.base Imports: methods, BiocGenerics, S4Vectors, DelayedArray (>= 0.31.8), S4Arrays, SparseArray (>= 1.5.22), rhdf5 (>= 2.47.1), HDF5Array, Matrix, Rcpp LinkingTo: Rcpp Suggests: testthat, knitr, BiocStyle, chihaya, BiocSingular, ResidualMatrix License: MIT + file LICENSE Archs: x64 MD5sum: 267132d3e3c59086b32db98044946d97 NeedsCompilation: yes Title: Load and Save Artifacts from File Description: Save matrices, arrays and similar objects into file artifacts, and load them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties. biocViews: DataImport, DataRepresentation Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/alabaster.matrix git_branch: RELEASE_3_20 git_last_commit: d176a56 git_last_commit_date: 2024-11-19 Date/Publication: 2024-11-20 source.ver: src/contrib/alabaster.matrix_1.6.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/alabaster.matrix_1.6.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alabaster.matrix_1.6.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alabaster.matrix_1.6.1.tgz vignettes: vignettes/alabaster.matrix/inst/doc/userguide.html vignetteTitles: Saving and loading arrays hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/alabaster.matrix/inst/doc/userguide.R importsMe: alabaster, alabaster.se, celldex, scMultiome, scRNAseq suggestsMe: alabaster.base dependencyCount: 33 Package: alabaster.ranges Version: 1.6.0 Depends: GenomicRanges, alabaster.base Imports: methods, S4Vectors, BiocGenerics, IRanges, GenomeInfoDb, rhdf5 Suggests: testthat, knitr, BiocStyle, jsonlite License: MIT + file LICENSE MD5sum: 91f5afc229776f80c91244592f138ed1 NeedsCompilation: no Title: Load and Save Ranges-related Artifacts from File Description: Save GenomicRanges, IRanges and related data structures into file artifacts, and load them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties. biocViews: DataImport, DataRepresentation Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/alabaster.ranges git_branch: RELEASE_3_20 git_last_commit: 0344243 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/alabaster.ranges_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/alabaster.ranges_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alabaster.ranges_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alabaster.ranges_1.6.0.tgz vignettes: vignettes/alabaster.ranges/inst/doc/userguide.html vignetteTitles: Saving and loading genomic ranges hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/alabaster.ranges/inst/doc/userguide.R importsMe: alabaster, alabaster.se dependencyCount: 31 Package: alabaster.sce Version: 1.6.0 Depends: SingleCellExperiment, alabaster.base Imports: methods, alabaster.se, jsonlite Suggests: knitr, testthat, BiocStyle, rmarkdown License: MIT + file LICENSE MD5sum: 4efd5d1f6bdb1715cbdba9bf43d9f3b7 NeedsCompilation: no Title: Load and Save SingleCellExperiment from File Description: Save SingleCellExperiment into file artifacts, and load them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties. biocViews: DataImport, DataRepresentation Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/alabaster.sce git_branch: RELEASE_3_20 git_last_commit: fb5cad1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/alabaster.sce_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/alabaster.sce_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alabaster.sce_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alabaster.sce_1.6.0.tgz vignettes: vignettes/alabaster.sce/inst/doc/userguide.html vignetteTitles: Saving and loading SingleCellExperiments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/alabaster.sce/inst/doc/userguide.R importsMe: alabaster, alabaster.spatial, scRNAseq dependencyCount: 49 Package: alabaster.schemas Version: 1.6.0 Suggests: knitr, rmarkdown, BiocStyle License: MIT + file LICENSE MD5sum: ad4e4e98115922e6f1f141801c65c97d NeedsCompilation: no Title: Schemas for the Alabaster Framework Description: Stores all schemas required by various alabaster.* packages. No computation should be performed by this package, as that is handled by alabaster.base. We use a separate package instead of storing the schemas in alabaster.base itself, to avoid conflating management of the schemas with code maintenence. biocViews: DataRepresentation, DataImport Author: Aaron Lun [cre, aut] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/alabaster.schemas git_branch: RELEASE_3_20 git_last_commit: 11cabfd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/alabaster.schemas_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/alabaster.schemas_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alabaster.schemas_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alabaster.schemas_1.6.0.tgz vignettes: vignettes/alabaster.schemas/inst/doc/userguide.html vignetteTitles: Metadata schemas for Bioconductor hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE importsMe: alabaster.base dependencyCount: 0 Package: alabaster.se Version: 1.6.0 Depends: SummarizedExperiment, alabaster.base Imports: methods, alabaster.ranges, alabaster.matrix, BiocGenerics, S4Vectors, IRanges, GenomicRanges, jsonlite Suggests: rmarkdown, knitr, testthat, BiocStyle License: MIT + file LICENSE MD5sum: e649779f0e179554bbb4091e7d000bff NeedsCompilation: no Title: Load and Save SummarizedExperiments from File Description: Save SummarizedExperiments into file artifacts, and load them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties. biocViews: DataImport, DataRepresentation Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/alabaster.se git_branch: RELEASE_3_20 git_last_commit: 48cf296 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/alabaster.se_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/alabaster.se_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alabaster.se_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alabaster.se_1.6.0.tgz vignettes: vignettes/alabaster.se/inst/doc/userguide.html vignetteTitles: Saving and loading SummarizedExperiments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/alabaster.se/inst/doc/userguide.R importsMe: alabaster, alabaster.mae, alabaster.sce, alabaster.vcf, celldex dependencyCount: 47 Package: alabaster.spatial Version: 1.6.1 Depends: SpatialExperiment, alabaster.base (>= 1.6.1) Imports: methods, utils, grDevices, S4Vectors, alabaster.sce, rhdf5 Suggests: testthat, knitr, rmarkdown, BiocStyle, DropletUtils, magick, png, digest License: MIT + file LICENSE MD5sum: 5f6470882c2e1a348dcdcc20d5d672b9 NeedsCompilation: no Title: Save and Load Spatial 'Omics Data to/from File Description: Save SpatialExperiment objects and their images into file artifacts, and load them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties. biocViews: DataImport, DataRepresentation Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/alabaster.spatial git_branch: RELEASE_3_20 git_last_commit: 3ac50c1 git_last_commit_date: 2024-11-09 Date/Publication: 2024-11-10 source.ver: src/contrib/alabaster.spatial_1.6.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/alabaster.spatial_1.6.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alabaster.spatial_1.6.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alabaster.spatial_1.6.1.tgz vignettes: vignettes/alabaster.spatial/inst/doc/userguide.html vignetteTitles: Saving spatial experiments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/alabaster.spatial/inst/doc/userguide.R importsMe: alabaster dependencyCount: 85 Package: alabaster.string Version: 1.6.0 Depends: Biostrings, alabaster.base Imports: utils, methods, S4Vectors Suggests: BiocStyle, rmarkdown, knitr, testthat License: MIT + file LICENSE MD5sum: 40407640753273dadcc3d008a65691a2 NeedsCompilation: no Title: Save and Load Biostrings to/from File Description: Save Biostrings objects to file artifacts, and load them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties. biocViews: DataImport, DataRepresentation Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/alabaster.string git_branch: RELEASE_3_20 git_last_commit: 18f2e6b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/alabaster.string_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/alabaster.string_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alabaster.string_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alabaster.string_1.6.0.tgz vignettes: vignettes/alabaster.string/inst/doc/userguide.html vignetteTitles: Saving and loading XStringSets hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/alabaster.string/inst/doc/userguide.R importsMe: alabaster, alabaster.vcf dependencyCount: 33 Package: alabaster.vcf Version: 1.6.0 Depends: alabaster.base, VariantAnnotation Imports: methods, S4Vectors, alabaster.se, alabaster.string, Rsamtools Suggests: knitr, rmarkdown, BiocStyle, testthat License: MIT + file LICENSE MD5sum: 39e2ae0051549a4dcd29a8baf6b3c800 NeedsCompilation: no Title: Save and Load Variant Data to/from File Description: Save variant calling SummarizedExperiment to file and load them back as VCF objects. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties. biocViews: DataImport, DataRepresentation Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/alabaster.vcf git_branch: RELEASE_3_20 git_last_commit: 6151a95 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/alabaster.vcf_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/alabaster.vcf_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alabaster.vcf_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alabaster.vcf_1.6.0.tgz vignettes: vignettes/alabaster.vcf/inst/doc/userguide.html vignetteTitles: Saving and loading VCFs hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/alabaster.vcf/inst/doc/userguide.R importsMe: alabaster dependencyCount: 92 Package: ALDEx2 Version: 1.38.0 Depends: methods, stats, zCompositions, lattice, latticeExtra Imports: Rfast, BiocParallel, GenomicRanges, IRanges, S4Vectors, SummarizedExperiment, multtest, directlabels Suggests: testthat, BiocStyle, knitr, rmarkdown, purrr, ggpattern, ggplot2, cowplot, tidyverse, magick License: GPL (>=3) MD5sum: 8825241132d974416136aff59d855306 NeedsCompilation: no Title: Analysis Of Differential Abundance Taking Sample and Scale Variation Into Account Description: A differential abundance analysis for the comparison of two or more conditions. Useful for analyzing data from standard RNA-seq or meta-RNA-seq assays as well as selected and unselected values from in-vitro sequence selections. Uses a Dirichlet-multinomial model to infer abundance from counts, optimized for three or more experimental replicates. The method infers biological and sampling variation to calculate the expected false discovery rate, given the variation, based on a Wilcoxon Rank Sum test and Welch's t-test (via aldex.ttest), a Kruskal-Wallis test (via aldex.kw), a generalized linear model (via aldex.glm), or a correlation test (via aldex.corr). All tests report predicted p-values and posterior Benjamini-Hochberg corrected p-values. ALDEx2 also calculates expected standardized effect sizes for paired or unpaired study designs. ALDEx2 can now be used to estimate the effect of scale on the results and report on the scale-dependent robustness of results. biocViews: DifferentialExpression, RNASeq, Transcriptomics, GeneExpression, DNASeq, ChIPSeq, Bayesian, Sequencing, Software, Microbiome, Metagenomics, ImmunoOncology, Scale simulation, Posterior p-value Author: Greg Gloor, Andrew Fernandes, Jean Macklaim, Arianne Albert, Matt Links, Thomas Quinn, Jia Rong Wu, Ruth Grace Wong, Brandon Lieng, Michelle Nixon Maintainer: Greg Gloor URL: https://github.com/ggloor/ALDEx_bioc VignetteBuilder: knitr BugReports: https://github.com/ggloor/ALDEx_bioc/issues git_url: https://git.bioconductor.org/packages/ALDEx2 git_branch: RELEASE_3_20 git_last_commit: 701515c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ALDEx2_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ALDEx2_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ALDEx2_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ALDEx2_1.38.0.tgz vignettes: vignettes/ALDEx2/inst/doc/ALDEx2_vignette.html, vignettes/ALDEx2/inst/doc/scaleSim_vignette.html vignetteTitles: ANOVA-Like Differential Expression tool for high throughput sequencing data, Incorporating Scale Uncertainty into ALDEx2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ALDEx2/inst/doc/ALDEx2_vignette.R, vignettes/ALDEx2/inst/doc/scaleSim_vignette.R dependsOnMe: omicplotR importsMe: aIc suggestsMe: dar, pctax dependencyCount: 68 Package: alevinQC Version: 1.22.0 Depends: R (>= 4.0) Imports: rmarkdown (>= 2.5), tools, methods, ggplot2 (>= 3.4.0), GGally, dplyr, rjson, shiny, shinydashboard, DT, stats, utils, tximport (>= 1.17.4), cowplot, rlang, Rcpp LinkingTo: Rcpp Suggests: knitr, BiocStyle, testthat (>= 3.0.0), BiocManager License: MIT + file LICENSE Archs: x64 MD5sum: 598d1fb1c071731ccf24c63d27467fcf NeedsCompilation: yes Title: Generate QC Reports For Alevin Output Description: Generate QC reports summarizing the output from an alevin, alevin-fry, or simpleaf run. Reports can be generated as html or pdf files, or as shiny applications. biocViews: QualityControl, SingleCell Author: Charlotte Soneson [aut, cre] (), Avi Srivastava [aut], Rob Patro [aut], Dongze He [aut] Maintainer: Charlotte Soneson URL: https://github.com/csoneson/alevinQC SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/csoneson/alevinQC/issues git_url: https://git.bioconductor.org/packages/alevinQC git_branch: RELEASE_3_20 git_last_commit: 92e4f1e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/alevinQC_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/alevinQC_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/alevinQC_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/alevinQC_1.22.0.tgz vignettes: vignettes/alevinQC/inst/doc/alevinqc.html vignetteTitles: alevinQC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/alevinQC/inst/doc/alevinqc.R dependencyCount: 90 Package: AllelicImbalance Version: 1.44.0 Depends: R (>= 4.0.0), grid, GenomicRanges (>= 1.31.8), SummarizedExperiment (>= 0.2.0), GenomicAlignments (>= 1.15.6) Imports: methods, BiocGenerics, AnnotationDbi, BSgenome (>= 1.47.3), VariantAnnotation (>= 1.25.11), Biostrings (>= 2.47.6), S4Vectors (>= 0.17.25), IRanges (>= 2.13.12), Rsamtools (>= 1.99.3), GenomicFeatures (>= 1.31.3), Gviz, lattice, latticeExtra, gridExtra, seqinr, GenomeInfoDb, nlme Suggests: testthat, org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg19.knownGene, SNPlocs.Hsapiens.dbSNP144.GRCh37, BiocStyle, knitr, rmarkdown License: GPL-3 MD5sum: d9c3a43fb911b080f918f3316022cefc NeedsCompilation: no Title: Investigates Allele Specific Expression Description: Provides a framework for allelic specific expression investigation using RNA-seq data. biocViews: Genetics, Infrastructure, Sequencing Author: Jesper R Gadin, Lasse Folkersen Maintainer: Jesper R Gadin URL: https://github.com/pappewaio/AllelicImbalance VignetteBuilder: knitr BugReports: https://github.com/pappewaio/AllelicImbalance/issues git_url: https://git.bioconductor.org/packages/AllelicImbalance git_branch: RELEASE_3_20 git_last_commit: c46bcc1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AllelicImbalance_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AllelicImbalance_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AllelicImbalance_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AllelicImbalance_1.44.0.tgz vignettes: vignettes/AllelicImbalance/inst/doc/AllelicImbalance-vignette.pdf vignetteTitles: AllelicImbalance Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AllelicImbalance/inst/doc/AllelicImbalance-vignette.R dependencyCount: 163 Package: AlphaBeta Version: 1.20.0 Depends: R (>= 3.6.0) Imports: dplyr (>= 0.7), data.table (>= 1.10), stringr (>= 1.3), utils (>= 3.6.0), gtools (>= 3.8.0), optimx (>= 2018-7.10), expm (>= 0.999-4), stats (>= 3.6), BiocParallel (>= 1.18), igraph (>= 1.2.4), graphics (>= 3.6), ggplot2 (>= 3.2), grDevices (>= 3.6), plotly (>= 4.9) Suggests: knitr, rmarkdown License: GPL-3 MD5sum: 86a786c66cba570f3f556cf9b8125dbb NeedsCompilation: no Title: Computational inference of epimutation rates and spectra from high-throughput DNA methylation data in plants Description: AlphaBeta is a computational method for estimating epimutation rates and spectra from high-throughput DNA methylation data in plants. The method has been specifically designed to: 1. analyze 'germline' epimutations in the context of multi-generational mutation accumulation lines (MA-lines). 2. analyze 'somatic' epimutations in the context of plant development and aging. biocViews: Epigenetics, FunctionalGenomics, Genetics, MathematicalBiology Author: Yadollah Shahryary Dizaji [cre, aut], Frank Johannes [aut], Rashmi Hazarika [aut] Maintainer: Yadollah Shahryary Dizaji VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/AlphaBeta git_branch: RELEASE_3_20 git_last_commit: e7d6512 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AlphaBeta_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AlphaBeta_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AlphaBeta_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AlphaBeta_1.20.0.tgz vignettes: vignettes/AlphaBeta/inst/doc/AlphaBeta.pdf vignetteTitles: AlphaBeta hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/AlphaBeta/inst/doc/AlphaBeta.R dependencyCount: 94 Package: AlphaMissenseR Version: 1.2.0 Depends: R (>= 4.3.0), dplyr Imports: rjsoncons (>= 1.0.1), DBI, duckdb (>= 0.9.1), rlang, curl, BiocFileCache, spdl, memoise, BiocBaseUtils, utils, stats, tools, methods, whisker, ggplot2 Suggests: BiocManager, BiocGenerics, GenomicRanges, GenomeInfoDb, AnnotationHub, ExperimentHub, ensembldb, httr, tidyr, r3dmol, bio3d, shiny, shiny.gosling, ggdist, gghalves, colorspace, knitr, rmarkdown, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: ac4ca4151be8a0e1870c53b79d7d3daf NeedsCompilation: no Title: Accessing AlphaMissense Data Resources in R Description: The AlphaMissense publication outlines how a variant of AlphaFold / DeepMind was used to predict missense variant pathogenicity. Supporting data on Zenodo include, for instance, 71M variants across hg19 and hg38 genome builds. The 'AlphaMissenseR' package allows ready access to the data, downloading individual files to DuckDB databases for exploration and integration into *R* and *Bioconductor* workflows. biocViews: SNP, Annotation, FunctionalGenomics, StructuralPrediction, Transcriptomics, VariantAnnotation, GenePrediction, ImmunoOncology Author: Martin Morgan [aut, cre] (), Tram Nguyen [aut] (), Tyrone Lee [ctb], Nitesh Turaga [ctb], Chan Zuckerberg Initiative DAF CZF2019-002443 [fnd], NIH NCI ITCR U24CA180996 [fnd], NIH NCI IOTN U24CA232979 [fnd], NIH NCI ARTNet U24CA274159 [fnd] Maintainer: Martin Morgan URL: https://mtmorgan.github.io/AlphaMissenseR/ VignetteBuilder: knitr BugReports: https://github.com/mtmorgan/AlphaMissenseR/issues git_url: https://git.bioconductor.org/packages/AlphaMissenseR git_branch: RELEASE_3_20 git_last_commit: 2759746 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/AlphaMissenseR_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AlphaMissenseR_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AlphaMissenseR_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AlphaMissenseR_1.2.0.tgz vignettes: vignettes/AlphaMissenseR/inst/doc/alphafold.html, vignettes/AlphaMissenseR/inst/doc/benchmarking.html, vignettes/AlphaMissenseR/inst/doc/clinvar.html, vignettes/AlphaMissenseR/inst/doc/introduction.html, vignettes/AlphaMissenseR/inst/doc/issues.html vignetteTitles: B. AlphaFold Integration, D. Benchmarking with ProteinGym, C. ClinVar Integration, A. Introduction, E. Issues & Solutions hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AlphaMissenseR/inst/doc/alphafold.R, vignettes/AlphaMissenseR/inst/doc/benchmarking.R, vignettes/AlphaMissenseR/inst/doc/clinvar.R, vignettes/AlphaMissenseR/inst/doc/introduction.R, vignettes/AlphaMissenseR/inst/doc/issues.R dependencyCount: 70 Package: AlpsNMR Version: 4.8.0 Depends: R (>= 4.2) Imports: utils, generics, graphics, stats, grDevices, cli, magrittr (>= 1.5), dplyr (>= 1.1.0), signal (>= 0.7-6), rlang (>= 0.3.0.1), scales (>= 1.2.0), stringr (>= 1.3.1), tibble(>= 1.3.4), tidyr (>= 1.0.0), tidyselect, readxl (>= 1.1.0), purrr (>= 0.2.5), glue (>= 1.2.0), reshape2 (>= 1.4.3), mixOmics (>= 6.22.0), matrixStats (>= 0.54.0), fs (>= 1.2.6), rmarkdown (>= 1.10), speaq (>= 2.4.0), htmltools (>= 0.3.6), pcaPP (>= 1.9-73), ggplot2 (>= 3.1.0), baseline (>= 1.2-1), vctrs (>= 0.3.0), BiocParallel (>= 1.34.0) Suggests: ASICS, BiocStyle, ChemoSpec, cowplot, curl, DT (>= 0.5), GGally (>= 1.4.0), ggrepel (>= 0.8.0), gridExtra, knitr, NMRphasing, plotly (>= 4.7.1), progressr, SummarizedExperiment, S4Vectors, testthat (>= 2.0.0), writexl (>= 1.0), zip (>= 2.0.4) License: MIT + file LICENSE MD5sum: cbc977c0ded1aff49e34e463eecc0730 NeedsCompilation: no Title: Automated spectraL Processing System for NMR Description: Reads Bruker NMR data directories both zipped and unzipped. It provides automated and efficient signal processing for untargeted NMR metabolomics. It is able to interpolate the samples, detect outliers, exclude regions, normalize, detect peaks, align the spectra, integrate peaks, manage metadata and visualize the spectra. After spectra proccessing, it can apply multivariate analysis on extracted data. Efficient plotting with 1-D data is also available. Basic reading of 1D ACD/Labs exported JDX samples is also available. biocViews: Software, Preprocessing, Visualization, Classification, Cheminformatics, Metabolomics, DataImport Author: Ivan Montoliu Roura [aut], Sergio Oller Moreno [aut, cre] (), Francisco Madrid Gambin [aut] (), Luis Fernandez [aut] (), Laura López Sánchez [ctb], Héctor Gracia Cabrera [aut], Santiago Marco Colás [aut] (), Nestlé Institute of Health Sciences [cph], Institute for Bioengineering of Catalonia [cph], Miller Jack [ctb] (, Autophase wrapper, ASICS export) Maintainer: Sergio Oller Moreno URL: https://sipss.github.io/AlpsNMR/, https://github.com/sipss/AlpsNMR VignetteBuilder: knitr BugReports: https://github.com/sipss/AlpsNMR/issues git_url: https://git.bioconductor.org/packages/AlpsNMR git_branch: RELEASE_3_20 git_last_commit: ab34115 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AlpsNMR_4.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AlpsNMR_4.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AlpsNMR_4.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AlpsNMR_4.8.0.tgz vignettes: vignettes/AlpsNMR/inst/doc/Vig01b-introduction-to-alpsnmr-old-api.pdf, vignettes/AlpsNMR/inst/doc/Vig01-introduction-to-alpsnmr.pdf, vignettes/AlpsNMR/inst/doc/Vig02-handling-metadata-and-annotations.pdf vignetteTitles: Older Introduction to AlpsNMR (soft-deprecated API), Vignette 01: Introduction to AlpsNMR (start here), Vignette 02: Handling metadata and annotations hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/AlpsNMR/inst/doc/Vig01b-introduction-to-alpsnmr-old-api.R, vignettes/AlpsNMR/inst/doc/Vig01-introduction-to-alpsnmr.R, vignettes/AlpsNMR/inst/doc/Vig02-handling-metadata-and-annotations.R dependencyCount: 132 Package: altcdfenvs Version: 2.68.0 Depends: R (>= 2.7), methods, BiocGenerics (>= 0.1.0), S4Vectors (>= 0.9.25), Biobase (>= 2.15.1), affy, makecdfenv, Biostrings, hypergraph Suggests: plasmodiumanophelescdf, hgu95acdf, hgu133aprobe, hgu133a.db, hgu133acdf, Rgraphviz, RColorBrewer License: GPL (>= 2) MD5sum: 9efb851f488b8e78f0b1b38fa8a24090 NeedsCompilation: no Title: alternative CDF environments (aka probeset mappings) Description: Convenience data structures and functions to handle cdfenvs biocViews: Microarray, OneChannel, QualityControl, Preprocessing, Annotation, ProprietaryPlatforms, Transcription Author: Laurent Gautier Maintainer: Laurent Gautier git_url: https://git.bioconductor.org/packages/altcdfenvs git_branch: RELEASE_3_20 git_last_commit: 53038c8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/altcdfenvs_2.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/altcdfenvs_2.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/altcdfenvs_2.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/altcdfenvs_2.68.0.tgz vignettes: vignettes/altcdfenvs/inst/doc/altcdfenvs.pdf, vignettes/altcdfenvs/inst/doc/modify.pdf, vignettes/altcdfenvs/inst/doc/ngenomeschips.pdf vignetteTitles: altcdfenvs, Modifying existing CDF environments to make alternative CDF environments, Alternative CDF environments for 2(or more)-genomes chips hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/altcdfenvs/inst/doc/altcdfenvs.R, vignettes/altcdfenvs/inst/doc/modify.R, vignettes/altcdfenvs/inst/doc/ngenomeschips.R importsMe: Harshlight dependencyCount: 33 Package: AMARETTO Version: 1.22.0 Depends: R (>= 3.6), impute, doParallel, grDevices, dplyr, methods, ComplexHeatmap Imports: callr (>= 3.0.0.9001), Matrix, Rcpp, BiocFileCache, DT, MultiAssayExperiment, circlize, curatedTCGAData, foreach, glmnet, httr, limma, matrixStats, readr, reshape2, tibble, rmarkdown, graphics, grid, parallel, stats, knitr, ggplot2, gridExtra, utils LinkingTo: Rcpp Suggests: testthat, MASS, knitr, BiocStyle License: Apache License (== 2.0) + file LICENSE MD5sum: 7fae894cf9503fe495c581a1cdfd0b1e NeedsCompilation: no Title: Regulatory Network Inference and Driver Gene Evaluation using Integrative Multi-Omics Analysis and Penalized Regression Description: Integrating an increasing number of available multi-omics cancer data remains one of the main challenges to improve our understanding of cancer. One of the main challenges is using multi-omics data for identifying novel cancer driver genes. We have developed an algorithm, called AMARETTO, that integrates copy number, DNA methylation and gene expression data to identify a set of driver genes by analyzing cancer samples and connects them to clusters of co-expressed genes, which we define as modules. We applied AMARETTO in a pancancer setting to identify cancer driver genes and their modules on multiple cancer sites. AMARETTO captures modules enriched in angiogenesis, cell cycle and EMT, and modules that accurately predict survival and molecular subtypes. This allows AMARETTO to identify novel cancer driver genes directing canonical cancer pathways. biocViews: StatisticalMethod,DifferentialMethylation,GeneRegulation,GeneExpression,MethylationArray,Transcription,Preprocessing,BatchEffect,DataImport,mRNAMicroarray,MicroRNAArray,Regression,Clustering,RNASeq,CopyNumberVariation,Sequencing,Microarray,Normalization,Network,Bayesian,ExonArray,OneChannel,TwoChannel,ProprietaryPlatforms,AlternativeSplicing,DifferentialExpression,DifferentialSplicing,GeneSetEnrichment,MultipleComparison,QualityControl,TimeCourse Author: Jayendra Shinde, Celine Everaert, Shaimaa Bakr, Mohsen Nabian, Jishu Xu, Vincent Carey, Nathalie Pochet and Olivier Gevaert Maintainer: Olivier Gevaert VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/AMARETTO git_branch: RELEASE_3_20 git_last_commit: 8c7ba90 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AMARETTO_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AMARETTO_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AMARETTO_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AMARETTO_1.22.0.tgz vignettes: vignettes/AMARETTO/inst/doc/amaretto.html vignetteTitles: "1. Introduction" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/AMARETTO/inst/doc/amaretto.R dependencyCount: 153 Package: AMOUNTAIN Version: 1.32.0 Depends: R (>= 3.3.0) Imports: stats Suggests: BiocStyle, qgraph, knitr, rmarkdown License: GPL (>= 2) Archs: x64 MD5sum: 7c1d2a6ea5ea79a745fa9b4d03fa1e91 NeedsCompilation: yes Title: Active modules for multilayer weighted gene co-expression networks: a continuous optimization approach Description: A pure data-driven gene network, weighted gene co-expression network (WGCN) could be constructed only from expression profile. Different layers in such networks may represent different time points, multiple conditions or various species. AMOUNTAIN aims to search active modules in multi-layer WGCN using a continuous optimization approach. biocViews: GeneExpression, Microarray, DifferentialExpression, Network Author: Dong Li, Shan He, Zhisong Pan and Guyu Hu Maintainer: Dong Li SystemRequirements: gsl VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/AMOUNTAIN git_branch: RELEASE_3_20 git_last_commit: 567667d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AMOUNTAIN_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AMOUNTAIN_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AMOUNTAIN_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AMOUNTAIN_1.32.0.tgz vignettes: vignettes/AMOUNTAIN/inst/doc/AMOUNTAIN.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AMOUNTAIN/inst/doc/AMOUNTAIN.R importsMe: MODA dependencyCount: 1 Package: amplican Version: 1.28.0 Depends: R (>= 3.5.0), methods, BiocGenerics (>= 0.22.0), Biostrings (>= 2.44.2), pwalign, data.table (>= 1.10.4-3) Imports: Rcpp, utils (>= 3.4.1), S4Vectors (>= 0.14.3), ShortRead (>= 1.34.0), IRanges (>= 2.10.2), GenomicRanges (>= 1.28.4), GenomeInfoDb (>= 1.12.2), BiocParallel (>= 1.10.1), gtable (>= 0.2.0), gridExtra (>= 2.2.1), ggplot2 (>= 3.3.4), ggthemes (>= 3.4.0), waffle (>= 0.7.0), stringr (>= 1.2.0), stats (>= 3.4.1), matrixStats (>= 0.52.2), Matrix (>= 1.2-10), dplyr (>= 0.7.2), rmarkdown (>= 1.6), knitr (>= 1.16), cluster (>= 2.1.4) LinkingTo: Rcpp Suggests: testthat, BiocStyle, GenomicAlignments License: GPL-3 Archs: x64 MD5sum: 5559c78c0eb1594ce6a7ce3c57aaf3e4 NeedsCompilation: yes Title: Automated analysis of CRISPR experiments Description: `amplican` performs alignment of the amplicon reads, normalizes gathered data, calculates multiple statistics (e.g. cut rates, frameshifts) and presents results in form of aggregated reports. Data and statistics can be broken down by experiments, barcodes, user defined groups, guides and amplicons allowing for quick identification of potential problems. biocViews: ImmunoOncology, Technology, Alignment, qPCR, CRISPR Author: Kornel Labun [aut], Eivind Valen [cph, cre] Maintainer: Eivind Valen URL: https://github.com/valenlab/amplican VignetteBuilder: knitr BugReports: https://github.com/valenlab/amplican/issues git_url: https://git.bioconductor.org/packages/amplican git_branch: RELEASE_3_20 git_last_commit: 67f2ecd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/amplican_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/amplican_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/amplican_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/amplican_1.28.0.tgz vignettes: vignettes/amplican/inst/doc/amplicanFAQ.html, vignettes/amplican/inst/doc/amplicanOverview.html, vignettes/amplican/inst/doc/example_amplicon_report.html, vignettes/amplican/inst/doc/example_barcode_report.html, vignettes/amplican/inst/doc/example_group_report.html, vignettes/amplican/inst/doc/example_guide_report.html, vignettes/amplican/inst/doc/example_id_report.html, vignettes/amplican/inst/doc/example_index.html vignetteTitles: amplican FAQ, amplican overview, example amplicon_report report, example barcode_report report, example group_report report, example guide_report report, example id_report report, example index report hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/amplican/inst/doc/amplicanOverview.R, vignettes/amplican/inst/doc/example_amplicon_report.R, vignettes/amplican/inst/doc/example_barcode_report.R, vignettes/amplican/inst/doc/example_group_report.R, vignettes/amplican/inst/doc/example_guide_report.R, vignettes/amplican/inst/doc/example_id_report.R, vignettes/amplican/inst/doc/example_index.R dependencyCount: 128 Package: Anaquin Version: 2.30.0 Depends: R (>= 3.3), ggplot2 (>= 2.2.0) Imports: ggplot2, ROCR, knitr, qvalue, locfit, methods, stats, utils, plyr, DESeq2 Suggests: RUnit, rmarkdown License: BSD_3_clause + file LICENSE MD5sum: 26e5fa0bd8c5775553748265b4820dd2 NeedsCompilation: no Title: Statistical analysis of sequins Description: The project is intended to support the use of sequins (synthetic sequencing spike-in controls) owned and made available by the Garvan Institute of Medical Research. The goal is to provide a standard open source library for quantitative analysis, modelling and visualization of spike-in controls. biocViews: ImmunoOncology, DifferentialExpression, Preprocessing, RNASeq, GeneExpression, Software Author: Ted Wong Maintainer: Ted Wong URL: www.sequin.xyz VignetteBuilder: knitr BugReports: https://github.com/student-t/RAnaquin/issues git_url: https://git.bioconductor.org/packages/Anaquin git_branch: RELEASE_3_20 git_last_commit: 281f044 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Anaquin_2.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Anaquin_2.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Anaquin_2.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Anaquin_2.30.0.tgz vignettes: vignettes/Anaquin/inst/doc/Anaquin.pdf vignetteTitles: Anaquin - Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Anaquin/inst/doc/Anaquin.R dependencyCount: 92 Package: ANCOMBC Version: 2.8.0 Depends: R (>= 4.3.0) Imports: stats, CVXR, DescTools, Hmisc, MASS, Matrix, Rdpack, doParallel, doRNG, energy, foreach, gtools, lme4, lmerTest, multcomp, nloptr, parallel, utils Suggests: mia (>= 1.6.0), DT, S4Vectors, SingleCellExperiment, SummarizedExperiment, TreeSummarizedExperiment, dplyr, knitr, magrittr, microbiome, phyloseq, rmarkdown, testthat, tidyr, tidyverse License: Artistic-2.0 MD5sum: 4b876fab332f19e7fc9bbbfe070e53f8 NeedsCompilation: no Title: Microbiome differential abudance and correlation analyses with bias correction Description: ANCOMBC is a package containing differential abundance (DA) and correlation analyses for microbiome data. Specifically, the package includes Analysis of Compositions of Microbiomes with Bias Correction 2 (ANCOM-BC2), Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC), and Analysis of Composition of Microbiomes (ANCOM) for DA analysis, and Sparse Estimation of Correlations among Microbiomes (SECOM) for correlation analysis. Microbiome data are typically subject to two sources of biases: unequal sampling fractions (sample-specific biases) and differential sequencing efficiencies (taxon-specific biases). Methodologies included in the ANCOMBC package are designed to correct these biases and construct statistically consistent estimators. biocViews: DifferentialExpression, Microbiome, Normalization, Sequencing, Software Author: Huang Lin [cre, aut] () Maintainer: Huang Lin URL: https://github.com/FrederickHuangLin/ANCOMBC VignetteBuilder: knitr BugReports: https://github.com/FrederickHuangLin/ANCOMBC/issues git_url: https://git.bioconductor.org/packages/ANCOMBC git_branch: RELEASE_3_20 git_last_commit: d8f1101 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ANCOMBC_2.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ANCOMBC_2.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ANCOMBC_2.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ANCOMBC_2.8.0.tgz vignettes: vignettes/ANCOMBC/inst/doc/ANCOMBC2.html, vignettes/ANCOMBC/inst/doc/ANCOMBC.html, vignettes/ANCOMBC/inst/doc/ANCOM.html, vignettes/ANCOMBC/inst/doc/data_sanity_check.html, vignettes/ANCOMBC/inst/doc/SECOM.html vignetteTitles: ANCOM-BC2 Tutorial, ANCOM-BC Tutorial, ANCOM Tutorial, Tutorial on Data Sanity and Integrity Checks, SECOM Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ANCOMBC/inst/doc/ANCOMBC2.R, vignettes/ANCOMBC/inst/doc/ANCOMBC.R, vignettes/ANCOMBC/inst/doc/ANCOM.R, vignettes/ANCOMBC/inst/doc/data_sanity_check.R, vignettes/ANCOMBC/inst/doc/SECOM.R suggestsMe: dar, MiscMetabar dependencyCount: 137 Package: AneuFinder Version: 1.34.0 Depends: R (>= 3.5), GenomicRanges, ggplot2, cowplot, AneuFinderData Imports: methods, utils, grDevices, graphics, stats, foreach, doParallel, BiocGenerics (>= 0.31.6), S4Vectors, GenomeInfoDb, IRanges, Rsamtools, bamsignals, DNAcopy, ecp, Biostrings, GenomicAlignments, reshape2, ggdendro, ggrepel, mclust Suggests: knitr, BiocStyle, testthat, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Mmusculus.UCSC.mm10 License: Artistic-2.0 Archs: x64 MD5sum: ed103ff2f579686b2671c28913a4dddb NeedsCompilation: yes Title: Analysis of Copy Number Variation in Single-Cell-Sequencing Data Description: AneuFinder implements functions for copy-number detection, breakpoint detection, and karyotype and heterogeneity analysis in single-cell whole genome sequencing and strand-seq data. biocViews: ImmunoOncology, Software, Sequencing, SingleCell, CopyNumberVariation, GenomicVariation, HiddenMarkovModel, WholeGenome Author: Aaron Taudt, Bjorn Bakker, David Porubsky Maintainer: Aaron Taudt URL: https://github.com/ataudt/aneufinder.git VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/AneuFinder git_branch: RELEASE_3_20 git_last_commit: b69e323 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AneuFinder_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AneuFinder_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AneuFinder_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AneuFinder_1.34.0.tgz vignettes: vignettes/AneuFinder/inst/doc/AneuFinder.pdf vignetteTitles: A quick introduction to AneuFinder hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AneuFinder/inst/doc/AneuFinder.R dependencyCount: 93 Package: ANF Version: 1.28.0 Imports: igraph, Biobase, survival, MASS, stats, RColorBrewer Suggests: ExperimentHub, SNFtool, knitr, rmarkdown, testthat License: GPL-3 MD5sum: 9f597355f1b3399b66316f456272f316 NeedsCompilation: no Title: Affinity Network Fusion for Complex Patient Clustering Description: This package is used for complex patient clustering by integrating multi-omic data through affinity network fusion. biocViews: Clustering, GraphAndNetwork, Network Author: Tianle Ma, Aidong Zhang Maintainer: Tianle Ma VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ANF git_branch: RELEASE_3_20 git_last_commit: 1a4336c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ANF_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ANF_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ANF_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ANF_1.28.0.tgz vignettes: vignettes/ANF/inst/doc/ANF.html vignetteTitles: Cancer Patient Clustering with ANF hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ANF/inst/doc/ANF.R suggestsMe: HarmonizedTCGAData dependencyCount: 23 Package: animalcules Version: 1.22.0 Depends: R (>= 4.3.0) Imports: ape, assertthat, caret, covr, DESeq2, dplyr, DT, forcats, ggforce, ggplot2, GUniFrac, lattice, limma, magrittr, Matrix, methods, MultiAssayExperiment, plotly, rentrez, reshape2, ROCit, S4Vectors (>= 0.23.19), scales, shiny, shinyjs, stats, SummarizedExperiment, tibble, tidyr, tsne, umap, utils, vegan, XML Suggests: BiocStyle, biomformat, devtools, glmnet, knitr, rmarkdown, testthat, usethis License: Artistic-2.0 MD5sum: b83ed641e1cda8184dcd9d7616199043 NeedsCompilation: no Title: Interactive microbiome analysis toolkit Description: animalcules is an R package for utilizing up-to-date data analytics, visualization methods, and machine learning models to provide users an easy-to-use interactive microbiome analysis framework. It can be used as a standalone software package or users can explore their data with the accompanying interactive R Shiny application. Traditional microbiome analysis such as alpha/beta diversity and differential abundance analysis are enhanced, while new methods like biomarker identification are introduced by animalcules. Powerful interactive and dynamic figures generated by animalcules enable users to understand their data better and discover new insights. biocViews: Microbiome, Metagenomics, Coverage, Visualization Author: Jessica McClintock [cre], Yue Zhao [aut] (), Anthony Federico [aut] (), W. Evan Johnson [aut] () Maintainer: Jessica McClintock URL: https://github.com/wejlab/animalcules VignetteBuilder: knitr BugReports: https://github.com/wejlab/animalcules/issues git_url: https://git.bioconductor.org/packages/animalcules git_branch: RELEASE_3_20 git_last_commit: 7d67c79 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/animalcules_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/animalcules_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/animalcules_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/animalcules_1.22.0.tgz vignettes: vignettes/animalcules/inst/doc/animalcules.html vignetteTitles: animalcules hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/animalcules/inst/doc/animalcules.R importsMe: LegATo suggestsMe: MetaScope dependencyCount: 193 Package: annaffy Version: 1.78.0 Depends: R (>= 2.5.0), methods, Biobase, BiocManager, GO.db Imports: AnnotationDbi (>= 0.1.15), DBI Suggests: hgu95av2.db, multtest, tcltk License: LGPL MD5sum: 276ba25b848eb8109a19c09c54a11e76 NeedsCompilation: no Title: Annotation tools for Affymetrix biological metadata Description: Functions for handling data from Bioconductor Affymetrix annotation data packages. Produces compact HTML and text reports including experimental data and URL links to many online databases. Allows searching biological metadata using various criteria. biocViews: OneChannel, Microarray, Annotation, GO, Pathways, ReportWriting Author: Colin A. Smith Maintainer: Colin A. Smith git_url: https://git.bioconductor.org/packages/annaffy git_branch: RELEASE_3_20 git_last_commit: 095b560 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/annaffy_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/annaffy_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/annaffy_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/annaffy_1.78.0.tgz vignettes: vignettes/annaffy/inst/doc/annaffy.pdf vignetteTitles: annaffy Primer hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/annaffy/inst/doc/annaffy.R dependsOnMe: webbioc importsMe: a4Base suggestsMe: metaMA dependencyCount: 47 Package: annmap Version: 1.48.0 Depends: R (>= 2.15.0), methods, GenomicRanges Imports: DBI, RMySQL (>= 0.6-0), digest, Biobase, grid, lattice, Rsamtools, genefilter, IRanges, BiocGenerics Suggests: RUnit, rjson, Gviz License: GPL-2 MD5sum: 42021c12b144cf00a450a58d0767337c NeedsCompilation: no Title: Genome annotation and visualisation package pertaining to Affymetrix arrays and NGS analysis. Description: annmap provides annotation mappings for Affymetrix exon arrays and coordinate based queries to support deep sequencing data analysis. Database access is hidden behind the API which provides a set of functions such as genesInRange(), geneToExon(), exonDetails(), etc. Functions to plot gene architecture and BAM file data are also provided. Underlying data are from Ensembl. The annmap database can be downloaded from: https://figshare.manchester.ac.uk/account/articles/16685071 biocViews: Annotation, Microarray, OneChannel, ReportWriting, Transcription, Visualization Author: Tim Yates Maintainer: Chris Wirth URL: https://github.com/cruk-mi/annmap git_url: https://git.bioconductor.org/packages/annmap git_branch: RELEASE_3_20 git_last_commit: a8510aa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/annmap_1.48.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/annmap_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/annmap_1.48.0.tgz vignettes: vignettes/annmap/inst/doc/annmap.pdf, vignettes/annmap/inst/doc/cookbook.pdf, vignettes/annmap/inst/doc/INSTALL.pdf vignetteTitles: annmap primer, The Annmap Cookbook, annmap installation instruction hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE dependencyCount: 71 Package: annotate Version: 1.84.0 Depends: R (>= 2.10), AnnotationDbi (>= 1.27.5), XML Imports: Biobase, DBI, xtable, graphics, utils, stats, methods, BiocGenerics (>= 0.13.8), httr Suggests: hgu95av2.db, genefilter, Biostrings (>= 2.25.10), IRanges, rae230a.db, rae230aprobe, tkWidgets, GO.db, org.Hs.eg.db, org.Mm.eg.db, humanCHRLOC, Rgraphviz, RUnit, BiocStyle, knitr License: Artistic-2.0 MD5sum: b23b95c735b6e0dc9306a9a1b4a032f3 NeedsCompilation: no Title: Annotation for microarrays Description: Using R enviroments for annotation. biocViews: Annotation, Pathways, GO Author: R. Gentleman Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/annotate git_branch: RELEASE_3_20 git_last_commit: 6188ffb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/annotate_1.84.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/annotate_1.84.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/annotate_1.84.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/annotate_1.84.0.tgz vignettes: vignettes/annotate/inst/doc/annotate.pdf, vignettes/annotate/inst/doc/GOusage.pdf, vignettes/annotate/inst/doc/prettyOutput.pdf, vignettes/annotate/inst/doc/query.pdf, vignettes/annotate/inst/doc/useProbeInfo.pdf, vignettes/annotate/inst/doc/chromLOC.html, vignettes/annotate/inst/doc/useDataPkgs.html vignetteTitles: Annotation Overview, Basic GO Usage, HowTo: Get HTML Output, HOWTO: Use the online query tools, Using Affymetrix Probe Level Data, HowTo: Build and use chromosomal information, Using Bioconductor's Annotation Libraries hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/annotate/inst/doc/annotate.R, vignettes/annotate/inst/doc/chromLOC.R, vignettes/annotate/inst/doc/GOusage.R, vignettes/annotate/inst/doc/prettyOutput.R, vignettes/annotate/inst/doc/query.R, vignettes/annotate/inst/doc/useDataPkgs.R, vignettes/annotate/inst/doc/useProbeInfo.R dependsOnMe: ChromHeatMap, geneplotter, GSEABase, idiogram, MineICA, MLInterfaces, phenoTest, PREDA, sampleClassifier, SemDist, Neve2006, PREDAsampledata importsMe: CAFE, Category, categoryCompare, CNEr, codelink, debrowser, DrugVsDisease, genefilter, GlobalAncova, globaltest, GOstats, lumi, methylumi, MGFR, phenoTest, qpgraph, SGCP, tigre, UMI4Cats, easyDifferentialGeneCoexpression, geneExpressionFromGEO, GOxploreR suggestsMe: BiocGenerics, GenomicRanges, GSAR, GSEAlm, hmdbQuery, MLP, pageRank, PhosR, RnBeads, siggenes, SummarizedExperiment, systemPipeR, adme16cod.db, ag.db, ath1121501.db, bovine.db, canine.db, canine2.db, celegans.db, chicken.db, clariomdhumanprobeset.db, clariomdhumantranscriptcluster.db, clariomshumanhttranscriptcluster.db, clariomshumantranscriptcluster.db, clariomsmousehttranscriptcluster.db, clariomsmousetranscriptcluster.db, clariomsrathttranscriptcluster.db, clariomsrattranscriptcluster.db, drosgenome1.db, drosophila2.db, ecoli2.db, GGHumanMethCancerPanelv1.db, h10kcod.db, h20kcod.db, hcg110.db, hgfocus.db, hgu133a.db, hgu133a2.db, hgu133b.db, hgu133plus2.db, hgu219.db, hgu95a.db, hgu95av2.db, hgu95b.db, hgu95c.db, hgu95d.db, hgu95e.db, hguatlas13k.db, hgubeta7.db, hguDKFZ31.db, hgug4100a.db, hgug4101a.db, hgug4110b.db, hgug4111a.db, hgug4112a.db, hgug4845a.db, hguqiagenv3.db, hi16cod.db, hs25kresogen.db, Hs6UG171.db, HsAgilentDesign026652.db, hta20probeset.db, hta20transcriptcluster.db, hthgu133a.db, hthgu133b.db, hthgu133plusa.db, hthgu133plusb.db, hthgu133pluspm.db, htmg430a.db, htmg430b.db, htmg430pm.db, htrat230pm.db, htratfocus.db, hu35ksuba.db, hu35ksubb.db, hu35ksubc.db, hu35ksubd.db, hu6800.db, huex10stprobeset.db, huex10sttranscriptcluster.db, hugene10stprobeset.db, hugene10sttranscriptcluster.db, hugene11stprobeset.db, hugene11sttranscriptcluster.db, hugene20stprobeset.db, hugene20sttranscriptcluster.db, hugene21stprobeset.db, hugene21sttranscriptcluster.db, HuO22.db, hwgcod.db, IlluminaHumanMethylation27k.db, illuminaHumanv1.db, illuminaHumanv2.db, illuminaHumanv2BeadID.db, illuminaHumanv3.db, illuminaHumanv4.db, illuminaHumanWGDASLv3.db, illuminaHumanWGDASLv4.db, illuminaMousev1.db, illuminaMousev1p1.db, illuminaMousev2.db, illuminaRatv1.db, indac.db, JazaeriMetaData.db, LAPOINTE.db, lumiHumanAll.db, lumiMouseAll.db, lumiRatAll.db, m10kcod.db, m20kcod.db, mgu74a.db, mgu74av2.db, mgu74b.db, mgu74bv2.db, mgu74c.db, mgu74cv2.db, mguatlas5k.db, mgug4104a.db, mgug4120a.db, mgug4121a.db, mgug4122a.db, mi16cod.db, miRBaseVersions.db, mm24kresogen.db, MmAgilentDesign026655.db, moe430a.db, moe430b.db, moex10stprobeset.db, moex10sttranscriptcluster.db, mogene10stprobeset.db, mogene10sttranscriptcluster.db, mogene11stprobeset.db, mogene11sttranscriptcluster.db, mogene20stprobeset.db, mogene20sttranscriptcluster.db, mogene21stprobeset.db, mogene21sttranscriptcluster.db, mouse4302.db, mouse430a2.db, mpedbarray.db, mta10probeset.db, mta10transcriptcluster.db, mu11ksuba.db, mu11ksubb.db, Mu15v1.db, mu19ksuba.db, mu19ksubb.db, mu19ksubc.db, Mu22v3.db, mwgcod.db, Norway981.db, nugohs1a520180.db, nugomm1a520177.db, OperonHumanV3.db, org.Ag.eg.db, org.At.tair.db, org.Bt.eg.db, org.Ce.eg.db, org.Cf.eg.db, org.Dm.eg.db, org.Dr.eg.db, org.EcK12.eg.db, org.EcSakai.eg.db, org.Gg.eg.db, org.Hs.eg.db, org.Mm.eg.db, org.Mmu.eg.db, org.Pf.plasmo.db, org.Pt.eg.db, org.Rn.eg.db, org.Sc.sgd.db, org.Ss.eg.db, org.Xl.eg.db, Orthology.eg.db, PartheenMetaData.db, pedbarrayv10.db, pedbarrayv9.db, POCRCannotation.db, porcine.db, r10kcod.db, rae230a.db, rae230b.db, raex10stprobeset.db, raex10sttranscriptcluster.db, ragene10stprobeset.db, ragene10sttranscriptcluster.db, ragene11stprobeset.db, ragene11sttranscriptcluster.db, ragene20stprobeset.db, ragene20sttranscriptcluster.db, ragene21stprobeset.db, ragene21sttranscriptcluster.db, rat2302.db, rgu34a.db, rgu34b.db, rgu34c.db, rguatlas4k.db, rgug4105a.db, rgug4130a.db, rgug4131a.db, ri16cod.db, RnAgilentDesign028282.db, rnu34.db, Roberts2005Annotation.db, rta10probeset.db, rta10transcriptcluster.db, rtu34.db, rwgcod.db, SHDZ.db, SomaScan.db, u133x3p.db, xlaevis.db, yeast2.db, ygs98.db, zebrafish.db, clValid, limorhyde, maGUI dependencyCount: 47 Package: AnnotationDbi Version: 1.68.0 Depends: R (>= 2.7.0), methods, stats4, BiocGenerics (>= 0.29.2), Biobase (>= 1.17.0), IRanges Imports: DBI, RSQLite, S4Vectors (>= 0.9.25), stats, KEGGREST Suggests: utils, hgu95av2.db, GO.db, org.Sc.sgd.db, org.At.tair.db, RUnit, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, reactome.db, AnnotationForge, graph, EnsDb.Hsapiens.v75, BiocStyle, knitr License: Artistic-2.0 MD5sum: 0f0e70eecd93f528f954d8d9fb4c8a8e NeedsCompilation: no Title: Manipulation of SQLite-based annotations in Bioconductor Description: Implements a user-friendly interface for querying SQLite-based annotation data packages. biocViews: Annotation, Microarray, Sequencing, GenomeAnnotation Author: Hervé Pagès, Marc Carlson, Seth Falcon, Nianhua Li Maintainer: Bioconductor Package Maintainer URL: https://bioconductor.org/packages/AnnotationDbi VignetteBuilder: knitr Video: https://www.youtube.com/watch?v=8qvGNTVz3Ik BugReports: https://github.com/Bioconductor/AnnotationDbi/issues git_url: https://git.bioconductor.org/packages/AnnotationDbi git_branch: RELEASE_3_20 git_last_commit: 6a2aa33 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AnnotationDbi_1.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AnnotationDbi_1.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AnnotationDbi_1.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AnnotationDbi_1.68.0.tgz vignettes: vignettes/AnnotationDbi/inst/doc/AnnotationDbi.pdf, vignettes/AnnotationDbi/inst/doc/IntroToAnnotationPackages.pdf vignetteTitles: 2. (Deprecated) How to use bimaps from the ".db" annotation packages, 1. Introduction To Bioconductor Annotation Packages hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AnnotationDbi/inst/doc/AnnotationDbi.R, vignettes/AnnotationDbi/inst/doc/IntroToAnnotationPackages.R dependsOnMe: annotate, AnnotationForge, ASpli, attract, Category, ChromHeatMap, customProDB, DEXSeq, EGSEA, EpiTxDb, GenomicFeatures, goProfiles, GSReg, ipdDb, miRNAtap, OrganismDbi, pathRender, proBAMr, safe, SemDist, topGO, adme16cod.db, ag.db, agprobe, anopheles.db0, arabidopsis.db0, ath1121501.db, ath1121501probe, barley1probe, bovine.db, bovine.db0, bovineprobe, bsubtilisprobe, canine.db, canine.db0, canine2.db, canine2probe, canineprobe, celegans.db, celegansprobe, chicken.db, chicken.db0, chickenprobe, chimp.db0, citrusprobe, clariomdhumanprobeset.db, clariomdhumantranscriptcluster.db, clariomshumanhttranscriptcluster.db, clariomshumantranscriptcluster.db, clariomsmousehttranscriptcluster.db, clariomsmousetranscriptcluster.db, clariomsrathttranscriptcluster.db, clariomsrattranscriptcluster.db, cottonprobe, DO.db, drosgenome1.db, drosgenome1probe, drosophila2.db, drosophila2probe, ecoli2.db, ecoli2probe, ecoliasv2probe, ecoliK12.db0, ecoliprobe, ecoliSakai.db0, fly.db0, GGHumanMethCancerPanelv1.db, GO.db, h10kcod.db, h20kcod.db, hcg110.db, hcg110probe, hgfocus.db, hgfocusprobe, hgu133a.db, hgu133a2.db, hgu133a2probe, hgu133aprobe, hgu133atagprobe, hgu133b.db, hgu133bprobe, hgu133plus2.db, hgu133plus2probe, hgu219.db, hgu219probe, hgu95a.db, hgu95aprobe, hgu95av2.db, hgu95av2probe, hgu95b.db, hgu95bprobe, hgu95c.db, hgu95cprobe, hgu95d.db, hgu95dprobe, hgu95e.db, hgu95eprobe, hguatlas13k.db, hgubeta7.db, hguDKFZ31.db, hgug4100a.db, hgug4101a.db, hgug4110b.db, hgug4111a.db, hgug4112a.db, hgug4845a.db, hguqiagenv3.db, hi16cod.db, Homo.sapiens, hs25kresogen.db, Hs6UG171.db, HsAgilentDesign026652.db, hta20probeset.db, hta20transcriptcluster.db, hthgu133a.db, hthgu133aprobe, hthgu133b.db, hthgu133bprobe, hthgu133plusa.db, hthgu133plusb.db, hthgu133pluspm.db, hthgu133pluspmprobe, htmg430a.db, htmg430aprobe, htmg430b.db, htmg430bprobe, htmg430pm.db, htmg430pmprobe, htrat230pm.db, htrat230pmprobe, htratfocus.db, htratfocusprobe, hu35ksuba.db, hu35ksubaprobe, hu35ksubb.db, hu35ksubbprobe, hu35ksubc.db, hu35ksubcprobe, hu35ksubd.db, hu35ksubdprobe, hu6800.db, hu6800probe, huex10stprobeset.db, huex10sttranscriptcluster.db, HuExExonProbesetLocation, HuExExonProbesetLocationHg18, HuExExonProbesetLocationHg19, hugene10stprobeset.db, hugene10sttranscriptcluster.db, hugene10stv1probe, hugene11stprobeset.db, hugene11sttranscriptcluster.db, hugene20stprobeset.db, hugene20sttranscriptcluster.db, hugene21stprobeset.db, hugene21sttranscriptcluster.db, human.db0, HuO22.db, hwgcod.db, IlluminaHumanMethylation27k.db, IlluminaHumanMethylation450kprobe, illuminaHumanv1.db, illuminaHumanv2.db, illuminaHumanv2BeadID.db, illuminaHumanv3.db, illuminaHumanv4.db, illuminaHumanWGDASLv3.db, illuminaHumanWGDASLv4.db, illuminaMousev1.db, illuminaMousev1p1.db, illuminaMousev2.db, illuminaRatv1.db, indac.db, JazaeriMetaData.db, LAPOINTE.db, lumiHumanAll.db, lumiHumanIDMapping, lumiMouseAll.db, lumiMouseIDMapping, lumiRatAll.db, lumiRatIDMapping, m10kcod.db, m20kcod.db, maizeprobe, malaria.db0, medicagoprobe, mgu74a.db, mgu74aprobe, mgu74av2.db, mgu74av2probe, mgu74b.db, mgu74bprobe, mgu74bv2.db, mgu74bv2probe, mgu74c.db, mgu74cprobe, mgu74cv2.db, mgu74cv2probe, mguatlas5k.db, mgug4104a.db, mgug4120a.db, mgug4121a.db, mgug4122a.db, mi16cod.db, mirbase.db, mirna10probe, mm24kresogen.db, MmAgilentDesign026655.db, moe430a.db, moe430aprobe, moe430b.db, moe430bprobe, moex10stprobeset.db, moex10sttranscriptcluster.db, MoExExonProbesetLocation, mogene10stprobeset.db, mogene10sttranscriptcluster.db, mogene10stv1probe, mogene11stprobeset.db, mogene11sttranscriptcluster.db, mogene20stprobeset.db, mogene20sttranscriptcluster.db, mogene21stprobeset.db, mogene21sttranscriptcluster.db, mouse.db0, mouse4302.db, mouse4302probe, mouse430a2.db, mouse430a2probe, mpedbarray.db, mta10probeset.db, mta10transcriptcluster.db, mu11ksuba.db, mu11ksubaprobe, mu11ksubb.db, mu11ksubbprobe, Mu15v1.db, mu19ksuba.db, mu19ksubb.db, mu19ksubc.db, Mu22v3.db, Mus.musculus, mwgcod.db, Norway981.db, nugohs1a520180.db, nugohs1a520180probe, nugomm1a520177.db, nugomm1a520177probe, OperonHumanV3.db, org.Ag.eg.db, org.At.tair.db, org.Bt.eg.db, org.Ce.eg.db, org.Cf.eg.db, org.Dm.eg.db, org.Dr.eg.db, org.EcK12.eg.db, org.EcSakai.eg.db, org.Gg.eg.db, org.Hs.eg.db, org.Mm.eg.db, org.Mmu.eg.db, org.Mxanthus.db, org.Pf.plasmo.db, org.Pt.eg.db, org.Rn.eg.db, org.Sc.sgd.db, org.Ss.eg.db, org.Xl.eg.db, Orthology.eg.db, paeg1aprobe, PartheenMetaData.db, pedbarrayv10.db, pedbarrayv9.db, PFAM.db, pig.db0, plasmodiumanophelesprobe, POCRCannotation.db, poplarprobe, porcine.db, porcineprobe, primeviewprobe, r10kcod.db, rae230a.db, rae230aprobe, rae230b.db, rae230bprobe, raex10stprobeset.db, raex10sttranscriptcluster.db, RaExExonProbesetLocation, ragene10stprobeset.db, ragene10sttranscriptcluster.db, ragene10stv1probe, ragene11stprobeset.db, ragene11sttranscriptcluster.db, ragene20stprobeset.db, ragene20sttranscriptcluster.db, ragene21stprobeset.db, ragene21sttranscriptcluster.db, rat.db0, rat2302.db, rat2302probe, rattoxfxprobe, Rattus.norvegicus, reactome.db, rgu34a.db, rgu34aprobe, rgu34b.db, rgu34bprobe, rgu34c.db, rgu34cprobe, rguatlas4k.db, rgug4105a.db, rgug4130a.db, rgug4131a.db, rhesus.db0, rhesusprobe, ri16cod.db, riceprobe, RnAgilentDesign028282.db, rnu34.db, rnu34probe, Roberts2005Annotation.db, rta10probeset.db, rta10transcriptcluster.db, rtu34.db, rtu34probe, rwgcod.db, saureusprobe, SHDZ.db, SomaScan.db, soybeanprobe, sugarcaneprobe, targetscan.Hs.eg.db, targetscan.Mm.eg.db, test3probe, tomatoprobe, u133x3p.db, u133x3pprobe, vitisviniferaprobe, wheatprobe, worm.db0, xenopus.db0, xenopuslaevisprobe, xlaevis.db, xlaevis2probe, xtropicalisprobe, yeast.db0, yeast2.db, yeast2probe, ygs98.db, ygs98probe, zebrafish.db, zebrafish.db0, zebrafishprobe, tinesath1probe, rnaseqGene, convertid importsMe: adSplit, affycoretools, affylmGUI, AllelicImbalance, annaffy, AnnotationHub, AnnotationHubData, annotatr, artMS, beadarray, bioCancer, BiocSet, biomaRt, BioNAR, BioNet, biovizBase, bumphunter, BUSpaRse, categoryCompare, ccmap, cellity, chimeraviz, chipenrich, ChIPpeakAnno, ChIPseeker, clusterProfiler, CoCiteStats, Cogito, compEpiTools, consensusDE, CoSIA, crisprDesign, CrispRVariants, cTRAP, Damsel, debrowser, derfinder, DominoEffect, DOSE, doubletrouble, EasyCellType, EDASeq, EnrichmentBrowser, ensembldb, EpiMix, epimutacions, erma, esATAC, FRASER, funOmics, GA4GHshiny, gage, gDNAx, genefilter, geneplotter, GeneTonic, geneXtendeR, GenomicInteractionNodes, GenVisR, ggbio, gINTomics, GlobalAncova, globaltest, GmicR, GOfuncR, GOpro, GOSemSim, goseq, goSTAG, GOstats, goTools, graphite, GSEABase, GSEABenchmarkeR, Gviz, gwascat, ideal, IMAS, interactiveDisplay, isomiRs, IVAS, karyoploteR, keggorthology, LRBaseDbi, lumi, magpie, mastR, MCbiclust, MeSHDbi, meshes, MesKit, MetaboSignal, methylGSA, methylumi, MineICA, MiRaGE, mirIntegrator, MIRit, miRNAmeConverter, missMethyl, MLP, MOSClip, mosdef, MSnID, multiGSEA, multiMiR, NanoMethViz, NetSAM, netZooR, ORFik, Organism.dplyr, OutSplice, PADOG, pathview, pcaExplorer, phantasus, phenoTest, proActiv, psichomics, qpgraph, QuasR, RAIDS, ReactomePA, REDseq, regutools, rGREAT, rgsepd, ribosomeProfilingQC, RNAAgeCalc, rrvgo, rTRM, SBGNview, scanMiRApp, scPipe, scruff, scTensor, SGSeq, signatureSearch, simplifyEnrichment, SMITE, SubCellBarCode, SVMDO, TCGAutils, tenXplore, TFutils, tigre, trackViewer, TRESS, tricycle, txcutr, txdbmaker, tximeta, Ularcirc, UniProt.ws, VariantAnnotation, VariantFiltering, adme16cod.db, ag.db, agcdf, ath1121501.db, ath1121501cdf, barley1cdf, bovine.db, bovinecdf, bsubtiliscdf, canine.db, canine2.db, canine2cdf, caninecdf, celegans.db, celeganscdf, chicken.db, chickencdf, citruscdf, clariomdhumanprobeset.db, clariomdhumantranscriptcluster.db, clariomshumanhttranscriptcluster.db, clariomshumantranscriptcluster.db, clariomsmousehttranscriptcluster.db, clariomsmousetranscriptcluster.db, clariomsrathttranscriptcluster.db, clariomsrattranscriptcluster.db, cottoncdf, cyp450cdf, DO.db, drosgenome1.db, drosgenome1cdf, drosophila2.db, drosophila2cdf, ecoli2.db, ecoli2cdf, ecoliasv2cdf, ecolicdf, FDb.FANTOM4.promoters.hg19, FDb.InfiniumMethylation.hg18, FDb.InfiniumMethylation.hg19, FDb.UCSC.snp135common.hg19, FDb.UCSC.snp137common.hg19, FDb.UCSC.tRNAs, GenomicState, GGHumanMethCancerPanelv1.db, gp53cdf, h10kcod.db, h20kcod.db, hcg110.db, hcg110cdf, HDO.db, hgfocus.db, hgfocuscdf, hgu133a.db, hgu133a2.db, hgu133a2cdf, hgu133acdf, hgu133atagcdf, hgu133b.db, hgu133bcdf, hgu133plus2.db, hgu133plus2cdf, hgu219.db, hgu219cdf, hgu95a.db, hgu95acdf, hgu95av2.db, hgu95av2cdf, hgu95b.db, hgu95bcdf, hgu95c.db, hgu95ccdf, hgu95d.db, hgu95dcdf, hgu95e.db, hgu95ecdf, hguatlas13k.db, hgubeta7.db, hguDKFZ31.db, hgug4100a.db, hgug4101a.db, hgug4110b.db, hgug4111a.db, hgug4112a.db, hgug4845a.db, hguqiagenv3.db, hi16cod.db, hivprtplus2cdf, Homo.sapiens, HPO.db, hs25kresogen.db, Hs6UG171.db, HsAgilentDesign026652.db, Hspec, hspeccdf, hta20probeset.db, hta20transcriptcluster.db, hthgu133a.db, hthgu133acdf, hthgu133b.db, hthgu133bcdf, hthgu133plusa.db, hthgu133plusb.db, hthgu133pluspm.db, hthgu133pluspmcdf, htmg430a.db, htmg430acdf, htmg430b.db, htmg430bcdf, htmg430pm.db, htmg430pmcdf, htrat230pm.db, htrat230pmcdf, htratfocus.db, htratfocuscdf, hu35ksuba.db, hu35ksubacdf, hu35ksubb.db, hu35ksubbcdf, hu35ksubc.db, hu35ksubccdf, hu35ksubd.db, hu35ksubdcdf, hu6800.db, hu6800cdf, hu6800subacdf, hu6800subbcdf, hu6800subccdf, hu6800subdcdf, huex10stprobeset.db, huex10sttranscriptcluster.db, hugene10stprobeset.db, hugene10sttranscriptcluster.db, hugene10stv1cdf, hugene11stprobeset.db, hugene11sttranscriptcluster.db, hugene20stprobeset.db, hugene20sttranscriptcluster.db, hugene21stprobeset.db, hugene21sttranscriptcluster.db, HuO22.db, hwgcod.db, IlluminaHumanMethylation27k.db, illuminaHumanv1.db, illuminaHumanv2.db, illuminaHumanv2BeadID.db, illuminaHumanv3.db, illuminaHumanv4.db, illuminaHumanWGDASLv3.db, illuminaHumanWGDASLv4.db, illuminaMousev1.db, illuminaMousev1p1.db, illuminaMousev2.db, illuminaRatv1.db, indac.db, JazaeriMetaData.db, LAPOINTE.db, lumiHumanAll.db, lumiHumanIDMapping, lumiMouseAll.db, lumiMouseIDMapping, lumiRatAll.db, lumiRatIDMapping, m10kcod.db, m20kcod.db, maizecdf, medicagocdf, mgu74a.db, mgu74acdf, mgu74av2.db, mgu74av2cdf, mgu74b.db, mgu74bcdf, mgu74bv2.db, mgu74bv2cdf, mgu74c.db, mgu74ccdf, mgu74cv2.db, mgu74cv2cdf, mguatlas5k.db, mgug4104a.db, mgug4120a.db, mgug4121a.db, mgug4122a.db, mi16cod.db, mirbase.db, miRBaseVersions.db, mirna102xgaincdf, mirna10cdf, mirna20cdf, miRNAtap.db, mm24kresogen.db, MmAgilentDesign026655.db, moe430a.db, moe430acdf, moe430b.db, moe430bcdf, moex10stprobeset.db, moex10sttranscriptcluster.db, mogene10stprobeset.db, mogene10sttranscriptcluster.db, mogene10stv1cdf, mogene11stprobeset.db, mogene11sttranscriptcluster.db, mogene20stprobeset.db, mogene20sttranscriptcluster.db, mogene21stprobeset.db, mogene21sttranscriptcluster.db, mouse4302.db, mouse4302cdf, mouse430a2.db, mouse430a2cdf, mpedbarray.db, MPO.db, mta10probeset.db, mta10transcriptcluster.db, mu11ksuba.db, mu11ksubacdf, mu11ksubb.db, mu11ksubbcdf, Mu15v1.db, mu19ksuba.db, mu19ksubacdf, mu19ksubb.db, mu19ksubbcdf, mu19ksubc.db, mu19ksubccdf, Mu22v3.db, mu6500subacdf, mu6500subbcdf, mu6500subccdf, mu6500subdcdf, Mus.musculus, mwgcod.db, Norway981.db, nugohs1a520180.db, nugohs1a520180cdf, nugomm1a520177.db, nugomm1a520177cdf, OperonHumanV3.db, paeg1acdf, PartheenMetaData.db, pedbarrayv10.db, pedbarrayv9.db, plasmodiumanophelescdf, POCRCannotation.db, PolyPhen.Hsapiens.dbSNP131, poplarcdf, porcine.db, porcinecdf, primeviewcdf, r10kcod.db, rae230a.db, rae230acdf, rae230b.db, rae230bcdf, raex10stprobeset.db, raex10sttranscriptcluster.db, ragene10stprobeset.db, ragene10sttranscriptcluster.db, ragene10stv1cdf, ragene11stprobeset.db, ragene11sttranscriptcluster.db, ragene20stprobeset.db, ragene20sttranscriptcluster.db, ragene21stprobeset.db, ragene21sttranscriptcluster.db, rat2302.db, rat2302cdf, rattoxfxcdf, Rattus.norvegicus, reactome.db, rgu34a.db, rgu34acdf, rgu34b.db, rgu34bcdf, rgu34c.db, rgu34ccdf, rguatlas4k.db, rgug4105a.db, rgug4130a.db, rgug4131a.db, rhesuscdf, ri16cod.db, ricecdf, RmiR.Hs.miRNA, RmiR.hsa, RnAgilentDesign028282.db, rnu34.db, rnu34cdf, Roberts2005Annotation.db, rta10probeset.db, rta10transcriptcluster.db, rtu34.db, rtu34cdf, rwgcod.db, saureuscdf, SHDZ.db, SIFT.Hsapiens.dbSNP132, SIFT.Hsapiens.dbSNP137, soybeancdf, sugarcanecdf, targetscan.Hs.eg.db, targetscan.Mm.eg.db, test1cdf, test2cdf, test3cdf, tomatocdf, TxDb.Athaliana.BioMart.plantsmart22, TxDb.Athaliana.BioMart.plantsmart25, TxDb.Athaliana.BioMart.plantsmart28, TxDb.Athaliana.BioMart.plantsmart51, TxDb.Btaurus.UCSC.bosTau8.refGene, TxDb.Btaurus.UCSC.bosTau9.refGene, TxDb.Celegans.UCSC.ce11.ensGene, TxDb.Celegans.UCSC.ce11.refGene, TxDb.Celegans.UCSC.ce6.ensGene, TxDb.Cfamiliaris.UCSC.canFam3.refGene, TxDb.Cfamiliaris.UCSC.canFam4.refGene, TxDb.Cfamiliaris.UCSC.canFam5.refGene, TxDb.Cfamiliaris.UCSC.canFam6.refGene, TxDb.Dmelanogaster.UCSC.dm3.ensGene, TxDb.Dmelanogaster.UCSC.dm6.ensGene, TxDb.Drerio.UCSC.danRer10.refGene, TxDb.Drerio.UCSC.danRer11.refGene, TxDb.Ggallus.UCSC.galGal4.refGene, TxDb.Ggallus.UCSC.galGal5.refGene, TxDb.Ggallus.UCSC.galGal6.refGene, TxDb.Hsapiens.BioMart.igis, TxDb.Hsapiens.UCSC.hg18.knownGene, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts, TxDb.Hsapiens.UCSC.hg38.knownGene, TxDb.Hsapiens.UCSC.hg38.refGene, TxDb.Mmulatta.UCSC.rheMac10.refGene, TxDb.Mmulatta.UCSC.rheMac3.refGene, TxDb.Mmulatta.UCSC.rheMac8.refGene, TxDb.Mmusculus.UCSC.mm10.ensGene, TxDb.Mmusculus.UCSC.mm10.knownGene, TxDb.Mmusculus.UCSC.mm39.knownGene, TxDb.Mmusculus.UCSC.mm39.refGene, TxDb.Mmusculus.UCSC.mm9.knownGene, TxDb.Ptroglodytes.UCSC.panTro4.refGene, TxDb.Ptroglodytes.UCSC.panTro5.refGene, TxDb.Ptroglodytes.UCSC.panTro6.refGene, TxDb.Rnorvegicus.BioMart.igis, TxDb.Rnorvegicus.UCSC.rn4.ensGene, TxDb.Rnorvegicus.UCSC.rn5.refGene, TxDb.Rnorvegicus.UCSC.rn6.ncbiRefSeq, TxDb.Rnorvegicus.UCSC.rn6.refGene, TxDb.Rnorvegicus.UCSC.rn7.refGene, TxDb.Scerevisiae.UCSC.sacCer2.sgdGene, TxDb.Scerevisiae.UCSC.sacCer3.sgdGene, TxDb.Sscrofa.UCSC.susScr11.refGene, TxDb.Sscrofa.UCSC.susScr3.refGene, u133aaofav2cdf, u133x3p.db, u133x3pcdf, vitisviniferacdf, wheatcdf, xenopuslaeviscdf, xlaevis.db, xlaevis2cdf, xtropicaliscdf, ye6100subacdf, ye6100subbcdf, ye6100subccdf, ye6100subdcdf, yeast2.db, yeast2cdf, ygs98.db, ygs98cdf, zebrafish.db, zebrafishcdf, celldex, chipenrich.data, DeSousa2013, msigdb, scRNAseq, ExpHunterSuite, aliases2entrez, BiSEp, CAMML, DIscBIO, g3viz, jetset, Mega2R, MOCHA, netgsa, pathfindR, prioGene, ProFAST, RCPA, RobLoxBioC, seeker, WGCNA suggestsMe: APAlyzer, ASURAT, autonomics, bambu, BiocGenerics, CellTrails, cicero, cola, csaw, DAPAR, DEGreport, edgeR, eisaR, enrichplot, esetVis, FELLA, FGNet, fgsea, fishpond, GA4GHclient, gatom, gCrisprTools, GeDi, GeneRegionScan, GenomicPlot, GenomicRanges, ggkegg, gsean, hpar, iNETgrate, iSEEu, limma, MutationalPatterns, NetActivity, oligo, ontoProc, OUTRIDER, pathlinkR, piano, Pigengene, plotgardener, pRoloc, ProteoDisco, quantiseqr, R3CPET, recount, scDotPlot, simona, SingleCellAlleleExperiment, sparrow, spatialHeatmap, SpliceWiz, SummarizedExperiment, systemPipeR, tidybulk, topconfects, weitrix, wiggleplotr, BioPlex, BloodCancerMultiOmics2017, curatedAdipoChIP, RforProteomics, bulkAnalyseR, CALANGO, conos, easylabel, genekitr, goat, MARVEL, pagoda2, Platypus, rliger, scITD, SCpubr dependencyCount: 44 Package: AnnotationFilter Version: 1.30.0 Depends: R (>= 3.4.0) Imports: utils, methods, GenomicRanges, lazyeval Suggests: BiocStyle, knitr, testthat, RSQLite, org.Hs.eg.db, rmarkdown License: Artistic-2.0 MD5sum: da4a64897ad46309b7668de0fbacd487 NeedsCompilation: no Title: Facilities for Filtering Bioconductor Annotation Resources Description: This package provides class and other infrastructure to implement filters for manipulating Bioconductor annotation resources. The filters will be used by ensembldb, Organism.dplyr, and other packages. biocViews: Annotation, Infrastructure, Software Author: Martin Morgan [aut], Johannes Rainer [aut], Joachim Bargsten [ctb], Daniel Van Twisk [ctb], Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer URL: https://github.com/Bioconductor/AnnotationFilter VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/AnnotationFilter/issues git_url: https://git.bioconductor.org/packages/AnnotationFilter git_branch: RELEASE_3_20 git_last_commit: 1204cb5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AnnotationFilter_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AnnotationFilter_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AnnotationFilter_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AnnotationFilter_1.30.0.tgz vignettes: vignettes/AnnotationFilter/inst/doc/AnnotationFilter.html vignetteTitles: Facilities for Filtering Bioconductor Annotation resources hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AnnotationFilter/inst/doc/AnnotationFilter.R dependsOnMe: chimeraviz, CompoundDb, ensembldb, Organism.dplyr importsMe: biovizBase, BUSpaRse, CleanUpRNAseq, drugTargetInteractions, ggbio, QFeatures, RAIDS, RITAN, scanMiRApp, TVTB, GenomicDistributionsData, locuszoomr, RNAseqQC suggestsMe: GenomicDistributions, GenomicFeatures, TFutils, wiggleplotr dependencyCount: 24 Package: AnnotationForge Version: 1.48.0 Depends: R (>= 3.5.0), methods, utils, BiocGenerics (>= 0.15.10), Biobase (>= 1.17.0), AnnotationDbi (>= 1.33.14) Imports: DBI, RSQLite, XML, S4Vectors, RCurl Suggests: biomaRt, httr, GenomeInfoDb (>= 1.17.1), Biostrings, affy, hgu95av2.db, human.db0, org.Hs.eg.db, Homo.sapiens, GO.db, rmarkdown, BiocStyle, knitr, BiocManager, BiocFileCache, RUnit License: Artistic-2.0 MD5sum: af0c7c1445b51177250c4101e2efc1a3 NeedsCompilation: no Title: Tools for building SQLite-based annotation data packages Description: Provides code for generating Annotation packages and their databases. Packages produced are intended to be used with AnnotationDbi. biocViews: Annotation, Infrastructure Author: Marc Carlson [aut], Hervé Pagès [aut], Madelyn Carlson [ctb] ('Creating probe packages' vignette translation from Sweave to Rmarkdown / HTML), Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer URL: https://bioconductor.org/packages/AnnotationForge VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/AnnotationForge/issues git_url: https://git.bioconductor.org/packages/AnnotationForge git_branch: RELEASE_3_20 git_last_commit: a22ccaf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AnnotationForge_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AnnotationForge_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AnnotationForge_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AnnotationForge_1.48.0.tgz vignettes: vignettes/AnnotationForge/inst/doc/MakingNewAnnotationPackages.pdf, vignettes/AnnotationForge/inst/doc/SQLForge.pdf, vignettes/AnnotationForge/inst/doc/makeProbePackage.html, vignettes/AnnotationForge/inst/doc/MakingNewOrganismPackages.html vignetteTitles: AnnotationForge: Creating select Interfaces for custom Annotation resources, SQLForge: An easy way to create a new annotation package with a standard database schema., Creating probe packages, Making New Organism Packages hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AnnotationForge/inst/doc/makeProbePackage.R, vignettes/AnnotationForge/inst/doc/MakingNewAnnotationPackages.R, vignettes/AnnotationForge/inst/doc/MakingNewOrganismPackages.R, vignettes/AnnotationForge/inst/doc/SQLForge.R importsMe: AnnotationHubData, GOstats, GGHumanMethCancerPanelv1.db suggestsMe: AnnotationDbi, AnnotationHub dependencyCount: 48 Package: AnnotationHub Version: 3.14.0 Depends: BiocGenerics (>= 0.15.10), BiocFileCache (>= 1.5.1) Imports: utils, methods, grDevices, RSQLite, BiocManager, BiocVersion, curl, rappdirs, AnnotationDbi (>= 1.31.19), S4Vectors, httr, yaml, dplyr Suggests: IRanges, GenomicRanges, GenomeInfoDb, VariantAnnotation, Rsamtools, rtracklayer, BiocStyle, knitr, AnnotationForge, rBiopaxParser, RUnit, txdbmaker, MSnbase, mzR, Biostrings, CompoundDb, keras, ensembldb, SummarizedExperiment, ExperimentHub, gdsfmt, rmarkdown, HubPub Enhances: AnnotationHubData License: Artistic-2.0 MD5sum: b637981ca6631a32c25266604141b11d NeedsCompilation: yes Title: Client to access AnnotationHub resources Description: This package provides a client for the Bioconductor AnnotationHub web resource. The AnnotationHub web resource provides a central location where genomic files (e.g., VCF, bed, wig) and other resources from standard locations (e.g., UCSC, Ensembl) can be discovered. The resource includes metadata about each resource, e.g., a textual description, tags, and date of modification. The client creates and manages a local cache of files retrieved by the user, helping with quick and reproducible access. biocViews: Infrastructure, DataImport, GUI, ThirdPartyClient Author: Bioconductor Package Maintainer [cre], Martin Morgan [aut], Marc Carlson [ctb], Dan Tenenbaum [ctb], Sonali Arora [ctb], Valerie Oberchain [ctb], Kayla Morrell [ctb], Lori Shepherd [aut] Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/AnnotationHub/issues git_url: https://git.bioconductor.org/packages/AnnotationHub git_branch: RELEASE_3_20 git_last_commit: f93a396 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AnnotationHub_3.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AnnotationHub_3.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AnnotationHub_3.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AnnotationHub_3.14.0.tgz vignettes: vignettes/AnnotationHub/inst/doc/AnnotationHub-HOWTO.html, vignettes/AnnotationHub/inst/doc/AnnotationHub.html, vignettes/AnnotationHub/inst/doc/TroubleshootingTheHubs.html vignetteTitles: AnnotationHub: AnnotationHub HOW TO's, AnnotationHub: Access the AnnotationHub Web Service, Troubleshooting The Hubs hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AnnotationHub/inst/doc/AnnotationHub-HOWTO.R, vignettes/AnnotationHub/inst/doc/AnnotationHub.R, vignettes/AnnotationHub/inst/doc/TroubleshootingTheHubs.R dependsOnMe: adductomicsR, AnnotationHubData, ExperimentHub, hipathia, ipdDb, LRcell, octad, AlphaMissense.v2023.hg19, AlphaMissense.v2023.hg38, cadd.v1.6.hg19, cadd.v1.6.hg38, EpiTxDb.Hs.hg38, EpiTxDb.Mm.mm10, EpiTxDb.Sc.sacCer3, EuPathDB, GenomicState, org.Mxanthus.db, phastCons30way.UCSC.hg38, phastCons35way.UCSC.mm39, phyloP35way.UCSC.mm39, rGenomeTracksData, synaptome.data, UCSCRepeatMasker, MetaGxBreast, MetaGxOvarian, NestLink, scMultiome, sesameData, tartare, annotation, sequencing, OSCA.basic, OSCA.workflows, SingleRBook importsMe: annotatr, atena, BiocHubsShiny, circRNAprofiler, coMethDMR, cTRAP, customCMPdb, DMRcate, dmrseq, EpiCompare, EpiMix, epimutacions, epiregulon, gDNAx, GenomicScores, GRaNIE, GSEABenchmarkeR, gwascat, iSEEhub, MACSr, meshes, MetaboAnnotation, methodical, Moonlight2R, MSnID, OGRE, ontoProc, orthos, partCNV, psichomics, regutools, REMP, scanMiRApp, scAnnotatR, scmeth, scTensor, singleCellTK, SpliceWiz, tximeta, Ularcirc, AHLRBaseDbs, AHMeSHDbs, AHPathbankDbs, AHPubMedDbs, AHWikipathwaysDbs, alternativeSplicingEvents.hg19, alternativeSplicingEvents.hg38, EPICv2manifest, grasp2db, HPO.db, metaboliteIDmapping, MPO.db, synaptome.db, TENET.AnnotationHub, adductData, BioImageDbs, biscuiteerData, celldex, chipseqDBData, crisprScoreData, curatedMetagenomicData, curatedPCaData, curatedTBData, curatedTCGAData, depmap, DropletTestFiles, easierData, FieldEffectCrc, FlowSorted.Blood.EPIC, FlowSorted.CordBloodCombined.450k, GenomicDistributionsData, HCAData, HiBED, HiContactsData, HMP16SData, HMP2Data, mcsurvdata, MerfishData, MetaGxPancreas, MouseAgingData, msigdb, orthosData, scpdata, scRNAseq, SFEData, SingleCellMultiModal, spatialLIBD, TabulaMurisSenisData, TENxBrainData, TENxBUSData, TENxPBMCData, tuberculosis, TCGAWorkflow, RNAseqQC, SeedMatchR suggestsMe: AHMassBank, AlphaMissenseR, autonomics, BgeeCall, Chicago, ChIPpeakAnno, CINdex, clusterProfiler, CNVRanger, COCOA, crisprViz, DNAshapeR, dupRadar, ELMER, ensembldb, epiNEM, EpiTxDb, epivizrChart, epivizrData, factR, GenomicRanges, Glimma, GOSemSim, HiCool, LRBaseDbi, lute, maser, MIRA, motifTestR, MSnbase, multicrispr, nullranges, OrganismDbi, plotgardener, raer, recountmethylation, satuRn, scTensor, simona, TCGAbiolinks, TCGAutils, tidyCoverage, VariantAnnotation, xcore, AHEnsDbs, CTCF, ENCODExplorerData, excluderanges, gwascatData, ontoProcData, BioPlex, CoSIAdata, HarmonizedTCGAData, homosapienDEE2CellScore, ProteinGymR, GeneSelectR, locuszoomr dependencyCount: 65 Package: AnnotationHubData Version: 1.36.0 Depends: R (>= 3.2.2), methods, utils, S4Vectors (>= 0.7.21), IRanges (>= 2.3.23), GenomicRanges, AnnotationHub (>= 2.15.15) Imports: GenomicFeatures, Rsamtools, rtracklayer, BiocGenerics, jsonlite, BiocManager, biocViews, BiocCheck, graph, AnnotationDbi, Biobase, Biostrings, DBI, GenomeInfoDb (>= 1.15.4), OrganismDbi, RSQLite, AnnotationForge, futile.logger (>= 1.3.0), XML, RCurl Suggests: RUnit, knitr, BiocStyle, grasp2db, GenomeInfoDbData, rmarkdown, HubPub License: Artistic-2.0 MD5sum: b1ea7de5d95a49f8b0d925623384e10b NeedsCompilation: no Title: Transform public data resources into Bioconductor Data Structures Description: These recipes convert a wide variety and a growing number of public bioinformatic data sets into easily-used standard Bioconductor data structures. biocViews: DataImport Author: Martin Morgan [ctb], Marc Carlson [ctb], Dan Tenenbaum [ctb], Sonali Arora [ctb], Paul Shannon [ctb], Lori Shepherd [ctb], Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/AnnotationHubData git_branch: RELEASE_3_20 git_last_commit: 5c8e1eb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AnnotationHubData_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AnnotationHubData_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AnnotationHubData_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AnnotationHubData_1.36.0.tgz vignettes: vignettes/AnnotationHubData/inst/doc/IntroductionToAnnotationHubData.html vignetteTitles: Introduction to AnnotationHubData hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: ExperimentHubData importsMe: AHMassBank, AHEnsDbs, EuPathDB suggestsMe: HubPub, EPICv2manifest, GenomicState, TENET.AnnotationHub, homosapienDEE2CellScore, smokingMouse dependencyCount: 123 Package: annotationTools Version: 1.80.0 Imports: Biobase, stats Suggests: BiocStyle License: GPL MD5sum: 54e53adce6ba517f69348253baeac061 NeedsCompilation: no Title: Annotate microarrays and perform cross-species gene expression analyses using flat file databases Description: Functions to annotate microarrays, find orthologs, and integrate heterogeneous gene expression profiles using annotation and other molecular biology information available as flat file database (plain text files). biocViews: Microarray, Annotation Author: Alexandre Kuhn Maintainer: Alexandre Kuhn git_url: https://git.bioconductor.org/packages/annotationTools git_branch: RELEASE_3_20 git_last_commit: 2ccc902 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/annotationTools_1.80.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/annotationTools_1.80.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/annotationTools_1.80.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/annotationTools_1.80.0.tgz vignettes: vignettes/annotationTools/inst/doc/annotationTools.pdf vignetteTitles: annotationTools: Overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/annotationTools/inst/doc/annotationTools.R importsMe: CoSIA dependencyCount: 6 Package: annotatr Version: 1.32.0 Depends: R (>= 3.5.0) Imports: AnnotationDbi, AnnotationHub, dplyr, GenomicFeatures, GenomicRanges, GenomeInfoDb (>= 1.10.3), ggplot2, IRanges, methods, readr, regioneR, reshape2, rtracklayer, S4Vectors (>= 0.23.10), stats, utils Suggests: BiocStyle, devtools, knitr, org.Dm.eg.db, org.Gg.eg.db, org.Hs.eg.db, org.Mm.eg.db, org.Rn.eg.db, rmarkdown, roxygen2, testthat, TxDb.Dmelanogaster.UCSC.dm3.ensGene, TxDb.Dmelanogaster.UCSC.dm6.ensGene, TxDb.Ggallus.UCSC.galGal5.refGene, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg38.knownGene, TxDb.Mmusculus.UCSC.mm9.knownGene, TxDb.Mmusculus.UCSC.mm10.knownGene, TxDb.Rnorvegicus.UCSC.rn4.ensGene, TxDb.Rnorvegicus.UCSC.rn5.refGene, TxDb.Rnorvegicus.UCSC.rn6.refGene License: GPL-3 MD5sum: 9b86eaf14c7da6e5baba946ff893bede NeedsCompilation: no Title: Annotation of Genomic Regions to Genomic Annotations Description: Given a set of genomic sites/regions (e.g. ChIP-seq peaks, CpGs, differentially methylated CpGs or regions, SNPs, etc.) it is often of interest to investigate the intersecting genomic annotations. Such annotations include those relating to gene models (promoters, 5'UTRs, exons, introns, and 3'UTRs), CpGs (CpG islands, CpG shores, CpG shelves), or regulatory sequences such as enhancers. The annotatr package provides an easy way to summarize and visualize the intersection of genomic sites/regions with genomic annotations. biocViews: Software, Annotation, GenomeAnnotation, FunctionalGenomics, Visualization Author: Raymond G. Cavalcante [aut, cre], Maureen A. Sartor [ths] Maintainer: Raymond G. Cavalcante VignetteBuilder: knitr BugReports: https://www.github.com/rcavalcante/annotatr/issues git_url: https://git.bioconductor.org/packages/annotatr git_branch: RELEASE_3_20 git_last_commit: 4070679 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/annotatr_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/annotatr_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/annotatr_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/annotatr_1.32.0.tgz vignettes: vignettes/annotatr/inst/doc/annotatr-vignette.html vignetteTitles: annotatr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/annotatr/inst/doc/annotatr-vignette.R importsMe: dmrseq, methodical, scmeth, SOMNiBUS, ExpHunterSuite suggestsMe: borealis, ramr dependencyCount: 123 Package: anota Version: 1.54.0 Depends: qvalue Imports: multtest, qvalue License: GPL-3 MD5sum: 0a28d2588bcff721d1b6e4d179c5204e NeedsCompilation: no Title: ANalysis Of Translational Activity (ANOTA). Description: Genome wide studies of translational control is emerging as a tool to study verious biological conditions. The output from such analysis is both the mRNA level (e.g. cytosolic mRNA level) and the levl of mRNA actively involved in translation (the actively translating mRNA level) for each mRNA. The standard analysis of such data strives towards identifying differential translational between two or more sample classes - i.e. differences in actively translated mRNA levels that are independent of underlying differences in cytosolic mRNA levels. This package allows for such analysis using partial variances and the random variance model. As 10s of thousands of mRNAs are analyzed in parallell the library performs a number of tests to assure that the data set is suitable for such analysis. biocViews: GeneExpression, DifferentialExpression, Microarray, Sequencing Author: Ola Larsson , Nahum Sonenberg , Robert Nadon Maintainer: Ola Larsson git_url: https://git.bioconductor.org/packages/anota git_branch: RELEASE_3_20 git_last_commit: 3af2f05 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/anota_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/anota_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/anota_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/anota_1.54.0.tgz vignettes: vignettes/anota/inst/doc/anota.pdf vignetteTitles: ANalysis Of Translational Activity (anota) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/anota/inst/doc/anota.R dependsOnMe: tRanslatome dependencyCount: 47 Package: anota2seq Version: 1.28.0 Depends: R (>= 3.4.0), methods Imports: multtest,qvalue,limma,DESeq2,edgeR,RColorBrewer, grDevices, graphics, stats, utils, SummarizedExperiment Suggests: BiocStyle,knitr License: GPL-3 MD5sum: ea94d12f3010127e0fc8add4930650f8 NeedsCompilation: no Title: Generally applicable transcriptome-wide analysis of translational efficiency using anota2seq Description: anota2seq provides analysis of translational efficiency and differential expression analysis for polysome-profiling and ribosome-profiling studies (two or more sample classes) quantified by RNA sequencing or DNA-microarray. Polysome-profiling and ribosome-profiling typically generate data for two RNA sources; translated mRNA and total mRNA. Analysis of differential expression is used to estimate changes within each RNA source (i.e. translated mRNA or total mRNA). Analysis of translational efficiency aims to identify changes in translation efficiency leading to altered protein levels that are independent of total mRNA levels (i.e. changes in translated mRNA that are independent of levels of total mRNA) or buffering, a mechanism regulating translational efficiency so that protein levels remain constant despite fluctuating total mRNA levels (i.e. changes in total mRNA that are independent of levels of translated mRNA). anota2seq applies analysis of partial variance and the random variance model to fulfill these tasks. biocViews: ImmunoOncology, GeneExpression, DifferentialExpression, Microarray,GenomeWideAssociation, BatchEffect, Normalization, RNASeq, Sequencing, GeneRegulation, Regression Author: Christian Oertlin , Julie Lorent , Ola Larsson Maintainer: Christian Oertlin , Ola Larsson VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/anota2seq git_branch: RELEASE_3_20 git_last_commit: 45d253c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/anota2seq_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/anota2seq_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/anota2seq_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/anota2seq_1.28.0.tgz vignettes: vignettes/anota2seq/inst/doc/anota2seq.pdf vignetteTitles: Generally applicable transcriptome-wide analysis of translational efficiency using anota2seq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/anota2seq/inst/doc/anota2seq.R dependencyCount: 86 Package: antiProfiles Version: 1.46.0 Depends: R (>= 3.0), matrixStats (>= 0.50.0), methods (>= 2.14), locfit (>= 1.5) Suggests: antiProfilesData, RColorBrewer License: Artistic-2.0 MD5sum: 64a8a17ea0a8452fe4b9b8ee33789d3a NeedsCompilation: no Title: Implementation of gene expression anti-profiles Description: Implements gene expression anti-profiles as described in Corrada Bravo et al., BMC Bioinformatics 2012, 13:272 doi:10.1186/1471-2105-13-272. biocViews: GeneExpression,Classification Author: Hector Corrada Bravo, Rafael A. Irizarry and Jeffrey T. Leek Maintainer: Hector Corrada Bravo URL: https://github.com/HCBravoLab/antiProfiles git_url: https://git.bioconductor.org/packages/antiProfiles git_branch: RELEASE_3_20 git_last_commit: f40ea2d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/antiProfiles_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/antiProfiles_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/antiProfiles_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/antiProfiles_1.46.0.tgz vignettes: vignettes/antiProfiles/inst/doc/antiProfiles.pdf vignetteTitles: Introduction to antiProfiles hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/antiProfiles/inst/doc/antiProfiles.R dependencyCount: 9 Package: AnVIL Version: 1.18.2 Depends: R (>= 3.6), dplyr, AnVILBase Imports: stats, utils, methods, futile.logger, jsonlite, httr, rapiclient (>= 0.1.3), yaml, tibble, tidyselect, tidyr, rlang, shiny, DT, miniUI, htmltools, BiocManager, BiocBaseUtils Suggests: parallel, knitr, rmarkdown, testthat, withr, readr, BiocStyle, devtools, AnVILAz, AnVILGCP, lifecycle License: Artistic-2.0 MD5sum: 0a64367080bded70fe723513c40e405e NeedsCompilation: no Title: Bioconductor on the AnVIL compute environment Description: The AnVIL is a cloud computing resource developed in part by the National Human Genome Research Institute. The AnVIL package provides end-user and developer functionality. For the end-user, AnVIL provides fast binary package installation, utitlities for working with Terra / AnVIL table and data resources, and convenient functions for file movement to and from Google cloud storage. For developers, AnVIL provides programatic access to the Terra, Leonardo, Rawls, and Dockstore RESTful programming interface, including helper functions to transform JSON responses to formats more amenable to manipulation in R. biocViews: Infrastructure Author: Marcel Ramos [aut, cre] (), Martin Morgan [aut] (), Kayla Interdonato [aut], Yubo Cheng [aut], Nitesh Turaga [aut], BJ Stubbs [ctb], Vincent Carey [ctb], Sehyun Oh [ctb], Sweta Gopaulakrishnan [ctb], Valerie Obenchain [ctb] Maintainer: Marcel Ramos VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/AnVIL git_branch: RELEASE_3_20 git_last_commit: fb82d00 git_last_commit_date: 2024-12-18 Date/Publication: 2024-12-19 source.ver: src/contrib/AnVIL_1.18.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/AnVIL_1.18.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AnVIL_1.18.2.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AnVIL_1.18.2.tgz vignettes: vignettes/AnVIL/inst/doc/BiocDockstore.html, vignettes/AnVIL/inst/doc/Introduction.html, vignettes/AnVIL/inst/doc/RunningWorkflow.html vignetteTitles: Dockstore and Bioconductor for AnVIL, Introduction to the AnVIL package, Running an AnVIL workflow within R hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AnVIL/inst/doc/BiocDockstore.R, vignettes/AnVIL/inst/doc/Introduction.R, vignettes/AnVIL/inst/doc/RunningWorkflow.R dependsOnMe: cBioPortalData importsMe: AnVILPublish, AnVILWorkflow, terraTCGAdata suggestsMe: AnVILBase, AnVILGCP dependencyCount: 76 Package: AnVILAz Version: 1.0.0 Imports: AnVILBase, BiocBaseUtils, curl, httr2, jsonlite, methods, rjsoncons, tibble, utils Suggests: BiocStyle, dplyr, knitr, readr, rmarkdown, tinytest License: Artistic-2.0 MD5sum: dd38a856f187e15cbd9c25c92019a1ee NeedsCompilation: no Title: R / Bioconductor Support for the AnVIL Azure Platform Description: The AnVIL is a cloud computing resource developed in part by the National Human Genome Research Institute. The AnVILAz package supports end-users and developers using the AnVIL platform in the Azure cloud. The package provides a programmatic interface to AnVIL resources, including workspaces, notebooks, tables, and workflows. The package also provides utilities for managing resources, including copying files to and from Azure Blob Storage, and creating shared access signatures (SAS) for secure access to Azure resources. biocViews: Software, Infrastructure, ThirdPartyClient Author: Martin Morgan [aut, ctb] (), Marcel Ramos [aut, cre] () Maintainer: Marcel Ramos URL: https://github.com/Bioconductor/AnVILAz SystemRequirements: az, azcopy VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/AnVILAz/issues git_url: https://git.bioconductor.org/packages/AnVILAz git_branch: RELEASE_3_20 git_last_commit: 0e3aab6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AnVILAz_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AnVILAz_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AnVILAz_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AnVILAz_1.0.0.tgz vignettes: vignettes/AnVILAz/inst/doc/AnVILAzWorkspaces.html, vignettes/AnVILAz/inst/doc/IntroductionToAnVILAz.html vignetteTitles: Working with Workspaces on AnVIL Azure, Introduction to the AnVILAz package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AnVILAz/inst/doc/AnVILAzWorkspaces.R, vignettes/AnVILAz/inst/doc/IntroductionToAnVILAz.R suggestsMe: AnVIL, AnVILBase dependencyCount: 34 Package: AnVILBase Version: 1.0.0 Imports: httr, httr2, dplyr, jsonlite, methods, tibble Suggests: AnVIL, AnVILAz, AnVILGCP, BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0), tinytest License: Artistic-2.0 MD5sum: fd6e6ce4ae5c1c8c9a72b1a72cda36a8 NeedsCompilation: no Title: Generic functions for interacting with the AnVIL ecosystem Description: Provides generic functions for interacting with the AnVIL ecosystem. Packages that use either GCP or Azure in AnVIL are built on top of AnVILBase. Extension packages will provide methods for interacting with other cloud providers. biocViews: Software, Infrastructure Author: Marcel Ramos [aut, cre] (), Martin Morgan [aut, ctb] (), NIH NHGRI U24HG004059 [fnd] Maintainer: Marcel Ramos URL: https://github.com/Bioconductor/AnVILBase VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/AnVILBase/issues git_url: https://git.bioconductor.org/packages/AnVILBase git_branch: RELEASE_3_20 git_last_commit: f2e4297 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AnVILBase_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AnVILBase_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AnVILBase_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AnVILBase_1.0.0.tgz vignettes: vignettes/AnVILBase/inst/doc/AnVILBaseIntroduction.html vignetteTitles: Introduction to AnVILBase hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AnVILBase/inst/doc/AnVILBaseIntroduction.R dependsOnMe: AnVIL, AnVILWorkflow importsMe: AnVILAz, AnVILGCP suggestsMe: terraTCGAdata dependencyCount: 30 Package: AnVILBilling Version: 1.16.0 Depends: R (>= 4.1) Imports: methods, DT, shiny, bigrquery, shinytoastr, DBI, magrittr, dplyr, lubridate, plotly, ggplot2 Suggests: testthat, knitr, BiocStyle, rmarkdown License: Artistic-2.0 MD5sum: 42b4e30f729b87f6a3b4f8b2628d2ccd NeedsCompilation: no Title: Provide functions to retrieve and report on usage expenses in NHGRI AnVIL (anvilproject.org). Description: AnVILBilling helps monitor AnVIL-related costs in R, using queries to a BigQuery table to which costs are exported daily. Functions are defined to help categorize tasks and associated expenditures, and to visualize and explore expense profiles over time. This package will be expanded to help users estimate costs for specific task sets. biocViews: Infrastructure, Software Author: BJ Stubbs [aut], Vince Carey [aut, cre] Maintainer: Vince Carey VignetteBuilder: knitr BugReports: https://github.com/vjcitn/AnVILBilling/issues git_url: https://git.bioconductor.org/packages/AnVILBilling git_branch: RELEASE_3_20 git_last_commit: 9a39dc4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AnVILBilling_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AnVILBilling_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AnVILBilling_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AnVILBilling_1.16.0.tgz vignettes: vignettes/AnVILBilling/inst/doc/billing.html vignetteTitles: Software for reckoning AnVIL/terra usage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AnVILBilling/inst/doc/billing.R dependencyCount: 98 Package: AnVILGCP Version: 1.0.0 Imports: AnVILBase, BiocBaseUtils, dplyr, httr, jsonlite, parallel, methods, rlang, stats, tibble, tidyr, utils Suggests: AnVIL, BiocStyle, httr2, knitr, rmarkdown, testthat, withr License: Artistic-2.0 MD5sum: faa94033f8fdd6320dbc8d157fbaf290 NeedsCompilation: no Title: The GCP R Client for the AnVIL Description: The package provides a set of functions to interact with the Google Cloud Platform (GCP) services on the AnVIL platform. The package is designed to work with the AnVIL package. User-level interaction with this package should be minimal. biocViews: Software, Infrastructure, ThirdPartyClient, DataImport Author: Marcel Ramos [aut, cre] (), Nitesh Turaga [aut], Martin Morgan [aut] () Maintainer: Marcel Ramos URL: https://github.com/Bioconductor/AnVILGCP SystemRequirements: gsutil, gcloud VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/AnVILGCP/issues git_url: https://git.bioconductor.org/packages/AnVILGCP git_branch: RELEASE_3_20 git_last_commit: da980fa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AnVILGCP_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AnVILGCP_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AnVILGCP_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AnVILGCP_1.0.0.tgz vignettes: vignettes/AnVILGCP/inst/doc/AnVILGCPIntroduction.html vignetteTitles: Working with AnVIL on GCP hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AnVILGCP/inst/doc/AnVILGCPIntroduction.R dependsOnMe: AnVILWorkflow, terraTCGAdata importsMe: AnVILPublish suggestsMe: AnVIL, AnVILBase dependencyCount: 39 Package: AnVILPublish Version: 1.16.0 Imports: AnVIL, AnVILGCP, BiocBaseUtils, BiocManager, httr, jsonlite, rmarkdown, yaml, readr, whisker, tools, utils, stats Suggests: knitr, BiocStyle, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: 06c30bb2a89c9c9eb420ec131caba7ab NeedsCompilation: no Title: Publish Packages and Other Resources to AnVIL Workspaces Description: Use this package to create or update AnVIL workspaces from resources such as R / Bioconductor packages. The metadata about the package (e.g., select information from the package DESCRIPTION file and from vignette YAML headings) are used to populate the 'DASHBOARD'. Vignettes are translated to python notebooks ready for evaluation in AnVIL. biocViews: Infrastructure, Software Author: Marcel Ramos [aut, cre] (), Martin Morgan [aut] (), Kayla Interdonato [aut], Vincent Carey [ctb] () Maintainer: Marcel Ramos VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/AnVILPublish git_branch: RELEASE_3_20 git_last_commit: a7a8d50 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AnVILPublish_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AnVILPublish_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AnVILPublish_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AnVILPublish_1.16.0.tgz vignettes: vignettes/AnVILPublish/inst/doc/AnVILPublishIntro.html vignetteTitles: Publishing R / Bioconductor packages to AnVIL Workspaces hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AnVILPublish/inst/doc/AnVILPublishIntro.R dependencyCount: 89 Package: AnVILWorkflow Version: 1.6.0 Depends: R (>= 4.4.0), AnVILGCP, AnVILBase, httr Imports: AnVIL, dplyr, jsonlite, rlang, tibble, tidyr, utils, methods, plyr, stringr Suggests: knitr, BiocStyle License: Artistic-2.0 MD5sum: 7a0d2a5b63a89a86ca0cbeaada7dcc6e NeedsCompilation: no Title: Run workflows implemented in Terra/AnVIL workspace Description: The AnVIL is a cloud computing resource developed in part by the National Human Genome Research Institute. The main cloud-based genomics platform deported by the AnVIL project is Terra. The AnVILWorkflow package allows remote access to Terra implemented workflows, enabling end-user to utilize Terra/ AnVIL provided resources - such as data, workflows, and flexible/scalble computing resources - through the conventional R functions. biocViews: Infrastructure, Software Author: Sehyun Oh [aut, cre] (), Marcel Ramos [ctb] (), Kai Gravel-Pucillo [aut] Maintainer: Sehyun Oh URL: https://github.com/shbrief/AnVILWorkflow VignetteBuilder: knitr BugReports: https://github.com/shbrief/AnVILWorkflow/issues git_url: https://git.bioconductor.org/packages/AnVILWorkflow git_branch: RELEASE_3_20 git_last_commit: 073e380 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AnVILWorkflow_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AnVILWorkflow_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AnVILWorkflow_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AnVILWorkflow_1.6.0.tgz vignettes: vignettes/AnVILWorkflow/inst/doc/salmon.html vignetteTitles: Quickstart - RNAseq analysis using salmon hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AnVILWorkflow/inst/doc/salmon.R dependencyCount: 80 Package: APAlyzer Version: 1.20.0 Depends: R (>= 3.5.0) Imports: GenomicRanges, GenomicFeatures, GenomicAlignments, DESeq2, ggrepel, SummarizedExperiment, Rsubread, stats, ggplot2, methods, rtracklayer, VariantAnnotation, dplyr, tidyr, repmis, Rsamtools, HybridMTest Suggests: knitr, rmarkdown, BiocStyle, org.Mm.eg.db, AnnotationDbi, TBX20BamSubset, testthat, pasillaBamSubset License: LGPL-3 MD5sum: 8778e7b93e0dec42f1bdc978085ae254 NeedsCompilation: no Title: A toolkit for APA analysis using RNA-seq data Description: Perform 3'UTR APA, Intronic APA and gene expression analysis using RNA-seq data. biocViews: Sequencing, RNASeq, DifferentialExpression, GeneExpression, GeneRegulation, Annotation, DataImport, Software Author: Ruijia Wang [cre, aut] (), Bin Tian [aut], Wei-Chun Chen [aut] Maintainer: Ruijia Wang URL: https://github.com/RJWANGbioinfo/APAlyzer/ VignetteBuilder: knitr BugReports: https://github.com/RJWANGbioinfo/APAlyzer/issues git_url: https://git.bioconductor.org/packages/APAlyzer git_branch: RELEASE_3_20 git_last_commit: c3fdedd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/APAlyzer_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/APAlyzer_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/APAlyzer_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/APAlyzer_1.20.0.tgz vignettes: vignettes/APAlyzer/inst/doc/APAlyzer.html vignetteTitles: APAlyzer: toolkit for RNA-seq APA analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/APAlyzer/inst/doc/APAlyzer.R dependencyCount: 123 Package: apComplex Version: 2.72.0 Depends: R (>= 2.10), graph, RBGL Imports: Rgraphviz, stats, org.Sc.sgd.db License: LGPL MD5sum: c355c45f983cd44ccd52914938f375f2 NeedsCompilation: no Title: Estimate protein complex membership using AP-MS protein data Description: Functions to estimate a bipartite graph of protein complex membership using AP-MS data. biocViews: ImmunoOncology, NetworkInference, MassSpectrometry, GraphAndNetwork Author: Denise Scholtens Maintainer: Denise Scholtens git_url: https://git.bioconductor.org/packages/apComplex git_branch: RELEASE_3_20 git_last_commit: 9bf087b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/apComplex_2.72.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/apComplex_2.72.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/apComplex_2.72.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/apComplex_2.72.0.tgz vignettes: vignettes/apComplex/inst/doc/apComplex.pdf vignetteTitles: apComplex hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/apComplex/inst/doc/apComplex.R dependencyCount: 51 Package: apeglm Version: 1.28.0 Imports: emdbook, SummarizedExperiment, GenomicRanges, methods, stats, utils, Rcpp LinkingTo: Rcpp, RcppEigen, RcppNumerical Suggests: DESeq2, airway, knitr, rmarkdown, testthat License: GPL-2 Archs: x64 MD5sum: f1121b16b6271d8102ccce697b1bd9ff NeedsCompilation: yes Title: Approximate posterior estimation for GLM coefficients Description: apeglm provides Bayesian shrinkage estimators for effect sizes for a variety of GLM models, using approximation of the posterior for individual coefficients. biocViews: ImmunoOncology, Sequencing, RNASeq, DifferentialExpression, GeneExpression, Bayesian Author: Anqi Zhu [aut, cre], Joshua Zitovsky [ctb], Joseph Ibrahim [aut], Michael Love [aut] Maintainer: Anqi Zhu VignetteBuilder: knitr, rmarkdown git_url: https://git.bioconductor.org/packages/apeglm git_branch: RELEASE_3_20 git_last_commit: e8962a4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/apeglm_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/apeglm_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/apeglm_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/apeglm_1.28.0.tgz vignettes: vignettes/apeglm/inst/doc/apeglm.html vignetteTitles: Effect size estimation with apeglm hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/apeglm/inst/doc/apeglm.R dependsOnMe: rnaseqGene importsMe: airpart, debrowser, DiffBind, ERSSA, phantasus, Rmmquant, TEKRABber suggestsMe: bambu, dar, DESeq2, extraChIPs, fishpond, NanoporeRNASeq, RNAseqQC dependencyCount: 47 Package: APL Version: 1.10.2 Depends: R (>= 4.4.0) Imports: Matrix, RSpectra, ggrepel, ggplot2, viridisLite, plotly, SeuratObject, SingleCellExperiment, magrittr, SummarizedExperiment, topGO, methods, stats, utils, org.Hs.eg.db, org.Mm.eg.db, rlang Suggests: BiocStyle, knitr, rmarkdown, scRNAseq, scater, scran, sparseMatrixStats, testthat License: GPL (>= 3) MD5sum: b57532033fac01e63f5e1830833d6ca0 NeedsCompilation: no Title: Association Plots Description: APL is a package developed for computation of Association Plots (AP), a method for visualization and analysis of single cell transcriptomics data. The main focus of APL is the identification of genes characteristic for individual clusters of cells from input data. The package performs correspondence analysis (CA) and allows to identify cluster-specific genes using Association Plots. Additionally, APL computes the cluster-specificity scores for all genes which allows to rank the genes by their specificity for a selected cell cluster of interest. biocViews: StatisticalMethod, DimensionReduction, SingleCell, Sequencing, RNASeq, GeneExpression Author: Clemens Kohl [cre, aut], Elzbieta Gralinska [aut], Martin Vingron [aut] Maintainer: Clemens Kohl URL: https://vingronlab.github.io/APL/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/APL git_branch: RELEASE_3_20 git_last_commit: d71ccae git_last_commit_date: 2024-11-04 Date/Publication: 2024-11-05 source.ver: src/contrib/APL_1.10.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/APL_1.10.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/APL_1.10.2.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/APL_1.10.2.tgz vignettes: vignettes/APL/inst/doc/APL.html vignetteTitles: Analyzing data with APL hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/APL/inst/doc/APL.R dependencyCount: 129 Package: appreci8R Version: 1.24.0 Imports: shiny, shinyjs, DT, VariantAnnotation, BSgenome, BSgenome.Hsapiens.UCSC.hg19, TxDb.Hsapiens.UCSC.hg19.knownGene, Homo.sapiens, SNPlocs.Hsapiens.dbSNP144.GRCh37, XtraSNPlocs.Hsapiens.dbSNP144.GRCh37, Biostrings, MafDb.1Kgenomes.phase3.hs37d5, MafDb.ExAC.r1.0.hs37d5, MafDb.gnomADex.r2.1.hs37d5, COSMIC.67, rentrez, PolyPhen.Hsapiens.dbSNP131, SIFT.Hsapiens.dbSNP137, seqinr, openxlsx, Rsamtools, stringr, stats, GenomicRanges, S4Vectors, GenomicFeatures, IRanges, GenomicScores, SummarizedExperiment Suggests: GO.db, org.Hs.eg.db, utils License: LGPL-3 MD5sum: 99584620659f94fbb38d19829e144235 NeedsCompilation: no Title: appreci8R: an R/Bioconductor package for filtering SNVs and short indels with high sensitivity and high PPV Description: The appreci8R is an R version of our appreci8-algorithm - A Pipeline for PREcise variant Calling Integrating 8 tools. Variant calling results of our standard appreci8-tools (GATK, Platypus, VarScan, FreeBayes, LoFreq, SNVer, samtools and VarDict), as well as up to 5 additional tools is combined, evaluated and filtered. biocViews: VariantDetection, GeneticVariability, SNP, VariantAnnotation, Sequencing, Author: Sarah Sandmann Maintainer: Sarah Sandmann git_url: https://git.bioconductor.org/packages/appreci8R git_branch: RELEASE_3_20 git_last_commit: 8bc7a20 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/appreci8R_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/appreci8R_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/appreci8R_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/appreci8R_1.24.0.tgz vignettes: vignettes/appreci8R/inst/doc/appreci8R.pdf vignetteTitles: Using appreci8R hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/appreci8R/inst/doc/appreci8R.R dependencyCount: 165 Package: aroma.light Version: 3.36.0 Depends: R (>= 2.15.2) Imports: stats, R.methodsS3 (>= 1.7.1), R.oo (>= 1.23.0), R.utils (>= 2.9.0), matrixStats (>= 0.55.0) Suggests: princurve (>= 2.1.4) License: GPL (>= 2) MD5sum: 65fab39e6270885aa65b48a528136b14 NeedsCompilation: no Title: Light-Weight Methods for Normalization and Visualization of Microarray Data using Only Basic R Data Types Description: Methods for microarray analysis that take basic data types such as matrices and lists of vectors. These methods can be used standalone, be utilized in other packages, or be wrapped up in higher-level classes. biocViews: Infrastructure, Microarray, OneChannel, TwoChannel, MultiChannel, Visualization, Preprocessing Author: Henrik Bengtsson [aut, cre, cph], Pierre Neuvial [ctb], Aaron Lun [ctb] Maintainer: Henrik Bengtsson URL: https://github.com/HenrikBengtsson/aroma.light, https://www.aroma-project.org BugReports: https://github.com/HenrikBengtsson/aroma.light/issues git_url: https://git.bioconductor.org/packages/aroma.light git_branch: RELEASE_3_20 git_last_commit: d421a4e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/aroma.light_3.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/aroma.light_3.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/aroma.light_3.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/aroma.light_3.36.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE importsMe: EDASeq, scone, PSCBS suggestsMe: TIN, aroma.affymetrix, aroma.cn, aroma.core dependencyCount: 8 Package: ArrayExpress Version: 1.66.0 Depends: R (>= 2.9.0), Biobase (>= 2.4.0) Imports: oligo, limma, httr, utils, jsonlite, rlang, tools, methods Suggests: affy License: Artistic-2.0 MD5sum: 82a4dac2aeb99c9019adf6a234917b2b NeedsCompilation: no Title: Access the ArrayExpress Collection at EMBL-EBI Biostudies and build Bioconductor data structures: ExpressionSet, AffyBatch, NChannelSet Description: Access the ArrayExpress Collection at EMBL-EBI Biostudies and build Bioconductor data structures: ExpressionSet, AffyBatch, NChannelSet. biocViews: Microarray, DataImport, OneChannel, TwoChannel Author: Audrey Kauffmann, Ibrahim Emam, Michael Schubert, Jose Marugan Maintainer: Jose Marugan git_url: https://git.bioconductor.org/packages/ArrayExpress git_branch: RELEASE_3_20 git_last_commit: d1e37af git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ArrayExpress_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ArrayExpress_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ArrayExpress_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ArrayExpress_1.66.0.tgz vignettes: vignettes/ArrayExpress/inst/doc/ArrayExpress.pdf vignetteTitles: ArrayExpress: Import and convert ArrayExpress data sets into R object hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ArrayExpress/inst/doc/ArrayExpress.R dependsOnMe: DrugVsDisease, maEndToEnd suggestsMe: Hiiragi2013, bapred, seeker dependencyCount: 66 Package: arrayMvout Version: 1.64.0 Depends: R (>= 2.6.0), tools, methods, utils, parody, Biobase, affy Imports: mdqc, affyContam, lumi Suggests: MAQCsubset, mvoutData, lumiBarnes, affyPLM, affydata, hgu133atagcdf License: Artistic-2.0 MD5sum: 1a220831639a56bbe6cd97eece9b1d1f NeedsCompilation: no Title: multivariate outlier detection for expression array QA Description: This package supports the application of diverse quality metrics to AffyBatch instances, summarizing these metrics via PCA, and then performing parametric outlier detection on the PCs to identify aberrant arrays with a fixed Type I error rate biocViews: Infrastructure, Microarray, QualityControl Author: Z. Gao, A. Asare, R. Wang, V. Carey Maintainer: V. Carey git_url: https://git.bioconductor.org/packages/arrayMvout git_branch: RELEASE_3_20 git_last_commit: 7cb8f5f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/arrayMvout_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/arrayMvout_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/arrayMvout_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/arrayMvout_1.64.0.tgz vignettes: vignettes/arrayMvout/inst/doc/arrayMvout.pdf vignetteTitles: arrayMvout -- multivariate outlier algorithm for expression arrays hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/arrayMvout/inst/doc/arrayMvout.R dependencyCount: 171 Package: arrayQuality Version: 1.84.0 Depends: R (>= 2.2.0) Imports: graphics, grDevices, grid, gridBase, hexbin, limma, marray, methods, RColorBrewer, stats, utils Suggests: mclust, MEEBOdata, HEEBOdata License: LGPL MD5sum: 9c1faf2d4271c228c2c4b8d1f8b69dce NeedsCompilation: no Title: Assessing array quality on spotted arrays Description: Functions for performing print-run and array level quality assessment. biocViews: Microarray,TwoChannel,QualityControl,Visualization Author: Agnes Paquet and Jean Yee Hwa Yang Maintainer: Agnes Paquet URL: http://arrays.ucsf.edu/ git_url: https://git.bioconductor.org/packages/arrayQuality git_branch: RELEASE_3_20 git_last_commit: 54abc9a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/arrayQuality_1.84.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/arrayQuality_1.84.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/arrayQuality_1.84.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/arrayQuality_1.84.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 13 Package: arrayQualityMetrics Version: 3.62.0 Imports: affy, affyPLM (>= 1.27.3), beadarray, Biobase, genefilter, graphics, grDevices, grid, gridSVG (>= 1.4-3), Hmisc, hwriter, lattice, latticeExtra, limma, methods, RColorBrewer, setRNG, stats, utils, vsn (>= 3.23.3), XML, svglite Suggests: ALLMLL, CCl4, BiocStyle, knitr License: LGPL (>= 2) MD5sum: 00d3779f4daae37b1229b8b81912621b NeedsCompilation: no Title: Quality metrics report for microarray data sets Description: This package generates microarray quality metrics reports for data in Bioconductor microarray data containers (ExpressionSet, NChannelSet, AffyBatch). One and two color array platforms are supported. biocViews: Microarray, QualityControl, OneChannel, TwoChannel, ReportWriting Author: Audrey Kauffmann, Wolfgang Huber Maintainer: Mike Smith VignetteBuilder: knitr BugReports: https://github.com/grimbough/arrayQualityMetrics/issues git_url: https://git.bioconductor.org/packages/arrayQualityMetrics git_branch: RELEASE_3_20 git_last_commit: addcbf2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/arrayQualityMetrics_3.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/arrayQualityMetrics_3.62.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/arrayQualityMetrics_3.62.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/arrayQualityMetrics_3.62.0.tgz vignettes: vignettes/arrayQualityMetrics/inst/doc/aqm.pdf, vignettes/arrayQualityMetrics/inst/doc/arrayQualityMetrics.pdf vignetteTitles: Advanced topics: Customizing arrayQualityMetrics reports and programmatic processing of the output, Introduction: microarray quality assessment with arrayQualityMetrics hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/arrayQualityMetrics/inst/doc/aqm.R, vignettes/arrayQualityMetrics/inst/doc/arrayQualityMetrics.R dependsOnMe: maEndToEnd dependencyCount: 135 Package: ARRmNormalization Version: 1.46.0 Depends: R (>= 2.15.1), ARRmData License: Artistic-2.0 MD5sum: 0af955b7b98040954d6f8bfb2407ae2a NeedsCompilation: no Title: Adaptive Robust Regression normalization for Illumina methylation data Description: Perform the Adaptive Robust Regression method (ARRm) for the normalization of methylation data from the Illumina Infinium HumanMethylation 450k assay. biocViews: DNAMethylation, TwoChannel, Preprocessing, Microarray Author: Jean-Philippe Fortin, Celia M.T. Greenwood, Aurelie Labbe. Maintainer: Jean-Philippe Fortin git_url: https://git.bioconductor.org/packages/ARRmNormalization git_branch: RELEASE_3_20 git_last_commit: eaa603a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ARRmNormalization_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ARRmNormalization_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ARRmNormalization_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ARRmNormalization_1.46.0.tgz vignettes: vignettes/ARRmNormalization/inst/doc/ARRmNormalization.pdf vignetteTitles: ARRmNormalization hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ARRmNormalization/inst/doc/ARRmNormalization.R dependencyCount: 1 Package: artMS Version: 1.24.0 Depends: R (>= 4.1.0) Imports: AnnotationDbi, bit64, circlize, cluster, corrplot, data.table, dplyr, getopt, ggdendro, ggplot2, gplots, ggrepel, graphics, grDevices, grid, limma, MSstats, openxlsx, org.Hs.eg.db, pheatmap, plotly, plyr, RColorBrewer, scales, seqinr, stats, stringr, tidyr, UpSetR, utils, VennDiagram, yaml Suggests: BiocStyle, ComplexHeatmap, factoextra, FactoMineR, gProfileR, knitr, PerformanceAnalytics, org.Mm.eg.db, rmarkdown, testthat License: GPL (>= 3) + file LICENSE MD5sum: bb8230343feec9d22b0b9ce66645aad3 NeedsCompilation: no Title: Analytical R tools for Mass Spectrometry Description: artMS provides a set of tools for the analysis of proteomics label-free datasets. It takes as input the MaxQuant search result output (evidence.txt file) and performs quality control, relative quantification using MSstats, downstream analysis and integration. artMS also provides a set of functions to re-format and make it compatible with other analytical tools, including, SAINTq, SAINTexpress, Phosfate, and PHOTON. Check [http://artms.org](http://artms.org) for details. biocViews: Proteomics, DifferentialExpression, BiomedicalInformatics, SystemsBiology, MassSpectrometry, Annotation, QualityControl, GeneSetEnrichment, Clustering, Normalization, ImmunoOncology, MultipleComparison Author: David Jimenez-Morales [aut, cre] (), Alexandre Rosa Campos [aut, ctb] (), John Von Dollen [aut], Nevan Krogan [aut] (), Danielle Swaney [aut, ctb] () Maintainer: David Jimenez-Morales URL: http://artms.org VignetteBuilder: knitr BugReports: https://github.com/biodavidjm/artMS/issues git_url: https://git.bioconductor.org/packages/artMS git_branch: RELEASE_3_20 git_last_commit: 1f43032 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/artMS_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/artMS_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/artMS_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/artMS_1.24.0.tgz vignettes: vignettes/artMS/inst/doc/artMS_vignette.html vignetteTitles: Learn to use artMS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/artMS/inst/doc/artMS_vignette.R dependencyCount: 146 Package: ASAFE Version: 1.32.0 Depends: R (>= 3.2) Suggests: knitr, testthat License: Artistic-2.0 MD5sum: f0b5ce85ed013abf23384cc62c077325 NeedsCompilation: no Title: Ancestry Specific Allele Frequency Estimation Description: Given admixed individuals' bi-allelic SNP genotypes and ancestry pairs (where each ancestry can take one of three values) for multiple SNPs, perform an EM algorithm to deal with the fact that SNP genotypes are unphased with respect to ancestry pairs, in order to estimate ancestry-specific allele frequencies for all SNPs. biocViews: SNP, GenomeWideAssociation, LinkageDisequilibrium, BiomedicalInformatics, Genetics, ExperimentalDesign Author: Qian Zhang Maintainer: Qian Zhang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ASAFE git_branch: RELEASE_3_20 git_last_commit: ccf165d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ASAFE_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ASAFE_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ASAFE_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ASAFE_1.32.0.tgz vignettes: vignettes/ASAFE/inst/doc/ASAFE.pdf vignetteTitles: ASAFE (Ancestry Specific Allele Frequency Estimation) hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ASAFE/inst/doc/ASAFE.R dependencyCount: 0 Package: ASEB Version: 1.50.0 Depends: R (>= 2.8.0), methods Imports: graphics, methods, utils License: GPL (>= 3) Archs: x64 MD5sum: e3cd7166e35309e339b37d48d5f076a2 NeedsCompilation: yes Title: Predict Acetylated Lysine Sites Description: ASEB is an R package to predict lysine sites that can be acetylated by a specific KAT-family. biocViews: Proteomics Author: Likun Wang and Tingting Li . Maintainer: Likun Wang git_url: https://git.bioconductor.org/packages/ASEB git_branch: RELEASE_3_20 git_last_commit: 5a56532 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ASEB_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ASEB_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ASEB_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ASEB_1.50.0.tgz vignettes: vignettes/ASEB/inst/doc/ASEB.pdf vignetteTitles: ASEB hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ASEB/inst/doc/ASEB.R dependencyCount: 3 Package: ASGSCA Version: 1.40.0 Imports: Matrix, MASS Suggests: BiocStyle License: GPL-3 MD5sum: 90ef625503107f317b94142820c3689d NeedsCompilation: no Title: Association Studies for multiple SNPs and multiple traits using Generalized Structured Equation Models Description: The package provides tools to model and test the association between multiple genotypes and multiple traits, taking into account the prior biological knowledge. Genes, and clinical pathways are incorporated in the model as latent variables. The method is based on Generalized Structured Component Analysis (GSCA). biocViews: StructuralEquationModels Author: Hela Romdhani, Stepan Grinek , Heungsun Hwang and Aurelie Labbe. Maintainer: Hela Romdhani git_url: https://git.bioconductor.org/packages/ASGSCA git_branch: RELEASE_3_20 git_last_commit: 263df08 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ASGSCA_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ASGSCA_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ASGSCA_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ASGSCA_1.40.0.tgz vignettes: vignettes/ASGSCA/inst/doc/ASGSCA.pdf vignetteTitles: Association Studies using Generalized Structured Equation Models. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ASGSCA/inst/doc/ASGSCA.R dependencyCount: 9 Package: ASICS Version: 2.22.0 Depends: R (>= 3.5) Imports: BiocParallel, ggplot2, glmnet, grDevices, gridExtra, methods, mvtnorm, PepsNMR, plyr, quadprog, ropls, stats, SummarizedExperiment, utils, Matrix, zoo Suggests: knitr, rmarkdown, BiocStyle, testthat, ASICSdata License: GPL (>= 2) MD5sum: 5e56f9ee7c4ecc30c1ba38c947b0c14c NeedsCompilation: no Title: Automatic Statistical Identification in Complex Spectra Description: With a set of pure metabolite reference spectra, ASICS quantifies concentration of metabolites in a complex spectrum. The identification of metabolites is performed by fitting a mixture model to the spectra of the library with a sparse penalty. The method and its statistical properties are described in Tardivel et al. (2017) . biocViews: Software, DataImport, Cheminformatics, Metabolomics Author: Gaëlle Lefort [aut, cre], Rémi Servien [aut], Patrick Tardivel [aut], Nathalie Vialaneix [aut] Maintainer: Gaëlle Lefort VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ASICS git_branch: RELEASE_3_20 git_last_commit: 0851b6b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ASICS_2.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ASICS_2.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ASICS_2.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ASICS_2.22.0.tgz vignettes: vignettes/ASICS/inst/doc/ASICS.html, vignettes/ASICS/inst/doc/ASICSUsersGuide.html vignetteTitles: ASICS, ASICS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ASICS/inst/doc/ASICS.R, vignettes/ASICS/inst/doc/ASICSUsersGuide.R suggestsMe: AlpsNMR dependencyCount: 131 Package: ASpli Version: 2.16.0 Depends: methods, grDevices, stats, utils, parallel, edgeR, limma, AnnotationDbi Imports: GenomicRanges, GenomicFeatures, BiocGenerics, IRanges, GenomicAlignments, Gviz, S4Vectors, Rsamtools, BiocStyle, igraph, htmltools, data.table, UpSetR, tidyr, DT, MASS, grid, graphics, pbmcapply, txdbmaker License: GPL MD5sum: 4a8a46161468892eed33896cd0be8970 NeedsCompilation: no Title: Analysis of Alternative Splicing Using RNA-Seq Description: Integrative pipeline for the analysis of alternative splicing using RNAseq. biocViews: ImmunoOncology, GeneExpression, Transcription, AlternativeSplicing, Coverage, DifferentialExpression, DifferentialSplicing, TimeCourse, RNASeq, GenomeAnnotation, Sequencing, Alignment Author: Estefania Mancini, Andres Rabinovich, Javier Iserte, Marcelo Yanovsky and Ariel Chernomoretz Maintainer: Ariel Chernomoretz git_url: https://git.bioconductor.org/packages/ASpli git_branch: RELEASE_3_20 git_last_commit: 7364ee0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ASpli_2.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ASpli_2.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ASpli_2.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ASpli_2.16.0.tgz vignettes: vignettes/ASpli/inst/doc/ASpli.pdf vignetteTitles: ASpli hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ASpli/inst/doc/ASpli.R importsMe: saseR dependencyCount: 174 Package: AssessORF Version: 1.24.0 Depends: R (>= 3.5.0), DECIPHER (>= 2.10.0) Imports: Biostrings, GenomicRanges, IRanges, graphics, grDevices, methods, stats, utils Suggests: AssessORFData, BiocStyle, knitr, rmarkdown, RSQLite (>= 1.1) License: GPL-3 MD5sum: 1adeb28ba820670c4e143a4e5749f7d6 NeedsCompilation: no Title: Assess Gene Predictions Using Proteomics and Evolutionary Conservation Description: In order to assess the quality of a set of predicted genes for a genome, evidence must first be mapped to that genome. Next, each gene must be categorized based on how strong the evidence is for or against that gene. The AssessORF package provides the functions and class structures necessary for accomplishing those tasks, using proteomic hits and evolutionarily conserved start codons as the forms of evidence. biocViews: ComparativeGenomics, GenePrediction, GenomeAnnotation, Genetics, Proteomics, QualityControl, Visualization Author: Deepank Korandla [aut, cre], Erik Wright [aut] Maintainer: Deepank Korandla VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/AssessORF git_branch: RELEASE_3_20 git_last_commit: 251f2d5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AssessORF_1.24.0.tar.gz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AssessORF_1.23.0.tgz vignettes: vignettes/AssessORF/inst/doc/UsingAssessORF.pdf vignetteTitles: Using AssessORF hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AssessORF/inst/doc/UsingAssessORF.R dependencyCount: 28 Package: ASSET Version: 2.24.0 Depends: R (>= 3.5.0), stats, graphics Imports: MASS, msm, rmeta Suggests: RUnit, BiocGenerics, knitr License: GPL-2 + file LICENSE MD5sum: 88f9ff419ff944d16089a40d67dc6be5 NeedsCompilation: no Title: An R package for subset-based association analysis of heterogeneous traits and subtypes Description: An R package for subset-based analysis of heterogeneous traits and disease subtypes. The package allows the user to search through all possible subsets of z-scores to identify the subset of traits giving the best meta-analyzed z-score. Further, it returns a p-value adjusting for the multiple-testing involved in the search. It also allows for searching for the best combination of disease subtypes associated with each variant. biocViews: StatisticalMethod, SNP, GenomeWideAssociation, MultipleComparison Author: Samsiddhi Bhattacharjee [aut, cre], Guanghao Qi [aut], Nilanjan Chatterjee [aut], William Wheeler [aut] Maintainer: Samsiddhi Bhattacharjee VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ASSET git_branch: RELEASE_3_20 git_last_commit: 19bb1f1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ASSET_2.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ASSET_2.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ASSET_2.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ASSET_2.24.0.tgz vignettes: vignettes/ASSET/inst/doc/vignette.pdf vignetteTitles: ASSET Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ASSET/inst/doc/vignette.R dependsOnMe: REBET dependencyCount: 27 Package: ASSIGN Version: 1.42.0 Depends: R (>= 3.4) Imports: gplots, graphics, grDevices, msm, Rlab, stats, sva, utils, ggplot2, yaml Suggests: testthat, BiocStyle, lintr, knitr, rmarkdown License: MIT + file LICENSE MD5sum: de3418c360df75b32474cdc6815a3a88 NeedsCompilation: no Title: Adaptive Signature Selection and InteGratioN (ASSIGN) Description: ASSIGN is a computational tool to evaluate the pathway deregulation/activation status in individual patient samples. ASSIGN employs a flexible Bayesian factor analysis approach that adapts predetermined pathway signatures derived either from knowledge-based literature or from perturbation experiments to the cell-/tissue-specific pathway signatures. The deregulation/activation level of each context-specific pathway is quantified to a score, which represents the extent to which a patient sample encompasses the pathway deregulation/activation signature. biocViews: Software, GeneExpression, Pathways, Bayesian Author: Ying Shen, Andrea H. Bild, W. Evan Johnson, and Mumtehena Rahman Maintainer: Ying Shen , W. Evan Johnson , David Jenkins , Mumtehena Rahman URL: https://compbiomed.github.io/ASSIGN/ VignetteBuilder: knitr BugReports: https://github.com/compbiomed/ASSIGN/issues git_url: https://git.bioconductor.org/packages/ASSIGN git_branch: RELEASE_3_20 git_last_commit: 189393b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ASSIGN_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ASSIGN_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ASSIGN_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ASSIGN_1.42.0.tgz vignettes: vignettes/ASSIGN/inst/doc/ASSIGN.vignette.html vignetteTitles: Primer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ASSIGN/inst/doc/ASSIGN.vignette.R dependencyCount: 100 Package: assorthead Version: 1.0.1 Suggests: knitr, rmarkdown, BiocStyle License: MIT + file LICENSE MD5sum: 7a4a925fc9977f149ab532867e321f18 NeedsCompilation: no Title: Assorted Header-Only C++ Libraries Description: Vendors an assortment of useful header-only C++ libraries. Bioconductor packages can use these libraries in their own C++ code by LinkingTo this package without introducing any additional dependencies. The use of a central repository avoids duplicate vendoring of libraries across multiple R packages, and enables better coordination of version updates across cohorts of interdependent C++ libraries. biocViews: SingleCell, QualityControl, Normalization, DataRepresentation, DataImport, DifferentialExpression, Alignment Author: Aaron Lun [cre, aut] Maintainer: Aaron Lun URL: https://github.com/LTLA/assorthead VignetteBuilder: knitr BugReports: https://github.com/LTLA/assorthead/issues git_url: https://git.bioconductor.org/packages/assorthead git_branch: RELEASE_3_20 git_last_commit: 4aa4462 git_last_commit_date: 2024-11-27 Date/Publication: 2024-11-28 source.ver: src/contrib/assorthead_1.0.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/assorthead_1.0.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/assorthead_1.0.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/assorthead_1.0.1.tgz vignettes: vignettes/assorthead/inst/doc/userguide.html vignetteTitles: User's Guide hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/assorthead/inst/doc/userguide.R linksToMe: beachmat, beachmat.hdf5, BiocNeighbors, BiocSingular, bluster, epiregulon, scrapper, SingleR dependencyCount: 0 Package: ASURAT Version: 1.10.0 Depends: R (>= 4.0.0) Imports: SingleCellExperiment, SummarizedExperiment, S4Vectors, Rcpp (>= 1.0.7), cluster, utils, plot3D, ComplexHeatmap, circlize, grid, grDevices, graphics LinkingTo: Rcpp Suggests: ggplot2, TENxPBMCData, dplyr, Rtsne, Seurat, AnnotationDbi, BiocGenerics, stringr, org.Hs.eg.db, knitr, rmarkdown, testthat (>= 3.0.0) License: GPL-3 + file LICENSE Archs: x64 MD5sum: 982b35bc493bed92ff26988b1bd9224e NeedsCompilation: yes Title: Functional annotation-driven unsupervised clustering for single-cell data Description: ASURAT is a software for single-cell data analysis. Using ASURAT, one can simultaneously perform unsupervised clustering and biological interpretation in terms of cell type, disease, biological process, and signaling pathway activity. Inputting a single-cell RNA-seq data and knowledge-based databases, such as Cell Ontology, Gene Ontology, KEGG, etc., ASURAT transforms gene expression tables into original multivariate tables, termed sign-by-sample matrices (SSMs). biocViews: GeneExpression, SingleCell, Sequencing, Clustering, GeneSignaling Author: Keita Iida [aut, cre] (), Johannes Nicolaus Wibisana [ctb] Maintainer: Keita Iida VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ASURAT git_branch: RELEASE_3_20 git_last_commit: 541c815 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ASURAT_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ASURAT_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ASURAT_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ASURAT_1.10.0.tgz vignettes: vignettes/ASURAT/inst/doc/ASURAT.html vignetteTitles: ASURAT hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ASURAT/inst/doc/ASURAT.R dependencyCount: 58 Package: ATACseqQC Version: 1.30.0 Depends: R (>= 3.5.0), BiocGenerics, S4Vectors Imports: BSgenome, Biostrings, ChIPpeakAnno, IRanges, GenomicRanges, GenomicAlignments, GenomeInfoDb, GenomicScores, graphics, grid, limma, Rsamtools (>= 1.31.2), randomForest, rtracklayer, stats, motifStack, preseqR, utils, KernSmooth, edgeR, BiocParallel Suggests: BiocStyle, knitr, BSgenome.Hsapiens.UCSC.hg19, TxDb.Hsapiens.UCSC.hg19.knownGene, phastCons100way.UCSC.hg19, MotifDb, trackViewer, testthat, rmarkdown License: GPL (>= 2) MD5sum: 3396042fcbd4c5e18725c1e9c33c0199 NeedsCompilation: no Title: ATAC-seq Quality Control Description: ATAC-seq, an assay for Transposase-Accessible Chromatin using sequencing, is a rapid and sensitive method for chromatin accessibility analysis. It was developed as an alternative method to MNase-seq, FAIRE-seq and DNAse-seq. Comparing to the other methods, ATAC-seq requires less amount of the biological samples and time to process. In the process of analyzing several ATAC-seq dataset produced in our labs, we learned some of the unique aspects of the quality assessment for ATAC-seq data.To help users to quickly assess whether their ATAC-seq experiment is successful, we developed ATACseqQC package partially following the guideline published in Nature Method 2013 (Greenleaf et al.), including diagnostic plot of fragment size distribution, proportion of mitochondria reads, nucleosome positioning pattern, and CTCF or other Transcript Factor footprints. biocViews: Sequencing, DNASeq, ATACSeq, GeneRegulation, QualityControl, Coverage, NucleosomePositioning, ImmunoOncology Author: Jianhong Ou, Haibo Liu, Feng Yan, Jun Yu, Michelle Kelliher, Lucio Castilla, Nathan Lawson, Lihua Julie Zhu Maintainer: Jianhong Ou VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ATACseqQC git_branch: RELEASE_3_20 git_last_commit: 547dec8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ATACseqQC_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ATACseqQC_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ATACseqQC_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ATACseqQC_1.30.0.tgz vignettes: vignettes/ATACseqQC/inst/doc/ATACseqQC.html vignetteTitles: ATACseqQC Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ATACseqQC/inst/doc/ATACseqQC.R suggestsMe: ATACseqTFEA dependencyCount: 189 Package: ATACseqTFEA Version: 1.8.0 Depends: R (>= 4.2) Imports: BiocGenerics, S4Vectors, IRanges, Matrix, GenomicRanges, GenomicAlignments, GenomeInfoDb, SummarizedExperiment, Rsamtools, motifmatchr, TFBSTools, stats, pracma, ggplot2, ggrepel, dplyr, limma, methods, rtracklayer Suggests: BSgenome.Drerio.UCSC.danRer10, knitr, testthat, ATACseqQC, rmarkdown, BiocStyle License: GPL-3 MD5sum: ddd2599383dc600b5a673bbf4b6b9ba5 NeedsCompilation: no Title: Transcription Factor Enrichment Analysis for ATAC-seq Description: Assay for Transpose-Accessible Chromatin using sequencing (ATAC-seq) is a technique to assess genome-wide chromatin accessibility by probing open chromatin with hyperactive mutant Tn5 Transposase that inserts sequencing adapters into open regions of the genome. ATACseqTFEA is an improvement of the current computational method that detects differential activity of transcription factors (TFs). ATACseqTFEA not only uses the difference of open region information, but also (or emphasizes) the difference of TFs footprints (cutting sites or insertion sites). ATACseqTFEA provides an easy, rigorous way to broadly assess TF activity changes between two conditions. biocViews: Sequencing, DNASeq, ATACSeq, MNaseSeq, GeneRegulation Author: Jianhong Ou [aut, cre] () Maintainer: Jianhong Ou URL: https://github.com/jianhong/ATACseqTFEA VignetteBuilder: knitr BugReports: https://github.com/jianhong/ATACseqTFEA/issues git_url: https://git.bioconductor.org/packages/ATACseqTFEA git_branch: RELEASE_3_20 git_last_commit: 3abd5b5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ATACseqTFEA_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ATACseqTFEA_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ATACseqTFEA_1.8.0.tgz vignettes: vignettes/ATACseqTFEA/inst/doc/ATACseqTFEA.html vignetteTitles: ATACseqTFEA Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ATACseqTFEA/inst/doc/ATACseqTFEA.R dependencyCount: 133 Package: atena Version: 1.12.0 Depends: R (>= 4.3.0), SummarizedExperiment Imports: methods, stats, Matrix, BiocGenerics, MatrixGenerics, BiocParallel, S4Vectors, IRanges, GenomicFeatures, GenomicRanges, GenomicAlignments, Rsamtools, GenomeInfoDb, SQUAREM, sparseMatrixStats, AnnotationHub, matrixStats, cli Suggests: covr, BiocStyle, knitr, rmarkdown, RUnit, TxDb.Dmelanogaster.UCSC.dm6.ensGene, RColorBrewer License: Artistic-2.0 MD5sum: 57c4c4a007244cf697982945cf46e75b NeedsCompilation: no Title: Analysis of Transposable Elements Description: Quantify expression of transposable elements (TEs) from RNA-seq data through different methods, including ERVmap, TEtranscripts and Telescope. A common interface is provided to use each of these methods, which consists of building a parameter object, calling the quantification function with this object and getting a SummarizedExperiment object as output container of the quantified expression profiles. The implementation allows one to quantify TEs and gene transcripts in an integrated manner. biocViews: Transcription, Transcriptomics, RNASeq, Sequencing, Preprocessing, Software, GeneExpression, Coverage, DifferentialExpression, FunctionalGenomics Author: Beatriz Calvo-Serra [aut], Robert Castelo [aut, cre] Maintainer: Robert Castelo URL: https://github.com/rcastelo/atena VignetteBuilder: knitr BugReports: https://github.com/rcastelo/atena/issues git_url: https://git.bioconductor.org/packages/atena git_branch: RELEASE_3_20 git_last_commit: 1f05752 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/atena_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/atena_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/atena_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/atena_1.12.0.tgz vignettes: vignettes/atena/inst/doc/atena.html vignetteTitles: An introduction to the atena package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/atena/inst/doc/atena.R dependencyCount: 100 Package: atSNP Version: 1.22.0 Depends: R (>= 3.6) Imports: BSgenome, BiocFileCache, BiocParallel, Rcpp, data.table, ggplot2, grDevices, graphics, grid, motifStack, rappdirs, stats, testthat, utils, lifecycle LinkingTo: Rcpp Suggests: BiocStyle, knitr, rmarkdown License: GPL-2 Archs: x64 MD5sum: b41daf45073e69401646e56c91044e9d NeedsCompilation: yes Title: Affinity test for identifying regulatory SNPs Description: atSNP performs affinity tests of motif matches with the SNP or the reference genomes and SNP-led changes in motif matches. biocViews: Software, ChIPSeq, GenomeAnnotation, MotifAnnotation, Visualization Author: Chandler Zuo [aut], Sunyoung Shin [aut, cre], Sunduz Keles [aut] Maintainer: Sunyoung Shin URL: https://github.com/sunyoungshin/atSNP VignetteBuilder: knitr BugReports: https://github.com/sunyoungshin/atSNP/issues git_url: https://git.bioconductor.org/packages/atSNP git_branch: RELEASE_3_20 git_last_commit: 104b7c5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/atSNP_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/atSNP_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/atSNP_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/atSNP_1.22.0.tgz vignettes: vignettes/atSNP/inst/doc/atsnp-vignette.html vignetteTitles: atsnp-vignette.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/atSNP/inst/doc/atsnp-vignette.R dependencyCount: 167 Package: attract Version: 1.58.0 Depends: R (>= 3.4.0), AnnotationDbi Imports: Biobase, limma, cluster, GOstats, graphics, stats, reactome.db, KEGGREST, org.Hs.eg.db, utils, methods Suggests: illuminaHumanv1.db License: LGPL (>= 2.0) MD5sum: d2537505966a09c9f55c075123193a6e NeedsCompilation: no Title: Methods to Find the Gene Expression Modules that Represent the Drivers of Kauffman's Attractor Landscape Description: This package contains the functions to find the gene expression modules that represent the drivers of Kauffman's attractor landscape. The modules are the core attractor pathways that discriminate between different cell types of groups of interest. Each pathway has a set of synexpression groups, which show transcriptionally-coordinated changes in gene expression. biocViews: ImmunoOncology, KEGG, Reactome, GeneExpression, Pathways, GeneSetEnrichment, Microarray, RNASeq Author: Jessica Mar Maintainer: Samuel Zimmerman git_url: https://git.bioconductor.org/packages/attract git_branch: RELEASE_3_20 git_last_commit: df63b91 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/attract_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/attract_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/attract_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/attract_1.58.0.tgz vignettes: vignettes/attract/inst/doc/attract.pdf vignetteTitles: Tutorial on How to Use the Functions in the \texttt{attract} Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/attract/inst/doc/attract.R dependencyCount: 72 Package: AUCell Version: 1.28.0 Imports: DelayedArray, DelayedMatrixStats, data.table, graphics, grDevices, GSEABase, Matrix, methods, mixtools, R.utils, stats, SummarizedExperiment, BiocGenerics, utils Suggests: Biobase, BiocStyle, doSNOW, dynamicTreeCut, DT, GEOquery, knitr, NMF, plyr, R2HTML, rmarkdown, reshape2, plotly, Rtsne, testthat, zoo Enhances: doMC, doRNG, doParallel, foreach License: GPL-3 MD5sum: b9c51a392e6fc3b41974a49ed01d1568 NeedsCompilation: no Title: AUCell: Analysis of 'gene set' activity in single-cell RNA-seq data (e.g. identify cells with specific gene signatures) Description: AUCell allows to identify cells with active gene sets (e.g. signatures, gene modules...) in single-cell RNA-seq data. AUCell uses the "Area Under the Curve" (AUC) to calculate whether a critical subset of the input gene set is enriched within the expressed genes for each cell. The distribution of AUC scores across all the cells allows exploring the relative expression of the signature. Since the scoring method is ranking-based, AUCell is independent of the gene expression units and the normalization procedure. In addition, since the cells are evaluated individually, it can easily be applied to bigger datasets, subsetting the expression matrix if needed. biocViews: SingleCell, GeneSetEnrichment, Transcriptomics, Transcription, GeneExpression, WorkflowStep, Normalization Author: Sara Aibar, Stein Aerts. Laboratory of Computational Biology. VIB-KU Leuven Center for Brain & Disease Research. Leuven, Belgium. Maintainer: Gert Hulselmans URL: http://scenic.aertslab.org VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/AUCell git_branch: RELEASE_3_20 git_last_commit: 52a1d2b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AUCell_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AUCell_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AUCell_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AUCell_1.28.0.tgz vignettes: vignettes/AUCell/inst/doc/AUCell.html vignetteTitles: AUCell: Identifying cells with active gene sets hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AUCell/inst/doc/AUCell.R dependsOnMe: OSCA.basic importsMe: epiregulon, escape, RcisTarget, scFeatures suggestsMe: decoupleR, scDiagnostics, SCpubr dependencyCount: 121 Package: autonomics Version: 1.14.6 Depends: R (>= 4.0) Imports: abind, BiocFileCache, BiocGenerics, bit64, cluster, codingMatrices, colorspace, data.table, dplyr, edgeR, ggforce, ggplot2, ggrepel, graphics, grDevices, grid, gridExtra, limma, magrittr, matrixStats, methods, MultiAssayExperiment, parallel, RColorBrewer, rlang, R.utils, readxl, S4Vectors, scales, stats, stringi, SummarizedExperiment, tidyr, tidyselect, tools, utils, vsn Suggests: affy, AnnotationDbi, AnnotationHub, apcluster, Biobase, BiocManager, BiocStyle, Biostrings, diagram, DBI, e1071, ensembldb, GenomicDataCommons, GenomicRanges, GEOquery, hgu95av2.db, ICSNP, jsonlite, knitr, lme4, lmerTest, MASS, patchwork, mixOmics, mpm, nlme, OlinkAnalyze, org.Hs.eg.db, org.Mm.eg.db, pcaMethods, pheatmap, progeny, propagate, RCurl, RSQLite, remotes, rmarkdown, ropls, Rsubread, readODS, rtracklayer, statmod, survival, survminer, testthat, UniProt.ws, writexl, XML License: GPL-3 MD5sum: 7617d76b4c6d658a236860c0ad3bdd36 NeedsCompilation: no Title: Unified Statistical Modeling of Omics Data Description: This package unifies access to Statistal Modeling of Omics Data. Across linear modeling engines (lm, lme, lmer, limma, and wilcoxon). Across coding systems (treatment, difference, deviation, etc). Across model formulae (with/without intercept, random effect, interaction or nesting). Across omics platforms (microarray, rnaseq, msproteomics, affinity proteomics, metabolomics). Across projection methods (pca, pls, sma, lda, spls, opls). Across clustering methods (hclust, pam, cmeans). It provides a fast enrichment analysis implementation. And an intuitive contrastogram visualisation to summarize contrast effects in complex designs. biocViews: Software, DataImport, Preprocessing, DimensionReduction, PrincipalComponent, Regression, DifferentialExpression, GeneSetEnrichment, Transcriptomics, Transcription, GeneExpression, RNASeq, Microarray, Proteomics, Metabolomics, MassSpectrometry, Author: Aditya Bhagwat [aut, cre], Richard Cotton [ctb], Shahina Hayat [ctb], Laure Cougnaud [ctb], Witold Szymanski [ctb], Vanessa Beutgen [ctb], Willem Ligtenberg [ctb], Hinrich Goehlmann [ctb], Karsten Suhre [ctb], Johannes Graumann [aut, sad] Maintainer: Aditya Bhagwat VignetteBuilder: knitr BugReports: https://gitlab.uni-marburg.de/fb20/ag-graumann/software/autonomics git_url: https://git.bioconductor.org/packages/autonomics git_branch: RELEASE_3_20 git_last_commit: 6a01365 git_last_commit_date: 2024-11-15 Date/Publication: 2024-11-15 source.ver: src/contrib/autonomics_1.14.6.tar.gz win.binary.ver: bin/windows/contrib/4.4/autonomics_1.14.7.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/autonomics_1.14.7.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/autonomics_1.14.7.tgz vignettes: vignettes/autonomics/inst/doc/autonomics_platformaware_analysis.html vignetteTitles: autonomics_platformaware_analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/autonomics/inst/doc/autonomics_platformaware_analysis.R dependencyCount: 115 Package: AWFisher Version: 1.20.0 Depends: R (>= 3.6) Imports: edgeR, limma, stats Suggests: knitr, tightClust License: GPL-3 Archs: x64 MD5sum: c7f62af9f37de3f5a7e29e53b93d2f04 NeedsCompilation: yes Title: An R package for fast computing for adaptively weighted fisher's method Description: Implementation of the adaptively weighted fisher's method, including fast p-value computing, variability index, and meta-pattern. biocViews: StatisticalMethod, Software Author: Zhiguang Huo Maintainer: Zhiguang Huo VignetteBuilder: knitr BugReports: https://github.com/Caleb-Huo/AWFisher/issues git_url: https://git.bioconductor.org/packages/AWFisher git_branch: RELEASE_3_20 git_last_commit: 33149c4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/AWFisher_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/AWFisher_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/AWFisher_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/AWFisher_1.20.0.tgz vignettes: vignettes/AWFisher/inst/doc/AWFisher.html vignetteTitles: AWFisher hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/AWFisher/inst/doc/AWFisher.R dependencyCount: 11 Package: awst Version: 1.14.0 Imports: stats, methods, SummarizedExperiment Suggests: airway, ggplot2, testthat, EDASeq, knitr, BiocStyle, RefManageR, sessioninfo, rmarkdown License: MIT + file LICENSE MD5sum: 7a099402976fd103a22969c4cb2c6895 NeedsCompilation: no Title: Asymmetric Within-Sample Transformation Description: We propose an Asymmetric Within-Sample Transformation (AWST) to regularize RNA-seq read counts and reduce the effect of noise on the classification of samples. AWST comprises two main steps: standardization and smoothing. These steps transform gene expression data to reduce the noise of the lowly expressed features, which suffer from background effects and low signal-to-noise ratio, and the influence of the highly expressed features, which may be the result of amplification bias and other experimental artifacts. biocViews: Normalization, GeneExpression, RNASeq, Software, Transcriptomics, Sequencing, SingleCell Author: Davide Risso [aut, cre, cph] (), Stefano Pagnotta [aut, cph] () Maintainer: Davide Risso URL: https://github.com/drisso/awst VignetteBuilder: knitr BugReports: https://github.com/drisso/awst/issues git_url: https://git.bioconductor.org/packages/awst git_branch: RELEASE_3_20 git_last_commit: 6c3d995 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/awst_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/awst_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/awst_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/awst_1.14.0.tgz vignettes: vignettes/awst/inst/doc/awst_intro.html vignetteTitles: Introduction to awst hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/awst/inst/doc/awst_intro.R dependencyCount: 36 Package: BaalChIP Version: 1.32.0 Depends: R (>= 3.3.1), GenomicRanges, IRanges, Rsamtools, Imports: GenomicAlignments, GenomeInfoDb, doParallel, parallel, doBy, reshape2, scales, coda, foreach, ggplot2, methods, utils, graphics, stats Suggests: RUnit, BiocGenerics, knitr, rmarkdown, BiocStyle License: Artistic-2.0 MD5sum: 40ecb0da98e64425999851a52ea9a915 NeedsCompilation: no Title: BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes Description: The package offers functions to process multiple ChIP-seq BAM files and detect allele-specific events. Computes allele counts at individual variants (SNPs/SNVs), implements extensive QC steps to remove problematic variants, and utilizes a bayesian framework to identify statistically significant allele- specific events. BaalChIP is able to account for copy number differences between the two alleles, a known phenotypical feature of cancer samples. biocViews: Software, ChIPSeq, Bayesian, Sequencing Author: Ines de Santiago, Wei Liu, Ke Yuan, Martin O'Reilly, Chandra SR Chilamakuri, Bruce Ponder, Kerstin Meyer, Florian Markowetz Maintainer: Ines de Santiago VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BaalChIP git_branch: RELEASE_3_20 git_last_commit: d89a06f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BaalChIP_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BaalChIP_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BaalChIP_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BaalChIP_1.32.0.tgz vignettes: vignettes/BaalChIP/inst/doc/BaalChIP.html vignetteTitles: Analyzing ChIP-seq and FAIRE-seq data with the BaalChIP package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BaalChIP/inst/doc/BaalChIP.R dependencyCount: 99 Package: bacon Version: 1.34.0 Depends: R (>= 3.3), methods, stats, ggplot2, graphics, BiocParallel, ellipse Suggests: BiocStyle, knitr, rmarkdown, testthat, roxygen2 License: GPL (>= 2) Archs: x64 MD5sum: 76ba7c4a2a1d8c6517abf620dd859282 NeedsCompilation: yes Title: Controlling bias and inflation in association studies using the empirical null distribution Description: Bacon can be used to remove inflation and bias often observed in epigenome- and transcriptome-wide association studies. To this end bacon constructs an empirical null distribution using a Gibbs Sampling algorithm by fitting a three-component normal mixture on z-scores. biocViews: ImmunoOncology, StatisticalMethod, Bayesian, Regression, GenomeWideAssociation, Transcriptomics, RNASeq, MethylationArray, BatchEffect, MultipleComparison Author: Maarten van Iterson [aut, cre], Erik van Zwet [ctb] Maintainer: Maarten van Iterson VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/bacon git_branch: RELEASE_3_20 git_last_commit: a065860 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bacon_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bacon_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bacon_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bacon_1.34.0.tgz vignettes: vignettes/bacon/inst/doc/bacon.html vignetteTitles: Controlling bias and inflation in association studies using the empirical null distribution hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bacon/inst/doc/bacon.R dependencyCount: 46 Package: BADER Version: 1.44.0 Suggests: pasilla (>= 0.2.10) License: GPL-2 Archs: x64 MD5sum: c36f487fbf82133999f70537d6627ae4 NeedsCompilation: yes Title: Bayesian Analysis of Differential Expression in RNA Sequencing Data Description: For RNA sequencing count data, BADER fits a Bayesian hierarchical model. The algorithm returns the posterior probability of differential expression for each gene between two groups A and B. The joint posterior distribution of the variables in the model can be returned in the form of posterior samples, which can be used for further down-stream analyses such as gene set enrichment. biocViews: ImmunoOncology, Sequencing, RNASeq, DifferentialExpression, Software, SAGE Author: Andreas Neudecker, Matthias Katzfuss Maintainer: Andreas Neudecker git_url: https://git.bioconductor.org/packages/BADER git_branch: RELEASE_3_20 git_last_commit: 38afc7b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BADER_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BADER_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BADER_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BADER_1.44.0.tgz vignettes: vignettes/BADER/inst/doc/BADER.pdf vignetteTitles: Analysing RNA-Seq data with the "BADER" package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BADER/inst/doc/BADER.R dependencyCount: 0 Package: BadRegionFinder Version: 1.34.0 Imports: VariantAnnotation, Rsamtools, biomaRt, GenomicRanges, S4Vectors, utils, stats, grDevices, graphics Suggests: BSgenome.Hsapiens.UCSC.hg19 License: LGPL-3 MD5sum: c6ef5317cc7794b619ec51a602e8dca3 NeedsCompilation: no Title: BadRegionFinder: an R/Bioconductor package for identifying regions with bad coverage Description: BadRegionFinder is a package for identifying regions with a bad, acceptable and good coverage in sequence alignment data available as bam files. The whole genome may be considered as well as a set of target regions. Various visual and textual types of output are available. biocViews: Coverage, Sequencing, Alignment, WholeGenome, Classification Author: Sarah Sandmann Maintainer: Sarah Sandmann git_url: https://git.bioconductor.org/packages/BadRegionFinder git_branch: RELEASE_3_20 git_last_commit: 2375cc8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BadRegionFinder_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BadRegionFinder_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BadRegionFinder_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BadRegionFinder_1.34.0.tgz vignettes: vignettes/BadRegionFinder/inst/doc/BadRegionFinder.pdf vignetteTitles: Using BadRegionFinder hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BadRegionFinder/inst/doc/BadRegionFinder.R dependencyCount: 103 Package: BAGS Version: 2.46.0 Depends: R (>= 2.10), breastCancerVDX, Biobase License: Artistic-2.0 Archs: x64 MD5sum: 738eda14cf8c51b1f968e287529b0721 NeedsCompilation: yes Title: A Bayesian Approach for Geneset Selection Description: R package providing functions to perform geneset significance analysis over simple cross-sectional data between 2 and 5 phenotypes of interest. biocViews: Bayesian Author: Alejandro Quiroz-Zarate Maintainer: Alejandro Quiroz-Zarate git_url: https://git.bioconductor.org/packages/BAGS git_branch: RELEASE_3_20 git_last_commit: b690806 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BAGS_2.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BAGS_2.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BAGS_2.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BAGS_2.46.0.tgz vignettes: vignettes/BAGS/inst/doc/BAGS.pdf vignetteTitles: BAGS: A Bayesian Approach for Geneset Selection. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BAGS/inst/doc/BAGS.R dependencyCount: 7 Package: ballgown Version: 2.38.0 Depends: R (>= 3.5.0), methods Imports: GenomicRanges (>= 1.17.25), IRanges (>= 1.99.22), S4Vectors (>= 0.9.39), RColorBrewer, splines, sva, limma, rtracklayer (>= 1.29.25), Biobase (>= 2.25.0), GenomeInfoDb Suggests: testthat, knitr, markdown License: Artistic-2.0 MD5sum: 761ad5b9df7c3ee5c702f2826c2ba9ea NeedsCompilation: no Title: Flexible, isoform-level differential expression analysis Description: Tools for statistical analysis of assembled transcriptomes, including flexible differential expression analysis, visualization of transcript structures, and matching of assembled transcripts to annotation. biocViews: ImmunoOncology, RNASeq, StatisticalMethod, Preprocessing, DifferentialExpression Author: Jack Fu [aut], Alyssa C. Frazee [aut, cre], Leonardo Collado-Torres [aut], Andrew E. Jaffe [aut], Jeffrey T. Leek [aut, ths] Maintainer: Jack Fu VignetteBuilder: knitr BugReports: https://github.com/alyssafrazee/ballgown/issues git_url: https://git.bioconductor.org/packages/ballgown git_branch: RELEASE_3_20 git_last_commit: ec0ed55 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ballgown_2.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ballgown_2.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ballgown_2.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ballgown_2.38.0.tgz vignettes: vignettes/ballgown/inst/doc/ballgown.html vignetteTitles: Flexible isoform-level differential expression analysis with Ballgown hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ballgown/inst/doc/ballgown.R dependsOnMe: VaSP suggestsMe: variancePartition dependencyCount: 89 Package: bambu Version: 3.8.0 Depends: R(>= 4.1), SummarizedExperiment(>= 1.1.6), S4Vectors(>= 0.22.1), BSgenome, IRanges Imports: BiocGenerics, BiocParallel, data.table, dplyr, tidyr, GenomeInfoDb, GenomicAlignments, GenomicFeatures, GenomicRanges, stats, Rsamtools, methods, Rcpp, xgboost LinkingTo: Rcpp, RcppArmadillo Suggests: AnnotationDbi, Biostrings, rmarkdown, BiocFileCache, ggplot2, ComplexHeatmap, circlize, ggbio, gridExtra, knitr, testthat, BSgenome.Hsapiens.NCBI.GRCh38, TxDb.Hsapiens.UCSC.hg38.knownGene, ExperimentHub (>= 1.15.3), DESeq2, NanoporeRNASeq, purrr, apeglm, utils, DEXSeq Enhances: parallel License: GPL-3 + file LICENSE Archs: x64 MD5sum: 91905c0b974b39b990bf3fe3c42c0937 NeedsCompilation: yes Title: Context-Aware Transcript Quantification from Long Read RNA-Seq data Description: bambu is a R package for multi-sample transcript discovery and quantification using long read RNA-Seq data. You can use bambu after read alignment to obtain expression estimates for known and novel transcripts and genes. The output from bambu can directly be used for visualisation and downstream analysis such as differential gene expression or transcript usage. biocViews: Alignment, Coverage, DifferentialExpression, FeatureExtraction, GeneExpression, GenomeAnnotation, GenomeAssembly, ImmunoOncology, LongRead, MultipleComparison, Normalization, RNASeq, Regression, Sequencing, Software, Transcription, Transcriptomics Author: Ying Chen [cre, aut], Andre Sim [aut], Yuk Kei Wan [aut], Jonathan Goeke [aut] Maintainer: Ying Chen URL: https://github.com/GoekeLab/bambu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/bambu git_branch: RELEASE_3_20 git_last_commit: f9fa957 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bambu_3.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bambu_3.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bambu_3.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bambu_3.8.0.tgz vignettes: vignettes/bambu/inst/doc/bambu.html vignetteTitles: bambu hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/bambu/inst/doc/bambu.R importsMe: FLAMES suggestsMe: NanoporeRNASeq dependencyCount: 95 Package: bamsignals Version: 1.38.0 Depends: R (>= 3.5.0) Imports: methods, BiocGenerics, Rcpp (>= 0.10.6), IRanges, GenomicRanges, zlibbioc LinkingTo: Rcpp, Rhtslib (>= 1.13.1), zlibbioc Suggests: testthat (>= 0.9), Rsamtools, BiocStyle, knitr, rmarkdown License: GPL-2 Archs: x64 MD5sum: 5a5aa95943909f70466d770764923ba8 NeedsCompilation: yes Title: Extract read count signals from bam files Description: This package allows to efficiently obtain count vectors from indexed bam files. It counts the number of reads in given genomic ranges and it computes reads profiles and coverage profiles. It also handles paired-end data. biocViews: DataImport, Sequencing, Coverage, Alignment Author: Alessandro Mammana [aut, cre], Johannes Helmuth [aut] Maintainer: Johannes Helmuth URL: https://github.com/lamortenera/bamsignals SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/lamortenera/bamsignals/issues git_url: https://git.bioconductor.org/packages/bamsignals git_branch: RELEASE_3_20 git_last_commit: 579649b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bamsignals_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bamsignals_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bamsignals_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bamsignals_1.38.0.tgz vignettes: vignettes/bamsignals/inst/doc/bamsignals.html vignetteTitles: Introduction to the bamsignals package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bamsignals/inst/doc/bamsignals.R importsMe: AneuFinder, chromstaR, DNAfusion, epigraHMM, karyoploteR, normr, segmenter, hoardeR dependencyCount: 25 Package: BANDITS Version: 1.22.0 Depends: R (>= 4.3.0) Imports: Rcpp, doRNG, MASS, data.table, R.utils, doParallel, parallel, foreach, methods, stats, graphics, ggplot2, DRIMSeq, BiocParallel LinkingTo: Rcpp, RcppArmadillo Suggests: knitr, rmarkdown, testthat, tximport, BiocStyle, GenomicFeatures, Biostrings License: GPL (>= 3) Archs: x64 MD5sum: cf2e2efd7899760d785cd521ba2d3f1f NeedsCompilation: yes Title: BANDITS: Bayesian ANalysis of DIfferenTial Splicing Description: BANDITS is a Bayesian hierarchical model for detecting differential splicing of genes and transcripts, via differential transcript usage (DTU), between two or more conditions. The method uses a Bayesian hierarchical framework, which allows for sample specific proportions in a Dirichlet-Multinomial model, and samples the allocation of fragments to the transcripts. Parameters are inferred via Markov chain Monte Carlo (MCMC) techniques and a DTU test is performed via a multivariate Wald test on the posterior densities for the average relative abundance of transcripts. biocViews: DifferentialSplicing, AlternativeSplicing, Bayesian, Genetics, RNASeq, Sequencing, DifferentialExpression, GeneExpression, MultipleComparison, Software, Transcription, StatisticalMethod, Visualization Author: Simone Tiberi [aut, cre]. Maintainer: Simone Tiberi URL: https://github.com/SimoneTiberi/BANDITS SystemRequirements: C++17 VignetteBuilder: knitr BugReports: https://github.com/SimoneTiberi/BANDITS/issues git_url: https://git.bioconductor.org/packages/BANDITS git_branch: RELEASE_3_20 git_last_commit: 90a0784 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BANDITS_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BANDITS_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BANDITS_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BANDITS_1.22.0.tgz vignettes: vignettes/BANDITS/inst/doc/BANDITS.html vignetteTitles: BANDITS: Bayesian ANalysis of DIfferenTial Splicing hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BANDITS/inst/doc/BANDITS.R importsMe: DifferentialRegulation dependencyCount: 84 Package: bandle Version: 1.10.0 Depends: R (>= 4.1), S4Vectors, Biobase, MSnbase, pRoloc Imports: Rcpp (>= 1.0.4.6), pRolocdata, lbfgs, ggplot2, dplyr, plyr, knitr, methods, BiocParallel, robustbase, BiocStyle, ggalluvial, ggrepel, tidyr, circlize, graphics, stats, utils, grDevices, rlang LinkingTo: Rcpp, RcppArmadillo, BH Suggests: coda (>= 0.19-4), testthat, interp, fields, pheatmap, viridis, rmarkdown, spelling License: Artistic-2.0 Archs: x64 MD5sum: ed95c12dfed9d5e8deca400016c048f6 NeedsCompilation: yes Title: An R package for the Bayesian analysis of differential subcellular localisation experiments Description: The Bandle package enables the analysis and visualisation of differential localisation experiments using mass-spectrometry data. Experimental methods supported include dynamic LOPIT-DC, hyperLOPIT, Dynamic Organellar Maps, Dynamic PCP. It provides Bioconductor infrastructure to analyse these data. biocViews: Bayesian, Classification, Clustering, ImmunoOncology, QualityControl,DataImport, Proteomics, MassSpectrometry Author: Oliver M. Crook [aut, cre] (), Lisa Breckels [aut] () Maintainer: Oliver M. Crook URL: http://github.com/ococrook/bandle VignetteBuilder: knitr BugReports: https://github.com/ococrook/bandle/issues git_url: https://git.bioconductor.org/packages/bandle git_branch: RELEASE_3_20 git_last_commit: 8106978 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bandle_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bandle_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bandle_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bandle_1.10.0.tgz vignettes: vignettes/bandle/inst/doc/v01-getting-started.html, vignettes/bandle/inst/doc/v02-workflow.html vignetteTitles: Analysing differential localisation experiments with BANDLE: Vignette 1, Analysing differential localisation experiments with BANDLE: Vignette 2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bandle/inst/doc/v01-getting-started.R, vignettes/bandle/inst/doc/v02-workflow.R dependencyCount: 238 Package: Banksy Version: 1.2.0 Depends: R (>= 4.4.0) Imports: aricode, data.table, dbscan, SpatialExperiment, SingleCellExperiment, SummarizedExperiment, S4Vectors, stats, matrixStats, mclust, igraph, irlba, leidenAlg (>= 1.1.0), utils, uwot, RcppHungarian Suggests: knitr, rmarkdown, pals, scuttle, scater, scran, cowplot, ggplot2, testthat (>= 3.0.0), harmony, Seurat, ExperimentHub, spatialLIBD, BiocStyle License: file LICENSE MD5sum: 93df59b263b0be76ca53c924154f6c04 NeedsCompilation: no Title: Spatial transcriptomic clustering Description: Banksy is an R package that incorporates spatial information to cluster cells in a feature space (e.g. gene expression). To incorporate spatial information, BANKSY computes the mean neighborhood expression and azimuthal Gabor filters that capture gene expression gradients. These features are combined with the cell's own expression to embed cells in a neighbor-augmented product space which can then be clustered, allowing for accurate and spatially-aware cell typing and tissue domain segmentation. biocViews: Clustering, Spatial, SingleCell, GeneExpression, DimensionReduction Author: Vipul Singhal [aut], Joseph Lee [aut, cre] () Maintainer: Joseph Lee URL: https://github.com/prabhakarlab/Banksy VignetteBuilder: knitr BugReports: https://github.com/prabhakarlab/Banksy/issues git_url: https://git.bioconductor.org/packages/Banksy git_branch: RELEASE_3_20 git_last_commit: e1456af git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Banksy_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Banksy_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Banksy_1.1.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Banksy_1.2.0.tgz vignettes: vignettes/Banksy/inst/doc/batch-correction.html, vignettes/Banksy/inst/doc/domain-segment.html, vignettes/Banksy/inst/doc/multi-sample.html, vignettes/Banksy/inst/doc/parameter-selection.html vignetteTitles: Spatial data integration with Harmony (10x Visium Human DLPFC), Domain segmentation (STARmap PLUS mouse brain), Multi-sample analysis (10x Visium Human DLPFC), Parameter selection (VeraFISH Mouse Hippocampus) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Banksy/inst/doc/batch-correction.R, vignettes/Banksy/inst/doc/domain-segment.R, vignettes/Banksy/inst/doc/multi-sample.R, vignettes/Banksy/inst/doc/parameter-selection.R dependencyCount: 111 Package: banocc Version: 1.30.0 Depends: R (>= 3.5.1), rstan (>= 2.17.4) Imports: coda (>= 0.18.1), mvtnorm, stringr Suggests: knitr, rmarkdown, methods, testthat, BiocStyle License: MIT + file LICENSE MD5sum: 70d1a1d5bff0cd4560145ac38c1420b5 NeedsCompilation: no Title: Bayesian ANalysis Of Compositional Covariance Description: BAnOCC is a package designed for compositional data, where each sample sums to one. It infers the approximate covariance of the unconstrained data using a Bayesian model coded with `rstan`. It provides as output the `stanfit` object as well as posterior median and credible interval estimates for each correlation element. biocViews: ImmunoOncology, Metagenomics, Software, Bayesian Author: Emma Schwager [aut, cre], Curtis Huttenhower [aut] Maintainer: George Weingart , Curtis Huttenhower VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/banocc git_branch: RELEASE_3_20 git_last_commit: 90647c8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/banocc_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/banocc_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/banocc_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/banocc_1.30.0.tgz vignettes: vignettes/banocc/inst/doc/banocc-vignette.html vignetteTitles: BAnOCC (Bayesian Analysis of Compositional Covariance) hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/banocc/inst/doc/banocc-vignette.R dependencyCount: 66 Package: barcodetrackR Version: 1.14.0 Depends: R (>= 4.1) Imports: cowplot, circlize, dplyr, ggplot2, ggdendro, ggridges, graphics, grDevices, magrittr, plyr, proxy, RColorBrewer, rlang, scales, shiny, stats, SummarizedExperiment, S4Vectors, tibble, tidyr, vegan, viridis, utils Suggests: BiocStyle, knitr, magick, rmarkdown, testthat License: file LICENSE MD5sum: 1ff7c7f592ec978c0ab7f50babd89c21 NeedsCompilation: no Title: Functions for Analyzing Cellular Barcoding Data Description: barcodetrackR is an R package developed for the analysis and visualization of clonal tracking data. Data required is samples and tag abundances in matrix form. Usually from cellular barcoding experiments, integration site retrieval analyses, or similar technologies. biocViews: Software, Visualization, Sequencing Author: Diego Alexander Espinoza [aut, cre], Ryland Mortlock [aut] Maintainer: Diego Alexander Espinoza URL: https://github.com/dunbarlabNIH/barcodetrackR VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/barcodetrackR git_branch: RELEASE_3_20 git_last_commit: e93d521 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/barcodetrackR_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/barcodetrackR_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/barcodetrackR_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/barcodetrackR_1.14.0.tgz vignettes: vignettes/barcodetrackR/inst/doc/Introduction_to_barcodetrackR.html vignetteTitles: barcodetrackR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/barcodetrackR/inst/doc/Introduction_to_barcodetrackR.R dependencyCount: 103 Package: basecallQC Version: 1.30.0 Depends: R (>= 3.4), stats, utils, methods, rmarkdown, knitr, prettydoc, yaml Imports: ggplot2, stringr, XML, raster, dplyr, data.table, tidyr, magrittr, DT, lazyeval, ShortRead Suggests: testthat, BiocStyle License: GPL (>= 3) MD5sum: c009b07124d15d2dcb83f63e78afa775 NeedsCompilation: no Title: Working with Illumina Basecalling and Demultiplexing input and output files Description: The basecallQC package provides tools to work with Illumina bcl2Fastq (versions >= 2.1.7) software.Prior to basecalling and demultiplexing using the bcl2Fastq software, basecallQC functions allow the user to update Illumina sample sheets from versions <= 1.8.9 to >= 2.1.7 standards, clean sample sheets of common problems such as invalid sample names and IDs, create read and index basemasks and the bcl2Fastq command. Following the generation of basecalled and demultiplexed data, the basecallQC packages allows the user to generate HTML tables, plots and a self contained report of summary metrics from Illumina XML output files. biocViews: Sequencing, Infrastructure, DataImport, QualityControl Author: Thomas Carroll and Marian Dore Maintainer: Thomas Carroll SystemRequirements: bcl2Fastq (versions >= 2.1.7) VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/basecallQC git_branch: RELEASE_3_20 git_last_commit: aa293f7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/basecallQC_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/basecallQC_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/basecallQC_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/basecallQC_1.30.0.tgz vignettes: vignettes/basecallQC/inst/doc/basecallQC.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/basecallQC/inst/doc/basecallQC.R dependencyCount: 126 Package: BaseSpaceR Version: 1.50.0 Depends: R (>= 2.15.0), RCurl, RJSONIO Imports: methods Suggests: RUnit, IRanges, Rsamtools License: Apache License 2.0 MD5sum: 85e110d6473c2758a06e1703565fb1f4 NeedsCompilation: no Title: R SDK for BaseSpace RESTful API Description: A rich R interface to Illumina's BaseSpace cloud computing environment, enabling the fast development of data analysis and visualisation tools. biocViews: Infrastructure, DataRepresentation, ConnectTools, Software, DataImport, HighThroughputSequencing, Sequencing, Genetics Author: Adrian Alexa Maintainer: Jared O'Connell git_url: https://git.bioconductor.org/packages/BaseSpaceR git_branch: RELEASE_3_20 git_last_commit: 270714c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BaseSpaceR_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BaseSpaceR_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BaseSpaceR_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BaseSpaceR_1.50.0.tgz vignettes: vignettes/BaseSpaceR/inst/doc/BaseSpaceR.pdf vignetteTitles: BaseSpaceR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BaseSpaceR/inst/doc/BaseSpaceR.R dependencyCount: 4 Package: Basic4Cseq Version: 1.42.0 Depends: R (>= 3.4), Biostrings, GenomicAlignments, caTools, GenomicRanges, grDevices, graphics, stats, utils Imports: methods, RCircos, BSgenome.Ecoli.NCBI.20080805 Suggests: BSgenome.Hsapiens.UCSC.hg19 License: LGPL-3 MD5sum: 936c1f2f0d2924f8387e9cf8bb312ade NeedsCompilation: no Title: Basic4Cseq: an R/Bioconductor package for analyzing 4C-seq data Description: Basic4Cseq is an R/Bioconductor package for basic filtering, analysis and subsequent visualization of 4C-seq data. Virtual fragment libraries can be created for any BSGenome package, and filter functions for both reads and fragments and basic quality controls are included. Fragment data in the vicinity of the experiment's viewpoint can be visualized as a coverage plot based on a running median approach and a multi-scale contact profile. biocViews: ImmunoOncology, Visualization, QualityControl, Sequencing, Coverage, Alignment, RNASeq, SequenceMatching, DataImport Author: Carolin Walter Maintainer: Carolin Walter git_url: https://git.bioconductor.org/packages/Basic4Cseq git_branch: RELEASE_3_20 git_last_commit: 8ce8d7d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Basic4Cseq_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Basic4Cseq_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Basic4Cseq_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Basic4Cseq_1.42.0.tgz vignettes: vignettes/Basic4Cseq/inst/doc/vignette.pdf vignetteTitles: Basic4Cseq: an R/Bioconductor package for the analysis of 4C-seq data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Basic4Cseq/inst/doc/vignette.R dependencyCount: 62 Package: BASiCS Version: 2.18.0 Depends: R (>= 4.2), SingleCellExperiment Imports: Biobase, BiocGenerics, coda, cowplot, ggExtra, ggplot2, graphics, grDevices, MASS, methods, Rcpp (>= 0.11.3), S4Vectors, scran, scuttle, stats, stats4, SummarizedExperiment, viridis, utils, Matrix (>= 1.5.0), matrixStats, assertthat, reshape2, BiocParallel, posterior, hexbin LinkingTo: Rcpp, RcppArmadillo Suggests: BiocStyle, knitr, rmarkdown, testthat, scRNAseq, magick License: GPL-3 Archs: x64 MD5sum: 075730ceccc669baaff1bc0649dbe0b7 NeedsCompilation: yes Title: Bayesian Analysis of Single-Cell Sequencing data Description: Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model to perform statistical analyses of single-cell RNA sequencing datasets in the context of supervised experiments (where the groups of cells of interest are known a priori, e.g. experimental conditions or cell types). BASiCS performs built-in data normalisation (global scaling) and technical noise quantification (based on spike-in genes). BASiCS provides an intuitive detection criterion for highly (or lowly) variable genes within a single group of cells. Additionally, BASiCS can compare gene expression patterns between two or more pre-specified groups of cells. Unlike traditional differential expression tools, BASiCS quantifies changes in expression that lie beyond comparisons of means, also allowing the study of changes in cell-to-cell heterogeneity. The latter can be quantified via a biological over-dispersion parameter that measures the excess of variability that is observed with respect to Poisson sampling noise, after normalisation and technical noise removal. Due to the strong mean/over-dispersion confounding that is typically observed for scRNA-seq datasets, BASiCS also tests for changes in residual over-dispersion, defined by residual values with respect to a global mean/over-dispersion trend. biocViews: ImmunoOncology, Normalization, Sequencing, RNASeq, Software, GeneExpression, Transcriptomics, SingleCell, DifferentialExpression, Bayesian, CellBiology, ImmunoOncology Author: Catalina Vallejos [aut, cre] (), Nils Eling [aut], Alan O'Callaghan [aut], Sylvia Richardson [ctb], John Marioni [ctb] Maintainer: Catalina Vallejos URL: https://github.com/catavallejos/BASiCS SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/catavallejos/BASiCS/issues git_url: https://git.bioconductor.org/packages/BASiCS git_branch: RELEASE_3_20 git_last_commit: d6d7ef6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BASiCS_2.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BASiCS_2.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BASiCS_2.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BASiCS_2.18.0.tgz vignettes: vignettes/BASiCS/inst/doc/BASiCS.html vignetteTitles: Introduction to BASiCS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BASiCS/inst/doc/BASiCS.R dependsOnMe: BASiCStan suggestsMe: splatter dependencyCount: 142 Package: BASiCStan Version: 1.8.0 Depends: R (>= 4.2), BASiCS, rstan (>= 2.18.1) Imports: methods, glmGamPoi, scran, scuttle, stats, utils, SingleCellExperiment, SummarizedExperiment, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rstantools (>= 2.1.1) LinkingTo: BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0) Suggests: testthat (>= 3.0.0), knitr, rmarkdown License: GPL-3 Archs: x64 MD5sum: a4186cc4e1dc5ff03d112a63c06acc09 NeedsCompilation: yes Title: Stan implementation of BASiCS Description: Provides an interface to infer the parameters of BASiCS using the variational inference (ADVI), Markov chain Monte Carlo (NUTS), and maximum a posteriori (BFGS) inference engines in the Stan programming language. BASiCS is a Bayesian hierarchical model that uses an adaptive Metropolis within Gibbs sampling scheme. Alternative inference methods provided by Stan may be preferable in some situations, for example for particularly large data or posterior distributions with difficult geometries. biocViews: ImmunoOncology, Normalization, Sequencing, RNASeq, Software, GeneExpression, Transcriptomics, SingleCell, DifferentialExpression, Bayesian, CellBiology Author: Alan O'Callaghan [aut, cre], Catalina Vallejos [aut] Maintainer: Alan O'Callaghan URL: https://github.com/Alanocallaghan/BASiCStan SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/Alanocallaghan/BASiCStan/issues git_url: https://git.bioconductor.org/packages/BASiCStan git_branch: RELEASE_3_20 git_last_commit: df5d144 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BASiCStan_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BASiCStan_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BASiCStan_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BASiCStan_1.8.0.tgz vignettes: vignettes/BASiCStan/inst/doc/BASiCStan.html vignetteTitles: An introduction to BASiCStan hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BASiCStan/inst/doc/BASiCStan.R dependencyCount: 163 Package: BasicSTARRseq Version: 1.34.0 Depends: GenomicRanges,GenomicAlignments Imports: S4Vectors,methods,IRanges,GenomeInfoDb,stats Suggests: knitr License: LGPL-3 MD5sum: 1f30b4542e5e7f62e34207237c972f43 NeedsCompilation: no Title: Basic peak calling on STARR-seq data Description: Basic peak calling on STARR-seq data based on a method introduced in "Genome-Wide Quantitative Enhancer Activity Maps Identified by STARR-seq" Arnold et al. Science. 2013 Mar 1;339(6123):1074-7. doi: 10.1126/science. 1232542. Epub 2013 Jan 17. biocViews: PeakDetection, GeneRegulation, FunctionalPrediction, FunctionalGenomics, Coverage Author: Annika Buerger Maintainer: Annika Buerger VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BasicSTARRseq git_branch: RELEASE_3_20 git_last_commit: 21c0bef git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BasicSTARRseq_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BasicSTARRseq_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BasicSTARRseq_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BasicSTARRseq_1.34.0.tgz vignettes: vignettes/BasicSTARRseq/inst/doc/BasicSTARRseq.pdf vignetteTitles: BasicSTARRseq.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BasicSTARRseq/inst/doc/BasicSTARRseq.R dependencyCount: 51 Package: basilisk Version: 1.18.0 Depends: reticulate Imports: utils, methods, parallel, dir.expiry, basilisk.utils (>= 1.15.1) Suggests: knitr, rmarkdown, BiocStyle, testthat, callr License: GPL-3 MD5sum: d75135397396224a3d7e2fe691aadb33 NeedsCompilation: no Title: Freezing Python Dependencies Inside Bioconductor Packages Description: Installs a self-contained conda instance that is managed by the R/Bioconductor installation machinery. This aims to provide a consistent Python environment that can be used reliably by Bioconductor packages. Functions are also provided to enable smooth interoperability of multiple Python environments in a single R session. biocViews: Infrastructure Author: Aaron Lun [aut, cre, cph], Vince Carey [ctb] Maintainer: Aaron Lun VignetteBuilder: knitr BugReports: https://github.com/LTLA/basilisk/issues git_url: https://git.bioconductor.org/packages/basilisk git_branch: RELEASE_3_20 git_last_commit: 31887d4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/basilisk_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/basilisk_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/basilisk_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/basilisk_1.18.0.tgz vignettes: vignettes/basilisk/inst/doc/motivation.html vignetteTitles: Motivation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/basilisk/inst/doc/motivation.R dependsOnMe: scviR importsMe: BiocSklearn, cbpManager, cfTools, crisprScore, densvis, FLAMES, HiCool, MACSr, MOFA2, ontoProc, orthos, Pirat, Rcwl, recountmethylation, ReUseData, scifer, scPipe, SimBu, sketchR, snifter, spatialDE, velociraptor, zellkonverter suggestsMe: basilisk.utils, CuratedAtlasQueryR dependencyCount: 23 Package: basilisk.utils Version: 1.18.0 Imports: utils, methods, tools, dir.expiry Suggests: reticulate, knitr, rmarkdown, BiocStyle, testthat, basilisk License: GPL-3 MD5sum: 89953864457a1974b657ed7dc01f8d50 NeedsCompilation: no Title: Basilisk Installation Utilities Description: Implements utilities for installation of the basilisk package, primarily for creation of the underlying Conda instance. This allows us to avoid re-writing the same R code in both the configure script (for centrally administered R installations) and in the lazy installation mechanism (for distributed package binaries). It is highly unlikely that developers - or, heaven forbid, end-users! - will need to interact with this package directly; they should be using the basilisk package instead. biocViews: Infrastructure Author: Aaron Lun [aut, cre, cph] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/basilisk.utils git_branch: RELEASE_3_20 git_last_commit: 9a57114 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/basilisk.utils_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/basilisk.utils_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/basilisk.utils_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/basilisk.utils_1.18.0.tgz vignettes: vignettes/basilisk.utils/inst/doc/purpose.html vignetteTitles: _basilisk_ installation utilities hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/basilisk.utils/inst/doc/purpose.R importsMe: basilisk, crisprScore, scifer dependencyCount: 5 Package: batchelor Version: 1.22.0 Depends: SingleCellExperiment Imports: SummarizedExperiment, S4Vectors, BiocGenerics, Rcpp, stats, methods, utils, igraph, BiocNeighbors, BiocSingular, Matrix, SparseArray, DelayedArray (>= 0.31.5), DelayedMatrixStats, BiocParallel, scuttle, ResidualMatrix, ScaledMatrix, beachmat LinkingTo: Rcpp Suggests: testthat, BiocStyle, knitr, rmarkdown, scran, scater, bluster, scRNAseq License: GPL-3 Archs: x64 MD5sum: d94a18149110a29fb790ade3b086411c NeedsCompilation: yes Title: Single-Cell Batch Correction Methods Description: Implements a variety of methods for batch correction of single-cell (RNA sequencing) data. This includes methods based on detecting mutually nearest neighbors, as well as several efficient variants of linear regression of the log-expression values. Functions are also provided to perform global rescaling to remove differences in depth between batches, and to perform a principal components analysis that is robust to differences in the numbers of cells across batches. biocViews: Sequencing, RNASeq, Software, GeneExpression, Transcriptomics, SingleCell, BatchEffect, Normalization Author: Aaron Lun [aut, cre], Laleh Haghverdi [ctb] Maintainer: Aaron Lun SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/batchelor git_branch: RELEASE_3_20 git_last_commit: cd3badd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/batchelor_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/batchelor_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/batchelor_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/batchelor_1.22.0.tgz vignettes: vignettes/batchelor/inst/doc/correction.html, vignettes/batchelor/inst/doc/extension.html vignetteTitles: 1. Correcting batch effects, 2. Extending methods hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/batchelor/inst/doc/correction.R, vignettes/batchelor/inst/doc/extension.R dependsOnMe: OSCA.intro, OSCA.workflows importsMe: ChromSCape, mumosa, scMerge, singleCellTK, SCIntRuler suggestsMe: TSCAN, Canek, RaceID dependencyCount: 67 Package: BatchQC Version: 2.2.0 Depends: R (>= 4.4.0) Imports: data.table, DESeq2, dplyr, EBSeq, ggdendro, ggnewscale, ggplot2, limma, matrixStats, pheatmap, RColorBrewer, reader, reshape2, scran, shiny, shinyjs, shinythemes, stats, SummarizedExperiment, sva, S4Vectors, tibble, tidyr, tidyverse, utils Suggests: BiocManager, BiocStyle, bladderbatch, devtools, knitr, lintr, plotly, rmarkdown, spelling, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: d0a36d52c86f8622c51921a5684684ef NeedsCompilation: no Title: Batch Effects Quality Control Software Description: Sequencing and microarray samples often are collected or processed in multiple batches or at different times. This often produces technical biases that can lead to incorrect results in the downstream analysis. BatchQC is a software tool that streamlines batch preprocessing and evaluation by providing interactive diagnostics, visualizations, and statistical analyses to explore the extent to which batch variation impacts the data. BatchQC diagnostics help determine whether batch adjustment needs to be done, and how correction should be applied before proceeding with a downstream analysis. Moreover, BatchQC interactively applies multiple common batch effect approaches to the data and the user can quickly see the benefits of each method. BatchQC is developed as a Shiny App. The output is organized into multiple tabs and each tab features an important part of the batch effect analysis and visualization of the data. The BatchQC interface has the following analysis groups: Summary, Differential Expression, Median Correlations, Heatmaps, Circular Dendrogram, PCA Analysis, Shape, ComBat and SVA. biocViews: BatchEffect, GraphAndNetwork, Microarray, Normalization, PrincipalComponent, Sequencing, Software, Visualization, QualityControl, RNASeq, Preprocessing, DifferentialExpression, ImmunoOncology Author: Jessica McClintock [aut, cre] (), W. Evan Johnson [aut] (), Solaiappan Manimaran [aut], Heather Selby [ctb], Claire Ruberman [ctb], Kwame Okrah [ctb], Hector Corrada Bravo [ctb], Michael Silverstein [ctb], Regan Conrad [ctb], Zhaorong Li [ctb], Evan Holmes [aut], Solomon Joseph [ctb] Maintainer: Jessica McClintock URL: https://github.com/wejlab/BatchQC VignetteBuilder: knitr BugReports: https://github.com/wejlab/BatchQC/issues git_url: https://git.bioconductor.org/packages/BatchQC git_branch: RELEASE_3_20 git_last_commit: 71f8bea git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BatchQC_2.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BatchQC_2.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BatchQC_2.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BatchQC_2.2.0.tgz vignettes: vignettes/BatchQC/inst/doc/BatchQC_examples.html, vignettes/BatchQC/inst/doc/BatchQC_Intro.html vignetteTitles: BatchQC Examples, Introdution to BatchQC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BatchQC/inst/doc/BatchQC_examples.R, vignettes/BatchQC/inst/doc/BatchQC_Intro.R dependencyCount: 208 Package: BayesKnockdown Version: 1.32.0 Depends: R (>= 3.3) Imports: stats, Biobase License: GPL-3 MD5sum: 1fde1dce499b8d8bfcfce801c7c52317 NeedsCompilation: no Title: BayesKnockdown: Posterior Probabilities for Edges from Knockdown Data Description: A simple, fast Bayesian method for computing posterior probabilities for relationships between a single predictor variable and multiple potential outcome variables, incorporating prior probabilities of relationships. In the context of knockdown experiments, the predictor variable is the knocked-down gene, while the other genes are potential targets. Can also be used for differential expression/2-class data. biocViews: NetworkInference, GeneExpression, GeneTarget, Network, Bayesian Author: William Chad Young Maintainer: William Chad Young git_url: https://git.bioconductor.org/packages/BayesKnockdown git_branch: RELEASE_3_20 git_last_commit: f312b12 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BayesKnockdown_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BayesKnockdown_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BayesKnockdown_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BayesKnockdown_1.32.0.tgz vignettes: vignettes/BayesKnockdown/inst/doc/BayesKnockdown.pdf vignetteTitles: BayesKnockdown.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BayesKnockdown/inst/doc/BayesKnockdown.R dependencyCount: 6 Package: BayesSpace Version: 1.16.0 Depends: R (>= 4.0.0), SingleCellExperiment Imports: Rcpp (>= 1.0.4.6), stats, methods, purrr, scater, scran, SummarizedExperiment, coda, rhdf5, S4Vectors, Matrix, magrittr, assertthat, arrow, mclust, RCurl, DirichletReg, xgboost, utils, dplyr, rlang, ggplot2, tibble, rjson, tidyr, scales, microbenchmark, BiocFileCache, BiocSingular, BiocParallel LinkingTo: Rcpp, RcppArmadillo, RcppDist, RcppProgress Suggests: testthat, knitr, rmarkdown, igraph, spatialLIBD, viridis, patchwork, RColorBrewer, Seurat License: MIT + file LICENSE Archs: x64 MD5sum: 54c0fce8afc2730a26310b710fc67951 NeedsCompilation: yes Title: Clustering and Resolution Enhancement of Spatial Transcriptomes Description: Tools for clustering and enhancing the resolution of spatial gene expression experiments. BayesSpace clusters a low-dimensional representation of the gene expression matrix, incorporating a spatial prior to encourage neighboring spots to cluster together. The method can enhance the resolution of the low-dimensional representation into "sub-spots", for which features such as gene expression or cell type composition can be imputed. biocViews: Software, Clustering, Transcriptomics, GeneExpression, SingleCell, ImmunoOncology, DataImport Author: Edward Zhao [aut], Senbai Kang [aut], Matt Stone [aut, cre], Xing Ren [ctb], Raphael Gottardo [ctb] Maintainer: Matt Stone URL: edward130603.github.io/BayesSpace SystemRequirements: C++17 VignetteBuilder: knitr BugReports: https://github.com/edward130603/BayesSpace/issues git_url: https://git.bioconductor.org/packages/BayesSpace git_branch: RELEASE_3_20 git_last_commit: f51d05a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BayesSpace_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BayesSpace_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BayesSpace_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BayesSpace_1.16.0.tgz vignettes: vignettes/BayesSpace/inst/doc/BayesSpace.html vignetteTitles: BayesSpace hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BayesSpace/inst/doc/BayesSpace.R importsMe: RegionalST dependencyCount: 156 Package: bayNorm Version: 1.24.0 Depends: R (>= 3.5), Imports: Rcpp (>= 0.12.12), BB, foreach, iterators, doSNOW, Matrix, parallel, MASS, locfit, fitdistrplus, stats, methods, graphics, grDevices, SingleCellExperiment, SummarizedExperiment, BiocParallel, utils LinkingTo: Rcpp, RcppArmadillo,RcppProgress Suggests: knitr, rmarkdown, BiocStyle, devtools, testthat License: GPL (>= 2) Archs: x64 MD5sum: 6bf2ec12971ed9837cabe1a3225f95c0 NeedsCompilation: yes Title: Single-cell RNA sequencing data normalization Description: bayNorm is used for normalizing single-cell RNA-seq data. biocViews: ImmunoOncology, Normalization, RNASeq, SingleCell,Sequencing Author: Wenhao Tang [aut, cre], Franois Bertaux [aut], Philipp Thomas [aut], Claire Stefanelli [aut], Malika Saint [aut], Samuel Marguerat [aut], Vahid Shahrezaei [aut] Maintainer: Wenhao Tang URL: https://github.com/WT215/bayNorm VignetteBuilder: knitr BugReports: https://github.com/WT215/bayNorm/issues git_url: https://git.bioconductor.org/packages/bayNorm git_branch: RELEASE_3_20 git_last_commit: 59c02c9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bayNorm_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bayNorm_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bayNorm_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bayNorm_1.24.0.tgz vignettes: vignettes/bayNorm/inst/doc/bayNorm.html vignetteTitles: Introduction to bayNorm hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bayNorm/inst/doc/bayNorm.R dependencyCount: 61 Package: baySeq Version: 2.40.0 Depends: R (>= 2.3.0), methods Imports: edgeR, GenomicRanges, abind, parallel, graphics, stats, utils Suggests: BiocStyle, BiocGenerics License: GPL-3 MD5sum: a0f89002a2588eb4707bbee8bf64703a NeedsCompilation: no Title: Empirical Bayesian analysis of patterns of differential expression in count data Description: This package identifies differential expression in high-throughput 'count' data, such as that derived from next-generation sequencing machines, calculating estimated posterior likelihoods of differential expression (or more complex hypotheses) via empirical Bayesian methods. biocViews: Sequencing, DifferentialExpression, MultipleComparison, SAGE, Bayesian, Coverage Author: Thomas J. Hardcastle [aut], Samuel Granjeaud [cre] () Maintainer: Samuel Granjeaud URL: https://github.com/samgg/baySeq BugReports: https://github.com/samgg/baySeq/issues git_url: https://git.bioconductor.org/packages/baySeq git_branch: RELEASE_3_20 git_last_commit: 9374a8b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/baySeq_2.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/baySeq_2.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/baySeq_2.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/baySeq_2.40.0.tgz vignettes: vignettes/baySeq/inst/doc/baySeq_generic.pdf, vignettes/baySeq/inst/doc/baySeq.pdf vignetteTitles: Advanced baySeq analyses, baySeq hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/baySeq/inst/doc/baySeq_generic.R, vignettes/baySeq/inst/doc/baySeq.R dependsOnMe: clusterSeq, segmentSeq importsMe: riboSeqR dependencyCount: 32 Package: BBCAnalyzer Version: 1.36.0 Imports: SummarizedExperiment, VariantAnnotation, Rsamtools, grDevices, GenomicRanges, IRanges, Biostrings Suggests: BSgenome.Hsapiens.UCSC.hg19 License: LGPL-3 MD5sum: bcd7378834e0897f6415fdcb5e069869 NeedsCompilation: no Title: BBCAnalyzer: an R/Bioconductor package for visualizing base counts Description: BBCAnalyzer is a package for visualizing the relative or absolute number of bases, deletions and insertions at defined positions in sequence alignment data available as bam files in comparison to the reference bases. Markers for the relative base frequencies, the mean quality of the detected bases, known mutations or polymorphisms and variants called in the data may additionally be included in the plots. biocViews: Sequencing, Alignment, Coverage, GeneticVariability, SNP Author: Sarah Sandmann Maintainer: Sarah Sandmann git_url: https://git.bioconductor.org/packages/BBCAnalyzer git_branch: RELEASE_3_20 git_last_commit: 0a5e1a9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BBCAnalyzer_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BBCAnalyzer_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BBCAnalyzer_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BBCAnalyzer_1.36.0.tgz vignettes: vignettes/BBCAnalyzer/inst/doc/BBCAnalyzer.pdf vignetteTitles: Using BBCAnalyzer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BBCAnalyzer/inst/doc/BBCAnalyzer.R dependencyCount: 79 Package: BCRANK Version: 1.68.0 Depends: methods Imports: Biostrings Suggests: seqLogo License: GPL-2 Archs: x64 MD5sum: 79c2594e60ea105c143574ce699c10b1 NeedsCompilation: yes Title: Predicting binding site consensus from ranked DNA sequences Description: Functions and classes for de novo prediction of transcription factor binding consensus by heuristic search biocViews: MotifDiscovery, GeneRegulation Author: Adam Ameur Maintainer: Adam Ameur git_url: https://git.bioconductor.org/packages/BCRANK git_branch: RELEASE_3_20 git_last_commit: 5dc193f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BCRANK_1.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BCRANK_1.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BCRANK_1.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BCRANK_1.68.0.tgz vignettes: vignettes/BCRANK/inst/doc/BCRANK.pdf vignetteTitles: BCRANK hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BCRANK/inst/doc/BCRANK.R dependencyCount: 25 Package: bcSeq Version: 1.28.0 Depends: R (>= 3.4.0) Imports: Rcpp (>= 0.12.12), Matrix, Biostrings LinkingTo: Rcpp, Matrix Suggests: knitr License: GPL (>= 2) Archs: x64 MD5sum: 8628fcba235199af4969c5fa6912e8db NeedsCompilation: yes Title: Fast Sequence Mapping in High-Throughput shRNA and CRISPR Screens Description: This Rcpp-based package implements a highly efficient data structure and algorithm for performing alignment of short reads from CRISPR or shRNA screens to reference barcode library. Sequencing error are considered and matching qualities are evaluated based on Phred scores. A Bayes' classifier is employed to predict the originating barcode of a read. The package supports provision of user-defined probability models for evaluating matching qualities. The package also supports multi-threading. biocViews: ImmunoOncology, Alignment, CRISPR, Sequencing, SequenceMatching, MultipleSequenceAlignment, Software, ATACSeq Author: Jiaxing Lin [aut, cre], Jeremy Gresham [aut], Jichun Xie [aut], Kouros Owzar [aut], Tongrong Wang [ctb], So Young Kim [ctb], James Alvarez [ctb], Jeffrey S. Damrauer [ctb], Scott Floyd [ctb], Joshua Granek [ctb], Andrew Allen [ctb], Cliburn Chan [ctb] Maintainer: Jiaxing Lin URL: https://github.com/jl354/bcSeq VignetteBuilder: knitr BugReports: https://support.bioconductor.org git_url: https://git.bioconductor.org/packages/bcSeq git_branch: RELEASE_3_20 git_last_commit: bb5c125 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bcSeq_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bcSeq_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bcSeq_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bcSeq_1.28.0.tgz vignettes: vignettes/bcSeq/inst/doc/bcSeq.pdf vignetteTitles: bcSeq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bcSeq/inst/doc/bcSeq.R dependencyCount: 29 Package: beachmat Version: 2.22.0 Imports: methods, DelayedArray (>= 0.27.2), SparseArray, BiocGenerics, Matrix, Rcpp LinkingTo: Rcpp, assorthead Suggests: testthat, BiocStyle, knitr, rmarkdown, rcmdcheck, BiocParallel, HDF5Array, beachmat.hdf5 License: GPL-3 Archs: x64 MD5sum: 3e11f4224ff4e9cfa1ebffae6f9bfee4 NeedsCompilation: yes Title: Compiling Bioconductor to Handle Each Matrix Type Description: Provides a consistent C++ class interface for reading from a variety of commonly used matrix types. Ordinary matrices and several sparse/dense Matrix classes are directly supported, along with a subset of the delayed operations implemented in the DelayedArray package. All other matrix-like objects are supported by calling back into R. biocViews: DataRepresentation, DataImport, Infrastructure Author: Aaron Lun [aut, cre], Hervé Pagès [aut], Mike Smith [aut] Maintainer: Aaron Lun URL: https://github.com/tatami-inc/beachmat SystemRequirements: C++17 VignetteBuilder: knitr BugReports: https://github.com/tatami-inc/beachmat/issues git_url: https://git.bioconductor.org/packages/beachmat git_branch: RELEASE_3_20 git_last_commit: a143856 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/beachmat_2.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/beachmat_2.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/beachmat_2.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/beachmat_2.22.0.tgz vignettes: vignettes/beachmat/inst/doc/linking.html vignetteTitles: Developer guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/beachmat/inst/doc/linking.R importsMe: batchelor, beachmat.hdf5, BiocSingular, DropletUtils, epiregulon, mumosa, scater, scran, scrapper, scuttle, SingleR suggestsMe: bsseq, glmGamPoi, mbkmeans, PCAtools, scCB2 linksToMe: beachmat.hdf5, BiocSingular, bsseq, dreamlet, DropletUtils, epiregulon, glmGamPoi, mbkmeans, PCAtools, scran, scrapper, scuttle, SingleR dependencyCount: 24 Package: beachmat.hdf5 Version: 1.4.0 Imports: methods, beachmat, HDF5Array, DelayedArray, Rcpp LinkingTo: Rcpp, assorthead, beachmat, Rhdf5lib Suggests: testthat, BiocStyle, knitr, rmarkdown, rhdf5, Matrix License: GPL-3 Archs: x64 MD5sum: 92056406f63cce411dad2a915b700533 NeedsCompilation: yes Title: beachmat bindings for HDF5-backed matrices Description: Extends beachmat to support initialization of tatami matrices from HDF5-backed arrays. This allows C++ code in downstream packages to directly call the HDF5 C/C++ library to access array data, without the need for block processing via DelayedArray. Some utilities are also provided for direct creation of an in-memory tatami matrix from a HDF5 file. biocViews: DataRepresentation, DataImport, Infrastructure Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun SystemRequirements: C++17, GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/beachmat.hdf5 git_branch: RELEASE_3_20 git_last_commit: 3f39754 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/beachmat.hdf5_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/beachmat.hdf5_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/beachmat.hdf5_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/beachmat.hdf5_1.4.0.tgz vignettes: vignettes/beachmat.hdf5/inst/doc/userguide.html vignetteTitles: User guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/beachmat.hdf5/inst/doc/userguide.R suggestsMe: beachmat, epiregulon, sketchR dependencyCount: 29 Package: beadarray Version: 2.56.0 Depends: R (>= 2.13.0), BiocGenerics (>= 0.3.2), Biobase (>= 2.17.8), hexbin Imports: BeadDataPackR, limma, AnnotationDbi, stats4, reshape2, GenomicRanges, IRanges, illuminaio, methods, ggplot2 Suggests: lumi, vsn, affy, hwriter, beadarrayExampleData, illuminaHumanv3.db, gridExtra, BiocStyle, TxDb.Hsapiens.UCSC.hg19.knownGene, ggbio, Nozzle.R1, knitr License: MIT + file LICENSE Archs: x64 MD5sum: 5efd39d338403e9b6dbddfa3561d8b71 NeedsCompilation: yes Title: Quality assessment and low-level analysis for Illumina BeadArray data Description: The package is able to read bead-level data (raw TIFFs and text files) output by BeadScan as well as bead-summary data from BeadStudio. Methods for quality assessment and low-level analysis are provided. biocViews: Microarray, OneChannel, QualityControl, Preprocessing Author: Mark Dunning, Mike Smith, Jonathan Cairns, Andy Lynch, Matt Ritchie Maintainer: Mark Dunning VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/beadarray git_branch: RELEASE_3_20 git_last_commit: 3728fd3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/beadarray_2.56.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/beadarray_2.56.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/beadarray_2.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/beadarray_2.56.0.tgz vignettes: vignettes/beadarray/inst/doc/beadarray.html, vignettes/beadarray/inst/doc/beadlevel.html, vignettes/beadarray/inst/doc/beadsummary.html, vignettes/beadarray/inst/doc/ImageProcessing.html vignetteTitles: Introduction to beadarray, Analysis of Bead-level Data using beadarray, Analysis of bead-summary data, Image Analysis with beadarray hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/beadarray/inst/doc/beadarray.R, vignettes/beadarray/inst/doc/beadlevel.R, vignettes/beadarray/inst/doc/beadsummary.R, vignettes/beadarray/inst/doc/ImageProcessing.R dependsOnMe: beadarrayExampleData importsMe: arrayQualityMetrics, blima, epigenomix, BeadArrayUseCases, RobLoxBioC suggestsMe: lumi, blimaTestingData, maGUI dependencyCount: 80 Package: BeadDataPackR Version: 1.58.0 Imports: stats, utils Suggests: BiocStyle, knitr License: GPL-2 Archs: x64 MD5sum: 63023a2f3a4e09ca1f357570eda58adf NeedsCompilation: yes Title: Compression of Illumina BeadArray data Description: Provides functionality for the compression and decompression of raw bead-level data from the Illumina BeadArray platform. biocViews: Microarray Author: Mike Smith, Andy Lynch Maintainer: Mike Smith VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BeadDataPackR git_branch: RELEASE_3_20 git_last_commit: 93ad216 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BeadDataPackR_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BeadDataPackR_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BeadDataPackR_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BeadDataPackR_1.58.0.tgz vignettes: vignettes/BeadDataPackR/inst/doc/BeadDataPackR.pdf vignetteTitles: BeadDataPackR.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BeadDataPackR/inst/doc/BeadDataPackR.R importsMe: beadarray dependencyCount: 2 Package: BEAT Version: 1.44.0 Depends: R (>= 2.13.0) Imports: GenomicRanges, ShortRead, Biostrings, BSgenome License: LGPL (>= 3.0) MD5sum: 17acde8cfa4a9e16817cd68309f30051 NeedsCompilation: no Title: BEAT - BS-Seq Epimutation Analysis Toolkit Description: Model-based analysis of single-cell methylation data biocViews: ImmunoOncology, Genetics, MethylSeq, Software, DNAMethylation, Epigenetics Author: Kemal Akman Maintainer: Kemal Akman git_url: https://git.bioconductor.org/packages/BEAT git_branch: RELEASE_3_20 git_last_commit: 8cb1962 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BEAT_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BEAT_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BEAT_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BEAT_1.44.0.tgz vignettes: vignettes/BEAT/inst/doc/BEAT.pdf vignetteTitles: Analysing single-cell BS-Seq data with the "BEAT" package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BEAT/inst/doc/BEAT.R dependencyCount: 71 Package: BEclear Version: 2.22.0 Depends: BiocParallel (>= 1.14.2) Imports: futile.logger, Rdpack, Matrix, data.table (>= 1.11.8), Rcpp, abind, stats, graphics, utils, methods, dixonTest, ids LinkingTo: Rcpp Suggests: testthat, BiocStyle, knitr, rmarkdown, pander, seewave License: GPL-3 Archs: x64 MD5sum: d8de2e2efc4f8bb25d2a9462d2e23f86 NeedsCompilation: yes Title: Correction of batch effects in DNA methylation data Description: Provides functions to detect and correct for batch effects in DNA methylation data. The core function is based on latent factor models and can also be used to predict missing values in any other matrix containing real numbers. biocViews: BatchEffect, DNAMethylation, Software, Preprocessing, StatisticalMethod Author: Livia Rasp [aut, cre] (), Markus Merl [aut], Ruslan Akulenko [aut] Maintainer: Livia Rasp URL: https://github.com/uds-helms/BEclear SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/uds-helms/BEclear/issues git_url: https://git.bioconductor.org/packages/BEclear git_branch: RELEASE_3_20 git_last_commit: 221df37 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BEclear_2.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BEclear_2.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BEclear_2.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BEclear_2.22.0.tgz vignettes: vignettes/BEclear/inst/doc/BEclear.html vignetteTitles: BEclear tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BEclear/inst/doc/BEclear.R dependencyCount: 30 Package: beer Version: 1.10.0 Depends: R (>= 4.2.0), PhIPData (>= 1.1.1), rjags Imports: cli, edgeR, BiocParallel, methods, progressr, stats, SummarizedExperiment, utils Suggests: testthat (>= 3.0.0), BiocStyle, covr, codetools, knitr, rmarkdown, dplyr, ggplot2, spelling License: MIT + file LICENSE MD5sum: e2b2b44d638bb6b8a99e37fcdfe0bc67 NeedsCompilation: no Title: Bayesian Enrichment Estimation in R Description: BEER implements a Bayesian model for analyzing phage-immunoprecipitation sequencing (PhIP-seq) data. Given a PhIPData object, BEER returns posterior probabilities of enriched antibody responses, point estimates for the relative fold-change in comparison to negative control samples, and more. Additionally, BEER provides a convenient implementation for using edgeR to identify enriched antibody responses. biocViews: Software, StatisticalMethod, Bayesian, Sequencing, Coverage Author: Athena Chen [aut, cre] (), Rob Scharpf [aut], Ingo Ruczinski [aut] Maintainer: Athena Chen URL: https://github.com/athchen/beer/ SystemRequirements: JAGS (4.3.0) VignetteBuilder: knitr BugReports: https://github.com/athchen/beer/issues git_url: https://git.bioconductor.org/packages/beer git_branch: RELEASE_3_20 git_last_commit: a28e699 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/beer_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/beer_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/beer_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/beer_1.10.0.tgz vignettes: vignettes/beer/inst/doc/beer.html vignetteTitles: beer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/beer/inst/doc/beer.R dependencyCount: 86 Package: benchdamic Version: 1.12.2 Depends: R (>= 4.3.0) Imports: stats, stats4, utils, methods, phyloseq, TreeSummarizedExperiment, BiocParallel, zinbwave, edgeR, DESeq2, limma, ALDEx2, corncob, SummarizedExperiment, MAST, Seurat, ANCOMBC, microbiome, mixOmics, lme4, NOISeq, dearseq, MicrobiomeStat, Maaslin2, GUniFrac, metagenomeSeq, MGLM, ggplot2, RColorBrewer, plyr, reshape2, ggdendro, ggridges, graphics, cowplot, grDevices, tidytext Suggests: knitr, rmarkdown, kableExtra, BiocStyle, magick, SPsimSeq, testthat License: Artistic-2.0 MD5sum: 4b378578c772a8ccac80e04f62e22901 NeedsCompilation: no Title: Benchmark of differential abundance methods on microbiome data Description: Starting from a microbiome dataset (16S or WMS with absolute count values) it is possible to perform several analysis to assess the performances of many differential abundance detection methods. A basic and standardized version of the main differential abundance analysis methods is supplied but the user can also add his method to the benchmark. The analyses focus on 4 main aspects: i) the goodness of fit of each method's distributional assumptions on the observed count data, ii) the ability to control the false discovery rate, iii) the within and between method concordances, iv) the truthfulness of the findings if any apriori knowledge is given. Several graphical functions are available for result visualization. biocViews: Metagenomics, Microbiome, DifferentialExpression, MultipleComparison, Normalization, Preprocessing, Software Author: Matteo Calgaro [aut, cre] (), Chiara Romualdi [aut] (), Davide Risso [aut] (), Nicola Vitulo [aut] () Maintainer: Matteo Calgaro VignetteBuilder: knitr BugReports: https://github.com/mcalgaro93/benchdamic/issues git_url: https://git.bioconductor.org/packages/benchdamic git_branch: RELEASE_3_20 git_last_commit: ef8ce31 git_last_commit_date: 2024-11-26 Date/Publication: 2025-01-02 source.ver: src/contrib/benchdamic_1.12.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/benchdamic_1.12.2.zip mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/benchdamic_1.12.2.tgz vignettes: vignettes/benchdamic/inst/doc/intro.html vignetteTitles: Intro hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/benchdamic/inst/doc/intro.R Package: BERT Version: 1.2.0 Depends: R (>= 4.3.0) Imports: cluster, comprehenr, foreach (>= 1.5.2), invgamma, iterators (>= 1.0.14), janitor (>= 2.2.0), limma (>= 3.46.0), logging (>= 0.10-108), sva (>= 3.38.0), SummarizedExperiment, methods, BiocParallel Suggests: testthat (>= 3.0.0), knitr, rmarkdown, BiocStyle License: GPL-3 MD5sum: 12e279dc220c5b5d8d327189c37dfdcd NeedsCompilation: no Title: High Performance Data Integration for Large-Scale Analyses of Incomplete Omic Profiles Using Batch-Effect Reduction Trees (BERT) Description: Provides efficient batch-effect adjustment of data with missing values. BERT orders all batch effect correction to a tree of pairwise computations. BERT allows parallelization over sub-trees. biocViews: BatchEffect, Preprocessing, ExperimentalDesign Author: Yannis Schumann [aut, cre] (), Simon Schlumbohm [aut] () Maintainer: Yannis Schumann URL: https://github.com/HSU-HPC/BERT/ VignetteBuilder: knitr BugReports: https://github.com/HSU-HPC/BERT/issues git_url: https://git.bioconductor.org/packages/BERT git_branch: RELEASE_3_20 git_last_commit: 9764e3f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BERT_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BERT_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BERT_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BERT_1.2.0.tgz vignettes: vignettes/BERT/inst/doc/BERT-Vignette.html vignetteTitles: BERT-Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BERT/inst/doc/BERT-Vignette.R dependencyCount: 102 Package: betaHMM Version: 1.2.1 Depends: R (>= 4.3.0), SummarizedExperiment, S4Vectors, GenomicRanges Imports: stats, ggplot2, scales, methods, pROC, foreach, doParallel, parallel, cowplot, dplyr, tidyr, tidyselect, stringr, utils Suggests: rmarkdown, knitr, testthat (>= 3.0.0), BiocStyle License: GPL-3 MD5sum: 03125abfdeba9f856eb90212ea16a9b0 NeedsCompilation: no Title: A Hidden Markov Model Approach for Identifying Differentially Methylated Sites and Regions for Beta-Valued DNA Methylation Data Description: A novel approach utilizing a homogeneous hidden Markov model. And effectively model untransformed beta values. To identify DMCs while considering the spatial. Correlation of the adjacent CpG sites. biocViews: DNAMethylation, DifferentialMethylation, ImmunoOncology, BiomedicalInformatics, MethylationArray, Software, MultipleComparison, Sequencing, Spatial, Coverage, GeneTarget, HiddenMarkovModel, Microarray Author: Koyel Majumdar [cre, aut] (), Romina Silva [aut], Antoinette Sabrina Perry [aut], Ronald William Watson [aut], Isobel Claire Gorley [aut] (), Thomas Brendan Murphy [aut] (), Florence Jaffrezic [aut], Andrea Rau [aut] () Maintainer: Koyel Majumdar VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/betaHMM git_branch: RELEASE_3_20 git_last_commit: ca41df9 git_last_commit_date: 2024-12-17 Date/Publication: 2024-12-19 source.ver: src/contrib/betaHMM_1.2.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/betaHMM_1.2.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/betaHMM_1.2.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/betaHMM_1.2.1.tgz vignettes: vignettes/betaHMM/inst/doc/betaHMM.html vignetteTitles: betaHMM hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/betaHMM/inst/doc/betaHMM.R dependencyCount: 79 Package: bettr Version: 1.2.0 Depends: R (>= 4.4.0) Imports: dplyr (>= 1.0), tidyr, ggplot2 (>= 3.4.1), shiny (>= 1.6), tibble, ComplexHeatmap, bslib, rlang, circlize, stats, grid, methods, cowplot, Hmisc, sortable, shinyjqui, grDevices, scales, DT, SummarizedExperiment, S4Vectors Suggests: knitr, rmarkdown, testthat (>= 3.0.0), BiocStyle License: MIT + file LICENSE MD5sum: 07fe79bca7bad892bdaebcc261cf33ec NeedsCompilation: no Title: A Better Way To Explore What Is Best Description: bettr provides a set of interactive visualization methods to explore the results of a benchmarking study, where typically more than a single performance measures are computed. The user can weight the performance measures according to their preferences. Performance measures can also be grouped and aggregated according to additional annotations. biocViews: Visualization, ShinyApps, GUI Author: Federico Marini [aut] (), Charlotte Soneson [aut, cre] () Maintainer: Charlotte Soneson URL: https://github.com/federicomarini/bettr VignetteBuilder: knitr BugReports: https://github.com/federicomarini/bettr/issues git_url: https://git.bioconductor.org/packages/bettr git_branch: RELEASE_3_20 git_last_commit: bf0a187 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bettr_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bettr_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bettr_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bettr_1.2.0.tgz vignettes: vignettes/bettr/inst/doc/bettr.html vignetteTitles: bettr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/bettr/inst/doc/bettr.R dependencyCount: 136 Package: BG2 Version: 1.6.0 Depends: R (>= 4.2.0) Imports: GA (>= 3.2), caret (>= 6.0-86), memoise (>= 1.1.0), Matrix (>= 1.2-18), MASS (>= 7.3-58.1), stats (>= 4.2.2) Suggests: BiocStyle, knitr, rmarkdown, formatR, rrBLUP, testthat (>= 3.0.0) License: GPL-3 + file LICENSE MD5sum: 6a60a5d3010345c4b5559006b403c640 NeedsCompilation: no Title: Performs Bayesian GWAS analysis for non-Gaussian data using BG2 Description: This package is built to perform GWAS analysis for non-Gaussian data using BG2. The BG2 method uses penalized quasi-likelihood along with nonlocal priors in a two step manner to identify SNPs in GWAS analysis. The research related to this package was supported in part by National Science Foundation awards DMS 1853549 and DMS 2054173. biocViews: Bayesian, AssayDomain, SNP, GenomeWideAssociation Author: Jacob Williams [aut, cre] (), Shuangshuang Xu [aut], Marco Ferreira [aut] () Maintainer: Jacob Williams VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BG2 git_branch: RELEASE_3_20 git_last_commit: 8e40a3f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BG2_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BG2_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BG2_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BG2_1.6.0.tgz vignettes: vignettes/BG2/inst/doc/BG2.html vignetteTitles: BG2 hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BG2/inst/doc/BG2.R dependencyCount: 91 Package: BgeeCall Version: 1.22.0 Depends: R (>= 3.6) Imports: GenomicFeatures, tximport, Biostrings, rtracklayer, biomaRt, jsonlite, methods, dplyr, data.table, sjmisc, grDevices, graphics, stats, utils, rslurm, rhdf5, txdbmaker Suggests: knitr, testthat, rmarkdown, AnnotationHub, httr License: GPL-3 + file LICENSE MD5sum: 4c2e44c5068cb6d4f72ce57b41232eba NeedsCompilation: no Title: Automatic RNA-Seq present/absent gene expression calls generation Description: BgeeCall allows to generate present/absent gene expression calls without using an arbitrary cutoff like TPM<1. Calls are generated based on reference intergenic sequences. These sequences are generated based on expression of all RNA-Seq libraries of each species integrated in Bgee (https://bgee.org). biocViews: Software, GeneExpression, RNASeq Author: Julien Wollbrett [aut, cre], Sara Fonseca Costa [aut], Julien Roux [aut], Marc Robinson Rechavi [ctb], Frederic Bastian [aut] Maintainer: Julien Wollbrett URL: https://github.com/BgeeDB/BgeeCall SystemRequirements: kallisto VignetteBuilder: knitr BugReports: https://github.com/BgeeDB/BgeeCall/issues git_url: https://git.bioconductor.org/packages/BgeeCall git_branch: RELEASE_3_20 git_last_commit: 08eb2dd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/BgeeCall_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BgeeCall_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BgeeCall_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BgeeCall_1.22.0.tgz vignettes: vignettes/BgeeCall/inst/doc/bgeecall-manual.html vignetteTitles: automatic RNA-Seq present/absent gene expression calls generation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BgeeCall/inst/doc/bgeecall-manual.R dependencyCount: 113 Package: BgeeDB Version: 2.32.0 Depends: R (>= 3.6.0), topGO, tidyr Imports: R.utils, data.table, curl, RCurl, digest, methods, stats, utils, dplyr, RSQLite, graph, Biobase, zellkonverter, anndata, HDF5Array, bread Suggests: knitr, BiocStyle, testthat, rmarkdown, markdown License: GPL-3 + file LICENSE MD5sum: cc657beb492269eb151c26a813026b64 NeedsCompilation: no Title: Annotation and gene expression data retrieval from Bgee database. TopAnat, an anatomical entities Enrichment Analysis tool for UBERON ontology Description: A package for the annotation and gene expression data download from Bgee database, and TopAnat analysis: GO-like enrichment of anatomical terms, mapped to genes by expression patterns. biocViews: Software, DataImport, Sequencing, GeneExpression, Microarray, GO, GeneSetEnrichment Author: Andrea Komljenovic [aut, cre], Julien Roux [aut, cre] Maintainer: Julien Wollbrett , Julien Roux , Andrea Komljenovic , Frederic Bastian URL: https://github.com/BgeeDB/BgeeDB_R VignetteBuilder: knitr BugReports: https://github.com/BgeeDB/BgeeDB_R/issues git_url: https://git.bioconductor.org/packages/BgeeDB git_branch: RELEASE_3_20 git_last_commit: 26e84b8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/BgeeDB_2.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BgeeDB_2.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BgeeDB_2.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BgeeDB_2.32.0.tgz vignettes: vignettes/BgeeDB/inst/doc/BgeeDB_Manual.html vignetteTitles: BgeeDB,, an R package for retrieval of curated expression datasets and for gene list enrichment tests hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BgeeDB/inst/doc/BgeeDB_Manual.R importsMe: RITAN suggestsMe: RITAN dependencyCount: 100 Package: BicARE Version: 1.64.0 Depends: R (>= 1.8.0), Biobase (>= 2.5.5), multtest, GSEABase, GO.db Imports: methods Suggests: hgu95av2 License: GPL-2 Archs: x64 MD5sum: 139bdada55b8e0f1c8c2cab35daf8962 NeedsCompilation: yes Title: Biclustering Analysis and Results Exploration Description: Biclustering Analysis and Results Exploration. biocViews: Microarray, Transcription, Clustering Author: Pierre Gestraud Maintainer: Pierre Gestraud URL: http://bioinfo.curie.fr git_url: https://git.bioconductor.org/packages/BicARE git_branch: RELEASE_3_20 git_last_commit: eaa3aaf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BicARE_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BicARE_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BicARE_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BicARE_1.64.0.tgz vignettes: vignettes/BicARE/inst/doc/BicARE.pdf vignetteTitles: BicARE hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BicARE/inst/doc/BicARE.R dependsOnMe: RcmdrPlugin.BiclustGUI importsMe: miRSM dependencyCount: 58 Package: BiFET Version: 1.26.0 Depends: R (>= 3.5.0) Imports: stats, poibin, GenomicRanges Suggests: rmarkdown, testthat, knitr License: GPL-3 Archs: x64 MD5sum: dd89b71d4770cb7e547808c5d5ea8cba NeedsCompilation: no Title: Bias-free Footprint Enrichment Test Description: BiFET identifies TFs whose footprints are over-represented in target regions compared to background regions after correcting for the bias arising from the imbalance in read counts and GC contents between the target and background regions. For a given TF k, BiFET tests the null hypothesis that the target regions have the same probability of having footprints for the TF k as the background regions while correcting for the read count and GC content bias. For this, we use the number of target regions with footprints for TF k, t_k as a test statistic and calculate the p-value as the probability of observing t_k or more target regions with footprints under the null hypothesis. biocViews: ImmunoOncology, Genetics, Epigenetics, Transcription, GeneRegulation, ATACSeq, DNaseSeq, RIPSeq, Software Author: Ahrim Youn [aut, cre], Eladio Marquez [aut], Nathan Lawlor [aut], Michael Stitzel [aut], Duygu Ucar [aut] Maintainer: Ahrim Youn VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BiFET git_branch: RELEASE_3_20 git_last_commit: 33d58ff git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiFET_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiFET_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiFET_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiFET_1.26.0.tgz vignettes: vignettes/BiFET/inst/doc/BiFET.html vignetteTitles: "A Guide to using BiFET" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiFET/inst/doc/BiFET.R dependencyCount: 24 Package: BiGGR Version: 1.42.0 Depends: R (>= 2.14.0), rsbml, hyperdraw, LIM,stringr Imports: hypergraph, limSolve License: file LICENSE MD5sum: 35ba1a1c22de3f2c7e971f2a0bba0a4b NeedsCompilation: no Title: Constraint based modeling in R using metabolic reconstruction databases Description: This package provides an interface to simulate metabolic reconstruction from the BiGG database(http://bigg.ucsd.edu/) and other metabolic reconstruction databases. The package facilitates flux balance analysis (FBA) and the sampling of feasible flux distributions. Metabolic networks and estimated fluxes can be visualized with hypergraphs. biocViews: Systems Biology,Pathway,Network,GraphAndNetwork, Visualization,Metabolomics Author: Anand K. Gavai, Hannes Hettling Maintainer: Anand K. Gavai , Hannes Hettling URL: http://www.bioconductor.org/ git_url: https://git.bioconductor.org/packages/BiGGR git_branch: RELEASE_3_20 git_last_commit: bdcf1de git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiGGR_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiGGR_1.42.0.zip vignettes: vignettes/BiGGR/inst/doc/BiGGR.pdf vignetteTitles: BiGGR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BiGGR/inst/doc/BiGGR.R dependencyCount: 29 Package: bigmelon Version: 1.32.0 Depends: R (>= 3.3), wateRmelon (>= 1.25.0), gdsfmt (>= 1.0.4), methods, minfi (>= 1.21.0), Biobase, methylumi Imports: stats, utils, GEOquery, graphics, BiocGenerics, illuminaio Suggests: BiocGenerics, RUnit, BiocStyle, minfiData, parallel, IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylationEPICanno.ilm10b2.hg19, bumphunter License: GPL-3 MD5sum: 423b0bad7fa00435f8be661b0dc6f75f NeedsCompilation: no Title: Illumina methylation array analysis for large experiments Description: Methods for working with Illumina arrays using gdsfmt. biocViews: DNAMethylation, Microarray, TwoChannel, Preprocessing, QualityControl, MethylationArray, DataImport, CpGIsland Author: Tyler J. Gorrie-Stone [aut], Ayden Saffari [aut], Karim Malki [aut], Leonard C. Schalkwyk [cre, aut] Maintainer: Leonard C. Schalkwyk git_url: https://git.bioconductor.org/packages/bigmelon git_branch: RELEASE_3_20 git_last_commit: de51bf0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bigmelon_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bigmelon_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bigmelon_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bigmelon_1.32.0.tgz vignettes: vignettes/bigmelon/inst/doc/bigmelon.pdf vignetteTitles: The bigmelon Package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bigmelon/inst/doc/bigmelon.R dependencyCount: 174 Package: BindingSiteFinder Version: 2.4.0 Depends: GenomicRanges, R (>= 4.2) Imports: tidyr, tibble, plyr, matrixStats, stats, ggplot2, methods, rtracklayer, S4Vectors, ggforce, GenomeInfoDb, ComplexHeatmap, RColorBrewer, lifecycle, rlang, forcats, dplyr, GenomicFeatures, IRanges, kableExtra, ggdist Suggests: testthat, BiocStyle, knitr, rmarkdown, GenomicAlignments, scales, Gviz, xlsx, GGally, patchwork, viridis, ggplotify, SummarizedExperiment, DESeq2, ggpointdensity, ggrastr, ashr License: Artistic-2.0 MD5sum: 5391da35eacee94b739cd6b45d4e4a1b NeedsCompilation: no Title: Binding site defintion based on iCLIP data Description: Precise knowledge on the binding sites of an RNA-binding protein (RBP) is key to understand (post-) transcriptional regulatory processes. Here we present a workflow that describes how exact binding sites can be defined from iCLIP data. The package provides functions for binding site definition and result visualization. For details please see the vignette. biocViews: Sequencing, GeneExpression, GeneRegulation, FunctionalGenomics, Coverage, DataImport Author: Mirko Brüggemann [aut, cre] (), Melina Klostermann [aut] (), Kathi Zarnack [aut] () Maintainer: Mirko Brüggemann VignetteBuilder: knitr BugReports: https://github.com/ZarnackGroup/BindingSiteFinder/issues git_url: https://git.bioconductor.org/packages/BindingSiteFinder git_branch: RELEASE_3_20 git_last_commit: cc4839b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BindingSiteFinder_2.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BindingSiteFinder_2.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BindingSiteFinder_2.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BindingSiteFinder_2.4.0.tgz vignettes: vignettes/BindingSiteFinder/inst/doc/vignette.html vignetteTitles: Definition of binding sites from iCLIP signal hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BindingSiteFinder/inst/doc/vignette.R dependencyCount: 145 Package: bioassayR Version: 1.44.0 Depends: R (>= 3.5.0), DBI (>= 0.3.1), RSQLite (>= 1.0.0), methods, Matrix, rjson, BiocGenerics (>= 0.13.8) Imports: XML, ChemmineR Suggests: BiocStyle, RCurl, biomaRt, knitr, knitcitations, knitrBootstrap, testthat, ggplot2, rmarkdown License: Artistic-2.0 MD5sum: eff797f2b472054d3ceda0df1abd6cef NeedsCompilation: no Title: Cross-target analysis of small molecule bioactivity Description: bioassayR is a computational tool that enables simultaneous analysis of thousands of bioassay experiments performed over a diverse set of compounds and biological targets. Unique features include support for large-scale cross-target analyses of both public and custom bioassays, generation of high throughput screening fingerprints (HTSFPs), and an optional preloaded database that provides access to a substantial portion of publicly available bioactivity data. biocViews: ImmunoOncology, MicrotitrePlateAssay, CellBasedAssays, Visualization, Infrastructure, DataImport, Bioinformatics, Proteomics, Metabolomics Author: Tyler Backman, Ronly Schlenk, Thomas Girke Maintainer: Thomas Girke URL: https://github.com/girke-lab/bioassayR VignetteBuilder: knitr BugReports: https://github.com/girke-lab/bioassayR/issues git_url: https://git.bioconductor.org/packages/bioassayR git_branch: RELEASE_3_20 git_last_commit: ef8c8ff git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bioassayR_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bioassayR_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bioassayR_1.44.0.tgz vignettes: vignettes/bioassayR/inst/doc/bioassayR.html vignetteTitles: bioassayR Introduction and Examples hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bioassayR/inst/doc/bioassayR.R dependencyCount: 83 Package: Biobase Version: 2.66.0 Depends: R (>= 2.10), BiocGenerics (>= 0.27.1), utils Imports: methods Suggests: tools, tkWidgets, ALL, RUnit, golubEsets, BiocStyle, knitr, limma License: Artistic-2.0 MD5sum: 3782a10ac7f920542aa3265b8253746b NeedsCompilation: yes Title: Biobase: Base functions for Bioconductor Description: Functions that are needed by many other packages or which replace R functions. biocViews: Infrastructure Author: R. Gentleman [aut], V. Carey [aut], M. Morgan [aut], S. Falcon [aut], Haleema Khan [ctb] ('esApply' and 'BiobaseDevelopment' vignette translation from Sweave to Rmarkdown / HTML), Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer URL: https://bioconductor.org/packages/Biobase VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/Biobase/issues git_url: https://git.bioconductor.org/packages/Biobase git_branch: RELEASE_3_20 git_last_commit: 2cd604f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Biobase_2.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Biobase_2.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Biobase_2.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Biobase_2.66.0.tgz vignettes: vignettes/Biobase/inst/doc/ExpressionSetIntroduction.pdf, vignettes/Biobase/inst/doc/BiobaseDevelopment.html, vignettes/Biobase/inst/doc/esApply.html vignetteTitles: An introduction to Biobase and ExpressionSets, Notes for eSet developers, esApply Introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Biobase/inst/doc/BiobaseDevelopment.R, vignettes/Biobase/inst/doc/esApply.R, vignettes/Biobase/inst/doc/ExpressionSetIntroduction.R dependsOnMe: ACME, affy, affycomp, affyContam, affycoretools, affyPLM, AGDEX, AIMS, altcdfenvs, annaffy, AnnotationDbi, AnnotationForge, ArrayExpress, arrayMvout, BAGS, bandle, beadarray, BicARE, bigmelon, BioMVCClass, BioQC, BLMA, borealis, CAMERA, cancerclass, casper, Category, categoryCompare, CCPROMISE, CGHbase, CGHcall, CGHregions, clippda, clusterStab, CMA, cn.farms, codelink, convert, copa, covEB, covRNA, DEXSeq, DFP, diggit, doppelgangR, DSS, dyebias, EBarrays, EDASeq, edge, EGSEA, epigenomix, epivizrData, ExiMiR, ExpressionAtlas, fabia, factDesign, fastseg, flowBeads, frma, gaga, GeneMeta, geneplotter, geneRecommender, GeneRegionScan, GeneSelectMMD, geNetClassifier, GeoDiff, GEOexplorer, GeomxTools, GEOquery, GOexpress, goProfiles, GOstats, GSEABase, GSEABenchmarkeR, GSEAlm, GWASTools, hapFabia, HELP, hopach, HybridMTest, iCheck, IdeoViz, idiogram, INSPEcT, isobar, iterativeBMA, IVAS, lumi, made4, massiR, MEAL, MethPed, methylumi, Mfuzz, MiChip, mimager, MineICA, MiRaGE, miRcomp, MLInterfaces, MMDiff2, monocle, MSnbase, Mulcom, MultiDataSet, multtest, NanoStringDiff, NanoStringNCTools, NanoTube, NOISeq, normalize450K, NormqPCR, octad, oligo, omicRexposome, OrderedList, OTUbase, pandaR, panp, pcaMethods, pdInfoBuilder, pepStat, phenoTest, PLPE, POWSC, PREDA, pRolocGUI, PROMISE, qpcrNorm, qPLEXanalyzer, R453Plus1Toolbox, RbcBook1, rbsurv, rcellminer, ReadqPCR, rexposome, Rmagpie, Rnits, RTopper, RUVSeq, safe, SCAN.UPC, SeqGSEA, SigCheck, siggenes, singleCellTK, SpeCond, SPEM, spkTools, splineTimeR, SummarizedExperiment, tigre, tilingArray, topGO, TPP, tRanslatome, twilight, UNDO, VegaMC, viper, vsn, wateRmelon, webbioc, XDE, yarn, EuPathDB, affycompData, ALL, bcellViper, beadarrayExampleData, bladderbatch, brgedata, cancerdata, CCl4, CLL, colonCA, CRCL18, curatedBreastData, curatedOvarianData, davidTiling, diggitdata, DLBCL, dressCheck, etec16s, fabiaData, fibroEset, gaschYHS, golubEsets, GSE103322, GSE13015, GSE62944, GSVAdata, harbChIP, Hiiragi2013, HumanAffyData, humanStemCell, Iyer517, kidpack, leeBamViews, leukemiasEset, lumiBarnes, lungExpression, MAQCsubset, MetaGxBreast, MetaGxOvarian, miRNATarget, msd16s, mvoutData, Neve2006, PREDAsampledata, ProData, prostateCancerCamcap, prostateCancerGrasso, prostateCancerStockholm, prostateCancerTaylor, prostateCancerVarambally, pumadata, rcellminerData, RUVnormalizeData, SpikeInSubset, TCGAcrcmiRNA, TCGAcrcmRNA, tweeDEseqCountData, yeastCC, maEndToEnd, countTransformers, crmn, dGAselID, eLNNpairedCov, GWASbyCluster, heatmapFlex, InteRD, lmQCM, MM2Sdata, MMDvariance, propOverlap, statVisual importsMe: a4Base, a4Classif, a4Core, a4Preproc, ABarray, ACE, aCGH, adSplit, affyILM, AgiMicroRna, ANF, annmap, annotate, AnnotationHubData, annotationTools, arrayQualityMetrics, attract, ballgown, BASiCS, BayesKnockdown, BgeeDB, biobroom, bioCancer, biocViews, BioNet, biosigner, biscuiteer, BiSeq, blima, bnem, BSgenomeForge, bsseq, BubbleTree, CAFE, canceR, Cardinal, CellScore, CellTrails, cfdnakit, CGHnormaliter, ChIPQC, ChIPXpress, ChromHeatMap, cicero, clipper, CluMSID, cn.mops, COCOA, cogena, combi, CompoundDb, ConsensusClusterPlus, consensusDE, coRdon, CoreGx, crlmm, cummeRbund, cyanoFilter, cycle, cydar, CytoML, DAPAR, ddCt, debCAM, DEGreport, DESeq2, destiny, DExMA, discordant, easyRNASeq, EBarrays, ecolitk, EGAD, ensembldb, EpiMix, erma, esetVis, ExiMiR, ffpe, findIPs, flowClust, flowCore, flowFP, flowMatch, flowMeans, flowSpecs, flowStats, flowViz, flowWorkspace, FRASER, frma, frmaTools, gCrisprTools, gcrma, gemma.R, geneClassifiers, GeneExpressionSignature, genefilter, GeneMeta, geneRecommender, GeneRegionScan, GENESIS, GenomicInteractions, GenomicScores, GenomicSuperSignature, GEOsubmission, gep2pep, ggbio, girafe, GlobalAncova, globaltest, gmapR, GSRI, GSVA, Gviz, Harshlight, HEM, hermes, HTSFilter, infinityFlow, IsoformSwitchAnalyzeR, isomiRs, katdetectr, kissDE, lapmix, LiquidAssociation, LRBaseDbi, lute, MAGeCKFlute, makecdfenv, MAPFX, maSigPro, MAST, mastR, mBPCR, MeSHDbi, metaseqR2, MethylAid, methylCC, methylclock, methylumi, mfa, MiChip, minfi, MinimumDistance, MiPP, MIRA, miRSM, missMethyl, MLSeq, mogsa, Moonlight2R, MoonlightR, MSnID, MultiAssayExperiment, MultiRNAflow, multiscan, mzR, netZooR, npGSEA, nucleR, oligoClasses, omicade4, omicsViewer, ontoProc, oposSOM, oppar, OrganismDbi, panp, phantasus, phantasusLite, PharmacoGx, phenomis, phyloseq, piano, plgem, plier, PLSDAbatch, podkat, prebs, PrInCE, progeny, pRoloc, PROMISE, PRONE, Prostar, protGear, ptairMS, puma, PureCN, pvac, pvca, qcmetrics, QDNAseq, QFeatures, qpgraph, quantiseqr, quantro, QuasR, qusage, RadioGx, randPack, ReactomeGSA, RIVER, Rmagpie, RMassBank, RNAseqCovarImpute, roastgsa, rols, ropls, ROTS, rqubic, rScudo, Rtpca, Rtreemix, RUVnormalize, scmap, scTGIF, SeqVarTools, shinyMethyl, ShortRead, SigsPack, sigsquared, singscore, sitadela, sketchR, SomaticSignatures, SpatialDecon, SpatialFeatureExperiment, SpatialOmicsOverlay, spkTools, SPONGE, standR, STATegRa, subSeq, synapter, TDbasedUFEadv, TEQC, TFBSTools, tidyFlowCore, timecourse, TMixClust, TnT, topdownr, ToxicoGx, tradeSeq, TTMap, twilight, txdbmaker, uSORT, VanillaICE, variancePartition, VariantAnnotation, VariantFiltering, VariantTools, vidger, vulcan, wateRmelon, wpm, xcms, Xeva, BloodCancerMultiOmics2017, DeSousa2013, DExMAdata, Fletcher2013a, GSE13015, hgu133plus2CellScore, IHWpaper, KEGGandMetacoreDzPathwaysGEO, KEGGdzPathwaysGEO, mcsurvdata, pRolocdata, RNAinteractMAPK, seqc, signatureSearchData, ExpHunterSuite, ExpressionNormalizationWorkflow, GeoMxWorkflows, AnnoProbe, bapred, BisqueRNA, CIARA, ClassComparison, ClassDiscovery, D4TAlink.light, easyDifferentialGeneCoexpression, FMradio, geneExpressionFromGEO, GSEMA, IntegratedJM, maGUI, nlcv, NMF, PCAPAM50, PerseusR, RCPA, RobLox, RobLoxBioC, RPPanalyzer, SCdeconR, seAMLess, ssizeRNA, TailRank suggestsMe: AUCell, autonomics, BiocGenerics, CellMapper, clustComp, coseq, cypress, dar, DART, dcanr, dearseq, edgeR, EnMCB, EpiDISH, epivizr, epivizrChart, epivizrStandalone, GENIE3, GenomicPlot, GenomicRanges, GSAR, GSgalgoR, Heatplus, interactiveDisplay, kebabs, les, limma, M3Drop, mCSEA, messina, MOSim, msa, multiClust, OSAT, PCAtools, RcisTarget, ribosomeProfilingQC, ROC, RTCGA, scater, scmeth, SeqArray, sparrow, spatialHeatmap, stageR, survcomp, TargetScore, TCGAbiolinks, TFutils, tidytof, tkWidgets, TOP, vbmp, widgetTools, biotmleData, breastCancerMAINZ, breastCancerNKI, breastCancerTRANSBIG, breastCancerUNT, breastCancerUPP, breastCancerVDX, dorothea, dyebiasexamples, HMP16SData, HMP2Data, homosapienDEE2CellScore, mammaPrintData, RegParallel, rheumaticConditionWOLLBOLD, seventyGeneData, yeastExpData, yeastRNASeq, amap, aroma.affymetrix, BaseSet, clValid, CrossValidate, distrDoc, GenAlgo, hexbin, HTSCluster, isatabr, mi4p, MOCHA, Modeler, multiclassPairs, NACHO, ordinalbayes, Patterns, rsconnect, seeker, Seurat, sigminer, SomaDataIO, tinyarray dependencyCount: 5 Package: biobroom Version: 1.38.0 Depends: R (>= 3.0.0), broom Imports: dplyr, tidyr, Biobase Suggests: limma, DESeq2, airway, ggplot2, plyr, GenomicRanges, testthat, magrittr, edgeR, qvalue, knitr, data.table, MSnbase, rmarkdown, SummarizedExperiment License: LGPL Archs: x64 MD5sum: c5003dfa490d449f3cb5498fde138cb6 NeedsCompilation: no Title: Turn Bioconductor objects into tidy data frames Description: This package contains methods for converting standard objects constructed by bioinformatics packages, especially those in Bioconductor, and converting them to tidy data. It thus serves as a complement to the broom package, and follows the same the tidy, augment, glance division of tidying methods. Tidying data makes it easy to recombine, reshape and visualize bioinformatics analyses. biocViews: MultipleComparison, DifferentialExpression, Regression, GeneExpression, Proteomics, DataImport Author: Andrew J. Bass, David G. Robinson, Steve Lianoglou, Emily Nelson, John D. Storey, with contributions from Laurent Gatto Maintainer: John D. Storey and Andrew J. Bass URL: https://github.com/StoreyLab/biobroom VignetteBuilder: knitr BugReports: https://github.com/StoreyLab/biobroom/issues git_url: https://git.bioconductor.org/packages/biobroom git_branch: RELEASE_3_20 git_last_commit: 3d950fe git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biobroom_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biobroom_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biobroom_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biobroom_1.38.0.tgz vignettes: vignettes/biobroom/inst/doc/biobroom_vignette.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biobroom/inst/doc/biobroom_vignette.R importsMe: TPP dependencyCount: 31 Package: biobtreeR Version: 1.18.0 Imports: httr, httpuv, stringi,jsonlite,methods,utils Suggests: BiocStyle, knitr,testthat,rmarkdown,markdown License: MIT + file LICENSE MD5sum: bd9bf70b1229e72787df6a1fc5646118 NeedsCompilation: no Title: Using biobtree tool from R Description: The biobtreeR package provides an interface to [biobtree](https://github.com/tamerh/biobtree) tool which covers large set of bioinformatics datasets and allows search and chain mappings functionalities. biocViews: Annotation Author: Tamer Gur Maintainer: Tamer Gur URL: https://github.com/tamerh/biobtreeR VignetteBuilder: knitr BugReports: https://github.com/tamerh/biobtreeR/issues git_url: https://git.bioconductor.org/packages/biobtreeR git_branch: RELEASE_3_20 git_last_commit: f8c6833 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biobtreeR_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biobtreeR_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biobtreeR_1.18.0.tgz vignettes: vignettes/biobtreeR/inst/doc/biobtreeR.html vignetteTitles: The biobtreeR users guide hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/biobtreeR/inst/doc/biobtreeR.R dependencyCount: 20 Package: bioCancer Version: 1.34.0 Depends: R (>= 3.6.0), radiant.data (>= 0.9.1), cBioPortalData, XML(>= 3.98) Imports: R.oo, R.methodsS3, DT (>= 0.3), dplyr (>= 0.7.2), tidyr, shiny (>= 1.0.5), AlgDesign (>= 1.1.7.3), import (>= 1.1.0), methods, AnnotationDbi, shinythemes, Biobase, geNetClassifier, org.Hs.eg.db, org.Bt.eg.db, DOSE, clusterProfiler, reactome.db, ReactomePA, DiagrammeR(<= 1.01), visNetwork, htmlwidgets, plyr, tibble, GO.db Suggests: BiocStyle, prettydoc, rmarkdown, knitr, testthat (>= 0.10.0) License: AGPL-3 | file LICENSE MD5sum: 5850a568e20fd8958a7ad1463f4644cb NeedsCompilation: no Title: Interactive Multi-Omics Cancers Data Visualization and Analysis Description: This package is a Shiny App to visualize and analyse interactively Multi-Assays of Cancer Genomic Data. biocViews: GUI, DataRepresentation, Network, MultipleComparison, Pathways, Reactome, Visualization,GeneExpression,GeneTarget Author: Karim Mezhoud [aut, cre] Maintainer: Karim Mezhoud URL: https://kmezhoud.github.io/bioCancer/ VignetteBuilder: knitr BugReports: https://github.com/kmezhoud/bioCancer/issues git_url: https://git.bioconductor.org/packages/bioCancer git_branch: RELEASE_3_20 git_last_commit: 783d84a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bioCancer_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bioCancer_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bioCancer_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bioCancer_1.34.0.tgz vignettes: vignettes/bioCancer/inst/doc/bioCancer.html vignetteTitles: bioCancer: Interactive Multi-OMICS Cancers Data Visualization and Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/bioCancer/inst/doc/bioCancer.R dependencyCount: 255 Package: BioCartaImage Version: 1.4.0 Depends: R (>= 4.3.0) Imports: magick, grid, stats, grDevices, utils Suggests: testthat, knitr, BiocStyle, ragg License: MIT + file LICENSE MD5sum: 6aad111e37fc2ff3af5ef2c8847bef6d NeedsCompilation: no Title: BioCarta Pathway Images Description: The core functionality of the package is to provide coordinates of genes on the BioCarta pathway images and to provide methods to add self-defined graphics to the genes of interest. biocViews: Software, Pathways, BioCarta, Visualization Author: Zuguang Gu [aut, cre] () Maintainer: Zuguang Gu URL: https://github.com/jokergoo/BioCartaImage VignetteBuilder: knitr BugReports: https://github.com/jokergoo/BioCartaImage/issues git_url: https://git.bioconductor.org/packages/BioCartaImage git_branch: RELEASE_3_20 git_last_commit: ff436c3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BioCartaImage_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BioCartaImage_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BioCartaImage_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BioCartaImage_1.4.0.tgz vignettes: vignettes/BioCartaImage/inst/doc/BioCartaImage.html vignetteTitles: Customize BioCarta Pathway Images hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BioCartaImage/inst/doc/BioCartaImage.R dependencyCount: 9 Package: BiocBaseUtils Version: 1.8.0 Depends: R (>= 4.2.0) Imports: methods, utils Suggests: knitr, rmarkdown, BiocStyle, tinytest License: Artistic-2.0 MD5sum: 23940f43a8e0ce95c6cf8780524dcaea NeedsCompilation: no Title: General utility functions for developing Bioconductor packages Description: The package provides utility functions related to package development. These include functions that replace slots, and selectors for show methods. It aims to coalesce the various helper functions often re-used throughout the Bioconductor ecosystem. biocViews: Software, Infrastructure Author: Marcel Ramos [aut, cre] (), Martin Morgan [ctb], Hervé Pagès [ctb] Maintainer: Marcel Ramos VignetteBuilder: knitr BugReports: https://www.github.com/Bioconductor/BiocBaseUtils/issues git_url: https://git.bioconductor.org/packages/BiocBaseUtils git_branch: RELEASE_3_20 git_last_commit: ad54d83 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiocBaseUtils_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocBaseUtils_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocBaseUtils_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocBaseUtils_1.8.0.tgz vignettes: vignettes/BiocBaseUtils/inst/doc/BiocBaseUtils.html vignetteTitles: BiocBaseUtils Quick Start hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiocBaseUtils/inst/doc/BiocBaseUtils.R importsMe: AlphaMissenseR, AnVIL, AnVILAz, AnVILGCP, AnVILPublish, BiocCheck, BiocFHIR, DNAfusion, iSEEfier, MultiAssayExperiment, RaggedExperiment, TCGAutils, TENxIO, UniProt.ws, VisiumIO, SingleCellMultiModal suggestsMe: scifer dependencyCount: 2 Package: BiocBook Version: 1.4.0 Depends: R (>= 4.3) Imports: BiocGenerics, available, cli, glue, gert, gh, gitcreds, httr, usethis, dplyr, purrr, tibble, methods, rprojroot, stringr, yaml, tools, utils, rlang, quarto, renv Suggests: BiocStyle, knitr, testthat (>= 3.0.0), rmarkdown License: MIT + file LICENSE MD5sum: e026613850b65685d6d8c5af7b314a6d NeedsCompilation: no Title: Write, containerize, publish and version Quarto books with Bioconductor Description: A BiocBook can be created by authors (e.g. R developers, but also scientists, teachers, communicators, ...) who wish to 1) write (compile a body of biological and/or bioinformatics knowledge), 2) containerize (provide Docker images to reproduce the examples illustrated in the compendium), 3) publish (deploy an online book to disseminate the compendium), and 4) version (automatically generate specific online book versions and Docker images for specific Bioconductor releases). biocViews: Infrastructure, ReportWriting, Software Author: Jacques Serizay [aut, cre] Maintainer: Jacques Serizay URL: https://bioconductor.org/packages/BiocBook VignetteBuilder: knitr BugReports: https://github.com/js2264/BiocBook/issues git_url: https://git.bioconductor.org/packages/BiocBook git_branch: RELEASE_3_20 git_last_commit: 700f0de git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/BiocBook_1.4.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocBook_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocBook_1.4.0.tgz vignettes: vignettes/BiocBook/inst/doc/BiocBook.html vignetteTitles: BiocBook hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BiocBook/inst/doc/BiocBook.R dependencyCount: 84 Package: BiocCheck Version: 1.42.1 Depends: R (>= 4.4.0) Imports: BiocBaseUtils, BiocFileCache, BiocManager, biocViews, callr, cli, codetools, graph, httr2, knitr, methods, rvest, stringdist, tools, utils Suggests: BiocStyle, devtools, gert, jsonlite, rmarkdown, tinytest, usethis License: Artistic-2.0 MD5sum: f1e103257209aa3b49230fe84a3af711 NeedsCompilation: no Title: Bioconductor-specific package checks Description: BiocCheck guides maintainers through Bioconductor best practicies. It runs Bioconductor-specific package checks by searching through package code, examples, and vignettes. Maintainers are required to address all errors, warnings, and most notes produced. biocViews: Infrastructure Author: Bioconductor Package Maintainer [aut], Lori Shepherd [aut], Daniel von Twisk [ctb], Kevin Rue [ctb], Marcel Ramos [aut, cre] (), Leonardo Collado-Torres [ctb], Federico Marini [ctb] Maintainer: Marcel Ramos URL: https://github.com/Bioconductor/BiocCheck VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/BiocCheck/issues git_url: https://git.bioconductor.org/packages/BiocCheck git_branch: RELEASE_3_20 git_last_commit: 0af65bc git_last_commit_date: 2024-12-23 Date/Publication: 2024-12-26 source.ver: src/contrib/BiocCheck_1.42.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocCheck_1.42.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocCheck_1.42.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocCheck_1.42.1.tgz vignettes: vignettes/BiocCheck/inst/doc/BiocCheck.html vignetteTitles: BiocCheck: Ensuring Bioconductor package guidelines hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiocCheck/inst/doc/BiocCheck.R importsMe: AnnotationHubData, gDRstyle, methodical suggestsMe: GEOfastq, packFinder, preciseTAD, SpectralTAD, HMP16SData, HMP2Data, scpdata, MainExistingDatasets dependencyCount: 75 Package: BiocFHIR Version: 1.8.0 Depends: R (>= 4.2) Imports: DT, shiny, jsonlite, graph, tidyr, visNetwork, dplyr, utils, methods, BiocBaseUtils Suggests: knitr, testthat, rjsoncons, igraph, BiocStyle License: Artistic-2.0 MD5sum: eb92ae6530e91900d382a7ef1e148343 NeedsCompilation: no Title: Illustration of FHIR ingestion and transformation using R Description: FHIR R4 bundles in JSON format are derived from https://synthea.mitre.org/downloads. Transformation inspired by a kaggle notebook published by Dr Alexander Scarlat, https://www.kaggle.com/code/drscarlat/fhir-starter-parse-healthcare-bundles-into-tables. This is a very limited illustration of some basic parsing and reorganization processes. Additional tooling will be required to move beyond the Synthea data illustrations. biocViews: Infrastructure, DataImport, DataRepresentation Author: Vincent Carey [aut, cre] () Maintainer: Vincent Carey URL: https://github.com/vjcitn/BiocFHIR VignetteBuilder: knitr BugReports: https://github.com/vjcitn/BiocFHIR/issues git_url: https://git.bioconductor.org/packages/BiocFHIR git_branch: RELEASE_3_20 git_last_commit: e6712b7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiocFHIR_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocFHIR_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocFHIR_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocFHIR_1.8.0.tgz vignettes: vignettes/BiocFHIR/inst/doc/A_upper.html, vignettes/BiocFHIR/inst/doc/B_handling.html, vignettes/BiocFHIR/inst/doc/BiocFHIR.html, vignettes/BiocFHIR/inst/doc/C_tables.html, vignettes/BiocFHIR/inst/doc/D_linking.html vignetteTitles: Upper level FHIR concepts, Handling FHIR documents with BiocFHIR, BiocFHIR -- infrastructure for parsing and analyzing FHIR data, Transforming FHIR documents to tables with BiocFHIR, Linking information between FHIR resources hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiocFHIR/inst/doc/A_upper.R, vignettes/BiocFHIR/inst/doc/B_handling.R, vignettes/BiocFHIR/inst/doc/BiocFHIR.R, vignettes/BiocFHIR/inst/doc/C_tables.R, vignettes/BiocFHIR/inst/doc/D_linking.R dependencyCount: 66 Package: BiocFileCache Version: 2.14.0 Depends: R (>= 3.4.0), dbplyr (>= 1.0.0) Imports: methods, stats, utils, dplyr, RSQLite, DBI, filelock, curl, httr Suggests: testthat, knitr, BiocStyle, rmarkdown, rtracklayer License: Artistic-2.0 MD5sum: 42f28ab40124ed8865fd2bfc6bd96de0 NeedsCompilation: no Title: Manage Files Across Sessions Description: This package creates a persistent on-disk cache of files that the user can add, update, and retrieve. It is useful for managing resources (such as custom Txdb objects) that are costly or difficult to create, web resources, and data files used across sessions. biocViews: DataImport Author: Lori Shepherd [aut, cre], Martin Morgan [aut] Maintainer: Lori Shepherd VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/BiocFileCache/issues git_url: https://git.bioconductor.org/packages/BiocFileCache git_branch: RELEASE_3_20 git_last_commit: 66862c5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiocFileCache_2.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocFileCache_2.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocFileCache_2.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocFileCache_2.14.0.tgz vignettes: vignettes/BiocFileCache/inst/doc/BiocFileCache.html, vignettes/BiocFileCache/inst/doc/BiocFileCache_Troubleshooting.html, vignettes/BiocFileCache/inst/doc/BiocFileCache_UseCases.html vignetteTitles: 1. BiocFileCache Overview: Managing File Resources Across Sessions, 3. BiocFileCache Troubleshooting, 2. BiocFileCache: Use Cases hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiocFileCache/inst/doc/BiocFileCache.R, vignettes/BiocFileCache/inst/doc/BiocFileCache_Troubleshooting.R, vignettes/BiocFileCache/inst/doc/BiocFileCache_UseCases.R dependsOnMe: AnnotationHub, easylift, ExperimentHub, RcwlPipelines, JASPAR2022, JASPAR2024, scATAC.Explorer, TMExplorer, csawBook, OSCA.basic, OSCA.intro, OSCA.workflows importsMe: AlphaMissenseR, AMARETTO, atSNP, autonomics, BayesSpace, BiocCheck, BiocPkgTools, biodb, biomaRt, brendaDb, bugsigdbr, cbaf, cBioPortalData, CBNplot, CellBench, CTDquerier, customCMPdb, CytoPipeline, easyRNASeq, enhancerHomologSearch, EnMCB, EnrichmentBrowser, EpiTxDb, fenr, fgga, GeDi, GenomicScores, GenomicSuperSignature, ggkegg, GSEABenchmarkeR, gwascat, hca, iSEEindex, MBQN, MIRit, motifbreakR, MsBackendMetaboLights, OmicsMLRepoR, ontoProc, ORFik, Organism.dplyr, PhIPData, psichomics, rBLAST, recount3, recountmethylation, regutools, ReUseData, RiboDiPA, rpx, scviR, sesame, signeR, SpatialExperiment, SpatialOmicsOverlay, SpliceWiz, SurfR, tenXplore, terraTCGAdata, TFutils, tomoseqr, tximeta, UMI4Cats, UniProt.ws, waddR, xenLite, geneplast.data, HPO.db, MPO.db, org.Mxanthus.db, PANTHER.db, BioPlex, bugphyzz, depmap, DNAZooData, fourDNData, HiContactsData, MetaScope, MicrobiomeBenchmarkData, NxtIRFdata, orthosData, SFEData, SingleCellMultiModal, spatialLIBD, SingscoreAMLMutations, convertid suggestsMe: AnnotationForge, bambu, BiocSet, ChIPpeakAnno, CoGAPS, dominoSignal, EpiCompare, fastreeR, FLAMES, GRaNIE, HicAggR, HiCDCPlus, HiCExperiment, HiCool, MetMashR, Nebulosa, nipalsMCIA, progeny, qsvaR, seqsetvis, spatialHeatmap, structToolbox, TREG, zellkonverter, emtdata, HighlyReplicatedRNASeq, MethylSeqData, msigdb, TENxBrainData, TENxPBMCData, chipseqDB, fluentGenomics, simpleSingleCell, scCustomize dependencyCount: 45 Package: BiocGenerics Version: 0.52.0 Depends: R (>= 4.0.0), methods, utils, graphics, stats Imports: methods, utils, graphics, stats Suggests: Biobase, S4Vectors, IRanges, S4Arrays, SparseArray, DelayedArray, HDF5Array, GenomicRanges, pwalign, Rsamtools, AnnotationDbi, affy, affyPLM, DESeq2, flowClust, MSnbase, annotate, RUnit License: Artistic-2.0 MD5sum: 17433e48365e2cb89bc5e59de7ead46b NeedsCompilation: no Title: S4 generic functions used in Bioconductor Description: The package defines many S4 generic functions used in Bioconductor. biocViews: Infrastructure Author: The Bioconductor Dev Team Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/BiocGenerics BugReports: https://github.com/Bioconductor/BiocGenerics/issues git_url: https://git.bioconductor.org/packages/BiocGenerics git_branch: RELEASE_3_20 git_last_commit: 1422115 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiocGenerics_0.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocGenerics_0.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocGenerics_0.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocGenerics_0.52.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: ACME, affy, affyPLM, altcdfenvs, amplican, AnnotationDbi, AnnotationForge, AnnotationHub, ATACseqQC, beadarray, bioassayR, Biobase, Biostrings, bnbc, BSgenome, BSgenomeForge, bsseq, Cardinal, Category, categoryCompare, chipseq, ChIPseqR, ChromHeatMap, clusterExperiment, codelink, consensusDE, consensusSeekeR, CoreGx, CRISPRseek, cummeRbund, DelayedArray, ensembldb, ExperimentHub, ExperimentHubData, GDSArray, geneplotter, GenomeInfoDb, genomeIntervals, GenomicAlignments, GenomicFeatures, GenomicFiles, GenomicRanges, GenomicScores, ggbio, girafe, graph, GSEABase, GUIDEseq, HelloRanges, interactiveDisplay, interactiveDisplayBase, IRanges, ISLET, lute, MBASED, MGnifyR, MineICA, minfi, MLInterfaces, MotifDb, mpra, MSnbase, multtest, NADfinder, ngsReports, oligo, OrganismDbi, plyranges, profileplyr, pwalign, PWMEnrich, QSutils, RareVariantVis, Rarr, REDseq, Repitools, RnBeads, RPA, rsbml, S4Arrays, S4Vectors, ShortRead, soGGi, SparseArray, spqn, StructuralVariantAnnotation, svaNUMT, svaRetro, TEQC, tigre, topdownr, topGO, txdbmaker, UNDO, UniProt.ws, updateObject, VanillaICE, VariantAnnotation, VariantFiltering, VCFArray, XVector, yamss, ChAMPdata, liftOver, rsolr importsMe: a4Preproc, affycoretools, affylmGUI, alabaster.bumpy, alabaster.files, alabaster.matrix, alabaster.ranges, alabaster.se, AllelicImbalance, AneuFinder, annmap, annotate, AnnotationHubData, ASpli, ATACseqTFEA, atena, AUCell, autonomics, bambu, bamsignals, BASiCS, batchelor, beachmat, bigmelon, BiocBook, biocGraph, BiocIO, BiocSingular, biotmle, biovizBase, biscuiteer, BiSeq, blima, breakpointR, BrowserViz, BubbleTree, bumphunter, BUSpaRse, CAGEfightR, CAGEr, casper, celaref, CellBench, CellMixS, CellTrails, cfDNAPro, cghMCR, ChemmineOB, ChemmineR, chipenrich, ChIPpeakAnno, ChIPQC, ChIPseeker, chipseq, chromstaR, chromVAR, cicero, CircSeqAlignTk, CleanUpRNAseq, clusterSeq, CNEr, cn.mops, CNVPanelizer, CNVRanger, COCOA, cola, compEpiTools, CompoundDb, concordexR, crisprBase, crisprBowtie, crisprBwa, crisprDesign, crisprScore, crisprShiny, crisprViz, crlmm, csaw, CTexploreR, cummeRbund, CuratedAtlasQueryR, cydar, dada2, dagLogo, DAMEfinder, ddCt, decompTumor2Sig, deconvR, DegCre, DEGreport, DelayedDataFrame, demuxSNP, derfinder, DEScan2, DESeq2, DESpace, destiny, DEWSeq, DEXSeq, DFplyr, diffcoexp, diffHic, dinoR, DirichletMultinomial, DiscoRhythm, DNAfusion, dreamlet, DRIMSeq, DropletUtils, DrugVsDisease, easyRNASeq, EBImage, EDASeq, eiR, eisaR, enhancerHomologSearch, EnrichDO, epialleleR, EpiCompare, epigenomix, epimutacions, epistack, EpiTxDb, epivizrChart, epivizrStandalone, erma, esATAC, factR, FamAgg, fastseg, ffpe, FindIT2, FLAMES, flowBin, flowClust, flowCore, flowFP, FlowSOM, flowSpecs, flowStats, flowWorkspace, fmcsR, FRASER, frma, GA4GHclient, GA4GHshiny, gcapc, gDNAx, geneAttribution, geneClassifiers, GENESIS, GenomAutomorphism, GenomicAlignments, GenomicInteractions, GenomicPlot, GenomicTuples, GenVisR, geomeTriD, GeomxTools, gINTomics, glmGamPoi, gmapR, gmoviz, goseq, GOTHiC, gpuMagic, Gviz, HDF5Array, heatmaps, hermes, HicAggR, HiCDOC, HiCExperiment, HiContacts, HiLDA, hiReadsProcessor, hopach, icetea, igvR, igvShiny, IHW, IMAS, infercnv, INSPEcT, intansv, InteractionSet, IntEREst, IONiseR, iSEE, IsoformSwitchAnalyzeR, isomiRs, IVAS, KCsmart, ldblock, lemur, LinTInd, lisaClust, LOLA, mariner, maser, MAST, matter, MEAL, meshr, MetaboAnnotation, metaMS, metaseqR2, methInheritSim, MethylAid, methylPipe, methylumi, mia, miaViz, miloR, mimager, MinimumDistance, MIRA, MiRaGE, missMethyl, mobileRNA, Modstrings, mogsa, monaLisa, monocle, Moonlight2R, Motif2Site, motifbreakR, msa, MsBackendSql, MsExperiment, MSnID, MultiAssayExperiment, multicrispr, MultiDataSet, multiMiR, MultimodalExperiment, mumosa, MutationalPatterns, mzR, NanoStringNCTools, nearBynding, npGSEA, nucleR, oligoClasses, openPrimeR, ORFik, OUTRIDER, parglms, pcaMethods, pdInfoBuilder, PharmacoGx, PhIPData, PhosR, phyloseq, piano, PING, PIPETS, plyinteractions, podkat, pram, primirTSS, proDA, profileScoreDist, pRoloc, pRolocGUI, ProteoDisco, PSMatch, PureCN, QFeatures, qPLEXanalyzer, qsea, QTLExperiment, QuasR, R3CPET, R453Plus1Toolbox, RadioGx, raer, RaggedExperiment, ramr, ramwas, RCAS, RcisTarget, RCy3, RCyjs, recoup, REMP, ReportingTools, RGSEA, RiboCrypt, RiboDiPA, RiboProfiling, ribosomeProfilingQC, RJMCMCNucleosomes, rnaEditr, RNAmodR, RNAmodR.AlkAnilineSeq, RNAmodR.ML, RNAmodR.RiboMethSeq, RNAseqCovarImpute, roar, rols, Rqc, rqubic, Rsamtools, rsbml, rScudo, RTCGAToolbox, rtracklayer, saseR, SC3, SCArray.sat, scater, scDblFinder, scDotPlot, scmap, SCnorm, SCOPE, scPipe, scran, scruff, scuttle, SeqVarTools, sevenC, SGSeq, SharedObject, shinyMethyl, signatureSearch, signeR, simPIC, SingleCellExperiment, sitadela, SNPhood, snpStats, sparrow, SpatialExperiment, SpatialFeatureExperiment, spatzie, Spectra, splatter, SpliceWiz, SplicingGraphs, SQLDataFrame, sRACIPE, sscu, StabMap, standR, strandCheckR, Streamer, Structstrings, SummarizedExperiment, SynMut, systemPipeR, tadar, TAPseq, target, TCGAutils, TCseq, TENxIO, TFBSTools, tidySpatialExperiment, TitanCNA, ToxicoGx, trackViewer, transcriptR, transite, TreeSummarizedExperiment, tRNA, tRNAscanImport, TVTB, txcutr, Ularcirc, UMI4Cats, unifiedWMWqPCR, universalmotif, uSORT, VariantTools, velociraptor, VisiumIO, wavClusteR, weitrix, xcms, XDE, XVector, zitools, SNPlocs.Hsapiens.dbSNP144.GRCh37, SNPlocs.Hsapiens.dbSNP144.GRCh38, SNPlocs.Hsapiens.dbSNP149.GRCh38, SNPlocs.Hsapiens.dbSNP150.GRCh38, SNPlocs.Hsapiens.dbSNP155.GRCh37, SNPlocs.Hsapiens.dbSNP155.GRCh38, XtraSNPlocs.Hsapiens.dbSNP144.GRCh37, XtraSNPlocs.Hsapiens.dbSNP144.GRCh38, chipenrich.data, curatedOvarianData, gDNAinRNAseqData, homosapienDEE2CellScore, IHWpaper, KEGGandMetacoreDzPathwaysGEO, KEGGdzPathwaysGEO, microbiomeDataSets, MouseGastrulationData, MouseThymusAgeing, raerdata, scRNAseq, spatialLIBD, systemPipeRdata, TENxBUSData, VariantToolsData, ExpHunterSuite, GeoMxWorkflows, crispRdesignR, DCLEAR, decompDL, EEMDlstm, geno2proteo, kmeRs, locuszoomr, MicroSEC, MOCHA, oncoPredict, pathwayTMB, RNAseqQC, RobLoxBioC, SCRIP, Signac, spectralAnalysis, TaxaNorm, toxpiR, treediff, TSdeeplearning suggestsMe: acde, adverSCarial, aggregateBioVar, AIMS, AlphaMissenseR, ASSET, ASURAT, BaalChIP, baySeq, bigmelon, BiocParallel, BiocStyle, biocViews, biosigner, BiRewire, BLMA, BloodGen3Module, bnem, borealis, BUScorrect, BUSseq, CAFE, CAMERA, CausalR, ccrepe, CDI, cellmigRation, CexoR, chihaya, ChIPanalyser, ChIPXpress, CHRONOS, CINdex, cleanUpdTSeq, clipper, ClustAll, clustComp, CNORfeeder, CNORfuzzy, consensus, cosmiq, COSNet, cpvSNP, cypress, DEsubs, DExMA, DMRcaller, DMRcate, EnhancedVolcano, ENmix, EpiMix, epiNEM, EventPointer, fCCAC, fcScan, fgga, FGNet, flowCut, flowTime, fmrs, GateFinder, gCrisprTools, gdsfmt, GEM, GeneNetworkBuilder, GeneOverlap, geneplast, geneRxCluster, geNetClassifier, genomation, GEOquery, GeoTcgaData, ginmappeR, GMRP, GOstats, GrafGen, GreyListChIP, GSVA, GWASTools, h5vc, Harman, hiAnnotator, HiCDCPlus, hierGWAS, HIREewas, HPiP, hypergraph, iCARE, iClusterPlus, IFAA, illuminaio, immunotation, INPower, IPO, kebabs, KEGGREST, LACE, MAGAR, magpie, massiR, MatrixQCvis, MatrixRider, MBttest, mCSEA, Mergeomics, MetaboSignal, metagene2, MetCirc, methylCC, methylInheritance, MetNet, microbiome, miRBaseConverter, miRcomp, mirIntegrator, mnem, mosbi, MOSClip, motifStack, MsQuality, multiClust, MultiMed, MultiRNAflow, MungeSumstats, MWASTools, ncRNAtools, nempi, NetSAM, nucleoSim, OMICsPCA, OncoScore, PAA, panelcn.mops, Path2PPI, PathNet, pathview, PCAtools, pepXMLTab, phenomis, PhenStat, powerTCR, proBAMr, qpgraph, quantro, RBGL, rBiopaxParser, rcellminer, rCGH, REBET, RESOLVE, rfaRm, RGraph2js, Rgraphviz, rgsepd, riboSeqR, ROntoTools, ropls, ROSeq, RTN, RTNduals, RTNsurvival, rTRM, SAIGEgds, sangerseqR, SANTA, sarks, SCArray, scDataviz, scmeth, scp, screenCounter, scry, segmentSeq, SeqArray, seqPattern, seqTools, SICtools, sigFeature, sigsquared, SIMAT, similaRpeak, SIMLR, singleCellTK, SingleR, slingshot, SNPRelate, SparseSignatures, spatialHeatmap, specL, STATegRa, STRINGdb, SUITOR, systemPipeTools, TCC, TFEA.ChIP, tidytof, TIN, transcriptogramer, traseR, TreeAndLeaf, tripr, tRNAdbImport, TRONCO, Uniquorn, variancePartition, VERSO, xcore, zenith, ENCODExplorerData, geneplast.data, ConnectivityMap, FieldEffectCrc, grndata, HarmanData, healthyControlsPresenceChecker, microRNAome, RegParallel, scMultiome, sesameData, xcoredata, adjclust, aroma.affymetrix, asteRisk, gkmSVM, GSEMA, MarZIC, NutrienTrackeR, openSkies, pagoda2, Platypus, polyRAD, Rediscover, Seurat dependencyCount: 4 Package: biocGraph Version: 1.68.0 Depends: Rgraphviz, graph Imports: Rgraphviz, geneplotter, graph, BiocGenerics, methods Suggests: fibroEset, geneplotter, hgu95av2.db License: Artistic-2.0 MD5sum: 742f69229f19a7c626ba3ecb3c52acca NeedsCompilation: no Title: Graph examples and use cases in Bioinformatics Description: This package provides examples and code that make use of the different graph related packages produced by Bioconductor. biocViews: Visualization, GraphAndNetwork Author: Li Long , Robert Gentleman , Seth Falcon Florian Hahne Maintainer: Florian Hahne git_url: https://git.bioconductor.org/packages/biocGraph git_branch: RELEASE_3_20 git_last_commit: d8c9d19 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biocGraph_1.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biocGraph_1.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biocGraph_1.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biocGraph_1.68.0.tgz vignettes: vignettes/biocGraph/inst/doc/biocGraph.pdf, vignettes/biocGraph/inst/doc/layingOutPathways.pdf vignetteTitles: Examples of plotting graphs Using Rgraphviz, HOWTO layout pathways hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biocGraph/inst/doc/biocGraph.R, vignettes/biocGraph/inst/doc/layingOutPathways.R suggestsMe: EnrichmentBrowser dependencyCount: 54 Package: BiocHubsShiny Version: 1.6.0 Depends: R (>= 4.3.0), shiny Imports: AnnotationHub, ExperimentHub, DT, htmlwidgets, S4Vectors, shinyAce, shinyjs, shinythemes, shinytoastr, utils Suggests: BiocManager, BiocStyle, knitr, rmarkdown, sessioninfo, shinytest2 License: Artistic-2.0 MD5sum: c7135fde8c3a9a8604e4ba7890a3380c NeedsCompilation: no Title: View AnnotationHub and ExperimentHub Resources Interactively Description: A package that allows interactive exploration of AnnotationHub and ExperimentHub resources. It uses DT / DataTable to display resources for multiple organisms. It provides template code for reproducibility and for downloading resources via the indicated Hub package. biocViews: Software, ShinyApps Author: Marcel Ramos [aut, cre] (), Vincent Carey [ctb] Maintainer: Marcel Ramos URL: https://github.com/Bioconductor/BiocHubsShiny VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/BiocHubsShiny/issues git_url: https://git.bioconductor.org/packages/BiocHubsShiny git_branch: RELEASE_3_20 git_last_commit: 79decbf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiocHubsShiny_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocHubsShiny_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocHubsShiny_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocHubsShiny_1.6.0.tgz vignettes: vignettes/BiocHubsShiny/inst/doc/BiocHubsShiny.html vignetteTitles: BiocHubsShiny Overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiocHubsShiny/inst/doc/BiocHubsShiny.R dependencyCount: 97 Package: BiocIO Version: 1.16.0 Depends: R (>= 4.3.0) Imports: BiocGenerics, S4Vectors, methods, tools Suggests: testthat, knitr, rmarkdown, BiocStyle License: Artistic-2.0 MD5sum: e5e7286586833da1f558a800f4e2bcd2 NeedsCompilation: no Title: Standard Input and Output for Bioconductor Packages Description: The `BiocIO` package contains high-level abstract classes and generics used by developers to build IO funcionality within the Bioconductor suite of packages. Implements `import()` and `export()` standard generics for importing and exporting biological data formats. `import()` supports whole-file as well as chunk-wise iterative import. The `import()` interface optionally provides a standard mechanism for 'lazy' access via `filter()` (on row or element-like components of the file resource), `select()` (on column-like components of the file resource) and `collect()`. The `import()` interface optionally provides transparent access to remote (e.g. via https) as well as local access. Developers can register a file extension, e.g., `.loom` for dispatch from character-based URIs to specific `import()` / `export()` methods based on classes representing file types, e.g., `LoomFile()`. biocViews: Annotation,DataImport Author: Martin Morgan [aut], Michael Lawrence [aut], Daniel Van Twisk [aut], Marcel Ramos [cre] () Maintainer: Marcel Ramos VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/BiocIO/issues git_url: https://git.bioconductor.org/packages/BiocIO git_branch: RELEASE_3_20 git_last_commit: 8e80624 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiocIO_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocIO_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocIO_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocIO_1.16.0.tgz vignettes: vignettes/BiocIO/inst/doc/BiocIO.html vignetteTitles: BiocIO hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiocIO/inst/doc/BiocIO.R dependsOnMe: BSgenome, HelloRanges, LoomExperiment importsMe: BiocSet, BSgenomeForge, extraChIPs, HiCExperiment, HiContacts, HiCool, rtracklayer, TENxIO, tidyCoverage, txdbmaker, VisiumIO dependencyCount: 8 Package: BiocNeighbors Version: 2.0.1 Imports: Rcpp, methods LinkingTo: Rcpp, assorthead Suggests: BiocParallel, testthat, BiocStyle, knitr, rmarkdown License: GPL-3 MD5sum: ca3825b02929c3be0681d0d67eb277f8 NeedsCompilation: yes Title: Nearest Neighbor Detection for Bioconductor Packages Description: Implements exact and approximate methods for nearest neighbor detection, in a framework that allows them to be easily switched within Bioconductor packages or workflows. Exact searches can be performed using the k-means for k-nearest neighbors algorithm or with vantage point trees. Approximate searches can be performed using the Annoy or HNSW libraries. Searching on either Euclidean or Manhattan distances is supported. Parallelization is achieved for all methods by using BiocParallel. Functions are also provided to search for all neighbors within a given distance. biocViews: Clustering, Classification Author: Aaron Lun [aut, cre, cph] Maintainer: Aaron Lun SystemRequirements: C++17 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BiocNeighbors git_branch: RELEASE_3_20 git_last_commit: 4b02c76 git_last_commit_date: 2024-11-27 Date/Publication: 2024-11-28 source.ver: src/contrib/BiocNeighbors_2.0.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocNeighbors_2.0.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocNeighbors_2.0.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocNeighbors_2.0.1.tgz vignettes: vignettes/BiocNeighbors/inst/doc/userguide.html vignetteTitles: Finding neighbors in high-dimensional space hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiocNeighbors/inst/doc/userguide.R dependsOnMe: OSCA.workflows, SingleRBook importsMe: batchelor, bluster, CellMixS, concordexR, cydar, GeDi, imcRtools, lemur, miloR, mumosa, scater, scDblFinder, scMerge, scrapper, SingleR, SpatialFeatureExperiment, SpotSweeper, StabMap, UCell suggestsMe: TrajectoryUtils, TSCAN linksToMe: scrapper, SingleR dependencyCount: 4 Package: BioCor Version: 1.30.0 Depends: R (>= 3.4.0) Imports: BiocParallel, GSEABase, Matrix, methods Suggests: airway, BiocStyle, boot, DESeq2, ggplot2 (>= 3.4.1), GOSemSim, Hmisc, knitr (>= 1.35), org.Hs.eg.db, reactome.db, rmarkdown, spelling, targetscan.Hs.eg.db, testthat (>= 3.0.0), WGCNA License: MIT + file LICENSE Archs: x64 MD5sum: 4daca28f480099a769178e0bd4e60386 NeedsCompilation: no Title: Functional similarities Description: Calculates functional similarities based on the pathways described on KEGG and REACTOME or in gene sets. These similarities can be calculated for pathways or gene sets, genes, or clusters and combined with other similarities. They can be used to improve networks, gene selection, testing relationships... biocViews: StatisticalMethod, Clustering, GeneExpression, Network, Pathways, NetworkEnrichment, SystemsBiology Author: Lluís Revilla Sancho [aut, cre] (), Pau Sancho-Bru [ths] (), Juan José Salvatella Lozano [ths] () Maintainer: Lluís Revilla Sancho URL: https://bioconductor.org/packages/BioCor, https://llrs.github.io/BioCor/ VignetteBuilder: knitr BugReports: https://github.com/llrs/BioCor/issues git_url: https://git.bioconductor.org/packages/BioCor git_branch: RELEASE_3_20 git_last_commit: c0e4197 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BioCor_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BioCor_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BioCor_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BioCor_1.30.0.tgz vignettes: vignettes/BioCor/inst/doc/BioCor_1_basics.html, vignettes/BioCor/inst/doc/BioCor_2_advanced.html vignetteTitles: About BioCor, Advanced usage of BioCor hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BioCor/inst/doc/BioCor_1_basics.R, vignettes/BioCor/inst/doc/BioCor_2_advanced.R dependencyCount: 62 Package: BiocParallel Version: 1.40.0 Depends: methods, R (>= 3.5.0) Imports: stats, utils, futile.logger, parallel, snow, codetools LinkingTo: BH, cpp11 Suggests: BiocGenerics, tools, foreach, BBmisc, doParallel, GenomicRanges, RNAseqData.HNRNPC.bam.chr14, TxDb.Hsapiens.UCSC.hg19.knownGene, VariantAnnotation, Rsamtools, GenomicAlignments, ShortRead, RUnit, BiocStyle, knitr, batchtools, data.table Enhances: Rmpi License: GPL-2 | GPL-3 MD5sum: f2801ca5ef796a79de667cab673a4603 NeedsCompilation: yes Title: Bioconductor facilities for parallel evaluation Description: This package provides modified versions and novel implementation of functions for parallel evaluation, tailored to use with Bioconductor objects. biocViews: Infrastructure Author: Martin Morgan [aut, cre], Jiefei Wang [aut], Valerie Obenchain [aut], Michel Lang [aut], Ryan Thompson [aut], Nitesh Turaga [aut], Aaron Lun [ctb], Henrik Bengtsson [ctb], Madelyn Carlson [ctb] (Translated 'Random Numbers' vignette from Sweave to RMarkdown / HTML.), Phylis Atieno [ctb] (Translated 'Introduction to BiocParallel' vignette from Sweave to Rmarkdown / HTML.), Sergio Oller [ctb] (Improved bpmapply() efficiency., ) Maintainer: Martin Morgan URL: https://github.com/Bioconductor/BiocParallel SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/BiocParallel/issues git_url: https://git.bioconductor.org/packages/BiocParallel git_branch: RELEASE_3_20 git_last_commit: a57b788 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiocParallel_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocParallel_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocParallel_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocParallel_1.40.0.tgz vignettes: vignettes/BiocParallel/inst/doc/BiocParallel_BatchtoolsParam.pdf, vignettes/BiocParallel/inst/doc/Errors_Logs_And_Debugging.pdf, vignettes/BiocParallel/inst/doc/Introduction_To_BiocParallel.html, vignettes/BiocParallel/inst/doc/Random_Numbers.html vignetteTitles: 2. Introduction to BatchtoolsParam, 3. Errors,, Logs and Debugging, 1. Introduction to BiocParallel, 4. Random Numbers in BiocParallel hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiocParallel/inst/doc/BiocParallel_BatchtoolsParam.R, vignettes/BiocParallel/inst/doc/Errors_Logs_And_Debugging.R, vignettes/BiocParallel/inst/doc/Introduction_To_BiocParallel.R, vignettes/BiocParallel/inst/doc/Random_Numbers.R dependsOnMe: bacon, BEclear, Cardinal, CardinalIO, ChIPQC, ClassifyR, clusterSeq, consensusSeekeR, DEWSeq, DEXSeq, DMCFB, DMCHMM, doppelgangR, DSS, extraChIPs, FEAST, FRASER, GenomicFiles, hiReadsProcessor, INSPEcT, iPath, ISLET, matter, MBASED, metagene2, metapone, ncGTW, Oscope, OUTRIDER, PCAN, periodicDNA, pRoloc, RedisParam, Rqc, ShortRead, SigCheck, Spectra, sva, variancePartition, xcms, sequencing, OSCA.workflows, SingleRBook importsMe: abseqR, ADImpute, AffiXcan, ALDEx2, AlphaBeta, AlpsNMR, amplican, ASICS, ATACseqQC, atena, atSNP, bambu, BANDITS, bandle, BASiCS, batchelor, BayesSpace, bayNorm, beer, BERT, BioCor, BiocSingular, BioNERO, biotmle, biscuiteer, bluster, brendaDb, bsseq, CAGEfightR, CAGEr, CBEA, ccImpute, CDI, cellbaseR, CellBench, CelliD, CellMixS, censcyt, Cepo, ChIPexoQual, ChromSCape, chromVAR, ClusterFoldSimilarity, CNVMetrics, CNVRanger, CoGAPS, comapr, coMethDMR, CompoundDb, concordexR, condiments, consensusDE, consICA, CoreGx, coseq, cpvSNP, CrispRVariants, csaw, CTSV, cydar, cypress, CytoGLMM, cytoKernel, cytomapper, CytoMDS, CytoPipeline, dcGSA, debCAM, decoupleR, DeepTarget, DegCre, DepInfeR, derfinder, DEScan2, DESeq2, DEsingle, DESpace, DiffBind, Dino, dmrseq, DOSE, dreamlet, DRIMSeq, DropletUtils, Dune, easier, easyRNASeq, EMDomics, enhancerHomologSearch, epimutacions, epiregulon, epistasisGA, erma, ERSSA, escape, EWCE, factR, faers, fgsea, findIPs, FindIT2, FLAMES, flowcatchR, flowSpecs, GDCRNATools, gDNAx, gDRcore, gDRutils, GeDi, GENESIS, GenomAutomorphism, GenomicAlignments, gINTomics, GloScope, gmapR, gscreend, GSEABenchmarkeR, GSVA, h5vc, HicAggR, HiCBricks, HiCcompare, HiCDOC, HiCExperiment, HiContacts, HTSFilter, HybridExpress, iasva, icetea, ideal, IMAS, imcRtools, IntEREst, IONiseR, IPO, IsoformSwitchAnalyzeR, katdetectr, KinSwingR, lisaClust, loci2path, LRcell, magpie, magrene, mariner, mbkmeans, MCbiclust, MetaboAnnotation, MetaboCoreUtils, metabomxtr, metaseqR2, methodical, MethylAid, methylGSA, methyLImp2, methylInheritance, methylscaper, MetNet, mia, miaViz, microSTASIS, MICSQTL, miloR, minfi, MIRit, mixOmics, MOGAMUN, MoleculeExperiment, monaLisa, motifbreakR, MPAC, MPRAnalyze, MsBackendMassbank, MsBackendMgf, MsBackendMsp, MsBackendRawFileReader, MsBackendSql, MSnbase, msqrob2, MsQuality, multiHiCcompare, mumosa, muscat, NBAMSeq, nnSVG, NPARC, ORFik, orthos, OVESEG, PAIRADISE, pairedGSEA, PCAtools, pengls, PharmacoGx, pipeComp, pram, proActiv, profileplyr, ProteoDisco, PSMatch, qpgraph, qsea, QuasR, RadioGx, raer, rawDiag, Rcwl, recount, RegEnrich, REMP, RiboCrypt, RJMCMCNucleosomes, RNAmodR, RNAseqCovarImpute, Rsamtools, RUVcorr, saseR, satuRn, scanMiR, scanMiRApp, SCArray, SCArray.sat, scater, scBubbletree, scClassify, scDblFinder, scDD, scDDboost, scde, scDesign3, SCFA, scFeatures, scHOT, scMerge, scMultiSim, SCnorm, scone, scoreInvHap, scPCA, scran, scRecover, screenCounter, scruff, scShapes, scTHI, scuttle, seqArchR, seqArchRplus, sesame, SEtools, sigFeature, signatureSearch, SimBu, simpleSeg, SingleCellAlleleExperiment, singleCellTK, SingleR, singscore, SNPhood, soGGi, sparrow, SpatialFeatureExperiment, SpectralTAD, spicyR, splatter, SpliceWiz, SplicingGraphs, spoon, StabMap, Statial, SUITOR, syntenet, TAPseq, ternarynet, TFBSTools, tidyCoverage, TMixClust, ToxicoGx, TPP2D, tpSVG, tradeSeq, TreeSummarizedExperiment, Trendy, TVTB, txcutr, UCell, VariantFiltering, VariantTools, VDJdive, velociraptor, Voyager, waddR, weitrix, zinbwave, CytoMethIC, IHWpaper, JohnsonKinaseData, ExpHunterSuite, seqpac, causalBatch, DCLEAR, DTSEA, DysPIA, enviGCMS, GSEMA, Holomics, LDM, minSNPs, oosse, robin, scGate suggestsMe: alabaster.mae, beachmat, BiocNeighbors, cliqueMS, DelayedArray, EpiCompare, GenomicDataCommons, ggsc, glmGamPoi, GRaNIE, HDF5Array, ISAnalytics, MungeSumstats, netSmooth, omicsPrint, plyinteractions, PureCN, randRotation, RcisTarget, rebook, rhdf5, S4Arrays, scGPS, SeqArray, spatialHeatmap, survClust, TFutils, TileDBArray, TrajectoryUtils, TSCAN, universalmotif, xcore, MethylAidData, Single.mTEC.Transcriptomes, TENxBrainData, TENxPBMCData, CAGEWorkflow, clustermq, conos, pagoda2, phase1RMD, RaMS, SpatialDDLS, survBootOutliers, wrTopDownFrag dependencyCount: 12 Package: BiocPkgTools Version: 1.24.0 Depends: htmlwidgets Imports: BiocFileCache, BiocManager, biocViews, tibble, magrittr, methods, rlang, stringr, stats, rvest, dplyr, xml2, readr, httr, htmltools, DT, tools, utils, igraph, jsonlite, gh, RBGL, graph, rorcid Suggests: BiocStyle, knitr, rmarkdown, testthat, tm, lubridate, networkD3, visNetwork, clipr, blastula, kableExtra, DiagrammeR, SummarizedExperiment License: MIT + file LICENSE Archs: x64 MD5sum: b57e41fe56993ef09ebd46bcd8c97435 NeedsCompilation: no Title: Collection of simple tools for learning about Bioconductor Packages Description: Bioconductor has a rich ecosystem of metadata around packages, usage, and build status. This package is a simple collection of functions to access that metadata from R. The goal is to expose metadata for data mining and value-added functionality such as package searching, text mining, and analytics on packages. biocViews: Software, Infrastructure Author: Shian Su [aut, ctb], Lori Shepherd [ctb], Marcel Ramos [aut, ctb] (), Felix G.M. Ernst [ctb], Jennifer Wokaty [ctb], Charlotte Soneson [ctb], Martin Morgan [ctb], Vince Carey [ctb], Sean Davis [aut, cre] Maintainer: Sean Davis URL: https://github.com/seandavi/BiocPkgTools SystemRequirements: mailsend-go VignetteBuilder: knitr BugReports: https://github.com/seandavi/BiocPkgTools/issues/new git_url: https://git.bioconductor.org/packages/BiocPkgTools git_branch: RELEASE_3_20 git_last_commit: 2a4b757 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiocPkgTools_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocPkgTools_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocPkgTools_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocPkgTools_1.24.0.tgz vignettes: vignettes/BiocPkgTools/inst/doc/BiocPkgTools.html vignetteTitles: Overview of BiocPkgTools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BiocPkgTools/inst/doc/BiocPkgTools.R suggestsMe: rworkflows dependencyCount: 109 Package: biocroxytest Version: 1.2.0 Depends: R (>= 4.4.0) Imports: cli, glue, roxygen2, stringr Suggests: BiocStyle, here, knitr, rmarkdown, testthat (>= 3.0.0) License: GPL (>= 3) MD5sum: 5fb89e73aaa2844888086004a9b06a0f NeedsCompilation: no Title: Handle Long Tests in Bioconductor Packages Description: This package provides a roclet for roxygen2 that identifies and processes code blocks in your documentation marked with `@longtests`. These blocks should contain tests that take a long time to run and thus cannot be included in the regular test suite of the package. When you run `roxygen2::roxygenise` with the `longtests_roclet`, it will extract these long tests from your documentation and save them in a separate directory. This allows you to run these long tests separately from the rest of your tests, for example, on a continuous integration server that is set up to run long tests. biocViews: Software, Infrastructure Author: Francesc Catala-Moll [aut, cre] () Maintainer: Francesc Catala-Moll URL: https://github.com/xec-cm/biocroxytest VignetteBuilder: knitr BugReports: https://github.com/xec-cm/biocroxytest/issues git_url: https://git.bioconductor.org/packages/biocroxytest git_branch: RELEASE_3_20 git_last_commit: bd8bf82 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biocroxytest_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biocroxytest_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biocroxytest_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biocroxytest_1.2.0.tgz vignettes: vignettes/biocroxytest/inst/doc/biocroxytest.html vignetteTitles: Introduction to biocroxytest hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biocroxytest/inst/doc/biocroxytest.R dependencyCount: 35 Package: BiocSet Version: 1.20.0 Depends: R (>= 3.6), dplyr Imports: methods, tibble, utils, rlang, plyr, S4Vectors, BiocIO, AnnotationDbi, KEGGREST, ontologyIndex, tidyr Suggests: GSEABase, airway, org.Hs.eg.db, DESeq2, limma, BiocFileCache, GO.db, testthat, knitr, rmarkdown, BiocStyle License: Artistic-2.0 MD5sum: 37ddc4adbc2908bc87de735cd4c20a12 NeedsCompilation: no Title: Representing Different Biological Sets Description: BiocSet displays different biological sets in a triple tibble format. These three tibbles are `element`, `set`, and `elementset`. The user has the abilty to activate one of these three tibbles to perform common functions from the dplyr package. Mapping functionality and accessing web references for elements/sets are also available in BiocSet. biocViews: GeneExpression, GO, KEGG, Software Author: Kayla Morrell [aut, cre], Martin Morgan [aut], Kevin Rue-Albrecht [ctb], Lluís Revilla Sancho [ctb] Maintainer: Kayla Morrell VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BiocSet git_branch: RELEASE_3_20 git_last_commit: 2b19856 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiocSet_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocSet_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocSet_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocSet_1.20.0.tgz vignettes: vignettes/BiocSet/inst/doc/BiocSet.html vignetteTitles: BiocSet: Representing Element Sets in the Tidyverse hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiocSet/inst/doc/BiocSet.R dependsOnMe: RegEnrich importsMe: CBEA, sparrow suggestsMe: dearseq dependencyCount: 62 Package: BiocSingular Version: 1.22.0 Imports: BiocGenerics, S4Vectors, Matrix, methods, utils, DelayedArray, BiocParallel, ScaledMatrix, irlba, rsvd, Rcpp, beachmat (>= 2.21.1) LinkingTo: Rcpp, beachmat, assorthead Suggests: testthat, BiocStyle, knitr, rmarkdown, ResidualMatrix License: GPL-3 MD5sum: bb704ac1d36b56a1b8ea141ffad65ab6 NeedsCompilation: yes Title: Singular Value Decomposition for Bioconductor Packages Description: Implements exact and approximate methods for singular value decomposition and principal components analysis, in a framework that allows them to be easily switched within Bioconductor packages or workflows. Where possible, parallelization is achieved using the BiocParallel framework. biocViews: Software, DimensionReduction, PrincipalComponent Author: Aaron Lun [aut, cre, cph] Maintainer: Aaron Lun URL: https://github.com/LTLA/BiocSingular SystemRequirements: C++17 VignetteBuilder: knitr BugReports: https://github.com/LTLA/BiocSingular/issues git_url: https://git.bioconductor.org/packages/BiocSingular git_branch: RELEASE_3_20 git_last_commit: aa0f642 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiocSingular_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocSingular_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocSingular_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocSingular_1.22.0.tgz vignettes: vignettes/BiocSingular/inst/doc/decomposition.html, vignettes/BiocSingular/inst/doc/representations.html vignetteTitles: 1. SVD and PCA, 2. Matrix classes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiocSingular/inst/doc/decomposition.R, vignettes/BiocSingular/inst/doc/representations.R dependsOnMe: OSCA.basic, OSCA.workflows importsMe: batchelor, BayesSpace, clusterExperiment, COTAN, DelayedTensor, Dino, GSVA, miloR, MPAC, mumosa, NanoMethViz, NewWave, PCAtools, SCArray, SCArray.sat, scater, scDblFinder, scMerge, scran, scry, SingleR, StabMap, velociraptor suggestsMe: alabaster.matrix, chihaya, ResidualMatrix, ScaledMatrix, spatialHeatmap, splatter, Voyager, HCAData dependencyCount: 38 Package: BiocSklearn Version: 1.28.0 Depends: R (>= 4.0), reticulate, methods, SummarizedExperiment Imports: basilisk Suggests: testthat, HDF5Array, BiocStyle, rmarkdown, knitr License: Artistic-2.0 Archs: x64 MD5sum: 3b8803f511bbfa480a9b39faa6d10434 NeedsCompilation: no Title: interface to python sklearn via Rstudio reticulate Description: This package provides interfaces to selected sklearn elements, and demonstrates fault tolerant use of python modules requiring extensive iteration. biocViews: StatisticalMethod, DimensionReduction, Infrastructure Author: Vince Carey [cre, aut] Maintainer: Vince Carey SystemRequirements: python (>= 2.7), sklearn, numpy, pandas, h5py VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BiocSklearn git_branch: RELEASE_3_20 git_last_commit: 7d2143b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiocSklearn_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocSklearn_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocSklearn_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocSklearn_1.28.0.tgz vignettes: vignettes/BiocSklearn/inst/doc/BiocSklearn.html vignetteTitles: BiocSklearn overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiocSklearn/inst/doc/BiocSklearn.R dependencyCount: 50 Package: BiocStyle Version: 2.34.0 Imports: bookdown, knitr (>= 1.30), rmarkdown (>= 1.2), stats, utils, yaml, BiocManager Suggests: BiocGenerics, RUnit, htmltools License: Artistic-2.0 MD5sum: 7a5cd7607712007cf0a0d7f99725d3e7 NeedsCompilation: no Title: Standard styles for vignettes and other Bioconductor documents Description: Provides standard formatting styles for Bioconductor PDF and HTML documents. Package vignettes illustrate use and functionality. biocViews: Software Author: Andrzej Oleś [aut] (), Mike Smith [ctb] (), Martin Morgan [ctb], Wolfgang Huber [ctb], Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer URL: https://github.com/Bioconductor/BiocStyle VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/BiocStyle/issues git_url: https://git.bioconductor.org/packages/BiocStyle git_branch: RELEASE_3_20 git_last_commit: 0a04242 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiocStyle_2.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocStyle_2.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocStyle_2.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocStyle_2.34.0.tgz vignettes: vignettes/BiocStyle/inst/doc/LatexStyle2.pdf, vignettes/BiocStyle/inst/doc/AuthoringRmdVignettes.html vignetteTitles: Bioconductor LaTeX Style 2.0, Authoring R Markdown vignettes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiocStyle/inst/doc/AuthoringRmdVignettes.R, vignettes/BiocStyle/inst/doc/LatexStyle2.R dependsOnMe: ExpressionAtlas, iNETgrate, netresponse, Pigengene, RPA, sangeranalyseR, org.Mxanthus.db, curatedBreastData, cytofWorkflow, methylationArrayAnalysis, rnaseqGene, RnaSeqGeneEdgeRQL, OSCA, SingleRBook importsMe: abseqR, ASpli, bandle, BiocWorkflowTools, BioGA, BPRMeth, broadSeq, BubbleTree, chimeraviz, COMPASS, DiscoRhythm, EasyCellType, geneXtendeR, hdxmsqc, hypeR, Melissa, meshr, methodical, MSnID, netboost, partCNV, PathoStat, PhyloProfile, PLSDAbatch, rebook, RegEnrich, RegionalST, regionReport, Rmmquant, Rqc, scMET, scTensor, scTGIF, FieldEffectCrc, PhyloProfileData, GeoMxWorkflows, simpleSingleCell, OHCA, EZtune suggestsMe: ACE, ADAM, ADAMgui, ADImpute, AffiXcan, affycoretools, aggregateBioVar, AHMassBank, alabaster, alabaster.base, alabaster.bumpy, alabaster.files, alabaster.mae, alabaster.matrix, alabaster.ranges, alabaster.sce, alabaster.schemas, alabaster.se, alabaster.spatial, alabaster.string, alabaster.vcf, ALDEx2, alevinQC, AllelicImbalance, AlpsNMR, AMARETTO, AMOUNTAIN, amplican, AneuFinder, animalcules, annotate, AnnotationDbi, AnnotationFilter, AnnotationForge, AnnotationHub, AnnotationHubData, annotationTools, annotatr, AnVIL, AnVILAz, AnVILBase, AnVILBilling, AnVILGCP, AnVILPublish, AnVILWorkflow, APAlyzer, APL, arrayQualityMetrics, artMS, ASGSCA, ASICS, AssessORF, ASSIGN, assorthead, ATACseqQC, ATACseqTFEA, atena, atSNP, AUCell, autonomics, awst, BaalChIP, bacon, bamsignals, BANDITS, Banksy, banocc, barcodetrackR, basecallQC, BASiCS, basilisk, basilisk.utils, batchelor, BatchQC, bayNorm, baySeq, beachmat, beachmat.hdf5, beadarray, BeadDataPackR, BEclear, beer, BERT, betaHMM, bettr, BG2, BgeeDB, bigmelon, BindingSiteFinder, bioassayR, Biobase, biobtreeR, bioCancer, BioCartaImage, BiocBaseUtils, BiocBook, BiocCheck, BiocFHIR, BiocFileCache, BiocHubsShiny, BiocIO, BiocNeighbors, BioCor, BiocParallel, BiocPkgTools, biocroxytest, BiocSet, BiocSingular, BiocSklearn, biocthis, biocViews, biodb, biodbChebi, biodbHmdb, biodbNcbi, biodbNci, biodbUniprot, biomaRt, biomformat, BioNAR, BioNERO, biosigner, Biostrings, biotmle, biscuiteer, blacksheepr, blima, bluster, bnbc, bnem, BOBaFIT, borealis, branchpointer, breakpointR, brendaDb, BREW3R.r, BridgeDbR, BrowserViz, BSgenomeForge, bsseq, bugsigdbr, BUMHMM, BumpyMatrix, BUScorrect, BUSpaRse, BUSseq, CAFE, CAGEfightR, cageminer, CAGEr, CaMutQC, canceR, cardelino, Cardinal, CardinalIO, CARNIVAL, CATALYST, CatsCradle, cbaf, CBEA, cBioPortalData, CBNplot, cbpManager, ccfindR, ccImpute, CCPlotR, ccrepe, CDI, celda, CellBarcode, cellbaseR, CellBench, CelliD, cellity, CellMapper, CellMixS, cellxgenedp, censcyt, Cepo, CexoR, cfdnakit, cfDNAPro, cfTools, ChemmineOB, ChemmineR, Chicago, chihaya, chipenrich, ChIPexoQual, ChIPpeakAnno, ChIPQC, chipseq, ChromSCape, chromstaR, CIMICE, CircSeqAlignTk, CiteFuse, ClassifyR, cleanUpdTSeq, CleanUpRNAseq, cleaver, clevRvis, clipper, cliProfiler, ClustAll, clusterExperiment, ClusterFoldSimilarity, clusterSeq, ClusterSignificance, clustifyr, ClustIRR, cmapR, CNEr, CNVfilteR, CNVMetrics, CNVRanger, COCOA, CoGAPS, cogeqc, Cogito, comapr, coMethDMR, compcodeR, CompoundDb, compSPOT, concordexR, CONFESS, consensusSeekeR, consICA, CONSTANd, conumee, CopyNumberPlots, coRdon, CoreGx, corral, coseq, CoSIA, cosmiq, COTAN, covRNA, cpvSNP, CRISPRball, crisprBase, crisprBowtie, crisprBwa, crisprDesign, crisprScore, CRISPRseek, crisprShiny, CrispRVariants, crisprVerse, crisprViz, csaw, csdR, CSSQ, CTdata, CTDquerier, CTexploreR, ctsGE, CTSV, customCMPdb, cydar, cypress, CytoGLMM, cytoKernel, cytomapper, CytoMDS, CytoPipeline, CytoPipelineGUI, cytoviewer, dada2, dagLogo, DAMEfinder, DaMiRseq, Damsel, DAPAR, dcanr, DCATS, dce, ddPCRclust, debCAM, decompTumor2Sig, decontam, decontX, deconvR, decoupleR, DeepTarget, DEFormats, DegCre, DEGreport, DelayedArray, DelayedDataFrame, DelayedMatrixStats, DelayedRandomArray, DelayedTensor, DELocal, demuxmix, demuxSNP, densvis, DEP, DepecheR, DepInfeR, derfinder, derfinderHelper, derfinderPlot, DEScan2, DESpace, DEWSeq, DExMA, DEXSeq, DFplyr, DiffBind, diffcyt, DifferentialRegulation, diffuStats, diffUTR, Dino, dir.expiry, DirichletMultinomial, discordant, distinct, dittoSeq, DMCFB, DMRScan, dmrseq, DNABarcodeCompatibility, DNABarcodes, DNAfusion, doppelgangR, Doscheda, doseR, doubletrouble, drawProteins, dreamlet, DRIMSeq, DropletUtils, drugTargetInteractions, DSS, dStruct, DuplexDiscovereR, dupRadar, easier, EasyCellType, easylift, easyreporting, easyRNASeq, EBImage, EDASeq, edgeR, EGSEA, eiR, eisaR, ELMER, EmpiricalBrownsMethod, ENmix, EnrichDO, EnrichmentBrowser, enrichViewNet, ensembldb, EpiCompare, EpiDISH, epigraHMM, EpiMix, epimutacions, epiNEM, epiregulon, epiregulon.extra, epistack, epistasisGA, EpiTxDb, epivizr, epivizrChart, epivizrData, epivizrServer, epivizrStandalone, erccdashboard, erma, ERSSA, escape, escheR, evaluomeR, EventPointer, EWCE, ExperimentHub, ExperimentHubData, ExperimentSubset, ExploreModelMatrix, extraChIPs, faers, FamAgg, famat, FastqCleaner, fastreeR, fastseg, fCCAC, fCI, fcScan, FEAST, FeatSeekR, FELLA, fenr, fgga, FilterFFPE, findIPs, FindIT2, FLAMES, flowAI, flowcatchR, flowGraph, FlowSOM, flowSpecs, fmcsR, fobitools, FRASER, FuseSOM, GA4GHclient, GA4GHshiny, GARS, gatom, GBScleanR, gcapc, gDNAx, gDR, gDRcore, gDRimport, gDRstyle, gDRutils, GDSArray, GeDi, gemma.R, GeneExpressionSignature, genefilter, GeneNetworkBuilder, GeneOverlap, geneplast, geneplotter, GENESIS, GeneStructureTools, GeneTonic, GENIE3, GenomAutomorphism, GenomeInfoDb, GenomicAlignments, GenomicDataCommons, GenomicDistributions, GenomicFeatures, GenomicFiles, GenomicInteractionNodes, GenomicInteractions, GenomicPlot, GenomicRanges, GenomicScores, GenomicSuperSignature, GenomicTuples, GenVisR, geomeTriD, gg4way, ggbio, ggkegg, ggmanh, ggmsa, GGPA, ggseqalign, ggspavis, ggtreeSpace, gINTomics, GladiaTOX, Glimma, glmGamPoi, glmSparseNet, GloScope, gmoviz, GMRP, GNOSIS, GOexpress, GOfuncR, GOpro, goSorensen, goSTAG, GOstats, gpuMagic, GrafGen, GRaNIE, granulator, graper, graph, graphite, GreyListChIP, GRmetrics, groHMM, GSAR, gscreend, GSEABase, GSEABenchmarkeR, GSEAmining, GSgalgoR, GSVA, GUIDEseq, Gviz, GWAS.BAYES, gwascat, GWASTools, gwasurvivr, GWENA, gypsum, Harman, hca, HelloRanges, hermes, Herper, HGC, HiCBricks, HiCDOC, HiCExperiment, HiContacts, HiCool, hicVennDiagram, HiLDA, hipathia, HIREewas, HiTC, HoloFoodR, hoodscanR, HPAanalyze, hpar, HPiP, HTSFilter, HuBMAPR, hummingbird, HybridExpress, ideal, IFAA, iGC, IgGeneUsage, igvR, igvShiny, IHW, illuminaio, ILoReg, IMAS, imcRtools, immApex, immunoClust, immunogenViewer, immunotation, infercnv, Informeasure, InPAS, INSPEcT, INTACT, InTAD, InteractionSet, InterCellar, IONiseR, iPath, IRanges, ISAnalytics, iSEE, iSEEde, iSEEfier, iSEEhex, iSEEhub, iSEEindex, iSEEpathways, iSEEtree, iSEEu, ISLET, IsoBayes, IsoCorrectoR, IsoCorrectoRGUI, isomiRs, IVAS, ivygapSE, karyoploteR, katdetectr, KEGGREST, kissDE, kmcut, koinar, LACE, ldblock, lefser, lemur, levi, limma, limpca, lineagespot, LinkHD, Linnorm, lipidr, lisaClust, loci2path, LOLA, LoomExperiment, lpsymphony, LRBaseDbi, LRcell, lute, m6Aboost, MACSr, made4, MAGeCKFlute, magpie, magrene, MAI, MAPFX, marr, maser, MassSpecWavelet, MAST, mastR, MatrixQCvis, MatrixRider, matter, MBASED, MBECS, mbkmeans, MBttest, MCbiclust, mCSEA, MEAL, MEAT, MEDIPS, megadepth, MEIGOR, messina, metabCombiner, metabinR, MetaboAnnotation, MetaboCoreUtils, metabolomicsWorkbenchR, MetaboSignal, metagene2, MetaPhOR, metapod, metaseqR2, methimpute, methInheritSim, MethPed, MethylAid, methylCC, methylclock, methyLImp2, methylInheritance, MethylMix, methylscaper, methylSig, MetMashR, MetNet, mfa, MGnifyR, mia, miaSim, miaViz, microbiome, microSTASIS, MICSQTL, miloR, mimager, minfi, miQC, MIRA, miRcomp, MIRit, miRSM, miRspongeR, mirTarRnaSeq, missMethyl, missRows, mistyR, mixOmics, MLInterfaces, MMDiff2, mnem, moanin, mobileRNA, MODA, Modstrings, MOFA2, mogsa, MoleculeExperiment, MOMA, monaLisa, Moonlight2R, MoonlightR, mosbi, MOSClip, mosdef, MOSim, Motif2Site, motifbreakR, MotifDb, motifStack, motifTestR, MouseFM, mpra, MSA2dist, MsBackendMassbank, MsBackendMetaboLights, MsBackendMgf, MsBackendMsp, MsBackendRawFileReader, MsBackendSql, MsCoreUtils, MsDataHub, MsExperiment, MsFeatures, msImpute, mslp, MSnbase, MSPrep, msPurity, msqrob2, MsQuality, MSstats, MSstatsLiP, MSstatsLOBD, MSstatsTMT, MuData, MultiAssayExperiment, MultiBaC, multicrispr, MultiDataSet, multiGSEA, multiHiCcompare, multiMiR, MultimodalExperiment, MultiRNAflow, multistateQTL, multiWGCNA, mumosa, MungeSumstats, muscat, musicatk, MutationalPatterns, MWASTools, mygene, myvariant, mzR, NADfinder, NanoMethViz, NanoStringDiff, ncGTW, ncRNAtools, ndexr, Nebulosa, nempi, NetActivity, nethet, NetPathMiner, netprioR, netSmooth, NewWave, ngsReports, nipalsMCIA, nnSVG, NormalyzerDE, normr, NPARC, npGSEA, nucleoSim, nucleR, oligo, omicade4, omicRexposome, OmicsMLRepoR, omicsPrint, omicsViewer, Omixer, OmnipathR, omXplore, oncoscanR, OncoScore, OncoSimulR, ontoProc, optimalFlow, OPWeight, ORFhunteR, ORFik, OrganismDbi, Organism.dplyr, orthogene, orthos, Oscope, OUTRIDER, OutSplice, OVESEG, PAA, packFinder, padma, PAIRADISE, pairedGSEA, pairkat, PanomiR, parglms, parody, Path2PPI, pathlinkR, pcaExplorer, PCAN, PeacoQC, peakPantheR, Pedixplorer, PepSetTest, PepsNMR, pfamAnalyzeR, pgxRpi, phantasus, phantasusLite, PharmacoGx, phenomis, phenopath, philr, PhIPData, PhosR, phyloseq, piano, pipeComp, PIPETS, Pirat, PIUMA, planttfhunter, plasmut, plotGrouper, plyinteractions, plyranges, pmp, PoDCall, pogos, PolySTest, POMA, powerTCR, POWSC, ppcseq, pqsfinder, pram, preciseTAD, PrInCE, proDA, profileplyr, profileScoreDist, progeny, projectR, pRoloc, pRolocGUI, PRONE, Prostar, ProteoDisco, ProteoMM, PSMatch, ptairMS, PureCN, PWMEnrich, qcmetrics, QDNAseq, QFeatures, qmtools, qpgraph, qsea, qsmooth, QSutils, qsvaR, QTLExperiment, Qtlizer, quantiseqr, quantro, QuasR, R3CPET, RadioGx, raer, RaggedExperiment, RAIDS, rain, ramwas, randRotation, RAREsim, Rarr, rawDiag, rawrr, RBGL, RBioFormats, Rbowtie, Rbwa, rcellminer, rCGH, RcisTarget, Rcollectl, RCSL, Rcwl, RcwlPipelines, RCX, RCy3, RCyjs, ReactomePA, recount, recount3, recountmethylation, recoup, RedeR, RedisParam, regionalpcs, regioneR, regioneReloaded, regsplice, regutools, ResidualMatrix, RESOLVE, retrofit, ReUseData, rexposome, rfaRm, Rfastp, rfPred, RgnTX, rgoslin, RGraph2js, RGSEA, rhdf5, rhdf5client, rhdf5filters, Rhdf5lib, rhinotypeR, Rhisat2, Rhtslib, RiboCrypt, RiboProfiling, riboSeqR, ribosomeProfilingQC, rifi, rifiComparative, RIVER, RJMCMCNucleosomes, RMassBank, rmspc, RNAmodR, RNAmodR.AlkAnilineSeq, RNAmodR.ML, RNAmodR.RiboMethSeq, rnaseqcomp, RNAseqCovarImpute, RnaSeqSampleSize, Rnits, roastgsa, ROC, ROCpAI, rols, ropls, rprimer, rpx, rqt, rrvgo, Rsamtools, rScudo, rsemmed, rSWeeP, RTCGAToolbox, RTN, RTNduals, RTNsurvival, Rtpca, rTRM, RUVSeq, Rvisdiff, RVS, rWikiPathways, S4Arrays, S4Vectors, sampleClassifier, sangerseqR, satuRn, SC3, ScaledMatrix, scanMiR, scanMiRApp, SCArray.sat, scater, scBubbletree, scCB2, scClassify, sccomp, scDblFinder, scDD, scDDboost, scDesign3, scDiagnostics, scDotPlot, scds, SCFA, scFeatureFilter, scFeatures, scifer, scmap, scMerge, scMitoMut, SCnorm, scone, scoreInvHap, scoup, scp, scPCA, scPipe, scran, scrapper, scReClassify, screenCounter, ScreenR, scRepertoire, scRNAseqApp, scruff, scTHI, scTreeViz, scuttle, scviR, seahtrue, sechm, segmentSeq, selectKSigs, seqArchR, seqArchRplus, seqCAT, SeqGate, seq.hotSPOT, seqLogo, seqPattern, seqsetvis, SeqSQC, SeqVarTools, sesame, SEtools, sevenC, SGCP, SGSeq, SharedObject, shinyepico, shinyMethyl, ShortRead, SIAMCAT, SigCheck, SigFuge, signatureSearch, SigsPack, SIMD, SimFFPE, similaRpeak, SIMLR, simPIC, simpleSeg, sincell, SingleCellAlleleExperiment, SingleCellExperiment, singleCellTK, SingleR, singscore, SiPSiC, sitadela, sitePath, sketchR, slalom, slingshot, SMAD, smartid, smoothclust, snapcount, snifter, SNPediaR, SNPhood, soGGi, SOMNiBUS, SpaceMarkers, SpaNorm, sparrow, SparseArray, sparseMatrixStats, sparsenetgls, SparseSignatures, spaSim, SpatialCPie, spatialDE, SpatialExperiment, SpatialFeatureExperiment, spatialHeatmap, speckle, specL, Spectra, SpectralTAD, SpectraQL, SPIAT, spicyR, spillR, splatter, SPLINTER, splots, SpotClean, SPOTlight, SpotSweeper, spqn, SPsimSeq, SQLDataFrame, squallms, sRACIPE, sSNAPPY, ssrch, StabMap, stageR, STATegRa, Statial, statTarget, stJoincount, strandCheckR, struct, Structstrings, structToolbox, SubCellBarCode, SUITOR, SummarizedExperiment, SurfR, sva, svaRetro, SVMDO, swfdr, switchde, synapsis, synapter, SynExtend, synlet, syntenet, systemPipeR, systemPipeShiny, systemPipeTools, tadar, TADCompare, tanggle, TAPseq, TargetDecoy, TargetSearch, TCGAbiolinks, TCGAutils, TDbasedUFE, TDbasedUFEadv, TEKRABber, TENxIO, tenXplore, terraTCGAdata, TFARM, TFBSTools, TFHAZ, TFutils, tidybulk, tidyCoverage, tidyFlowCore, tidysbml, tidySingleCellExperiment, tidySpatialExperiment, tidySummarizedExperiment, tigre, TileDBArray, timeOmics, TMixClust, TMSig, TOAST, tomoda, tomoseqr, TOP, topconfects, topdownr, ToxicoGx, TPP2D, TPP, tpSVG, tracktables, trackViewer, TrajectoryUtils, transcriptogramer, transcriptR, transformGamPoi, transmogR, transomics2cytoscape, TreeAndLeaf, treeclimbR, treekoR, TreeSummarizedExperiment, TREG, Trendy, tricycle, tripr, tRNA, tRNAdbImport, tRNAscanImport, TRONCO, TTMap, TurboNorm, TVTB, twoddpcr, txcutr, txdbmaker, UCell, UCSC.utils, Ularcirc, UMI4Cats, uncoverappLib, UniProt.ws, updateObject, UPDhmm, variancePartition, VariantAnnotation, VariantExperiment, VariantFiltering, VCFArray, VDJdive, velociraptor, VERSO, vidger, VisiumIO, vissE, Voyager, vsclust, vsn, wateRmelon, wavClusteR, weitrix, wpm, xcms, xcore, xenLite, Xeva, XNAString, yamss, YAPSA, zellkonverter, zenith, zinbwave, zitools, zlibbioc, ZygosityPredictor, AHEnsDbs, AHLRBaseDbs, AHMeSHDbs, AHPathbankDbs, AHPubMedDbs, AHWikipathwaysDbs, AlphaMissense.v2023.hg19, AlphaMissense.v2023.hg38, ath1121501frmavecs, cadd.v1.6.hg19, cadd.v1.6.hg38, CTCF, EpiTxDb.Hs.hg38, EpiTxDb.Mm.mm10, EpiTxDb.Sc.sacCer3, EuPathDB, excluderanges, geneplast.data, GenomicState, hpAnnot, JASPAR2022, JASPAR2024, phastCons35way.UCSC.mm39, phyloP35way.UCSC.mm39, rat2302frmavecs, SomaScan.db, synaptome.data, TENET.AnnotationHub, UCSCRepeatMasker, ASICSdata, benchmarkfdrData2019, BioImageDbs, BioPlex, blimaTestingData, BloodCancerMultiOmics2017, bodymapRat, brgedata, bugphyzz, CardinalWorkflows, celldex, CellMapperData, cfToolsData, chipenrich.data, ChIPexoQualExample, chipseqDBData, CLLmethylation, clustifyrdatahub, CopyhelpeR, CoSIAdata, COSMIC.67, crisprScoreData, curatedBladderData, curatedMetagenomicData, curatedOvarianData, curatedPCaData, curatedTBData, curatedTCGAData, CytoMethIC, DAPARdata, depmap, derfinderData, DExMAdata, DmelSGI, DNAZooData, dorothea, DropletTestFiles, DuoClustering2018, easierData, ELMER.data, emtdata, eoPredData, epimutacionsData, ewceData, fourDNData, furrowSeg, gDNAinRNAseqData, gDRtestData, GenomicDistributionsData, GeuvadisTranscriptExpr, GSE103322, GSE13015, GSE159526, GSE62944, HarmanData, HCAData, HCATonsilData, HD2013SGI, HDCytoData, healthyControlsPresenceChecker, HelloRangesData, HiCDataHumanIMR90, HiContactsData, HighlyReplicatedRNASeq, Hiiragi2013, HMP16SData, HMP2Data, HumanAffyData, IHWpaper, imcdatasets, JohnsonKinaseData, LegATo, LRcellTypeMarkers, mCSEAdata, mcsurvdata, MerfishData, MetaGxOvarian, MetaGxPancreas, MetaScope, MethylAidData, methylclockData, MethylSeqData, MicrobiomeBenchmarkData, microbiomeDataSets, minionSummaryData, MOFAdata, MouseAgingData, MouseGastrulationData, MouseThymusAgeing, msigdb, MSMB, msqc1, multiWGCNAdata, muscData, nanotubes, NestLink, NetActivityData, OnassisJavaLibs, optimalFlowData, orthosData, parathyroidSE, pasilla, PasillaTranscriptExpr, PCHiCdata, PepsNMRData, preciseTADhub, ProteinGymR, ptairData, raerdata, rcellminerData, RforProteomics, RGMQLlib, RNAmodR.Data, RnaSeqSampleSizeData, sampleClassifierData, scaeData, scanMiRData, scATAC.Explorer, SCLCBam, scMultiome, scpdata, scRNAseq, seventyGeneData, SFEData, SimBenchData, Single.mTEC.Transcriptomes, SingleCellMultiModal, smokingMouse, SpatialDatasets, spatialDmelxsim, spatialLIBD, STexampleData, SubcellularSpatialData, systemPipeRdata, TabulaMurisData, TabulaMurisSenisData, tartare, TCGAbiolinksGUI.data, TCGAWorkflowData, TENxBrainData, TENxBUSData, TENxPBMCData, TENxVisiumData, TENxXeniumData, timecoursedata, TimerQuant, tissueTreg, TMExplorer, TransOmicsData, tuberculosis, tweeDEseqCountData, VariantToolsData, VectraPolarisData, WeberDivechaLCdata, zebrafishRNASeq, annotation, arrays, BiocMetaWorkflow, CAGEWorkflow, chipseqDB, csawUsersGuide, EGSEA123, ExpressionNormalizationWorkflow, generegulation, highthroughputassays, liftOver, maEndToEnd, recountWorkflow, RNAseq123, seqpac, sequencing, SingscoreAMLMutations, spicyWorkflow, variants, aIc, asteRisk, BiocManager, corrmeta, cyjShiny, DEHOGT, EHRtemporalVariability, genetic.algo.optimizeR, ggBubbles, GSEMA, ipsRdbs, magmaR, MarZIC, multiclassPairs, MVN, net4pg, NutrienTrackeR, openSkies, PlackettLuce, Rediscover, rjsoncons, rworkflows, SCIntRuler, StepReg, TFactSR dependencyCount: 33 Package: biocthis Version: 1.16.0 Imports: BiocManager, fs, glue, rlang, styler, usethis (>= 2.0.1) Suggests: BiocStyle, covr, devtools, knitr, pkgdown, RefManageR, rmarkdown, sessioninfo, testthat, utils License: Artistic-2.0 MD5sum: b41b21d9b5c008ad5b1bc6814e739103 NeedsCompilation: no Title: Automate package and project setup for Bioconductor packages Description: This package expands the usethis package with the goal of helping automate the process of creating R packages for Bioconductor or making them Bioconductor-friendly. biocViews: Software, ReportWriting Author: Leonardo Collado-Torres [aut, cre] (), Marcel Ramos [ctb] () Maintainer: Leonardo Collado-Torres URL: https://github.com/lcolladotor/biocthis VignetteBuilder: knitr BugReports: https://support.bioconductor.org/tag/biocthis git_url: https://git.bioconductor.org/packages/biocthis git_branch: RELEASE_3_20 git_last_commit: 2221674 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biocthis_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biocthis_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biocthis_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biocthis_1.16.0.tgz vignettes: vignettes/biocthis/inst/doc/biocthis_dev_notes.html, vignettes/biocthis/inst/doc/biocthis.html vignetteTitles: biocthis developer notes, Introduction to biocthis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biocthis/inst/doc/biocthis_dev_notes.R, vignettes/biocthis/inst/doc/biocthis.R importsMe: HubPub suggestsMe: tripr dependencyCount: 44 Package: BiocVersion Version: 3.20.0 Depends: R (>= 4.4.0) License: Artistic-2.0 MD5sum: 118dd948af617820eab08b946fb28cbf NeedsCompilation: no Title: Set the appropriate version of Bioconductor packages Description: This package provides repository information for the appropriate version of Bioconductor. biocViews: Infrastructure Author: Martin Morgan [aut], Marcel Ramos [ctb], Bioconductor Package Maintainer [ctb, cre] Maintainer: Bioconductor Package Maintainer git_url: https://git.bioconductor.org/packages/BiocVersion git_branch: devel git_last_commit: 43c716a git_last_commit_date: 2024-04-30 Date/Publication: 2024-10-21 source.ver: src/contrib/BiocVersion_3.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocVersion_3.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocVersion_3.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocVersion_3.20.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE importsMe: AnnotationHub, pkgndep suggestsMe: BiocManager dependencyCount: 0 Package: biocViews Version: 1.74.0 Depends: R (>= 3.6.0) Imports: Biobase, graph (>= 1.9.26), methods, RBGL (>= 1.13.5), tools, utils, XML, RCurl, RUnit, BiocManager Suggests: BiocGenerics, knitr, commonmark, BiocStyle License: Artistic-2.0 MD5sum: 2eb20c70e91cd16fd7bda9e43ecdd44f NeedsCompilation: no Title: Categorized views of R package repositories Description: Infrastructure to support 'views' used to classify Bioconductor packages. 'biocViews' are directed acyclic graphs of terms from a controlled vocabulary. There are three major classifications, corresponding to 'software', 'annotation', and 'experiment data' packages. biocViews: Infrastructure Author: VJ Carey , BJ Harshfield , S Falcon , Sonali Arora, Lori Shepherd Maintainer: Bioconductor Package Maintainer URL: http://bioconductor.org/packages/biocViews VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/biocViews/issues git_url: https://git.bioconductor.org/packages/biocViews git_branch: RELEASE_3_20 git_last_commit: d2e3148 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biocViews_1.74.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biocViews_1.74.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biocViews_1.74.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biocViews_1.74.0.tgz vignettes: vignettes/biocViews/inst/doc/createReposHtml.html, vignettes/biocViews/inst/doc/HOWTO-BCV.html vignetteTitles: biocViews-CreateRepositoryHTML, biocViews-HOWTO hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biocViews/inst/doc/createReposHtml.R, vignettes/biocViews/inst/doc/HOWTO-BCV.R importsMe: AnnotationHubData, BiocCheck, BiocPkgTools, BioGA, monocle, sigFeature, RforProteomics, genetic.algo.optimizeR suggestsMe: packFinder, plasmut, rworkflows dependencyCount: 16 Package: BiocWorkflowTools Version: 1.32.0 Depends: R (>= 3.4) Imports: BiocStyle, bookdown, git2r, httr, knitr, rmarkdown, rstudioapi, stringr, tools, utils, usethis License: MIT + file LICENSE MD5sum: 40aa2f7806fa4ef97cba57498f9a1af7 NeedsCompilation: no Title: Tools to aid the development of Bioconductor Workflow packages Description: Provides functions to ease the transition between Rmarkdown and LaTeX documents when authoring a Bioconductor Workflow. biocViews: Software, ReportWriting Author: Mike Smith [aut, cre], Andrzej Oleś [aut] Maintainer: Mike Smith VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BiocWorkflowTools git_branch: RELEASE_3_20 git_last_commit: 6bfd69b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiocWorkflowTools_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiocWorkflowTools_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiocWorkflowTools_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiocWorkflowTools_1.32.0.tgz vignettes: vignettes/BiocWorkflowTools/inst/doc/Generate_F1000_Latex.html vignetteTitles: Converting Rmarkdown to F1000Research LaTeX Format hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BiocWorkflowTools/inst/doc/Generate_F1000_Latex.R dependsOnMe: RNAseq123 suggestsMe: BiocMetaWorkflow, CAGEWorkflow, recountWorkflow, SingscoreAMLMutations dependencyCount: 61 Package: biodb Version: 1.14.0 Depends: R (>= 4.1.0) Imports: BiocFileCache, R6, RCurl, RSQLite, Rcpp, XML, chk, git2r, jsonlite, lgr, lifecycle, methods, openssl, plyr, progress, rappdirs, stats, stringr, tools, withr, yaml LinkingTo: Rcpp, testthat Suggests: BiocStyle, roxygen2, devtools, testthat (>= 2.0.0), knitr, rmarkdown, covr, xml2 License: AGPL-3 MD5sum: a1b7adef44ebc05598d5e45645d6571e NeedsCompilation: yes Title: biodb, a library and a development framework for connecting to chemical and biological databases Description: The biodb package provides access to standard remote chemical and biological databases (ChEBI, KEGG, HMDB, ...), as well as to in-house local database files (CSV, SQLite), with easy retrieval of entries, access to web services, search of compounds by mass and/or name, and mass spectra matching for LCMS and MSMS. Its architecture as a development framework facilitates the development of new database connectors for local projects or inside separate published packages. biocViews: Software, Infrastructure, DataImport, KEGG Author: Pierrick Roger [aut, cre] (), Alexis Delabrière [ctb] () Maintainer: Pierrick Roger URL: https://github.com/pkrog/biodb VignetteBuilder: knitr BugReports: https://github.com/pkrog/biodb/issues git_url: https://git.bioconductor.org/packages/biodb git_branch: RELEASE_3_20 git_last_commit: 7882277 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biodb_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biodb_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biodb_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biodb_1.14.0.tgz vignettes: vignettes/biodb/inst/doc/biodb.html, vignettes/biodb/inst/doc/details.html, vignettes/biodb/inst/doc/entries.html, vignettes/biodb/inst/doc/new_connector.html, vignettes/biodb/inst/doc/new_entry_field.html vignetteTitles: Introduction to the biodb package., Details on general *biodb* usage and principles, Manipulating entry objects, Creating a new connector class for accessing a database., Creating a new field for entries. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biodb/inst/doc/biodb.R, vignettes/biodb/inst/doc/details.R, vignettes/biodb/inst/doc/entries.R, vignettes/biodb/inst/doc/new_connector.R, vignettes/biodb/inst/doc/new_entry_field.R importsMe: biodbChebi, biodbHmdb, biodbNcbi, biodbNci, biodbUniprot, phenomis dependencyCount: 75 Package: biodbChebi Version: 1.12.0 Depends: R (>= 4.1) Imports: R6, biodb (>= 1.1.5) Suggests: BiocStyle, roxygen2, devtools, testthat (>= 2.0.0), knitr, rmarkdown, lgr License: AGPL-3 Archs: x64 MD5sum: 60d18795d94f834ec183ef0ccfaf4b3d NeedsCompilation: no Title: biodbChebi, a library for connecting to the ChEBI Database Description: The biodbChebi library provides access to the ChEBI Database, using biodb package framework. It allows to retrieve entries by their accession number. Web services can be accessed for searching the database by name, mass or other fields. biocViews: Software, Infrastructure, DataImport Author: Pierrick Roger [aut, cre] () Maintainer: Pierrick Roger URL: https://github.com/pkrog/biodbChebi VignetteBuilder: knitr BugReports: https://github.com/pkrog/biodbChebi/issues git_url: https://git.bioconductor.org/packages/biodbChebi git_branch: RELEASE_3_20 git_last_commit: e6b963e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biodbChebi_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biodbChebi_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biodbChebi_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biodbChebi_1.12.0.tgz vignettes: vignettes/biodbChebi/inst/doc/biodbChebi.html vignetteTitles: Introduction to the biodbChebi package. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biodbChebi/inst/doc/biodbChebi.R importsMe: phenomis dependencyCount: 76 Package: biodbHmdb Version: 1.12.0 Depends: R (>= 4.1) Imports: R6, biodb (>= 1.3.2), Rcpp, zip LinkingTo: Rcpp, testthat Suggests: BiocStyle, roxygen2, devtools, testthat (>= 2.0.0), knitr, rmarkdown, covr, lgr License: AGPL-3 MD5sum: 0333d0ac49b6de03426e7709fa2ca1ac NeedsCompilation: yes Title: biodbHmdb, a library for connecting to the HMDB Database Description: The biodbHmdb library is an extension of the biodb framework package that provides access to the HMDB Metabolites database. It allows to download the whole HMDB Metabolites database locally, access entries and search for entries by name or description. A future version of this package will also include a search by mass and mass spectra annotation. biocViews: Software, Infrastructure, DataImport Author: Pierrick Roger [aut, cre] () Maintainer: Pierrick Roger URL: https://github.com/pkrog/biodbHmdb VignetteBuilder: knitr BugReports: https://github.com/pkrog/biodbHmdb/issues git_url: https://git.bioconductor.org/packages/biodbHmdb git_branch: RELEASE_3_20 git_last_commit: 0eb718c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biodbHmdb_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biodbHmdb_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biodbHmdb_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biodbHmdb_1.12.0.tgz vignettes: vignettes/biodbHmdb/inst/doc/biodbHmdb.html vignetteTitles: Introduction to the biodbHmdb package. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biodbHmdb/inst/doc/biodbHmdb.R dependencyCount: 77 Package: biodbNcbi Version: 1.10.0 Depends: R (>= 4.1) Imports: biodb (>= 1.3.2), R6, XML, chk Suggests: roxygen2, BiocStyle, testthat (>= 2.0.0), devtools, knitr, rmarkdown, covr, lgr License: AGPL-3 Archs: x64 MD5sum: c17c1f48c74070ec3e73b877f580c4c9 NeedsCompilation: no Title: biodbNcbi, a library for connecting to NCBI Databases. Description: The biodbNcbi library provides access to the NCBI databases CCDS, Gene, Pubchem Comp and Pubchem Subst, using biodb package framework. It allows to retrieve entries by their accession number. Web services can be accessed for searching the database by name or mass. biocViews: Software, Infrastructure, DataImport Author: Pierrick Roger [aut, cre] () Maintainer: Pierrick Roger URL: https://github.com/pkrog/biodbNcbi VignetteBuilder: knitr BugReports: https://github.com/pkrog/biodbNCbi/issues git_url: https://git.bioconductor.org/packages/biodbNcbi git_branch: RELEASE_3_20 git_last_commit: b6b4ed9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biodbNcbi_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biodbNcbi_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biodbNcbi_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biodbNcbi_1.10.0.tgz vignettes: vignettes/biodbNcbi/inst/doc/biodbNcbi.html vignetteTitles: Introduction to the biodbNcbi package. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biodbNcbi/inst/doc/biodbNcbi.R dependencyCount: 76 Package: biodbNci Version: 1.10.0 Depends: R (>= 4.1) Imports: biodb (>= 1.3.1), R6, Rcpp, chk LinkingTo: Rcpp, testthat Suggests: roxygen2, BiocStyle, testthat (>= 2.0.0), devtools, knitr, rmarkdown, covr, lgr License: AGPL-3 MD5sum: c60bde3f0881c284dbc9dc6089338b64 NeedsCompilation: yes Title: biodbNci, a library for connecting to biodbNci, a library for connecting to the National Cancer Institute (USA) CACTUS Database Description: The biodbNci library is an extension of the biodb framework package. It provides access to biodbNci, a library for connecting to the National Cancer Institute (USA) CACTUS Database. It allows to retrieve entries by their accession number, and run specific web services. biocViews: Software, Infrastructure, DataImport Author: Pierrick Roger [aut, cre] () Maintainer: Pierrick Roger VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/biodbNci git_branch: RELEASE_3_20 git_last_commit: d666b49 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biodbNci_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biodbNci_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biodbNci_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biodbNci_1.10.0.tgz vignettes: vignettes/biodbNci/inst/doc/biodbNci.html vignetteTitles: Introduction to the biodbNci package. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biodbNci/inst/doc/biodbNci.R dependencyCount: 76 Package: biodbUniprot Version: 1.12.0 Depends: R (>= 4.1.0) Imports: R6, biodb (>= 1.4.2) Suggests: BiocStyle, roxygen2, devtools, testthat (>= 2.0.0), knitr, rmarkdown, lgr, covr License: AGPL-3 Archs: x64 MD5sum: 964a9897ac1aecbe5f798ea706d1d74c NeedsCompilation: no Title: biodbUniprot, a library for connecting to the Uniprot Database Description: The biodbUniprot library is an extension of the biodb framework package. It provides access to the UniProt database. It allows to retrieve entries by their accession number, and run web service queries for searching for entries. biocViews: Software, Infrastructure, DataImport Author: Pierrick Roger [aut, cre] () Maintainer: Pierrick Roger URL: https://github.com/pkrog/biodbUniprot VignetteBuilder: knitr BugReports: https://github.com/pkrog/biodbUniprot/issues git_url: https://git.bioconductor.org/packages/biodbUniprot git_branch: RELEASE_3_20 git_last_commit: 535c0a6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biodbUniprot_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biodbUniprot_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biodbUniprot_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biodbUniprot_1.12.0.tgz vignettes: vignettes/biodbUniprot/inst/doc/biodbUniprot.html vignetteTitles: Introduction to the biodbUniprot package. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biodbUniprot/inst/doc/biodbUniprot.R dependencyCount: 76 Package: bioDist Version: 1.78.0 Depends: R (>= 2.0), methods, Biobase,KernSmooth Suggests: locfit License: Artistic-2.0 MD5sum: 85ab92d68c01525dc662ffc42dc68aed NeedsCompilation: no Title: Different distance measures Description: A collection of software tools for calculating distance measures. biocViews: Clustering, Classification Author: B. Ding, R. Gentleman and Vincent Carey Maintainer: Bioconductor Package Maintainer git_url: https://git.bioconductor.org/packages/bioDist git_branch: RELEASE_3_20 git_last_commit: 1e69b36 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bioDist_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bioDist_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bioDist_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bioDist_1.78.0.tgz vignettes: vignettes/bioDist/inst/doc/bioDist.pdf vignetteTitles: bioDist Introduction hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bioDist/inst/doc/bioDist.R importsMe: CHETAH, PhyloProfile dependencyCount: 7 Package: BioGA Version: 1.0.0 Depends: R (>= 4.4) Imports: ggplot2, graphics, Rcpp, SummarizedExperiment, animation, rlang, biocViews, sessioninfo, BiocStyle LinkingTo: Rcpp Suggests: knitr, rmarkdown, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: 3b1aaf87addc00db6a311f84704987be NeedsCompilation: yes Title: Bioinformatics Genetic Algorithm (BioGA) Description: Genetic algorithm are a class of optimization algorithms inspired by the process of natural selection and genetics. This package allows users to analyze and optimize high throughput genomic data using genetic algorithms. The functions provided are implemented in C++ for improved speed and efficiency, with an easy-to-use interface for use within R. biocViews: ExperimentalDesign, Technology Author: Dany Mukesha [aut, cre] () Maintainer: Dany Mukesha URL: https://danymukesha.github.io/BioGA/ VignetteBuilder: knitr BugReports: https://github.com/danymukesha/BioGA/issues git_url: https://git.bioconductor.org/packages/BioGA git_branch: RELEASE_3_20 git_last_commit: d013c28 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BioGA_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BioGA_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BioGA_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BioGA_1.0.0.tgz vignettes: vignettes/BioGA/inst/doc/Introduction.html vignetteTitles: Introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BioGA/inst/doc/Introduction.R dependencyCount: 96 Package: biomaRt Version: 2.62.0 Depends: methods Imports: utils, AnnotationDbi, progress, stringr, httr2, digest, BiocFileCache, rappdirs, xml2, curl Suggests: BiocStyle, knitr, mockery, rmarkdown, testthat, httptest2 License: Artistic-2.0 Archs: x64 MD5sum: 405174e4e9aaafe96f14c5c3f4d43dcb NeedsCompilation: no Title: Interface to BioMart databases (i.e. Ensembl) Description: In recent years a wealth of biological data has become available in public data repositories. Easy access to these valuable data resources and firm integration with data analysis is needed for comprehensive bioinformatics data analysis. biomaRt provides an interface to a growing collection of databases implementing the BioMart software suite (). The package enables retrieval of large amounts of data in a uniform way without the need to know the underlying database schemas or write complex SQL queries. The most prominent examples of BioMart databases are maintain by Ensembl, which provides biomaRt users direct access to a diverse set of data and enables a wide range of powerful online queries from gene annotation to database mining. biocViews: Annotation Author: Steffen Durinck [aut], Wolfgang Huber [aut], Sean Davis [ctb], Francois Pepin [ctb], Vince S Buffalo [ctb], Mike Smith [ctb, cre] () Maintainer: Mike Smith URL: https://github.com/grimbough/biomaRt VignetteBuilder: knitr BugReports: https://github.com/grimbough/biomaRt/issues git_url: https://git.bioconductor.org/packages/biomaRt git_branch: RELEASE_3_20 git_last_commit: 7a1547e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biomaRt_2.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biomaRt_2.62.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biomaRt_2.62.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biomaRt_2.62.0.tgz vignettes: vignettes/biomaRt/inst/doc/accessing_ensembl.html, vignettes/biomaRt/inst/doc/accessing_other_marts.html vignetteTitles: Accessing Ensembl annotation with biomaRt, Using a BioMart other than Ensembl hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biomaRt/inst/doc/accessing_ensembl.R, vignettes/biomaRt/inst/doc/accessing_other_marts.R dependsOnMe: chromPlot, customProDB, DrugVsDisease, GenomicOZone, MineICA, NetSAM, PPInfer, RepViz, VegaMC, annotation importsMe: BadRegionFinder, BgeeCall, branchpointer, BUSpaRse, ChIPpeakAnno, CHRONOS, CoSIA, dagLogo, DEXSeq, DMRcate, DominoEffect, dominoSignal, easyRNASeq, EDASeq, ELMER, EpiMix, epimutacions, FRASER, GDCRNATools, GenVisR, gINTomics, glmSparseNet, GOexpress, goSTAG, GRaNIE, Gviz, hermes, InterCellar, isobar, LACE, mCSEA, MEDIPS, MetaboSignal, metaseqR2, MGFR, motifbreakR, MouseFM, OncoScore, oposSOM, ORFik, pcaExplorer, phenoTest, pRoloc, ProteoMM, R453Plus1Toolbox, ramwas, recoup, rgsepd, scPipe, seq2pathway, SeqGSEA, sitadela, SPLINTER, SPONGE, surfaltr, SurfR, SWATH2stats, TCGAbiolinks, TEKRABber, TFEA.ChIP, transcriptogramer, txdbmaker, yarn, ExpHunterSuite, TCGAWorkflow, biomartr, BioVenn, convertid, DiNAMIC.Duo, GOxploreR, GRIN2, ProFAST, scGOclust, seeker, snplinkage, snplist suggestsMe: AnnotationForge, bioassayR, celda, chromstaR, ClusterJudge, crisprDesign, cTRAP, Damsel, DELocal, epistack, fedup, FELLA, GeDi, h5vc, MAGeCKFlute, martini, massiR, MineICA, MiRaGE, MIRit, MutationalPatterns, netSmooth, oligo, OrganismDbi, pathlinkR, piano, Pigengene, progeny, R3CPET, RnBeads, rTRM, scater, ShortRead, SIM, sincell, tidysbml, trackViewer, wiggleplotr, zinbwave, BioMartGOGeneSets, BloodCancerMultiOmics2017, leeBamViews, RegParallel, RforProteomics, BED, BioInsight, DGEobj, DGEobj.utils, grandR, kangar00, MoBPS, Patterns, Platypus, scDiffCom, SNPassoc dependencyCount: 68 Package: biomformat Version: 1.34.0 Depends: R (>= 3.2), methods Imports: plyr (>= 1.8), jsonlite (>= 0.9.16), Matrix (>= 1.2), rhdf5 Suggests: testthat (>= 0.10), knitr (>= 1.10), BiocStyle (>= 1.6), rmarkdown (>= 0.7) License: GPL-2 MD5sum: bbdd408a1360bceaf000d7004915b0e0 NeedsCompilation: no Title: An interface package for the BIOM file format Description: This is an R package for interfacing with the BIOM format. This package includes basic tools for reading biom-format files, accessing and subsetting data tables from a biom object (which is more complex than a single table), as well as limited support for writing a biom-object back to a biom-format file. The design of this API is intended to match the python API and other tools included with the biom-format project, but with a decidedly "R flavor" that should be familiar to R users. This includes S4 classes and methods, as well as extensions of common core functions/methods. biocViews: ImmunoOncology, DataImport, Metagenomics, Microbiome Author: Paul J. McMurdie and Joseph N Paulson Maintainer: Paul J. McMurdie URL: https://github.com/joey711/biomformat/, http://biom-format.org/ VignetteBuilder: knitr BugReports: https://github.com/joey711/biomformat/issues git_url: https://git.bioconductor.org/packages/biomformat git_branch: RELEASE_3_20 git_last_commit: dd89a53 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biomformat_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biomformat_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biomformat_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biomformat_1.34.0.tgz vignettes: vignettes/biomformat/inst/doc/biomformat.html vignetteTitles: The biomformat package Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biomformat/inst/doc/biomformat.R importsMe: phyloseq suggestsMe: animalcules, iSEEtree, MGnifyR, mia, MicrobiotaProcess, MetaScope dependencyCount: 14 Package: BioMVCClass Version: 1.74.0 Depends: R (>= 2.1.0), methods, MVCClass, Biobase, graph, Rgraphviz License: LGPL MD5sum: 014dcb2009fc78bb10f71f66b0b50443 NeedsCompilation: no Title: Model-View-Controller (MVC) Classes That Use Biobase Description: Creates classes used in model-view-controller (MVC) design biocViews: Visualization, Infrastructure, GraphAndNetwork Author: Elizabeth Whalen Maintainer: Elizabeth Whalen git_url: https://git.bioconductor.org/packages/BioMVCClass git_branch: RELEASE_3_20 git_last_commit: 58de6a3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BioMVCClass_1.74.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BioMVCClass_1.74.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BioMVCClass_1.74.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BioMVCClass_1.74.0.tgz vignettes: vignettes/BioMVCClass/inst/doc/BioMVCClass.pdf vignetteTitles: BioMVCClass hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 12 Package: biomvRCNS Version: 1.46.0 Depends: IRanges, GenomicRanges, Gviz Imports: methods, mvtnorm Suggests: cluster, parallel, GenomicFeatures, dynamicTreeCut, Rsamtools, TxDb.Hsapiens.UCSC.hg19.knownGene License: GPL (>= 2) MD5sum: 13b55aa2b6d539c30280f7e7e948e1f5 NeedsCompilation: yes Title: Copy Number study and Segmentation for multivariate biological data Description: In this package, a Hidden Semi Markov Model (HSMM) and one homogeneous segmentation model are designed and implemented for segmentation genomic data, with the aim of assisting in transcripts detection using high throughput technology like RNA-seq or tiling array, and copy number analysis using aCGH or sequencing. biocViews: aCGH, CopyNumberVariation, Microarray, Sequencing, Visualization, Genetics Author: Yang Du Maintainer: Yang Du git_url: https://git.bioconductor.org/packages/biomvRCNS git_branch: RELEASE_3_20 git_last_commit: 4f87d56 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biomvRCNS_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biomvRCNS_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biomvRCNS_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biomvRCNS_1.46.0.tgz vignettes: vignettes/biomvRCNS/inst/doc/biomvRCNS.pdf vignetteTitles: biomvRCNS package introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biomvRCNS/inst/doc/biomvRCNS.R dependencyCount: 158 Package: BioNAR Version: 1.8.1 Depends: R (>= 3.5.0), igraph (>= 2.0.1.1), poweRlaw, latex2exp, RSpectra, Rdpack Imports: stringr, viridis, fgsea, grid, methods, AnnotationDbi, dplyr, GO.db, org.Hs.eg.db (>= 3.19.1), rSpectral, WGCNA, ggplot2, ggrepel, minpack.lm, cowplot, data.table, scales, stats, Matrix Suggests: knitr, BiocStyle, magick, rmarkdown, igraphdata, testthat (>= 3.0.0), vdiffr, devtools, pander, plotly, randomcoloR License: Artistic-2.0 Archs: x64 MD5sum: 5fe8bfaf5d7ebc63ae8f7c9da4e8a14a NeedsCompilation: no Title: Biological Network Analysis in R Description: the R package BioNAR, developed to step by step analysis of PPI network. The aim is to quantify and rank each protein’s simultaneous impact into multiple complexes based on network topology and clustering. Package also enables estimating of co-occurrence of diseases across the network and specific clusters pointing towards shared/common mechanisms. biocViews: Software, GraphAndNetwork, Network Author: Colin Mclean [aut], Anatoly Sorokin [aut, cre], Oksana Sorokina [aut], J. Douglas Armstrong [aut, fnd], T. Ian Simpson [ctb, fnd] Maintainer: Anatoly Sorokin VignetteBuilder: knitr BugReports: https://github.com/lptolik/BioNAR/issues/ git_url: https://git.bioconductor.org/packages/BioNAR git_branch: RELEASE_3_20 git_last_commit: 4ba8a84 git_last_commit_date: 2024-12-10 Date/Publication: 2024-12-12 source.ver: src/contrib/BioNAR_1.8.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/BioNAR_1.8.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BioNAR_1.8.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BioNAR_1.8.1.tgz vignettes: vignettes/BioNAR/inst/doc/BioNAR_overview.html vignetteTitles: BioNAR: Biological Network Analysis in R hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BioNAR/inst/doc/BioNAR_overview.R dependencyCount: 141 Package: BioNERO Version: 1.14.0 Depends: R (>= 4.1) Imports: WGCNA, dynamicTreeCut, ggdendro, matrixStats, sva, RColorBrewer, ComplexHeatmap, ggplot2, rlang, ggrepel, patchwork, reshape2, igraph, ggnetwork, intergraph, NetRep, stats, grDevices, utils, methods, BiocParallel, minet, GENIE3, SummarizedExperiment Suggests: knitr, rmarkdown, testthat (>= 3.0.0), BiocStyle, DESeq2, networkD3, covr License: GPL-3 MD5sum: bd8a627c25eb9e60f504ca4b30c01a56 NeedsCompilation: no Title: Biological Network Reconstruction Omnibus Description: BioNERO aims to integrate all aspects of biological network inference in a single package, including data preprocessing, exploratory analyses, network inference, and analyses for biological interpretations. BioNERO can be used to infer gene coexpression networks (GCNs) and gene regulatory networks (GRNs) from gene expression data. Additionally, it can be used to explore topological properties of protein-protein interaction (PPI) networks. GCN inference relies on the popular WGCNA algorithm. GRN inference is based on the "wisdom of the crowds" principle, which consists in inferring GRNs with multiple algorithms (here, CLR, GENIE3 and ARACNE) and calculating the average rank for each interaction pair. As all steps of network analyses are included in this package, BioNERO makes users avoid having to learn the syntaxes of several packages and how to communicate between them. Finally, users can also identify consensus modules across independent expression sets and calculate intra and interspecies module preservation statistics between different networks. biocViews: Software, GeneExpression, GeneRegulation, SystemsBiology, GraphAndNetwork, Preprocessing, Network, NetworkInference Author: Fabricio Almeida-Silva [cre, aut] (), Thiago Venancio [aut] () Maintainer: Fabricio Almeida-Silva URL: https://github.com/almeidasilvaf/BioNERO VignetteBuilder: knitr BugReports: https://github.com/almeidasilvaf/BioNERO/issues git_url: https://git.bioconductor.org/packages/BioNERO git_branch: RELEASE_3_20 git_last_commit: f097f2c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BioNERO_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BioNERO_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BioNERO_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BioNERO_1.14.0.tgz vignettes: vignettes/BioNERO/inst/doc/vignette_01_GCN_inference.html, vignettes/BioNERO/inst/doc/vignette_02_GRN_inference.html, vignettes/BioNERO/inst/doc/vignette_03_network_comparison.html vignetteTitles: Gene coexpression network inference, Gene regulatory network inference with BioNERO, Network comparison: consensus modules and module preservation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BioNERO/inst/doc/vignette_01_GCN_inference.R, vignettes/BioNERO/inst/doc/vignette_02_GRN_inference.R, vignettes/BioNERO/inst/doc/vignette_03_network_comparison.R importsMe: cageminer dependencyCount: 165 Package: BioNet Version: 1.66.0 Depends: R (>= 2.10.0), graph, RBGL Imports: igraph (>= 1.0.1), AnnotationDbi, Biobase Suggests: rgl, impute, DLBCL, genefilter, xtable, ALL, limma, hgu95av2.db, XML License: GPL (>= 2) MD5sum: 8bc51fd946d2646ec224f2b823ebdae1 NeedsCompilation: no Title: Routines for the functional analysis of biological networks Description: This package provides functions for the integrated analysis of protein-protein interaction networks and the detection of functional modules. Different datasets can be integrated into the network by assigning p-values of statistical tests to the nodes of the network. E.g. p-values obtained from the differential expression of the genes from an Affymetrix array are assigned to the nodes of the network. By fitting a beta-uniform mixture model and calculating scores from the p-values, overall scores of network regions can be calculated and an integer linear programming algorithm identifies the maximum scoring subnetwork. biocViews: Microarray, DataImport, GraphAndNetwork, Network, NetworkEnrichment, GeneExpression, DifferentialExpression Author: Marcus Dittrich and Daniela Beisser Maintainer: Marcus Dittrich URL: http://bionet.bioapps.biozentrum.uni-wuerzburg.de/ git_url: https://git.bioconductor.org/packages/BioNet git_branch: RELEASE_3_20 git_last_commit: 1966a70 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BioNet_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BioNet_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BioNet_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BioNet_1.66.0.tgz vignettes: vignettes/BioNet/inst/doc/Tutorial.pdf vignetteTitles: BioNet Tutorial hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BioNet/inst/doc/Tutorial.R importsMe: gatom, SMITE suggestsMe: SANTA, mwcsr dependencyCount: 53 Package: BioQC Version: 1.34.0 Depends: R (>= 3.5.0), Biobase Imports: edgeR, Rcpp, methods, stats, utils LinkingTo: Rcpp Suggests: testthat, knitr, rmarkdown, lattice, latticeExtra, rbenchmark, gplots, gridExtra, org.Hs.eg.db, hgu133plus2.db, ggplot2, reshape2, plyr, ineq, covr, limma, RColorBrewer License: GPL (>=3) + file LICENSE MD5sum: ebefc9755aefc0a29ad7bd459db71ae3 NeedsCompilation: yes Title: Detect tissue heterogeneity in expression profiles with gene sets Description: BioQC performs quality control of high-throughput expression data based on tissue gene signatures. It can detect tissue heterogeneity in gene expression data. The core algorithm is a Wilcoxon-Mann-Whitney test that is optimised for high performance. biocViews: GeneExpression,QualityControl,StatisticalMethod, GeneSetEnrichment Author: Jitao David Zhang [cre, aut], Laura Badi [aut], Gregor Sturm [aut], Roland Ambs [aut], Iakov Davydov [aut] Maintainer: Jitao David Zhang URL: https://accio.github.io/BioQC VignetteBuilder: knitr BugReports: https://accio.github.io/BioQC/issues git_url: https://git.bioconductor.org/packages/BioQC git_branch: RELEASE_3_20 git_last_commit: d556aa0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BioQC_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BioQC_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BioQC_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BioQC_1.34.0.tgz vignettes: vignettes/BioQC/inst/doc/bioqc-efficiency.html, vignettes/BioQC/inst/doc/BioQC.html, vignettes/BioQC/inst/doc/bioqc-introduction.html, vignettes/BioQC/inst/doc/bioqc-signedGenesets.html, vignettes/BioQC/inst/doc/bioqc-simulation.html, vignettes/BioQC/inst/doc/bioqc-wmw-test-performance.html vignetteTitles: BioQC Algorithm: Speeding up the Wilcoxon-Mann-Whitney Test, BioQC-kidney: The kidney expression example, BioQC: Detect tissue heterogeneity in gene expression data, Using BioQC with signed genesets, BioQC-benchmark: Testing Efficiency,, Sensitivity and Specificity of BioQC on simulated and real-world data, Comparing the Wilcoxon-Mann-Whitney to alternative statistical tests hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BioQC/inst/doc/bioqc-efficiency.R, vignettes/BioQC/inst/doc/bioqc-introduction.R, vignettes/BioQC/inst/doc/BioQC.R, vignettes/BioQC/inst/doc/bioqc-signedGenesets.R, vignettes/BioQC/inst/doc/bioqc-simulation.R, vignettes/BioQC/inst/doc/bioqc-wmw-test-performance.R dependencyCount: 14 Package: biosigner Version: 1.34.0 Imports: Biobase, methods, e1071, grDevices, graphics, MultiAssayExperiment, MultiDataSet, randomForest, ropls, stats, SummarizedExperiment, utils Suggests: BioMark, BiocGenerics, BiocStyle, golubEsets, hu6800.db, knitr, omicade4, rmarkdown, testthat License: CeCILL Archs: x64 MD5sum: 520d3316884f94a15696c3d91fbc3a6f NeedsCompilation: no Title: Signature discovery from omics data Description: Feature selection is critical in omics data analysis to extract restricted and meaningful molecular signatures from complex and high-dimension data, and to build robust classifiers. This package implements a new method to assess the relevance of the variables for the prediction performances of the classifier. The approach can be run in parallel with the PLS-DA, Random Forest, and SVM binary classifiers. The signatures and the corresponding 'restricted' models are returned, enabling future predictions on new datasets. A Galaxy implementation of the package is available within the Workflow4metabolomics.org online infrastructure for computational metabolomics. biocViews: Classification, FeatureExtraction, Transcriptomics, Proteomics, Metabolomics, Lipidomics, MassSpectrometry Author: Philippe Rinaudo [aut], Etienne A. Thevenot [aut, cre] () Maintainer: Etienne A. Thevenot URL: http://dx.doi.org/10.3389/fmolb.2016.00026 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/biosigner git_branch: RELEASE_3_20 git_last_commit: ad59bb4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biosigner_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biosigner_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biosigner_1.34.0.tgz vignettes: vignettes/biosigner/inst/doc/biosigner-vignette.html vignetteTitles: biosigner-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biosigner/inst/doc/biosigner-vignette.R suggestsMe: phenomis dependencyCount: 110 Package: Biostrings Version: 2.74.1 Depends: R (>= 4.0.0), BiocGenerics (>= 0.37.0), S4Vectors (>= 0.27.12), IRanges (>= 2.31.2), XVector (>= 0.37.1), GenomeInfoDb Imports: methods, utils, grDevices, stats, crayon LinkingTo: S4Vectors, IRanges, XVector Suggests: graphics, pwalign, BSgenome (>= 1.13.14), BSgenome.Celegans.UCSC.ce2 (>= 1.3.11), BSgenome.Dmelanogaster.UCSC.dm3 (>= 1.3.11), BSgenome.Hsapiens.UCSC.hg18, drosophila2probe, hgu95av2probe, hgu133aprobe, GenomicFeatures (>= 1.3.14), hgu95av2cdf, affy (>= 1.41.3), affydata (>= 1.11.5), RUnit, BiocStyle, knitr, testthat (>= 3.0.0), covr License: Artistic-2.0 MD5sum: 255841a51beee0e22219b7dc5bd475dd NeedsCompilation: yes Title: Efficient manipulation of biological strings Description: Memory efficient string containers, string matching algorithms, and other utilities, for fast manipulation of large biological sequences or sets of sequences. biocViews: SequenceMatching, Alignment, Sequencing, Genetics, DataImport, DataRepresentation, Infrastructure Author: Hervé Pagès [aut, cre], Patrick Aboyoun [aut], Robert Gentleman [aut], Saikat DebRoy [aut], Vince Carey [ctb], Nicolas Delhomme [ctb], Felix Ernst [ctb], Wolfgang Huber [ctb] ('matchprobes' vignette), Beryl Kanali [ctb] (Converted 'MultipleAlignments' vignette from Sweave to RMarkdown), Haleema Khan [ctb] (Converted 'matchprobes' vignette from Sweave to RMarkdown), Aidan Lakshman [ctb], Kieran O'Neill [ctb], Valerie Obenchain [ctb], Marcel Ramos [ctb], Albert Vill [ctb], Jen Wokaty [ctb] (Converted 'matchprobes' vignette from Sweave to RMarkdown), Erik Wright [ctb] Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/Biostrings VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/Biostrings/issues git_url: https://git.bioconductor.org/packages/Biostrings git_branch: RELEASE_3_20 git_last_commit: b5de574 git_last_commit_date: 2024-12-14 Date/Publication: 2024-12-16 source.ver: src/contrib/Biostrings_2.74.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/Biostrings_2.74.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Biostrings_2.74.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Biostrings_2.74.1.tgz vignettes: vignettes/Biostrings/inst/doc/Biostrings2Classes.pdf, vignettes/Biostrings/inst/doc/BiostringsQuickOverview.pdf, vignettes/Biostrings/inst/doc/PairwiseAlignments.pdf, vignettes/Biostrings/inst/doc/matchprobes.html, vignettes/Biostrings/inst/doc/MultipleAlignments.html vignetteTitles: A short presentation of the basic classes defined in Biostrings 2, Biostrings Quick Overview, Pairwise Sequence Alignments, Handling probe sequence information, Multiple Alignments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Biostrings/inst/doc/Biostrings2Classes.R, vignettes/Biostrings/inst/doc/matchprobes.R, vignettes/Biostrings/inst/doc/MultipleAlignments.R dependsOnMe: alabaster.string, altcdfenvs, amplican, Basic4Cseq, BRAIN, BSgenome, BSgenomeForge, chimeraviz, ChIPanalyser, ChIPsim, cleaver, CODEX, CRISPRseek, DECIPHER, deepSNV, GeneRegionScan, GenomicAlignments, GOTHiC, HelloRanges, hiReadsProcessor, kebabs, MethTargetedNGS, minfi, Modstrings, MotifDb, motifTestR, msa, muscle, oligo, ORFhunteR, periodicDNA, pqsfinder, pwalign, PWMEnrich, QSutils, R453Plus1Toolbox, R4RNA, rBLAST, REDseq, rGADEM, RiboProfiling, rRDP, Rsamtools, RSVSim, rSWeeP, sangeranalyseR, sangerseqR, SCAN.UPC, SELEX, ShortRead, SICtools, SimFFPE, ssviz, Structstrings, svaNUMT, systemPipeR, topdownr, transmogR, TreeSummarizedExperiment, triplex, VarCon, FDb.FANTOM4.promoters.hg19, pd.ag, pd.aragene.1.0.st, pd.aragene.1.1.st, pd.ath1.121501, pd.barley1, pd.bovgene.1.0.st, pd.bovgene.1.1.st, pd.bovine, pd.bsubtilis, pd.cangene.1.0.st, pd.cangene.1.1.st, pd.canine, pd.canine.2, pd.celegans, pd.chicken, pd.chigene.1.0.st, pd.chigene.1.1.st, pd.chogene.2.0.st, pd.chogene.2.1.st, pd.citrus, pd.clariom.d.human, pd.clariom.s.human, pd.clariom.s.human.ht, pd.clariom.s.mouse, pd.clariom.s.mouse.ht, pd.clariom.s.rat, pd.clariom.s.rat.ht, pd.cotton, pd.cyngene.1.0.st, pd.cyngene.1.1.st, pd.cyrgene.1.0.st, pd.cyrgene.1.1.st, pd.cytogenetics.array, pd.drogene.1.0.st, pd.drogene.1.1.st, pd.drosgenome1, pd.drosophila.2, pd.e.coli.2, pd.ecoli, pd.ecoli.asv2, pd.elegene.1.0.st, pd.elegene.1.1.st, pd.equgene.1.0.st, pd.equgene.1.1.st, pd.felgene.1.0.st, pd.felgene.1.1.st, pd.fingene.1.0.st, pd.fingene.1.1.st, pd.genomewidesnp.5, pd.genomewidesnp.6, pd.guigene.1.0.st, pd.guigene.1.1.st, pd.hc.g110, pd.hg.focus, pd.hg.u133.plus.2, pd.hg.u133a, pd.hg.u133a.2, pd.hg.u133a.tag, pd.hg.u133b, pd.hg.u219, pd.hg.u95a, pd.hg.u95av2, pd.hg.u95b, pd.hg.u95c, pd.hg.u95d, pd.hg.u95e, pd.hg18.60mer.expr, pd.ht.hg.u133.plus.pm, pd.ht.hg.u133a, pd.ht.mg.430a, pd.hta.2.0, pd.hu6800, pd.huex.1.0.st.v2, pd.hugene.1.0.st.v1, pd.hugene.1.1.st.v1, pd.hugene.2.0.st, pd.hugene.2.1.st, pd.maize, pd.mapping250k.nsp, pd.mapping250k.sty, pd.mapping50k.hind240, pd.mapping50k.xba240, pd.margene.1.0.st, pd.margene.1.1.st, pd.medgene.1.0.st, pd.medgene.1.1.st, pd.medicago, pd.mg.u74a, pd.mg.u74av2, pd.mg.u74b, pd.mg.u74bv2, pd.mg.u74c, pd.mg.u74cv2, pd.mirna.1.0, pd.mirna.2.0, pd.mirna.3.0, pd.mirna.4.0, pd.moe430a, pd.moe430b, pd.moex.1.0.st.v1, pd.mogene.1.0.st.v1, pd.mogene.1.1.st.v1, pd.mogene.2.0.st, pd.mogene.2.1.st, pd.mouse430.2, pd.mouse430a.2, pd.mta.1.0, pd.mu11ksuba, pd.mu11ksubb, pd.nugo.hs1a520180, pd.nugo.mm1a520177, pd.ovigene.1.0.st, pd.ovigene.1.1.st, pd.pae.g1a, pd.plasmodium.anopheles, pd.poplar, pd.porcine, pd.porgene.1.0.st, pd.porgene.1.1.st, pd.rabgene.1.0.st, pd.rabgene.1.1.st, pd.rae230a, pd.rae230b, pd.raex.1.0.st.v1, pd.ragene.1.0.st.v1, pd.ragene.1.1.st.v1, pd.ragene.2.0.st, pd.ragene.2.1.st, pd.rat230.2, pd.rcngene.1.0.st, pd.rcngene.1.1.st, pd.rg.u34a, pd.rg.u34b, pd.rg.u34c, pd.rhegene.1.0.st, pd.rhegene.1.1.st, pd.rhesus, pd.rice, pd.rjpgene.1.0.st, pd.rjpgene.1.1.st, pd.rn.u34, pd.rta.1.0, pd.rusgene.1.0.st, pd.rusgene.1.1.st, pd.s.aureus, pd.soybean, pd.soygene.1.0.st, pd.soygene.1.1.st, pd.sugar.cane, pd.tomato, pd.u133.x3p, pd.vitis.vinifera, pd.wheat, pd.x.laevis.2, pd.x.tropicalis, pd.xenopus.laevis, pd.yeast.2, pd.yg.s98, pd.zebgene.1.0.st, pd.zebgene.1.1.st, pd.zebrafish, harbChIP, JASPAR2014, NestLink, generegulation, sequencing, CleanBSequences, STRMPS, SubVis importsMe: AllelicImbalance, AneuFinder, AnnotationHubData, appreci8R, AssessORF, ATACseqQC, BBCAnalyzer, BCRANK, bcSeq, BEAT, BgeeCall, biovizBase, branchpointer, bsseq, BUMHMM, BUSpaRse, CAGEr, CellBarcode, ChIPpeakAnno, ChIPseqR, ChIPsim, chromVAR, circRNAprofiler, CircSeqAlignTk, cleanUpdTSeq, CleanUpRNAseq, cliProfiler, CNEr, CNVfilteR, cogeqc, compEpiTools, consensusDE, coRdon, crisprBase, crisprBowtie, crisprDesign, crisprScore, crisprShiny, CrispRVariants, crisprViz, customProDB, dada2, dagLogo, DAMEfinder, Damsel, decompTumor2Sig, diffHic, DNAshapeR, DominoEffect, doubletrouble, DuplexDiscovereR, easyRNASeq, EDASeq, enhancerHomologSearch, ensembldb, EpiTxDb, esATAC, eudysbiome, EventPointer, factR, FastqCleaner, FLAMES, GA4GHclient, gcapc, gcrma, gDNAx, GeneRegionScan, genomation, GenomAutomorphism, GenomicAlignments, GenomicDistributions, GenomicFeatures, GenomicScores, GenVisR, ggbio, ggmsa, girafe, gmapR, gmoviz, GRaNIE, GUIDEseq, Gviz, gwascat, h5vc, heatmaps, HiLDA, HiTC, icetea, idpr, IntEREst, IONiseR, ipdDb, IsoformSwitchAnalyzeR, KEGGREST, LinTInd, LymphoSeq, m6Aboost, MADSEQ, MatrixRider, MDTS, MEDIPS, MEDME, memes, MesKit, metaseqR2, methimpute, methodical, methylPipe, methylscaper, mia, microbiome, MicrobiotaProcess, microRNA, MMDiff2, mobileRNA, monaLisa, Motif2Site, motifbreakR, motifcounter, motifmatchr, motifStack, MSA2dist, MSnID, MSstatsLiP, MSstatsPTM, multicrispr, MungeSumstats, musicatk, MutationalPatterns, NanoMethViz, NanoStringNCTools, ngsReports, nucleR, oligoClasses, OmaDB, openPrimeR, ORFik, OTUbase, packFinder, pdInfoBuilder, PhyloProfile, phyloseq, pipeFrame, planttfhunter, podkat, primirTSS, proBAMr, procoil, ProteoDisco, PureCN, Pviz, qPLEXanalyzer, qsea, QuasR, r3Cseq, raer, ramwas, RCAS, Rcpi, recoup, regioneR, regutools, REMP, Repitools, RESOLVE, rfaRm, rGADEM, rhinotypeR, RiboCrypt, ribosomeProfilingQC, RNAmodR, rprimer, Rqc, rtracklayer, sarks, scanMiR, scanMiRApp, scifer, scmeth, SCOPE, scoreInvHap, scoup, scPipe, scruff, seqArchR, seqArchRplus, SeqArray, seqPattern, SGSeq, signeR, SigsPack, sitadela, SNPhood, soGGi, SomaticSignatures, SparseSignatures, spiky, SpliceWiz, SPLINTER, sscu, StructuralVariantAnnotation, supersigs, surfaltr, svaRetro, synapter, SynExtend, SynMut, syntenet, TAPseq, TFBSTools, transite, tRNA, tRNAdbImport, tRNAscanImport, TVTB, txcutr, tximeta, Ularcirc, UMI4Cats, universalmotif, VariantAnnotation, VariantExperiment, VariantFiltering, VariantTools, wavClusteR, XNAString, YAPSA, EuPathDB, FDb.InfiniumMethylation.hg18, FDb.InfiniumMethylation.hg19, pd.081229.hg18.promoter.medip.hx1, pd.2006.07.18.hg18.refseq.promoter, pd.2006.07.18.mm8.refseq.promoter, pd.2006.10.31.rn34.refseq.promoter, pd.charm.hg18.example, pd.feinberg.hg18.me.hx1, pd.feinberg.mm8.me.hx1, pd.mirna.3.1, MetaScope, microbiomeDataSets, pd.atdschip.tiling, PhyloProfileData, systemPipeRdata, seqpac, alakazam, BASiNET, BASiNETEntropy, biomartr, copyseparator, crispRdesignR, CSESA, cubar, deepredeff, DNAmotif, dowser, EncDNA, ensembleTax, EpiSemble, GB5mcPred, genBaRcode, geneHapR, GenomicSig, hoardeR, ICAMS, iimi, immuneSIM, kibior, kmeRs, kmeRtone, longreadvqs, metaCluster, MicroSEC, MitoHEAR, MixviR, ogrdbstats, OpEnHiMR, PACVr, Platypus, PredCRG, refseqR, revert, SeedMatchR, seqmagick, simMP, SMITIDstruct, vhcub suggestsMe: alabaster.files, annotate, AnnotationForge, AnnotationHub, autonomics, bambu, BANDITS, CSAR, eisaR, GenomicFiles, GenomicRanges, GenomicTuples, ggseqalign, GWASTools, HiContacts, HPiP, maftools, methrix, methylumi, MiRaGE, mitoClone2, nuCpos, plyinteractions, RNAmodR.AlkAnilineSeq, rpx, rTRM, screenCounter, spatzie, splatter, systemPipeTools, treeio, tripr, XVector, SNPlocs.Hsapiens.dbSNP144.GRCh37, SNPlocs.Hsapiens.dbSNP144.GRCh38, SNPlocs.Hsapiens.dbSNP149.GRCh38, SNPlocs.Hsapiens.dbSNP150.GRCh38, SNPlocs.Hsapiens.dbSNP155.GRCh37, SNPlocs.Hsapiens.dbSNP155.GRCh38, XtraSNPlocs.Hsapiens.dbSNP144.GRCh37, XtraSNPlocs.Hsapiens.dbSNP144.GRCh38, BeadArrayUseCases, AhoCorasickTrie, bbl, bio3d, DDPNA, file2meco, gkmSVM, karyotapR, maGUI, MARVEL, MiscMetabar, msaR, NameNeedle, orthGS, phangorn, polyRAD, protr, seqtrie, sigminer, Signac, tidysq linksToMe: DECIPHER, kebabs, MatrixRider, pwalign, Rsamtools, ShortRead, triplex, VariantAnnotation, VariantFiltering dependencyCount: 24 Package: BioTIP Version: 1.20.0 Depends: R (>= 3.6) Imports: igraph, cluster, psych, stringr, GenomicRanges, MASS, scran Suggests: knitr, markdown, base, rmarkdown, ggplot2 License: GPL-2 Archs: x64 MD5sum: 3361614ccd89db9170a5a239ef6f5006 NeedsCompilation: no Title: BioTIP: An R package for characterization of Biological Tipping-Point Description: Adopting tipping-point theory to transcriptome profiles to unravel disease regulatory trajectory. biocViews: Sequencing, RNASeq, GeneExpression, Transcription, Software Author: Zhezhen Wang, Andrew Goldstein, Yuxi Sun, Biniam Feleke, Qier An, Antonio Feliciano, Xinan Yang Maintainer: Yuxi (Jennifer) Sun , Zhezhen Wang , and X Holly Yang URL: https://github.com/xyang2uchicago/BioTIP VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BioTIP git_branch: RELEASE_3_20 git_last_commit: fb1b632 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BioTIP_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BioTIP_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BioTIP_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BioTIP_1.20.0.tgz vignettes: vignettes/BioTIP/inst/doc/BioTIP.html vignetteTitles: BioTIP- an R package for characterization of Biological Tipping-Point hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BioTIP/inst/doc/BioTIP.R dependencyCount: 81 Package: biotmle Version: 1.30.0 Depends: R (>= 4.0) Imports: stats, methods, dplyr, tibble, ggplot2, ggsci, superheat, assertthat, drtmle (>= 1.0.4), S4Vectors, BiocGenerics, BiocParallel, SummarizedExperiment, limma Suggests: testthat, knitr, rmarkdown, BiocStyle, arm, earth, ranger, SuperLearner, Matrix, DBI, biotmleData (>= 1.1.1) License: MIT + file LICENSE MD5sum: 5badccc0ebe373d912aa5b62508a5539 NeedsCompilation: no Title: Targeted Learning with Moderated Statistics for Biomarker Discovery Description: Tools for differential expression biomarker discovery based on microarray and next-generation sequencing data that leverage efficient semiparametric estimators of the average treatment effect for variable importance analysis. Estimation and inference of the (marginal) average treatment effects of potential biomarkers are computed by targeted minimum loss-based estimation, with joint, stable inference constructed across all biomarkers using a generalization of moderated statistics for use with the estimated efficient influence function. The procedure accommodates the use of ensemble machine learning for the estimation of nuisance functions. biocViews: Regression, GeneExpression, DifferentialExpression, Sequencing, Microarray, RNASeq, ImmunoOncology Author: Nima Hejazi [aut, cre, cph] (), Alan Hubbard [aut, ths] (), Mark van der Laan [aut, ths] (), Weixin Cai [ctb] (), Philippe Boileau [ctb] () Maintainer: Nima Hejazi URL: https://code.nimahejazi.org/biotmle VignetteBuilder: knitr BugReports: https://github.com/nhejazi/biotmle/issues git_url: https://git.bioconductor.org/packages/biotmle git_branch: RELEASE_3_20 git_last_commit: 166f1b5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biotmle_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biotmle_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biotmle_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biotmle_1.30.0.tgz vignettes: vignettes/biotmle/inst/doc/exposureBiomarkers.html vignetteTitles: Identifying Biomarkers from an Exposure Variable hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/biotmle/inst/doc/exposureBiomarkers.R dependencyCount: 111 Package: biovizBase Version: 1.54.0 Depends: R (>= 3.5.0), methods Imports: grDevices, stats, scales, Hmisc, RColorBrewer, dichromat, BiocGenerics, S4Vectors (>= 0.23.19), IRanges (>= 1.99.28), GenomeInfoDb (>= 1.5.14), GenomicRanges (>= 1.23.21), SummarizedExperiment, Biostrings (>= 2.33.11), Rsamtools (>= 1.17.28), GenomicAlignments (>= 1.1.16), GenomicFeatures (>= 1.21.19), AnnotationDbi, VariantAnnotation (>= 1.11.4), ensembldb (>= 1.99.13), AnnotationFilter (>= 0.99.8), rlang Suggests: BSgenome.Hsapiens.UCSC.hg19, TxDb.Hsapiens.UCSC.hg19.knownGene, BSgenome, rtracklayer, EnsDb.Hsapiens.v75, RUnit License: Artistic-2.0 MD5sum: 8c46d5b8947d56ba506dd9fcb1e8363b NeedsCompilation: yes Title: Basic graphic utilities for visualization of genomic data. Description: The biovizBase package is designed to provide a set of utilities, color schemes and conventions for genomic data. It serves as the base for various high-level packages for biological data visualization. This saves development effort and encourages consistency. biocViews: Infrastructure, Visualization, Preprocessing Author: Tengfei Yin [aut], Michael Lawrence [aut, ths, cre], Dianne Cook [aut, ths], Johannes Rainer [ctb] Maintainer: Michael Lawrence git_url: https://git.bioconductor.org/packages/biovizBase git_branch: RELEASE_3_20 git_last_commit: 6735c2d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biovizBase_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biovizBase_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biovizBase_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biovizBase_1.54.0.tgz vignettes: vignettes/biovizBase/inst/doc/intro.pdf vignetteTitles: An Introduction to biovizBase hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biovizBase/inst/doc/intro.R dependsOnMe: CAFE importsMe: BubbleTree, ChIPexoQual, ggbio, Gviz, karyoploteR, Pviz, Rqc suggestsMe: CINdex, Damsel, derfinderPlot, FRASER, NanoStringNCTools, OUTRIDER, R3CPET, regionReport, shiny.gosling, StructuralVariantAnnotation, Signac dependencyCount: 135 Package: BiRewire Version: 3.38.0 Depends: igraph, slam, Rtsne, Matrix Suggests: RUnit, BiocGenerics License: GPL-3 Archs: x64 MD5sum: 82b6218fb208981decfce9c06efb5951 NeedsCompilation: yes Title: High-performing routines for the randomization of a bipartite graph (or a binary event matrix), undirected and directed signed graph preserving degree distribution (or marginal totals) Description: Fast functions for bipartite network rewiring through N consecutive switching steps (See References) and for the computation of the minimal number of switching steps to be performed in order to maximise the dissimilarity with respect to the original network. Includes functions for the analysis of the introduced randomness across the switching steps and several other routines to analyse the resulting networks and their natural projections. Extension to undirected networks and directed signed networks is also provided. Starting from version 1.9.7 a more precise bound (especially for small network) has been implemented. Starting from version 2.2.0 the analysis routine is more complete and a visual montioring of the underlying Markov Chain has been implemented. Starting from 3.6.0 the library can handle also matrices with NA (not for the directed signed graphs). Since version 3.27.1 it is possible to add a constraint for dsg generation: usually positive and negative arc between two nodes could be not accepted. biocViews: Network Author: Andrea Gobbi [aut], Francesco Iorio [aut], Giuseppe Jurman [cbt], Davide Albanese [cbt], Julio Saez-Rodriguez [cbt]. Maintainer: Andrea Gobbi URL: http://www.ebi.ac.uk/~iorio/BiRewire git_url: https://git.bioconductor.org/packages/BiRewire git_branch: RELEASE_3_20 git_last_commit: 6980802 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiRewire_3.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiRewire_3.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiRewire_3.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiRewire_3.38.0.tgz vignettes: vignettes/BiRewire/inst/doc/BiRewire.pdf vignetteTitles: BiRewire hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiRewire/inst/doc/BiRewire.R dependencyCount: 20 Package: biscuiteer Version: 1.20.0 Depends: R (>= 4.1.0), biscuiteerData, bsseq Imports: readr, qualV, Matrix, impute, HDF5Array, S4Vectors, Rsamtools, data.table, Biobase, GenomicRanges, IRanges, BiocGenerics, VariantAnnotation, DelayedMatrixStats, SummarizedExperiment, GenomeInfoDb, Mus.musculus, Homo.sapiens, matrixStats, rtracklayer, QDNAseq, dmrseq, methods, utils, R.utils, gtools, BiocParallel Suggests: DSS, covr, knitr, rmarkdown, markdown, rlang, scmeth, pkgdown, roxygen2, testthat, QDNAseq.hg19, QDNAseq.mm10, BiocStyle License: GPL-3 Archs: x64 MD5sum: 1cc57297b85e930acac1cd5060d566fc NeedsCompilation: no Title: Convenience Functions for Biscuit Description: A test harness for bsseq loading of Biscuit output, summarization of WGBS data over defined regions and in mappable samples, with or without imputation, dropping of mostly-NA rows, age estimates, etc. biocViews: DataImport, MethylSeq, DNAMethylation Author: Tim Triche [aut], Wanding Zhou [aut], Benjamin Johnson [aut], Jacob Morrison [aut, cre], Lyong Heo [aut], James Eapen [aut] Maintainer: Jacob Morrison URL: https://github.com/trichelab/biscuiteer VignetteBuilder: knitr BugReports: https://github.com/trichelab/biscuiteer/issues git_url: https://git.bioconductor.org/packages/biscuiteer git_branch: RELEASE_3_20 git_last_commit: 184f20f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/biscuiteer_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/biscuiteer_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/biscuiteer_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biscuiteer_1.20.0.tgz vignettes: vignettes/biscuiteer/inst/doc/biscuiteer.html vignetteTitles: Biscuiteer User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/biscuiteer/inst/doc/biscuiteer.R dependencyCount: 181 Package: BiSeq Version: 1.46.0 Depends: R (>= 3.5.0), methods, S4Vectors, IRanges (>= 1.17.24), GenomicRanges, SummarizedExperiment (>= 0.2.0), Formula Imports: methods, BiocGenerics, Biobase, S4Vectors, IRanges, GenomeInfoDb, GenomicRanges, SummarizedExperiment, rtracklayer, parallel, betareg, lokern, Formula, globaltest License: LGPL-3 MD5sum: f103ea3789e9930284f04a8a5bdd02db NeedsCompilation: no Title: Processing and analyzing bisulfite sequencing data Description: The BiSeq package provides useful classes and functions to handle and analyze targeted bisulfite sequencing (BS) data such as reduced-representation bisulfite sequencing (RRBS) data. In particular, it implements an algorithm to detect differentially methylated regions (DMRs). The package takes already aligned BS data from one or multiple samples. biocViews: Genetics, Sequencing, MethylSeq, DNAMethylation Author: Katja Hebestreit, Hans-Ulrich Klein Maintainer: Katja Hebestreit git_url: https://git.bioconductor.org/packages/BiSeq git_branch: RELEASE_3_20 git_last_commit: be6e7f3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BiSeq_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BiSeq_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BiSeq_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BiSeq_1.46.0.tgz vignettes: vignettes/BiSeq/inst/doc/BiSeq.pdf vignetteTitles: An Introduction to BiSeq hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BiSeq/inst/doc/BiSeq.R dependsOnMe: RRBSdata suggestsMe: updateObject dependencyCount: 91 Package: blacksheepr Version: 1.20.0 Depends: R (>= 3.6) Imports: grid, stats, grDevices, utils, circlize, viridis, RColorBrewer, ComplexHeatmap, SummarizedExperiment, pasilla Suggests: testthat (>= 2.1.0), knitr, BiocStyle, rmarkdown, curl License: MIT + file LICENSE MD5sum: bbd3a0bb03fc8ba8f6468f035fe45cb5 NeedsCompilation: no Title: Outlier Analysis for pairwise differential comparison Description: Blacksheep is a tool designed for outlier analysis in the context of pairwise comparisons in an effort to find distinguishing characteristics from two groups. This tool was designed to be applied for biological applications such as phosphoproteomics or transcriptomics, but it can be used for any data that can be represented by a 2D table, and has two sub populations within the table to compare. biocViews: Sequencing, RNASeq, GeneExpression, Transcription, DifferentialExpression, Transcriptomics Author: MacIntosh Cornwell [aut], RugglesLab [cre] Maintainer: RugglesLab VignetteBuilder: knitr BugReports: https://github.com/ruggleslab/blacksheepr/issues git_url: https://git.bioconductor.org/packages/blacksheepr git_branch: RELEASE_3_20 git_last_commit: 65a582c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/blacksheepr_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/blacksheepr_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/blacksheepr_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/blacksheepr_1.20.0.tgz vignettes: vignettes/blacksheepr/inst/doc/blacksheepr_vignette.html vignetteTitles: Outlier Analysis using blacksheepr - Phosphoprotein hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/blacksheepr/inst/doc/blacksheepr_vignette.R dependencyCount: 133 Package: blima Version: 1.40.0 Depends: R(>= 3.3) Imports: beadarray(>= 2.0.0), Biobase(>= 2.0.0), Rcpp (>= 0.12.8), BiocGenerics, grDevices, stats, graphics LinkingTo: Rcpp Suggests: xtable, blimaTestingData, BiocStyle, illuminaHumanv4.db, lumi, knitr License: GPL-3 MD5sum: 313563f0d686af24c388b30517a271d4 NeedsCompilation: yes Title: Tools for the preprocessing and analysis of the Illumina microarrays on the detector (bead) level Description: Package blima includes several algorithms for the preprocessing of Illumina microarray data. It focuses to the bead level analysis and provides novel approach to the quantile normalization of the vectors of unequal lengths. It provides variety of the methods for background correction including background subtraction, RMA like convolution and background outlier removal. It also implements variance stabilizing transformation on the bead level. There are also implemented methods for data summarization. It also provides the methods for performing T-tests on the detector (bead) level and on the probe level for differential expression testing. biocViews: Microarray, Preprocessing, Normalization, DifferentialExpression, GeneRegulation, GeneExpression Author: Vojtěch Kulvait Maintainer: Vojtěch Kulvait URL: https://bitbucket.org/kulvait/blima VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/blima git_branch: RELEASE_3_20 git_last_commit: 7f4cf1b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/blima_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/blima_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/blima_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/blima_1.40.0.tgz vignettes: vignettes/blima/inst/doc/blima.pdf vignetteTitles: blima.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/blima/inst/doc/blima.R suggestsMe: blimaTestingData dependencyCount: 81 Package: BLMA Version: 1.30.0 Depends: ROntoTools, GSA, PADOG, limma, graph, stats, utils, parallel, Biobase, metafor, methods Suggests: RUnit, BiocGenerics License: GPL (>=2) Archs: x64 MD5sum: 4f33acc810f848d50529b5d02b2046d5 NeedsCompilation: no Title: BLMA: A package for bi-level meta-analysis Description: Suit of tools for bi-level meta-analysis. The package can be used in a wide range of applications, including general hypothesis testings, differential expression analysis, functional analysis, and pathway analysis. biocViews: GeneSetEnrichment, Pathways, DifferentialExpression, Microarray Author: Tin Nguyen , Hung Nguyen , and Sorin Draghici Maintainer: Van-Dung Pham git_url: https://git.bioconductor.org/packages/BLMA git_branch: RELEASE_3_20 git_last_commit: 374c131 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BLMA_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BLMA_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BLMA_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BLMA_1.30.0.tgz vignettes: vignettes/BLMA/inst/doc/BLMA.pdf vignetteTitles: BLMA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BLMA/inst/doc/BLMA.R dependencyCount: 77 Package: BloodGen3Module Version: 1.14.0 Depends: R (>= 4.1) Imports: SummarizedExperiment, ExperimentHub, methods, grid, graphics, stats, grDevices, circlize, testthat, ComplexHeatmap(>= 1.99.8), ggplot2, matrixStats, gtools, reshape2, preprocessCore, randomcoloR, V8, limma Suggests: RUnit, devtools, BiocGenerics, knitr, rmarkdown License: GPL-2 MD5sum: f85a417ca0010c2678a201a37a2e3391 NeedsCompilation: no Title: This R package for performing module repertoire analyses and generating fingerprint representations Description: The BloodGen3Module package provides functions for R user performing module repertoire analyses and generating fingerprint representations. Functions can perform group comparison or individual sample analysis and visualization by fingerprint grid plot or fingerprint heatmap. Module repertoire analyses typically involve determining the percentage of the constitutive genes for each module that are significantly increased or decreased. As we describe in details;https://www.biorxiv.org/content/10.1101/525709v2 and https://pubmed.ncbi.nlm.nih.gov/33624743/, the results of module repertoire analyses can be represented in a fingerprint format, where red and blue spots indicate increases or decreases in module activity. These spots are subsequently represented either on a grid, with each position being assigned to a given module, or in a heatmap where the samples are arranged in columns and the modules in rows. biocViews: Software, Visualization, GeneExpression Author: Darawan Rinchai [aut, cre] () Maintainer: Darawan Rinchai VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BloodGen3Module git_branch: RELEASE_3_20 git_last_commit: 865f4dc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BloodGen3Module_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BloodGen3Module_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BloodGen3Module_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BloodGen3Module_1.14.0.tgz vignettes: vignettes/BloodGen3Module/inst/doc/BloodGen3Module.html vignetteTitles: BloodGen3Module: Modular Repertoire Analysis and Visualization hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BloodGen3Module/inst/doc/BloodGen3Module.R dependencyCount: 130 Package: bluster Version: 1.16.0 Imports: stats, methods, utils, cluster, Matrix, Rcpp, igraph, S4Vectors, BiocParallel, BiocNeighbors LinkingTo: Rcpp, assorthead Suggests: knitr, rmarkdown, testthat, BiocStyle, dynamicTreeCut, scRNAseq, scuttle, scater, scran, pheatmap, viridis, mbkmeans, kohonen, apcluster, DirichletMultinomial, vegan, fastcluster License: GPL-3 MD5sum: 641f8217b19175b751769f6e4272743a NeedsCompilation: yes Title: Clustering Algorithms for Bioconductor Description: Wraps common clustering algorithms in an easily extended S4 framework. Backends are implemented for hierarchical, k-means and graph-based clustering. Several utilities are also provided to compare and evaluate clustering results. biocViews: ImmunoOncology, Software, GeneExpression, Transcriptomics, SingleCell, Clustering Author: Aaron Lun [aut, cre], Stephanie Hicks [ctb], Basil Courbayre [ctb], Tuomas Borman [ctb], Leo Lahti [ctb] Maintainer: Aaron Lun SystemRequirements: C++17 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/bluster git_branch: RELEASE_3_20 git_last_commit: 32aa5ea git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bluster_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bluster_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bluster_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bluster_1.16.0.tgz vignettes: vignettes/bluster/inst/doc/clusterRows.html, vignettes/bluster/inst/doc/diagnostics.html vignetteTitles: 1. Clustering algorithms, 2. Clustering diagnostics hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bluster/inst/doc/clusterRows.R, vignettes/bluster/inst/doc/diagnostics.R dependsOnMe: OSCA.basic, OSCA.intro, OSCA.workflows, SingleRBook importsMe: concordexR, epiregulon, mia, MPAC, scDblFinder, scDiagnostics, scran, Voyager, Canek suggestsMe: batchelor, ChromSCape, dittoSeq, mbkmeans, miaViz, MOSim, mumosa, SpatialDDLS, SuperCell dependencyCount: 33 Package: bnbc Version: 1.28.0 Depends: R (>= 3.5.0), methods, BiocGenerics, SummarizedExperiment, GenomicRanges Imports: Rcpp (>= 0.12.12), IRanges, rhdf5, data.table, GenomeInfoDb, S4Vectors, matrixStats, preprocessCore, sva, parallel, EBImage, utils, HiCBricks LinkingTo: Rcpp Suggests: BiocStyle, knitr, rmarkdown, RUnit, BSgenome.Hsapiens.UCSC.hg19 License: Artistic-2.0 Archs: x64 MD5sum: 04ca83e01ed5fa40260e072e2edda12a NeedsCompilation: yes Title: Bandwise normalization and batch correction of Hi-C data Description: Tools to normalize (several) Hi-C data from replicates. biocViews: HiC, Preprocessing, Normalization, Software Author: Kipper Fletez-Brant [cre, aut], Kasper Daniel Hansen [aut] Maintainer: Kipper Fletez-Brant URL: https://github.com/hansenlab/bnbc VignetteBuilder: knitr BugReports: https://github.com/hansenlab/bnbc/issues git_url: https://git.bioconductor.org/packages/bnbc git_branch: RELEASE_3_20 git_last_commit: 0f21e0a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bnbc_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bnbc_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bnbc_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bnbc_1.28.0.tgz vignettes: vignettes/bnbc/inst/doc/bnbc.html vignetteTitles: bnbc User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bnbc/inst/doc/bnbc.R dependencyCount: 142 Package: bnem Version: 1.14.0 Depends: R (>= 4.1) Imports: CellNOptR, matrixStats, snowfall, Rgraphviz, cluster, flexclust, stats, RColorBrewer, epiNEM, mnem, Biobase, methods, utils, graphics, graph, affy, binom, limma, sva, vsn, rmarkdown Suggests: knitr, BiocGenerics, MatrixGenerics, BiocStyle, RUnit License: GPL-3 Archs: x64 MD5sum: 853a3dbaebca6e75a1cca0bedcb820c0 NeedsCompilation: no Title: Training of logical models from indirect measurements of perturbation experiments Description: bnem combines the use of indirect measurements of Nested Effects Models (package mnem) with the Boolean networks of CellNOptR. Perturbation experiments of signalling nodes in cells are analysed for their effect on the global gene expression profile. Those profiles give evidence for the Boolean regulation of down-stream nodes in the network, e.g., whether two parents activate their child independently (OR-gate) or jointly (AND-gate). biocViews: Pathways, SystemsBiology, NetworkInference, Network, GeneExpression, GeneRegulation, Preprocessing Author: Martin Pirkl [aut, cre] Maintainer: Martin Pirkl URL: https://github.com/MartinFXP/bnem/ VignetteBuilder: knitr BugReports: https://github.com/MartinFXP/bnem/issues git_url: https://git.bioconductor.org/packages/bnem git_branch: RELEASE_3_20 git_last_commit: e76986f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bnem_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bnem_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bnem_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bnem_1.14.0.tgz vignettes: vignettes/bnem/inst/doc/bnem.html vignetteTitles: bnem.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bnem/inst/doc/bnem.R dependencyCount: 179 Package: BOBaFIT Version: 1.10.0 Depends: R (>= 2.10) Imports: dplyr, NbClust, ggplot2, ggbio, grDevices, stats, tidyr, GenomicRanges, ggforce, stringr, plyranges, methods, utils, magrittr Suggests: rmarkdown, markdown, BiocStyle, knitr, testthat (>= 3.0.0), utils, testthat License: GPL (>= 3) MD5sum: 05eeacc049e8d4eb8ae3918b85ac3963 NeedsCompilation: no Title: Refitting diploid region profiles using a clustering procedure Description: This package provides a method to refit and correct the diploid region in copy number profiles. It uses a clustering algorithm to identify pathology-specific normal (diploid) chromosomes and then use their copy number signal to refit the whole profile. The package is composed by three functions: DRrefit (the main function), ComputeNormalChromosome and PlotCluster. biocViews: CopyNumberVariation, Clustering, Visualization, Normalization, Software Author: Andrea Poletti [aut], Gaia Mazzocchetti [aut, cre], Vincenza Solli [aut] Maintainer: Gaia Mazzocchetti URL: https://github.com/andrea-poletti-unibo/BOBaFIT VignetteBuilder: knitr BugReports: https://github.com/andrea-poletti-unibo/BOBaFIT/issues git_url: https://git.bioconductor.org/packages/BOBaFIT git_branch: RELEASE_3_20 git_last_commit: 558c8ab git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BOBaFIT_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BOBaFIT_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BOBaFIT_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BOBaFIT_1.10.0.tgz vignettes: vignettes/BOBaFIT/inst/doc/BOBaFIT.html, vignettes/BOBaFIT/inst/doc/Data-Preparation.html vignetteTitles: BOBaFIT.Rmd, Data preparation using TCGA-BRCA database.Rmd hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BOBaFIT/inst/doc/BOBaFIT.R, vignettes/BOBaFIT/inst/doc/Data-Preparation.R dependencyCount: 170 Package: borealis Version: 1.10.0 Depends: R (>= 4.2.0), Biobase Imports: doParallel, snow, purrr, plyr, foreach, gamlss, gamlss.dist, bsseq, methods, DSS, R.utils, utils, stats, ggplot2, cowplot, dplyr, rlang, GenomicRanges Suggests: BiocStyle, knitr, rmarkdown, RUnit, BiocGenerics, annotatr, tidyr, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db License: GPL-3 MD5sum: 284017a6199bf885961cfe4a246bb7fc NeedsCompilation: no Title: Bisulfite-seq OutlieR mEthylation At singLe-sIte reSolution Description: Borealis is an R library performing outlier analysis for count-based bisulfite sequencing data. It detectes outlier methylated CpG sites from bisulfite sequencing (BS-seq). The core of Borealis is modeling Beta-Binomial distributions. This can be useful for rare disease diagnoses. biocViews: Sequencing, Coverage, DNAMethylation, DifferentialMethylation Author: Garrett Jenkinson [aut, cre] () Maintainer: Garrett Jenkinson VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/borealis git_branch: RELEASE_3_20 git_last_commit: 583a89d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/borealis_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/borealis_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/borealis_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/borealis_1.10.0.tgz vignettes: vignettes/borealis/inst/doc/borealis.html vignetteTitles: Borealis outlier methylation detection hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/borealis/inst/doc/borealis.R dependencyCount: 118 Package: BPRMeth Version: 1.32.0 Depends: R (>= 3.5.0), GenomicRanges Imports: assertthat, methods, MASS, doParallel, parallel, e1071, earth, foreach, randomForest, stats, IRanges, S4Vectors, data.table, graphics, truncnorm, mvtnorm, Rcpp (>= 0.12.14), matrixcalc, magrittr, kernlab, ggplot2, cowplot, BiocStyle LinkingTo: Rcpp, RcppArmadillo Suggests: testthat, knitr, rmarkdown License: GPL-3 | file LICENSE MD5sum: ddcbd96422007aa7889349a9626589f3 NeedsCompilation: yes Title: Model higher-order methylation profiles Description: The BPRMeth package is a probabilistic method to quantify explicit features of methylation profiles, in a way that would make it easier to formally use such profiles in downstream modelling efforts, such as predicting gene expression levels or clustering genomic regions or cells according to their methylation profiles. biocViews: ImmunoOncology, DNAMethylation, GeneExpression, GeneRegulation, Epigenetics, Genetics, Clustering, FeatureExtraction, Regression, RNASeq, Bayesian, KEGG, Sequencing, Coverage, SingleCell Author: Chantriolnt-Andreas Kapourani [aut, cre] Maintainer: Chantriolnt-Andreas Kapourani VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BPRMeth git_branch: RELEASE_3_20 git_last_commit: 10da0eb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BPRMeth_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BPRMeth_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BPRMeth_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BPRMeth_1.32.0.tgz vignettes: vignettes/BPRMeth/inst/doc/BPRMeth_vignette.html vignetteTitles: BPRMeth: Model higher-order methylation profiles hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BPRMeth/inst/doc/BPRMeth_vignette.R dependsOnMe: Melissa dependencyCount: 97 Package: BRAIN Version: 1.52.0 Depends: R (>= 2.8.1), PolynomF, Biostrings, lattice License: GPL-2 Archs: x64 MD5sum: 1ff55402202da07c9e0bf79088fd000c NeedsCompilation: no Title: Baffling Recursive Algorithm for Isotope distributioN calculations Description: Package for calculating aggregated isotopic distribution and exact center-masses for chemical substances (in this version composed of C, H, N, O and S). This is an implementation of the BRAIN algorithm described in the paper by J. Claesen, P. Dittwald, T. Burzykowski and D. Valkenborg. biocViews: ImmunoOncology, MassSpectrometry, Proteomics Author: Piotr Dittwald, with contributions of Dirk Valkenborg and Jurgen Claesen Maintainer: Piotr Dittwald git_url: https://git.bioconductor.org/packages/BRAIN git_branch: RELEASE_3_20 git_last_commit: bdfe63f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BRAIN_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BRAIN_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BRAIN_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BRAIN_1.52.0.tgz vignettes: vignettes/BRAIN/inst/doc/BRAIN-vignette.pdf vignetteTitles: BRAIN Usage hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BRAIN/inst/doc/BRAIN-vignette.R suggestsMe: cleaver, synapter, RforProteomics dependencyCount: 29 Package: branchpointer Version: 1.32.0 Depends: caret, R(>= 3.4) Imports: plyr, kernlab, gbm, stringr, cowplot, ggplot2, biomaRt, Biostrings, parallel, utils, stats, BSgenome.Hsapiens.UCSC.hg38, rtracklayer, GenomicRanges, GenomeInfoDb, IRanges, S4Vectors, data.table Suggests: knitr, BiocStyle License: BSD_3_clause + file LICENSE MD5sum: 3869a4014bf47b43df8c1c581e04bdb8 NeedsCompilation: no Title: Prediction of intronic splicing branchpoints Description: Predicts branchpoint probability for sites in intronic branchpoint windows. Queries can be supplied as intronic regions; or to evaluate the effects of mutations, SNPs. biocViews: Software, GenomeAnnotation, GenomicVariation, MotifAnnotation Author: Beth Signal Maintainer: Beth Signal VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/branchpointer git_branch: RELEASE_3_20 git_last_commit: 33a15d4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/branchpointer_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/branchpointer_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/branchpointer_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/branchpointer_1.32.0.tgz vignettes: vignettes/branchpointer/inst/doc/branchpointer.pdf vignetteTitles: Using Branchpointer for annotation of intronic human splicing branchpoints hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/branchpointer/inst/doc/branchpointer.R dependencyCount: 156 Package: breakpointR Version: 1.24.0 Depends: R (>= 3.5), GenomicRanges, cowplot, breakpointRdata Imports: methods, utils, grDevices, stats, S4Vectors, GenomeInfoDb (>= 1.12.3), IRanges, Rsamtools, GenomicAlignments, ggplot2, BiocGenerics, gtools, doParallel, foreach Suggests: knitr, BiocStyle, testthat License: file LICENSE MD5sum: dd315aa4292112edd33826eafa57754a NeedsCompilation: no Title: Find breakpoints in Strand-seq data Description: This package implements functions for finding breakpoints, plotting and export of Strand-seq data. biocViews: Software, Sequencing, DNASeq, SingleCell, Coverage Author: David Porubsky, Ashley Sanders, Aaron Taudt Maintainer: David Porubsky URL: https://github.com/daewoooo/BreakPointR VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/breakpointR git_branch: RELEASE_3_20 git_last_commit: ba27b90 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/breakpointR_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/breakpointR_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/breakpointR_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/breakpointR_1.24.0.tgz vignettes: vignettes/breakpointR/inst/doc/breakpointR.pdf vignetteTitles: How to use breakpointR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/breakpointR/inst/doc/breakpointR.R dependencyCount: 83 Package: brendaDb Version: 1.20.0 Imports: dplyr, Rcpp, tibble, stringr, magrittr, purrr, BiocParallel, crayon, utils, tidyr, grDevices, rlang, BiocFileCache, rappdirs LinkingTo: Rcpp Suggests: testthat, BiocStyle, knitr, rmarkdown, devtools License: MIT + file LICENSE MD5sum: d60603b98537df788d499fbd84837974 NeedsCompilation: yes Title: The BRENDA Enzyme Database Description: R interface for importing and analyzing enzyme information from the BRENDA database. biocViews: ThirdPartyClient, Annotation, DataImport Author: Yi Zhou [aut, cre] () Maintainer: Yi Zhou URL: https://github.com/y1zhou/brendaDb SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/y1zhou/brendaDb/issues git_url: https://git.bioconductor.org/packages/brendaDb git_branch: RELEASE_3_20 git_last_commit: e041c80 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/brendaDb_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/brendaDb_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/brendaDb_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/brendaDb_1.20.0.tgz vignettes: vignettes/brendaDb/inst/doc/brendaDb.html vignetteTitles: brendaDb hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/brendaDb/inst/doc/brendaDb.R dependencyCount: 58 Package: BREW3R.r Version: 1.2.0 Imports: GenomicRanges, methods, rlang, S4Vectors, utils Suggests: testthat (>= 3.0.0), IRanges, knitr, rmarkdown, BiocStyle, rtracklayer License: GPL-3 MD5sum: ac38ec812219d763381c8554a9a5cdf3 NeedsCompilation: no Title: R package associated to BREW3R Description: This R package provide functions that are used in the BREW3R workflow. This mainly contains a function that extend a gtf as GRanges using information from another gtf (also as GRanges). The process allows to extend gene annotation without increasing the overlap between gene ids. biocViews: GenomeAnnotation Author: Lucille Lopez-Delisle [aut, cre] () Maintainer: Lucille Lopez-Delisle URL: https://github.com/lldelisle/BREW3R.r VignetteBuilder: knitr BugReports: https://github.com/lldelisle/BREW3R.r/issues/ git_url: https://git.bioconductor.org/packages/BREW3R.r git_branch: RELEASE_3_20 git_last_commit: 01cdaba git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BREW3R.r_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BREW3R.r_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BREW3R.r_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BREW3R.r_1.2.0.tgz vignettes: vignettes/BREW3R.r/inst/doc/BREW3R.r.html vignetteTitles: BREW3R.r hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BREW3R.r/inst/doc/BREW3R.r.R dependencyCount: 24 Package: BridgeDbR Version: 2.16.0 Depends: R (>= 3.3.0), rJava Imports: curl Suggests: BiocStyle, knitr, rmarkdown, testthat License: AGPL-3 Archs: x64 MD5sum: 40d8122a411aace02a4c0a426baa83ec NeedsCompilation: no Title: Code for using BridgeDb identifier mapping framework from within R Description: Use BridgeDb functions and load identifier mapping databases in R. It uses GitHub, Zenodo, and Figshare if you use this package to download identifier mappings files. biocViews: Software, Annotation, Metabolomics, Cheminformatics Author: Christ Leemans , Egon Willighagen , Denise Slenter, Anwesha Bohler , Lars Eijssen , Tooba Abbassi-Daloii Maintainer: Egon Willighagen URL: https://github.com/bridgedb/BridgeDbR VignetteBuilder: knitr BugReports: https://github.com/bridgedb/BridgeDbR/issues git_url: https://git.bioconductor.org/packages/BridgeDbR git_branch: RELEASE_3_20 git_last_commit: 6327e6c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BridgeDbR_2.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BridgeDbR_2.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BridgeDbR_2.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BridgeDbR_2.16.0.tgz vignettes: vignettes/BridgeDbR/inst/doc/tutorial.html vignetteTitles: Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BridgeDbR/inst/doc/tutorial.R dependencyCount: 3 Package: broadSeq Version: 1.0.0 Depends: dplyr, ggpubr, SummarizedExperiment Imports: BiocStyle, DELocal, EBSeq (>= 1.38.0), DESeq2 (>= 1.38.2), NOISeq, forcats (>= 1.0.0), genefilter, ggplot2, ggplotify, plyr, clusterProfiler (>= 4.8.2), pheatmap, sechm (>= 1.6.0), stringr, purrr (>= 0.3.5), edgeR (>= 3.40.1) Suggests: knitr, limma (>= 3.54.0), rmarkdown, stats (>= 4.2.2), samr License: MIT + file LICENSE MD5sum: fbf7fd027ead86d2350bb975955aab99 NeedsCompilation: no Title: broadSeq : for streamlined exploration of RNA-seq data Description: This package helps user to do easily RNA-seq data analysis with multiple methods (usually which needs many different input formats). Here the user will provid the expression data as a SummarizedExperiment object and will get results from different methods. It will help user to quickly evaluate different methods. biocViews: GeneExpression, DifferentialExpression, RNASeq, Transcriptomics, Sequencing, Coverage, GeneSetEnrichment, GO Author: Rishi Das Roy [aut, cre] () Maintainer: Rishi Das Roy URL: https://github.com/dasroy/broadSeq VignetteBuilder: knitr BugReports: https://github.com/dasroy/broadSeq/issues git_url: https://git.bioconductor.org/packages/broadSeq git_branch: RELEASE_3_20 git_last_commit: 4672c91 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/broadSeq_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/broadSeq_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/broadSeq_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/broadSeq_1.0.0.tgz vignettes: vignettes/broadSeq/inst/doc/broadSeq.html vignetteTitles: Using broadSeq to analyze RNA-seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/broadSeq/inst/doc/broadSeq.R dependencyCount: 232 Package: BrowserViz Version: 2.28.0 Depends: R (>= 3.5.0), jsonlite (>= 1.5), httpuv(>= 1.5.0) Imports: methods, BiocGenerics Suggests: RUnit, BiocStyle, knitr, rmarkdown License: GPL-2 MD5sum: 2732179787359af166be88c9d1265bda NeedsCompilation: no Title: BrowserViz: interactive R/browser graphics using websockets and JSON Description: Interactvive graphics in a web browser from R, using websockets and JSON. biocViews: Visualization, ThirdPartyClient Author: Paul Shannon Maintainer: Arkadiusz Gladki URL: https://gladkia.github.io/BrowserViz/ VignetteBuilder: knitr BugReports: https://github.com/gladkia/BrowserViz/issues git_url: https://git.bioconductor.org/packages/BrowserViz git_branch: RELEASE_3_20 git_last_commit: 33c6c74 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BrowserViz_2.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BrowserViz_2.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BrowserViz_2.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BrowserViz_2.28.0.tgz vignettes: vignettes/BrowserViz/inst/doc/BrowserViz.html vignetteTitles: "BrowserViz: support programmatic access to javascript apps running in your web browser" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BrowserViz/inst/doc/BrowserViz.R dependsOnMe: igvR, RCyjs dependencyCount: 14 Package: BSgenome Version: 1.74.0 Depends: R (>= 2.8.0), methods, BiocGenerics (>= 0.13.8), S4Vectors (>= 0.17.28), IRanges (>= 2.13.16), GenomeInfoDb (>= 1.25.6), GenomicRanges (>= 1.31.10), Biostrings (>= 2.47.6), BiocIO, rtracklayer Imports: utils, stats, matrixStats, XVector, Rsamtools Suggests: BiocManager, BSgenome.Celegans.UCSC.ce2, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Hsapiens.UCSC.hg38.masked, BSgenome.Mmusculus.UCSC.mm10, BSgenome.Rnorvegicus.UCSC.rn5, BSgenome.Scerevisiae.UCSC.sacCer1, BSgenome.Hsapiens.NCBI.GRCh38, TxDb.Hsapiens.UCSC.hg38.knownGene, TxDb.Mmusculus.UCSC.mm10.knownGene, SNPlocs.Hsapiens.dbSNP144.GRCh38, XtraSNPlocs.Hsapiens.dbSNP144.GRCh38, hgu95av2probe, RUnit, BSgenomeForge License: Artistic-2.0 MD5sum: d5a0e768ab5eebb73116c59b50afb921 NeedsCompilation: no Title: Software infrastructure for efficient representation of full genomes and their SNPs Description: Infrastructure shared by all the Biostrings-based genome data packages. biocViews: Genetics, Infrastructure, DataRepresentation, SequenceMatching, Annotation, SNP Author: Hervé Pagès [aut, cre] Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/BSgenome BugReports: https://github.com/Bioconductor/BSgenome/issues git_url: https://git.bioconductor.org/packages/BSgenome git_branch: RELEASE_3_20 git_last_commit: 7ab2eb4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BSgenome_1.74.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BSgenome_1.74.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BSgenome_1.74.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BSgenome_1.74.0.tgz vignettes: vignettes/BSgenome/inst/doc/BSgenomeForge.pdf, vignettes/BSgenome/inst/doc/GenomeSearching.pdf vignetteTitles: How to forge a BSgenome data package, Efficient genome searching with Biostrings and the BSgenome data packages hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BSgenome/inst/doc/GenomeSearching.R dependsOnMe: bambu, BSgenomeForge, ChIPanalyser, GOTHiC, HelloRanges, MEDIPS, periodicDNA, REDseq, rGADEM, VarCon, BSgenome.Alyrata.JGI.v1, BSgenome.Amellifera.BeeBase.assembly4, BSgenome.Amellifera.NCBI.AmelHAv3.1, BSgenome.Amellifera.UCSC.apiMel2, BSgenome.Amellifera.UCSC.apiMel2.masked, BSgenome.Aofficinalis.NCBI.V1, BSgenome.Athaliana.TAIR.04232008, BSgenome.Athaliana.TAIR.TAIR9, BSgenome.Btaurus.UCSC.bosTau3, BSgenome.Btaurus.UCSC.bosTau3.masked, BSgenome.Btaurus.UCSC.bosTau4, BSgenome.Btaurus.UCSC.bosTau4.masked, BSgenome.Btaurus.UCSC.bosTau6, BSgenome.Btaurus.UCSC.bosTau6.masked, BSgenome.Btaurus.UCSC.bosTau8, BSgenome.Btaurus.UCSC.bosTau9, BSgenome.Btaurus.UCSC.bosTau9.masked, BSgenome.Carietinum.NCBI.v1, BSgenome.Celegans.UCSC.ce10, BSgenome.Celegans.UCSC.ce11, BSgenome.Celegans.UCSC.ce2, BSgenome.Celegans.UCSC.ce6, BSgenome.Cfamiliaris.UCSC.canFam2, BSgenome.Cfamiliaris.UCSC.canFam2.masked, BSgenome.Cfamiliaris.UCSC.canFam3, BSgenome.Cfamiliaris.UCSC.canFam3.masked, BSgenome.Cjacchus.UCSC.calJac3, BSgenome.Cjacchus.UCSC.calJac4, BSgenome.CneoformansVarGrubiiKN99.NCBI.ASM221672v1, BSgenome.Creinhardtii.JGI.v5.6, BSgenome.Dmelanogaster.UCSC.dm2, BSgenome.Dmelanogaster.UCSC.dm2.masked, BSgenome.Dmelanogaster.UCSC.dm3, BSgenome.Dmelanogaster.UCSC.dm3.masked, BSgenome.Dmelanogaster.UCSC.dm6, BSgenome.Drerio.UCSC.danRer10, BSgenome.Drerio.UCSC.danRer11, BSgenome.Drerio.UCSC.danRer5, BSgenome.Drerio.UCSC.danRer5.masked, BSgenome.Drerio.UCSC.danRer6, BSgenome.Drerio.UCSC.danRer6.masked, BSgenome.Drerio.UCSC.danRer7, BSgenome.Drerio.UCSC.danRer7.masked, BSgenome.Dvirilis.Ensembl.dvircaf1, BSgenome.Ecoli.NCBI.20080805, BSgenome.Gaculeatus.UCSC.gasAcu1, BSgenome.Gaculeatus.UCSC.gasAcu1.masked, BSgenome.Ggallus.UCSC.galGal3, BSgenome.Ggallus.UCSC.galGal3.masked, BSgenome.Ggallus.UCSC.galGal4, BSgenome.Ggallus.UCSC.galGal4.masked, BSgenome.Ggallus.UCSC.galGal5, BSgenome.Ggallus.UCSC.galGal6, BSgenome.Gmax.NCBI.Gmv40, BSgenome.Hsapiens.1000genomes.hs37d5, BSgenome.Hsapiens.NCBI.GRCh38, BSgenome.Hsapiens.NCBI.T2T.CHM13v2.0, BSgenome.Hsapiens.UCSC.hg17, BSgenome.Hsapiens.UCSC.hg17.masked, BSgenome.Hsapiens.UCSC.hg18, BSgenome.Hsapiens.UCSC.hg18.masked, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg19.masked, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Hsapiens.UCSC.hg38.dbSNP151.major, BSgenome.Hsapiens.UCSC.hg38.dbSNP151.minor, BSgenome.Hsapiens.UCSC.hg38.masked, BSgenome.Hsapiens.UCSC.hs1, BSgenome.Mdomestica.UCSC.monDom5, BSgenome.Mfascicularis.NCBI.5.0, BSgenome.Mfascicularis.NCBI.6.0, BSgenome.Mfuro.UCSC.musFur1, BSgenome.Mmulatta.UCSC.rheMac10, BSgenome.Mmulatta.UCSC.rheMac2, BSgenome.Mmulatta.UCSC.rheMac2.masked, BSgenome.Mmulatta.UCSC.rheMac3, BSgenome.Mmulatta.UCSC.rheMac3.masked, BSgenome.Mmulatta.UCSC.rheMac8, BSgenome.Mmusculus.UCSC.mm10, BSgenome.Mmusculus.UCSC.mm10.masked, BSgenome.Mmusculus.UCSC.mm39, BSgenome.Mmusculus.UCSC.mm8, BSgenome.Mmusculus.UCSC.mm8.masked, BSgenome.Mmusculus.UCSC.mm9, BSgenome.Mmusculus.UCSC.mm9.masked, BSgenome.Osativa.MSU.MSU7, BSgenome.Ppaniscus.UCSC.panPan1, BSgenome.Ppaniscus.UCSC.panPan2, BSgenome.Ptroglodytes.UCSC.panTro2, BSgenome.Ptroglodytes.UCSC.panTro2.masked, BSgenome.Ptroglodytes.UCSC.panTro3, BSgenome.Ptroglodytes.UCSC.panTro3.masked, BSgenome.Ptroglodytes.UCSC.panTro5, BSgenome.Ptroglodytes.UCSC.panTro6, BSgenome.Rnorvegicus.UCSC.rn4, BSgenome.Rnorvegicus.UCSC.rn4.masked, BSgenome.Rnorvegicus.UCSC.rn5, BSgenome.Rnorvegicus.UCSC.rn5.masked, BSgenome.Rnorvegicus.UCSC.rn6, BSgenome.Rnorvegicus.UCSC.rn7, BSgenome.Scerevisiae.UCSC.sacCer1, BSgenome.Scerevisiae.UCSC.sacCer2, BSgenome.Scerevisiae.UCSC.sacCer3, BSgenome.Sscrofa.UCSC.susScr11, BSgenome.Sscrofa.UCSC.susScr3, BSgenome.Sscrofa.UCSC.susScr3.masked, BSgenome.Tgondii.ToxoDB.7.0, BSgenome.Tguttata.UCSC.taeGut1, BSgenome.Tguttata.UCSC.taeGut1.masked, BSgenome.Tguttata.UCSC.taeGut2, BSgenome.Vvinifera.URGI.IGGP12Xv0, BSgenome.Vvinifera.URGI.IGGP12Xv2, BSgenome.Vvinifera.URGI.IGGP8X, SNPlocs.Hsapiens.dbSNP144.GRCh37, SNPlocs.Hsapiens.dbSNP144.GRCh38, SNPlocs.Hsapiens.dbSNP149.GRCh38, SNPlocs.Hsapiens.dbSNP150.GRCh38, SNPlocs.Hsapiens.dbSNP155.GRCh37, SNPlocs.Hsapiens.dbSNP155.GRCh38, XtraSNPlocs.Hsapiens.dbSNP144.GRCh37, XtraSNPlocs.Hsapiens.dbSNP144.GRCh38, leeBamViews, annotation importsMe: AllelicImbalance, appreci8R, ATACseqQC, atSNP, BEAT, bsseq, BUSpaRse, CAGEr, chromVAR, cleanUpdTSeq, CleanUpRNAseq, cliProfiler, crisprBowtie, crisprBwa, crisprDesign, CRISPRseek, crisprShiny, crisprViz, diffHic, enhancerHomologSearch, esATAC, EventPointer, FRASER, gcapc, genomation, GenVisR, ggbio, gmapR, GreyListChIP, GUIDEseq, Gviz, hiAnnotator, IsoformSwitchAnalyzeR, katdetectr, m6Aboost, MADSEQ, methodical, methrix, MethylSeekR, MMDiff2, monaLisa, Motif2Site, motifbreakR, motifmatchr, msgbsR, multicrispr, MungeSumstats, musicatk, MutationalPatterns, ORFik, PING, pipeFrame, podkat, qsea, QuasR, R453Plus1Toolbox, raer, RAIDS, RareVariantVis, RCAS, regioneR, REMP, Repitools, RESOLVE, ribosomeProfilingQC, RNAmodR, scmeth, SCOPE, seqArchRplus, signeR, SigsPack, SparseSignatures, spatzie, spiky, SpliceWiz, TAPseq, TFBSTools, transmogR, tRNAscanImport, Ularcirc, UMI4Cats, VariantAnnotation, VariantFiltering, VariantTools, XNAString, BSgenome.Alyrata.JGI.v1, BSgenome.Amellifera.BeeBase.assembly4, BSgenome.Amellifera.NCBI.AmelHAv3.1, BSgenome.Amellifera.UCSC.apiMel2, BSgenome.Amellifera.UCSC.apiMel2.masked, BSgenome.Aofficinalis.NCBI.V1, BSgenome.Athaliana.TAIR.04232008, BSgenome.Athaliana.TAIR.TAIR9, BSgenome.Btaurus.UCSC.bosTau3, BSgenome.Btaurus.UCSC.bosTau3.masked, BSgenome.Btaurus.UCSC.bosTau4, BSgenome.Btaurus.UCSC.bosTau4.masked, BSgenome.Btaurus.UCSC.bosTau6, BSgenome.Btaurus.UCSC.bosTau6.masked, BSgenome.Btaurus.UCSC.bosTau8, BSgenome.Btaurus.UCSC.bosTau9, BSgenome.Btaurus.UCSC.bosTau9.masked, BSgenome.Carietinum.NCBI.v1, BSgenome.Celegans.UCSC.ce10, BSgenome.Celegans.UCSC.ce11, BSgenome.Celegans.UCSC.ce2, BSgenome.Celegans.UCSC.ce6, BSgenome.Cfamiliaris.UCSC.canFam2, BSgenome.Cfamiliaris.UCSC.canFam2.masked, BSgenome.Cfamiliaris.UCSC.canFam3, BSgenome.Cfamiliaris.UCSC.canFam3.masked, BSgenome.Cjacchus.UCSC.calJac3, BSgenome.Cjacchus.UCSC.calJac4, BSgenome.CneoformansVarGrubiiKN99.NCBI.ASM221672v1, BSgenome.Creinhardtii.JGI.v5.6, BSgenome.Dmelanogaster.UCSC.dm2, BSgenome.Dmelanogaster.UCSC.dm2.masked, BSgenome.Dmelanogaster.UCSC.dm3, BSgenome.Dmelanogaster.UCSC.dm3.masked, BSgenome.Dmelanogaster.UCSC.dm6, BSgenome.Drerio.UCSC.danRer10, BSgenome.Drerio.UCSC.danRer11, BSgenome.Drerio.UCSC.danRer5, BSgenome.Drerio.UCSC.danRer5.masked, BSgenome.Drerio.UCSC.danRer6, BSgenome.Drerio.UCSC.danRer6.masked, BSgenome.Drerio.UCSC.danRer7, BSgenome.Drerio.UCSC.danRer7.masked, BSgenome.Dvirilis.Ensembl.dvircaf1, BSgenome.Ecoli.NCBI.20080805, BSgenome.Gaculeatus.UCSC.gasAcu1, BSgenome.Gaculeatus.UCSC.gasAcu1.masked, BSgenome.Ggallus.UCSC.galGal3, BSgenome.Ggallus.UCSC.galGal3.masked, BSgenome.Ggallus.UCSC.galGal4, BSgenome.Ggallus.UCSC.galGal4.masked, BSgenome.Ggallus.UCSC.galGal5, BSgenome.Ggallus.UCSC.galGal6, BSgenome.Gmax.NCBI.Gmv40, BSgenome.Hsapiens.NCBI.GRCh38, BSgenome.Hsapiens.NCBI.T2T.CHM13v2.0, BSgenome.Hsapiens.UCSC.hg17, BSgenome.Hsapiens.UCSC.hg17.masked, BSgenome.Hsapiens.UCSC.hg18, BSgenome.Hsapiens.UCSC.hg18.masked, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg19.masked, BSgenome.Hsapiens.UCSC.hs1, BSgenome.Mdomestica.UCSC.monDom5, BSgenome.Mfascicularis.NCBI.5.0, BSgenome.Mfascicularis.NCBI.6.0, BSgenome.Mfuro.UCSC.musFur1, BSgenome.Mmulatta.UCSC.rheMac10, BSgenome.Mmulatta.UCSC.rheMac2, BSgenome.Mmulatta.UCSC.rheMac2.masked, BSgenome.Mmulatta.UCSC.rheMac3, BSgenome.Mmulatta.UCSC.rheMac3.masked, BSgenome.Mmulatta.UCSC.rheMac8, BSgenome.Mmusculus.UCSC.mm10, BSgenome.Mmusculus.UCSC.mm10.masked, BSgenome.Mmusculus.UCSC.mm39, BSgenome.Mmusculus.UCSC.mm8, BSgenome.Mmusculus.UCSC.mm8.masked, BSgenome.Mmusculus.UCSC.mm9, BSgenome.Mmusculus.UCSC.mm9.masked, BSgenome.Osativa.MSU.MSU7, BSgenome.Ppaniscus.UCSC.panPan1, BSgenome.Ppaniscus.UCSC.panPan2, BSgenome.Ptroglodytes.UCSC.panTro2, BSgenome.Ptroglodytes.UCSC.panTro2.masked, BSgenome.Ptroglodytes.UCSC.panTro3, BSgenome.Ptroglodytes.UCSC.panTro3.masked, BSgenome.Ptroglodytes.UCSC.panTro5, BSgenome.Ptroglodytes.UCSC.panTro6, BSgenome.Rnorvegicus.UCSC.rn4, BSgenome.Rnorvegicus.UCSC.rn4.masked, BSgenome.Rnorvegicus.UCSC.rn5, BSgenome.Rnorvegicus.UCSC.rn5.masked, BSgenome.Rnorvegicus.UCSC.rn6, BSgenome.Rnorvegicus.UCSC.rn7, BSgenome.Scerevisiae.UCSC.sacCer1, BSgenome.Scerevisiae.UCSC.sacCer2, BSgenome.Scerevisiae.UCSC.sacCer3, BSgenome.Sscrofa.UCSC.susScr11, BSgenome.Sscrofa.UCSC.susScr3, BSgenome.Sscrofa.UCSC.susScr3.masked, BSgenome.Tgondii.ToxoDB.7.0, BSgenome.Tguttata.UCSC.taeGut1, BSgenome.Tguttata.UCSC.taeGut1.masked, BSgenome.Tguttata.UCSC.taeGut2, BSgenome.Vvinifera.URGI.IGGP12Xv0, BSgenome.Vvinifera.URGI.IGGP12Xv2, BSgenome.Vvinifera.URGI.IGGP8X, fitCons.UCSC.hg19, MafDb.1Kgenomes.phase1.GRCh38, MafDb.1Kgenomes.phase1.hs37d5, MafDb.1Kgenomes.phase3.GRCh38, MafDb.1Kgenomes.phase3.hs37d5, MafDb.ExAC.r1.0.GRCh38, MafDb.ExAC.r1.0.hs37d5, MafDb.ExAC.r1.0.nonTCGA.GRCh38, MafDb.ExAC.r1.0.nonTCGA.hs37d5, MafDb.gnomAD.r2.1.GRCh38, MafDb.gnomAD.r2.1.hs37d5, MafDb.gnomADex.r2.1.GRCh38, MafDb.gnomADex.r2.1.hs37d5, MafDb.TOPMed.freeze5.hg19, MafDb.TOPMed.freeze5.hg38, MafH5.gnomAD.v4.0.GRCh38, phastCons100way.UCSC.hg19, phastCons100way.UCSC.hg38, phastCons7way.UCSC.hg38, SNPlocs.Hsapiens.dbSNP144.GRCh37, SNPlocs.Hsapiens.dbSNP144.GRCh38, SNPlocs.Hsapiens.dbSNP149.GRCh38, SNPlocs.Hsapiens.dbSNP150.GRCh38, SNPlocs.Hsapiens.dbSNP155.GRCh37, SNPlocs.Hsapiens.dbSNP155.GRCh38, XtraSNPlocs.Hsapiens.dbSNP144.GRCh37, XtraSNPlocs.Hsapiens.dbSNP144.GRCh38, GenomicDistributionsData, ICAMS, MOCHA, revert, simMP suggestsMe: Biostrings, biovizBase, ChIPpeakAnno, chipseq, DegCre, DiffBind, easyRNASeq, eisaR, factR, GeneRegionScan, GenomeInfoDb, GenomicAlignments, GenomicFeatures, GenomicRanges, maftools, metaseqR2, MiRaGE, plotgardener, ProteoDisco, PWMEnrich, QDNAseq, recoup, RiboCrypt, rtracklayer, sitadela, gkmSVM, MARVEL, sigminer, Signac dependencyCount: 58 Package: BSgenomeForge Version: 1.6.0 Depends: R (>= 4.3.0), methods, BiocGenerics, IRanges, GenomeInfoDb (>= 1.33.17), Biostrings, BSgenome Imports: utils, stats, Biobase, S4Vectors, GenomicRanges, BiocIO, rtracklayer Suggests: GenomicFeatures, Rsamtools, testthat, knitr, rmarkdown, BiocStyle, devtools, BSgenome.Celegans.UCSC.ce2 License: Artistic-2.0 MD5sum: ca1e4c6acfa4a7ac708711f952607ad1 NeedsCompilation: no Title: Forge your own BSgenome data package Description: A set of tools to forge BSgenome data packages. Supersedes the old seed-based tools from the BSgenome software package. This package allows the user to create a BSgenome data package in one function call, simplifying the old seed-based process. biocViews: Infrastructure, DataRepresentation, GenomeAssembly, Annotation, GenomeAnnotation, Sequencing, Alignment, DataImport, SequenceMatching Author: Hervé Pagès [aut, cre], Atuhurira Kirabo Kakopo [aut], Emmanuel Chigozie Elendu [ctb], Prisca Chidimma Maduka [ctb] Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/BSgenomeForge VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/BSgenomeForge/issues git_url: https://git.bioconductor.org/packages/BSgenomeForge git_branch: RELEASE_3_20 git_last_commit: cbe623f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BSgenomeForge_1.6.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BSgenomeForge_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BSgenomeForge_1.6.0.tgz vignettes: vignettes/BSgenomeForge/inst/doc/AdvancedBSgenomeForge.pdf, vignettes/BSgenomeForge/inst/doc/QuickBSgenomeForge.html vignetteTitles: Advanced BSgenomeForge usage, A quick introduction to the BSgenomeForge package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BSgenomeForge/inst/doc/AdvancedBSgenomeForge.R, vignettes/BSgenomeForge/inst/doc/QuickBSgenomeForge.R suggestsMe: BSgenome dependencyCount: 59 Package: bsseq Version: 1.42.0 Depends: R (>= 4.0), methods, BiocGenerics, GenomicRanges (>= 1.41.5), SummarizedExperiment (>= 1.19.5) Imports: IRanges (>= 2.23.9), GenomeInfoDb, scales, stats, parallel, tools, graphics, Biobase, locfit, gtools, data.table (>= 1.11.8), S4Vectors (>= 0.27.12), R.utils (>= 2.0.0), DelayedMatrixStats (>= 1.5.2), permute, limma, DelayedArray (>= 0.15.16), Rcpp, BiocParallel, BSgenome, Biostrings, utils, HDF5Array (>= 1.19.11), rhdf5 LinkingTo: Rcpp, beachmat Suggests: testthat, bsseqData, BiocStyle, rmarkdown, knitr, Matrix, doParallel, rtracklayer, BSgenome.Hsapiens.UCSC.hg38, beachmat (>= 1.5.2), batchtools License: Artistic-2.0 MD5sum: f1b8ff8a8f192525c809624b3ad357ad NeedsCompilation: yes Title: Analyze, manage and store whole-genome methylation data Description: A collection of tools for analyzing and visualizing whole-genome methylation data from sequencing. This includes whole-genome bisulfite sequencing and Oxford nanopore data. biocViews: DNAMethylation Author: Kasper Daniel Hansen [aut, cre] (), Peter Hickey [aut] Maintainer: Kasper Daniel Hansen URL: https://github.com/kasperdanielhansen/bsseq VignetteBuilder: knitr BugReports: https://github.com/kasperdanielhansen/bsseq/issues git_url: https://git.bioconductor.org/packages/bsseq git_branch: RELEASE_3_20 git_last_commit: 851185f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bsseq_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bsseq_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bsseq_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bsseq_1.42.0.tgz vignettes: vignettes/bsseq/inst/doc/bsseq_analysis.html, vignettes/bsseq/inst/doc/bsseq.html vignetteTitles: Analyzing WGBS data with bsseq, bsseq User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bsseq/inst/doc/bsseq_analysis.R, vignettes/bsseq/inst/doc/bsseq.R dependsOnMe: biscuiteer, dmrseq, DSS, bsseqData importsMe: borealis, DMRcate, methylCC, methylSig, MIRA, NanoMethViz, scmeth, SOMNiBUS suggestsMe: methrix, tissueTreg dependencyCount: 88 Package: BubbleTree Version: 2.36.0 Depends: R (>= 3.5), IRanges, GenomicRanges, plyr, dplyr, magrittr Imports: BiocGenerics (>= 0.31.6), BiocStyle, Biobase, ggplot2, WriteXLS, gtools, RColorBrewer, limma, grid, gtable, gridExtra, biovizBase, e1071, methods, grDevices, stats, utils Suggests: knitr, rmarkdown License: LGPL (>= 3) MD5sum: acf0e813b99cba417798d192588822e0 NeedsCompilation: no Title: BubbleTree: an intuitive visualization to elucidate tumoral aneuploidy and clonality in somatic mosaicism using next generation sequencing data Description: CNV analysis in groups of tumor samples. biocViews: CopyNumberVariation, Software, Sequencing, Coverage Author: Wei Zhu , Michael Kuziora , Todd Creasy , Brandon Higgs Maintainer: Todd Creasy , Wei Zhu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BubbleTree git_branch: RELEASE_3_20 git_last_commit: 949926e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BubbleTree_2.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BubbleTree_2.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BubbleTree_2.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BubbleTree_2.36.0.tgz vignettes: vignettes/BubbleTree/inst/doc/BubbleTree-vignette.html vignetteTitles: BubbleTree Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BubbleTree/inst/doc/BubbleTree-vignette.R dependencyCount: 151 Package: BufferedMatrix Version: 1.70.0 Depends: R (>= 2.6.0), methods License: LGPL (>= 2) Archs: x64 MD5sum: f6e6592cef55d8c83e92b5fa3e2ea41d NeedsCompilation: yes Title: A matrix data storage object held in temporary files Description: A tabular style data object where most data is stored outside main memory. A buffer is used to speed up access to data. biocViews: Infrastructure Author: Ben Bolstad Maintainer: Ben Bolstad URL: https://github.com/bmbolstad/BufferedMatrix git_url: https://git.bioconductor.org/packages/BufferedMatrix git_branch: RELEASE_3_20 git_last_commit: 32b6f6a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BufferedMatrix_1.70.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BufferedMatrix_1.70.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BufferedMatrix_1.70.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BufferedMatrix_1.70.0.tgz vignettes: vignettes/BufferedMatrix/inst/doc/BufferedMatrix.pdf vignetteTitles: BufferedMatrix: Introduction hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BufferedMatrix/inst/doc/BufferedMatrix.R dependsOnMe: BufferedMatrixMethods linksToMe: BufferedMatrixMethods dependencyCount: 1 Package: BufferedMatrixMethods Version: 1.70.0 Depends: R (>= 2.6.0), BufferedMatrix (>= 1.3.0), methods LinkingTo: BufferedMatrix Suggests: affyio, affy License: GPL (>= 2) MD5sum: 63ef3df515379903325382cdf999e38a NeedsCompilation: yes Title: Microarray Data related methods that utlize BufferedMatrix objects Description: Microarray analysis methods that use BufferedMatrix objects biocViews: Infrastructure Author: Ben Bolstad Maintainer: Ben Bolstad URL: https://github.bom/bmbolstad/BufferedMatrixMethods git_url: https://git.bioconductor.org/packages/BufferedMatrixMethods git_branch: RELEASE_3_20 git_last_commit: 41f0901 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BufferedMatrixMethods_1.70.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BufferedMatrixMethods_1.70.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BufferedMatrixMethods_1.70.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BufferedMatrixMethods_1.70.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 2 Package: bugsigdbr Version: 1.12.0 Depends: R (>= 4.1) Imports: BiocFileCache, methods, vroom, utils Suggests: BiocStyle, knitr, ontologyIndex, rmarkdown, testthat (>= 3.0.0) License: GPL-3 Archs: x64 MD5sum: 497ef05e5eb6f51b0eb9f150f7f61565 NeedsCompilation: no Title: R-side access to published microbial signatures from BugSigDB Description: The bugsigdbr package implements convenient access to bugsigdb.org from within R/Bioconductor. The goal of the package is to facilitate import of BugSigDB data into R/Bioconductor, provide utilities for extracting microbe signatures, and enable export of the extracted signatures to plain text files in standard file formats such as GMT. biocViews: DataImport, GeneSetEnrichment, Metagenomics, Microbiome Author: Ludwig Geistlinger [aut, cre], Jennifer Wokaty [aut], Levi Waldron [aut] Maintainer: Ludwig Geistlinger URL: https://github.com/waldronlab/bugsigdbr VignetteBuilder: knitr BugReports: https://github.com/waldronlab/bugsigdbr/issues git_url: https://git.bioconductor.org/packages/bugsigdbr git_branch: RELEASE_3_20 git_last_commit: 445d57e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bugsigdbr_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bugsigdbr_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bugsigdbr_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bugsigdbr_1.12.0.tgz vignettes: vignettes/bugsigdbr/inst/doc/bugsigdbr.html vignetteTitles: R-side access to BugSigDB hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bugsigdbr/inst/doc/bugsigdbr.R dependencyCount: 52 Package: BUMHMM Version: 1.30.0 Depends: R (>= 3.5.0) Imports: devtools, stringi, gtools, stats, utils, SummarizedExperiment, Biostrings, IRanges Suggests: testthat, knitr, BiocStyle License: GPL-3 Archs: x64 MD5sum: 0ad6f721f6976cbc5d8df86870e391e1 NeedsCompilation: no Title: Computational pipeline for computing probability of modification from structure probing experiment data Description: This is a probabilistic modelling pipeline for computing per- nucleotide posterior probabilities of modification from the data collected in structure probing experiments. The model supports multiple experimental replicates and empirically corrects coverage- and sequence-dependent biases. The model utilises the measure of a "drop-off rate" for each nucleotide, which is compared between replicates through a log-ratio (LDR). The LDRs between control replicates define a null distribution of variability in drop-off rate observed by chance and LDRs between treatment and control replicates gets compared to this distribution. Resulting empirical p-values (probability of being "drawn" from the null distribution) are used as observations in a Hidden Markov Model with a Beta-Uniform Mixture model used as an emission model. The resulting posterior probabilities indicate the probability of a nucleotide of having being modified in a structure probing experiment. biocViews: ImmunoOncology, GeneticVariability, Transcription, GeneExpression, GeneRegulation, Coverage, Genetics, StructuralPrediction, Transcriptomics, Bayesian, Classification, FeatureExtraction, HiddenMarkovModel, Regression, RNASeq, Sequencing Author: Alina Selega (alina.selega@gmail.com), Sander Granneman, Guido Sanguinetti Maintainer: Alina Selega VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BUMHMM git_branch: RELEASE_3_20 git_last_commit: 66d46fa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BUMHMM_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BUMHMM_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BUMHMM_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BUMHMM_1.30.0.tgz vignettes: vignettes/BUMHMM/inst/doc/BUMHMM.pdf vignetteTitles: An Introduction to the BUMHMM pipeline hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BUMHMM/inst/doc/BUMHMM.R dependencyCount: 124 Package: bumphunter Version: 1.48.0 Depends: R (>= 3.5), S4Vectors (>= 0.9.25), IRanges (>= 2.3.23), GenomeInfoDb, GenomicRanges, foreach, iterators, methods, parallel, locfit Imports: matrixStats, limma, doRNG, BiocGenerics, utils, GenomicFeatures, AnnotationDbi, stats Suggests: testthat, RUnit, doParallel, txdbmaker, org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg19.knownGene License: Artistic-2.0 MD5sum: 94f5d4d153ee1074d241159ce20e1376 NeedsCompilation: no Title: Bump Hunter Description: Tools for finding bumps in genomic data biocViews: DNAMethylation, Epigenetics, Infrastructure, MultipleComparison, ImmunoOncology Author: Rafael A. Irizarry [aut], Martin Aryee [aut], Kasper Daniel Hansen [aut], Hector Corrada Bravo [aut], Shan Andrews [ctb], Andrew E. Jaffe [ctb], Harris Jaffee [ctb], Leonardo Collado-Torres [ctb], Tamilselvi Guharaj [cre] Maintainer: Tamilselvi Guharaj URL: https://github.com/rafalab/bumphunter git_url: https://git.bioconductor.org/packages/bumphunter git_branch: RELEASE_3_20 git_last_commit: d446b63 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/bumphunter_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/bumphunter_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bumphunter_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bumphunter_1.48.0.tgz vignettes: vignettes/bumphunter/inst/doc/bumphunter.pdf vignetteTitles: The bumphunter user's guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/bumphunter/inst/doc/bumphunter.R dependsOnMe: minfi importsMe: coMethDMR, DAMEfinder, derfinder, dmrseq, epimutacions, epivizr, methylCC, rnaEditr, GenomicState, recountWorkflow suggestsMe: bigmelon, derfinderPlot, epivizrData, regionReport dependencyCount: 85 Package: BumpyMatrix Version: 1.14.0 Imports: utils, methods, Matrix, S4Vectors, IRanges Suggests: BiocStyle, knitr, rmarkdown, testthat License: MIT + file LICENSE MD5sum: 1b8c1a220002a9495d39e0300fe75085 NeedsCompilation: no Title: Bumpy Matrix of Non-Scalar Objects Description: Implements the BumpyMatrix class and several subclasses for holding non-scalar objects in each entry of the matrix. This is akin to a ragged array but the raggedness is in the third dimension, much like a bumpy surface - hence the name. Of particular interest is the BumpyDataFrameMatrix, where each entry is a Bioconductor data frame. This allows us to naturally represent multivariate data in a format that is compatible with two-dimensional containers like the SummarizedExperiment and MultiAssayExperiment objects. biocViews: Software, Infrastructure, DataRepresentation Author: Aaron Lun [aut, cre], Genentech, Inc. [cph] Maintainer: Aaron Lun URL: https://bioconductor.org/packages/BumpyMatrix VignetteBuilder: knitr BugReports: https://github.com/LTLA/BumpyMatrix/issues git_url: https://git.bioconductor.org/packages/BumpyMatrix git_branch: RELEASE_3_20 git_last_commit: 0eb06e9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BumpyMatrix_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BumpyMatrix_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BumpyMatrix_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BumpyMatrix_1.14.0.tgz vignettes: vignettes/BumpyMatrix/inst/doc/BumpyMatrix.html vignetteTitles: The BumpyMatrix class hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BumpyMatrix/inst/doc/BumpyMatrix.R dependsOnMe: alabaster.bumpy importsMe: CoreGx, gDRcore, gDRimport, gDRutils, MerfishData, MouseGastrulationData, TENxXeniumData suggestsMe: escheR, gDR, ggspavis, SpatialExperiment, tpSVG, STexampleData dependencyCount: 12 Package: BUS Version: 1.62.0 Depends: R (>= 2.3.0), minet Imports: stats, infotheo License: GPL-3 MD5sum: f27cadc9aa3bb2c0b0b07e06dc6dd118 NeedsCompilation: yes Title: Gene network reconstruction Description: This package can be used to compute associations among genes (gene-networks) or between genes and some external traits (i.e. clinical). biocViews: Preprocessing Author: Yin Jin, Hesen Peng, Lei Wang, Raffaele Fronza, Yuanhua Liu and Christine Nardini Maintainer: Yuanhua Liu git_url: https://git.bioconductor.org/packages/BUS git_branch: RELEASE_3_20 git_last_commit: 64f1b30 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BUS_1.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BUS_1.62.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BUS_1.62.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BUS_1.62.0.tgz vignettes: vignettes/BUS/inst/doc/bus.pdf vignetteTitles: bus.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BUS/inst/doc/bus.R dependencyCount: 3 Package: BUScorrect Version: 1.24.0 Depends: R (>= 3.5.0) Imports: gplots, methods, grDevices, stats, SummarizedExperiment Suggests: BiocStyle, knitr, RUnit, BiocGenerics License: GPL (>= 2) MD5sum: c8e9340a9183bd8776e7ad149dad395e NeedsCompilation: yes Title: Batch Effects Correction with Unknown Subtypes Description: High-throughput experimental data are accumulating exponentially in public databases. However, mining valid scientific discoveries from these abundant resources is hampered by technical artifacts and inherent biological heterogeneity. The former are usually termed "batch effects," and the latter is often modelled by "subtypes." The R package BUScorrect fits a Bayesian hierarchical model, the Batch-effects-correction-with-Unknown-Subtypes model (BUS), to correct batch effects in the presence of unknown subtypes. BUS is capable of (a) correcting batch effects explicitly, (b) grouping samples that share similar characteristics into subtypes, (c) identifying features that distinguish subtypes, and (d) enjoying a linear-order computation complexity. biocViews: GeneExpression, StatisticalMethod, Bayesian, Clustering, FeatureExtraction, BatchEffect Author: Xiangyu Luo , Yingying Wei Maintainer: Xiangyu Luo VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BUScorrect git_branch: RELEASE_3_20 git_last_commit: 8e4a220 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BUScorrect_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BUScorrect_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BUScorrect_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BUScorrect_1.24.0.tgz vignettes: vignettes/BUScorrect/inst/doc/BUScorrect_user_guide.pdf vignetteTitles: BUScorrect_user_guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BUScorrect/inst/doc/BUScorrect_user_guide.R dependencyCount: 41 Package: BUSpaRse Version: 1.20.0 Depends: R (>= 3.6) Imports: AnnotationDbi, AnnotationFilter, biomaRt, BiocGenerics, Biostrings, BSgenome, dplyr, ensembldb, GenomeInfoDb, GenomicFeatures, GenomicRanges, ggplot2, IRanges, magrittr, Matrix, methods, plyranges, Rcpp, S4Vectors, stats, stringr, tibble, tidyr, utils, zeallot LinkingTo: Rcpp, RcppArmadillo, RcppProgress, BH Suggests: knitr, rmarkdown, testthat, BiocStyle, txdbmaker, TENxBUSData, TxDb.Hsapiens.UCSC.hg38.knownGene, txdbmaker, BSgenome.Hsapiens.UCSC.hg38, EnsDb.Hsapiens.v86 License: BSD_2_clause + file LICENSE Archs: x64 MD5sum: e79fe5b2e7c9decd8d072e3e0d5c0bec NeedsCompilation: yes Title: kallisto | bustools R utilities Description: The kallisto | bustools pipeline is a fast and modular set of tools to convert single cell RNA-seq reads in fastq files into gene count or transcript compatibility counts (TCC) matrices for downstream analysis. Central to this pipeline is the barcode, UMI, and set (BUS) file format. This package serves the following purposes: First, this package allows users to manipulate BUS format files as data frames in R and then convert them into gene count or TCC matrices. Furthermore, since R and Rcpp code is easier to handle than pure C++ code, users are encouraged to tweak the source code of this package to experiment with new uses of BUS format and different ways to convert the BUS file into gene count matrix. Second, this package can conveniently generate files required to generate gene count matrices for spliced and unspliced transcripts for RNA velocity. Here biotypes can be filtered and scaffolds and haplotypes can be removed, and the filtered transcriptome can be extracted and written to disk. Third, this package implements utility functions to get transcripts and associated genes required to convert BUS files to gene count matrices, to write the transcript to gene information in the format required by bustools, and to read output of bustools into R as sparses matrices. biocViews: SingleCell, RNASeq, WorkflowStep Author: Lambda Moses [aut, cre] (), Lior Pachter [aut, ths] () Maintainer: Lambda Moses URL: https://github.com/BUStools/BUSpaRse SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/BUStools/BUSpaRse/issues git_url: https://git.bioconductor.org/packages/BUSpaRse git_branch: RELEASE_3_20 git_last_commit: 6ac6d09 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BUSpaRse_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BUSpaRse_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BUSpaRse_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BUSpaRse_1.20.0.tgz vignettes: vignettes/BUSpaRse/inst/doc/sparse-matrix.html, vignettes/BUSpaRse/inst/doc/tr2g.html vignetteTitles: Converting BUS format into sparse matrix, Transcript to gene hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/BUSpaRse/inst/doc/sparse-matrix.R, vignettes/BUSpaRse/inst/doc/tr2g.R dependencyCount: 125 Package: BUSseq Version: 1.12.0 Depends: R (>= 3.6) Imports: SingleCellExperiment, SummarizedExperiment, S4Vectors, gplots, grDevices, methods, stats, utils Suggests: BiocStyle, knitr, BiocGenerics License: Artistic-2.0 Archs: x64 MD5sum: 64c3fd5cab0f930157fe424019a64cda NeedsCompilation: yes Title: Batch Effect Correction with Unknow Subtypes for scRNA-seq data Description: BUSseq R package fits an interpretable Bayesian hierarchical model---the Batch Effects Correction with Unknown Subtypes for scRNA seq Data (BUSseq)---to correct batch effects in the presence of unknown cell types. BUSseq is able to simultaneously correct batch effects, clusters cell types, and takes care of the count data nature, the overdispersion, the dropout events, and the cell-specific sequencing depth of scRNA-seq data. After correcting the batch effects with BUSseq, the corrected value can be used for downstream analysis as if all cells were sequenced in a single batch. BUSseq can integrate read count matrices obtained from different scRNA-seq platforms and allow cell types to be measured in some but not all of the batches as long as the experimental design fulfills the conditions listed in our manuscript. biocViews: ExperimentalDesign, GeneExpression, StatisticalMethod, Bayesian, Clustering, FeatureExtraction, BatchEffect, SingleCell, Sequencing Author: Fangda Song [aut, cre] (), Ga Ming Chan [aut], Yingying Wei [aut] () Maintainer: Fangda Song URL: https://github.com/songfd2018/BUSseq VignetteBuilder: knitr BugReports: https://github.com/songfd2018/BUSseq/issues git_url: https://git.bioconductor.org/packages/BUSseq git_branch: RELEASE_3_20 git_last_commit: c4a1066 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/BUSseq_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/BUSseq_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/BUSseq_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BUSseq_1.12.0.tgz vignettes: vignettes/BUSseq/inst/doc/BUSseq_user_guide.pdf vignetteTitles: BUScorrect_user_guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/BUSseq/inst/doc/BUSseq_user_guide.R dependencyCount: 42 Package: CaDrA Version: 1.4.0 Depends: R (>= 4.4.0) Imports: doParallel, ggplot2, gplots, graphics, grid, gtable, knnmi, MASS, methods, misc3d, plyr, ppcor, R.cache, reshape2, stats, SummarizedExperiment Suggests: BiocManager, devtools, knitr, pheatmap, rmarkdown, testthat (>= 3.1.6) License: GPL-3 + file LICENSE Archs: x64 MD5sum: cab1dab6ad03235b3aa01ad002fdd406 NeedsCompilation: yes Title: Candidate Driver Analysis Description: Performs both stepwise and backward heuristic search for candidate (epi)genetic drivers based on a binary multi-omics dataset. CaDrA's main objective is to identify features which, together, are significantly skewed or enriched pertaining to a given vector of continuous scores (e.g. sample-specific scores representing a phenotypic readout of interest, such as protein expression, pathway activity, etc.), based on the union occurence (i.e. logical OR) of the events. biocViews: Microarray, RNASeq, GeneExpression, Software, FeatureExtraction Author: Reina Chau [aut, cre] (), Katia Bulekova [aut] (), Vinay Kartha [aut], Stefano Monti [aut] () Maintainer: Reina Chau URL: https://github.com/montilab/CaDrA/ VignetteBuilder: knitr BugReports: https://github.com/montilab/CaDrA/issues git_url: https://git.bioconductor.org/packages/CaDrA git_branch: RELEASE_3_20 git_last_commit: 2cd4ec3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CaDrA_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CaDrA_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CaDrA_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CaDrA_1.4.0.tgz vignettes: vignettes/CaDrA/inst/doc/docker.html, vignettes/CaDrA/inst/doc/permutation_based_testing.html, vignettes/CaDrA/inst/doc/scoring_functions.html vignetteTitles: How to run CaDrA within a Docker Environment, Permutation-Based Testing, Scoring Functions hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CaDrA/inst/doc/permutation_based_testing.R, vignettes/CaDrA/inst/doc/scoring_functions.R dependencyCount: 86 Package: CAEN Version: 1.14.0 Depends: R (>= 4.1) Imports: stats,PoiClaClu,SummarizedExperiment,methods Suggests: knitr,rmarkdown,BiocManager,SummarizedExperiment,BiocStyle License: GPL-2 Archs: x64 MD5sum: ff95eb63dae6ed8bc55d4da921199c8d NeedsCompilation: no Title: Category encoding method for selecting feature genes for the classification of single-cell RNA-seq Description: With the development of high-throughput techniques, more and more gene expression analysis tend to replace hybridization-based microarrays with the revolutionary technology.The novel method encodes the category again by employing the rank of samples for each gene in each class. We then consider the correlation coefficient of gene and class with rank of sample and new rank of category. The highest correlation coefficient genes are considered as the feature genes which are most effective to classify the samples. biocViews: DifferentialExpression, Sequencing, Classification, RNASeq, ATACSeq, SingleCell, GeneExpression, RIPSeq Author: Zhou Yan [aut, cre] Maintainer: Zhou Yan <2160090406@email.szu.edu.cn> VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CAEN git_branch: RELEASE_3_20 git_last_commit: 5b60915 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CAEN_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CAEN_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CAEN_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CAEN_1.14.0.tgz vignettes: vignettes/CAEN/inst/doc/CAEN.html vignetteTitles: CAEN Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CAEN/inst/doc/CAEN.R dependencyCount: 37 Package: CAFE Version: 1.42.0 Depends: R (>= 2.10), biovizBase, GenomicRanges, IRanges, ggbio Imports: affy, ggplot2, annotate, grid, gridExtra, tcltk, Biobase Suggests: RUnit, BiocGenerics, BiocStyle License: GPL-3 Archs: x64 MD5sum: 9689cfdc79ee19a10d8c0c095e33eae3 NeedsCompilation: no Title: Chromosmal Aberrations Finder in Expression data Description: Detection and visualizations of gross chromosomal aberrations using Affymetrix expression microarrays as input biocViews: GeneExpression, Microarray, OneChannel, GeneSetEnrichment Author: Sander Bollen Maintainer: Sander Bollen git_url: https://git.bioconductor.org/packages/CAFE git_branch: RELEASE_3_20 git_last_commit: b54c588 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CAFE_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CAFE_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CAFE_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CAFE_1.42.0.tgz vignettes: vignettes/CAFE/inst/doc/CAFE-manual.pdf vignetteTitles: Manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CAFE/inst/doc/CAFE-manual.R dependencyCount: 169 Package: CAGEfightR Version: 1.26.0 Depends: R (>= 3.5), GenomicRanges (>= 1.30.1), rtracklayer (>= 1.38.2), SummarizedExperiment (>= 1.8.1) Imports: pryr(>= 0.1.3), assertthat(>= 0.2.0), methods(>= 3.6.3), Matrix(>= 1.2-12), BiocGenerics(>= 0.24.0), S4Vectors(>= 0.16.0), IRanges(>= 2.12.0), GenomeInfoDb(>= 1.14.0), GenomicFeatures(>= 1.29.11), GenomicAlignments(>= 1.22.1), BiocParallel(>= 1.12.0), GenomicFiles(>= 1.14.0), Gviz(>= 1.22.2), InteractionSet(>= 1.9.4), GenomicInteractions(>= 1.15.1) Suggests: knitr, rmarkdown, BiocStyle, org.Mm.eg.db, TxDb.Mmusculus.UCSC.mm9.knownGene License: GPL-3 + file LICENSE MD5sum: 9c31a19923b66f0d794f9e75aa9be16f NeedsCompilation: no Title: Analysis of Cap Analysis of Gene Expression (CAGE) data using Bioconductor Description: CAGE is a widely used high throughput assay for measuring transcription start site (TSS) activity. CAGEfightR is an R/Bioconductor package for performing a wide range of common data analysis tasks for CAGE and 5'-end data in general. Core functionality includes: import of CAGE TSSs (CTSSs), tag (or unidirectional) clustering for TSS identification, bidirectional clustering for enhancer identification, annotation with transcript and gene models, correlation of TSS and enhancer expression, calculation of TSS shapes, quantification of CAGE expression as expression matrices and genome brower visualization. biocViews: Software, Transcription, Coverage, GeneExpression, GeneRegulation, PeakDetection, DataImport, DataRepresentation, Transcriptomics, Sequencing, Annotation, GenomeBrowsers, Normalization, Preprocessing, Visualization Author: Malte Thodberg Maintainer: Malte Thodberg URL: https://github.com/MalteThodberg/CAGEfightR VignetteBuilder: knitr BugReports: https://github.com/MalteThodberg/CAGEfightR/issues git_url: https://git.bioconductor.org/packages/CAGEfightR git_branch: RELEASE_3_20 git_last_commit: 3f0d403 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CAGEfightR_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CAGEfightR_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CAGEfightR_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CAGEfightR_1.26.0.tgz vignettes: vignettes/CAGEfightR/inst/doc/Introduction_to_CAGEfightR.html vignetteTitles: Introduction to CAGEfightR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CAGEfightR/inst/doc/Introduction_to_CAGEfightR.R dependsOnMe: CAGEWorkflow importsMe: CAGEr suggestsMe: nanotubes dependencyCount: 164 Package: cageminer Version: 1.12.0 Depends: R (>= 4.1) Imports: ggplot2, rlang, ggbio, ggtext, GenomeInfoDb, GenomicRanges, IRanges, reshape2, methods, BioNERO Suggests: testthat (>= 3.0.0), SummarizedExperiment, knitr, BiocStyle, rmarkdown, covr, sessioninfo License: GPL-3 MD5sum: e69419f705e3604dfbbff8c7b383dcf5 NeedsCompilation: no Title: Candidate Gene Miner Description: This package aims to integrate GWAS-derived SNPs and coexpression networks to mine candidate genes associated with a particular phenotype. For that, users must define a set of guide genes, which are known genes involved in the studied phenotype. Additionally, the mined candidates can be given a score that favor candidates that are hubs and/or transcription factors. The scores can then be used to rank and select the top n most promising genes for downstream experiments. biocViews: Software, SNP, FunctionalPrediction, GenomeWideAssociation, GeneExpression, NetworkEnrichment, VariantAnnotation, FunctionalGenomics, Network Author: Fabrício Almeida-Silva [aut, cre] (), Thiago Venancio [aut] () Maintainer: Fabrício Almeida-Silva URL: https://github.com/almeidasilvaf/cageminer VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/cageminer git_url: https://git.bioconductor.org/packages/cageminer git_branch: RELEASE_3_20 git_last_commit: b366150 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cageminer_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cageminer_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cageminer_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cageminer_1.12.0.tgz vignettes: vignettes/cageminer/inst/doc/cageminer.html vignetteTitles: Mining high-confidence candidate genes with cageminer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cageminer/inst/doc/cageminer.R dependencyCount: 208 Package: CAGEr Version: 2.12.0 Depends: methods, MultiAssayExperiment, R (>= 4.1.0) Imports: BiocGenerics, BiocParallel, Biostrings, BSgenome, CAGEfightR, data.table, formula.tools, GenomeInfoDb, GenomicAlignments, GenomicFeatures, GenomicRanges (>= 1.37.16), ggplot2 (>= 2.2.0), gtools, IRanges (>= 2.18.0), KernSmooth, memoise, plyr, rlang, Rsamtools, reshape2, rtracklayer, S4Vectors (>= 0.27.5), scales, som, stringdist, stringi, SummarizedExperiment, utils, vegan, VGAM Suggests: BSgenome.Dmelanogaster.UCSC.dm3, BSgenome.Drerio.UCSC.danRer7, BSgenome.Hsapiens.UCSC.hg18, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Mmusculus.UCSC.mm9, DESeq2, FANTOM3and4CAGE, ggseqlogo, BiocStyle, knitr, rmarkdown License: GPL-3 MD5sum: 056b2f3234240143e260fe91edf2db85 NeedsCompilation: no Title: Analysis of CAGE (Cap Analysis of Gene Expression) sequencing data for precise mapping of transcription start sites and promoterome mining Description: The _CAGEr_ package identifies transcription start sites (TSS) and their usage frequency from CAGE (Cap Analysis Gene Expression) sequencing data. It normalises raw CAGE tag count, clusters TSSs into tag clusters (TC) and aggregates them across multiple CAGE experiments to construct consensus clusters (CC) representing the promoterome. CAGEr provides functions to profile expression levels of these clusters by cumulative expression and rarefaction analysis, and outputs the plots in ggplot2 format for further facetting and customisation. After clustering, CAGEr performs analyses of promoter width and detects differential usage of TSSs (promoter shifting) between samples. CAGEr also exports its data as genome browser tracks, and as R objects for downsteam expression analysis by other Bioconductor packages such as DESeq2, CAGEfightR, or seqArchR. biocViews: Preprocessing, Sequencing, Normalization, FunctionalGenomics, Transcription, GeneExpression, Clustering, Visualization Author: Vanja Haberle [aut], Charles Plessy [cre], Damir Baranasic [ctb], Sarvesh Nikumbh [ctb] Maintainer: Charles Plessy VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CAGEr git_branch: RELEASE_3_20 git_last_commit: 492797d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CAGEr_2.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CAGEr_2.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CAGEr_2.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CAGEr_2.12.0.tgz vignettes: vignettes/CAGEr/inst/doc/CAGEexp.html, vignettes/CAGEr/inst/doc/CAGE_Resources.html vignetteTitles: CAGEr: an R package for CAGE data analysis and promoterome mining, Use of CAGE resources with CAGEr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CAGEr/inst/doc/CAGEexp.R, vignettes/CAGEr/inst/doc/CAGE_Resources.R suggestsMe: seqArchRplus, seqPattern dependencyCount: 178 Package: calm Version: 1.20.0 Imports: mgcv, stats, graphics Suggests: knitr, rmarkdown License: GPL (>=2) MD5sum: 9fe2eb9aa8aa3db12074fee808438ef0 NeedsCompilation: no Title: Covariate Assisted Large-scale Multiple testing Description: Statistical methods for multiple testing with covariate information. Traditional multiple testing methods only consider a list of test statistics, such as p-values. Our methods incorporate the auxiliary information, such as the lengths of gene coding regions or the minor allele frequencies of SNPs, to improve power. biocViews: Bayesian, DifferentialExpression, GeneExpression, Regression, Microarray, Sequencing, RNASeq, MultipleComparison, Genetics, ImmunoOncology, Metabolomics, Proteomics, Transcriptomics Author: Kun Liang [aut, cre] Maintainer: Kun Liang VignetteBuilder: knitr BugReports: https://github.com/k22liang/calm/issues git_url: https://git.bioconductor.org/packages/calm git_branch: RELEASE_3_20 git_last_commit: b31591d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/calm_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/calm_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/calm_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/calm_1.20.0.tgz vignettes: vignettes/calm/inst/doc/calm_intro.html vignetteTitles: Userguide for calm package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/calm/inst/doc/calm_intro.R dependencyCount: 11 Package: CAMERA Version: 1.62.0 Depends: R (>= 3.5.0), methods, Biobase, xcms (>= 1.13.5) Imports: methods, xcms, RBGL, graph, graphics, grDevices, stats, utils, Hmisc, igraph Suggests: faahKO, RUnit, BiocGenerics, multtest Enhances: Rmpi, snow License: GPL (>= 2) MD5sum: e092282c76a9381310b1afc1e425b66c NeedsCompilation: yes Title: Collection of annotation related methods for mass spectrometry data Description: Annotation of peaklists generated by xcms, rule based annotation of isotopes and adducts, isotope validation, EIC correlation based tagging of unknown adducts and fragments biocViews: ImmunoOncology, MassSpectrometry, Metabolomics Author: Carsten Kuhl, Ralf Tautenhahn, Hendrik Treutler, Steffen Neumann {ckuhl|htreutle|sneumann}@ipb-halle.de, rtautenh@scripps.edu Maintainer: Steffen Neumann URL: http://msbi.ipb-halle.de/msbi/CAMERA/ BugReports: https://github.com/sneumann/CAMERA/issues/new git_url: https://git.bioconductor.org/packages/CAMERA git_branch: RELEASE_3_20 git_last_commit: f0ba158 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CAMERA_1.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CAMERA_1.62.0.zip vignettes: vignettes/CAMERA/inst/doc/CAMERA.pdf, vignettes/CAMERA/inst/doc/compoundQuantilesVignette.pdf, vignettes/CAMERA/inst/doc/IsotopeDetectionVignette.pdf vignetteTitles: Molecule Identification with CAMERA, Atom count expectations with compoundQuantiles, Isotope pattern validation with CAMERA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CAMERA/inst/doc/CAMERA.R dependsOnMe: flagme, IPO, LOBSTAHS, MAIT, metaMS, PtH2O2lipids suggestsMe: cliqueMS, msPurity, RMassBank, mtbls2 dependencyCount: 160 Package: CaMutQC Version: 1.2.0 Depends: R (>= 4.0.0) Imports: ggplot2, dplyr, org.Hs.eg.db, vcfR, clusterProfiler, stringr, DT, MesKit, maftools, data.table, utils, stats, methods, tidyr Suggests: knitr, rmarkdown, BiocStyle License: GPL-3 MD5sum: 2f0df30bdb243447767a9f1409f7a240 NeedsCompilation: no Title: An R Package for Comprehensive Filtration and Selection of Cancer Somatic Mutations Description: CaMutQC is able to filter false positive mutations generated due to technical issues, as well as to select candidate cancer mutations through a series of well-structured functions by labeling mutations with various flags. And a detailed and vivid filter report will be offered after completing a whole filtration or selection section. Also, CaMutQC integrates serveral methods and gene panels for Tumor Mutational Burden (TMB) estimation. biocViews: Software, QualityControl, GeneTarget Author: Xin Wang [aut, cre] () Maintainer: Xin Wang URL: https://github.com/likelet/CaMutQC VignetteBuilder: knitr BugReports: https://github.com/likelet/CaMutQC/issues git_url: https://git.bioconductor.org/packages/CaMutQC git_branch: RELEASE_3_20 git_last_commit: e8c754d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CaMutQC_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CaMutQC_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CaMutQC_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CaMutQC_1.2.0.tgz vignettes: vignettes/CaMutQC/inst/doc/CaMutQC-manual.html vignetteTitles: Manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CaMutQC/inst/doc/CaMutQC-manual.R dependencyCount: 173 Package: canceR Version: 1.40.0 Depends: R (>= 4.3), tcltk, cBioPortalData Imports: GSEABase, tkrplot, geNetClassifier, RUnit, Formula, rpart, survival, Biobase, phenoTest, circlize, plyr, tidyr, dplyr, graphics, stats, utils, grDevices, R.oo, R.methodsS3 Suggests: testthat (>= 3.1), knitr, rmarkdown, BiocStyle License: GPL-2 Archs: x64 MD5sum: ea3e99cc592c53d219a6955ef969533d NeedsCompilation: no Title: A Graphical User Interface for accessing and modeling the Cancer Genomics Data of MSKCC Description: The package is user friendly interface based on the cgdsr and other modeling packages to explore, compare, and analyse all available Cancer Data (Clinical data, Gene Mutation, Gene Methylation, Gene Expression, Protein Phosphorylation, Copy Number Alteration) hosted by the Computational Biology Center at Memorial-Sloan-Kettering Cancer Center (MSKCC). biocViews: GUI, GeneExpression, Clustering, GO, GeneSetEnrichment, KEGG, MultipleComparison Author: Karim Mezhoud. Nuclear Safety & Security Department. Nuclear Science Center of Tunisia. Maintainer: Karim Mezhoud SystemRequirements: Tktable, BWidget VignetteBuilder: knitr BugReports: https://github.com/kmezhoud/canceR/issues git_url: https://git.bioconductor.org/packages/canceR git_branch: RELEASE_3_20 git_last_commit: 9346263 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/canceR_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/canceR_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/canceR_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/canceR_1.40.0.tgz vignettes: vignettes/canceR/inst/doc/canceR.html vignetteTitles: canceR: A Graphical User Interface for accessing and modeling the Cancer Genomics Data of MSKCC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/canceR/inst/doc/canceR.R dependencyCount: 215 Package: cancerclass Version: 1.50.0 Depends: R (>= 2.14.0), Biobase, binom, methods, stats Suggests: cancerdata License: GPL 3 MD5sum: 116324a4bf732430c8280593e5eec0ab NeedsCompilation: yes Title: Development and validation of diagnostic tests from high-dimensional molecular data Description: The classification protocol starts with a feature selection step and continues with nearest-centroid classification. The accurarcy of the predictor can be evaluated using training and test set validation, leave-one-out cross-validation or in a multiple random validation protocol. Methods for calculation and visualization of continuous prediction scores allow to balance sensitivity and specificity and define a cutoff value according to clinical requirements. biocViews: Cancer, Microarray, Classification, Visualization Author: Jan Budczies, Daniel Kosztyla Maintainer: Daniel Kosztyla git_url: https://git.bioconductor.org/packages/cancerclass git_branch: RELEASE_3_20 git_last_commit: 2ac0a44 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cancerclass_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cancerclass_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cancerclass_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cancerclass_1.50.0.tgz vignettes: vignettes/cancerclass/inst/doc/vignette_cancerclass.pdf vignetteTitles: Cancerclass: An R package for development and validation of diagnostic tests from high-dimensional molecular data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cancerclass/inst/doc/vignette_cancerclass.R dependencyCount: 7 Package: cardelino Version: 1.8.0 Depends: R (>= 4.2), stats Imports: combinat, GenomeInfoDb, GenomicRanges, ggplot2, ggtree, Matrix, matrixStats, methods, pheatmap, snpStats, S4Vectors, utils, VariantAnnotation, vcfR Suggests: BiocStyle, foreach, knitr, pcaMethods, rmarkdown, testthat, VGAM Enhances: doMC License: GPL-3 MD5sum: cd0a4c4ec8ded3c833d1e32aeb2af021 NeedsCompilation: yes Title: Clone Identification from Single Cell Data Description: Methods to infer clonal tree configuration for a population of cells using single-cell RNA-seq data (scRNA-seq), and possibly other data modalities. Methods are also provided to assign cells to inferred clones and explore differences in gene expression between clones. These methods can flexibly integrate information from imperfect clonal trees inferred based on bulk exome-seq data, and sparse variant alleles expressed in scRNA-seq data. A flexible beta-binomial error model that accounts for stochastic dropout events as well as systematic allelic imbalance is used. biocViews: SingleCell, RNASeq, Visualization, Transcriptomics, GeneExpression, Sequencing, Software, ExomeSeq Author: Jeffrey Pullin [aut], Yuanhua Huang [aut], Davis McCarthy [aut, cre] Maintainer: Davis McCarthy URL: https://github.com/single-cell-genetics/cardelino VignetteBuilder: knitr BugReports: https://github.com/single-cell-genetics/cardelino/issues git_url: https://git.bioconductor.org/packages/cardelino git_branch: RELEASE_3_20 git_last_commit: 751cf0f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cardelino_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cardelino_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cardelino_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cardelino_1.8.0.tgz vignettes: vignettes/cardelino/inst/doc/vignette-cloneid.html vignetteTitles: Clone ID with cardelino hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cardelino/inst/doc/vignette-cloneid.R dependencyCount: 130 Package: Cardinal Version: 3.8.3 Depends: R (>= 4.4), BiocParallel, BiocGenerics, ProtGenerics, S4Vectors, methods, stats, stats4 Imports: CardinalIO, Biobase, EBImage, graphics, grDevices, irlba, Matrix, matter (>= 2.7.10), nlme, parallel, utils Suggests: BiocStyle, testthat, knitr, rmarkdown License: Artistic-2.0 | file LICENSE Archs: x64 MD5sum: e04e7ece8adab4487f666f6a49fc2ce5 NeedsCompilation: no Title: A mass spectrometry imaging toolbox for statistical analysis Description: Implements statistical & computational tools for analyzing mass spectrometry imaging datasets, including methods for efficient pre-processing, spatial segmentation, and classification. biocViews: Software, Infrastructure, Proteomics, Lipidomics, MassSpectrometry, ImagingMassSpectrometry, ImmunoOncology, Normalization, Clustering, Classification, Regression Author: Kylie Ariel Bemis [aut, cre] Maintainer: Kylie Ariel Bemis URL: http://www.cardinalmsi.org VignetteBuilder: knitr BugReports: https://github.com/kuwisdelu/Cardinal/issues git_url: https://git.bioconductor.org/packages/Cardinal git_branch: RELEASE_3_20 git_last_commit: 2f24d1f git_last_commit_date: 2024-12-18 Date/Publication: 2024-12-19 source.ver: src/contrib/Cardinal_3.8.3.tar.gz win.binary.ver: bin/windows/contrib/4.4/Cardinal_3.8.3.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Cardinal_3.8.3.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Cardinal_3.8.3.tgz vignettes: vignettes/Cardinal/inst/doc/Cardinal3-guide.html, vignettes/Cardinal/inst/doc/Cardinal3-stats.html vignetteTitles: 1. Cardinal 3: User guide for mass spectrometry imaging analysis, 2. Cardinal 3: Statistical methods for mass spectrometry imaging hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Cardinal/inst/doc/Cardinal3-guide.R, vignettes/Cardinal/inst/doc/Cardinal3-stats.R dependsOnMe: CardinalWorkflows dependencyCount: 65 Package: CardinalIO Version: 1.4.0 Depends: R (>= 4.4), BiocParallel, matter, ontologyIndex Imports: methods, S4Vectors, stats, utils, tools Suggests: BiocStyle, testthat, knitr, rmarkdown License: Artistic-2.0 | file LICENSE MD5sum: 5a03247fab3dbcef8a70a86c536d0a79 NeedsCompilation: yes Title: Read and write mass spectrometry imaging files Description: Fast and efficient reading and writing of mass spectrometry imaging data files. Supports imzML and Analyze 7.5 formats. Provides ontologies for mass spectrometry imaging. biocViews: Software, Infrastructure, DataImport, MassSpectrometry, ImagingMassSpectrometry Author: Kylie Ariel Bemis [aut, cre] Maintainer: Kylie Ariel Bemis URL: http://www.cardinalmsi.org VignetteBuilder: knitr BugReports: https://github.com/kuwisdelu/CardinalIO/issues git_url: https://git.bioconductor.org/packages/CardinalIO git_branch: RELEASE_3_20 git_last_commit: 39084fd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CardinalIO_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CardinalIO_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CardinalIO_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CardinalIO_1.4.0.tgz vignettes: vignettes/CardinalIO/inst/doc/CardinalIO-guide.html vignetteTitles: Parsing and writing imzML files hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CardinalIO/inst/doc/CardinalIO-guide.R importsMe: Cardinal dependencyCount: 27 Package: CARNIVAL Version: 2.16.0 Depends: R (>= 4.0) Imports: readr, stringr, lpSolve, igraph, dplyr, tibble, tidyr, rjson, rmarkdown Suggests: RefManageR, BiocStyle, covr, knitr, testthat (>= 3.0.0), sessioninfo License: GPL-3 MD5sum: d2dd4eea47a8e994cc4ea365de7889ed NeedsCompilation: no Title: A CAusal Reasoning tool for Network Identification (from gene expression data) using Integer VALue programming Description: An upgraded causal reasoning tool from Melas et al in R with updated assignments of TFs' weights from PROGENy scores. Optimization parameters can be freely adjusted and multiple solutions can be obtained and aggregated. biocViews: Transcriptomics, GeneExpression, Network Author: Enio Gjerga [aut] (), Panuwat Trairatphisan [aut], Anika Liu [ctb], Alberto Valdeolivas [ctb], Nikolas Peschke [ctb], Aurelien Dugourd [ctb], Attila Gabor [cre], Olga Ivanova [aut] Maintainer: Attila Gabor URL: https://github.com/saezlab/CARNIVAL VignetteBuilder: knitr BugReports: https://github.com/saezlab/CARNIVAL/issues git_url: https://git.bioconductor.org/packages/CARNIVAL git_branch: RELEASE_3_20 git_last_commit: a7305b3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CARNIVAL_2.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CARNIVAL_2.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CARNIVAL_2.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CARNIVAL_2.16.0.tgz vignettes: vignettes/CARNIVAL/inst/doc/CARNIVAL.html vignetteTitles: Contextualizing large scale signalling networks from expression footprints with CARNIVAL hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CARNIVAL/inst/doc/CARNIVAL.R importsMe: cosmosR suggestsMe: dce dependencyCount: 64 Package: casper Version: 2.40.0 Depends: R (>= 3.6.0), Biobase, IRanges, methods, GenomicRanges Imports: BiocGenerics (>= 0.31.6), coda, EBarrays, gaga, gtools, GenomeInfoDb, GenomicFeatures, limma, mgcv, Rsamtools, rtracklayer, S4Vectors (>= 0.9.25), sqldf, survival, VGAM Enhances: parallel License: GPL (>=2) Archs: x64 MD5sum: fd3a5c749266a829e4f0a06d339806be NeedsCompilation: yes Title: Characterization of Alternative Splicing based on Paired-End Reads Description: Infer alternative splicing from paired-end RNA-seq data. The model is based on counting paths across exons, rather than pairwise exon connections, and estimates the fragment size and start distributions non-parametrically, which improves estimation precision. biocViews: ImmunoOncology, GeneExpression, DifferentialExpression, Transcription, RNASeq, Sequencing Author: David Rossell, Camille Stephan-Otto, Manuel Kroiss, Miranda Stobbe, Victor Pena Maintainer: David Rossell git_url: https://git.bioconductor.org/packages/casper git_branch: RELEASE_3_20 git_last_commit: b17e7db git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/casper_2.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/casper_2.40.0.zip vignettes: vignettes/casper/inst/doc/casper.pdf, vignettes/casper/inst/doc/DesignRNASeq.pdf vignetteTitles: Manual for the casper library, DesignRNASeq.pdf hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/casper/inst/doc/casper.R dependencyCount: 93 Package: CATALYST Version: 1.30.2 Depends: R (>= 4.4), SingleCellExperiment Imports: circlize, ComplexHeatmap, ConsensusClusterPlus, cowplot, data.table, dplyr, drc, flowCore, FlowSOM, ggplot2, ggrepel, ggridges, graphics, grDevices, grid, gridExtra, Matrix, matrixStats, methods, nnls, purrr, RColorBrewer, reshape2, Rtsne, SummarizedExperiment, S4Vectors, scales, scater, stats Suggests: BiocStyle, diffcyt, flowWorkspace, ggcyto, knitr, openCyto, rmarkdown, testthat, uwot License: GPL (>=2) MD5sum: 0bffc512e9db95191b02603909b5347d NeedsCompilation: no Title: Cytometry dATa anALYSis Tools Description: CATALYST provides tools for preprocessing of and differential discovery in cytometry data such as FACS, CyTOF, and IMC. Preprocessing includes i) normalization using bead standards, ii) single-cell deconvolution, and iii) bead-based compensation. For differential discovery, the package provides a number of convenient functions for data processing (e.g., clustering, dimension reduction), as well as a suite of visualizations for exploratory data analysis and exploration of results from differential abundance (DA) and state (DS) analysis in order to identify differences in composition and expression profiles at the subpopulation-level, respectively. biocViews: Clustering, DataImport, DifferentialExpression, ExperimentalDesign, FlowCytometry, ImmunoOncology, MassSpectrometry,Normalization, Preprocessing, SingleCell, Software, StatisticalMethod, Visualization Author: Helena L. Crowell [aut, cre] (), Vito R.T. Zanotelli [aut] (), Stéphane Chevrier [aut, dtc] (), Mark D. Robinson [aut, fnd] (), Bernd Bodenmiller [fnd] () Maintainer: Helena L. Crowell URL: https://github.com/HelenaLC/CATALYST VignetteBuilder: knitr BugReports: https://github.com/HelenaLC/CATALYST/issues git_url: https://git.bioconductor.org/packages/CATALYST git_branch: RELEASE_3_20 git_last_commit: 6273a8d git_last_commit_date: 2024-11-28 Date/Publication: 2024-12-02 source.ver: src/contrib/CATALYST_1.30.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/CATALYST_1.30.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CATALYST_1.30.2.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CATALYST_1.30.2.tgz vignettes: vignettes/CATALYST/inst/doc/differential.html, vignettes/CATALYST/inst/doc/preprocessing.html vignetteTitles: "2. Differential discovery", "1. Preprocessing" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CATALYST/inst/doc/differential.R, vignettes/CATALYST/inst/doc/preprocessing.R dependsOnMe: spillR, cytofWorkflow importsMe: cytofQC suggestsMe: diffcyt, imcRtools, treekoR dependencyCount: 179 Package: Category Version: 2.72.0 Depends: methods, stats4, BiocGenerics, AnnotationDbi, Biobase, Matrix Imports: utils, stats, graph, RBGL, GSEABase, genefilter, annotate, DBI Suggests: EBarrays, ALL, Rgraphviz, RColorBrewer, xtable (>= 1.4-6), hgu95av2.db, KEGGREST, karyoploteR, geneplotter, limma, lattice, RUnit, org.Sc.sgd.db, GOstats, GO.db License: Artistic-2.0 Archs: x64 MD5sum: 2784fd82b32eca8f0e0da92fe8bee5ed NeedsCompilation: no Title: Category Analysis Description: A collection of tools for performing category (gene set enrichment) analysis. biocViews: Annotation, GO, Pathways, GeneSetEnrichment Author: Robert Gentleman [aut], Seth Falcon [ctb], Deepayan Sarkar [ctb], Robert Castelo [ctb], Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer git_url: https://git.bioconductor.org/packages/Category git_branch: RELEASE_3_20 git_last_commit: 343907a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Category_2.72.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Category_2.72.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Category_2.72.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Category_2.72.0.tgz vignettes: vignettes/Category/inst/doc/Category.pdf, vignettes/Category/inst/doc/ChromBand.pdf vignetteTitles: Using Categories to Analyze Microarray Data, Using Chromosome Bands as Categories hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Category/inst/doc/Category.R, vignettes/Category/inst/doc/ChromBand.R dependsOnMe: GOstats importsMe: categoryCompare, GmicR, interactiveDisplay, meshr, miRLAB, phenoTest, scTensor suggestsMe: qpgraph, RnBeads, maGUI dependencyCount: 60 Package: categoryCompare Version: 1.50.0 Depends: R (>= 2.10), Biobase, BiocGenerics (>= 0.13.8), Imports: AnnotationDbi, hwriter, GSEABase, Category (>= 2.33.1), GOstats, annotate, colorspace, graph, RCy3 (>= 1.99.29), methods, grDevices, utils Suggests: knitr, GO.db, KEGGREST, estrogen, org.Hs.eg.db, hgu95av2.db, limma, affy, genefilter, rmarkdown License: GPL-2 MD5sum: 698bd62c3b933e00e072bf741fd1bbb4 NeedsCompilation: no Title: Meta-analysis of high-throughput experiments using feature annotations Description: Calculates significant annotations (categories) in each of two (or more) feature (i.e. gene) lists, determines the overlap between the annotations, and returns graphical and tabular data about the significant annotations and which combinations of feature lists the annotations were found to be significant. Interactive exploration is facilitated through the use of RCytoscape (heavily suggested). biocViews: Annotation, GO, MultipleComparison, Pathways, GeneExpression Author: Robert M. Flight Maintainer: Robert M. Flight URL: https://github.com/rmflight/categoryCompare SystemRequirements: Cytoscape (>= 3.6.1) (if used for visualization of results, heavily suggested) VignetteBuilder: knitr BugReports: https://github.com/rmflight/categoryCompare/issues git_url: https://git.bioconductor.org/packages/categoryCompare git_branch: RELEASE_3_20 git_last_commit: c2b6ac0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/categoryCompare_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/categoryCompare_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/categoryCompare_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/categoryCompare_1.50.0.tgz vignettes: vignettes/categoryCompare/inst/doc/categoryCompare_vignette.html vignetteTitles: categoryCompare: High-throughput data meta-analysis using gene annotations hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/categoryCompare/inst/doc/categoryCompare_vignette.R dependencyCount: 91 Package: CatsCradle Version: 1.0.0 Depends: R (>= 4.4.0) Imports: Seurat (>= 5.0.1), ggplot2, networkD3, stringr, pracma, reshape2, rdist, igraph, geometry, Rfast, data.table, abind, pheatmap, EBImage, S4Vectors, SeuratObject, SingleCellExperiment, SpatialExperiment, Matrix, methods, SummarizedExperiment, msigdbr Suggests: fossil, interp, knitr, BiocStyle, tictoc License: MIT + file LICENSE MD5sum: a7c7b9e66686e0df39d6641658e7b387 NeedsCompilation: no Title: This package provides methods for analysing spatial transcriptomics data and for discovering gene clusters Description: This package addresses two broad areas. It allows for in-depth analysis of spatial transcriptomic data by identifying tissue neighbourhoods. These are contiguous regions of tissue surrounding individual cells. 'CatsCradle' allows for the categorisation of neighbourhoods by the cell types contained in them and the genes expressed in them. In particular, it produces Seurat objects whose individual elements are neighbourhoods rather than cells. In addition, it enables the categorisation and annotation of genes by producing Seurat objects whose elements are genes. biocViews: BiologicalQuestion, StatisticalMethod, GeneExpression, SingleCell, Transcriptomics, Spatial Author: Anna Laddach [aut] (), Michael Shapiro [aut, cre] () Maintainer: Michael Shapiro URL: https://github.com/AnnaLaddach/CatsCradle VignetteBuilder: knitr BugReports: https://github.com/AnnaLaddach/CatsCradle/issues git_url: https://git.bioconductor.org/packages/CatsCradle git_branch: RELEASE_3_20 git_last_commit: df3ef22 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CatsCradle_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CatsCradle_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CatsCradle_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CatsCradle_1.0.0.tgz vignettes: vignettes/CatsCradle/inst/doc/CatsCradleExampleData.html, vignettes/CatsCradle/inst/doc/CatsCradle.html, vignettes/CatsCradle/inst/doc/CatsCradleQuickStart.html, vignettes/CatsCradle/inst/doc/CatsCradleSingleCellExperimentQuickStart.html, vignettes/CatsCradle/inst/doc/CatsCradleSpatial.html vignetteTitles: CatsCradle Example Data, CatsCradle, CatsCradle Quick Start, CatsCradle SingleCellExperiment Quick Start, CatsCradle Spatial Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CatsCradle/inst/doc/CatsCradleExampleData.R, vignettes/CatsCradle/inst/doc/CatsCradleQuickStart.R, vignettes/CatsCradle/inst/doc/CatsCradle.R, vignettes/CatsCradle/inst/doc/CatsCradleSingleCellExperimentQuickStart.R, vignettes/CatsCradle/inst/doc/CatsCradleSpatial.R dependencyCount: 204 Package: CausalR Version: 1.38.0 Depends: R (>= 3.2.0) Imports: igraph Suggests: knitr, RUnit, BiocGenerics License: GPL (>= 2) MD5sum: ad152d4f41605f4c7784494641686fd3 NeedsCompilation: no Title: Causal network analysis methods Description: Causal network analysis methods for regulator prediction and network reconstruction from genome scale data. biocViews: ImmunoOncology, SystemsBiology, Network, GraphAndNetwork, Network Inference, Transcriptomics, Proteomics, DifferentialExpression, RNASeq, Microarray Author: Glyn Bradley, Steven Barrett, Chirag Mistry, Mark Pipe, David Wille, David Riley, Bhushan Bonde, Peter Woollard Maintainer: Glyn Bradley , Steven Barrett VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CausalR git_branch: RELEASE_3_20 git_last_commit: 2efa507 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CausalR_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CausalR_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CausalR_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CausalR_1.38.0.tgz vignettes: vignettes/CausalR/inst/doc/CausalR.pdf vignetteTitles: CausalR.pdf hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CausalR/inst/doc/CausalR.R dependencyCount: 17 Package: cbaf Version: 1.28.0 Depends: R (>= 4.1) Imports: BiocFileCache, RColorBrewer, cBioPortalData, genefilter, gplots, grDevices, stats, utils, openxlsx, zip Suggests: knitr, rmarkdown, BiocStyle License: Artistic-2.0 MD5sum: 718fd18e73d785240a766ca4282ff05c NeedsCompilation: no Title: Automated functions for comparing various omic data from cbioportal.org Description: This package contains functions that allow analysing and comparing omic data across various cancers/cancer subgroups easily. So far, it is compatible with RNA-seq, microRNA-seq, microarray and methylation datasets that are stored on cbioportal.org. biocViews: Software, AssayDomain, DNAMethylation, GeneExpression, Transcription, Microarray,ResearchField, BiomedicalInformatics, ComparativeGenomics, Epigenetics, Genetics, Transcriptomics Author: Arman Shahrisa [aut, cre, cph], Maryam Tahmasebi Birgani [aut] Maintainer: Arman Shahrisa VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/cbaf git_branch: RELEASE_3_20 git_last_commit: 06951a1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cbaf_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cbaf_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cbaf_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cbaf_1.28.0.tgz vignettes: vignettes/cbaf/inst/doc/cbaf.html vignetteTitles: cbaf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cbaf/inst/doc/cbaf.R dependencyCount: 156 Package: CBEA Version: 1.6.0 Depends: R (>= 4.2.0) Imports: BiocParallel, BiocSet, dplyr, lmom, fitdistrplus, magrittr, methods, mixtools, Rcpp (>= 1.0.7), stats, SummarizedExperiment, tibble, TreeSummarizedExperiment, tidyr, glue, generics, rlang, goftest LinkingTo: Rcpp Suggests: phyloseq, BiocStyle, covr, knitr, RefManageR, rmarkdown, sessioninfo, testthat (>= 3.0.0), tidyverse, roxygen2, mia, purrr License: MIT + file LICENSE MD5sum: 30daf429eb8568948239698ba7f06989 NeedsCompilation: yes Title: Competitive Balances for Taxonomic Enrichment Analysis in R Description: This package implements CBEA, a method to perform set-based analysis for microbiome relative abundance data. This approach constructs a competitive balance between taxa within the set and remainder taxa per sample. More details can be found in the Nguyen et al. 2021+ manuscript. Additionally, this package adds support functions to help users perform taxa-set enrichment analyses using existing gene set analysis methods. In the future we hope to also provide curated knowledge driven taxa sets. biocViews: Software, Microbiome, Metagenomics, GeneSetEnrichment, DataImport Author: Quang Nguyen [aut, cre] () Maintainer: Quang Nguyen URL: https://github.com/qpmnguyen/CBEA, https://qpmnguyen.github.io/CBEA/ VignetteBuilder: knitr BugReports: https://github.com/qpmnguyen/CBEA//issues git_url: https://git.bioconductor.org/packages/CBEA git_branch: RELEASE_3_20 git_last_commit: f7c6c6e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CBEA_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CBEA_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CBEA_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CBEA_1.6.0.tgz vignettes: vignettes/CBEA/inst/doc/basic_usage.html vignetteTitles: Basic Usage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CBEA/inst/doc/basic_usage.R dependencyCount: 133 Package: cBioPortalData Version: 2.18.1 Depends: R (>= 4.2.0), AnVIL (>= 1.7.1), MultiAssayExperiment Imports: BiocFileCache (>= 1.5.3), digest, dplyr, GenomeInfoDb, GenomicRanges, httr, IRanges, methods, readr, RaggedExperiment, RTCGAToolbox (>= 2.19.7), S4Vectors, SummarizedExperiment, stats, tibble, tidyr, TCGAutils (>= 1.9.4), utils Suggests: BiocStyle, knitr, survival, survminer, rmarkdown, testthat License: AGPL-3 MD5sum: d09e5412a01237ad987ee02f18a22370 NeedsCompilation: no Title: Exposes and Makes Available Data from the cBioPortal Web Resources Description: The cBioPortalData R package accesses study datasets from the cBio Cancer Genomics Portal. It accesses the data either from the pre-packaged zip / tar files or from the API interface that was recently implemented by the cBioPortal Data Team. The package can provide data in either tabular format or with MultiAssayExperiment object that uses familiar Bioconductor data representations. biocViews: Software, Infrastructure, ThirdPartyClient Author: Levi Waldron [aut], Marcel Ramos [aut, cre] (), Karim Mezhoud [ctb] Maintainer: Marcel Ramos VignetteBuilder: knitr BugReports: https://github.com/waldronlab/cBioPortalData/issues git_url: https://git.bioconductor.org/packages/cBioPortalData git_branch: RELEASE_3_20 git_last_commit: f410dfa git_last_commit_date: 2024-12-20 Date/Publication: 2024-12-23 source.ver: src/contrib/cBioPortalData_2.18.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/cBioPortalData_2.18.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cBioPortalData_2.18.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cBioPortalData_2.18.1.tgz vignettes: vignettes/cBioPortalData/inst/doc/cBioPortalDataErrors.html, vignettes/cBioPortalData/inst/doc/cBioPortalData.html, vignettes/cBioPortalData/inst/doc/cBioPortalRClient.html, vignettes/cBioPortalData/inst/doc/cgdsrMigration.html vignetteTitles: cBioPortal Data Build Errors, cBioPortalData User Guide, cBioPortal Developer Guide, cgdsr to cBioPortalData Migration hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cBioPortalData/inst/doc/cBioPortalDataErrors.R, vignettes/cBioPortalData/inst/doc/cBioPortalData.R, vignettes/cBioPortalData/inst/doc/cBioPortalRClient.R, vignettes/cBioPortalData/inst/doc/cgdsrMigration.R dependsOnMe: bioCancer, canceR importsMe: cbaf, GNOSIS suggestsMe: OmicsMLRepoR dependencyCount: 144 Package: CBNplot Version: 1.6.0 Depends: R (>= 4.3.0) Imports: ggplot2, magrittr, graphite, ggraph, igraph, bnlearn (>= 4.7), patchwork, org.Hs.eg.db, clusterProfiler, utils, enrichplot, reshape2, ggforce, dplyr, tidyr, stringr, depmap, ExperimentHub, Rmpfr, graphlayouts, BiocFileCache, ggdist, purrr, pvclust, stats, rlang Suggests: knitr, arules, concaveman, ReactomePA, bnviewer, rmarkdown, withr, BiocStyle, testthat (>= 3.0.0) License: Artistic-2.0 Archs: x64 MD5sum: 1b6998ff402119e2e1bd5d0fde10175a NeedsCompilation: no Title: plot bayesian network inferred from gene expression data based on enrichment analysis results Description: This package provides the visualization of bayesian network inferred from gene expression data. The networks are based on enrichment analysis results inferred from packages including clusterProfiler and ReactomePA. The networks between pathways and genes inside the pathways can be inferred and visualized. biocViews: Visualization, Bayesian, GeneExpression, NetworkInference, Pathways, Reactome, Network, NetworkEnrichment, GeneSetEnrichment Author: Noriaki Sato [cre, aut] Maintainer: Noriaki Sato URL: https://github.com/noriakis/CBNplot VignetteBuilder: knitr BugReports: https://github.com/noriakis/CBNplot/issues git_url: https://git.bioconductor.org/packages/CBNplot git_branch: RELEASE_3_20 git_last_commit: 4aef64f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CBNplot_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CBNplot_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CBNplot_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CBNplot_1.6.0.tgz vignettes: vignettes/CBNplot/inst/doc/CBNplot_basic_usage.html vignetteTitles: CBNplot hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CBNplot/inst/doc/CBNplot_basic_usage.R dependencyCount: 152 Package: cbpManager Version: 1.14.0 Depends: shiny, shinydashboard Imports: utils, DT, htmltools, vroom, plyr, dplyr, magrittr, jsonlite, rapportools, basilisk, reticulate, shinyBS, shinycssloaders, rintrojs, rlang, markdown Suggests: knitr, BiocStyle, rmarkdown, testthat (>= 3.0.0) License: AGPL-3 + file LICENSE MD5sum: 0b499c0dabec8c6f39df576b789c1dbb NeedsCompilation: no Title: Generate, manage, and edit data and metadata files suitable for the import in cBioPortal for Cancer Genomics Description: This R package provides an R Shiny application that enables the user to generate, manage, and edit data and metadata files suitable for the import in cBioPortal for Cancer Genomics. Create cancer studies and edit its metadata. Upload mutation data of a patient that will be concatenated to the data_mutation_extended.txt file of the study. Create and edit clinical patient data, sample data, and timeline data. Create custom timeline tracks for patients. biocViews: ImmunoOncology, DataImport, DataRepresentation, GUI, ThirdPartyClient, Preprocessing, Visualization Author: Arsenij Ustjanzew [aut, cre, cph] (), Federico Marini [aut] () Maintainer: Arsenij Ustjanzew URL: https://arsenij-ust.github.io/cbpManager/index.html VignetteBuilder: knitr BugReports: https://github.com/arsenij-ust/cbpManager/issues git_url: https://git.bioconductor.org/packages/cbpManager git_branch: RELEASE_3_20 git_last_commit: 34436fb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cbpManager_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cbpManager_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cbpManager_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cbpManager_1.14.0.tgz vignettes: vignettes/cbpManager/inst/doc/intro.html vignetteTitles: intro.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/cbpManager/inst/doc/intro.R dependencyCount: 89 Package: ccfindR Version: 1.26.0 Depends: R (>= 3.6.0) Imports: stats, S4Vectors, utils, methods, Matrix, SummarizedExperiment, SingleCellExperiment, Rtsne, graphics, grDevices, gtools, RColorBrewer, ape, Rmpi, irlba, Rcpp, Rdpack (>= 0.7) LinkingTo: Rcpp, RcppEigen Suggests: BiocStyle, knitr, rmarkdown License: GPL (>= 2) MD5sum: 5867f5ce4db69f5458c4bd2ff520d6f4 NeedsCompilation: yes Title: Cancer Clone Finder Description: A collection of tools for cancer genomic data clustering analyses, including those for single cell RNA-seq. Cell clustering and feature gene selection analysis employ Bayesian (and maximum likelihood) non-negative matrix factorization (NMF) algorithm. Input data set consists of RNA count matrix, gene, and cell bar code annotations. Analysis outputs are factor matrices for multiple ranks and marginal likelihood values for each rank. The package includes utilities for downstream analyses, including meta-gene identification, visualization, and construction of rank-based trees for clusters. biocViews: Transcriptomics, SingleCell, ImmunoOncology, Bayesian, Clustering Author: Jun Woo [aut, cre], Jinhua Wang [aut] Maintainer: Jun Woo URL: http://dx.doi.org/10.26508/lsa.201900443 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ccfindR git_branch: RELEASE_3_20 git_last_commit: ded6772 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ccfindR_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ccfindR_1.26.0.zip vignettes: vignettes/ccfindR/inst/doc/ccfindR.html vignetteTitles: ccfindR: single-cell RNA-seq analysis using Bayesian non-negative matrix factorization hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ccfindR/inst/doc/ccfindR.R suggestsMe: MutationalPatterns dependencyCount: 50 Package: ccImpute Version: 1.8.0 Imports: Rcpp, sparseMatrixStats, stats, BiocParallel, irlba, SingleCellExperiment, Matrix, SummarizedExperiment LinkingTo: Rcpp, RcppEigen Suggests: knitr, rmarkdown, BiocStyle, sessioninfo, scRNAseq, scater, mclust, testthat (>= 3.0.0), splatter License: GPL-3 MD5sum: 1f2214b009e55a529068e1618e30b81f NeedsCompilation: yes Title: ccImpute: an accurate and scalable consensus clustering based approach to impute dropout events in the single-cell RNA-seq data (https://doi.org/10.1186/s12859-022-04814-8) Description: Dropout events make the lowly expressed genes indistinguishable from true zero expression and different than the low expression present in cells of the same type. This issue makes any subsequent downstream analysis difficult. ccImpute is an imputation algorithm that uses cell similarity established by consensus clustering to impute the most probable dropout events in the scRNA-seq datasets. ccImpute demonstrated performance which exceeds the performance of existing imputation approaches while introducing the least amount of new noise as measured by clustering performance characteristics on datasets with known cell identities. biocViews: SingleCell, Sequencing, PrincipalComponent, DimensionReduction, Clustering, RNASeq, Transcriptomics Author: Marcin Malec [cre, aut] (), Parichit Sharma [aut] (), Hasan Kurban [aut] (), Mehmet Dalkilic [aut] Maintainer: Marcin Malec URL: https://github.com/khazum/ccImpute/ VignetteBuilder: knitr BugReports: https://github.com/khazum/ccImpute/issues git_url: https://git.bioconductor.org/packages/ccImpute git_branch: RELEASE_3_20 git_last_commit: 2e68b5c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ccImpute_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ccImpute_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ccImpute_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ccImpute_1.8.0.tgz vignettes: vignettes/ccImpute/inst/doc/ccImpute.html vignetteTitles: ccImpute package manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ccImpute/inst/doc/ccImpute.R dependencyCount: 51 Package: ccmap Version: 1.32.0 Imports: AnnotationDbi (>= 1.36.2), BiocManager (>= 1.30.4), ccdata (>= 1.1.2), doParallel (>= 1.0.10), data.table (>= 1.10.4), foreach (>= 1.4.3), parallel (>= 3.3.3), xgboost (>= 0.6.4), lsa (>= 0.73.1) Suggests: crossmeta, knitr, rmarkdown, testthat, lydata License: MIT + file LICENSE Archs: x64 MD5sum: 350b860cb1123cd82d554b834566c29a NeedsCompilation: no Title: Combination Connectivity Mapping Description: Finds drugs and drug combinations that are predicted to reverse or mimic gene expression signatures. These drugs might reverse diseases or mimic healthy lifestyles. biocViews: GeneExpression, Transcription, Microarray, DifferentialExpression Author: Alex Pickering Maintainer: Alex Pickering VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ccmap git_branch: RELEASE_3_20 git_last_commit: eb9f22a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ccmap_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ccmap_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ccmap_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ccmap_1.32.0.tgz vignettes: vignettes/ccmap/inst/doc/ccmap-vignette.html vignetteTitles: ccmap vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ccmap/inst/doc/ccmap-vignette.R dependencyCount: 59 Package: CCPlotR Version: 1.4.0 Imports: plyr, tidyr, dplyr, ggplot2, forcats, ggraph, igraph, scatterpie, circlize, ComplexHeatmap, tibble, grid, ggbump, stringr, ggtext, ggh4x, patchwork, RColorBrewer, scales, viridis, grDevices, graphics, stats, methods Suggests: knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0) License: MIT + file LICENSE Archs: x64 MD5sum: 568a1409688bbdcbd8041e911f45147e NeedsCompilation: no Title: Plots For Visualising Cell-Cell Interactions Description: CCPlotR is an R package for visualising results from tools that predict cell-cell interactions from single-cell RNA-seq data. These plots are generic and can be used to visualise results from multiple tools such as Liana, CellPhoneDB, NATMI etc. biocViews: SingleCell, Network, Visualization, CellBiology, SystemsBiology Author: Sarah Ennis [aut, cre] (), Pilib Ó Broin [aut], Eva Szegezdi [aut] Maintainer: Sarah Ennis URL: https://github.com/Sarah145/CCPlotR VignetteBuilder: knitr BugReports: https://github.com/Sarah145/CCPlotR/issues git_url: https://git.bioconductor.org/packages/CCPlotR git_branch: RELEASE_3_20 git_last_commit: 8196f7b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CCPlotR_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CCPlotR_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CCPlotR_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CCPlotR_1.4.0.tgz vignettes: vignettes/CCPlotR/inst/doc/CCPlotR_visualisations.html vignetteTitles: User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CCPlotR/inst/doc/CCPlotR_visualisations.R dependencyCount: 99 Package: CCPROMISE Version: 1.32.0 Depends: R (>= 3.3.0), stats, methods, CCP, PROMISE, Biobase, GSEABase, utils License: GPL (>= 2) MD5sum: 07f93a5a9f5eeb58a89cc2ccd4f8156a NeedsCompilation: no Title: PROMISE analysis with Canonical Correlation for Two Forms of High Dimensional Genetic Data Description: Perform Canonical correlation between two forms of high demensional genetic data, and associate the first compoent of each form of data with a specific biologically interesting pattern of associations with multiple endpoints. A probe level analysis is also implemented. biocViews: Microarray, GeneExpression Author: Xueyuan Cao and Stanley.pounds Maintainer: Xueyuan Cao git_url: https://git.bioconductor.org/packages/CCPROMISE git_branch: RELEASE_3_20 git_last_commit: e77de8b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CCPROMISE_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CCPROMISE_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CCPROMISE_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CCPROMISE_1.32.0.tgz vignettes: vignettes/CCPROMISE/inst/doc/CCPROMISE.pdf vignetteTitles: An introduction to CCPROMISE hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CCPROMISE/inst/doc/CCPROMISE.R dependencyCount: 52 Package: ccrepe Version: 1.42.0 Imports: infotheo (>= 1.1) Suggests: knitr, BiocStyle, BiocGenerics, testthat, RUnit License: MIT + file LICENSE MD5sum: fa406df6f23f3e0f98ceb330645cf3cf NeedsCompilation: no Title: ccrepe_and_nc.score Description: The CCREPE (Compositionality Corrected by REnormalizaion and PErmutation) package is designed to assess the significance of general similarity measures in compositional datasets. In microbial abundance data, for example, the total abundances of all microbes sum to one; CCREPE is designed to take this constraint into account when assigning p-values to similarity measures between the microbes. The package has two functions: ccrepe: Calculates similarity measures, p-values and q-values for relative abundances of bugs in one or two body sites using bootstrap and permutation matrices of the data. nc.score: Calculates species-level co-variation and co-exclusion patterns based on an extension of the checkerboard score to ordinal data. biocViews: ImmunoOncology, Statistics, Metagenomics, Bioinformatics, Software Author: Emma Schwager ,Craig Bielski, George Weingart Maintainer: Emma Schwager ,Craig Bielski, George Weingart VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ccrepe git_branch: RELEASE_3_20 git_last_commit: 105c5db git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ccrepe_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ccrepe_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ccrepe_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ccrepe_1.42.0.tgz vignettes: vignettes/ccrepe/inst/doc/ccrepe.pdf vignetteTitles: ccrepe hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ccrepe/inst/doc/ccrepe.R dependencyCount: 1 Package: CDI Version: 1.4.0 Depends: R(>= 3.6) Imports: matrixStats, Seurat, SeuratObject, stats, BiocParallel, ggplot2, reshape2, grDevices, ggsci, SingleCellExperiment, SummarizedExperiment, methods Suggests: knitr, rmarkdown, RUnit, BiocGenerics, magick, BiocStyle License: GPL-3 + file LICENSE MD5sum: 19e4c824c0177090307638f483e15173 NeedsCompilation: no Title: Clustering Deviation Index (CDI) Description: Single-cell RNA-sequencing (scRNA-seq) is widely used to explore cellular variation. The analysis of scRNA-seq data often starts from clustering cells into subpopulations. This initial step has a high impact on downstream analyses, and hence it is important to be accurate. However, there have not been unsupervised metric designed for scRNA-seq to evaluate clustering performance. Hence, we propose clustering deviation index (CDI), an unsupervised metric based on the modeling of scRNA-seq UMI counts to evaluate clustering of cells. biocViews: SingleCell, Software, Clustering, Visualization, Sequencing, RNASeq, CellBasedAssays Author: Jiyuan Fang [cre, aut] (), Jichun Xie [ctb], Cliburn Chan [ctb], Kouros Owzar [ctb], Liuyang Wang [ctb], Diyuan Qin [ctb], Qi-Jing Li [ctb], Jichun Xie [ctb] Maintainer: Jiyuan Fang URL: https://github.com/jichunxie/CDI VignetteBuilder: knitr BugReports: https://github.com/jichunxie/CDI/issues git_url: https://git.bioconductor.org/packages/CDI git_branch: RELEASE_3_20 git_last_commit: 52197d1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CDI_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CDI_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CDI_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CDI_1.4.0.tgz vignettes: vignettes/CDI/inst/doc/CDI.html vignetteTitles: Clustering Deviation Index (CDI) Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CDI/inst/doc/CDI.R dependencyCount: 179 Package: celaref Version: 1.24.0 Depends: R (>= 3.5.0), SummarizedExperiment Imports: MAST, ggplot2, Matrix, dplyr, magrittr, stats, utils, rlang, BiocGenerics, S4Vectors, readr, tibble, DelayedArray Suggests: limma, parallel, knitr, rmarkdown, ExperimentHub, testthat License: GPL-3 MD5sum: 445dc9fc9201b8b1eb4978c80c0b4171 NeedsCompilation: no Title: Single-cell RNAseq cell cluster labelling by reference Description: After the clustering step of a single-cell RNAseq experiment, this package aims to suggest labels/cell types for the clusters, on the basis of similarity to a reference dataset. It requires a table of read counts per cell per gene, and a list of the cells belonging to each of the clusters, (for both test and reference data). biocViews: SingleCell Author: Sarah Williams [aut, cre] Maintainer: Sarah Williams VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/celaref git_branch: RELEASE_3_20 git_last_commit: c25869f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/celaref_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/celaref_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/celaref_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/celaref_1.24.0.tgz vignettes: vignettes/celaref/inst/doc/celaref_doco.html vignetteTitles: Manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/celaref/inst/doc/celaref_doco.R dependencyCount: 84 Package: celda Version: 1.22.0 Depends: R (>= 4.0), SingleCellExperiment, Matrix Imports: plyr, foreach, ggplot2, RColorBrewer, grid, scales, gtable, grDevices, graphics, matrixStats, doParallel, digest, methods, reshape2, S4Vectors, data.table, Rcpp, RcppEigen, uwot, enrichR, SummarizedExperiment, MCMCprecision, ggrepel, Rtsne, withr, scater (>= 1.14.4), scran, dbscan, DelayedArray, stringr, ComplexHeatmap, gridExtra, circlize LinkingTo: Rcpp, RcppEigen Suggests: testthat, knitr, roxygen2, rmarkdown, biomaRt, covr, BiocManager, BiocStyle, TENxPBMCData, singleCellTK, M3DExampleData License: MIT + file LICENSE MD5sum: 634d074a852e468ae51c3bf34d740134 NeedsCompilation: yes Title: CEllular Latent Dirichlet Allocation Description: Celda is a suite of Bayesian hierarchical models for clustering single-cell RNA-sequencing (scRNA-seq) data. It is able to perform "bi-clustering" and simultaneously cluster genes into gene modules and cells into cell subpopulations. It also contains DecontX, a novel Bayesian method to computationally estimate and remove RNA contamination in individual cells without empty droplet information. A variety of scRNA-seq data visualization functions is also included. biocViews: SingleCell, GeneExpression, Clustering, Sequencing, Bayesian, ImmunoOncology, DataImport Author: Joshua Campbell [aut, cre], Shiyi Yang [aut], Zhe Wang [aut], Sean Corbett [aut], Yusuke Koga [aut] Maintainer: Joshua Campbell VignetteBuilder: knitr BugReports: https://github.com/campbio/celda/issues git_url: https://git.bioconductor.org/packages/celda git_branch: RELEASE_3_20 git_last_commit: 2625df5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/celda_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/celda_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/celda_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/celda_1.21.0.tgz vignettes: vignettes/celda/inst/doc/celda.html, vignettes/celda/inst/doc/decontX.html vignetteTitles: Analysis of single-cell genomic data with celda, Estimate and remove cross-contamination from ambient RNA in single-cell data with DecontX hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/celda/inst/doc/celda.R, vignettes/celda/inst/doc/decontX.R importsMe: decontX, singleCellTK dependencyCount: 137 Package: CellBarcode Version: 1.12.0 Depends: R (>= 4.1.0) Imports: methods, stats, Rcpp (>= 1.0.5), data.table (>= 1.12.6), plyr, ggplot2, stringr, magrittr, ShortRead (>= 1.48.0), Biostrings (>= 2.58.0), egg, Ckmeans.1d.dp, utils, S4Vectors, seqinr, zlibbioc, Rsamtools LinkingTo: Rcpp, BH Suggests: BiocStyle, testthat (>= 3.0.0), knitr, rmarkdown License: Artistic-2.0 MD5sum: 033800efd6a20b732a66ea8993054ca6 NeedsCompilation: yes Title: Cellular DNA Barcode Analysis toolkit Description: The package CellBarcode performs Cellular DNA Barcode analysis. It can handle all kinds of DNA barcodes, as long as the barcode is within a single sequencing read and has a pattern that can be matched by a regular expression. \code{CellBarcode} can handle barcodes with flexible lengths, with or without UMI (unique molecular identifier). This tool also can be used for pre-processing some amplicon data such as CRISPR gRNA screening, immune repertoire sequencing, and metagenome data. biocViews: Preprocessing, QualityControl, Sequencing, CRISPR Author: Wenjie Sun [cre, aut] (), Anne-Marie Lyne [aut], Leila Perie [aut] Maintainer: Wenjie Sun URL: https://wenjie1991.github.io/CellBarcode/ VignetteBuilder: knitr BugReports: https://github.com/wenjie1991/CellBarcode/issues git_url: https://git.bioconductor.org/packages/CellBarcode git_branch: RELEASE_3_20 git_last_commit: d63a174 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CellBarcode_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CellBarcode_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CellBarcode_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CellBarcode_1.12.0.tgz vignettes: vignettes/CellBarcode/inst/doc/Barcode_in_10X_scRNASeq.html, vignettes/CellBarcode/inst/doc/UMI_VDJ_Barcode.html vignetteTitles: 10X_Barcode, UMI_Barcode hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CellBarcode/inst/doc/Barcode_in_10X_scRNASeq.R, vignettes/CellBarcode/inst/doc/UMI_VDJ_Barcode.R dependencyCount: 102 Package: cellbaseR Version: 1.30.0 Depends: R(>= 3.4) Imports: methods, jsonlite, httr, data.table, pbapply, tidyr, R.utils, Rsamtools, BiocParallel, foreach, utils, parallel, doParallel Suggests: BiocStyle, knitr, rmarkdown, Gviz, VariantAnnotation License: Apache License (== 2.0) Archs: x64 MD5sum: d859f87b16f32b7735d9672440e1f095 NeedsCompilation: no Title: Querying annotation data from the high performance Cellbase web Description: This R package makes use of the exhaustive RESTful Web service API that has been implemented for the Cellabase database. It enable researchers to query and obtain a wealth of biological information from a single database saving a lot of time. Another benefit is that researchers can easily make queries about different biological topics and link all this information together as all information is integrated. biocViews: Annotation, VariantAnnotation Author: Mohammed OE Abdallah Maintainer: Mohammed OE Abdallah URL: https://github.com/melsiddieg/cellbaseR VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/cellbaseR git_branch: RELEASE_3_20 git_last_commit: 2e6b5c1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cellbaseR_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cellbaseR_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cellbaseR_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cellbaseR_1.30.0.tgz vignettes: vignettes/cellbaseR/inst/doc/cellbaseR.html vignetteTitles: "Simplifying Genomic Annotations in R" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cellbaseR/inst/doc/cellbaseR.R dependencyCount: 66 Package: CellBench Version: 1.22.0 Depends: R (>= 3.6), SingleCellExperiment, magrittr, methods, stats, tibble, utils Imports: assertthat, BiocGenerics, BiocFileCache, BiocParallel, dplyr, rlang, glue, memoise, purrr (>= 0.3.0), rappdirs, tidyr, tidyselect, lubridate Suggests: BiocStyle, covr, knitr, rmarkdown, testthat, limma, ggplot2 License: GPL-3 Archs: x64 MD5sum: 4da39f8bcdb9a8031bbddae19ae13c04 NeedsCompilation: no Title: Construct Benchmarks for Single Cell Analysis Methods Description: This package contains infrastructure for benchmarking analysis methods and access to single cell mixture benchmarking data. It provides a framework for organising analysis methods and testing combinations of methods in a pipeline without explicitly laying out each combination. It also provides utilities for sampling and filtering SingleCellExperiment objects, constructing lists of functions with varying parameters, and multithreaded evaluation of analysis methods. biocViews: Software, Infrastructure, SingleCell Author: Shian Su [cre, aut], Saskia Freytag [aut], Luyi Tian [aut], Xueyi Dong [aut], Matthew Ritchie [aut], Peter Hickey [ctb], Stuart Lee [ctb] Maintainer: Shian Su URL: https://github.com/shians/cellbench VignetteBuilder: knitr BugReports: https://github.com/Shians/CellBench/issues git_url: https://git.bioconductor.org/packages/CellBench git_branch: RELEASE_3_20 git_last_commit: 373506d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CellBench_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CellBench_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CellBench_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CellBench_1.22.0.tgz vignettes: vignettes/CellBench/inst/doc/DataManipulation.html, vignettes/CellBench/inst/doc/Introduction.html, vignettes/CellBench/inst/doc/TidyversePatterns.html, vignettes/CellBench/inst/doc/Timing.html, vignettes/CellBench/inst/doc/WritingWrappers.html vignetteTitles: Data Manipulation, Introduction, Tidyverse Patterns, Timing, Writing Wrappers hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CellBench/inst/doc/DataManipulation.R, vignettes/CellBench/inst/doc/Introduction.R, vignettes/CellBench/inst/doc/TidyversePatterns.R, vignettes/CellBench/inst/doc/Timing.R, vignettes/CellBench/inst/doc/WritingWrappers.R suggestsMe: corral, speckle dependencyCount: 82 Package: CelliD Version: 1.14.0 Depends: R (>= 4.1), Seurat (>= 4.0.1), SingleCellExperiment Imports: Rcpp, RcppArmadillo, stats, utils, Matrix, tictoc, scater, stringr, irlba, data.table, glue, pbapply, umap, Rtsne, reticulate, fastmatch, matrixStats, ggplot2, BiocParallel, SummarizedExperiment, fgsea LinkingTo: Rcpp, RcppArmadillo Suggests: knitr, rmarkdown, BiocStyle, testthat, tidyverse, ggpubr, destiny, ggrepel License: GPL-3 + file LICENSE MD5sum: 4e1bf3f329f4b7d8459d632fa21c0a61 NeedsCompilation: yes Title: Unbiased Extraction of Single Cell gene signatures using Multiple Correspondence Analysis Description: CelliD is a clustering-free multivariate statistical method for the robust extraction of per-cell gene signatures from single-cell RNA-seq. CelliD allows unbiased cell identity recognition across different donors, tissues-of-origin, model organisms and single-cell omics protocols. The package can also be used to explore functional pathways enrichment in single cell data. biocViews: RNASeq, SingleCell, DimensionReduction, Clustering, GeneSetEnrichment, GeneExpression, ATACSeq Author: Akira Cortal [aut, cre], Antonio Rausell [aut, ctb] Maintainer: Akira Cortal VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CelliD git_branch: RELEASE_3_20 git_last_commit: 46a1734 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CelliD_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CelliD_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CelliD_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CelliD_1.14.0.tgz vignettes: vignettes/CelliD/inst/doc/BioconductorVignette.html vignetteTitles: CelliD Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CelliD/inst/doc/BioconductorVignette.R dependencyCount: 201 Package: cellity Version: 1.34.0 Depends: R (>= 3.3) Imports: AnnotationDbi, e1071, ggplot2, graphics, grDevices, grid, mvoutlier, org.Hs.eg.db, org.Mm.eg.db, robustbase, stats, topGO, utils Suggests: BiocStyle, caret, knitr, testthat, rmarkdown License: GPL (>= 2) MD5sum: b1b85755cfcbf44ae791e0f294954c5c NeedsCompilation: no Title: Quality Control for Single-Cell RNA-seq Data Description: A support vector machine approach to identifying and filtering low quality cells from single-cell RNA-seq datasets. biocViews: ImmunoOncology, RNASeq, QualityControl, Preprocessing, Normalization, Visualization, DimensionReduction, Transcriptomics, GeneExpression, Sequencing, Software, SupportVectorMachine Author: Tomislav Illicic, Davis McCarthy Maintainer: Tomislav Ilicic VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/cellity git_branch: RELEASE_3_20 git_last_commit: 747eff3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cellity_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cellity_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cellity_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cellity_1.34.0.tgz vignettes: vignettes/cellity/inst/doc/cellity_vignette.html vignetteTitles: An introduction to the cellity package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cellity/inst/doc/cellity_vignette.R dependencyCount: 82 Package: CellMapper Version: 1.32.0 Depends: S4Vectors, methods Imports: stats, utils Suggests: CellMapperData, Biobase, HumanAffyData, ALL, BiocStyle, ExperimentHub License: Artistic-2.0 Archs: x64 MD5sum: d058499d206f6f466386a4930bfca89e NeedsCompilation: no Title: Predict genes expressed selectively in specific cell types Description: Infers cell type-specific expression based on co-expression similarity with known cell type marker genes. Can make accurate predictions using publicly available expression data, even when a cell type has not been isolated before. biocViews: Microarray, Software, GeneExpression Author: Brad Nelms Maintainer: Brad Nelms git_url: https://git.bioconductor.org/packages/CellMapper git_branch: RELEASE_3_20 git_last_commit: 0451fee git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CellMapper_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CellMapper_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CellMapper_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CellMapper_1.32.0.tgz vignettes: vignettes/CellMapper/inst/doc/CellMapper.pdf vignetteTitles: CellMapper Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CellMapper/inst/doc/CellMapper.R dependsOnMe: CellMapperData dependencyCount: 7 Package: cellmigRation Version: 1.14.0 Depends: R (>= 4.1), methods, foreach Imports: tiff, graphics, stats, utils, reshape2, parallel, doParallel, grDevices, matrixStats, FME, SpatialTools, sp, vioplot, FactoMineR, Hmisc Suggests: knitr, rmarkdown, dplyr, ggplot2, RUnit, BiocGenerics, BiocManager, kableExtra, rgl License: GPL-2 MD5sum: a27b199ad5e9a18cbcf97135a2c7c2ff NeedsCompilation: no Title: Track Cells, Analyze Cell Trajectories and Compute Migration Statistics Description: Import TIFF images of fluorescently labeled cells, and track cell movements over time. Parallelization is supported for image processing and for fast computation of cell trajectories. In-depth analysis of cell trajectories is enabled by 15 trajectory analysis functions. biocViews: CellBiology, DataRepresentation, DataImport Author: Salim Ghannoum [aut, cph], Damiano Fantini [aut, cph], Waldir Leoncio [cre, aut], Øystein Sørensen [aut] Maintainer: Waldir Leoncio URL: https://github.com/ocbe-uio/cellmigRation/ VignetteBuilder: knitr BugReports: https://github.com/ocbe-uio/cellmigRation/issues git_url: https://git.bioconductor.org/packages/cellmigRation git_branch: RELEASE_3_20 git_last_commit: 49990de git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cellmigRation_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cellmigRation_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cellmigRation_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cellmigRation_1.14.0.tgz vignettes: vignettes/cellmigRation/inst/doc/cellmigRation.html vignetteTitles: cellmigRation hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cellmigRation/inst/doc/cellmigRation.R dependencyCount: 138 Package: CellMixS Version: 1.22.0 Depends: kSamples, R (>= 4.0) Imports: BiocNeighbors, ggplot2, scater, viridis, cowplot, SummarizedExperiment, SingleCellExperiment, tidyr, magrittr, dplyr, ggridges, stats, purrr, methods, BiocParallel, BiocGenerics Suggests: BiocStyle, knitr, rmarkdown, testthat, limma, Rtsne License: GPL (>=2) MD5sum: 274b4331924cc46953bff81435ea5504 NeedsCompilation: no Title: Evaluate Cellspecific Mixing Description: CellMixS provides metrics and functions to evaluate batch effects, data integration and batch effect correction in single cell trancriptome data with single cell resolution. Results can be visualized and summarised on different levels, e.g. on cell, celltype or dataset level. biocViews: SingleCell, Transcriptomics, GeneExpression, BatchEffect Author: Almut Lütge [aut, cre] Maintainer: Almut Lütge URL: https://github.com/almutlue/CellMixS VignetteBuilder: knitr BugReports: https://github.com/almutlue/CellMixS/issues git_url: https://git.bioconductor.org/packages/CellMixS git_branch: RELEASE_3_20 git_last_commit: b431578 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CellMixS_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CellMixS_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CellMixS_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CellMixS_1.22.0.tgz vignettes: vignettes/CellMixS/inst/doc/CellMixS.html vignetteTitles: Explore data integration and batch effects hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CellMixS/inst/doc/CellMixS.R dependencyCount: 117 Package: CellNOptR Version: 1.52.0 Depends: R (>= 4.0.0), RBGL, graph, methods, RCurl, Rgraphviz, XML, ggplot2, rmarkdown Imports: igraph, stringi, stringr Suggests: data.table, dplyr, tidyr, readr, knitr, RUnit, BiocGenerics, Enhances: doParallel, foreach License: GPL-3 MD5sum: 4e04f8ff6b1bd740c8550feb529780a5 NeedsCompilation: yes Title: Training of boolean logic models of signalling networks using prior knowledge networks and perturbation data Description: This package does optimisation of boolean logic networks of signalling pathways based on a previous knowledge network and a set of data upon perturbation of the nodes in the network. biocViews: CellBasedAssays, CellBiology, Proteomics, Pathways, Network, TimeCourse, ImmunoOncology Author: Thomas Cokelaer [aut], Federica Eduati [aut], Aidan MacNamara [aut], S Schrier [ctb], Camille Terfve [aut], Enio Gjerga [ctb], Attila Gabor [cre] Maintainer: Attila Gabor SystemRequirements: Graphviz version >= 2.2 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CellNOptR git_branch: RELEASE_3_20 git_last_commit: 2b2ea14 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CellNOptR_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CellNOptR_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CellNOptR_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CellNOptR_1.52.0.tgz vignettes: vignettes/CellNOptR/inst/doc/CellNOptR-vignette.html vignetteTitles: Training of boolean logic models of signalling networks using prior knowledge networks and perturbation data with CellNOptR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CellNOptR/inst/doc/CellNOptR-vignette.R dependsOnMe: CNORdt, CNORfeeder, CNORfuzzy, CNORode importsMe: bnem suggestsMe: MEIGOR dependencyCount: 70 Package: cellscape Version: 1.30.0 Depends: R (>= 3.3) Imports: dplyr (>= 0.4.3), gtools (>= 3.5.0), htmlwidgets (>= 0.5), jsonlite (>= 0.9.19), reshape2 (>= 1.4.1), stringr (>= 1.0.0) Suggests: knitr, rmarkdown License: GPL-3 MD5sum: 9dc56beae183f99fae4f3da0c4f63e3e NeedsCompilation: no Title: Explores single cell copy number profiles in the context of a single cell tree Description: CellScape facilitates interactive browsing of single cell clonal evolution datasets. The tool requires two main inputs: (i) the genomic content of each single cell in the form of either copy number segments or targeted mutation values, and (ii) a single cell phylogeny. Phylogenetic formats can vary from dendrogram-like phylogenies with leaf nodes to evolutionary model-derived phylogenies with observed or latent internal nodes. The CellScape phylogeny is flexibly input as a table of source-target edges to support arbitrary representations, where each node may or may not have associated genomic data. The output of CellScape is an interactive interface displaying a single cell phylogeny and a cell-by-locus genomic heatmap representing the mutation status in each cell for each locus. biocViews: Visualization Author: Shixiang Wang [aut, cre] (), Maia Smith [aut] Maintainer: Shixiang Wang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/cellscape git_branch: RELEASE_3_20 git_last_commit: d2be26f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cellscape_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cellscape_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cellscape_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cellscape_1.30.0.tgz vignettes: vignettes/cellscape/inst/doc/cellscape_vignette.html vignetteTitles: CellScape vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cellscape/inst/doc/cellscape_vignette.R dependencyCount: 50 Package: CellScore Version: 1.26.0 Depends: R (>= 4.3.0) Imports: Biobase (>= 2.39.1), graphics (>= 3.5.0), grDevices (>= 3.5.0), gplots (>= 3.0.1), lsa (>= 0.73.1), methods (>= 3.5.0), RColorBrewer(>= 1.1-2), squash (>= 1.0.8), stats (>= 3.5.0), utils(>= 3.5.0), SummarizedExperiment Suggests: hgu133plus2CellScore, knitr, testthat (>= 3.0.0) License: GPL-3 Archs: x64 MD5sum: 9c03f94a8230fff9efc0da6ef09c1513 NeedsCompilation: no Title: Tool for Evaluation of Cell Identity from Transcription Profiles Description: The CellScore package contains functions to evaluate the cell identity of a test sample, given a cell transition defined with a starting (donor) cell type and a desired target cell type. The evaluation is based upon a scoring system, which uses a set of standard samples of known cell types, as the reference set. The functions have been carried out on a large set of microarray data from one platform (Affymetrix Human Genome U133 Plus 2.0). In principle, the method could be applied to any expression dataset, provided that there are a sufficient number of standard samples and that the data are normalized. biocViews: GeneExpression, Transcription, Microarray, MultipleComparison, ReportWriting, DataImport, Visualization Author: Nancy Mah [aut, cre], Katerina Taskova [aut], Justin Marsh [aut] Maintainer: Nancy Mah VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CellScore git_branch: RELEASE_3_20 git_last_commit: 9c9bf85 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CellScore_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CellScore_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CellScore_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CellScore_1.26.0.tgz vignettes: vignettes/CellScore/inst/doc/CellScoreVignette.pdf vignetteTitles: R packages: CellScore hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CellScore/inst/doc/CellScoreVignette.R suggestsMe: homosapienDEE2CellScore dependencyCount: 45 Package: CellTrails Version: 1.24.0 Depends: R (>= 3.5), SingleCellExperiment Imports: BiocGenerics, Biobase, cba, dendextend, dtw, EnvStats, ggplot2, ggrepel, grDevices, igraph, maptree, methods, mgcv, reshape2, Rtsne, stats, splines, SummarizedExperiment, utils Suggests: AnnotationDbi, destiny, RUnit, scater, scran, knitr, org.Mm.eg.db, rmarkdown License: Artistic-2.0 MD5sum: caa233600a24e15c19349f3b61f2b12d NeedsCompilation: no Title: Reconstruction, visualization and analysis of branching trajectories Description: CellTrails is an unsupervised algorithm for the de novo chronological ordering, visualization and analysis of single-cell expression data. CellTrails makes use of a geometrically motivated concept of lower-dimensional manifold learning, which exhibits a multitude of virtues that counteract intrinsic noise of single cell data caused by drop-outs, technical variance, and redundancy of predictive variables. CellTrails enables the reconstruction of branching trajectories and provides an intuitive graphical representation of expression patterns along all branches simultaneously. It allows the user to define and infer the expression dynamics of individual and multiple pathways towards distinct phenotypes. biocViews: ImmunoOncology, Clustering, DataRepresentation, DifferentialExpression, DimensionReduction, GeneExpression, Sequencing, SingleCell, Software, TimeCourse Author: Daniel Ellwanger [aut, cre, cph] Maintainer: Daniel Ellwanger VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CellTrails git_branch: RELEASE_3_20 git_last_commit: 82f926e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CellTrails_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CellTrails_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CellTrails_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CellTrails_1.24.0.tgz vignettes: vignettes/CellTrails/inst/doc/vignette.pdf vignetteTitles: CellTrails: Reconstruction,, visualization,, and analysis of branching trajectories from single-cell expression data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CellTrails/inst/doc/vignette.R dependencyCount: 84 Package: cellxgenedp Version: 1.10.0 Depends: dplyr Imports: httr, curl, utils, tools, cli, shiny, DT, rjsoncons Suggests: zellkonverter, SingleCellExperiment, HDF5Array, tidyr, BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0), mockery License: Artistic-2.0 MD5sum: b0e6fa300e7472503bf39a8fba813510 NeedsCompilation: no Title: Discover and Access Single Cell Data Sets in the CELLxGENE Data Portal Description: The cellxgene data portal (https://cellxgene.cziscience.com/) provides a graphical user interface to collections of single-cell sequence data processed in standard ways to 'count matrix' summaries. The cellxgenedp package provides an alternative, R-based inteface, allowind data discovery, viewing, and downloading. biocViews: SingleCell, DataImport, ThirdPartyClient Author: Martin Morgan [aut, cre] (), Kayla Interdonato [aut] Maintainer: Martin Morgan URL: https://mtmorgan.github.io/cellxgenedp/, https://github.com/mtmorgan/cellxgenedp VignetteBuilder: knitr BugReports: https://github.com/mtmorgan/cellxgenedp/issues git_url: https://git.bioconductor.org/packages/cellxgenedp git_branch: RELEASE_3_20 git_last_commit: cab35e9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cellxgenedp_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cellxgenedp_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cellxgenedp_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cellxgenedp_1.10.0.tgz vignettes: vignettes/cellxgenedp/inst/doc/a_using_cellxgenedp.html, vignettes/cellxgenedp/inst/doc/b_case_studies.html vignetteTitles: Discovery and retrieval, Case studies hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cellxgenedp/inst/doc/a_using_cellxgenedp.R, vignettes/cellxgenedp/inst/doc/b_case_studies.R dependencyCount: 63 Package: CEMiTool Version: 1.30.0 Depends: R (>= 4.0) Imports: methods, scales, dplyr, data.table (>= 1.9.4), WGCNA, grid, ggplot2, ggpmisc, ggthemes, ggrepel, sna, clusterProfiler, fgsea, stringr, knitr, rmarkdown, igraph, DT, htmltools, pracma, intergraph, grDevices, utils, network, matrixStats, ggdendro, gridExtra, gtable, fastcluster Suggests: testthat, BiocManager License: GPL-3 MD5sum: 9f4c1e81bd0375316d1faa8fefdd090f NeedsCompilation: no Title: Co-expression Modules identification Tool Description: The CEMiTool package unifies the discovery and the analysis of coexpression gene modules in a fully automatic manner, while providing a user-friendly html report with high quality graphs. Our tool evaluates if modules contain genes that are over-represented by specific pathways or that are altered in a specific sample group. Additionally, CEMiTool is able to integrate transcriptomic data with interactome information, identifying the potential hubs on each network. biocViews: GeneExpression, Transcriptomics, GraphAndNetwork, mRNAMicroarray, RNASeq, Network, NetworkEnrichment, Pathways, ImmunoOncology Author: Pedro Russo [aut], Gustavo Ferreira [aut], Matheus Bürger [aut], Lucas Cardozo [aut], Diogenes Lima [aut], Thiago Hirata [aut], Melissa Lever [aut], Helder Nakaya [aut, cre] Maintainer: Helder Nakaya VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CEMiTool git_branch: RELEASE_3_20 git_last_commit: b1ca198 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CEMiTool_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CEMiTool_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CEMiTool_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CEMiTool_1.30.0.tgz vignettes: vignettes/CEMiTool/inst/doc/CEMiTool.html vignetteTitles: CEMiTool: Co-expression Modules Identification Tool hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CEMiTool/inst/doc/CEMiTool.R dependencyCount: 193 Package: censcyt Version: 1.14.0 Depends: R (>= 4.0), diffcyt Imports: BiocParallel, broom.mixed, dirmult, dplyr, edgeR, fitdistrplus, lme4, magrittr, MASS, methods, mice, multcomp, purrr, rlang, S4Vectors, stats, stringr, SummarizedExperiment, survival, tibble, tidyr, utils Suggests: BiocStyle, knitr, rmarkdown, testthat, ggplot2 License: MIT + file LICENSE MD5sum: 5aee854e0307906870749c17f9e558a3 NeedsCompilation: no Title: Differential abundance analysis with a right censored covariate in high-dimensional cytometry Description: Methods for differential abundance analysis in high-dimensional cytometry data when a covariate is subject to right censoring (e.g. survival time) based on multiple imputation and generalized linear mixed models. biocViews: ImmunoOncology, FlowCytometry, Proteomics, SingleCell, CellBasedAssays, CellBiology, Clustering, FeatureExtraction, Software, Survival Author: Reto Gerber [aut, cre] () Maintainer: Reto Gerber URL: https://github.com/retogerber/censcyt VignetteBuilder: knitr BugReports: https://github.com/retogerber/censcyt/issues git_url: https://git.bioconductor.org/packages/censcyt git_branch: RELEASE_3_20 git_last_commit: 3e94c57 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/censcyt_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/censcyt_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/censcyt_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/censcyt_1.14.0.tgz vignettes: vignettes/censcyt/inst/doc/censored_covariate.html vignetteTitles: Censored covariate hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/censcyt/inst/doc/censored_covariate.R dependencyCount: 179 Package: Cepo Version: 1.12.0 Depends: GSEABase, R (>= 4.1) Imports: DelayedMatrixStats, DelayedArray, HDF5Array, S4Vectors, methods, SingleCellExperiment, SummarizedExperiment, ggplot2, rlang, grDevices, patchwork, reshape2, BiocParallel, stats, dplyr, purrr Suggests: knitr, rmarkdown, BiocStyle, testthat, covr, UpSetR, scater, scMerge, fgsea, escape, pheatmap License: MIT + file LICENSE MD5sum: 3af4bf60206bb2421a63d68009a361e0 NeedsCompilation: no Title: Cepo for the identification of differentially stable genes Description: Defining the identity of a cell is fundamental to understand the heterogeneity of cells to various environmental signals and perturbations. We present Cepo, a new method to explore cell identities from single-cell RNA-sequencing data using differential stability as a new metric to define cell identity genes. Cepo computes cell-type specific gene statistics pertaining to differential stable gene expression. biocViews: Classification, GeneExpression, SingleCell, Software, Sequencing, DifferentialExpression Author: Hani Jieun Kim [aut, cre] (), Kevin Wang [aut] () Maintainer: Hani Jieun Kim VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Cepo git_branch: RELEASE_3_20 git_last_commit: d36a16b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Cepo_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Cepo_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Cepo_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Cepo_1.12.0.tgz vignettes: vignettes/Cepo/inst/doc/cepo.html vignetteTitles: Cepo method for differential stability analysis of scRNA-seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Cepo/inst/doc/cepo.R importsMe: scClassify dependencyCount: 107 Package: ceRNAnetsim Version: 1.18.0 Depends: R (>= 4.0.0), dplyr, tidygraph Imports: furrr, rlang, tibble, ggplot2, ggraph, igraph, purrr, tidyr, future, stats Suggests: knitr, png, rmarkdown, testthat, covr License: GPL (>= 3.0) MD5sum: ca27a5d80639c67a55e91f91e49087b7 NeedsCompilation: no Title: Regulation Simulator of Interaction between miRNA and Competing RNAs (ceRNA) Description: This package simulates regulations of ceRNA (Competing Endogenous) expression levels after a expression level change in one or more miRNA/mRNAs. The methodolgy adopted by the package has potential to incorparate any ceRNA (circRNA, lincRNA, etc.) into miRNA:target interaction network. The package basically distributes miRNA expression over available ceRNAs where each ceRNA attracks miRNAs proportional to its amount. But, the package can utilize multiple parameters that modify miRNA effect on its target (seed type, binding energy, binding location, etc.). The functions handle the given dataset as graph object and the processes progress via edge and node variables. biocViews: NetworkInference, SystemsBiology, Network, GraphAndNetwork, Transcriptomics Author: Selcen Ari Yuka [aut, cre] (), Alper Yilmaz [aut] () Maintainer: Selcen Ari Yuka URL: https://github.com/selcenari/ceRNAnetsim VignetteBuilder: knitr BugReports: https://github.com/selcenari/ceRNAnetsim/issues git_url: https://git.bioconductor.org/packages/ceRNAnetsim git_branch: RELEASE_3_20 git_last_commit: a7e730f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ceRNAnetsim_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ceRNAnetsim_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ceRNAnetsim_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ceRNAnetsim_1.18.0.tgz vignettes: vignettes/ceRNAnetsim/inst/doc/auxiliary_commands.html, vignettes/ceRNAnetsim/inst/doc/basic_usage.html, vignettes/ceRNAnetsim/inst/doc/convenient_iteration.html, vignettes/ceRNAnetsim/inst/doc/mirtarbase_example.html vignetteTitles: auxiliary_commands, basic_usage, A Suggestion: How to Find the Appropriate Iteration for Simulation, An TCGA dataset application hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ceRNAnetsim/inst/doc/auxiliary_commands.R, vignettes/ceRNAnetsim/inst/doc/basic_usage.R, vignettes/ceRNAnetsim/inst/doc/convenient_iteration.R, vignettes/ceRNAnetsim/inst/doc/mirtarbase_example.R dependencyCount: 69 Package: CeTF Version: 1.18.0 Depends: R (>= 4.0) Imports: circlize, ComplexHeatmap, clusterProfiler, DESeq2, dplyr, GenomicTools.fileHandler, GGally, ggnetwork, ggplot2, ggpubr, ggrepel, graphics, grid, igraph, Matrix, network, Rcpp, RCy3, stats, SummarizedExperiment, S4Vectors, utils, methods LinkingTo: Rcpp, RcppArmadillo Suggests: airway, kableExtra, knitr, org.Hs.eg.db, rmarkdown, testthat License: GPL-3 MD5sum: 665614295c8801ce022f8c75db2490dd NeedsCompilation: yes Title: Coexpression for Transcription Factors using Regulatory Impact Factors and Partial Correlation and Information Theory analysis Description: This package provides the necessary functions for performing the Partial Correlation coefficient with Information Theory (PCIT) (Reverter and Chan 2008) and Regulatory Impact Factors (RIF) (Reverter et al. 2010) algorithm. The PCIT algorithm identifies meaningful correlations to define edges in a weighted network and can be applied to any correlation-based network including but not limited to gene co-expression networks, while the RIF algorithm identify critical Transcription Factors (TF) from gene expression data. These two algorithms when combined provide a very relevant layer of information for gene expression studies (Microarray, RNA-seq and single-cell RNA-seq data). biocViews: Sequencing, RNASeq, Microarray, GeneExpression, Transcription, Normalization, DifferentialExpression, SingleCell, Network, Regression, ChIPSeq, ImmunoOncology, Coverage Author: Carlos Alberto Oliveira de Biagi Junior [aut, cre], Ricardo Perecin Nociti [aut], Breno Osvaldo Funicheli [aut], João Paulo Bianchi Ximenez [ctb], Patrícia de Cássia Ruy [ctb], Marcelo Gomes de Paula [ctb], Rafael dos Santos Bezerra [ctb], Wilson Araújo da Silva Junior [aut, ths] Maintainer: Carlos Alberto Oliveira de Biagi Junior SystemRequirements: libcurl4-openssl-dev, libxml2-dev, libssl-dev, gfortran, build-essential, libz-dev, zlib1g-dev VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CeTF git_branch: RELEASE_3_20 git_last_commit: 49ec9bf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CeTF_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CeTF_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CeTF_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CeTF_1.18.0.tgz vignettes: vignettes/CeTF/inst/doc/CeTF.html vignetteTitles: Analyzing Regulatory Impact Factors and Partial Correlation and Information Theory hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CeTF/inst/doc/CeTF.R dependencyCount: 205 Package: CexoR Version: 1.44.0 Depends: R (>= 4.2.0), S4Vectors, IRanges Imports: Rsamtools, GenomeInfoDb, GenomicRanges, rtracklayer, idr, RColorBrewer, genomation Suggests: RUnit, BiocGenerics, BiocStyle, knitr, rmarkdown License: Artistic-2.0 | GPL-2 + file LICENSE MD5sum: 9a65c1a3f37f4ce6e337db9f9f778cd2 NeedsCompilation: no Title: An R package to uncover high-resolution protein-DNA interactions in ChIP-exo replicates Description: Strand specific peak-pair calling in ChIP-exo replicates. The cumulative Skellam distribution function is used to detect significant normalised count differences of opposed sign at each DNA strand (peak-pairs). Then, irreproducible discovery rate for overlapping peak-pairs across biological replicates is computed. biocViews: FunctionalGenomics, Sequencing, Coverage, ChIPSeq, PeakDetection Author: Pedro Madrigal [aut, cre] () Maintainer: Pedro Madrigal git_url: https://git.bioconductor.org/packages/CexoR git_branch: RELEASE_3_20 git_last_commit: 7959a2d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CexoR_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CexoR_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CexoR_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CexoR_1.44.0.tgz vignettes: vignettes/CexoR/inst/doc/CexoR.pdf vignetteTitles: CexoR Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CexoR/inst/doc/CexoR.R dependencyCount: 108 Package: CFAssay Version: 1.40.0 Depends: R (>= 2.10.0) License: LGPL Archs: x64 MD5sum: c001af8be528138722ca47779f942cab NeedsCompilation: no Title: Statistical analysis for the Colony Formation Assay Description: The package provides functions for calculation of linear-quadratic cell survival curves and for ANOVA of experimental 2-way designs along with the colony formation assay. biocViews: CellBasedAssays, CellBiology, ImmunoOncology, Regression, Survival Author: Herbert Braselmann Maintainer: Herbert Braselmann git_url: https://git.bioconductor.org/packages/CFAssay git_branch: RELEASE_3_20 git_last_commit: 12edf1f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CFAssay_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CFAssay_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CFAssay_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CFAssay_1.40.0.tgz vignettes: vignettes/CFAssay/inst/doc/cfassay.pdf vignetteTitles: CFAssay hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CFAssay/inst/doc/cfassay.R dependencyCount: 0 Package: cfdnakit Version: 1.4.0 Depends: R (>= 4.3) Imports: Biobase, dplyr, GenomicRanges, GenomeInfoDb, ggplot2, IRanges, magrittr, PSCBS, QDNAseq, Rsamtools, utils, S4Vectors, stats, rlang Suggests: rmarkdown, knitr, roxygen2, BiocStyle License: GPL-3 MD5sum: 5c2b321346a514f4aa3043afc450fd63 NeedsCompilation: no Title: Fragmen-length analysis package from high-throughput sequencing of cell-free DNA (cfDNA) Description: This package provides basic functions for analyzing shallow whole-genome sequencing (~0.3X or more) of cell-free DNA (cfDNA). The package basically extracts the length of cfDNA fragments and aids the vistualization of fragment-length information. The package also extract fragment-length information per non-overlapping fixed-sized bins and used it for calculating ctDNA estimation score (CES). biocViews: CopyNumberVariation, Sequencing, WholeGenome Author: Pitithat Puranachot [aut, cre] () Maintainer: Pitithat Puranachot VignetteBuilder: knitr BugReports: https://github.com/Pitithat-pu/cfdnakit/issues git_url: https://git.bioconductor.org/packages/cfdnakit git_branch: RELEASE_3_20 git_last_commit: 30388e0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cfdnakit_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cfdnakit_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cfdnakit_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cfdnakit_1.4.0.tgz vignettes: vignettes/cfdnakit/inst/doc/cfdnakit-vignette.html vignetteTitles: cfdnakit vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cfdnakit/inst/doc/cfdnakit-vignette.R dependencyCount: 94 Package: cfDNAPro Version: 1.12.0 Depends: R (>= 4.1.0), magrittr (>= 1.5.0) Imports: tibble, GenomicAlignments, IRanges, plyranges, GenomeInfoDb, GenomicRanges, BiocGenerics, stats, utils, dplyr (>= 0.8.3), stringr (>= 1.4.0), quantmod (>= 0.4), ggplot2 (>= 3.2.1), Rsamtools (>= 2.4.0), rlang (>= 0.4.0), BSgenome.Hsapiens.UCSC.hg38, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.NCBI.GRCh38 Suggests: scales, ggpubr, knitr (>= 1.23), rmarkdown (>= 1.14), devtools (>= 2.3.0), BiocStyle, testthat License: GPL-3 MD5sum: ce0a562baef06d6c90bb8ef52872a7c1 NeedsCompilation: no Title: cfDNAPro extracts and Visualises biological features from whole genome sequencing data of cell-free DNA Description: cfDNA fragments carry important features for building cancer sample classification ML models, such as fragment size, and fragment end motif etc. Analyzing and visualizing fragment size metrics, as well as other biological features in a curated, standardized, scalable, well-documented, and reproducible way might be time intensive. This package intends to resolve these problems and simplify the process. It offers two sets of functions for cfDNA feature characterization and visualization. biocViews: Visualization, Sequencing, WholeGenome Author: Haichao Wang [aut, cre], Hui Zhao [ctb], Elkie Chan [ctb], Christopher Smith [ctb], Tomer Kaplan [ctb], Florian Markowetz [ctb], Nitzan Rosenfeld [ctb] Maintainer: Haichao Wang URL: https://github.com/hw538/cfDNAPro VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/cfDNAPro git_branch: RELEASE_3_20 git_last_commit: 49bba48 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cfDNAPro_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cfDNAPro_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cfDNAPro_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cfDNAPro_1.12.0.tgz vignettes: vignettes/cfDNAPro/inst/doc/cfDNAPro.html vignetteTitles: cfDNAPro Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cfDNAPro/inst/doc/cfDNAPro.R dependencyCount: 98 Package: cfTools Version: 1.6.0 Imports: Rcpp, utils, GenomicRanges, basilisk, R.utils, stats, cfToolsData LinkingTo: Rcpp, BH Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0) License: file LICENSE MD5sum: 26e50f626b640e5ce6d2b46d7646a520 NeedsCompilation: yes Title: Informatics Tools for Cell-Free DNA Study Description: The cfTools R package provides methods for cell-free DNA (cfDNA) methylation data analysis to facilitate cfDNA-based studies. Given the methylation sequencing data of a cfDNA sample, for each cancer marker or tissue marker, we deconvolve the tumor-derived or tissue-specific reads from all reads falling in the marker region. Our read-based deconvolution algorithm exploits the pervasiveness of DNA methylation for signal enhancement, therefore can sensitively identify a trace amount of tumor-specific or tissue-specific cfDNA in plasma. cfTools provides functions for (1) cancer detection: sensitively detect tumor-derived cfDNA and estimate the tumor-derived cfDNA fraction (tumor burden); (2) tissue deconvolution: infer the tissue type composition and the cfDNA fraction of multiple tissue types for a plasma cfDNA sample. These functions can serve as foundations for more advanced cfDNA-based studies, including cancer diagnosis and disease monitoring. biocViews: Software, BiomedicalInformatics, Epigenetics, Sequencing, MethylSeq, DNAMethylation, DifferentialMethylation Author: Ran Hu [aut, cre] (), Mary Louisa Stackpole [aut] (), Shuo Li [aut] (), Xianghong Jasmine Zhou [aut] (), Wenyuan Li [aut] () Maintainer: Ran Hu URL: https://github.com/jasminezhoulab/cfTools VignetteBuilder: knitr BugReports: https://github.com/jasminezhoulab/cfTools/issues git_url: https://git.bioconductor.org/packages/cfTools git_branch: RELEASE_3_20 git_last_commit: 25521eb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cfTools_1.6.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cfTools_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cfTools_1.6.0.tgz vignettes: vignettes/cfTools/inst/doc/cfTools-vignette.html vignetteTitles: cfTools-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/cfTools/inst/doc/cfTools-vignette.R dependencyCount: 85 Package: CGEN Version: 3.42.0 Depends: R (>= 4.0), survival, mvtnorm Imports: stats, graphics, utils, grDevices Suggests: cluster License: GPL-2 + file LICENSE MD5sum: 2123e174ef8bc31e4d07896c434e5ae5 NeedsCompilation: yes Title: An R package for analysis of case-control studies in genetic epidemiology Description: This is a package for analysis of case-control data in genetic epidemiology. It provides a set of statistical methods for evaluating gene-environment (or gene-genes) interactions under multiplicative and additive risk models, with or without assuming gene-environment (or gene-gene) independence in the underlying population. biocViews: SNP, MultipleComparison, Clustering Author: Samsiddhi Bhattacharjee [aut], Nilanjan Chatterjee [aut], Summer Han [aut], Minsun Song [aut], William Wheeler [aut], Matthieu de Rochemonteix [aut], Nilotpal Sanyal [aut], Justin Lee [cre] Maintainer: Justin Lee git_url: https://git.bioconductor.org/packages/CGEN git_branch: RELEASE_3_20 git_last_commit: bd49c80 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CGEN_3.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CGEN_3.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CGEN_3.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CGEN_3.42.0.tgz vignettes: vignettes/CGEN/inst/doc/vignette_GxE.pdf, vignettes/CGEN/inst/doc/vignette.pdf vignetteTitles: CGEN Scan Vignette, CGEN Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CGEN/inst/doc/vignette_GxE.R, vignettes/CGEN/inst/doc/vignette.R dependencyCount: 11 Package: CGHbase Version: 1.66.0 Depends: R (>= 2.10), methods, Biobase (>= 2.5.5), marray License: GPL MD5sum: 43e15239c0a4491b228ad2adb213426c NeedsCompilation: no Title: CGHbase: Base functions and classes for arrayCGH data analysis. Description: Contains functions and classes that are needed by arrayCGH packages. biocViews: Infrastructure, Microarray, CopyNumberVariation Author: Sjoerd Vosse, Mark van de Wiel Maintainer: Mark van de Wiel URL: https://github.com/tgac-vumc/CGHbase BugReports: https://github.com/tgac-vumc/CGHbase/issues git_url: https://git.bioconductor.org/packages/CGHbase git_branch: RELEASE_3_20 git_last_commit: 3817ef0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CGHbase_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CGHbase_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CGHbase_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CGHbase_1.66.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: CGHcall, CGHnormaliter, CGHregions, GeneBreak importsMe: CGHnormaliter, QDNAseq dependencyCount: 10 Package: CGHcall Version: 2.68.0 Depends: R (>= 2.0.0), impute(>= 1.8.0), DNAcopy (>= 1.6.0), methods, Biobase, CGHbase (>= 1.15.1), snowfall License: GPL (http://www.gnu.org/copyleft/gpl.html) Archs: x64 MD5sum: ee70642467f3d4ce2b28679c6d6cb023 NeedsCompilation: no Title: Calling aberrations for array CGH tumor profiles. Description: Calls aberrations for array CGH data using a six state mixture model as well as several biological concepts that are ignored by existing algorithms. Visualization of profiles is also provided. biocViews: Microarray,Preprocessing,Visualization Author: Mark van de Wiel, Sjoerd Vosse Maintainer: Mark van de Wiel git_url: https://git.bioconductor.org/packages/CGHcall git_branch: RELEASE_3_20 git_last_commit: 9d17d40 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CGHcall_2.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CGHcall_2.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CGHcall_2.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CGHcall_2.68.0.tgz vignettes: vignettes/CGHcall/inst/doc/CGHcall.pdf vignetteTitles: CGHcall hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CGHcall/inst/doc/CGHcall.R dependsOnMe: CGHnormaliter, GeneBreak importsMe: CGHnormaliter, QDNAseq dependencyCount: 15 Package: cghMCR Version: 1.64.0 Depends: methods, DNAcopy, CNTools, limma Imports: BiocGenerics (>= 0.1.6), stats4 License: LGPL MD5sum: 99a36c5d74dba0d4b5118bd5da6c5ac2 NeedsCompilation: no Title: Find chromosome regions showing common gains/losses Description: This package provides functions to identify genomic regions of interests based on segmented copy number data from multiple samples. biocViews: Microarray, CopyNumberVariation Author: J. Zhang and B. Feng Maintainer: J. Zhang git_url: https://git.bioconductor.org/packages/cghMCR git_branch: RELEASE_3_20 git_last_commit: acf6ec8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cghMCR_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cghMCR_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cghMCR_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cghMCR_1.64.0.tgz vignettes: vignettes/cghMCR/inst/doc/findMCR.pdf vignetteTitles: cghMCR findMCR hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cghMCR/inst/doc/findMCR.R dependencyCount: 60 Package: CGHnormaliter Version: 1.60.0 Depends: CGHcall (>= 2.17.0), CGHbase (>= 1.15.0) Imports: Biobase, CGHbase, CGHcall, methods, stats, utils License: GPL (>= 3) MD5sum: e648daccf420d2d4dfffb59525c5c52e NeedsCompilation: no Title: Normalization of array CGH data with imbalanced aberrations. Description: Normalization and centralization of array comparative genomic hybridization (aCGH) data. The algorithm uses an iterative procedure that effectively eliminates the influence of imbalanced copy numbers. This leads to a more reliable assessment of copy number alterations (CNAs). biocViews: Microarray, Preprocessing Author: Bart P.P. van Houte, Thomas W. Binsl, Hannes Hettling Maintainer: Bart P.P. van Houte git_url: https://git.bioconductor.org/packages/CGHnormaliter git_branch: RELEASE_3_20 git_last_commit: a252ff1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CGHnormaliter_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CGHnormaliter_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CGHnormaliter_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CGHnormaliter_1.60.0.tgz vignettes: vignettes/CGHnormaliter/inst/doc/CGHnormaliter.pdf vignetteTitles: CGHnormaliter hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CGHnormaliter/inst/doc/CGHnormaliter.R dependencyCount: 16 Package: CGHregions Version: 1.64.0 Depends: R (>= 2.0.0), methods, Biobase, CGHbase License: GPL (http://www.gnu.org/copyleft/gpl.html) MD5sum: 319ffa72cf2aafb67b017b4478e77a1f NeedsCompilation: no Title: Dimension Reduction for Array CGH Data with Minimal Information Loss. Description: Dimension Reduction for Array CGH Data with Minimal Information Loss biocViews: Microarray, CopyNumberVariation, Visualization Author: Sjoerd Vosse & Mark van de Wiel Maintainer: Sjoerd Vosse git_url: https://git.bioconductor.org/packages/CGHregions git_branch: RELEASE_3_20 git_last_commit: 7e2cb79 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CGHregions_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CGHregions_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CGHregions_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CGHregions_1.64.0.tgz vignettes: vignettes/CGHregions/inst/doc/CGHregions.pdf vignetteTitles: CGHcall hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CGHregions/inst/doc/CGHregions.R suggestsMe: ADaCGH2 dependencyCount: 11 Package: ChAMP Version: 2.36.0 Depends: R (>= 3.3), minfi, ChAMPdata (>= 2.6.0),DMRcate, Illumina450ProbeVariants.db,IlluminaHumanMethylationEPICmanifest, DT, RPMM Imports: prettydoc,Hmisc,globaltest,sva,illuminaio,rmarkdown,IlluminaHumanMethylation450kmanifest,IlluminaHumanMethylationEPICanno.ilm10b4.hg19, limma, DNAcopy, preprocessCore,impute, marray, wateRmelon, plyr,goseq,missMethyl,kpmt,ggplot2, GenomicRanges,qvalue,isva,doParallel,bumphunter,quadprog,shiny,shinythemes,plotly (>= 4.5.6),RColorBrewer,dendextend, matrixStats,combinat Suggests: knitr,rmarkdown License: GPL-3 MD5sum: 238c0588da58c84d7c21ccb95de692b1 NeedsCompilation: no Title: Chip Analysis Methylation Pipeline for Illumina HumanMethylation450 and EPIC Description: The package includes quality control metrics, a selection of normalization methods and novel methods to identify differentially methylated regions and to highlight copy number alterations. biocViews: Microarray, MethylationArray, Normalization, TwoChannel, CopyNumber, DNAMethylation Author: Yuan Tian [cre,aut], Tiffany Morris [ctb], Lee Stirling [ctb], Andrew Feber [ctb], Andrew Teschendorff [ctb], Ankur Chakravarthy [ctb] Maintainer: Yuan Tian VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ChAMP git_branch: RELEASE_3_20 git_last_commit: f753076 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChAMP_2.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ChAMP_2.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChAMP_2.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ChAMP_2.36.0.tgz vignettes: vignettes/ChAMP/inst/doc/ChAMP.html vignetteTitles: ChAMP: The Chip Analysis Methylation Pipeline hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ChAMP/inst/doc/ChAMP.R suggestsMe: GeoTcgaData dependencyCount: 264 Package: ChemmineOB Version: 1.44.0 Depends: R (>= 2.15.1), methods Imports: BiocGenerics, zlibbioc, Rcpp (>= 0.11.0) LinkingTo: BH, Rcpp, zlibbioc Suggests: ChemmineR, BiocStyle, knitr, knitrBootstrap, BiocManager, rmarkdown,RUnit,codetools Enhances: ChemmineR (>= 2.13.0) License: Artistic-2.0 MD5sum: 4e3f20d57c46d1ff27d1ed273ef4d4c4 NeedsCompilation: yes Title: R interface to a subset of OpenBabel functionalities Description: ChemmineOB provides an R interface to a subset of cheminformatics functionalities implemented by the OpelBabel C++ project. OpenBabel is an open source cheminformatics toolbox that includes utilities for structure format interconversions, descriptor calculations, compound similarity searching and more. ChemineOB aims to make a subset of these utilities available from within R. For non-developers, ChemineOB is primarily intended to be used from ChemmineR as an add-on package rather than used directly. biocViews: Cheminformatics, BiomedicalInformatics, Pharmacogenetics, Pharmacogenomics, MicrotitrePlateAssay, CellBasedAssays, Visualization, Infrastructure, DataImport, Clustering, Proteomics, Metabolomics Author: Kevin Horan, Thomas Girke Maintainer: Thomas Girke URL: https://github.com/girke-lab/ChemmineOB SystemRequirements: OpenBabel (>= 3.0.0) with headers (http://openbabel.org). Eigen3 with headers. VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ChemmineOB git_branch: RELEASE_3_20 git_last_commit: 20cbc10 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChemmineOB_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ChemmineOB_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChemmineOB_1.44.0.tgz vignettes: vignettes/ChemmineOB/inst/doc/ChemmineOB.html vignetteTitles: ChemmineOB hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: TRUE Rfiles: vignettes/ChemmineOB/inst/doc/ChemmineOB.R suggestsMe: MetMashR dependencyCount: 8 Package: ChemmineR Version: 3.58.0 Depends: R (>= 2.10.0), methods Imports: rjson, graphics, stats, RCurl, DBI, digest, BiocGenerics, Rcpp (>= 0.11.0), ggplot2,grid,gridExtra, png,base64enc,DT,rsvg,jsonlite,stringi LinkingTo: Rcpp, BH Suggests: RSQLite, scatterplot3d, gplots, fmcsR, snow, RPostgreSQL, BiocStyle, knitr, knitcitations, knitrBootstrap, ChemmineDrugs, png,rmarkdown, BiocManager,bibtex,codetools Enhances: ChemmineOB License: Artistic-2.0 MD5sum: 292f291e6708988f5f104a88e50d5260 NeedsCompilation: yes Title: Cheminformatics Toolkit for R Description: ChemmineR is a cheminformatics package for analyzing drug-like small molecule data in R. Its latest version contains functions for efficient processing of large numbers of molecules, physicochemical/structural property predictions, structural similarity searching, classification and clustering of compound libraries with a wide spectrum of algorithms. In addition, it offers visualization functions for compound clustering results and chemical structures. biocViews: Cheminformatics, BiomedicalInformatics, Pharmacogenetics, Pharmacogenomics, MicrotitrePlateAssay, CellBasedAssays, Visualization, Infrastructure, DataImport, Clustering, Proteomics,Metabolomics Author: Y. Eddie Cao, Kevin Horan, Tyler Backman, Thomas Girke Maintainer: Thomas Girke URL: https://github.com/girke-lab/ChemmineR SystemRequirements: GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ChemmineR git_branch: RELEASE_3_20 git_last_commit: 1654f13 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChemmineR_3.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ChemmineR_3.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChemmineR_3.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ChemmineR_3.58.0.tgz vignettes: vignettes/ChemmineR/inst/doc/ChemmineR.html vignetteTitles: ChemmineR hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ChemmineR/inst/doc/ChemmineR.R dependsOnMe: eiR, fmcsR, ChemmineDrugs importsMe: bioassayR, CompoundDb, customCMPdb, eiR, fmcsR, MetID, RMassBank, chemodiv, DrugSim2DR suggestsMe: ChemmineOB, xnet dependencyCount: 75 Package: CHETAH Version: 1.22.0 Depends: R (>= 4.2), ggplot2, SingleCellExperiment Imports: shiny, plotly, pheatmap, bioDist, dendextend, cowplot, corrplot, grDevices, stats, graphics, reshape2, S4Vectors, SummarizedExperiment Suggests: knitr, rmarkdown, Matrix, testthat, vdiffr License: file LICENSE Archs: x64 MD5sum: 963cda83ff567a407a28b5106b955d8d NeedsCompilation: no Title: Fast and accurate scRNA-seq cell type identification Description: CHETAH (CHaracterization of cEll Types Aided by Hierarchical classification) is an accurate, selective and fast scRNA-seq classifier. Classification is guided by a reference dataset, preferentially also a scRNA-seq dataset. By hierarchical clustering of the reference data, CHETAH creates a classification tree that enables a step-wise, top-to-bottom classification. Using a novel stopping rule, CHETAH classifies the input cells to the cell types of the references and to "intermediate types": more general classifications that ended in an intermediate node of the tree. biocViews: Classification, RNASeq, SingleCell, Clustering, GeneExpression, ImmunoOncology Author: Jurrian de Kanter [aut, cre], Philip Lijnzaad [aut] Maintainer: Jurrian de Kanter URL: https://github.com/jdekanter/CHETAH VignetteBuilder: knitr BugReports: https://github.com/jdekanter/CHETAH git_url: https://git.bioconductor.org/packages/CHETAH git_branch: RELEASE_3_20 git_last_commit: f5484b0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CHETAH_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CHETAH_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CHETAH_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CHETAH_1.22.0.tgz vignettes: vignettes/CHETAH/inst/doc/CHETAH_introduction.html vignetteTitles: Introduction to the CHETAH package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CHETAH/inst/doc/CHETAH_introduction.R suggestsMe: adverSCarial dependencyCount: 114 Package: Chicago Version: 1.34.0 Depends: R (>= 3.3.1), data.table Imports: matrixStats, MASS, Hmisc, Delaporte, methods, grDevices, graphics, stats, utils Suggests: argparser, BiocStyle, knitr, rmarkdown, PCHiCdata, testthat, Rsamtools, GenomicInteractions, GenomicRanges, IRanges, AnnotationHub License: Artistic-2.0 Archs: x64 MD5sum: 02766cae10fde3a8843b053fb1612715 NeedsCompilation: no Title: CHiCAGO: Capture Hi-C Analysis of Genomic Organization Description: A pipeline for analysing Capture Hi-C data. biocViews: Epigenetics, HiC, Sequencing, Software Author: Jonathan Cairns, Paula Freire Pritchett, Steven Wingett, Mikhail Spivakov Maintainer: Mikhail Spivakov VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Chicago git_branch: RELEASE_3_20 git_last_commit: 167443f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Chicago_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Chicago_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Chicago_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Chicago_1.34.0.tgz vignettes: vignettes/Chicago/inst/doc/Chicago.html vignetteTitles: CHiCAGO Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Chicago/inst/doc/Chicago.R dependsOnMe: PCHiCdata dependencyCount: 76 Package: chihaya Version: 1.6.0 Depends: DelayedArray Imports: methods, Matrix, rhdf5, Rcpp, HDF5Array LinkingTo: Rcpp, Rhdf5lib Suggests: BiocGenerics, S4Vectors, BiocSingular, ResidualMatrix, BiocStyle, testthat, rmarkdown, knitr License: GPL-3 MD5sum: 4fbd85c67770e714a40d4632ed7b8938 NeedsCompilation: yes Title: Save Delayed Operations to a HDF5 File Description: Saves the delayed operations of a DelayedArray to a HDF5 file. This enables efficient recovery of the DelayedArray's contents in other languages and analysis frameworks. biocViews: DataImport, DataRepresentation Author: Aaron Lun [cre, aut] Maintainer: Aaron Lun URL: https://github.com/ArtifactDB/chihaya-R SystemRequirements: C++17, GNU make VignetteBuilder: knitr BugReports: https://github.com/ArtifactDB/chihaya-R/issues git_url: https://git.bioconductor.org/packages/chihaya git_branch: RELEASE_3_20 git_last_commit: 8d77826 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/chihaya_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/chihaya_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/chihaya_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/chihaya_1.6.0.tgz vignettes: vignettes/chihaya/inst/doc/userguide.html vignetteTitles: User guide hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/chihaya/inst/doc/userguide.R suggestsMe: alabaster.matrix dependencyCount: 27 Package: chimeraviz Version: 1.32.0 Depends: Biostrings, GenomicRanges, IRanges, Gviz, S4Vectors, ensembldb, AnnotationFilter, data.table Imports: methods, grid, Rsamtools, GenomeInfoDb, GenomicAlignments, RColorBrewer, graphics, AnnotationDbi, RCircos, org.Hs.eg.db, org.Mm.eg.db, rmarkdown, graph, Rgraphviz, DT, plyr, dplyr, BiocStyle, checkmate, gtools, magick Suggests: testthat, roxygen2, devtools, knitr, lintr License: Artistic-2.0 MD5sum: 492ee5d90460b1ba46f1a1549fdf4527 NeedsCompilation: no Title: Visualization tools for gene fusions Description: chimeraviz manages data from fusion gene finders and provides useful visualization tools. biocViews: Infrastructure, Alignment Author: Stian Lågstad [aut, cre], Sen Zhao [ctb], Andreas M. Hoff [ctb], Bjarne Johannessen [ctb], Ole Christian Lingjærde [ctb], Rolf Skotheim [ctb] Maintainer: Stian Lågstad URL: https://github.com/stianlagstad/chimeraviz SystemRequirements: bowtie, samtools, and egrep are required for some functionalities VignetteBuilder: knitr BugReports: https://github.com/stianlagstad/chimeraviz/issues git_url: https://git.bioconductor.org/packages/chimeraviz git_branch: RELEASE_3_20 git_last_commit: 6d15cda git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/chimeraviz_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/chimeraviz_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/chimeraviz_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/chimeraviz_1.32.0.tgz vignettes: vignettes/chimeraviz/inst/doc/chimeraviz-vignette.html vignetteTitles: chimeraviz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/chimeraviz/inst/doc/chimeraviz-vignette.R dependencyCount: 173 Package: ChIPanalyser Version: 1.28.0 Depends: R (>= 3.5.0),GenomicRanges, Biostrings, BSgenome, RcppRoll, parallel Imports: methods, IRanges, S4Vectors,grDevices,graphics,stats,utils,rtracklayer,ROCR, BiocManager,GenomeInfoDb,RColorBrewer Suggests: BSgenome.Dmelanogaster.UCSC.dm6,knitr, RUnit, BiocGenerics License: GPL-3 Archs: x64 MD5sum: b2a33513fdb9d21f0397d5d99e16f4fc NeedsCompilation: no Title: ChIPanalyser: Predicting Transcription Factor Binding Sites Description: ChIPanalyser is a package to predict and understand TF binding by utilizing a statistical thermodynamic model. The model incorporates 4 main factors thought to drive TF binding: Chromatin State, Binding energy, Number of bound molecules and a scaling factor modulating TF binding affinity. Taken together, ChIPanalyser produces ChIP-like profiles that closely mimic the patterns seens in real ChIP-seq data. biocViews: Software, BiologicalQuestion, WorkflowStep, Transcription, Sequencing, ChipOnChip, Coverage, Alignment, ChIPSeq, SequenceMatching, DataImport ,PeakDetection Author: Patrick C.N.Martin & Nicolae Radu Zabet Maintainer: Patrick C.N. Martin VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ChIPanalyser git_branch: RELEASE_3_20 git_last_commit: 98a81fc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChIPanalyser_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ChIPanalyser_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChIPanalyser_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ChIPanalyser_1.28.0.tgz vignettes: vignettes/ChIPanalyser/inst/doc/ChIPanalyser.pdf, vignettes/ChIPanalyser/inst/doc/GA_ChIPanalyser.pdf vignetteTitles: ChIPanalyser User's Guide, ChIPanalyser User's Guide for Genetic Algorithms hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ChIPanalyser/inst/doc/ChIPanalyser.R, vignettes/ChIPanalyser/inst/doc/GA_ChIPanalyser.R dependencyCount: 68 Package: ChIPComp Version: 1.36.0 Depends: R (>= 3.2.0),GenomicRanges,IRanges,rtracklayer,GenomeInfoDb,S4Vectors Imports: Rsamtools,limma,BSgenome.Hsapiens.UCSC.hg19, BSgenome.Mmusculus.UCSC.mm9,BiocGenerics Suggests: BiocStyle,RUnit License: GPL MD5sum: 0e6a6a35372ccce4c09783afd9e2b327 NeedsCompilation: yes Title: Quantitative comparison of multiple ChIP-seq datasets Description: ChIPComp detects differentially bound sharp binding sites across multiple conditions considering matching control. biocViews: ChIPSeq, Sequencing, Transcription, Genetics,Coverage, MultipleComparison, DataImport Author: Hao Wu, Li Chen, Zhaohui S.Qin, Chi Wang Maintainer: Li Chen git_url: https://git.bioconductor.org/packages/ChIPComp git_branch: RELEASE_3_20 git_last_commit: e58b2a4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChIPComp_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ChIPComp_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChIPComp_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ChIPComp_1.36.0.tgz vignettes: vignettes/ChIPComp/inst/doc/ChIPComp.pdf vignetteTitles: ChIPComp hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ChIPComp/inst/doc/ChIPComp.R dependencyCount: 63 Package: chipenrich Version: 2.30.0 Depends: R (>= 3.4.0) Imports: AnnotationDbi, BiocGenerics, chipenrich.data, GenomeInfoDb, GenomicRanges, grDevices, grid, IRanges, lattice, latticeExtra, MASS, methods, mgcv, org.Dm.eg.db, org.Dr.eg.db, org.Hs.eg.db, org.Mm.eg.db, org.Rn.eg.db, parallel, plyr, rms, rtracklayer, S4Vectors (>= 0.23.10), stats, stringr, utils Suggests: BiocStyle, devtools, knitr, rmarkdown, roxygen2, testthat License: GPL-3 MD5sum: d052dc8804511f009ad18f135fec8466 NeedsCompilation: no Title: Gene Set Enrichment For ChIP-seq Peak Data Description: ChIP-Enrich and Poly-Enrich perform gene set enrichment testing using peaks called from a ChIP-seq experiment. The method empirically corrects for confounding factors such as the length of genes, and the mappability of the sequence surrounding genes. biocViews: ImmunoOncology, ChIPSeq, Epigenetics, FunctionalGenomics, GeneSetEnrichment, HistoneModification, Regression Author: Ryan P. Welch [aut, cph], Chee Lee [aut], Raymond G. Cavalcante [aut], Kai Wang [cre], Chris Lee [aut], Laura J. Scott [ths], Maureen A. Sartor [ths] Maintainer: Kai Wang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/chipenrich git_branch: RELEASE_3_20 git_last_commit: 2da6d03 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/chipenrich_2.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/chipenrich_2.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/chipenrich_2.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/chipenrich_2.30.0.tgz vignettes: vignettes/chipenrich/inst/doc/chipenrich-vignette.html vignetteTitles: chipenrich_vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/chipenrich/inst/doc/chipenrich-vignette.R dependencyCount: 159 Package: ChIPexoQual Version: 1.30.0 Depends: R (>= 3.5.0), GenomicAlignments (>= 1.0.1) Imports: methods, utils, GenomeInfoDb, stats, BiocParallel, GenomicRanges (>= 1.14.4), ggplot2 (>= 1.0), data.table (>= 1.9.6), Rsamtools (>= 1.16.1), IRanges (>= 1.6), S4Vectors (>= 0.8), biovizBase (>= 1.18), broom (>= 0.4), RColorBrewer (>= 1.1), dplyr (>= 0.5), scales (>= 0.4.0), viridis (>= 0.3), hexbin (>= 1.27), rmarkdown Suggests: ChIPexoQualExample (>= 0.99.1), knitr (>= 1.10), BiocStyle, gridExtra (>= 2.2), testthat License: GPL (>=2) Archs: x64 MD5sum: d7331918c4816022cdb79723ff7a452a NeedsCompilation: no Title: ChIPexoQual Description: Package with a quality control pipeline for ChIP-exo/nexus data. biocViews: ChIPSeq, Sequencing, Transcription, Visualization, QualityControl, Coverage, Alignment Author: Rene Welch, Dongjun Chung, Sunduz Keles Maintainer: Rene Welch URL: https:github.com/keleslab/ChIPexoQual VignetteBuilder: knitr BugReports: https://github.com/welch16/ChIPexoQual/issues git_url: https://git.bioconductor.org/packages/ChIPexoQual git_branch: RELEASE_3_20 git_last_commit: 45b83a8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChIPexoQual_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ChIPexoQual_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChIPexoQual_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ChIPexoQual_1.30.0.tgz vignettes: vignettes/ChIPexoQual/inst/doc/vignette.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ChIPexoQual/inst/doc/vignette.R dependencyCount: 143 Package: ChIPpeakAnno Version: 3.40.0 Depends: R (>= 3.5), methods, IRanges (>= 2.13.12), GenomicRanges (>= 1.31.8), S4Vectors (>= 0.17.25) Imports: AnnotationDbi, BiocGenerics (>= 0.1.0), Biostrings (>= 2.47.6), pwalign, DBI, dplyr, GenomeInfoDb, GenomicAlignments, GenomicFeatures, RBGL, Rsamtools, SummarizedExperiment, VennDiagram, biomaRt, ggplot2, grDevices, graph, graphics, grid, InteractionSet, KEGGREST, matrixStats, multtest, regioneR, rtracklayer, stats, utils, universalmotif, stringr, tibble, tidyr, data.table, scales, ensembldb Suggests: AnnotationHub, BSgenome, limma, reactome.db, BiocManager, BiocStyle, BSgenome.Ecoli.NCBI.20080805, BSgenome.Hsapiens.UCSC.hg19, org.Ce.eg.db, org.Hs.eg.db, BSgenome.Celegans.UCSC.ce10, BSgenome.Drerio.UCSC.danRer7, BSgenome.Hsapiens.UCSC.hg38, DelayedArray, idr, seqinr, EnsDb.Hsapiens.v75, EnsDb.Hsapiens.v79, EnsDb.Hsapiens.v86, TxDb.Hsapiens.UCSC.hg18.knownGene, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg38.knownGene, GO.db, gplots, UpSetR, knitr, rmarkdown, reshape2, testthat, trackViewer, motifStack, OrganismDbi, BiocFileCache License: GPL (>= 2) MD5sum: 013df0ad1ca32d1c0f26de985a4d13e7 NeedsCompilation: no Title: Batch annotation of the peaks identified from either ChIP-seq, ChIP-chip experiments, or any experiments that result in large number of genomic interval data Description: The package encompasses a range of functions for identifying the closest gene, exon, miRNA, or custom features—such as highly conserved elements and user-supplied transcription factor binding sites. Additionally, users can retrieve sequences around the peaks and obtain enriched Gene Ontology (GO) or Pathway terms. In version 2.0.5 and beyond, new functionalities have been introduced. These include features for identifying peaks associated with bi-directional promoters along with summary statistics (peaksNearBDP), summarizing motif occurrences in peaks (summarizePatternInPeaks), and associating additional identifiers with annotated peaks or enrichedGO (addGeneIDs). The package integrates with various other packages such as biomaRt, IRanges, Biostrings, BSgenome, GO.db, multtest, and stat to enhance its analytical capabilities. biocViews: Annotation, ChIPSeq, ChIPchip Author: Lihua Julie Zhu, Jianhong Ou, Jun Yu, Kai Hu, Haibo Liu, Junhui Li, Hervé Pagès, Claude Gazin, Nathan Lawson, Ryan Thompson, Simon Lin, David Lapointe, Michael Green Maintainer: Jianhong Ou , Lihua Julie Zhu , Kai Hu , Junhui Li VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ChIPpeakAnno git_branch: RELEASE_3_20 git_last_commit: faf2e4f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChIPpeakAnno_3.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ChIPpeakAnno_3.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChIPpeakAnno_3.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ChIPpeakAnno_3.40.0.tgz vignettes: vignettes/ChIPpeakAnno/inst/doc/ChIPpeakAnno.html vignetteTitles: ChIPpeakAnno: annotate,, visualize,, and compare peak data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ChIPpeakAnno/inst/doc/ChIPpeakAnno.R dependsOnMe: REDseq, csawBook importsMe: ATACseqQC, DEScan2, GUIDEseq suggestsMe: hicVennDiagram, R3CPET, seqsetvis, chipseqDB dependencyCount: 132 Package: ChIPQC Version: 1.42.0 Depends: R (>= 3.5.0), ggplot2, DiffBind, GenomicRanges (>= 1.17.19), BiocParallel Imports: BiocGenerics (>= 0.11.3), S4Vectors (>= 0.1.0), IRanges (>= 1.99.17), Rsamtools (>= 1.17.28), GenomicAlignments (>= 1.1.16), chipseq (>= 1.12.0), gtools, methods, reshape2, Nozzle.R1, Biobase, grDevices, stats, utils, GenomicFeatures, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg18.knownGene, TxDb.Mmusculus.UCSC.mm10.knownGene, TxDb.Mmusculus.UCSC.mm9.knownGene, TxDb.Rnorvegicus.UCSC.rn4.ensGene, TxDb.Celegans.UCSC.ce6.ensGene, TxDb.Dmelanogaster.UCSC.dm3.ensGene Suggests: BiocStyle License: GPL (>= 3) MD5sum: a312266b6573e840b379a867597fcc87 NeedsCompilation: no Title: Quality metrics for ChIPseq data Description: Quality metrics for ChIPseq data. biocViews: Sequencing, ChIPSeq, QualityControl, ReportWriting Author: Tom Carroll, Wei Liu, Ines de Santiago, Rory Stark Maintainer: Tom Carroll , Rory Stark git_url: https://git.bioconductor.org/packages/ChIPQC git_branch: RELEASE_3_20 git_last_commit: 771dee3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChIPQC_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ChIPQC_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChIPQC_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ChIPQC_1.42.0.tgz vignettes: vignettes/ChIPQC/inst/doc/ChIPQC.pdf, vignettes/ChIPQC/inst/doc/ChIPQCSampleReport.pdf vignetteTitles: Assessing ChIP-seq sample quality with ChIPQC, ChIPQCSampleReport.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ChIPQC/inst/doc/ChIPQC.R dependencyCount: 168 Package: ChIPseeker Version: 1.42.0 Depends: R (>= 3.5.0) Imports: AnnotationDbi, aplot, BiocGenerics, boot, dplyr, enrichplot, IRanges, GenomeInfoDb, GenomicRanges, GenomicFeatures, ggplot2, gplots, graphics, grDevices, gtools, magrittr, methods, plotrix, parallel, RColorBrewer, rlang, rtracklayer, S4Vectors, scales, stats, tibble, TxDb.Hsapiens.UCSC.hg19.knownGene, utils, yulab.utils (>= 0.1.5) Suggests: clusterProfiler, ggimage, ggplotify, ggupset, ggVennDiagram, knitr, org.Hs.eg.db, prettydoc, ReactomePA, rmarkdown, testthat License: Artistic-2.0 MD5sum: 08a999eb21b3ac5472a298493a5fd5c9 NeedsCompilation: no Title: ChIPseeker for ChIP peak Annotation, Comparison, and Visualization Description: This package implements functions to retrieve the nearest genes around the peak, annotate genomic region of the peak, statstical methods for estimate the significance of overlap among ChIP peak data sets, and incorporate GEO database for user to compare the own dataset with those deposited in database. The comparison can be used to infer cooperative regulation and thus can be used to generate hypotheses. Several visualization functions are implemented to summarize the coverage of the peak experiment, average profile and heatmap of peaks binding to TSS regions, genomic annotation, distance to TSS, and overlap of peaks or genes. biocViews: Annotation, ChIPSeq, Software, Visualization, MultipleComparison Author: Guangchuang Yu [aut, cre] (), Ming Li [ctb], Qianwen Wang [ctb], Yun Yan [ctb], Hervé Pagès [ctb], Michael Kluge [ctb], Thomas Schwarzl [ctb], Zhougeng Xu [ctb], Chun-Hui Gao [ctb] () Maintainer: Guangchuang Yu URL: https://yulab-smu.top/contribution-knowledge-mining/ VignetteBuilder: knitr BugReports: https://github.com/YuLab-SMU/ChIPseeker/issues git_url: https://git.bioconductor.org/packages/ChIPseeker git_branch: RELEASE_3_20 git_last_commit: f8f80b8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChIPseeker_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ChIPseeker_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChIPseeker_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ChIPseeker_1.42.0.tgz vignettes: vignettes/ChIPseeker/inst/doc/ChIPseeker.html vignetteTitles: ChIPseeker: an R package for ChIP peak Annotation,, Comparison and Visualization hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ChIPseeker/inst/doc/ChIPseeker.R importsMe: EpiCompare, esATAC, segmenter, seqArchRplus, TCGAWorkflow, cinaR suggestsMe: GRaNIE, curatedAdipoChIP dependencyCount: 149 Package: chipseq Version: 1.56.0 Depends: R (>= 3.5.0), methods, BiocGenerics (>= 0.1.0), S4Vectors (>= 0.17.25), IRanges (>= 2.13.12), GenomicRanges (>= 1.31.8), ShortRead Imports: methods, stats, lattice, BiocGenerics, IRanges, GenomicRanges, ShortRead Suggests: BSgenome, GenomicFeatures, TxDb.Mmusculus.UCSC.mm9.knownGene, BSgenome.Mmusculus.UCSC.mm9, BiocStyle, knitr License: Artistic-2.0 MD5sum: 6888fd84f74773eed6b17375e94da8f0 NeedsCompilation: yes Title: chipseq: A package for analyzing chipseq data Description: Tools for helping process short read data for chipseq experiments. biocViews: ChIPSeq, Sequencing, Coverage, QualityControl, DataImport Author: Deepayan Sarkar [aut], Robert Gentleman [aut], Michael Lawrence [aut], Zizhen Yao [aut], Oluwabukola Bamigbade [ctb] (Converted vignette from Sweave to R Markdown / HTML.), Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/chipseq git_branch: RELEASE_3_20 git_last_commit: bb61f21 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/chipseq_1.56.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/chipseq_1.56.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/chipseq_1.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/chipseq_1.56.0.tgz vignettes: vignettes/chipseq/inst/doc/Workflow.html vignetteTitles: Some Basic Analysis of ChIP-Seq Data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/chipseq/inst/doc/Workflow.R importsMe: ChIPQC, soGGi, transcriptR dependencyCount: 63 Package: ChIPseqR Version: 1.60.0 Depends: R (>= 2.10.0), methods, BiocGenerics, S4Vectors (>= 0.9.25) Imports: Biostrings, fBasics, GenomicRanges, IRanges (>= 2.5.14), graphics, grDevices, HilbertVis, ShortRead, stats, timsac, utils License: GPL (>= 2) MD5sum: beec6d66d14fb4359cf27bec202305f4 NeedsCompilation: yes Title: Identifying Protein Binding Sites in High-Throughput Sequencing Data Description: ChIPseqR identifies protein binding sites from ChIP-seq and nucleosome positioning experiments. The model used to describe binding events was developed to locate nucleosomes but should flexible enough to handle other types of experiments as well. biocViews: ChIPSeq, Infrastructure Author: Peter Humburg Maintainer: Peter Humburg git_url: https://git.bioconductor.org/packages/ChIPseqR git_branch: RELEASE_3_20 git_last_commit: b1707e5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChIPseqR_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ChIPseqR_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChIPseqR_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ChIPseqR_1.60.0.tgz vignettes: vignettes/ChIPseqR/inst/doc/Introduction.pdf vignetteTitles: Introduction to ChIPseqR hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ChIPseqR/inst/doc/Introduction.R dependencyCount: 71 Package: ChIPsim Version: 1.60.0 Depends: Biostrings (>= 2.29.2) Imports: IRanges, XVector, Biostrings, ShortRead, graphics, methods, stats, utils Suggests: actuar, zoo License: GPL (>= 2) Archs: x64 MD5sum: e01bef84f83bd67f61e93aa371af09be NeedsCompilation: no Title: Simulation of ChIP-seq experiments Description: A general framework for the simulation of ChIP-seq data. Although currently focused on nucleosome positioning the package is designed to support different types of experiments. biocViews: Infrastructure, ChIPSeq Author: Peter Humburg Maintainer: Peter Humburg git_url: https://git.bioconductor.org/packages/ChIPsim git_branch: RELEASE_3_20 git_last_commit: 7461e09 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChIPsim_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ChIPsim_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChIPsim_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ChIPsim_1.60.0.tgz vignettes: vignettes/ChIPsim/inst/doc/ChIPsimIntro.pdf vignetteTitles: Simulating ChIP-seq experiments hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ChIPsim/inst/doc/ChIPsimIntro.R dependencyCount: 63 Package: ChIPXpress Version: 1.50.0 Depends: R (>= 2.10), ChIPXpressData Imports: Biobase, GEOquery, frma, affy, bigmemory, biganalytics Suggests: mouse4302frmavecs, mouse4302.db, mouse4302cdf, RUnit, BiocGenerics License: GPL(>=2) MD5sum: 51f755ef36fb5e7efc94527eed6d7c22 NeedsCompilation: no Title: ChIPXpress: enhanced transcription factor target gene identification from ChIP-seq and ChIP-chip data using publicly available gene expression profiles Description: ChIPXpress takes as input predicted TF bound genes from ChIPx data and uses a corresponding database of gene expression profiles downloaded from NCBI GEO to rank the TF bound targets in order of which gene is most likely to be functional TF target. biocViews: ChIPchip, ChIPSeq Author: George Wu Maintainer: George Wu git_url: https://git.bioconductor.org/packages/ChIPXpress git_branch: RELEASE_3_20 git_last_commit: 5e61aa6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChIPXpress_1.50.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChIPXpress_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ChIPXpress_1.50.0.tgz vignettes: vignettes/ChIPXpress/inst/doc/ChIPXpress.pdf vignetteTitles: ChIPXpress hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ChIPXpress/inst/doc/ChIPXpress.R dependencyCount: 109 Package: chopsticks Version: 1.72.0 Imports: graphics, stats, utils, methods, survival Suggests: hexbin License: GPL-3 Archs: x64 MD5sum: 7b4d334f96e86d4b6e90f5177710fe3e NeedsCompilation: yes Title: The 'snp.matrix' and 'X.snp.matrix' Classes Description: Implements classes and methods for large-scale SNP association studies biocViews: Microarray, SNPsAndGeneticVariability, SNP, GeneticVariability Author: Hin-Tak Leung Maintainer: Hin-Tak Leung URL: http://outmodedbonsai.sourceforge.net/ git_url: https://git.bioconductor.org/packages/chopsticks git_branch: RELEASE_3_20 git_last_commit: ba6aa9b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/chopsticks_1.72.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/chopsticks_1.72.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/chopsticks_1.72.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/chopsticks_1.72.0.tgz vignettes: vignettes/chopsticks/inst/doc/chopsticks-vignette.pdf vignetteTitles: snpMatrix hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/chopsticks/inst/doc/chopsticks-vignette.R dependencyCount: 10 Package: chromDraw Version: 2.36.0 Depends: R (>= 3.0.0) Imports: Rcpp (>= 0.11.1), GenomicRanges (>= 1.17.46) LinkingTo: Rcpp License: GPL-3 MD5sum: 48a273a12b03d082dad3bdbeb300b01a NeedsCompilation: yes Title: chromDraw is a R package for drawing the schemes of karyotypes in the linear and circular fashion. Description: ChromDraw is a R package for drawing the schemes of karyotype(s) in the linear and circular fashion. It is possible to visualized cytogenetic marsk on the chromosomes. This tool has own input data format. Input data can be imported from the GenomicRanges data structure. This package can visualized the data in the BED file format. Here is requirement on to the first nine fields of the BED format. Output files format are *.eps and *.svg. biocViews: Software Author: Jan Janecka, Ing., Mgr. CEITEC Masaryk University Maintainer: Jan Janecka URL: www.plantcytogenomics.org/chromDraw SystemRequirements: Rtools (>= 3.1) git_url: https://git.bioconductor.org/packages/chromDraw git_branch: RELEASE_3_20 git_last_commit: 1adfc2e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/chromDraw_2.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/chromDraw_2.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/chromDraw_2.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/chromDraw_2.36.0.tgz vignettes: vignettes/chromDraw/inst/doc/chromDraw.pdf vignetteTitles: chromDraw hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/chromDraw/inst/doc/chromDraw.R dependencyCount: 24 Package: ChromHeatMap Version: 1.60.0 Depends: R (>= 2.9.0), BiocGenerics (>= 0.3.2), annotate (>= 1.20.0), AnnotationDbi (>= 1.4.0) Imports: Biobase (>= 2.17.8), graphics, grDevices, methods, stats, IRanges, rtracklayer, GenomicRanges Suggests: ALL, hgu95av2.db License: Artistic-2.0 Archs: x64 MD5sum: 37ff6e2451cb656481aa2f6fe75e5d98 NeedsCompilation: no Title: Heat map plotting by genome coordinate Description: The ChromHeatMap package can be used to plot genome-wide data (e.g. expression, CGH, SNP) along each strand of a given chromosome as a heat map. The generated heat map can be used to interactively identify probes and genes of interest. biocViews: Visualization Author: Tim F. Rayner Maintainer: Tim F. Rayner git_url: https://git.bioconductor.org/packages/ChromHeatMap git_branch: RELEASE_3_20 git_last_commit: ad49888 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChromHeatMap_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ChromHeatMap_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChromHeatMap_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ChromHeatMap_1.60.0.tgz vignettes: vignettes/ChromHeatMap/inst/doc/ChromHeatMap.pdf vignetteTitles: Plotting expression data with ChromHeatMap hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ChromHeatMap/inst/doc/ChromHeatMap.R dependencyCount: 78 Package: chromPlot Version: 1.34.0 Depends: stats, utils, graphics, grDevices, datasets, base, biomaRt, GenomicRanges, R (>= 3.1.0) Suggests: qtl, GenomicFeatures, TxDb.Hsapiens.UCSC.hg19.knownGene License: GPL (>= 2) Archs: x64 MD5sum: fe85ead7e4f016176f9e7cd4ae47b58d NeedsCompilation: no Title: Global visualization tool of genomic data Description: Package designed to visualize genomic data along the chromosomes, where the vertical chromosomes are sorted by number, with sex chromosomes at the end. biocViews: DataRepresentation, FunctionalGenomics, Genetics, Sequencing, Annotation, Visualization Author: Ricardo A. Verdugo and Karen Y. Orostica Maintainer: Karen Y. Orostica git_url: https://git.bioconductor.org/packages/chromPlot git_branch: RELEASE_3_20 git_last_commit: 881ec20 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/chromPlot_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/chromPlot_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/chromPlot_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/chromPlot_1.34.0.tgz vignettes: vignettes/chromPlot/inst/doc/chromPlot.pdf vignetteTitles: General Manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/chromPlot/inst/doc/chromPlot.R dependencyCount: 72 Package: ChromSCape Version: 1.16.0 Depends: R (>= 4.1) Imports: shiny, colourpicker, shinyjs, rtracklayer, shinyFiles, shinyhelper, shinyWidgets, shinydashboardPlus, shinycssloaders, Matrix, plotly, shinydashboard, colorRamps, kableExtra, viridis, batchelor, BiocParallel, parallel, Rsamtools, ggplot2, ggrepel, gggenes, gridExtra, qualV, stringdist, stringr, fs, qs, DT, scran, scater, ConsensusClusterPlus, Rtsne, dplyr, tidyr, GenomicRanges, IRanges, irlba, rlist, umap, tibble, methods, jsonlite, edgeR, stats, graphics, grDevices, utils, S4Vectors, SingleCellExperiment, SummarizedExperiment, msigdbr, forcats, Rcpp, coop, matrixTests, DelayedArray LinkingTo: Rcpp Suggests: testthat, knitr, markdown, rmarkdown, BiocStyle, Signac, future, igraph, bluster, httr License: GPL-3 MD5sum: 021eeaa20ddab5bc839d4344a8f9bd76 NeedsCompilation: yes Title: Analysis of single-cell epigenomics datasets with a Shiny App Description: ChromSCape - Chromatin landscape profiling for Single Cells - is a ready-to-launch user-friendly Shiny Application for the analysis of single-cell epigenomics datasets (scChIP-seq, scATAC-seq, scCUT&Tag, ...) from aligned data to differential analysis & gene set enrichment analysis. It is highly interactive, enables users to save their analysis and covers a wide range of analytical steps: QC, preprocessing, filtering, batch correction, dimensionality reduction, vizualisation, clustering, differential analysis and gene set analysis. biocViews: ShinyApps, Software, SingleCell, ChIPSeq, ATACSeq, MethylSeq, Classification, Clustering, Epigenetics, PrincipalComponent, SingleCell, ATACSeq, ChIPSeq, Annotation, BatchEffect, MultipleComparison, Normalization, Pathways, Preprocessing, QualityControl, ReportWriting, Visualization, GeneSetEnrichment, DifferentialPeakCalling Author: Pacome Prompsy [aut, cre] (), Celine Vallot [aut] () Maintainer: Pacome Prompsy URL: https://github.com/vallotlab/ChromSCape VignetteBuilder: knitr BugReports: https://github.com/vallotlab/ChromSCape/issues git_url: https://git.bioconductor.org/packages/ChromSCape git_branch: RELEASE_3_20 git_last_commit: 243f2f8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ChromSCape_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ChromSCape_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ChromSCape_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ChromSCape_1.16.0.tgz vignettes: vignettes/ChromSCape/inst/doc/vignette.html vignetteTitles: ChromSCape hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ChromSCape/inst/doc/vignette.R dependencyCount: 211 Package: chromstaR Version: 1.32.0 Depends: R (>= 3.5.0), GenomicRanges, ggplot2, chromstaRData Imports: methods, utils, grDevices, graphics, stats, foreach, doParallel, BiocGenerics (>= 0.31.6), S4Vectors, GenomeInfoDb, IRanges, reshape2, Rsamtools, GenomicAlignments, bamsignals, mvtnorm Suggests: knitr, BiocStyle, testthat, biomaRt License: Artistic-2.0 MD5sum: f5454c690dbea8e2727057ec6a702df6 NeedsCompilation: yes Title: Combinatorial and Differential Chromatin State Analysis for ChIP-Seq Data Description: This package implements functions for combinatorial and differential analysis of ChIP-seq data. It includes uni- and multivariate peak-calling, export to genome browser viewable files, and functions for enrichment analyses. biocViews: ImmunoOncology, Software, DifferentialPeakCalling, HiddenMarkovModel, ChIPSeq, HistoneModification, MultipleComparison, Sequencing, PeakDetection, ATACSeq Author: Aaron Taudt, Maria Colome Tatche, Matthias Heinig, Minh Anh Nguyen Maintainer: Aaron Taudt URL: https://github.com/ataudt/chromstaR VignetteBuilder: knitr BugReports: https://github.com/ataudt/chromstaR/issues git_url: https://git.bioconductor.org/packages/chromstaR git_branch: RELEASE_3_20 git_last_commit: 92369f0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-25 source.ver: src/contrib/chromstaR_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/chromstaR_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/chromstaR_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/chromstaR_1.32.0.tgz vignettes: vignettes/chromstaR/inst/doc/chromstaR.pdf vignetteTitles: The chromstaR user's guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/chromstaR/inst/doc/chromstaR.R dependencyCount: 88 Package: chromVAR Version: 1.28.0 Depends: R (>= 3.5.0) Imports: IRanges, GenomeInfoDb, GenomicRanges, ggplot2, nabor, BiocParallel, BiocGenerics, Biostrings, TFBSTools, Rsamtools, S4Vectors, methods, Rcpp, grid, plotly, shiny, miniUI, stats, utils, graphics, DT, Rtsne, Matrix, SummarizedExperiment, RColorBrewer, BSgenome LinkingTo: Rcpp, RcppArmadillo Suggests: JASPAR2016, BSgenome.Hsapiens.UCSC.hg19, readr, testthat, knitr, rmarkdown, pheatmap, motifmatchr License: MIT + file LICENSE Archs: x64 MD5sum: aee29f3a8176335fd69099d868a7e461 NeedsCompilation: yes Title: Chromatin Variation Across Regions Description: Determine variation in chromatin accessibility across sets of annotations or peaks. Designed primarily for single-cell or sparse chromatin accessibility data, e.g. from scATAC-seq or sparse bulk ATAC or DNAse-seq experiments. biocViews: SingleCell, Sequencing, GeneRegulation, ImmunoOncology Author: Alicia Schep [aut, cre], Jason Buenrostro [ctb], Caleb Lareau [ctb], William Greenleaf [ths], Stanford University [cph] Maintainer: Alicia Schep SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/chromVAR git_branch: RELEASE_3_20 git_last_commit: 0f0fb6e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/chromVAR_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/chromVAR_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/chromVAR_1.28.0.tgz vignettes: vignettes/chromVAR/inst/doc/Introduction.html vignetteTitles: Introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/chromVAR/inst/doc/Introduction.R suggestsMe: MOCHA, Signac dependencyCount: 162 Package: CHRONOS Version: 1.34.0 Depends: R (>= 3.5) Imports: XML, RCurl, RBGL, parallel, foreach, doParallel, openxlsx, igraph, circlize, graph, stats, utils, grDevices, graphics, methods, biomaRt, rJava Suggests: RUnit, BiocGenerics, knitr, rmarkdown License: GPL-2 Archs: x64 MD5sum: 8c5b64740c528b778512a95f1a87fb26 NeedsCompilation: no Title: CHRONOS: A time-varying method for microRNA-mediated sub-pathway enrichment analysis Description: A package used for efficient unraveling of the inherent dynamic properties of pathways. MicroRNA-mediated subpathway topologies are extracted and evaluated by exploiting the temporal transition and the fold change activity of the linked genes/microRNAs. biocViews: SystemsBiology, GraphAndNetwork, Pathways, KEGG Author: Aristidis G. Vrahatis, Konstantina Dimitrakopoulou, Panos Balomenos Maintainer: Panos Balomenos SystemRequirements: Java version >= 1.7, Pandoc VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CHRONOS git_branch: RELEASE_3_20 git_last_commit: 8f10df2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CHRONOS_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CHRONOS_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CHRONOS_1.34.0.tgz vignettes: vignettes/CHRONOS/inst/doc/CHRONOS.pdf vignetteTitles: CHRONOS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CHRONOS/inst/doc/CHRONOS.R dependencyCount: 92 Package: cicero Version: 1.24.0 Depends: R (>= 3.5.0), monocle, Gviz (>= 1.22.3) Imports: assertthat (>= 0.2.0), Biobase (>= 2.37.2), BiocGenerics (>= 0.23.0), data.table (>= 1.10.4), dplyr (>= 0.7.4), FNN (>= 1.1), GenomicRanges (>= 1.30.3), ggplot2 (>= 2.2.1), glasso (>= 1.8), grDevices, igraph (>= 1.1.0), IRanges (>= 2.10.5), Matrix (>= 1.2-12), methods, parallel, plyr (>= 1.8.4), reshape2 (>= 1.4.3), S4Vectors (>= 0.14.7), stats, stringi, stringr (>= 1.2.0), tibble (>= 1.4.2), tidyr, VGAM (>= 1.0-5), utils Suggests: AnnotationDbi (>= 1.38.2), knitr, markdown, rmarkdown, rtracklayer (>= 1.36.6), testthat, vdiffr (>= 0.2.3), covr License: MIT + file LICENSE Archs: x64 MD5sum: 672ea98f1fa212617161d78be0c3b72a NeedsCompilation: no Title: Predict cis-co-accessibility from single-cell chromatin accessibility data Description: Cicero computes putative cis-regulatory maps from single-cell chromatin accessibility data. It also extends monocle 2 for use in chromatin accessibility data. biocViews: Sequencing, Clustering, CellBasedAssays, ImmunoOncology, GeneRegulation, GeneTarget, Epigenetics, ATACSeq, SingleCell Author: Hannah Pliner [aut, cre], Cole Trapnell [aut] Maintainer: Hannah Pliner VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/cicero git_branch: RELEASE_3_20 git_last_commit: d20fd1a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cicero_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cicero_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cicero_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cicero_1.24.0.tgz vignettes: vignettes/cicero/inst/doc/website.html vignetteTitles: Vignette from Cicero Website hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/cicero/inst/doc/website.R dependencyCount: 183 Package: CIMICE Version: 1.14.0 Imports: dplyr, ggplot2, glue, tidyr, igraph, networkD3, visNetwork, ggcorrplot, purrr, ggraph, stats, utils, maftools, assertthat, tidygraph, expm, Matrix Suggests: BiocStyle, knitr, rmarkdown, testthat, webshot License: Artistic-2.0 MD5sum: 1deec105e219fbd01d3a65d98e35be4d NeedsCompilation: no Title: CIMICE-R: (Markov) Chain Method to Inferr Cancer Evolution Description: CIMICE is a tool in the field of tumor phylogenetics and its goal is to build a Markov Chain (called Cancer Progression Markov Chain, CPMC) in order to model tumor subtypes evolution. The input of CIMICE is a Mutational Matrix, so a boolean matrix representing altered genes in a collection of samples. These samples are assumed to be obtained with single-cell DNA analysis techniques and the tool is specifically written to use the peculiarities of this data for the CMPC construction. biocViews: Software, BiologicalQuestion, NetworkInference, ResearchField, Phylogenetics, StatisticalMethod, GraphAndNetwork, Technology, SingleCell Author: Nicolò Rossi [aut, cre] (Lab. of Computational Biology and Bioinformatics, Department of Mathematics, Computer Science and Physics, University of Udine, ) Maintainer: Nicolò Rossi URL: https://github.com/redsnic/CIMICE VignetteBuilder: knitr BugReports: https://github.com/redsnic/CIMICE/issues git_url: https://git.bioconductor.org/packages/CIMICE git_branch: RELEASE_3_20 git_last_commit: d6b750a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CIMICE_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CIMICE_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CIMICE_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CIMICE_1.14.0.tgz vignettes: vignettes/CIMICE/inst/doc/CIMICER.html, vignettes/CIMICE/inst/doc/CIMICE_SHORT.html vignetteTitles: CIMICE-R: (Markov) Chain Method to Infer Cancer Evolution, Quick guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CIMICE/inst/doc/CIMICER.R, vignettes/CIMICE/inst/doc/CIMICE_SHORT.R dependencyCount: 94 Package: CINdex Version: 1.34.0 Depends: R (>= 3.3), GenomicRanges Imports: bitops,gplots,grDevices,som, dplyr,gridExtra,png,stringr,S4Vectors, IRanges, GenomeInfoDb,graphics, stats, utils Suggests: knitr, testthat, ReactomePA, RUnit, BiocGenerics, AnnotationHub, rtracklayer, pd.genomewidesnp.6, org.Hs.eg.db, biovizBase, TxDb.Hsapiens.UCSC.hg18.knownGene, methods, Biostrings,Homo.sapiens, R.utils License: GPL (>= 2) MD5sum: 926e80fe183c3a1ded29e9edd11462e3 NeedsCompilation: no Title: Chromosome Instability Index Description: The CINdex package addresses important area of high-throughput genomic analysis. It allows the automated processing and analysis of the experimental DNA copy number data generated by Affymetrix SNP 6.0 arrays or similar high throughput technologies. It calculates the chromosome instability (CIN) index that allows to quantitatively characterize genome-wide DNA copy number alterations as a measure of chromosomal instability. This package calculates not only overall genomic instability, but also instability in terms of copy number gains and losses separately at the chromosome and cytoband level. biocViews: Software, CopyNumberVariation, GenomicVariation, aCGH, Microarray, Genetics, Sequencing Author: Lei Song [aut] (Innovation Center for Biomedical Informatics, Georgetown University Medical Center), Krithika Bhuvaneshwar [aut] (Innovation Center for Biomedical Informatics, Georgetown University Medical Center), Yue Wang [aut, ths] (Virginia Polytechnic Institute and State University), Yuanjian Feng [aut] (Virginia Polytechnic Institute and State University), Ie-Ming Shih [aut] (Johns Hopkins University School of Medicine), Subha Madhavan [aut] (Innovation Center for Biomedical Informatics, Georgetown University Medical Center), Yuriy Gusev [aut, cre] (Innovation Center for Biomedical Informatics, Georgetown University Medical Center) Maintainer: Yuriy Gusev VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CINdex git_branch: RELEASE_3_20 git_last_commit: fad024a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CINdex_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CINdex_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CINdex_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CINdex_1.34.0.tgz vignettes: vignettes/CINdex/inst/doc/CINdex.pdf, vignettes/CINdex/inst/doc/HowToDownloadCytobandInfo.pdf, vignettes/CINdex/inst/doc/PrepareInputData.pdf vignetteTitles: CINdex Tutorial, How to obtain Cytoband and Stain Information, Prepare input data for CINdex hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CINdex/inst/doc/CINdex.R, vignettes/CINdex/inst/doc/HowToDownloadCytobandInfo.R, vignettes/CINdex/inst/doc/PrepareInputData.R dependencyCount: 51 Package: circRNAprofiler Version: 1.20.0 Depends: R(>= 4.3.0) Imports: dplyr, magrittr, readr, rtracklayer, stringr, stringi, DESeq2, edgeR, GenomicRanges, IRanges, seqinr, R.utils, reshape2, ggplot2, utils, rlang, S4Vectors, stats, GenomeInfoDb, universalmotif, AnnotationHub, BSgenome.Hsapiens.UCSC.hg19, Biostrings, gwascat, BSgenome, Suggests: testthat, knitr, roxygen2, rmarkdown, devtools, gridExtra, ggpubr, VennDiagram, BSgenome.Mmusculus.UCSC.mm9, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm10, BiocManager, License: GPL-3 MD5sum: 9471f99814829513ad417f85798f08ff NeedsCompilation: no Title: circRNAprofiler: An R-Based Computational Framework for the Downstream Analysis of Circular RNAs Description: R-based computational framework for a comprehensive in silico analysis of circRNAs. This computational framework allows to combine and analyze circRNAs previously detected by multiple publicly available annotation-based circRNA detection tools. It covers different aspects of circRNAs analysis from differential expression analysis, evolutionary conservation, biogenesis to functional analysis. biocViews: Annotation, StructuralPrediction, FunctionalPrediction, GenePrediction, GenomeAssembly, DifferentialExpression Author: Simona Aufiero Maintainer: Simona Aufiero URL: https://github.com/Aufiero/circRNAprofiler VignetteBuilder: knitr BugReports: https://github.com/Aufiero/circRNAprofiler/issues git_url: https://git.bioconductor.org/packages/circRNAprofiler git_branch: RELEASE_3_20 git_last_commit: f354a2a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/circRNAprofiler_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/circRNAprofiler_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/circRNAprofiler_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/circRNAprofiler_1.20.0.tgz vignettes: vignettes/circRNAprofiler/inst/doc/circRNAprofiler.html vignetteTitles: circRNAprofiler hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/circRNAprofiler/inst/doc/circRNAprofiler.R dependencyCount: 143 Package: CircSeqAlignTk Version: 1.8.0 Depends: R (>= 4.2) Imports: stats, tools, utils, R.utils, methods, S4Vectors, rlang, magrittr, dplyr, tidyr, ggplot2, BiocGenerics, Biostrings, IRanges, ShortRead, Rsamtools, Rbowtie2, Rhisat2, shiny, shinyFiles, shinyjs, plotly, parallel, htmltools Suggests: knitr, rmarkdown, testthat, BiocStyle License: MIT + file LICENSE MD5sum: b005b0ba95eb5f7eeddb32b35aae2101 NeedsCompilation: no Title: A toolkit for end-to-end analysis of RNA-seq data for circular genomes Description: CircSeqAlignTk is designed for end-to-end RNA-Seq data analysis of circular genome sequences, from alignment to visualization. It mainly targets viroids which are composed of 246-401 nt circular RNAs. In addition, CircSeqAlignTk implements a tidy interface to generate synthetic sequencing data that mimic real RNA-Seq data, allowing developers to evaluate the performance of alignment tools and workflows. biocViews: Sequencing, SmallRNA, Alignment, Software Author: Jianqiang Sun [cre, aut] (), Xi Fu [ctb], Wei Cao [ctb] Maintainer: Jianqiang Sun URL: https://github.com/jsun/CircSeqAlignTk VignetteBuilder: knitr BugReports: https://github.com/jsun/CircSeqAlignTk/issues git_url: https://git.bioconductor.org/packages/CircSeqAlignTk git_branch: RELEASE_3_20 git_last_commit: 710288a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CircSeqAlignTk_1.8.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CircSeqAlignTk_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CircSeqAlignTk_1.8.0.tgz vignettes: vignettes/CircSeqAlignTk/inst/doc/CircSeqAlignTk.html vignetteTitles: CircSeqAlignTk hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CircSeqAlignTk/inst/doc/CircSeqAlignTk.R dependencyCount: 160 Package: cisPath Version: 1.46.0 Depends: R (>= 2.10.0) Imports: methods, utils License: GPL (>= 3) MD5sum: 85e7b9da3b42679a1b3b3cb45956e5d0 NeedsCompilation: yes Title: Visualization and management of the protein-protein interaction networks. Description: cisPath is an R package that uses web browsers to visualize and manage protein-protein interaction networks. biocViews: Proteomics Author: Likun Wang Maintainer: Likun Wang git_url: https://git.bioconductor.org/packages/cisPath git_branch: RELEASE_3_20 git_last_commit: a42bdef git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cisPath_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cisPath_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cisPath_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cisPath_1.46.0.tgz vignettes: vignettes/cisPath/inst/doc/cisPath.pdf vignetteTitles: cisPath hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cisPath/inst/doc/cisPath.R dependencyCount: 2 Package: CiteFuse Version: 1.18.0 Depends: R (>= 4.0) Imports: SingleCellExperiment (>= 1.8.0), SummarizedExperiment (>= 1.16.0), Matrix, mixtools, cowplot, ggplot2, gridExtra, grid, dbscan, uwot, Rtsne, S4Vectors (>= 0.24.0), igraph, scales, scran (>= 1.14.6), graphics, methods, stats, utils, reshape2, ggridges, randomForest, pheatmap, ggraph, grDevices, rhdf5, rlang, Rcpp, compositions LinkingTo: Rcpp Suggests: knitr, rmarkdown, DT, mclust, scater, ExPosition, BiocStyle, pkgdown License: GPL-3 MD5sum: 8c6f27fdda8b6d29ad294d101213a00d NeedsCompilation: yes Title: CiteFuse: multi-modal analysis of CITE-seq data Description: CiteFuse pacakage implements a suite of methods and tools for CITE-seq data from pre-processing to integrative analytics, including doublet detection, network-based modality integration, cell type clustering, differential RNA and protein expression analysis, ADT evaluation, ligand-receptor interaction analysis, and interactive web-based visualisation of the analyses. biocViews: SingleCell, GeneExpression Author: Yingxin Lin [aut, cre], Hani Kim [aut] Maintainer: Yingxin Lin VignetteBuilder: knitr BugReports: https://github.com/SydneyBioX/CiteFuse/issues git_url: https://git.bioconductor.org/packages/CiteFuse git_branch: RELEASE_3_20 git_last_commit: 93e0168 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CiteFuse_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CiteFuse_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CiteFuse_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CiteFuse_1.18.0.tgz vignettes: vignettes/CiteFuse/inst/doc/CiteFuse.html vignetteTitles: CiteFuse hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CiteFuse/inst/doc/CiteFuse.R suggestsMe: MuData dependencyCount: 163 Package: ClassifyR Version: 3.10.5 Depends: R (>= 4.1.0), generics, methods, S4Vectors, MultiAssayExperiment, BiocParallel, survival Imports: grid, genefilter, utils, dplyr, tidyr, rlang, ranger, ggplot2 (>= 3.0.0), ggpubr, reshape2, ggupset, broom, dcanr Suggests: limma, edgeR, car, Rmixmod, gridExtra (>= 2.0.0), cowplot, BiocStyle, pamr, PoiClaClu, knitr, htmltools, gtable, scales, e1071, rmarkdown, IRanges, robustbase, glmnet, class, randomForestSRC, MatrixModels, xgboost, data.tree, ggnewscale License: GPL-3 Archs: x64 MD5sum: 8c5d51b92f6f59eb8d20e2e8aa175682 NeedsCompilation: yes Title: A framework for cross-validated classification problems, with applications to differential variability and differential distribution testing Description: The software formalises a framework for classification and survival model evaluation in R. There are four stages; Data transformation, feature selection, model training, and prediction. The requirements of variable types and variable order are fixed, but specialised variables for functions can also be provided. The framework is wrapped in a driver loop that reproducibly carries out a number of cross-validation schemes. Functions for differential mean, differential variability, and differential distribution are included. Additional functions may be developed by the user, by creating an interface to the framework. biocViews: Classification, Survival Author: Dario Strbenac [aut, cre], Ellis Patrick [aut], Sourish Iyengar [aut], Harry Robertson [aut], Andy Tran [aut], John Ormerod [aut], Graham Mann [aut], Jean Yang [aut] Maintainer: Dario Strbenac URL: https://sydneybiox.github.io/ClassifyR/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ClassifyR git_branch: RELEASE_3_20 git_last_commit: eca8bce git_last_commit_date: 2024-12-20 Date/Publication: 2024-12-23 source.ver: src/contrib/ClassifyR_3.10.5.tar.gz win.binary.ver: bin/windows/contrib/4.4/ClassifyR_3.10.5.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ClassifyR_3.10.5.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ClassifyR_3.10.5.tgz vignettes: vignettes/ClassifyR/inst/doc/ClassifyR.html, vignettes/ClassifyR/inst/doc/DevelopersGuide.html vignetteTitles: An Introduction to the ClassifyR Package, Developer's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ClassifyR/inst/doc/ClassifyR.R, vignettes/ClassifyR/inst/doc/DevelopersGuide.R importsMe: spicyR, TOP suggestsMe: scFeatures, Statial, spicyWorkflow dependencyCount: 143 Package: cleanUpdTSeq Version: 1.44.0 Depends: R (>= 3.5.0), BSgenome.Drerio.UCSC.danRer7, methods Imports: BSgenome, GenomicRanges, seqinr, e1071, Biostrings, GenomeInfoDb, IRanges, utils, stringr, stats, S4Vectors Suggests: BiocStyle, rmarkdown, knitr, RUnit, BiocGenerics (>= 0.1.0) License: GPL-2 Archs: x64 MD5sum: 0bc83ad524caf1515e16fd62735730d6 NeedsCompilation: no Title: cleanUpdTSeq cleans up artifacts from polyadenylation sites from oligo(dT)-mediated 3' end RNA sequending data Description: This package implements a Naive Bayes classifier for accurately differentiating true polyadenylation sites (pA sites) from oligo(dT)-mediated 3' end sequencing such as PAS-Seq, PolyA-Seq and RNA-Seq by filtering out false polyadenylation sites, mainly due to oligo(dT)-mediated internal priming during reverse transcription. The classifer is highly accurate and outperforms other heuristic methods. biocViews: Sequencing, 3' end sequencing, polyadenylation site, internal priming Author: Sarah Sheppard, Haibo Liu, Jianhong Ou, Nathan Lawson, Lihua Julie Zhu Maintainer: Jianhong Ou ; Lihua Julie Zhu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/cleanUpdTSeq git_branch: RELEASE_3_20 git_last_commit: fded85f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cleanUpdTSeq_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cleanUpdTSeq_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cleanUpdTSeq_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cleanUpdTSeq_1.44.0.tgz vignettes: vignettes/cleanUpdTSeq/inst/doc/cleanUpdTSeq.html vignetteTitles: cleanUpdTSeq Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cleanUpdTSeq/inst/doc/cleanUpdTSeq.R dependencyCount: 80 Package: CleanUpRNAseq Version: 1.0.0 Depends: R (>= 4.4.0) Imports: AnnotationFilter, BiocGenerics, Biostrings, BSgenome, DESeq2, edgeR, ensembldb, GenomeInfoDb, GenomicRanges, ggplot2, ggrepel, graphics, grDevices, KernSmooth, limma, methods, pheatmap, qsmooth, R6, RColorBrewer, Rsamtools, Rsubread, reshape2, SummarizedExperiment, stats, tximport, utils Suggests: BiocStyle, BSgenome.Hsapiens.UCSC.hg38, EnsDb.Hsapiens.v86, ggplotify, knitr, patchwork, R.utils, rmarkdown, testthat (>= 3.0.0) License: GPL-3 Archs: x64 MD5sum: 3fff7d3325a4839106824d215c6f1876 NeedsCompilation: no Title: Detect and Correct Genomic DNA Contamination in RNA-seq Data Description: RNA-seq data generated by some library preparation methods, such as rRNA-depletion-based method and the SMART-seq method, might be contaminated by genomic DNA (gDNA), if DNase I disgestion is not performed properly during RNA preparation. CleanUpRNAseq is developed to check if RNA-seq data is suffered from gDNA contamination. If so, it can perform correction for gDNA contamination and reduce false discovery rate of differentially expressed genes. biocViews: QualityControl, Sequencing, GeneExpression Author: Haibo Liu [aut, cre] (), Kevin O'Connor [ctb], Michelle Kelliher [ctb], Lihua Julie Zhu [aut], Kai Hu [aut] Maintainer: Haibo Liu VignetteBuilder: knitr BugReports: https://github.com/haibol2016/CleanUpRNAseq/issues git_url: https://git.bioconductor.org/packages/CleanUpRNAseq git_branch: RELEASE_3_20 git_last_commit: 016a0fc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CleanUpRNAseq_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CleanUpRNAseq_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CleanUpRNAseq_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CleanUpRNAseq_1.0.0.tgz vignettes: vignettes/CleanUpRNAseq/inst/doc/CleanUpRNAseq.html vignetteTitles: CleanUpRNAseq: detecting and correcting for DNA contamination\nin RNA-seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CleanUpRNAseq/inst/doc/CleanUpRNAseq.R dependencyCount: 153 Package: cleaver Version: 1.44.0 Depends: R (>= 3.0.0), methods, Biostrings (>= 1.29.8) Imports: S4Vectors, IRanges Suggests: testthat (>= 0.8), knitr, BiocStyle (>= 0.0.14), rmarkdown, BRAIN, UniProt.ws (>= 2.36.5) License: GPL (>= 3) MD5sum: 77d0ea8131956c1c3bde9d5e7d8e4dab NeedsCompilation: no Title: Cleavage of Polypeptide Sequences Description: In-silico cleavage of polypeptide sequences. The cleavage rules are taken from: http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html biocViews: Proteomics Author: Sebastian Gibb [aut, cre] () Maintainer: Sebastian Gibb URL: https://github.com/sgibb/cleaver/ VignetteBuilder: knitr BugReports: https://github.com/sgibb/cleaver/issues/ git_url: https://git.bioconductor.org/packages/cleaver git_branch: RELEASE_3_20 git_last_commit: deebbfc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cleaver_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cleaver_1.44.0.zip mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cleaver_1.44.0.tgz vignettes: vignettes/cleaver/inst/doc/cleaver.html vignetteTitles: In-silico cleavage of polypeptides hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cleaver/inst/doc/cleaver.R importsMe: ProteoDisco, synapter suggestsMe: RforProteomics dependencyCount: 25 Package: clevRvis Version: 1.6.0 Imports: shiny, ggraph, igraph, ggiraph, cowplot, htmlwidgets, readxl, dplyr, readr, purrr, tibble, patchwork, R.utils, shinyWidgets, colorspace, shinyhelper, shinycssloaders, ggnewscale, shinydashboard, DT, colourpicker, grDevices, methods, utils, stats, ggplot2, magrittr, tools Suggests: knitr, rmarkdown, BiocStyle License: LGPL-3 MD5sum: e9ed8135aece62b029a3a7876ce68f95 NeedsCompilation: no Title: Visualization Techniques for Clonal Evolution Description: clevRvis provides a set of visualization techniques for clonal evolution. These include shark plots, dolphin plots and plaice plots. Algorithms for time point interpolation as well as therapy effect estimation are provided. Phylogeny-aware color coding is implemented. A shiny-app for generating plots interactively is additionally provided. biocViews: Software, ShinyApps, Visualization Author: Sarah Sandmann [aut, cre] () Maintainer: Sarah Sandmann URL: https://github.com/sandmanns/clevRvis VignetteBuilder: knitr BugReports: https://github.com/sandmanns/clevRvis/issues git_url: https://git.bioconductor.org/packages/clevRvis git_branch: RELEASE_3_20 git_last_commit: 9185c44 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/clevRvis_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/clevRvis_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/clevRvis_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/clevRvis_1.6.0.tgz vignettes: vignettes/clevRvis/inst/doc/clevRvis.html vignetteTitles: ClEvR Viz vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/clevRvis/inst/doc/clevRvis.R dependencyCount: 119 Package: clippda Version: 1.56.0 Depends: R (>= 2.13.1),limma, statmod, rgl, lattice, scatterplot3d, graphics, grDevices, stats, utils, Biobase, tools, methods License: GPL (>=2) MD5sum: c8f925497e531dc0c1666957a52f1844 NeedsCompilation: no Title: A package for the clinical proteomic profiling data analysis Description: Methods for the nalysis of data from clinical proteomic profiling studies. The focus is on the studies of human subjects, which are often observational case-control by design and have technical replicates. A method for sample size determination for planning these studies is proposed. It incorporates routines for adjusting for the expected heterogeneities and imbalances in the data and the within-sample replicate correlations. biocViews: Proteomics, OneChannel, Preprocessing, DifferentialExpression, MultipleComparison Author: Stephen Nyangoma Maintainer: Stephen Nyangoma URL: http://www.cancerstudies.bham.ac.uk/crctu/CLIPPDA.shtml git_url: https://git.bioconductor.org/packages/clippda git_branch: RELEASE_3_20 git_last_commit: 316acf1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/clippda_1.56.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/clippda_1.56.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/clippda_1.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/clippda_1.56.0.tgz vignettes: vignettes/clippda/inst/doc/clippda.pdf vignetteTitles: Sample Size Calculation hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/clippda/inst/doc/clippda.R dependencyCount: 42 Package: clipper Version: 1.46.0 Depends: R (>= 2.15.0), Matrix, graph Imports: methods, Biobase, Rcpp, igraph, gRbase (>= 1.6.6), qpgraph, KEGGgraph, corpcor Suggests: RUnit, BiocGenerics, graphite, ALL, hgu95av2.db, MASS, BiocStyle Enhances: RCy3 License: AGPL-3 MD5sum: 5ffd8585e213573da25b5118f1d69e26 NeedsCompilation: no Title: Gene Set Analysis Exploiting Pathway Topology Description: Implements topological gene set analysis using a two-step empirical approach. It exploits graph decomposition theory to create a junction tree and reconstruct the most relevant signal path. In the first step clipper selects significant pathways according to statistical tests on the means and the concentration matrices of the graphs derived from pathway topologies. Then, it "clips" the whole pathway identifying the signal paths having the greatest association with a specific phenotype. Author: Paolo Martini , Gabriele Sales , Chiara Romualdi Maintainer: Paolo Martini git_url: https://git.bioconductor.org/packages/clipper git_branch: RELEASE_3_20 git_last_commit: faf2c1e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/clipper_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/clipper_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/clipper_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/clipper_1.46.0.tgz vignettes: vignettes/clipper/inst/doc/clipper.pdf vignetteTitles: clipper hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/clipper/inst/doc/clipper.R dependencyCount: 92 Package: cliProfiler Version: 1.12.0 Depends: S4Vectors, methods, R (>= 4.1) Imports: dplyr, rtracklayer, GenomicRanges, ggplot2, BSgenome, Biostrings, utils Suggests: knitr, rmarkdown, bookdown, testthat, BiocStyle, BSgenome.Mmusculus.UCSC.mm10 License: Artistic-2.0 MD5sum: 65c54643619d8f59e77564ab9ea2bb9d NeedsCompilation: no Title: A package for the CLIP data visualization Description: An easy and fast way to visualize and profile the high-throughput IP data. This package generates the meta gene profile and other profiles. These profiles could provide valuable information for understanding the IP experiment results. biocViews: Sequencing, ChIPSeq, Visualization, Epigenetics, Genetics Author: You Zhou [aut, cre] (), Kathi Zarnack [aut] () Maintainer: You Zhou URL: https://github.com/Codezy99/cliProfiler VignetteBuilder: knitr BugReports: https://github.com/Codezy99/cliProfiler/issues git_url: https://git.bioconductor.org/packages/cliProfiler git_branch: RELEASE_3_20 git_last_commit: 4f9b6b9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cliProfiler_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cliProfiler_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cliProfiler_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cliProfiler_1.12.0.tgz vignettes: vignettes/cliProfiler/inst/doc/cliProfilerIntroduction.html vignetteTitles: cliProfiler Vignettes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cliProfiler/inst/doc/cliProfilerIntroduction.R dependencyCount: 88 Package: cliqueMS Version: 1.20.0 Depends: R (>= 4.3.0) Imports: Rcpp (>= 0.12.15), xcms(>= 3.0.0), MSnbase, igraph, coop, slam, matrixStats, methods LinkingTo: Rcpp, BH, RcppArmadillo Suggests: BiocParallel, knitr, rmarkdown, testthat, CAMERA License: GPL (>= 2) MD5sum: 4161bbb24c1fa3fdf7bc9b558f8c435f NeedsCompilation: yes Title: Annotation of Isotopes, Adducts and Fragmentation Adducts for in-Source LC/MS Metabolomics Data Description: Annotates data from liquid chromatography coupled to mass spectrometry (LC/MS) metabolomics experiments. Based on a network algorithm (O.Senan, A. Aguilar- Mogas, M. Navarro, O. Yanes, R.Guimerà and M. Sales-Pardo, Bioinformatics, 35(20), 2019), 'CliqueMS' builds a weighted similarity network where nodes are features and edges are weighted according to the similarity of this features. Then it searches for the most plausible division of the similarity network into cliques (fully connected components). Finally it annotates metabolites within each clique, obtaining for each annotated metabolite the neutral mass and their features, corresponding to isotopes, ionization adducts and fragmentation adducts of that metabolite. biocViews: Metabolomics, MassSpectrometry, Network, NetworkInference Author: Oriol Senan Campos [aut, cre], Antoni Aguilar-Mogas [aut], Jordi Capellades [aut], Miriam Navarro [aut], Oscar Yanes [aut], Roger Guimera [aut], Marta Sales-Pardo [aut] Maintainer: Oriol Senan Campos URL: http://cliquems.seeslab.net SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/osenan/cliqueMS/issues git_url: https://git.bioconductor.org/packages/cliqueMS git_branch: RELEASE_3_20 git_last_commit: 21e7bd1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cliqueMS_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cliqueMS_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cliqueMS_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cliqueMS_1.20.0.tgz vignettes: vignettes/cliqueMS/inst/doc/annotate_features.html vignetteTitles: Annotating LC/MS data with cliqueMS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cliqueMS/inst/doc/annotate_features.R dependencyCount: 150 Package: Clomial Version: 1.42.0 Depends: R (>= 2.10), matrixStats Imports: methods, permute License: GPL (>= 2) MD5sum: 02d9267198f2e0518f8e4d3209176cdd NeedsCompilation: no Title: Infers clonal composition of a tumor Description: Clomial fits binomial distributions to counts obtained from Next Gen Sequencing data of multiple samples of the same tumor. The trained parameters can be interpreted to infer the clonal structure of the tumor. biocViews: Genetics, GeneticVariability, Sequencing, Clustering, MultipleComparison, Bayesian, DNASeq, ExomeSeq, TargetedResequencing, ImmunoOncology Author: Habil Zare and Alex Hu Maintainer: Habil Zare git_url: https://git.bioconductor.org/packages/Clomial git_branch: RELEASE_3_20 git_last_commit: a4ce895 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Clomial_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Clomial_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Clomial_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Clomial_1.42.0.tgz vignettes: vignettes/Clomial/inst/doc/Clonal_decomposition_by_Clomial.pdf vignetteTitles: A likelihood maximization approach to infer the clonal structure of a cancer using multiple tumor samples hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Clomial/inst/doc/Clonal_decomposition_by_Clomial.R dependencyCount: 4 Package: clst Version: 1.54.0 Depends: R (>= 2.10) Imports: ROC, lattice Suggests: RUnit License: GPL-3 Archs: x64 MD5sum: 37d2fa0a70d7ba8774dc25b72981d860 NeedsCompilation: no Title: Classification by local similarity threshold Description: Package for modified nearest-neighbor classification based on calculation of a similarity threshold distinguishing within-group from between-group comparisons. biocViews: Classification Author: Noah Hoffman Maintainer: Noah Hoffman git_url: https://git.bioconductor.org/packages/clst git_branch: RELEASE_3_20 git_last_commit: 4cc5941 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/clst_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/clst_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/clst_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/clst_1.54.0.tgz vignettes: vignettes/clst/inst/doc/clstDemo.pdf vignetteTitles: clst hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/clst/inst/doc/clstDemo.R dependsOnMe: clstutils dependencyCount: 14 Package: clstutils Version: 1.54.0 Depends: R (>= 2.10), clst, rjson, ape Imports: lattice, RSQLite Suggests: RUnit License: GPL-3 MD5sum: d2c9c35acd886699560233004b0ded61 NeedsCompilation: no Title: Tools for performing taxonomic assignment Description: Tools for performing taxonomic assignment based on phylogeny using pplacer and clst. biocViews: Sequencing, Classification, Visualization, QualityControl Author: Noah Hoffman Maintainer: Noah Hoffman git_url: https://git.bioconductor.org/packages/clstutils git_branch: RELEASE_3_20 git_last_commit: f4bf8e2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/clstutils_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/clstutils_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/clstutils_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/clstutils_1.54.0.tgz vignettes: vignettes/clstutils/inst/doc/pplacerDemo.pdf, vignettes/clstutils/inst/doc/refSet.pdf vignetteTitles: clst, clstutils hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/clstutils/inst/doc/pplacerDemo.R, vignettes/clstutils/inst/doc/refSet.R dependencyCount: 37 Package: CluMSID Version: 1.22.0 Depends: R (>= 3.6) Imports: mzR, S4Vectors, dbscan, RColorBrewer, ape, network, GGally, ggplot2, plotly, methods, utils, stats, sna, grDevices, graphics, Biobase, gplots, MSnbase Suggests: knitr, rmarkdown, testthat, dplyr, readr, stringr, magrittr, CluMSIDdata, metaMS, metaMSdata, xcms License: MIT + file LICENSE MD5sum: aa9cea9b6146139325eed469d41e8551 NeedsCompilation: no Title: Clustering of MS2 Spectra for Metabolite Identification Description: CluMSID is a tool that aids the identification of features in untargeted LC-MS/MS analysis by the use of MS2 spectra similarity and unsupervised statistical methods. It offers functions for a complete and customisable workflow from raw data to visualisations and is interfaceable with the xmcs family of preprocessing packages. biocViews: Metabolomics, Preprocessing, Clustering Author: Tobias Depke [aut, cre], Raimo Franke [ctb], Mark Broenstrup [ths] Maintainer: Tobias Depke URL: https://github.com/tdepke/CluMSID VignetteBuilder: knitr BugReports: https://github.com/tdepke/CluMSID/issues git_url: https://git.bioconductor.org/packages/CluMSID git_branch: RELEASE_3_20 git_last_commit: 0643b17 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CluMSID_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CluMSID_1.22.0.zip vignettes: vignettes/CluMSID/inst/doc/CluMSID_DI-MSMS.html, vignettes/CluMSID/inst/doc/CluMSID_GC-EI-MS.html, vignettes/CluMSID/inst/doc/CluMSID_lowres-LC-MSMS.html, vignettes/CluMSID/inst/doc/CluMSID_MTBLS.html, vignettes/CluMSID/inst/doc/CluMSID_tutorial.html vignetteTitles: CluMSID DI-MS/MS Tutorial, CluMSID GC-EI-MS Tutorial, CluMSID LowRes Tutorial, CluMSID MTBLS Tutorial, CluMSID Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CluMSID/inst/doc/CluMSID_DI-MSMS.R, vignettes/CluMSID/inst/doc/CluMSID_GC-EI-MS.R, vignettes/CluMSID/inst/doc/CluMSID_lowres-LC-MSMS.R, vignettes/CluMSID/inst/doc/CluMSID_MTBLS.R, vignettes/CluMSID/inst/doc/CluMSID_tutorial.R dependencyCount: 155 Package: ClustAll Version: 1.2.0 Depends: R (>= 4.2.0) Imports: FactoMineR, bigstatsr, clValid, doSNOW, parallel, foreach, dplyr, fpc, mice, modeest, flock, networkD3, methods, ComplexHeatmap, cluster, RColorBrewer, circlize, grDevices, ggplot2, grid, stats, utils, pbapply Suggests: RUnit, knitr, BiocGenerics, rmarkdown, BiocStyle, roxygen2 License: GPL-2 MD5sum: c04353f070372d31c3b70f51fb94f55d NeedsCompilation: no Title: ClustAll: Data driven strategy to robustly identify stratification of patients within complex diseases Description: Data driven strategy to find hidden groups of patients with complex diseases using clinical data. ClustAll facilitates the unsupervised identification of multiple robust stratifications. ClustAll, is able to overcome the most common limitations found when dealing with clinical data (missing values, correlated data, mixed data types). biocViews: Software, StatisticalMethod, Clustering, DimensionReduction, PrincipalComponent Author: Asier Ortega-Legarreta [aut, cre] (), Sara Palomino-Echeverria [aut] Maintainer: Asier Ortega-Legarreta VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ClustAll git_branch: RELEASE_3_20 git_last_commit: 73c80c0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ClustAll_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ClustAll_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ClustAll_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ClustAll_1.2.0.tgz vignettes: vignettes/ClustAll/inst/doc/Vignette_Clustall.html vignetteTitles: ClustALL User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ClustAll/inst/doc/Vignette_Clustall.R dependencyCount: 182 Package: clustComp Version: 1.34.0 Depends: R (>= 3.3) Imports: sm, stats, graphics, grDevices Suggests: Biobase, colonCA, RUnit, BiocGenerics License: GPL (>= 2) MD5sum: ddc62c06e3b7f2e0ac92ec344b209ea7 NeedsCompilation: no Title: Clustering Comparison Package Description: clustComp is a package that implements several techniques for the comparison and visualisation of relationships between different clustering results, either flat versus flat or hierarchical versus flat. These relationships among clusters are displayed using a weighted bi-graph, in which the nodes represent the clusters and the edges connect pairs of nodes with non-empty intersection; the weight of each edge is the number of elements in that intersection and is displayed through the edge thickness. The best layout of the bi-graph is provided by the barycentre algorithm, which minimises the weighted number of crossings. In the case of comparing a hierarchical and a non-hierarchical clustering, the dendrogram is pruned at different heights, selected by exploring the tree by depth-first search, starting at the root. Branches are decided to be split according to the value of a scoring function, that can be based either on the aesthetics of the bi-graph or on the mutual information between the hierarchical and the flat clusterings. A mapping between groups of clusters from each side is constructed with a greedy algorithm, and can be additionally visualised. biocViews: GeneExpression, Clustering, Visualization Author: Aurora Torrente and Alvis Brazma. Maintainer: Aurora Torrente git_url: https://git.bioconductor.org/packages/clustComp git_branch: RELEASE_3_20 git_last_commit: f4834b4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/clustComp_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/clustComp_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/clustComp_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/clustComp_1.34.0.tgz vignettes: vignettes/clustComp/inst/doc/clustComp.pdf vignetteTitles: The clustComp Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/clustComp/inst/doc/clustComp.R dependencyCount: 4 Package: clusterExperiment Version: 2.26.0 Depends: R (>= 3.6.0), SingleCellExperiment, SummarizedExperiment (>= 1.15.4), BiocGenerics Imports: methods, NMF, RColorBrewer, ape (>= 5.0), cluster, stats, limma, locfdr, matrixStats, graphics, parallel, BiocSingular, kernlab, stringr, S4Vectors, grDevices, DelayedArray (>= 0.7.48), HDF5Array (>= 1.7.10), Matrix, Rcpp, edgeR, scales, zinbwave, phylobase, pracma, mbkmeans LinkingTo: Rcpp Suggests: BiocStyle, knitr, testthat, MAST, Rtsne, scran, igraph, rmarkdown License: Artistic-2.0 MD5sum: 5b62fb1a5cf835fdb7b463628d835691 NeedsCompilation: yes Title: Compare Clusterings for Single-Cell Sequencing Description: Provides functionality for running and comparing many different clusterings of single-cell sequencing data or other large mRNA Expression data sets. biocViews: Clustering, RNASeq, Sequencing, Software, SingleCell Author: Elizabeth Purdom [aut, cre, cph], Davide Risso [aut] Maintainer: Elizabeth Purdom VignetteBuilder: knitr BugReports: https://github.com/epurdom/clusterExperiment/issues git_url: https://git.bioconductor.org/packages/clusterExperiment git_branch: RELEASE_3_20 git_last_commit: be01d0a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/clusterExperiment_2.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/clusterExperiment_2.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/clusterExperiment_2.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/clusterExperiment_2.26.0.tgz vignettes: vignettes/clusterExperiment/inst/doc/clusterExperimentTutorial.html, vignettes/clusterExperiment/inst/doc/largeDataSets.html vignetteTitles: clusterExperiment Vignette, Working with Large Datasets hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/clusterExperiment/inst/doc/clusterExperimentTutorial.R, vignettes/clusterExperiment/inst/doc/largeDataSets.R dependsOnMe: netSmooth suggestsMe: slingshot, tradeSeq dependencyCount: 149 Package: ClusterFoldSimilarity Version: 1.2.0 Imports: methods, igraph, ggplot2, scales, BiocParallel, graphics, stats, utils, Matrix, cowplot, dplyr, reshape2, Seurat, SeuratObject, SingleCellExperiment, ggdendro Suggests: knitr, rmarkdown, kableExtra, scRNAseq, BiocStyle License: Artistic-2.0 MD5sum: 3c0b4aa95db88e8ccb61bef1d552df7a NeedsCompilation: no Title: Calculate similarity of clusters from different single cell samples using foldchanges Description: This package calculates a similarity coefficient using the fold changes of shared features (e.g. genes) among clusters of different samples/batches/datasets. The similarity coefficient is calculated using the dot-product (Hadamard product) of every pairwise combination of Fold Changes between a source cluster i of sample/dataset n and all the target clusters j in sample/dataset m biocViews: SingleCell, Clustering, FeatureExtraction, GraphAndNetwork, GeneTarget, RNASeq Author: Oscar Gonzalez-Velasco [cre, aut] () Maintainer: Oscar Gonzalez-Velasco VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ClusterFoldSimilarity git_branch: RELEASE_3_20 git_last_commit: f0f2cb5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ClusterFoldSimilarity_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ClusterFoldSimilarity_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ClusterFoldSimilarity_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ClusterFoldSimilarity_1.2.0.tgz vignettes: vignettes/ClusterFoldSimilarity/inst/doc/ClusterFoldSimilarity.html vignetteTitles: ClusterFoldSimilarity: hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ClusterFoldSimilarity/inst/doc/ClusterFoldSimilarity.R dependencyCount: 179 Package: ClusterJudge Version: 1.28.0 Depends: R (>= 3.6), stats, utils, graphics, infotheo, lattice, latticeExtra, httr, jsonlite Suggests: yeastExpData, knitr, rmarkdown, devtools, testthat, biomaRt License: Artistic-2.0 Archs: x64 MD5sum: 6d42b8ae4c9c4f1fc45de148a1daa440 NeedsCompilation: no Title: Judging Quality of Clustering Methods using Mutual Information Description: ClusterJudge implements the functions, examples and other software published as an algorithm by Gibbons, FD and Roth FP. The article is called "Judging the Quality of Gene Expression-Based Clustering Methods Using Gene Annotation" and it appeared in Genome Research, vol. 12, pp1574-1581 (2002). See package?ClusterJudge for an overview. biocViews: Software, StatisticalMethod, Clustering, GeneExpression, GO Author: Adrian Pasculescu Maintainer: Adrian Pasculescu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ClusterJudge git_branch: RELEASE_3_20 git_last_commit: 70ec774 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ClusterJudge_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ClusterJudge_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ClusterJudge_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ClusterJudge_1.28.0.tgz vignettes: vignettes/ClusterJudge/inst/doc/ClusterJudge-intro.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ClusterJudge/inst/doc/ClusterJudge-intro.R dependencyCount: 26 Package: clusterProfiler Version: 4.14.4 Depends: R (>= 3.5.0) Imports: AnnotationDbi, DOSE (>= 3.23.2), dplyr, enrichplot (>= 1.9.3), GO.db, GOSemSim (>= 2.27.2), gson (>= 0.0.7), httr, igraph, magrittr, methods, plyr, qvalue, rlang, stats, tidyr, utils, yulab.utils (>= 0.1.6) Suggests: AnnotationHub, knitr, jsonlite, readr, rmarkdown, org.Hs.eg.db, prettydoc, BiocManager, testthat License: Artistic-2.0 MD5sum: 98f62d36dd679d5b5d5b9ca2f17fcb49 NeedsCompilation: no Title: A universal enrichment tool for interpreting omics data Description: This package supports functional characteristics of both coding and non-coding genomics data for thousands of species with up-to-date gene annotation. It provides a univeral interface for gene functional annotation from a variety of sources and thus can be applied in diverse scenarios. It provides a tidy interface to access, manipulate, and visualize enrichment results to help users achieve efficient data interpretation. Datasets obtained from multiple treatments and time points can be analyzed and compared in a single run, easily revealing functional consensus and differences among distinct conditions. biocViews: Annotation, Clustering, GeneSetEnrichment, GO, KEGG, MultipleComparison, Pathways, Reactome, Visualization Author: Guangchuang Yu [aut, cre, cph] (), Li-Gen Wang [ctb], Xiao Luo [ctb], Meijun Chen [ctb], Giovanni Dall'Olio [ctb], Wanqian Wei [ctb], Chun-Hui Gao [ctb] () Maintainer: Guangchuang Yu URL: https://yulab-smu.top/contribution-knowledge-mining/ VignetteBuilder: knitr BugReports: https://github.com/YuLab-SMU/clusterProfiler/issues git_url: https://git.bioconductor.org/packages/clusterProfiler git_branch: RELEASE_3_20 git_last_commit: 0be6e3b git_last_commit_date: 2024-11-29 Date/Publication: 2024-12-02 source.ver: src/contrib/clusterProfiler_4.14.4.tar.gz win.binary.ver: bin/windows/contrib/4.4/clusterProfiler_4.14.4.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/clusterProfiler_4.14.4.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/clusterProfiler_4.14.4.tgz vignettes: vignettes/clusterProfiler/inst/doc/clusterProfiler.html vignetteTitles: Statistical analysis and visualization of functional profiles for genes and gene clusters hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/clusterProfiler/inst/doc/clusterProfiler.R dependsOnMe: maEndToEnd importsMe: bioCancer, broadSeq, CaMutQC, CBNplot, CEMiTool, CeTF, debrowser, EasyCellType, EnrichDO, epiregulon.extra, esATAC, famat, GDCRNATools, gINTomics, goSorensen, MAGeCKFlute, MetaPhOR, methylGSA, MicrobiomeProfiler, miRSM, miRspongeR, Moonlight2R, MoonlightR, mosdef, PanomiR, pathlinkR, Pigengene, seqArchRplus, signatureSearch, ExpHunterSuite, recountWorkflow, TCGAWorkflow, DRviaSPCN, genekitr, Grouphmap, immcp, pathwayTMB, PMAPscore, RVA, ssdGSA, tinyarray suggestsMe: ChIPseeker, cola, DAPAR, DOSE, enrichplot, EpiCompare, EpiMix, GeDi, GeneTonic, GenomicSuperSignature, GeoTcgaData, ggkegg, GOSemSim, GRaNIE, GSEAmining, mastR, MesKit, ReactomePA, rrvgo, scFeatures, scGPS, TCGAbiolinks, tidybulk, vsclust, org.Mxanthus.db, aPEAR, GeneSelectR, grandR, MARVEL, OlinkAnalyze, ReporterScore, SCpubr dependencyCount: 123 Package: clusterSeq Version: 1.30.0 Depends: R (>= 3.0.0), methods, BiocParallel, baySeq, graphics, stats, utils Imports: BiocGenerics Suggests: BiocStyle License: GPL-3 MD5sum: 29ba984cbabf6bae7805a3d540d9a61e NeedsCompilation: no Title: Clustering of high-throughput sequencing data by identifying co-expression patterns Description: Identification of clusters of co-expressed genes based on their expression across multiple (replicated) biological samples. biocViews: Sequencing, DifferentialExpression, MultipleComparison, Clustering, GeneExpression Author: Thomas J. Hardcastle [aut], Irene Papatheodorou [aut], Samuel Granjeaud [cre] () Maintainer: Samuel Granjeaud URL: https://github.com/samgg/clusterSeq BugReports: https://github.com/samgg/clusterSeq/issues git_url: https://git.bioconductor.org/packages/clusterSeq git_branch: RELEASE_3_20 git_last_commit: f60ac52 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/clusterSeq_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/clusterSeq_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/clusterSeq_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/clusterSeq_1.30.0.tgz vignettes: vignettes/clusterSeq/inst/doc/clusterSeq.pdf vignetteTitles: Advanced baySeq analyses hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/clusterSeq/inst/doc/clusterSeq.R dependencyCount: 42 Package: ClusterSignificance Version: 1.34.0 Depends: R (>= 3.3.0) Imports: methods, pracma, princurve (>= 2.0.5), scatterplot3d, RColorBrewer, grDevices, graphics, utils, stats Suggests: knitr, rmarkdown, testthat, BiocStyle, ggplot2, plsgenomics, covr License: GPL-3 MD5sum: 53bbdbb66e276ecc631b68fa03311736 NeedsCompilation: no Title: The ClusterSignificance package provides tools to assess if class clusters in dimensionality reduced data representations have a separation different from permuted data Description: The ClusterSignificance package provides tools to assess if class clusters in dimensionality reduced data representations have a separation different from permuted data. The term class clusters here refers to, clusters of points representing known classes in the data. This is particularly useful to determine if a subset of the variables, e.g. genes in a specific pathway, alone can separate samples into these established classes. ClusterSignificance accomplishes this by, projecting all points onto a one dimensional line. Cluster separations are then scored and the probability of the seen separation being due to chance is evaluated using a permutation method. biocViews: Clustering, Classification, PrincipalComponent, StatisticalMethod Author: Jason T. Serviss [aut, cre], Jesper R. Gadin [aut] Maintainer: Jason T Serviss URL: https://github.com/jasonserviss/ClusterSignificance/ VignetteBuilder: knitr BugReports: https://github.com/jasonserviss/ClusterSignificance/issues git_url: https://git.bioconductor.org/packages/ClusterSignificance git_branch: RELEASE_3_20 git_last_commit: aacf48d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ClusterSignificance_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ClusterSignificance_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ClusterSignificance_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ClusterSignificance_1.34.0.tgz vignettes: vignettes/ClusterSignificance/inst/doc/ClusterSignificance-vignette.html vignetteTitles: ClusterSignificance Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ClusterSignificance/inst/doc/ClusterSignificance-vignette.R dependencyCount: 10 Package: clusterStab Version: 1.78.0 Depends: Biobase (>= 1.4.22), R (>= 1.9.0), methods Suggests: fibroEset, genefilter License: Artistic-2.0 MD5sum: f29f89a3b89fd713ff41e7adb8f18af2 NeedsCompilation: no Title: Compute cluster stability scores for microarray data Description: This package can be used to estimate the number of clusters in a set of microarray data, as well as test the stability of these clusters. biocViews: Clustering Author: James W. MacDonald, Debashis Ghosh, Mark Smolkin Maintainer: James W. MacDonald git_url: https://git.bioconductor.org/packages/clusterStab git_branch: RELEASE_3_20 git_last_commit: ed1ad3a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/clusterStab_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/clusterStab_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/clusterStab_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/clusterStab_1.78.0.tgz vignettes: vignettes/clusterStab/inst/doc/clusterStab.pdf vignetteTitles: clusterStab Overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/clusterStab/inst/doc/clusterStab.R dependencyCount: 6 Package: clustifyr Version: 1.18.0 Depends: R (>= 2.10) Imports: cowplot, dplyr, entropy, fgsea, ggplot2, Matrix, rlang, scales, stringr, tibble, tidyr, stats, methods, SingleCellExperiment, SummarizedExperiment, SeuratObject, matrixStats, S4Vectors, proxy, httr, utils Suggests: ComplexHeatmap, covr, knitr, rmarkdown, testthat, ggrepel, BiocStyle, BiocManager, remotes, shiny, gprofiler2, purrr, data.table, R.utils License: MIT + file LICENSE MD5sum: d77ecc21f83dc756601f836e80765342 NeedsCompilation: no Title: Classifier for Single-cell RNA-seq Using Cell Clusters Description: Package designed to aid in classifying cells from single-cell RNA sequencing data using external reference data (e.g., bulk RNA-seq, scRNA-seq, microarray, gene lists). A variety of correlation based methods and gene list enrichment methods are provided to assist cell type assignment. biocViews: SingleCell, Annotation, Sequencing, Microarray, GeneExpression Author: Rui Fu [cre, aut], Kent Riemondy [aut], Austin Gillen [ctb], Chengzhe Tian [ctb], Jay Hesselberth [ctb], Yue Hao [ctb], Michelle Daya [ctb], Sidhant Puntambekar [ctb], RNA Bioscience Initiative [fnd, cph] Maintainer: Rui Fu URL: https://github.com/rnabioco/clustifyr, https://rnabioco.github.io/clustifyr/ VignetteBuilder: knitr BugReports: https://github.com/rnabioco/clustifyr/issues git_url: https://git.bioconductor.org/packages/clustifyr git_branch: RELEASE_3_20 git_last_commit: a5e5644 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/clustifyr_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/clustifyr_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/clustifyr_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/clustifyr_1.18.0.tgz vignettes: vignettes/clustifyr/inst/doc/clustifyr.html, vignettes/clustifyr/inst/doc/geo-annotations.html vignetteTitles: Introduction to clustifyr, geo-annotations hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/clustifyr/inst/doc/clustifyr.R, vignettes/clustifyr/inst/doc/geo-annotations.R suggestsMe: clustifyrdatahub dependencyCount: 99 Package: ClustIRR Version: 1.4.0 Depends: R (>= 4.4.0) Imports: blaster, future, future.apply, grDevices, igraph, methods, pwalign, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), reshape2, rstan (>= 2.18.1), rstantools (>= 2.4.0), stats, stringdist, utils, visNetwork LinkingTo: BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0) Suggests: BiocStyle, knitr, testthat, ggplot2, ggrepel, patchwork License: GPL-3 + file LICENSE MD5sum: e40a8e88696411329f36d9b313fc7111 NeedsCompilation: yes Title: Clustering of immune receptor repertoires Description: ClustIRR analyzes repertoires of B- and T-cell receptors. It starts by identifying communities of immune receptors with similar specificities, based on the sequences of their complementarity-determining regions (CDRs). Next, it employs a Bayesian probabilistic models to quantify differential community occupancy (DCO) between repertoires, allowing the identification of expanding or contracting communities in response to e.g. infection or cancer treatment. biocViews: Clustering, ImmunoOncology, SingleCell, Software, Classification Author: Simo Kitanovski [aut, cre] (), Kai Wollek [aut] () Maintainer: Simo Kitanovski URL: https://github.com/snaketron/ClustIRR SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/snaketron/ClustIRR/issues git_url: https://git.bioconductor.org/packages/ClustIRR git_branch: RELEASE_3_20 git_last_commit: ef4afb4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ClustIRR_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ClustIRR_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ClustIRR_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ClustIRR_1.4.0.tgz vignettes: vignettes/ClustIRR/inst/doc/User_manual.html vignetteTitles: Analysis of T and B cell receptor repertoires with ClustIRR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ClustIRR/inst/doc/User_manual.R dependencyCount: 116 Package: CMA Version: 1.64.0 Depends: R (>= 2.10), methods, stats, Biobase Suggests: MASS, class, nnet, glmnet, e1071, randomForest, plsgenomics, gbm, mgcv, corpcor, limma, st, mvtnorm License: GPL (>= 2) MD5sum: 36009a31f66d88fc7e5f1136ce46880b NeedsCompilation: no Title: Synthesis of microarray-based classification Description: This package provides a comprehensive collection of various microarray-based classification algorithms both from Machine Learning and Statistics. Variable Selection, Hyperparameter tuning, Evaluation and Comparison can be performed combined or stepwise in a user-friendly environment. biocViews: Classification, DecisionTree Author: Martin Slawski , Anne-Laure Boulesteix , Christoph Bernau . Maintainer: Roman Hornung git_url: https://git.bioconductor.org/packages/CMA git_branch: RELEASE_3_20 git_last_commit: e471c68 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CMA_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CMA_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CMA_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CMA_1.64.0.tgz vignettes: vignettes/CMA/inst/doc/CMA_vignette.pdf vignetteTitles: CMA_vignette.pdf hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CMA/inst/doc/CMA_vignette.R dependencyCount: 6 Package: cmapR Version: 1.18.0 Depends: R (>= 4.0) Imports: methods, rhdf5, data.table, flowCore, SummarizedExperiment, matrixStats Suggests: knitr, testthat, BiocStyle, rmarkdown License: file LICENSE Archs: x64 MD5sum: 270cc4e8c96925b30015eefb5870fd63 NeedsCompilation: no Title: CMap Tools in R Description: The Connectivity Map (CMap) is a massive resource of perturbational gene expression profiles built by researchers at the Broad Institute and funded by the NIH Library of Integrated Network-Based Cellular Signatures (LINCS) program. Please visit https://clue.io for more information. The cmapR package implements methods to parse, manipulate, and write common CMap data objects, such as annotated matrices and collections of gene sets. biocViews: DataImport, DataRepresentation, GeneExpression Author: Ted Natoli [aut, cre] () Maintainer: Ted Natoli URL: https://github.com/cmap/cmapR VignetteBuilder: knitr BugReports: https://github.com/cmap/cmapR/issues git_url: https://git.bioconductor.org/packages/cmapR git_branch: RELEASE_3_20 git_last_commit: 2c307a2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cmapR_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cmapR_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cmapR_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cmapR_1.18.0.tgz vignettes: vignettes/cmapR/inst/doc/tutorial.html vignetteTitles: cmapR Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/cmapR/inst/doc/tutorial.R dependencyCount: 46 Package: CNAnorm Version: 1.52.0 Depends: R (>= 2.10.1), methods Imports: DNAcopy License: GPL-2 MD5sum: ad9b870a77b07945bcd7c867c08fa04c NeedsCompilation: yes Title: A normalization method for Copy Number Aberration in cancer samples Description: Performs ratio, GC content correction and normalization of data obtained using low coverage (one read every 100-10,000 bp) high troughput sequencing. It performs a "discrete" normalization looking for the ploidy of the genome. It will also provide tumour content if at least two ploidy states can be found. biocViews: CopyNumberVariation, Sequencing, Coverage, Normalization, WholeGenome, DNASeq, GenomicVariation Author: Stefano Berri , Henry M. Wood , Arief Gusnanto Maintainer: Stefano Berri URL: http://www.r-project.org, git_url: https://git.bioconductor.org/packages/CNAnorm git_branch: RELEASE_3_20 git_last_commit: 37e5455 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CNAnorm_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CNAnorm_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CNAnorm_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CNAnorm_1.52.0.tgz vignettes: vignettes/CNAnorm/inst/doc/CNAnorm.pdf vignetteTitles: CNAnorm.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CNAnorm/inst/doc/CNAnorm.R dependencyCount: 2 Package: CNEr Version: 1.42.0 Depends: R (>= 3.5.0) Imports: Biostrings (>= 2.33.4), pwalign, DBI (>= 0.7), RSQLite (>= 0.11.4), GenomeInfoDb (>= 1.1.3), GenomicRanges (>= 1.23.16), rtracklayer (>= 1.25.5), XVector (>= 0.5.4), GenomicAlignments (>= 1.1.9), methods, S4Vectors (>= 0.13.13), IRanges (>= 2.5.27), readr (>= 0.2.2), BiocGenerics, tools, parallel, reshape2 (>= 1.4.1), ggplot2 (>= 2.1.0), poweRlaw (>= 0.60.3), annotate (>= 1.50.0), GO.db (>= 3.3.0), R.utils (>= 2.3.0), KEGGREST (>= 1.14.0) LinkingTo: S4Vectors, IRanges, XVector Suggests: Gviz (>= 1.7.4), BiocStyle, knitr, rmarkdown, testthat, BSgenome.Drerio.UCSC.danRer10, BSgenome.Hsapiens.UCSC.hg38, TxDb.Drerio.UCSC.danRer10.refGene, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Ggallus.UCSC.galGal3 License: GPL-2 | file LICENSE License_restricts_use: yes MD5sum: 9eeb740891291deab2ec013e894d6cdc NeedsCompilation: yes Title: CNE Detection and Visualization Description: Large-scale identification and advanced visualization of sets of conserved noncoding elements. biocViews: GeneRegulation, Visualization, DataImport Author: Ge Tan Maintainer: Ge Tan URL: https://github.com/ge11232002/CNEr VignetteBuilder: knitr BugReports: https://github.com/ge11232002/CNEr/issues git_url: https://git.bioconductor.org/packages/CNEr git_branch: RELEASE_3_20 git_last_commit: d83a1b6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CNEr_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CNEr_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CNEr_1.42.0.tgz vignettes: vignettes/CNEr/inst/doc/CNEr.html, vignettes/CNEr/inst/doc/PairwiseWholeGenomeAlignment.html vignetteTitles: CNE identification and visualisation, Pairwise whole genome alignment hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CNEr/inst/doc/CNEr.R, vignettes/CNEr/inst/doc/PairwiseWholeGenomeAlignment.R importsMe: TFBSTools dependencyCount: 118 Package: cn.farms Version: 1.54.0 Depends: R (>= 3.0), Biobase, methods, ff, oligoClasses, snow Imports: DBI, affxparser, oligo, DNAcopy, preprocessCore, lattice Suggests: pd.mapping250k.sty, pd.mapping250k.nsp, pd.genomewidesnp.5, pd.genomewidesnp.6 License: LGPL (>= 2.0) Archs: x64 MD5sum: 19b06587ff4179b8c96a74795ecac02e NeedsCompilation: yes Title: cn.FARMS - factor analysis for copy number estimation Description: This package implements the cn.FARMS algorithm for copy number variation (CNV) analysis. cn.FARMS allows to analyze the most common Affymetrix (250K-SNP6.0) array types, supports high-performance computing using snow and ff. biocViews: Microarray, CopyNumberVariation Author: Andreas Mitterecker, Djork-Arne Clevert Maintainer: Andreas Mitterecker URL: http://www.bioinf.jku.at/software/cnfarms/cnfarms.html git_url: https://git.bioconductor.org/packages/cn.farms git_branch: RELEASE_3_20 git_last_commit: 919d895 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cn.farms_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cn.farms_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cn.farms_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cn.farms_1.54.0.tgz vignettes: vignettes/cn.farms/inst/doc/cn.farms.pdf vignetteTitles: cn.farms: Manual for the R package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cn.farms/inst/doc/cn.farms.R dependencyCount: 66 Package: cn.mops Version: 1.52.0 Depends: R (>= 3.5.0), methods, utils, stats, graphics, parallel, GenomicRanges Imports: BiocGenerics, Biobase, IRanges, Rsamtools, GenomeInfoDb, S4Vectors Suggests: DNAcopy License: LGPL (>= 2.0) Archs: x64 MD5sum: a2b8d2bd8e4252b83429eae677e0b6e8 NeedsCompilation: yes Title: cn.mops - Mixture of Poissons for CNV detection in NGS data Description: cn.mops (Copy Number estimation by a Mixture Of PoissonS) is a data processing pipeline for copy number variations and aberrations (CNVs and CNAs) from next generation sequencing (NGS) data. The package supplies functions to convert BAM files into read count matrices or genomic ranges objects, which are the input objects for cn.mops. cn.mops models the depths of coverage across samples at each genomic position. Therefore, it does not suffer from read count biases along chromosomes. Using a Bayesian approach, cn.mops decomposes read variations across samples into integer copy numbers and noise by its mixture components and Poisson distributions, respectively. cn.mops guarantees a low FDR because wrong detections are indicated by high noise and filtered out. cn.mops is very fast and written in C++. biocViews: Sequencing, CopyNumberVariation, Homo_sapiens, CellBiology, HapMap, Genetics Author: Guenter Klambauer [aut], Gundula Povysil [cre] Maintainer: Gundula Povysil URL: http://www.bioinf.jku.at/software/cnmops/cnmops.html git_url: https://git.bioconductor.org/packages/cn.mops git_branch: RELEASE_3_20 git_last_commit: 3a21e19 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cn.mops_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cn.mops_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cn.mops_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cn.mops_1.52.0.tgz vignettes: vignettes/cn.mops/inst/doc/cn.mops.pdf vignetteTitles: cn.mops: Manual for the R package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cn.mops/inst/doc/cn.mops.R dependsOnMe: panelcn.mops importsMe: CopyNumberPlots dependencyCount: 40 Package: CNORdt Version: 1.48.0 Depends: R (>= 1.8.0), CellNOptR (>= 0.99), abind License: GPL-2 Archs: x64 MD5sum: 284c4e9d72b04ee2a6aea6b9f05dff5c NeedsCompilation: yes Title: Add-on to CellNOptR: Discretized time treatments Description: This add-on to the package CellNOptR handles time-course data, as opposed to steady state data in CellNOptR. It scales the simulation step to allow comparison and model fitting for time-course data. Future versions will optimize delays and strengths for each edge. biocViews: ImmunoOncology, CellBasedAssays, CellBiology, Proteomics, TimeCourse Author: A. MacNamara Maintainer: A. MacNamara git_url: https://git.bioconductor.org/packages/CNORdt git_branch: RELEASE_3_20 git_last_commit: d2dcff1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CNORdt_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CNORdt_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CNORdt_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CNORdt_1.48.0.tgz vignettes: vignettes/CNORdt/inst/doc/CNORdt-vignette.pdf vignetteTitles: Using multiple time points to train logic models to data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CNORdt/inst/doc/CNORdt-vignette-example.R, vignettes/CNORdt/inst/doc/CNORdt-vignette.R dependencyCount: 72 Package: CNORfeeder Version: 1.46.0 Depends: R (>= 3.6.0), CellNOptR (>= 1.4.0), graph Suggests: minet, Rgraphviz, RUnit, BiocGenerics, igraph Enhances: MEIGOR License: GPL-3 Archs: x64 MD5sum: d3605757ae1d4c8fe6cfff19fc9680c9 NeedsCompilation: no Title: Integration of CellNOptR to add missing links Description: This package integrates literature-constrained and data-driven methods to infer signalling networks from perturbation experiments. It permits to extends a given network with links derived from the data via various inference methods and uses information on physical interactions of proteins to guide and validate the integration of links. biocViews: CellBasedAssays, CellBiology, Proteomics, NetworkInference Author: Federica Eduati [aut], Enio Gjerga [ctb], Attila Gabor [cre] Maintainer: Attila Gabor git_url: https://git.bioconductor.org/packages/CNORfeeder git_branch: RELEASE_3_20 git_last_commit: 8cb8e4d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CNORfeeder_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CNORfeeder_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CNORfeeder_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CNORfeeder_1.46.0.tgz vignettes: vignettes/CNORfeeder/inst/doc/CNORfeeder-vignette.pdf vignetteTitles: Main vignette:Playing with networks using CNORfeeder hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CNORfeeder/inst/doc/CNORfeeder-vignette.R dependencyCount: 71 Package: CNORfuzzy Version: 1.48.0 Depends: R (>= 2.15.0), CellNOptR (>= 1.4.0), nloptr (>= 0.8.5) Suggests: xtable, Rgraphviz, RUnit, BiocGenerics License: GPL-2 Archs: x64 MD5sum: a8cde52abc735953fe73186424e16414 NeedsCompilation: yes Title: Addon to CellNOptR: Fuzzy Logic Description: This package is an extension to CellNOptR. It contains additional functionality needed to simulate and train a prior knowledge network to experimental data using constrained fuzzy logic (cFL, rather than Boolean logic as is the case in CellNOptR). Additionally, this package will contain functions to use for the compilation of multiple optimization results (either Boolean or cFL). biocViews: Network Author: M. Morris, T. Cokelaer Maintainer: T. Cokelaer git_url: https://git.bioconductor.org/packages/CNORfuzzy git_branch: RELEASE_3_20 git_last_commit: b903414 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CNORfuzzy_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CNORfuzzy_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CNORfuzzy_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CNORfuzzy_1.48.0.tgz vignettes: vignettes/CNORfuzzy/inst/doc/CNORfuzzy-vignette.pdf vignetteTitles: Main vignette:Playing with networks using CNORfuzzyl hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CNORfuzzy/inst/doc/CNORfuzzy-vignette.R dependencyCount: 72 Package: CNORode Version: 1.48.0 Depends: CellNOptR, genalg Suggests: knitr, rmarkdown Enhances: doParallel, foreach License: GPL-2 MD5sum: 2f2c282b6842b0648fb0571bf07d6860 NeedsCompilation: yes Title: ODE add-on to CellNOptR Description: Logic based ordinary differential equation (ODE) add-on to CellNOptR. biocViews: ImmunoOncology, CellBasedAssays, CellBiology, Proteomics, Bioinformatics, TimeCourse Author: David Henriques, Thomas Cokelaer, Attila Gabor, Federica Eduati, Enio Gjerga Maintainer: Attila Gabor VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CNORode git_branch: RELEASE_3_20 git_last_commit: b26387a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CNORode_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CNORode_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CNORode_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CNORode_1.48.0.tgz vignettes: vignettes/CNORode/inst/doc/CNORode-vignette.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CNORode/inst/doc/CNORode-vignette.R dependsOnMe: MEIGOR dependencyCount: 72 Package: CNTools Version: 1.62.0 Depends: R (>= 2.10), methods, tools, stats, genefilter License: LGPL Archs: x64 MD5sum: 9b6334e87040b016f3f4359d07dd7a25 NeedsCompilation: yes Title: Convert segment data into a region by sample matrix to allow for other high level computational analyses. Description: This package provides tools to convert the output of segmentation analysis using DNAcopy to a matrix structure with overlapping segments as rows and samples as columns so that other computational analyses can be applied to segmented data biocViews: Microarray, CopyNumberVariation Author: Jianhua Zhang Maintainer: J. Zhang git_url: https://git.bioconductor.org/packages/CNTools git_branch: RELEASE_3_20 git_last_commit: 0409a10 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CNTools_1.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CNTools_1.62.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CNTools_1.62.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CNTools_1.62.0.tgz vignettes: vignettes/CNTools/inst/doc/HowTo.pdf vignetteTitles: NCTools HowTo hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CNTools/inst/doc/HowTo.R dependsOnMe: cghMCR dependencyCount: 56 Package: CNVfilteR Version: 1.20.0 Depends: R (>= 4.3) Imports: IRanges, GenomicRanges, SummarizedExperiment, pracma, regioneR, assertthat, karyoploteR, CopyNumberPlots, graphics, utils, VariantAnnotation, Rsamtools, GenomeInfoDb, Biostrings, methods Suggests: knitr, BiocStyle, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg19.masked, rmarkdown License: Artistic-2.0 Archs: x64 MD5sum: 33255e124a5d0a8c0ce90b959defa31e NeedsCompilation: no Title: Identifies false positives of CNV calling tools by using SNV calls Description: CNVfilteR identifies those CNVs that can be discarded by using the single nucleotide variant (SNV) calls that are usually obtained in common NGS pipelines. biocViews: CopyNumberVariation, Sequencing, DNASeq, Visualization, DataImport Author: Jose Marcos Moreno-Cabrera [aut, cre] (), Bernat Gel [aut] Maintainer: Jose Marcos Moreno-Cabrera URL: https://github.com/jpuntomarcos/CNVfilteR VignetteBuilder: knitr BugReports: https://github.com/jpuntomarcos/CNVfilteR/issues git_url: https://git.bioconductor.org/packages/CNVfilteR git_branch: RELEASE_3_20 git_last_commit: 3271169 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CNVfilteR_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CNVfilteR_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CNVfilteR_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CNVfilteR_1.20.0.tgz vignettes: vignettes/CNVfilteR/inst/doc/CNVfilteR.html vignetteTitles: CNVfilteR vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CNVfilteR/inst/doc/CNVfilteR.R dependencyCount: 148 Package: cnvGSA Version: 1.50.0 Depends: brglm, doParallel, foreach, GenomicRanges, methods, splitstackshape Suggests: cnvGSAdata, org.Hs.eg.db License: LGPL Archs: x64 MD5sum: a4f8d41ba1f4940cc03cd262ef2a6743 NeedsCompilation: no Title: Gene Set Analysis of (Rare) Copy Number Variants Description: This package is intended to facilitate gene-set association with rare CNVs in case-control studies. biocViews: MultipleComparison Author: Daniele Merico , Robert Ziman ; packaged by Joseph Lugo Maintainer: Joseph Lugo git_url: https://git.bioconductor.org/packages/cnvGSA git_branch: RELEASE_3_20 git_last_commit: b5341ca git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cnvGSA_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cnvGSA_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cnvGSA_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cnvGSA_1.50.0.tgz vignettes: vignettes/cnvGSA/inst/doc/cnvGSAUsersGuide.pdf, vignettes/cnvGSA/inst/doc/cnvGSA-vignette.pdf vignetteTitles: cnvGSAUsersGuide.pdf, cnvGSA - Gene-Set Analysis of Rare Copy Number Variants hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: cnvGSAdata dependencyCount: 32 Package: CNViz Version: 1.14.0 Depends: R (>= 4.0), shiny (>= 1.5.0) Imports: dplyr, stats, utils, grDevices, plotly, karyoploteR, CopyNumberPlots, GenomicRanges, magrittr, DT, scales, graphics Suggests: rmarkdown, knitr License: Artistic-2.0 MD5sum: 7e459d52fa8d539173d08c277f26709e NeedsCompilation: no Title: Copy Number Visualization Description: CNViz takes probe, gene, and segment-level log2 copy number ratios and launches a Shiny app to visualize your sample's copy number profile. You can also integrate loss of heterozygosity (LOH) and single nucleotide variant (SNV) data. biocViews: Visualization, CopyNumberVariation, Sequencing, DNASeq Author: Rebecca Greenblatt [aut, cre] Maintainer: Rebecca Greenblatt VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CNViz git_branch: RELEASE_3_20 git_last_commit: 0870fb9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CNViz_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CNViz_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CNViz_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CNViz_1.14.0.tgz vignettes: vignettes/CNViz/inst/doc/CNViz.html vignetteTitles: CNViz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CNViz/inst/doc/CNViz.R dependencyCount: 161 Package: CNVMetrics Version: 1.10.0 Depends: R (>= 4.0) Imports: GenomicRanges, IRanges, S4Vectors, BiocParallel, methods, magrittr, stats, pheatmap, gridExtra, grDevices, rBeta2009 Suggests: BiocStyle, knitr, rmarkdown, testthat License: Artistic-2.0 MD5sum: beeeff979554622def43fe96588bdf28 NeedsCompilation: no Title: Copy Number Variant Metrics Description: The CNVMetrics package calculates similarity metrics to facilitate copy number variant comparison among samples and/or methods. Similarity metrics can be employed to compare CNV profiles of genetically unrelated samples as well as those with a common genetic background. Some metrics are based on the shared amplified/deleted regions while other metrics rely on the level of amplification/deletion. The data type used as input is a plain text file containing the genomic position of the copy number variations, as well as the status and/or the log2 ratio values. Finally, a visualization tool is provided to explore resulting metrics. biocViews: BiologicalQuestion, Software, CopyNumberVariation Author: Astrid Deschênes [aut, cre] (), Pascal Belleau [aut] (), David A. Tuveson [aut] (), Alexander Krasnitz [aut] Maintainer: Astrid Deschênes URL: https://github.com/krasnitzlab/CNVMetrics, https://krasnitzlab.github.io/CNVMetrics/ VignetteBuilder: knitr BugReports: https://github.com/krasnitzlab/CNVMetrics/issues git_url: https://git.bioconductor.org/packages/CNVMetrics git_branch: RELEASE_3_20 git_last_commit: c4dee6a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CNVMetrics_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CNVMetrics_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CNVMetrics_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CNVMetrics_1.10.0.tgz vignettes: vignettes/CNVMetrics/inst/doc/CNVMetrics.html vignetteTitles: Copy number variant metrics hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CNVMetrics/inst/doc/CNVMetrics.R dependencyCount: 51 Package: CNVPanelizer Version: 1.38.0 Depends: R (>= 3.2.0), GenomicRanges Imports: BiocGenerics, S4Vectors, grDevices, stats, utils, NOISeq, IRanges, Rsamtools, foreach, ggplot2, plyr, GenomeInfoDb, gplots, reshape2, stringr, testthat, graphics, methods, shiny, shinyFiles, shinyjs, grid, openxlsx Suggests: knitr, RUnit License: GPL-3 MD5sum: 64d3644a559a62bc6712c36dfaf1275f NeedsCompilation: no Title: Reliable CNV detection in targeted sequencing applications Description: A method that allows for the use of a collection of non-matched normal tissue samples. Our approach uses a non-parametric bootstrap subsampling of the available reference samples to estimate the distribution of read counts from targeted sequencing. As inspired by random forest, this is combined with a procedure that subsamples the amplicons associated with each of the targeted genes. The obtained information allows us to reliably classify the copy number aberrations on the gene level. biocViews: Classification, Sequencing, Normalization, CopyNumberVariation, Coverage Author: Cristiano Oliveira [aut], Thomas Wolf [aut, cre], Albrecht Stenzinger [ctb], Volker Endris [ctb], Nicole Pfarr [ctb], Benedikt Brors [ths], Wilko Weichert [ths] Maintainer: Thomas Wolf VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CNVPanelizer git_branch: RELEASE_3_20 git_last_commit: bff6031 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CNVPanelizer_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CNVPanelizer_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CNVPanelizer_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CNVPanelizer_1.38.0.tgz vignettes: vignettes/CNVPanelizer/inst/doc/CNVPanelizer.pdf vignetteTitles: CNVPanelizer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CNVPanelizer/inst/doc/CNVPanelizer.R dependencyCount: 117 Package: CNVRanger Version: 1.22.0 Depends: GenomicRanges, RaggedExperiment Imports: BiocGenerics, BiocParallel, GDSArray, GenomeInfoDb, IRanges, S4Vectors, SNPRelate, SummarizedExperiment, data.table, edgeR, gdsfmt, grDevices, lattice, limma, methods, plyr, qqman, rappdirs, reshape2, stats, utils Suggests: AnnotationHub, BSgenome.Btaurus.UCSC.bosTau6.masked, BiocStyle, ComplexHeatmap, Gviz, MultiAssayExperiment, TCGAutils, TxDb.Hsapiens.UCSC.hg19.knownGene, curatedTCGAData, ensembldb, grid, knitr, org.Hs.eg.db, regioneR, rmarkdown, statmod License: Artistic-2.0 MD5sum: 557c616eefc094232f701cb1fd8babd3 NeedsCompilation: no Title: Summarization and expression/phenotype association of CNV ranges Description: The CNVRanger package implements a comprehensive tool suite for CNV analysis. This includes functionality for summarizing individual CNV calls across a population, assessing overlap with functional genomic regions, and association analysis with gene expression and quantitative phenotypes. biocViews: CopyNumberVariation, DifferentialExpression, GeneExpression, GenomeWideAssociation, GenomicVariation, Microarray, RNASeq, SNP Author: Ludwig Geistlinger [aut, cre], Vinicius Henrique da Silva [aut], Marcel Ramos [ctb], Levi Waldron [ctb] Maintainer: Ludwig Geistlinger VignetteBuilder: knitr BugReports: https://github.com/waldronlab/CNVRanger/issues git_url: https://git.bioconductor.org/packages/CNVRanger git_branch: RELEASE_3_20 git_last_commit: 08cfb9e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CNVRanger_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CNVRanger_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CNVRanger_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CNVRanger_1.22.0.tgz vignettes: vignettes/CNVRanger/inst/doc/CNVRanger.html vignetteTitles: Summarization and quantitative trait analysis of CNV ranges hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CNVRanger/inst/doc/CNVRanger.R dependencyCount: 73 Package: CNVrd2 Version: 1.44.0 Depends: R (>= 3.0.0), methods, VariantAnnotation, parallel, rjags, ggplot2, gridExtra Imports: DNAcopy, IRanges, Rsamtools Suggests: knitr License: GPL-2 MD5sum: 5a85b6adfb7f327bfad3278351807508 NeedsCompilation: no Title: CNVrd2: a read depth-based method to detect and genotype complex common copy number variants from next generation sequencing data. Description: CNVrd2 uses next-generation sequencing data to measure human gene copy number for multiple samples, indentify SNPs tagging copy number variants and detect copy number polymorphic genomic regions. biocViews: CopyNumberVariation, SNP, Sequencing, Software, Coverage, LinkageDisequilibrium, Clustering. Author: Hoang Tan Nguyen, Tony R Merriman and Mik Black Maintainer: Hoang Tan Nguyen URL: https://github.com/hoangtn/CNVrd2 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CNVrd2 git_branch: RELEASE_3_20 git_last_commit: fe29c56 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CNVrd2_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CNVrd2_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CNVrd2_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CNVrd2_1.44.0.tgz vignettes: vignettes/CNVrd2/inst/doc/CNVrd2.pdf vignetteTitles: A Markdown Vignette with knitr hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CNVrd2/inst/doc/CNVrd2.R dependencyCount: 103 Package: CoCiteStats Version: 1.78.0 Depends: R (>= 2.0), org.Hs.eg.db Imports: AnnotationDbi License: CPL MD5sum: 6a91c1816f1303cbaebd69f9bf7497f0 NeedsCompilation: no Title: Different test statistics based on co-citation. Description: A collection of software tools for dealing with co-citation data. biocViews: Software Author: B. Ding and R. Gentleman Maintainer: Bioconductor Package Maintainer git_url: https://git.bioconductor.org/packages/CoCiteStats git_branch: RELEASE_3_20 git_last_commit: 14fc718 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CoCiteStats_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CoCiteStats_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CoCiteStats_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CoCiteStats_1.78.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 46 Package: COCOA Version: 2.20.0 Depends: R (>= 3.5), GenomicRanges Imports: BiocGenerics, S4Vectors, IRanges, data.table, ggplot2, Biobase, stats, methods, ComplexHeatmap, MIRA, tidyr, grid, grDevices, simpleCache, fitdistrplus Suggests: knitr, parallel, testthat, BiocStyle, rmarkdown, AnnotationHub, LOLA License: GPL-3 MD5sum: 954b277e8bb4ca0dc135f019f3d48849 NeedsCompilation: no Title: Coordinate Covariation Analysis Description: COCOA is a method for understanding epigenetic variation among samples. COCOA can be used with epigenetic data that includes genomic coordinates and an epigenetic signal, such as DNA methylation and chromatin accessibility data. To describe the method on a high level, COCOA quantifies inter-sample variation with either a supervised or unsupervised technique then uses a database of "region sets" to annotate the variation among samples. A region set is a set of genomic regions that share a biological annotation, for instance transcription factor (TF) binding regions, histone modification regions, or open chromatin regions. COCOA can identify region sets that are associated with epigenetic variation between samples and increase understanding of variation in your data. biocViews: Epigenetics, DNAMethylation, ATACSeq, DNaseSeq, MethylSeq, MethylationArray, PrincipalComponent, GenomicVariation, GeneRegulation, GenomeAnnotation, SystemsBiology, FunctionalGenomics, ChIPSeq, Sequencing, ImmunoOncology Author: John Lawson [aut, cre], Nathan Sheffield [aut] (http://www.databio.org), Jason Smith [ctb] Maintainer: John Lawson URL: http://code.databio.org/COCOA/ VignetteBuilder: knitr BugReports: https://github.com/databio/COCOA git_url: https://git.bioconductor.org/packages/COCOA git_branch: RELEASE_3_20 git_last_commit: 2a72844 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/COCOA_2.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/COCOA_2.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/COCOA_2.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/COCOA_2.20.0.tgz vignettes: vignettes/COCOA/inst/doc/IntroToCOCOA.html vignetteTitles: Introduction to Coordinate Covariation Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/COCOA/inst/doc/IntroToCOCOA.R dependencyCount: 127 Package: codelink Version: 1.74.0 Depends: R (>= 2.10), BiocGenerics (>= 0.3.2), methods, Biobase (>= 2.17.8), limma Imports: annotate Suggests: genefilter, parallel, knitr License: GPL-2 MD5sum: 387c8424b0f557fb62bd72dd48ca34c2 NeedsCompilation: no Title: Manipulation of Codelink microarray data Description: This package facilitates reading, preprocessing and manipulating Codelink microarray data. The raw data must be exported as text file using the Codelink software. biocViews: Microarray, OneChannel, DataImport, Preprocessing Author: Diego Diez Maintainer: Diego Diez URL: https://github.com/ddiez/codelink VignetteBuilder: knitr BugReports: https://github.com/ddiez/codelink/issues git_url: https://git.bioconductor.org/packages/codelink git_branch: RELEASE_3_20 git_last_commit: 8ee12f1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/codelink_1.74.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/codelink_1.74.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/codelink_1.74.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/codelink_1.74.0.tgz vignettes: vignettes/codelink/inst/doc/Codelink_Introduction.pdf, vignettes/codelink/inst/doc/Codelink_Legacy.pdf vignetteTitles: Codelink Intruction, Codelink Legacy hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/codelink/inst/doc/Codelink_Introduction.R, vignettes/codelink/inst/doc/Codelink_Legacy.R suggestsMe: MAQCsubset dependencyCount: 50 Package: CODEX Version: 1.38.0 Depends: R (>= 3.2.3), Rsamtools, GenomeInfoDb, BSgenome.Hsapiens.UCSC.hg19, IRanges, Biostrings, S4Vectors Suggests: WES.1KG.WUGSC License: GPL-2 MD5sum: 55a9e6c438b1215103475aac74e9c49e NeedsCompilation: no Title: A Normalization and Copy Number Variation Detection Method for Whole Exome Sequencing Description: A normalization and copy number variation calling procedure for whole exome DNA sequencing data. CODEX relies on the availability of multiple samples processed using the same sequencing pipeline for normalization, and does not require matched controls. The normalization model in CODEX includes terms that specifically remove biases due to GC content, exon length and targeting and amplification efficiency, and latent systemic artifacts. CODEX also includes a Poisson likelihood-based recursive segmentation procedure that explicitly models the count-based exome sequencing data. biocViews: ImmunoOncology, ExomeSeq, Normalization, QualityControl, CopyNumberVariation Author: Yuchao Jiang, Nancy R. Zhang Maintainer: Yuchao Jiang git_url: https://git.bioconductor.org/packages/CODEX git_branch: RELEASE_3_20 git_last_commit: 30a58de git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CODEX_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CODEX_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CODEX_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CODEX_1.38.0.tgz vignettes: vignettes/CODEX/inst/doc/CODEX_vignettes.pdf vignetteTitles: Using CODEX hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CODEX/inst/doc/CODEX_vignettes.R dependsOnMe: iCNV dependencyCount: 60 Package: CoGAPS Version: 3.26.0 Depends: R (>= 3.5.0) Imports: BiocParallel, cluster, methods, gplots, graphics, grDevices, RColorBrewer, Rcpp, S4Vectors, SingleCellExperiment, stats, SummarizedExperiment, tools, utils, rhdf5, dplyr, fgsea, forcats, ggplot2 LinkingTo: Rcpp, BH Suggests: testthat, knitr, rmarkdown, BiocStyle, SeuratObject, BiocFileCache License: BSD_3_clause + file LICENSE MD5sum: 599bdb86d2235555ce1540335932f4db NeedsCompilation: yes Title: Coordinated Gene Activity in Pattern Sets Description: Coordinated Gene Activity in Pattern Sets (CoGAPS) implements a Bayesian MCMC matrix factorization algorithm, GAPS, and links it to gene set statistic methods to infer biological process activity. It can be used to perform sparse matrix factorization on any data, and when this data represents biomolecules, to do gene set analysis. biocViews: GeneExpression, Transcription, GeneSetEnrichment, DifferentialExpression, Bayesian, Clustering, TimeCourse, RNASeq, Microarray, MultipleComparison, DimensionReduction, ImmunoOncology Author: Jeanette Johnson, Ashley Tsang, Jacob Mitchell, Thomas Sherman, Wai-shing Lee, Conor Kelton, Ondrej Maxian, Jacob Carey, Genevieve Stein-O'Brien, Michael Considine, Maggie Wodicka, John Stansfield, Shawn Sivy, Carlo Colantuoni, Alexander Favorov, Mike Ochs, Elana Fertig Maintainer: Elana J. Fertig , Thomas D. Sherman , Jeanette Johnson , Dmitrijs Lvovs VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CoGAPS git_branch: RELEASE_3_20 git_last_commit: aeade28 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CoGAPS_3.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CoGAPS_3.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CoGAPS_3.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CoGAPS_3.26.0.tgz vignettes: vignettes/CoGAPS/inst/doc/CoGAPS.html vignetteTitles: CoGAPS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CoGAPS/inst/doc/CoGAPS.R suggestsMe: projectR, SpaceMarkers dependencyCount: 91 Package: cogena Version: 1.40.0 Depends: R (>= 3.6), cluster, ggplot2, kohonen Imports: methods, class, gplots, mclust, amap, apcluster, foreach, parallel, doParallel, fastcluster, corrplot, biwt, Biobase, reshape2, stringr, tibble, tidyr, dplyr, devtools Suggests: knitr, rmarkdown (>= 2.1) License: LGPL-3 MD5sum: e323f5351be6fba8d4a0069f7f7fc609 NeedsCompilation: no Title: co-expressed gene-set enrichment analysis Description: cogena is a workflow for co-expressed gene-set enrichment analysis. It aims to discovery smaller scale, but highly correlated cellular events that may be of great biological relevance. A novel pipeline for drug discovery and drug repositioning based on the cogena workflow is proposed. Particularly, candidate drugs can be predicted based on the gene expression of disease-related data, or other similar drugs can be identified based on the gene expression of drug-related data. Moreover, the drug mode of action can be disclosed by the associated pathway analysis. In summary, cogena is a flexible workflow for various gene set enrichment analysis for co-expressed genes, with a focus on pathway/GO analysis and drug repositioning. biocViews: Clustering, GeneSetEnrichment, GeneExpression, Visualization, Pathways, KEGG, GO, Microarray, Sequencing, SystemsBiology, DataRepresentation, DataImport Author: Zhilong Jia [aut, cre], Michael Barnes [aut] Maintainer: Zhilong Jia URL: https://github.com/zhilongjia/cogena VignetteBuilder: knitr BugReports: https://github.com/zhilongjia/cogena/issues git_url: https://git.bioconductor.org/packages/cogena git_branch: RELEASE_3_20 git_last_commit: 1dafa67 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cogena_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cogena_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cogena_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cogena_1.40.0.tgz vignettes: vignettes/cogena/inst/doc/cogena-vignette_pdf.pdf, vignettes/cogena/inst/doc/cogena-vignette_html.html vignetteTitles: a workflow of cogena, cogena,, a workflow for gene set enrichment analysis of co-expressed genes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cogena/inst/doc/cogena-vignette_html.R, vignettes/cogena/inst/doc/cogena-vignette_pdf.R dependencyCount: 146 Package: cogeqc Version: 1.10.0 Depends: R (>= 4.2.0) Imports: utils, graphics, stats, methods, reshape2, ggplot2, scales, ggtree, patchwork, igraph, rlang, ggbeeswarm, jsonlite, Biostrings Suggests: testthat (>= 3.0.0), sessioninfo, knitr, BiocStyle, rmarkdown, covr License: GPL-3 Archs: x64 MD5sum: fcade09d62bdf4581ae0b470ad66ea5d NeedsCompilation: no Title: Systematic quality checks on comparative genomics analyses Description: cogeqc aims to facilitate systematic quality checks on standard comparative genomics analyses to help researchers detect issues and select the most suitable parameters for each data set. cogeqc can be used to asses: i. genome assembly and annotation quality with BUSCOs and comparisons of statistics with publicly available genomes on the NCBI; ii. orthogroup inference using a protein domain-based approach and; iii. synteny detection using synteny network properties. There are also data visualization functions to explore QC summary statistics. biocViews: Software, GenomeAssembly, ComparativeGenomics, FunctionalGenomics, Phylogenetics, QualityControl, Network Author: Fabrício Almeida-Silva [aut, cre] (), Yves Van de Peer [aut] () Maintainer: Fabrício Almeida-Silva URL: https://github.com/almeidasilvaf/cogeqc SystemRequirements: BUSCO (>= 5.1.3) VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/cogeqc git_url: https://git.bioconductor.org/packages/cogeqc git_branch: RELEASE_3_20 git_last_commit: 8ce711f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cogeqc_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cogeqc_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cogeqc_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cogeqc_1.10.0.tgz vignettes: vignettes/cogeqc/inst/doc/vignette_01_assessing_genome_assembly.html, vignettes/cogeqc/inst/doc/vignette_02_assessing_orthogroup_inference.html, vignettes/cogeqc/inst/doc/vignette_03_assessing_synteny.html vignetteTitles: Assessing genome assembly and annotation quality, Assessing orthogroup inference, Assessing synteny identification hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cogeqc/inst/doc/vignette_01_assessing_genome_assembly.R, vignettes/cogeqc/inst/doc/vignette_02_assessing_orthogroup_inference.R, vignettes/cogeqc/inst/doc/vignette_03_assessing_synteny.R dependencyCount: 83 Package: Cogito Version: 1.12.0 Depends: R (>= 4.1), GenomicRanges, jsonlite, GenomicFeatures, entropy Imports: BiocManager, rmarkdown, GenomeInfoDb, S4Vectors, AnnotationDbi, graphics, stats, utils, methods, magrittr, ggplot2, TxDb.Mmusculus.UCSC.mm9.knownGene Suggests: BiocStyle, knitr, markdown, testthat (>= 3.0.0) License: LGPL-3 MD5sum: 8854881ef6815a33908f11ebd03c81ab NeedsCompilation: no Title: Compare genomic intervals tool - Automated, complete, reproducible and clear report about genomic and epigenomic data sets Description: Biological studies often consist of multiple conditions which are examined with different laboratory set ups like RNA-sequencing or ChIP-sequencing. To get an overview about the whole resulting data set, Cogito provides an automated, complete, reproducible and clear report about all samples and basic comparisons between all different samples. This report can be used as documentation about the data set or as starting point for further custom analysis. biocViews: FunctionalGenomics, GeneRegulation, Software, Sequencing Author: Annika Bürger [cre, aut] Maintainer: Annika Bürger VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Cogito git_branch: RELEASE_3_20 git_last_commit: a96de86 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Cogito_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Cogito_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Cogito_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Cogito_1.12.0.tgz vignettes: vignettes/Cogito/inst/doc/Cogito.html vignetteTitles: Cogito: Compare annotated genomic intervals tool hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Cogito/inst/doc/Cogito.R dependencyCount: 115 Package: coGPS Version: 1.50.0 Depends: R (>= 2.13.0) Imports: graphics, grDevices Suggests: limma License: GPL-2 MD5sum: 24c06b97648ec7877c93dc5c8a98240f NeedsCompilation: no Title: cancer outlier Gene Profile Sets Description: Gene Set Enrichment Analysis of P-value based statistics for outlier gene detection in dataset merged from multiple studies biocViews: Microarray, DifferentialExpression Author: Yingying Wei, Michael Ochs Maintainer: Yingying Wei git_url: https://git.bioconductor.org/packages/coGPS git_branch: RELEASE_3_20 git_last_commit: 1b64ca9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/coGPS_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/coGPS_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/coGPS_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/coGPS_1.50.0.tgz vignettes: vignettes/coGPS/inst/doc/coGPS.pdf vignetteTitles: coGPS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/coGPS/inst/doc/coGPS.R dependencyCount: 2 Package: cola Version: 2.12.0 Depends: R (>= 4.0.0) Imports: grDevices, graphics, grid, stats, utils, ComplexHeatmap (>= 2.5.4), matrixStats, GetoptLong, circlize (>= 0.4.7), GlobalOptions (>= 0.1.0), clue, parallel, RColorBrewer, cluster, skmeans, png, mclust, crayon, methods, xml2, microbenchmark, httr, knitr (>= 1.4.0), markdown (>= 1.6), digest, impute, brew, Rcpp (>= 0.11.0), BiocGenerics, eulerr, foreach, doParallel, doRNG, irlba LinkingTo: Rcpp Suggests: genefilter, mvtnorm, testthat (>= 0.3), samr, pamr, kohonen, NMF, WGCNA, Rtsne, umap, clusterProfiler, ReactomePA, DOSE, AnnotationDbi, gplots, hu6800.db, BiocManager, data.tree, dendextend, Polychrome, rmarkdown, simplifyEnrichment, cowplot, flexclust, randomForest, e1071 License: MIT + file LICENSE MD5sum: b63066e926108c9466fe3aefad8c655f NeedsCompilation: yes Title: A Framework for Consensus Partitioning Description: Subgroup classification is a basic task in genomic data analysis, especially for gene expression and DNA methylation data analysis. It can also be used to test the agreement to known clinical annotations, or to test whether there exist significant batch effects. The cola package provides a general framework for subgroup classification by consensus partitioning. It has the following features: 1. It modularizes the consensus partitioning processes that various methods can be easily integrated. 2. It provides rich visualizations for interpreting the results. 3. It allows running multiple methods at the same time and provides functionalities to straightforward compare results. 4. It provides a new method to extract features which are more efficient to separate subgroups. 5. It automatically generates detailed reports for the complete analysis. 6. It allows applying consensus partitioning in a hierarchical manner. biocViews: Clustering, GeneExpression, Classification, Software Author: Zuguang Gu [aut, cre] () Maintainer: Zuguang Gu URL: https://github.com/jokergoo/cola, https://jokergoo.github.io/cola_collection/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/cola git_branch: RELEASE_3_20 git_last_commit: a5fa7af git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cola_2.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cola_2.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cola_2.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cola_2.12.0.tgz vignettes: vignettes/cola/inst/doc/cola.html vignetteTitles: Use of cola hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE suggestsMe: InteractiveComplexHeatmap, simplifyEnrichment dependencyCount: 65 Package: comapr Version: 1.10.0 Depends: R (>= 4.1.0) Imports: methods, ggplot2, reshape2, dplyr, gridExtra, plotly, circlize, rlang, GenomicRanges, IRanges, foreach, BiocParallel, GenomeInfoDb, scales, RColorBrewer, tidyr, S4Vectors, utils, Matrix, grid, stats, SummarizedExperiment, plyr, Gviz Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 2.1.0), statmod License: MIT + file LICENSE MD5sum: 066b98a23a1f2031231e2b58f5cd3f18 NeedsCompilation: no Title: Crossover analysis and genetic map construction Description: comapr detects crossover intervals for single gametes from their haplotype states sequences and stores the crossovers in GRanges object. The genetic distances can then be calculated via the mapping functions using estimated crossover rates for maker intervals. Visualisation functions for plotting interval-based genetic map or cumulative genetic distances are implemented, which help reveal the variation of crossovers landscapes across the genome and across individuals. biocViews: Software, SingleCell, Visualization, Genetics Author: Ruqian Lyu [aut, cre] () Maintainer: Ruqian Lyu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/comapr git_branch: RELEASE_3_20 git_last_commit: c9af54a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/comapr_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/comapr_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/comapr_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/comapr_1.10.0.tgz vignettes: vignettes/comapr/inst/doc/getStarted.html, vignettes/comapr/inst/doc/single-sperm-co-analysis.html vignetteTitles: Get-Started-With-comapr, single-sperm-co-analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/comapr/inst/doc/getStarted.R, vignettes/comapr/inst/doc/single-sperm-co-analysis.R dependencyCount: 168 Package: combi Version: 1.18.0 Depends: R (>= 4.0), DBI Imports: ggplot2, nleqslv, phyloseq, tensor, stats, limma, Matrix (>= 1.6.0), BB, reshape2, alabama, cobs, Biobase, vegan, grDevices, graphics, methods, SummarizedExperiment Suggests: knitr, rmarkdown, testthat License: GPL-2 Archs: x64 MD5sum: f5df09ca854e0077d792b7cebc0f7d12 NeedsCompilation: no Title: Compositional omics model based visual integration Description: This explorative ordination method combines quasi-likelihood estimation, compositional regression models and latent variable models for integrative visualization of several omics datasets. Both unconstrained and constrained integration are available. The results are shown as interpretable, compositional multiplots. biocViews: Metagenomics, DimensionReduction, Microbiome, Visualization, Metabolomics Author: Stijn Hawinkel [cre, aut] () Maintainer: Stijn Hawinkel VignetteBuilder: knitr BugReports: https://github.com/CenterForStatistics-UGent/combi/issues git_url: https://git.bioconductor.org/packages/combi git_branch: RELEASE_3_20 git_last_commit: a6c8957 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/combi_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/combi_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/combi_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/combi_1.18.0.tgz vignettes: vignettes/combi/inst/doc/combi.html vignetteTitles: Manual for the combi pacakage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/combi/inst/doc/combi.R dependencyCount: 104 Package: coMethDMR Version: 1.10.0 Depends: R (>= 4.1) Imports: AnnotationHub, BiocParallel, bumphunter, ExperimentHub, GenomicRanges, IRanges, lmerTest, methods, stats, utils Suggests: BiocStyle, corrplot, knitr, rmarkdown, testthat, IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylationEPICanno.ilm10b4.hg19 License: GPL-3 MD5sum: 10576754f41e3ca13eb173a258fb380c NeedsCompilation: no Title: Accurate identification of co-methylated and differentially methylated regions in epigenome-wide association studies Description: coMethDMR identifies genomic regions associated with continuous phenotypes by optimally leverages covariations among CpGs within predefined genomic regions. Instead of testing all CpGs within a genomic region, coMethDMR carries out an additional step that selects co-methylated sub-regions first without using any outcome information. Next, coMethDMR tests association between methylation within the sub-region and continuous phenotype using a random coefficient mixed effects model, which models both variations between CpG sites within the region and differential methylation simultaneously. biocViews: DNAMethylation, Epigenetics, MethylationArray, DifferentialMethylation, GenomeWideAssociation Author: Fernanda Veitzman [cre], Lissette Gomez [aut], Tiago Silva [aut], Ning Lijiao [ctb], Boissel Mathilde [ctb], Lily Wang [aut], Gabriel Odom [aut] Maintainer: Fernanda Veitzman URL: https://github.com/TransBioInfoLab/coMethDMR VignetteBuilder: knitr BugReports: https://github.com/TransBioInfoLab/coMethDMR/issues git_url: https://git.bioconductor.org/packages/coMethDMR git_branch: RELEASE_3_20 git_last_commit: ea15e3a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/coMethDMR_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/coMethDMR_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/coMethDMR_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/coMethDMR_1.10.0.tgz vignettes: vignettes/coMethDMR/inst/doc/vin1_Introduction_to_coMethDMR_geneBasedPipeline.html, vignettes/coMethDMR/inst/doc/vin2_BiocParallel_for_coMethDMR_geneBasedPipeline.html vignetteTitles: "Introduction to coMethDMR", "coMethDMR with Parallel Computing" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/coMethDMR/inst/doc/vin1_Introduction_to_coMethDMR_geneBasedPipeline.R, vignettes/coMethDMR/inst/doc/vin2_BiocParallel_for_coMethDMR_geneBasedPipeline.R dependencyCount: 129 Package: COMPASS Version: 1.44.0 Depends: R (>= 3.0.3) Imports: methods, Rcpp, data.table, RColorBrewer, scales, grid, plyr, knitr, abind, clue, grDevices, utils, pdist, magrittr, reshape2, dplyr, tidyr, rlang, BiocStyle, rmarkdown, foreach, coda LinkingTo: Rcpp (>= 0.11.0) Suggests: flowWorkspace (>= 3.33.1), flowCore, ncdfFlow, shiny, testthat, devtools, flowWorkspaceData, ggplot2, progress License: Artistic-2.0 MD5sum: 66b61eaa89a7de69465c9d5d98d8f7a6 NeedsCompilation: yes Title: Combinatorial Polyfunctionality Analysis of Single Cells Description: COMPASS is a statistical framework that enables unbiased analysis of antigen-specific T-cell subsets. COMPASS uses a Bayesian hierarchical framework to model all observed cell-subsets and select the most likely to be antigen-specific while regularizing the small cell counts that often arise in multi-parameter space. The model provides a posterior probability of specificity for each cell subset and each sample, which can be used to profile a subject's immune response to external stimuli such as infection or vaccination. biocViews: ImmunoOncology, FlowCytometry Author: Lynn Lin, Kevin Ushey, Greg Finak, Ravio Kolde (pheatmap) Maintainer: Greg Finak VignetteBuilder: knitr BugReports: https://github.com/RGLab/COMPASS/issues git_url: https://git.bioconductor.org/packages/COMPASS git_branch: RELEASE_3_20 git_last_commit: 865b5b9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/COMPASS_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/COMPASS_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/COMPASS_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/COMPASS_1.44.0.tgz vignettes: vignettes/COMPASS/inst/doc/SimpleCOMPASS.pdf, vignettes/COMPASS/inst/doc/COMPASS.html vignetteTitles: SimpleCOMPASS, COMPASS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/COMPASS/inst/doc/COMPASS.R, vignettes/COMPASS/inst/doc/SimpleCOMPASS.R dependencyCount: 72 Package: compcodeR Version: 1.42.0 Depends: R (>= 4.0), sm Imports: knitr (>= 1.2), markdown, ROCR, lattice (>= 0.16), gplots, gtools, caTools, grid, KernSmooth, MASS, ggplot2, stringr, modeest, edgeR, limma, vioplot, methods, stats, utils, ape, phylolm, matrixStats, grDevices, graphics, rmarkdown, shiny, shinydashboard Suggests: BiocStyle, EBSeq, DESeq2 (>= 1.1.31), genefilter, NOISeq, TCC, NBPSeq (>= 0.3.0), phytools, phangorn, testthat, ggtree, tidytree, statmod, covr, sva, tcltk Enhances: rpanel, DSS License: GPL (>= 2) MD5sum: ecec021bb3b146653a2ccd867faaa0b7 NeedsCompilation: no Title: RNAseq data simulation, differential expression analysis and performance comparison of differential expression methods Description: This package provides extensive functionality for comparing results obtained by different methods for differential expression analysis of RNAseq data. It also contains functions for simulating count data. Finally, it provides convenient interfaces to several packages for performing the differential expression analysis. These can also be used as templates for setting up and running a user-defined differential analysis workflow within the framework of the package. biocViews: ImmunoOncology, RNASeq, DifferentialExpression Author: Charlotte Soneson [aut, cre] (), Paul Bastide [aut] (), Mélina Gallopin [aut] () Maintainer: Charlotte Soneson URL: https://github.com/csoneson/compcodeR VignetteBuilder: knitr BugReports: https://github.com/csoneson/compcodeR/issues git_url: https://git.bioconductor.org/packages/compcodeR git_branch: RELEASE_3_20 git_last_commit: 192bb4a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/compcodeR_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/compcodeR_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/compcodeR_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/compcodeR_1.42.0.tgz vignettes: vignettes/compcodeR/inst/doc/compcodeR.html, vignettes/compcodeR/inst/doc/phylocompcodeR.html vignetteTitles: compcodeR, phylocompcodeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/compcodeR/inst/doc/compcodeR.R, vignettes/compcodeR/inst/doc/phylocompcodeR.R dependencyCount: 106 Package: compEpiTools Version: 1.40.0 Depends: R (>= 3.5.0), methods, topGO, GenomicRanges Imports: AnnotationDbi, BiocGenerics, Biostrings, Rsamtools, parallel, grDevices, gplots, IRanges, GenomicFeatures, XVector, methylPipe, GO.db, S4Vectors, GenomeInfoDb Suggests: BSgenome.Mmusculus.UCSC.mm9, TxDb.Mmusculus.UCSC.mm9.knownGene, org.Mm.eg.db, knitr, rtracklayer License: GPL Archs: x64 MD5sum: daeea1cf6db4512a521be9dd55946c95 NeedsCompilation: no Title: Tools for computational epigenomics Description: Tools for computational epigenomics developed for the analysis, integration and simultaneous visualization of various (epi)genomics data types across multiple genomic regions in multiple samples. biocViews: GeneExpression, Sequencing, Visualization, GenomeAnnotation, Coverage Author: Mattia Pelizzola [aut], Kamal Kishore [aut], Mattia Furlan [ctb, cre] Maintainer: Mattia Furlan VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/compEpiTools git_branch: RELEASE_3_20 git_last_commit: daa640e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/compEpiTools_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/compEpiTools_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/compEpiTools_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/compEpiTools_1.40.0.tgz vignettes: vignettes/compEpiTools/inst/doc/compEpiTools.pdf vignetteTitles: compEpiTools.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/compEpiTools/inst/doc/compEpiTools.R dependencyCount: 169 Package: ComplexHeatmap Version: 2.22.0 Depends: R (>= 3.5.0), methods, grid, graphics, stats, grDevices Imports: circlize (>= 0.4.14), GetoptLong, colorspace, clue, RColorBrewer, GlobalOptions (>= 0.1.0), png, digest, IRanges, matrixStats, foreach, doParallel, codetools Suggests: testthat (>= 1.0.0), knitr, markdown, dendsort, jpeg, tiff, fastcluster, EnrichedHeatmap, dendextend (>= 1.0.1), grImport, grImport2, glue, GenomicRanges, gridtext, pheatmap (>= 1.0.12), gridGraphics, gplots, rmarkdown, Cairo, magick License: MIT + file LICENSE MD5sum: fe0371ce669fb3ae8d4caccf27833463 NeedsCompilation: no Title: Make Complex Heatmaps Description: Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns. Here the ComplexHeatmap package provides a highly flexible way to arrange multiple heatmaps and supports various annotation graphics. biocViews: Software, Visualization, Sequencing Author: Zuguang Gu [aut, cre] () Maintainer: Zuguang Gu URL: https://github.com/jokergoo/ComplexHeatmap, https://jokergoo.github.io/ComplexHeatmap-reference/book/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ComplexHeatmap git_branch: RELEASE_3_20 git_last_commit: bf351d6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ComplexHeatmap_2.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ComplexHeatmap_2.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ComplexHeatmap_2.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ComplexHeatmap_2.22.0.tgz vignettes: vignettes/ComplexHeatmap/inst/doc/complex_heatmap.html, vignettes/ComplexHeatmap/inst/doc/most_probably_asked_questions.html vignetteTitles: complex_heatmap.html, Most probably asked questions hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ComplexHeatmap/inst/doc/most_probably_asked_questions.R dependsOnMe: AMARETTO, EnrichedHeatmap, InteractiveComplexHeatmap, multistateQTL, recoup, sechm, countToFPKM importsMe: airpart, ASURAT, bettr, BindingSiteFinder, BioNERO, blacksheepr, BloodGen3Module, CATALYST, CCPlotR, celda, CeTF, ClustAll, COCOA, cola, COTAN, CRISPRball, CTexploreR, cytoKernel, Damsel, dar, DEGreport, DEP, diffcyt, diffUTR, dinoR, dominoSignal, ELMER, epiregulon.extra, fCCAC, FLAMES, gCrisprTools, GeDi, GeneTonic, GenomicPlot, GenomicSuperSignature, gINTomics, gmoviz, GRaNIE, hermes, hoodscanR, HybridExpress, InterCellar, iSEE, MAPFX, MatrixQCvis, MesKit, MOMA, monaLisa, Moonlight2R, MOSClip, MPAC, MultiRNAflow, muscat, musicatk, MWASTools, nipalsMCIA, pathlinkR, PathoStat, PeacoQC, pipeComp, POMA, profileplyr, PRONE, scRNAseqApp, segmenter, simona, simplifyEnrichment, singleCellTK, sparrow, SPONGE, TMSig, Xeva, YAPSA, TCGAWorkflow, bulkAnalyseR, coda4microbiome, conos, DiscreteGapStatistic, GRIN2, GSSTDA, karyotapR, mineSweepR, missoNet, MitoHEAR, MKomics, ogrdbstats, Path.Analysis, PCAPAM50, pkgndep, rKOMICS, rliger, RNAseqQC, RVA, scITD, sigQC, spiralize, tidyHeatmap, TransProR, visxhclust, wilson suggestsMe: artMS, bambu, clustifyr, CNVRanger, demuxSNP, dittoSeq, EnrichmentBrowser, gtrellis, HilbertCurve, mastR, miaViz, msImpute, plotgardener, projectR, QFeatures, raer, scDblFinder, SPIAT, TCGAbiolinks, TCGAutils, weitrix, curatedPCaData, LegATo, NanoporeRNASeq, ProteinGymR, BeeBDC, CIARA, circlize, ConsensusOPLS, eclust, ggsector, grandR, inferCSN, IOHanalyzer, metasnf, multipanelfigure, plotthis, scCustomize, SCpubr, sfcurve, singleCellHaystack, SpatialDDLS, tinyarray dependencyCount: 28 Package: CompoundDb Version: 1.10.0 Depends: R (>= 4.1), methods, AnnotationFilter, S4Vectors Imports: BiocGenerics, ChemmineR, tibble, jsonlite, dplyr, DBI, dbplyr, RSQLite, Biobase, ProtGenerics (>= 1.35.3), xml2, IRanges, Spectra (>= 1.15.10), MsCoreUtils, MetaboCoreUtils, BiocParallel Suggests: knitr, rmarkdown, testthat, BiocStyle (>= 2.5.19), MsBackendMgf License: Artistic-2.0 MD5sum: c79d6a2cc057e9505a1016d679642870 NeedsCompilation: no Title: Creating and Using (Chemical) Compound Annotation Databases Description: CompoundDb provides functionality to create and use (chemical) compound annotation databases from a variety of different sources such as LipidMaps, HMDB, ChEBI or MassBank. The database format allows to store in addition MS/MS spectra along with compound information. The package provides also a backend for Bioconductor's Spectra package and allows thus to match experimetal MS/MS spectra against MS/MS spectra in the database. Databases can be stored in SQLite format and are thus portable. biocViews: MassSpectrometry, Metabolomics, Annotation Author: Jan Stanstrup [aut] (), Johannes Rainer [aut, cre] (), Josep M. Badia [ctb] (), Roger Gine [aut] (), Andrea Vicini [aut] (), Prateek Arora [ctb] () Maintainer: Johannes Rainer URL: https://github.com/RforMassSpectrometry/CompoundDb VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/CompoundDb/issues git_url: https://git.bioconductor.org/packages/CompoundDb git_branch: RELEASE_3_20 git_last_commit: c3c74aa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CompoundDb_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CompoundDb_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CompoundDb_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CompoundDb_1.10.0.tgz vignettes: vignettes/CompoundDb/inst/doc/CompoundDb-usage.html, vignettes/CompoundDb/inst/doc/create-compounddb.html vignetteTitles: Usage of Annotation Resources with the CompoundDb Package, Creating CompoundDb annotation resources hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CompoundDb/inst/doc/CompoundDb-usage.R, vignettes/CompoundDb/inst/doc/create-compounddb.R importsMe: MetaboAnnotation suggestsMe: AHMassBank, AnnotationHub, MetMashR dependencyCount: 120 Package: ComPrAn Version: 1.14.0 Imports: data.table, dplyr, forcats, ggplot2, magrittr, purrr, tidyr, rlang, stringr, shiny, DT, RColorBrewer, VennDiagram, rio, scales, shinydashboard, shinyjs, stats, tibble, grid Suggests: testthat (>= 2.1.0), knitr, rmarkdown License: MIT + file LICENSE MD5sum: 1732308f7c82b3bd731de7b5b8143fbf NeedsCompilation: no Title: Complexome Profiling Analysis package Description: This package is for analysis of SILAC labeled complexome profiling data. It uses peptide table in tab-delimited format as an input and produces ready-to-use tables and plots. biocViews: MassSpectrometry, Proteomics, Visualization Author: Rick Scavetta [aut], Petra Palenikova [aut, cre] () Maintainer: Petra Palenikova VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ComPrAn git_branch: RELEASE_3_20 git_last_commit: b49d9ea git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ComPrAn_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ComPrAn_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ComPrAn_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ComPrAn_1.14.0.tgz vignettes: vignettes/ComPrAn/inst/doc/fileFormats.html, vignettes/ComPrAn/inst/doc/proteinWorkflow.html, vignettes/ComPrAn/inst/doc/SILACcomplexomics.html vignetteTitles: fileFormats.html, Protein workflow, SILAC complexomics hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ComPrAn/inst/doc/fileFormats.R, vignettes/ComPrAn/inst/doc/proteinWorkflow.R, vignettes/ComPrAn/inst/doc/SILACcomplexomics.R dependencyCount: 107 Package: compSPOT Version: 1.4.0 Depends: R (>= 4.3.0) Imports: stats, base, ggplot2, plotly, magrittr, ggpubr, gridExtra, utils, data.table Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: 6bd776b81a032021b7b90cb2d4582c7e NeedsCompilation: no Title: compSPOT: Tool for identifying and comparing significantly mutated genomic hotspots Description: Clonal cell groups share common mutations within cancer, precancer, and even clinically normal appearing tissues. The frequency and location of these mutations may predict prognosis and cancer risk. It has also been well established that certain genomic regions have increased sensitivity to acquiring mutations. Mutation-sensitive genomic regions may therefore serve as markers for predicting cancer risk. This package contains multiple functions to establish significantly mutated hotspots, compare hotspot mutation burden between samples, and perform exploratory data analysis of the correlation between hotspot mutation burden and personal risk factors for cancer, such as age, gender, and history of carcinogen exposure. This package allows users to identify robust genomic markers to help establish cancer risk. biocViews: Software, Technology, Sequencing, DNASeq, WholeGenome, Classification, SingleCell, Survival, MultipleComparison Author: Sydney Grant [aut, cre] (), Ella Sampson [aut], Rhea Rodrigues [aut] (), Gyorgy Paragh [aut] () Maintainer: Sydney Grant URL: https://github.com/sydney-grant/compSPOT VignetteBuilder: knitr BugReports: https://github.com/sydney-grant/compSPOT/issues git_url: https://git.bioconductor.org/packages/compSPOT git_branch: RELEASE_3_20 git_last_commit: 875dc0e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/compSPOT_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/compSPOT_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/compSPOT_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/compSPOT_1.4.0.tgz vignettes: vignettes/compSPOT/inst/doc/compSPOT-vignette.html vignetteTitles: compSPOT-Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/compSPOT/inst/doc/compSPOT-vignette.R dependencyCount: 111 Package: concordexR Version: 1.6.0 Depends: R (>= 4.4.0) Imports: BiocGenerics, BiocNeighbors, BiocParallel, bluster, cli, DelayedArray, Matrix, methods, purrr, rlang, SingleCellExperiment, sparseMatrixStats, SpatialExperiment, SummarizedExperiment Suggests: BiocManager, BiocStyle, ggplot2, glue, knitr, mbkmeans, patchwork, rmarkdown, scater, SFEData, SpatialFeatureExperiment, TENxPBMCData, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: 8fb2be578b2e5a9b744cbec0db41bc2b NeedsCompilation: no Title: Identify Spatial Homogeneous Regions with concordex Description: Spatial homogeneous regions (SHRs) in tissues are domains that are homogenous with respect to cell type composition. We present a method for identifying SHRs using spatial transcriptomics data, and demonstrate that it is efficient and effective at finding SHRs for a wide variety of tissue types. concordex relies on analysis of k-nearest-neighbor (kNN) graphs. The tool is also useful for analysis of non-spatial transcriptomics data, and can elucidate the extent of concordance between partitions of cells derived from clustering algorithms, and transcriptomic similarity as represented in kNN graphs. biocViews: SingleCell, Clustering, Spatial, Transcriptomics Author: Kayla Jackson [aut, cre] (), A. Sina Booeshaghi [aut] (), Angel Galvez-Merchan [aut] (), Lambda Moses [aut] (), Alexandra Kim [ctb], Laura Luebbert [ctb] (), Lior Pachter [aut, rev, ths] () Maintainer: Kayla Jackson URL: https://github.com/pachterlab/concordexR, https://pachterlab.github.io/concordexR/ VignetteBuilder: knitr BugReports: https://github.com/pachterlab/concordexR/issues git_url: https://git.bioconductor.org/packages/concordexR git_branch: RELEASE_3_20 git_last_commit: c65a946 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/concordexR_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/concordexR_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/concordexR_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/concordexR_1.6.0.tgz vignettes: vignettes/concordexR/inst/doc/concordex-nonspatial.html, vignettes/concordexR/inst/doc/overview.html vignetteTitles: concordex-nonspatial, overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/concordexR/inst/doc/concordex-nonspatial.R, vignettes/concordexR/inst/doc/overview.R dependencyCount: 88 Package: condiments Version: 1.14.0 Depends: R (>= 4.0) Imports: slingshot (>= 1.9), mgcv, RANN, stats, SingleCellExperiment, SummarizedExperiment, utils, magrittr, dplyr (>= 1.0), Ecume (>= 0.9.1), methods, pbapply, matrixStats, BiocParallel, TrajectoryUtils, igraph, distinct Suggests: knitr, testthat, rmarkdown, covr, viridis, ggplot2, RColorBrewer, randomForest, tidyr, TSCAN, DelayedMatrixStats License: MIT + file LICENSE MD5sum: 01c6255f95b9277867ff063750b8f622 NeedsCompilation: no Title: Differential Topology, Progression and Differentiation Description: This package encapsulate many functions to conduct a differential topology analysis. It focuses on analyzing an 'omic dataset with multiple conditions. While the package is mostly geared toward scRNASeq, it does not place any restriction on the actual input format. biocViews: RNASeq, Sequencing, Software, SingleCell, Transcriptomics, MultipleComparison, Visualization Author: Hector Roux de Bezieux [aut, cre] (), Koen Van den Berge [aut, ctb], Kelly Street [aut, ctb] Maintainer: Hector Roux de Bezieux URL: https://hectorrdb.github.io/condiments/index.html VignetteBuilder: knitr BugReports: https://github.com/HectorRDB/condiments/issues git_url: https://git.bioconductor.org/packages/condiments git_branch: RELEASE_3_20 git_last_commit: 99b1546 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/condiments_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/condiments_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/condiments_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/condiments_1.14.0.tgz vignettes: vignettes/condiments/inst/doc/condiments.html, vignettes/condiments/inst/doc/controls.html, vignettes/condiments/inst/doc/examples.html vignetteTitles: The condiments workflow, Using condiments, Generating more examples hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/condiments/inst/doc/condiments.R, vignettes/condiments/inst/doc/controls.R, vignettes/condiments/inst/doc/examples.R dependencyCount: 168 Package: CONFESS Version: 1.34.0 Depends: R (>= 3.3),grDevices,utils,stats,graphics Imports: methods,changepoint,cluster,contrast,data.table(>= 1.9.7),ecp,EBImage,flexmix,flowCore,flowClust,flowMeans,flowMerge,flowPeaks,foreach,ggplot2,grid,limma,MASS,moments,outliers,parallel,plotrix,raster,readbitmap,reshape2,SamSPECTRAL,waveslim,wavethresh,zoo Suggests: BiocStyle, knitr, rmarkdown, CONFESSdata License: GPL-2 MD5sum: d79b3ac5470a2deba9a1bd20a9761d38 NeedsCompilation: no Title: Cell OrderiNg by FluorEScence Signal Description: Single Cell Fluidigm Spot Detector. biocViews: ImmunoOncology, GeneExpression,DataImport,CellBiology,Clustering,RNASeq,QualityControl,Visualization,TimeCourse,Regression,Classification Author: Diana LOW and Efthimios MOTAKIS Maintainer: Diana LOW VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CONFESS git_branch: RELEASE_3_20 git_last_commit: 5d947c7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CONFESS_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CONFESS_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CONFESS_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CONFESS_1.34.0.tgz vignettes: vignettes/CONFESS/inst/doc/vignette_tex.pdf, vignettes/CONFESS/inst/doc/vignette.html vignetteTitles: CONFESS, CONFESS Walkthrough hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CONFESS/inst/doc/vignette.R, vignettes/CONFESS/inst/doc/vignette_tex.R dependencyCount: 152 Package: consensus Version: 1.24.0 Depends: R (>= 3.5), RColorBrewer Imports: matrixStats, gplots, grDevices, methods, graphics, stats, utils Suggests: knitr, RUnit, rmarkdown, BiocGenerics License: BSD_3_clause + file LICENSE MD5sum: 9b886f8dba96b422e00f269a0b34b6e4 NeedsCompilation: no Title: Cross-platform consensus analysis of genomic measurements via interlaboratory testing method Description: An implementation of the American Society for Testing and Materials (ASTM) Standard E691 for interlaboratory testing procedures, designed for cross-platform genomic measurements. Given three (3) or more genomic platforms or laboratory protocols, this package provides interlaboratory testing procedures giving per-locus comparisons for sensitivity and precision between platforms. biocViews: QualityControl, Regression, DataRepresentation, GeneExpression, Microarray, RNASeq Author: Tim Peters Maintainer: Tim Peters VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/consensus git_branch: RELEASE_3_20 git_last_commit: f869c57 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/consensus_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/consensus_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/consensus_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/consensus_1.24.0.tgz vignettes: vignettes/consensus/inst/doc/consensus.pdf vignetteTitles: Fitting and visualising row-linear models with \texttt{consensus} hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/consensus/inst/doc/consensus.R dependencyCount: 12 Package: ConsensusClusterPlus Version: 1.70.0 Imports: Biobase, ALL, graphics, stats, utils, cluster License: GPL version 2 MD5sum: 262afe9b8f479d8a98f655ef64d133b3 NeedsCompilation: no Title: ConsensusClusterPlus Description: algorithm for determining cluster count and membership by stability evidence in unsupervised analysis biocViews: Software, Clustering Author: Matt Wilkerson , Peter Waltman Maintainer: Matt Wilkerson git_url: https://git.bioconductor.org/packages/ConsensusClusterPlus git_branch: RELEASE_3_20 git_last_commit: 7e4ddf6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ConsensusClusterPlus_1.70.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ConsensusClusterPlus_1.70.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ConsensusClusterPlus_1.70.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ConsensusClusterPlus_1.70.0.tgz vignettes: vignettes/ConsensusClusterPlus/inst/doc/ConsensusClusterPlus.pdf vignetteTitles: ConsensusClusterPlus Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ConsensusClusterPlus/inst/doc/ConsensusClusterPlus.R importsMe: CATALYST, ChromSCape, DEGreport, FlowSOM, DeSousa2013, ccml, iSubGen, longmixr, neatmaps, scRNAtools suggestsMe: TCGAbiolinks, tidytof dependencyCount: 9 Package: consensusDE Version: 1.24.0 Depends: R (>= 3.5), BiocGenerics Imports: airway, AnnotationDbi, BiocParallel, Biobase, Biostrings, data.table, dendextend, DESeq2 (>= 1.20.0), EDASeq, ensembldb, edgeR, EnsDb.Hsapiens.v86, GenomicAlignments, GenomicFeatures, limma, org.Hs.eg.db, pcaMethods, RColorBrewer, Rsamtools, RUVSeq, S4Vectors, stats, SummarizedExperiment, TxDb.Dmelanogaster.UCSC.dm3.ensGene, utils Suggests: knitr, rmarkdown License: GPL-3 MD5sum: 0dc9df37ea716d2b05d9f1c299f18bb4 NeedsCompilation: no Title: RNA-seq analysis using multiple algorithms Description: This package allows users to perform DE analysis using multiple algorithms. It seeks consensus from multiple methods. Currently it supports "Voom", "EdgeR" and "DESeq". It uses RUV-seq (optional) to remove unwanted sources of variation. biocViews: Transcriptomics, MultipleComparison, Clustering, Sequencing, Software Author: Ashley J. Waardenberg [aut, cre], Martha M. Cooper [ctb] Maintainer: Ashley J. Waardenberg VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/consensusDE git_branch: RELEASE_3_20 git_last_commit: 537b561 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/consensusDE_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/consensusDE_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/consensusDE_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/consensusDE_1.24.0.tgz vignettes: vignettes/consensusDE/inst/doc/consensusDE.html vignetteTitles: consensusDE hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/consensusDE/inst/doc/consensusDE.R dependencyCount: 151 Package: consensusSeekeR Version: 1.34.0 Depends: R (>= 3.5.0), BiocGenerics, IRanges, GenomicRanges, BiocParallel Imports: GenomeInfoDb, rtracklayer, stringr, S4Vectors, methods Suggests: BiocStyle, ggplot2, knitr, rmarkdown, RUnit License: Artistic-2.0 MD5sum: 56a13d57d00010129ed5eaec06377193 NeedsCompilation: no Title: Detection of consensus regions inside a group of experiences using genomic positions and genomic ranges Description: This package compares genomic positions and genomic ranges from multiple experiments to extract common regions. The size of the analyzed region is adjustable as well as the number of experiences in which a feature must be present in a potential region to tag this region as a consensus region. In genomic analysis where feature identification generates a position value surrounded by a genomic range, such as ChIP-Seq peaks and nucleosome positions, the replication of an experiment may result in slight differences between predicted values. This package enables the conciliation of the results into consensus regions. biocViews: BiologicalQuestion, ChIPSeq, Genetics, MultipleComparison, Transcription, PeakDetection, Sequencing, Coverage Author: Astrid Deschênes [cre, aut] (), Fabien Claude Lamaze [ctb], Pascal Belleau [aut] (), Arnaud Droit [aut] Maintainer: Astrid Deschênes URL: https://github.com/adeschen/consensusSeekeR VignetteBuilder: knitr BugReports: https://github.com/adeschen/consensusSeekeR/issues git_url: https://git.bioconductor.org/packages/consensusSeekeR git_branch: RELEASE_3_20 git_last_commit: 87251b7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/consensusSeekeR_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/consensusSeekeR_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/consensusSeekeR_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/consensusSeekeR_1.34.0.tgz vignettes: vignettes/consensusSeekeR/inst/doc/consensusSeekeR.html vignetteTitles: Detection of consensus regions inside a group of experiments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/consensusSeekeR/inst/doc/consensusSeekeR.R importsMe: RJMCMCNucleosomes suggestsMe: EpiCompare dependencyCount: 66 Package: consICA Version: 2.4.0 Depends: R (>= 4.2.0) Imports: fastICA (>= 1.2.1), sm, org.Hs.eg.db, GO.db, stats, SummarizedExperiment, BiocParallel, graph, ggplot2, methods, Rfast, pheatmap, survival, topGO, graphics, grDevices Suggests: knitr, BiocStyle, rmarkdown, testthat, Seurat License: MIT + file LICENSE MD5sum: 929848b8c5a45ff0ea43c42e500e6599 NeedsCompilation: no Title: consensus Independent Component Analysis Description: consICA implements a data-driven deconvolution method – consensus independent component analysis (ICA) to decompose heterogeneous omics data and extract features suitable for patient diagnostics and prognostics. The method separates biologically relevant transcriptional signals from technical effects and provides information about the cellular composition and biological processes. The implementation of parallel computing in the package ensures efficient analysis of modern multicore systems. biocViews: Technology, StatisticalMethod, Sequencing, RNASeq, Transcriptomics, Classification, FeatureExtraction Author: Petr V. Nazarov [aut, cre] (), Tony Kaoma [aut] (), Maryna Chepeleva [aut] () Maintainer: Petr V. Nazarov VignetteBuilder: knitr BugReports: https://github.com/biomod-lih/consICA/issues git_url: https://git.bioconductor.org/packages/consICA git_branch: RELEASE_3_20 git_last_commit: 2a96b62 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/consICA_2.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/consICA_2.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/consICA_2.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/consICA_2.4.0.tgz vignettes: vignettes/consICA/inst/doc/ConsICA.html vignetteTitles: The consICA package: User’s manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/consICA/inst/doc/ConsICA.R dependencyCount: 100 Package: CONSTANd Version: 1.14.0 Depends: R (>= 4.1) Suggests: BiocStyle, knitr, rmarkdown, tidyr, ggplot2, gridExtra, magick, Cairo, limma License: file LICENSE MD5sum: 86711e287452f21bc57def13d529a624 NeedsCompilation: no Title: Data normalization by matrix raking Description: Normalizes a data matrix `data` by raking (using the RAS method by Bacharach, see references) the Nrows by Ncols matrix such that the row means and column means equal 1. The result is a normalized data matrix `K=RAS`, a product of row mulipliers `R` and column multipliers `S` with the original matrix `A`. Missing information needs to be presented as `NA` values and not as zero values, because CONSTANd is able to ignore missing values when calculating the mean. Using CONSTANd normalization allows for the direct comparison of values between samples within the same and even across different CONSTANd-normalized data matrices. biocViews: MassSpectrometry, Cheminformatics, Normalization, Preprocessing, DifferentialExpression, Genetics, Transcriptomics, Proteomics Author: Joris Van Houtven [aut, trl], Geert Jan Bex [trl], Dirk Valkenborg [aut, cre] Maintainer: Dirk Valkenborg URL: qcquan.net/constand VignetteBuilder: knitr BugReports: https://github.com/PDiracDelta/CONSTANd/issues git_url: https://git.bioconductor.org/packages/CONSTANd git_branch: RELEASE_3_20 git_last_commit: ac1391d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CONSTANd_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CONSTANd_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CONSTANd_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CONSTANd_1.14.0.tgz vignettes: vignettes/CONSTANd/inst/doc/CONSTANd.html vignetteTitles: CONSTANd hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CONSTANd/inst/doc/CONSTANd.R dependencyCount: 0 Package: conumee Version: 1.40.0 Depends: R (>= 3.5.0), minfi, IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylation450kmanifest, IlluminaHumanMethylationEPICanno.ilm10b2.hg19, IlluminaHumanMethylationEPICmanifest Imports: methods, stats, DNAcopy, rtracklayer, GenomicRanges, IRanges, GenomeInfoDb Suggests: BiocStyle, knitr, rmarkdown, minfiData, RCurl License: GPL (>= 2) MD5sum: b0df51d7b03f3b8c021d1b1c00d83fce NeedsCompilation: no Title: Enhanced copy-number variation analysis using Illumina DNA methylation arrays Description: This package contains a set of processing and plotting methods for performing copy-number variation (CNV) analysis using Illumina 450k or EPIC methylation arrays. biocViews: CopyNumberVariation, DNAMethylation, MethylationArray, Microarray, Normalization, Preprocessing, QualityControl, Software Author: Volker Hovestadt, Marc Zapatka Maintainer: Volker Hovestadt VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/conumee git_branch: RELEASE_3_20 git_last_commit: 8b458e2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/conumee_1.40.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/conumee_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/conumee_1.40.0.tgz vignettes: vignettes/conumee/inst/doc/conumee.html vignetteTitles: conumee hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/conumee/inst/doc/conumee.R dependencyCount: 150 Package: convert Version: 1.82.0 Depends: R (>= 2.6.0), Biobase (>= 1.15.33), limma (>= 1.7.0), marray, utils, methods License: LGPL MD5sum: 39d558aaa3d460533b19b96b3d0426a9 NeedsCompilation: no Title: Convert Microarray Data Objects Description: Define coerce methods for microarray data objects. biocViews: Infrastructure, Microarray, TwoChannel Author: Gordon Smyth , James Wettenhall , Yee Hwa (Jean Yang) , Martin Morgan Maintainer: Yee Hwa (Jean) Yang URL: http://bioinf.wehi.edu.au/limma/convert.html git_url: https://git.bioconductor.org/packages/convert git_branch: RELEASE_3_20 git_last_commit: f8a6898 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/convert_1.82.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/convert_1.82.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/convert_1.82.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/convert_1.82.0.tgz vignettes: vignettes/convert/inst/doc/convert.pdf vignetteTitles: Converting Between Microarray Data Classes hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: TurboNorm suggestsMe: dyebias, OLIN, dyebiasexamples dependencyCount: 10 Package: copa Version: 1.74.0 Depends: Biobase, methods Suggests: colonCA License: Artistic-2.0 MD5sum: 4a01631dd274c80e9005beb1021e1684 NeedsCompilation: yes Title: Functions to perform cancer outlier profile analysis. Description: COPA is a method to find genes that undergo recurrent fusion in a given cancer type by finding pairs of genes that have mutually exclusive outlier profiles. biocViews: OneChannel, TwoChannel, DifferentialExpression, Visualization Author: James W. MacDonald Maintainer: James W. MacDonald git_url: https://git.bioconductor.org/packages/copa git_branch: RELEASE_3_20 git_last_commit: 388ec31 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/copa_1.74.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/copa_1.74.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/copa_1.74.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/copa_1.74.0.tgz vignettes: vignettes/copa/inst/doc/copa.pdf vignetteTitles: copa Overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/copa/inst/doc/copa.R dependencyCount: 6 Package: CopyNumberPlots Version: 1.22.0 Depends: R (>= 3.6), karyoploteR Imports: regioneR, IRanges, Rsamtools, SummarizedExperiment, VariantAnnotation, methods, stats, GenomeInfoDb, GenomicRanges, cn.mops, rhdf5, utils Suggests: BiocStyle, knitr, rmarkdown, panelcn.mops, BSgenome.Hsapiens.UCSC.hg19.masked, DNAcopy, testthat License: Artistic-2.0 MD5sum: 1f5f855d127df42b2e54ead876d620a6 NeedsCompilation: no Title: Create Copy-Number Plots using karyoploteR functionality Description: CopyNumberPlots have a set of functions extending karyoploteRs functionality to create beautiful, customizable and flexible plots of copy-number related data. biocViews: Visualization, CopyNumberVariation, Coverage, OneChannel, DataImport, Sequencing, DNASeq Author: Bernat Gel and Miriam Magallon Maintainer: Bernat Gel URL: https://github.com/bernatgel/CopyNumberPlots VignetteBuilder: knitr BugReports: https://github.com/bernatgel/CopyNumberPlots/issues git_url: https://git.bioconductor.org/packages/CopyNumberPlots git_branch: RELEASE_3_20 git_last_commit: 4be9967 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CopyNumberPlots_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CopyNumberPlots_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CopyNumberPlots_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CopyNumberPlots_1.22.0.tgz vignettes: vignettes/CopyNumberPlots/inst/doc/CopyNumberPlots.html vignetteTitles: CopyNumberPlots vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CopyNumberPlots/inst/doc/CopyNumberPlots.R importsMe: CNVfilteR, CNViz dependencyCount: 145 Package: coRdon Version: 1.24.0 Depends: R (>= 3.5) Imports: methods, stats, utils, Biostrings, Biobase, dplyr, stringr, purrr, ggplot2, data.table Suggests: BiocStyle, testthat, knitr, rmarkdown License: Artistic-2.0 Archs: x64 MD5sum: a850cdc6396b75983df5e35341be85b9 NeedsCompilation: no Title: Codon Usage Analysis and Prediction of Gene Expressivity Description: Tool for analysis of codon usage in various unannotated or KEGG/COG annotated DNA sequences. Calculates different measures of CU bias and CU-based predictors of gene expressivity, and performs gene set enrichment analysis for annotated sequences. Implements several methods for visualization of CU and enrichment analysis results. biocViews: Software, Metagenomics, GeneExpression, GeneSetEnrichment, GenePrediction, Visualization, KEGG, Pathways, Genetics CellBiology, BiomedicalInformatics, ImmunoOncology Author: Anamaria Elek [cre, aut], Maja Kuzman [aut], Kristian Vlahovicek [aut] Maintainer: Anamaria Elek URL: https://github.com/BioinfoHR/coRdon VignetteBuilder: knitr BugReports: https://github.com/BioinfoHR/coRdon/issues git_url: https://git.bioconductor.org/packages/coRdon git_branch: RELEASE_3_20 git_last_commit: 04314c1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/coRdon_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/coRdon_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/coRdon_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/coRdon_1.24.0.tgz vignettes: vignettes/coRdon/inst/doc/coRdon.html vignetteTitles: coRdon hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/coRdon/inst/doc/coRdon.R importsMe: vhcub dependencyCount: 62 Package: CoreGx Version: 2.10.0 Depends: R (>= 4.1), BiocGenerics, SummarizedExperiment Imports: Biobase, S4Vectors, MultiAssayExperiment, MatrixGenerics, piano, BiocParallel, parallel, BumpyMatrix, checkmate, methods, stats, utils, graphics, grDevices, lsa, data.table, crayon, glue, rlang, bench Suggests: pander, markdown, BiocStyle, rmarkdown, knitr, formatR, testthat License: GPL (>= 3) MD5sum: 357826ed902da51ac7859c681bfaaf4d NeedsCompilation: no Title: Classes and Functions to Serve as the Basis for Other 'Gx' Packages Description: A collection of functions and classes which serve as the foundation for our lab's suite of R packages, such as 'PharmacoGx' and 'RadioGx'. This package was created to abstract shared functionality from other lab package releases to increase ease of maintainability and reduce code repetition in current and future 'Gx' suite programs. Major features include a 'CoreSet' class, from which 'RadioSet' and 'PharmacoSet' are derived, along with get and set methods for each respective slot. Additional functions related to fitting and plotting dose response curves, quantifying statistical correlation and calculating area under the curve (AUC) or survival fraction (SF) are included. For more details please see the included documentation, as well as: Smirnov, P., Safikhani, Z., El-Hachem, N., Wang, D., She, A., Olsen, C., Freeman, M., Selby, H., Gendoo, D., Grossman, P., Beck, A., Aerts, H., Lupien, M., Goldenberg, A. (2015) . Manem, V., Labie, M., Smirnov, P., Kofia, V., Freeman, M., Koritzinksy, M., Abazeed, M., Haibe-Kains, B., Bratman, S. (2018) . biocViews: Software, Pharmacogenomics, Classification, Survival Author: Jermiah Joseph [aut], Petr Smirnov [aut], Ian Smith [aut], Christopher Eeles [aut], Feifei Li [aut], Benjamin Haibe-Kains [aut, cre] Maintainer: Benjamin Haibe-Kains VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CoreGx git_branch: RELEASE_3_20 git_last_commit: 390ed20 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CoreGx_2.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CoreGx_2.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CoreGx_2.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CoreGx_2.10.0.tgz vignettes: vignettes/CoreGx/inst/doc/coreGx.html, vignettes/CoreGx/inst/doc/TreatmentResponseExperiment.html vignetteTitles: CoreGx: Class and Function Abstractions, The TreatmentResponseExperiment Class hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CoreGx/inst/doc/coreGx.R, vignettes/CoreGx/inst/doc/TreatmentResponseExperiment.R dependsOnMe: PharmacoGx, RadioGx, ToxicoGx importsMe: gDRimport dependencyCount: 140 Package: Cormotif Version: 1.52.0 Depends: R (>= 2.12.0), affy, limma Imports: affy, graphics, grDevices License: GPL-2 MD5sum: 512c9958c6ebc81e3b727c1dd0d4303f NeedsCompilation: no Title: Correlation Motif Fit Description: It fits correlation motif model to multiple studies to detect study specific differential expression patterns. biocViews: Microarray, DifferentialExpression Author: Hongkai Ji, Yingying Wei Maintainer: Yingying Wei git_url: https://git.bioconductor.org/packages/Cormotif git_branch: RELEASE_3_20 git_last_commit: 9055543 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Cormotif_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Cormotif_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Cormotif_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Cormotif_1.52.0.tgz vignettes: vignettes/Cormotif/inst/doc/CormotifVignette.pdf vignetteTitles: Cormotif Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Cormotif/inst/doc/CormotifVignette.R dependencyCount: 14 Package: corral Version: 1.16.0 Imports: ggplot2, ggthemes, grDevices, gridExtra, irlba, Matrix, methods, MultiAssayExperiment, pals, reshape2, SingleCellExperiment, SummarizedExperiment, transport Suggests: ade4, BiocStyle, CellBench, DuoClustering2018, knitr, rmarkdown, scater, testthat License: GPL-2 MD5sum: f000c9f03270e0695ed07cfa4c9c2a50 NeedsCompilation: no Title: Correspondence Analysis for Single Cell Data Description: Correspondence analysis (CA) is a matrix factorization method, and is similar to principal components analysis (PCA). Whereas PCA is designed for application to continuous, approximately normally distributed data, CA is appropriate for non-negative, count-based data that are in the same additive scale. The corral package implements CA for dimensionality reduction of a single matrix of single-cell data, as well as a multi-table adaptation of CA that leverages data-optimized scaling to align data generated from different sequencing platforms by projecting into a shared latent space. corral utilizes sparse matrices and a fast implementation of SVD, and can be called directly on Bioconductor objects (e.g., SingleCellExperiment) for easy pipeline integration. The package also includes additional options, including variations of CA to address overdispersion in count data (e.g., Freeman-Tukey chi-squared residual), as well as the option to apply CA-style processing to continuous data (e.g., proteomic TOF intensities) with the Hellinger distance adaptation of CA. biocViews: BatchEffect, DimensionReduction, GeneExpression, Preprocessing, PrincipalComponent, Sequencing, SingleCell, Software, Visualization Author: Lauren Hsu [aut, cre] (), Aedin Culhane [aut] () Maintainer: Lauren Hsu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/corral git_branch: RELEASE_3_20 git_last_commit: 53ab874 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/corral_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/corral_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/corral_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/corral_1.16.0.tgz vignettes: vignettes/corral/inst/doc/corral_dimred.html, vignettes/corral/inst/doc/corralm_alignment.html vignetteTitles: dim reduction with corral, alignment with corralm hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/corral/inst/doc/corral_dimred.R, vignettes/corral/inst/doc/corralm_alignment.R dependencyCount: 86 Package: coseq Version: 1.30.0 Depends: R (>= 4.0.0), SummarizedExperiment, S4Vectors Imports: edgeR, DESeq2, capushe, Rmixmod, e1071, BiocParallel, ggplot2, scales, HTSFilter, corrplot, HTSCluster, grDevices, graphics, stats, methods, compositions, mvtnorm Suggests: Biobase, knitr, rmarkdown, testthat, BiocStyle License: GPL-3 MD5sum: ec3576fa4743364edcd27c00e2443aaf NeedsCompilation: no Title: Co-Expression Analysis of Sequencing Data Description: Co-expression analysis for expression profiles arising from high-throughput sequencing data. Feature (e.g., gene) profiles are clustered using adapted transformations and mixture models or a K-means algorithm, and model selection criteria (to choose an appropriate number of clusters) are provided. biocViews: GeneExpression, RNASeq, Sequencing, Software, ImmunoOncology Author: Andrea Rau [cre, aut] (), Cathy Maugis-Rabusseau [ctb], Antoine Godichon-Baggioni [ctb] Maintainer: Andrea Rau VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/coseq git_branch: RELEASE_3_20 git_last_commit: 4e1066b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/coseq_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/coseq_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/coseq_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/coseq_1.30.0.tgz vignettes: vignettes/coseq/inst/doc/coseq.html vignetteTitles: coseq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/coseq/inst/doc/coseq.R dependencyCount: 95 Package: CoSIA Version: 1.6.0 Depends: R (>= 4.3.0), methods (>= 4.3.0), ExperimentHub (>= 2.7.0) Imports: dplyr (>= 1.0.7), magrittr (>= 2.0.1), RColorBrewer (>= 1.1-2), tidyr (>= 1.2.0), plotly (>= 4.10.0), stringr (>= 1.4.0), ggplot2 (>= 3.3.5), tibble (>= 3.1.7), org.Hs.eg.db (>= 3.12.0), org.Mm.eg.db (>= 3.12.0), org.Dr.eg.db (>= 3.12.0), org.Ce.eg.db (>= 3.12.0), org.Dm.eg.db (>= 3.12.0), org.Rn.eg.db (>= 3.12.0), AnnotationDbi (>= 1.52.0), biomaRt (>= 2.46.3), homologene (>= 1.4.68.19), annotationTools (>= 1.64.0), readr (>= 2.1.1), tidyselect (>= 1.1.2), stats (>= 4.1.2) Suggests: BiocStyle (>= 2.22.0), tidyverse (>= 1.3.1), knitr (>= 1.42), rmarkdown (>= 2.20), testthat (>= 3.1.6), qpdf (>= 1.3.0) License: MIT + file LICENSE MD5sum: 5c3d04805fd84a3b63480d1a47df2c97 NeedsCompilation: no Title: An Investigation Across Different Species and Tissues Description: Cross-Species Investigation and Analysis (CoSIA) is a package that provides researchers with an alternative methodology for comparing across species and tissues using normal wild-type RNA-Seq Gene Expression data from Bgee. Using RNA-Seq Gene Expression data, CoSIA provides multiple visualization tools to explore the transcriptome diversity and variation across genes, tissues, and species. CoSIA uses the Coefficient of Variation and Shannon Entropy and Specificity to calculate transcriptome diversity and variation. CoSIA also provides additional conversion tools and utilities to provide a streamlined methodology for cross-species comparison. biocViews: Software, BiologicalQuestion, GeneExpression, MultipleComparison, ThirdPartyClient, DataImport, GUI Author: Anisha Haldar [aut] (), Vishal H. Oza [aut] (), Amanda D. Clark [cre, aut] (), Nathaniel S. DeVoss [aut] (), Brittany N. Lasseigne [aut] () Maintainer: Amanda D. Clark URL: https://www.lasseigne.org/ VignetteBuilder: knitr BugReports: https://github.com/lasseignelab/CoSIA/issues git_url: https://git.bioconductor.org/packages/CoSIA git_branch: RELEASE_3_20 git_last_commit: dfc812d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CoSIA_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CoSIA_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CoSIA_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CoSIA_1.6.0.tgz vignettes: vignettes/CoSIA/inst/doc/CoSIA_Intro.html vignetteTitles: CoSIA_Intro hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CoSIA/inst/doc/CoSIA_Intro.R dependencyCount: 127 Package: cosmiq Version: 1.40.0 Depends: R (>= 3.6), Rcpp Imports: pracma, xcms, MassSpecWavelet, faahKO Suggests: RUnit, BiocGenerics, BiocStyle License: GPL-3 MD5sum: 226979d34620eb9e4a410f940bfd2384 NeedsCompilation: yes Title: cosmiq - COmbining Single Masses Into Quantities Description: cosmiq is a tool for the preprocessing of liquid- or gas - chromatography mass spectrometry (LCMS/GCMS) data with a focus on metabolomics or lipidomics applications. To improve the detection of low abundant signals, cosmiq generates master maps of the mZ/RT space from all acquired runs before a peak detection algorithm is applied. The result is a more robust identification and quantification of low-intensity MS signals compared to conventional approaches where peak picking is performed in each LCMS/GCMS file separately. The cosmiq package builds on the xcmsSet object structure and can be therefore integrated well with the package xcms as an alternative preprocessing step. biocViews: ImmunoOncology, MassSpectrometry, Metabolomics Author: David Fischer [aut, cre], Christian Panse [aut] (), Endre Laczko [ctb] Maintainer: David Fischer URL: http://www.bioconductor.org/packages/devel/bioc/html/cosmiq.html git_url: https://git.bioconductor.org/packages/cosmiq git_branch: RELEASE_3_20 git_last_commit: 12b9917 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cosmiq_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cosmiq_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cosmiq_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cosmiq_1.40.0.tgz vignettes: vignettes/cosmiq/inst/doc/cosmiq.pdf vignetteTitles: cosmiq primer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cosmiq/inst/doc/cosmiq.R dependencyCount: 149 Package: cosmosR Version: 1.14.0 Depends: R (>= 4.1) Imports: CARNIVAL, dorothea, dplyr, GSEABase, igraph, progress, purrr, rlang, stringr, utils, visNetwork, decoupleR Suggests: testthat, knitr, rmarkdown, piano, ggplot2 License: GPL-3 MD5sum: 8eec04fe8b6b4d900404ce51afa24088 NeedsCompilation: no Title: COSMOS (Causal Oriented Search of Multi-Omic Space) Description: COSMOS (Causal Oriented Search of Multi-Omic Space) is a method that integrates phosphoproteomics, transcriptomics, and metabolomics data sets based on prior knowledge of signaling, metabolic, and gene regulatory networks. It estimated the activities of transcrption factors and kinases and finds a network-level causal reasoning. Thereby, COSMOS provides mechanistic hypotheses for experimental observations across mulit-omics datasets. biocViews: CellBiology, Pathways, Network, Proteomics, Metabolomics, Transcriptomics, GeneSignaling Author: Aurélien Dugourd [aut] (), Attila Gabor [cre] (), Katharina Zirngibl [aut] () Maintainer: Attila Gabor URL: https://github.com/saezlab/COSMOSR VignetteBuilder: knitr BugReports: https://github.com/saezlab/COSMOSR/issues git_url: https://git.bioconductor.org/packages/cosmosR git_branch: RELEASE_3_20 git_last_commit: 5df48f0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cosmosR_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cosmosR_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cosmosR_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cosmosR_1.14.0.tgz vignettes: vignettes/cosmosR/inst/doc/tutorial.html vignetteTitles: cosmosR tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/cosmosR/inst/doc/tutorial.R dependencyCount: 110 Package: COSNet Version: 1.40.0 Suggests: bionetdata, PerfMeas, RUnit, BiocGenerics License: GPL (>= 2) Archs: x64 MD5sum: fefba7ec494488bdddf41fec06e21024 NeedsCompilation: yes Title: Cost Sensitive Network for node label prediction on graphs with highly unbalanced labelings Description: Package that implements the COSNet classification algorithm. The algorithm predicts node labels in partially labeled graphs where few positives are available for the class being predicted. biocViews: GraphAndNetwork, Classification,Network, NeuralNetwork Author: Marco Frasca and Giorgio Valentini -- Universita' degli Studi di Milano Maintainer: Marco Frasca URL: https://github.com/m1frasca/COSNet_GitHub git_url: https://git.bioconductor.org/packages/COSNet git_branch: RELEASE_3_20 git_last_commit: 6f7df86 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/COSNet_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/COSNet_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/COSNet_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/COSNet_1.40.0.tgz vignettes: vignettes/COSNet/inst/doc/COSNet_v.pdf vignetteTitles: An R Package for Predicting Binary Labels in Partially-Labeled Graphs hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/COSNet/inst/doc/COSNet_v.R dependencyCount: 0 Package: COTAN Version: 2.6.1 Depends: R (>= 4.3) Imports: stats, plyr, dplyr, methods, grDevices, Matrix, ggplot2, ggrepel, ggthemes, graphics, parallel, parallelly, tibble, tidyr, BiocSingular, PCAtools, parallelDist, ComplexHeatmap, circlize, grid, scales, RColorBrewer, utils, rlang, Rfast, stringr, Seurat, umap, dendextend, zeallot, assertthat, withr, SingleCellExperiment, SummarizedExperiment, S4Vectors Suggests: testthat (>= 3.2.0), proto, spelling, knitr, data.table, gsubfn, R.utils, tidyverse, rmarkdown, htmlwidgets, MASS, Rtsne, plotly, BiocStyle, cowplot, qpdf, GEOquery, sf, torch License: GPL-3 MD5sum: 9decb0b6789685a354fb2438426f5cc6 NeedsCompilation: no Title: COexpression Tables ANalysis Description: Statistical and computational method to analyze the co-expression of gene pairs at single cell level. It provides the foundation for single-cell gene interactome analysis. The basic idea is studying the zero UMI counts' distribution instead of focusing on positive counts; this is done with a generalized contingency tables framework. COTAN can effectively assess the correlated or anti-correlated expression of gene pairs. It provides a numerical index related to the correlation and an approximate p-value for the associated independence test. COTAN can also evaluate whether single genes are differentially expressed, scoring them with a newly defined global differentiation index. Moreover, this approach provides ways to plot and cluster genes according to their co-expression pattern with other genes, effectively helping the study of gene interactions and becoming a new tool to identify cell-identity marker genes. biocViews: SystemsBiology, Transcriptomics, GeneExpression, SingleCell Author: Galfrè Silvia Giulia [aut, cre] (), Morandin Francesco [aut] (), Fantozzi Marco [aut] (), Pietrosanto Marco [aut] (), Puttini Daniel [aut] (), Priami Corrado [aut] (), Cremisi Federico [aut] (), Helmer-Citterich Manuela [aut] () Maintainer: Galfrè Silvia Giulia URL: https://github.com/seriph78/COTAN VignetteBuilder: knitr BugReports: https://github.com/seriph78/COTAN/issues git_url: https://git.bioconductor.org/packages/COTAN git_branch: RELEASE_3_20 git_last_commit: 621b398 git_last_commit_date: 2024-11-11 Date/Publication: 2024-11-12 source.ver: src/contrib/COTAN_2.6.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/COTAN_2.6.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/COTAN_2.6.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/COTAN_2.6.1.tgz vignettes: vignettes/COTAN/inst/doc/Guided_tutorial_v2.html vignetteTitles: Guided tutorial to COTAN V.2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/COTAN/inst/doc/Guided_tutorial_v2.R dependencyCount: 208 Package: countsimQC Version: 1.24.0 Depends: R (>= 3.5) Imports: rmarkdown (>= 2.5), edgeR, DESeq2 (>= 1.16.0), dplyr, tidyr, ggplot2, grDevices, tools, SummarizedExperiment, genefilter, DT, GenomeInfoDbData, caTools, randtests, stats, utils, methods, ragg Suggests: knitr, testthat License: GPL (>=2) Archs: x64 MD5sum: 38853042acaa7a00388a06bc39ddf46e NeedsCompilation: no Title: Compare Characteristic Features of Count Data Sets Description: countsimQC provides functionality to create a comprehensive report comparing a broad range of characteristics across a collection of count matrices. One important use case is the comparison of one or more synthetic count matrices to a real count matrix, possibly the one underlying the simulations. However, any collection of count matrices can be compared. biocViews: Microbiome, RNASeq, SingleCell, ExperimentalDesign, QualityControl, ReportWriting, Visualization, ImmunoOncology Author: Charlotte Soneson [aut, cre] () Maintainer: Charlotte Soneson URL: https://github.com/csoneson/countsimQC VignetteBuilder: knitr BugReports: https://github.com/csoneson/countsimQC/issues git_url: https://git.bioconductor.org/packages/countsimQC git_branch: RELEASE_3_20 git_last_commit: 1a60208 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/countsimQC_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/countsimQC_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/countsimQC_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/countsimQC_1.24.0.tgz vignettes: vignettes/countsimQC/inst/doc/countsimQC.html vignetteTitles: countsimQC User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/countsimQC/inst/doc/countsimQC.R suggestsMe: muscat dependencyCount: 133 Package: covEB Version: 1.32.0 Depends: R (>= 3.3), mvtnorm, igraph, gsl, Biobase, stats, LaplacesDemon, Matrix Suggests: curatedBladderData License: GPL-3 MD5sum: ba7e5e73c1cc164af05012a489f67c1d NeedsCompilation: no Title: Empirical Bayes estimate of block diagonal covariance matrices Description: Using bayesian methods to estimate correlation matrices assuming that they can be written and estimated as block diagonal matrices. These block diagonal matrices are determined using shrinkage parameters that values below this parameter to zero. biocViews: ImmunoOncology, Bayesian, Microarray, RNASeq, Preprocessing, Software, GeneExpression, StatisticalMethod Author: C. Pacini Maintainer: C. Pacini git_url: https://git.bioconductor.org/packages/covEB git_branch: RELEASE_3_20 git_last_commit: cf1f3d1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/covEB_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/covEB_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/covEB_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/covEB_1.32.0.tgz vignettes: vignettes/covEB/inst/doc/covEB.pdf vignetteTitles: covEB hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/covEB/inst/doc/covEB.R dependencyCount: 23 Package: CoverageView Version: 1.44.0 Depends: R (>= 2.10), methods, Rsamtools (>= 1.19.17), rtracklayer Imports: S4Vectors (>= 0.7.21), IRanges(>= 2.3.23), GenomicRanges, GenomicAlignments, parallel, tools License: Artistic-2.0 MD5sum: 34b54696a30b3e5dc9addde643fcd0de NeedsCompilation: no Title: Coverage visualization package for R Description: This package provides a framework for the visualization of genome coverage profiles. It can be used for ChIP-seq experiments, but it can be also used for genome-wide nucleosome positioning experiments or other experiment types where it is important to have a framework in order to inspect how the coverage distributed across the genome biocViews: ImmunoOncology, Visualization,RNASeq,ChIPSeq,Sequencing,Technology,Software Author: Ernesto Lowy Maintainer: Ernesto Lowy git_url: https://git.bioconductor.org/packages/CoverageView git_branch: RELEASE_3_20 git_last_commit: 94d0beb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CoverageView_1.44.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CoverageView_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CoverageView_1.44.0.tgz vignettes: vignettes/CoverageView/inst/doc/CoverageView.pdf vignetteTitles: Easy visualization of the read coverage hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CoverageView/inst/doc/CoverageView.R dependencyCount: 58 Package: covRNA Version: 1.32.0 Depends: ade4, Biobase Imports: parallel, genefilter, grDevices, stats, graphics Suggests: BiocStyle, knitr, rmarkdown License: GPL (>= 2) MD5sum: 95b8d91ef9583ec9d34edd3aca93847c NeedsCompilation: no Title: Multivariate Analysis of Transcriptomic Data Description: This package provides the analysis methods fourthcorner and RLQ analysis for large-scale transcriptomic data. biocViews: GeneExpression, Transcription Author: Lara Urban Maintainer: Lara Urban VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/covRNA git_branch: RELEASE_3_20 git_last_commit: 9119319 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/covRNA_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/covRNA_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/covRNA_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/covRNA_1.32.0.tgz vignettes: vignettes/covRNA/inst/doc/covRNA.html vignetteTitles: An Introduction to covRNA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/covRNA/inst/doc/covRNA.R dependencyCount: 63 Package: cpvSNP Version: 1.38.0 Depends: R (>= 3.5.0), GenomicFeatures, GSEABase (>= 1.24.0) Imports: methods, corpcor, BiocParallel, ggplot2, plyr Suggests: TxDb.Hsapiens.UCSC.hg19.knownGene, RUnit, BiocGenerics, ReportingTools, BiocStyle License: Artistic-2.0 MD5sum: b0920d0e350c81690d3287679df77285 NeedsCompilation: no Title: Gene set analysis methods for SNP association p-values that lie in genes in given gene sets Description: Gene set analysis methods exist to combine SNP-level association p-values into gene sets, calculating a single association p-value for each gene set. This package implements two such methods that require only the calculated SNP p-values, the gene set(s) of interest, and a correlation matrix (if desired). One method (GLOSSI) requires independent SNPs and the other (VEGAS) can take into account correlation (LD) among the SNPs. Built-in plotting functions are available to help users visualize results. biocViews: Genetics, StatisticalMethod, Pathways, GeneSetEnrichment, GenomicVariation Author: Caitlin McHugh, Jessica Larson, and Jason Hackney Maintainer: Caitlin McHugh git_url: https://git.bioconductor.org/packages/cpvSNP git_branch: RELEASE_3_20 git_last_commit: d6d8c9c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cpvSNP_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cpvSNP_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cpvSNP_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cpvSNP_1.38.0.tgz vignettes: vignettes/cpvSNP/inst/doc/cpvSNP.pdf vignetteTitles: Running gene set analyses with the "cpvSNP" package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cpvSNP/inst/doc/cpvSNP.R dependencyCount: 104 Package: cqn Version: 1.52.0 Depends: R (>= 2.10.0), mclust Imports: splines, graphics, nor1mix, stats, quantreg Suggests: scales, edgeR License: Artistic-2.0 MD5sum: f75885ab51fd672d84d12fd909ba8432 NeedsCompilation: no Title: Conditional quantile normalization Description: A normalization tool for RNA-Seq data, implementing the conditional quantile normalization method. biocViews: ImmunoOncology, RNASeq, Preprocessing, DifferentialExpression Author: Jean (Zhijin) Wu, Kasper Daniel Hansen Maintainer: Kasper Daniel Hansen git_url: https://git.bioconductor.org/packages/cqn git_branch: RELEASE_3_20 git_last_commit: acc5c24 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cqn_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cqn_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cqn_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cqn_1.52.0.tgz vignettes: vignettes/cqn/inst/doc/cqn.pdf vignetteTitles: CQN (Conditional Quantile Normalization) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cqn/inst/doc/cqn.R dependsOnMe: KnowSeq importsMe: GeoTcgaData, tweeDEseq dependencyCount: 16 Package: CRImage Version: 1.54.0 Depends: EBImage, DNAcopy, aCGH Imports: MASS, e1071, foreach, sgeostat License: Artistic-2.0 MD5sum: b7295efd23bc396a973fa89999ee342f NeedsCompilation: no Title: CRImage a package to classify cells and calculate tumour cellularity Description: CRImage provides functionality to process and analyze images, in particular to classify cells in biological images. Furthermore, in the context of tumor images, it provides functionality to calculate tumour cellularity. biocViews: CellBiology, Classification Author: Henrik Failmezger , Yinyin Yuan , Oscar Rueda , Florian Markowetz Maintainer: Henrik Failmezger , Yinyin Yuan git_url: https://git.bioconductor.org/packages/CRImage git_branch: RELEASE_3_20 git_last_commit: ec0cef3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CRImage_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CRImage_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CRImage_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CRImage_1.54.0.tgz vignettes: vignettes/CRImage/inst/doc/CRImage.pdf vignetteTitles: CRImage Manual hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CRImage/inst/doc/CRImage.R dependencyCount: 62 Package: CRISPRball Version: 1.2.0 Depends: R (>= 4.4.0), shinyBS Imports: DT, shiny, grid, ComplexHeatmap, InteractiveComplexHeatmap, graphics, stats, ggplot2, plotly, shinyWidgets, shinycssloaders, shinyjqui, dittoSeq, matrixStats, colourpicker, shinyjs, MAGeCKFlute, circlize, PCAtools, utils, grDevices, htmlwidgets, methods Suggests: BiocStyle, msigdbr, depmap, pool, RSQLite, mygene, testthat (>= 3.0.0), knitr, rmarkdown License: MIT + file LICENSE MD5sum: 97af849037ba14545f45409ed4b16575 NeedsCompilation: no Title: Shiny Application for Interactive CRISPR Screen Visualization, Exploration, Comparison, and Filtering Description: A Shiny application for visualization, exploration, comparison, and filtering of CRISPR screens analyzed with MAGeCK RRA or MLE. Features include interactive plots with on-click labeling, full customization of plot aesthetics, data upload and/or download, and much more. Quickly and easily explore your CRISPR screen results and generate publication-quality figures in seconds. biocViews: Software, ShinyApps, CRISPR, QualityControl, Visualization, GUI Author: Jared Andrews [aut, cre] (), Jacob Steele [ctb] () Maintainer: Jared Andrews URL: https://github.com/j-andrews7/CRISPRball VignetteBuilder: knitr BugReports: https://support.bioconductor.org/ git_url: https://git.bioconductor.org/packages/CRISPRball git_branch: RELEASE_3_20 git_last_commit: 83a6b84 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CRISPRball_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CRISPRball_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CRISPRball_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CRISPRball_1.2.0.tgz vignettes: vignettes/CRISPRball/inst/doc/CRISPRball.html vignetteTitles: CRISPRball Quick Start hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CRISPRball/inst/doc/CRISPRball.R dependencyCount: 217 Package: crisprBase Version: 1.10.0 Depends: utils, methods, R (>= 4.1) Imports: BiocGenerics, Biostrings, GenomicRanges, graphics, IRanges, S4Vectors, stringr Suggests: BiocStyle, knitr, rmarkdown, testthat License: MIT + file LICENSE MD5sum: 0e88d059c03ecf11df89c18bc3811bba NeedsCompilation: no Title: Base functions and classes for CRISPR gRNA design Description: Provides S4 classes for general nucleases, CRISPR nucleases, CRISPR nickases, and base editors.Several CRISPR-specific genome arithmetic functions are implemented to help extract genomic coordinates of spacer and protospacer sequences. Commonly-used CRISPR nuclease objects are provided that can be readily used in other packages. Both DNA- and RNA-targeting nucleases are supported. biocViews: CRISPR, FunctionalGenomics Author: Jean-Philippe Fortin [aut, cre] Maintainer: Jean-Philippe Fortin URL: https://github.com/crisprVerse/crisprBase VignetteBuilder: knitr BugReports: https://github.com/crisprVerse/crisprBase/issues git_url: https://git.bioconductor.org/packages/crisprBase git_branch: RELEASE_3_20 git_last_commit: 528b375 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/crisprBase_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/crisprBase_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/crisprBase_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/crisprBase_1.10.0.tgz vignettes: vignettes/crisprBase/inst/doc/crisprBase.html vignetteTitles: Introduction to crisprBase hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/crisprBase/inst/doc/crisprBase.R dependsOnMe: crisprDesign, crisprViz importsMe: crisprBowtie, crisprBwa, crisprShiny, crisprVerse dependencyCount: 34 Package: crisprBowtie Version: 1.10.0 Depends: methods Imports: BiocGenerics, Biostrings, BSgenome, crisprBase (>= 0.99.15), GenomeInfoDb, GenomicRanges, IRanges, Rbowtie, readr, stats, stringr, utils Suggests: BiocStyle, BSgenome.Hsapiens.UCSC.hg38, knitr, rmarkdown, testthat License: MIT + file LICENSE MD5sum: ed35798ccf69c3888016b83f6f2eec49 NeedsCompilation: no Title: Bowtie-based alignment of CRISPR gRNA spacer sequences Description: Provides a user-friendly interface to map on-targets and off-targets of CRISPR gRNA spacer sequences using bowtie. The alignment is fast, and can be performed using either commonly-used or custom CRISPR nucleases. The alignment can work with any reference or custom genomes. Both DNA- and RNA-targeting nucleases are supported. biocViews: CRISPR, FunctionalGenomics, Alignment Author: Jean-Philippe Fortin [aut, cre] Maintainer: Jean-Philippe Fortin URL: https://github.com/crisprVerse/crisprBowtie VignetteBuilder: knitr BugReports: https://github.com/crisprVerse/crisprBowtie/issues git_url: https://git.bioconductor.org/packages/crisprBowtie git_branch: RELEASE_3_20 git_last_commit: 6bf9c00 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/crisprBowtie_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/crisprBowtie_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/crisprBowtie_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/crisprBowtie_1.10.0.tgz vignettes: vignettes/crisprBowtie/inst/doc/crisprBowtie.html vignetteTitles: Introduction to crisprBowtie hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/crisprBowtie/inst/doc/crisprBowtie.R importsMe: crisprDesign, crisprVerse dependencyCount: 85 Package: crisprBwa Version: 1.10.0 Depends: methods Imports: BiocGenerics, BSgenome, crisprBase (>= 0.99.15), GenomeInfoDb, Rbwa, readr, stats, stringr, utils Suggests: BiocStyle, BSgenome.Hsapiens.UCSC.hg38, knitr, rmarkdown, testthat License: MIT + file LICENSE OS_type: unix MD5sum: ac3055e06623fdbd23f05744a0fcfdba NeedsCompilation: no Title: BWA-based alignment of CRISPR gRNA spacer sequences Description: Provides a user-friendly interface to map on-targets and off-targets of CRISPR gRNA spacer sequences using bwa. The alignment is fast, and can be performed using either commonly-used or custom CRISPR nucleases. The alignment can work with any reference or custom genomes. Currently not supported on Windows machines. biocViews: CRISPR, FunctionalGenomics, Alignment Author: Jean-Philippe Fortin [aut, cre] Maintainer: Jean-Philippe Fortin URL: https://github.com/crisprVerse/crisprBwa VignetteBuilder: knitr BugReports: https://github.com/crisprVerse/crisprBwa/issues git_url: https://git.bioconductor.org/packages/crisprBwa git_branch: RELEASE_3_20 git_last_commit: 7eb49d9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/crisprBwa_1.10.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/crisprBwa_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/crisprBwa_1.10.0.tgz vignettes: vignettes/crisprBwa/inst/doc/crisprBwa.html vignetteTitles: Introduction to crisprBwa hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/crisprBwa/inst/doc/crisprBwa.R suggestsMe: crisprDesign dependencyCount: 85 Package: crisprDesign Version: 1.8.0 Depends: R (>= 4.2.0), crisprBase (>= 1.1.3) Imports: AnnotationDbi, BiocGenerics, Biostrings, BSgenome, crisprBowtie (>= 0.99.8), crisprScore (>= 1.1.6), GenomeInfoDb, GenomicFeatures, GenomicRanges (>= 1.38.0), IRanges, Matrix, MatrixGenerics, methods, rtracklayer, S4Vectors, stats, txdbmaker, utils, VariantAnnotation Suggests: biomaRt, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm10, BiocStyle, crisprBwa (>= 0.99.7), knitr, rmarkdown, Rbowtie, Rbwa, RCurl, testthat License: MIT + file LICENSE MD5sum: f599d5ae19ba81fe8fad9eec73927f40 NeedsCompilation: no Title: Comprehensive design of CRISPR gRNAs for nucleases and base editors Description: Provides a comprehensive suite of functions to design and annotate CRISPR guide RNA (gRNAs) sequences. This includes on- and off-target search, on-target efficiency scoring, off-target scoring, full gene and TSS contextual annotations, and SNP annotation (human only). It currently support five types of CRISPR modalities (modes of perturbations): CRISPR knockout, CRISPR activation, CRISPR inhibition, CRISPR base editing, and CRISPR knockdown. All types of CRISPR nucleases are supported, including DNA- and RNA-target nucleases such as Cas9, Cas12a, and Cas13d. All types of base editors are also supported. gRNA design can be performed on reference genomes, transcriptomes, and custom DNA and RNA sequences. Both unpaired and paired gRNA designs are enabled. biocViews: CRISPR, FunctionalGenomics, GeneTarget Author: Jean-Philippe Fortin [aut, cre], Luke Hoberecht [aut] Maintainer: Jean-Philippe Fortin URL: https://github.com/crisprVerse/crisprDesign VignetteBuilder: knitr BugReports: https://github.com/crisprVerse/crisprDesign/issues git_url: https://git.bioconductor.org/packages/crisprDesign git_branch: RELEASE_3_20 git_last_commit: 7bf4b10 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/crisprDesign_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/crisprDesign_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/crisprDesign_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/crisprDesign_1.8.0.tgz vignettes: vignettes/crisprDesign/inst/doc/intro.html vignetteTitles: Introduction to crisprDesign hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/crisprDesign/inst/doc/intro.R dependsOnMe: crisprViz importsMe: crisprShiny, crisprVerse dependencyCount: 126 Package: crisprScore Version: 1.10.0 Depends: R (>= 4.1), crisprScoreData (>= 1.1.3) Imports: basilisk (>= 1.9.2), basilisk.utils (>= 1.9.1), BiocGenerics, Biostrings, IRanges, methods, randomForest, reticulate, stringr, utils, XVector Suggests: BiocStyle, knitr, rmarkdown, testthat License: MIT + file LICENSE MD5sum: 4dfe683c4ce70e62c4d5a0b6eadbcd19 NeedsCompilation: no Title: On-Target and Off-Target Scoring Algorithms for CRISPR gRNAs Description: Provides R wrappers of several on-target and off-target scoring methods for CRISPR guide RNAs (gRNAs). The following nucleases are supported: SpCas9, AsCas12a, enAsCas12a, and RfxCas13d (CasRx). The available on-target cutting efficiency scoring methods are RuleSet1, Azimuth, DeepHF, DeepCpf1, enPAM+GB, and CRISPRscan. Both the CFD and MIT scoring methods are available for off-target specificity prediction. The package also provides a Lindel-derived score to predict the probability of a gRNA to produce indels inducing a frameshift for the Cas9 nuclease. Note that DeepHF, DeepCpf1 and enPAM+GB are not available on Windows machines. biocViews: CRISPR, FunctionalGenomics, FunctionalPrediction Author: Jean-Philippe Fortin [aut, cre, cph], Aaron Lun [aut], Luke Hoberecht [ctb], Pirunthan Perampalam [ctb] Maintainer: Jean-Philippe Fortin URL: https://github.com/crisprVerse/crisprScore/issues VignetteBuilder: knitr BugReports: https://github.com/crisprVerse/crisprScore git_url: https://git.bioconductor.org/packages/crisprScore git_branch: RELEASE_3_20 git_last_commit: d3759b5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/crisprScore_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/crisprScore_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/crisprScore_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/crisprScore_1.10.0.tgz vignettes: vignettes/crisprScore/inst/doc/crisprScore.html vignetteTitles: crisprScore hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/crisprScore/inst/doc/crisprScore.R importsMe: crisprDesign, crisprShiny, crisprVerse dependencyCount: 81 Package: CRISPRseek Version: 1.46.0 Depends: R (>= 3.5.0), BiocGenerics, Biostrings Imports: parallel, data.table, seqinr, S4Vectors (>= 0.9.25), IRanges, BSgenome, hash, methods,reticulate,rhdf5,XVector, DelayedArray, GenomeInfoDb, GenomicRanges, dplyr, keras, mltools Suggests: RUnit, BiocStyle, BSgenome.Hsapiens.UCSC.hg19, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, BSgenome.Mmusculus.UCSC.mm10, TxDb.Mmusculus.UCSC.mm10.knownGene, org.Mm.eg.db, lattice, MASS, tensorflow, testthat License: GPL (>= 2) MD5sum: 3bde56994f0385dbdf55ef70a04525f2 NeedsCompilation: no Title: Design of target-specific guide RNAs in CRISPR-Cas9, genome-editing systems Description: The package includes functions to find potential guide RNAs for the CRISPR editing system including Base Editors and the Prime Editor for input target sequences, optionally filter guide RNAs without restriction enzyme cut site, or without paired guide RNAs, genome-wide search for off-targets, score, rank, fetch flank sequence and indicate whether the target and off-targets are located in exon region or not. Potential guide RNAs are annotated with total score of the top5 and topN off-targets, detailed topN mismatch sites, restriction enzyme cut sites, and paired guide RNAs. The package also output indels and their frequencies for Cas9 targeted sites. biocViews: ImmunoOncology, GeneRegulation, SequenceMatching, CRISPR Author: Lihua Julie Zhu, Paul Scemama, Benjamin R. Holmes, Hervé Pagès, Kai Hu, Hui Mao, Michael Lawrence, Isana Veksler-Lublinsky, Victor Ambros, Neil Aronin and Michael Brodsky Maintainer: Lihua Julie Zhu git_url: https://git.bioconductor.org/packages/CRISPRseek git_branch: RELEASE_3_20 git_last_commit: 8f7dfec git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CRISPRseek_1.46.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CRISPRseek_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CRISPRseek_1.46.0.tgz vignettes: vignettes/CRISPRseek/inst/doc/CRISPRseek.pdf vignetteTitles: CRISPRseek Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CRISPRseek/inst/doc/CRISPRseek.R importsMe: GUIDEseq, multicrispr dependencyCount: 107 Package: crisprShiny Version: 1.2.0 Depends: R (>= 4.4.0), shiny Imports: BiocGenerics, Biostrings, BSgenome, crisprBase, crisprDesign, crisprScore, crisprViz, DT, GenomeInfoDb, htmlwidgets, methods, pwalign, S4Vectors, shinyBS, shinyjs, utils, waiter Suggests: BiocStyle, knitr, rmarkdown, shinyFeedback, testthat (>= 3.0.0), BSgenome.Hsapiens.UCSC.hg38 License: MIT + file LICENSE MD5sum: f995905519c491f4cabe9d94743fe65f NeedsCompilation: no Title: Exploring curated CRISPR gRNAs via Shiny Description: Provides means to interactively visualize guide RNAs (gRNAs) in GuideSet objects via Shiny application. This GUI can be self-contained or as a module within a larger Shiny app. The content of the app reflects the annotations present in the passed GuideSet object, and includes intuitive tools to examine, filter, and export gRNAs, thereby making gRNA design more user-friendly. biocViews: CRISPR, FunctionalGenomics, GeneTarget, GUI Author: Jean-Philippe Fortin [aut, cre], Luke Hoberecht [aut] Maintainer: Jean-Philippe Fortin URL: https://github.com/crisprVerse/crisprShiny VignetteBuilder: knitr BugReports: https://github.com/crisprVerse/crisprShiny/issues git_url: https://git.bioconductor.org/packages/crisprShiny git_branch: RELEASE_3_20 git_last_commit: 953a203 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/crisprShiny_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/crisprShiny_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/crisprShiny_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/crisprShiny_1.2.0.tgz vignettes: vignettes/crisprShiny/inst/doc/intro.html vignetteTitles: Introduction to crisprShiny hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/crisprShiny/inst/doc/intro.R dependencyCount: 194 Package: CrispRVariants Version: 1.34.0 Depends: R (>= 4.3.0), ggplot2 (>= 2.2.0) Imports: AnnotationDbi, BiocParallel, Biostrings, methods, GenomeInfoDb, GenomicAlignments, GenomicRanges, grDevices, grid, gridExtra, IRanges, reshape2, Rsamtools, S4Vectors (>= 0.9.38), utils Suggests: BiocStyle, GenomicFeatures, knitr, rmarkdown, readxl, rtracklayer, sangerseqR, testthat, VariantAnnotation License: GPL-2 MD5sum: 47b2e6c902a7e79321ec14f4ee80bed8 NeedsCompilation: no Title: Tools for counting and visualising mutations in a target location Description: CrispRVariants provides tools for analysing the results of a CRISPR-Cas9 mutagenesis sequencing experiment, or other sequencing experiments where variants within a given region are of interest. These tools allow users to localize variant allele combinations with respect to any genomic location (e.g. the Cas9 cut site), plot allele combinations and calculate mutation rates with flexible filtering of unrelated variants. biocViews: ImmunoOncology, CRISPR, GenomicVariation, VariantDetection, GeneticVariability, DataRepresentation, Visualization, Sequencing Author: Helen Lindsay [aut, cre] Maintainer: Helen Lindsay VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CrispRVariants git_branch: RELEASE_3_20 git_last_commit: 95baa0b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CrispRVariants_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CrispRVariants_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CrispRVariants_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CrispRVariants_1.34.0.tgz vignettes: vignettes/CrispRVariants/inst/doc/user_guide.pdf, vignettes/CrispRVariants/inst/doc/user_guide.html vignetteTitles: CrispRVariants, CrispRVariants hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CrispRVariants/inst/doc/user_guide.R dependencyCount: 95 Package: crisprVerse Version: 1.8.0 Depends: R (>= 4.2.0) Imports: BiocManager, cli, crisprBase, crisprBowtie, crisprScore, crisprScoreData, crisprDesign, crisprViz, rlang, tools, utils Suggests: BiocStyle, knitr, testthat License: MIT + file LICENSE MD5sum: e20f861cf3be6fa077c631aa7f5d911b NeedsCompilation: no Title: Easily install and load the crisprVerse ecosystem for CRISPR gRNA design Description: The crisprVerse is a modular ecosystem of R packages developed for the design and manipulation of CRISPR guide RNAs (gRNAs). All packages share a common language and design principles. This package is designed to make it easy to install and load the crisprVerse packages in a single step. To learn more about the crisprVerse, visit . biocViews: CRISPR, FunctionalGenomics, GeneTarget Author: Jean-Philippe Fortin [aut, cre] Maintainer: Jean-Philippe Fortin URL: https://github.com/crisprVerse/crisprVerse VignetteBuilder: knitr BugReports: https://github.com/crisprVerse/crisprVerse/issues git_url: https://git.bioconductor.org/packages/crisprVerse git_branch: RELEASE_3_20 git_last_commit: 82d76d2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/crisprVerse_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/crisprVerse_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/crisprVerse_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/crisprVerse_1.8.0.tgz vignettes: vignettes/crisprVerse/inst/doc/crisprVerse.html vignetteTitles: crisprVerse hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/crisprVerse/inst/doc/crisprVerse.R dependencyCount: 181 Package: crisprViz Version: 1.8.0 Depends: R (>= 4.2.0), crisprBase (>= 0.99.15), crisprDesign (>= 0.99.77) Imports: BiocGenerics, Biostrings, BSgenome, GenomeInfoDb, GenomicFeatures, GenomicRanges, grDevices, Gviz, IRanges, methods, S4Vectors, txdbmaker Suggests: AnnotationHub, BiocStyle, BSgenome.Hsapiens.UCSC.hg38, knitr, rmarkdown, rtracklayer, testthat, utils License: MIT + file LICENSE MD5sum: 7073ae848310d1e9dbf1aa45ab7c6538 NeedsCompilation: no Title: Visualization Functions for CRISPR gRNAs Description: Provides functionalities to visualize and contextualize CRISPR guide RNAs (gRNAs) on genomic tracks across nucleases and applications. Works in conjunction with the crisprBase and crisprDesign Bioconductor packages. Plots are produced using the Gviz framework. biocViews: CRISPR, FunctionalGenomics, GeneTarget Author: Jean-Philippe Fortin [aut, cre], Luke Hoberecht [aut] Maintainer: Jean-Philippe Fortin URL: https://github.com/crisprVerse/crisprViz VignetteBuilder: knitr BugReports: https://github.com/crisprVerse/crisprViz/issues git_url: https://git.bioconductor.org/packages/crisprViz git_branch: RELEASE_3_20 git_last_commit: 2b7d8e5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/crisprViz_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/crisprViz_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/crisprViz_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/crisprViz_1.8.0.tgz vignettes: vignettes/crisprViz/inst/doc/intro.html vignetteTitles: Introduction to crisprViz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/crisprViz/inst/doc/intro.R importsMe: crisprShiny, crisprVerse dependencyCount: 180 Package: crlmm Version: 1.64.0 Depends: R (>= 2.14.0), oligoClasses (>= 1.21.12), preprocessCore (>= 1.17.7) Imports: methods, Biobase (>= 2.15.4), BiocGenerics, affyio (>= 1.23.2), illuminaio, ellipse, mvtnorm, splines, stats, utils, lattice, ff, foreach, RcppEigen (>= 0.3.1.2.1), matrixStats, VGAM, parallel, graphics, limma, beanplot LinkingTo: preprocessCore (>= 1.17.7) Suggests: hapmapsnp6, genomewidesnp6Crlmm (>= 1.0.7), snpStats, RUnit License: Artistic-2.0 MD5sum: 1f4e6f2c08d05240cb5ccb9165247de5 NeedsCompilation: yes Title: Genotype Calling (CRLMM) and Copy Number Analysis tool for Affymetrix SNP 5.0 and 6.0 and Illumina arrays Description: Faster implementation of CRLMM specific to SNP 5.0 and 6.0 arrays, as well as a copy number tool specific to 5.0, 6.0, and Illumina platforms. biocViews: Microarray, Preprocessing, SNP, CopyNumberVariation Author: Benilton S Carvalho, Robert Scharpf, Matt Ritchie, Ingo Ruczinski, Rafael A Irizarry Maintainer: Benilton S Carvalho , Robert Scharpf , Matt Ritchie git_url: https://git.bioconductor.org/packages/crlmm git_branch: RELEASE_3_20 git_last_commit: f1bd3c9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/crlmm_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/crlmm_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/crlmm_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/crlmm_1.64.0.tgz vignettes: vignettes/crlmm/inst/doc/AffyGW.pdf, vignettes/crlmm/inst/doc/CopyNumberOverview.pdf, vignettes/crlmm/inst/doc/genotyping.pdf, vignettes/crlmm/inst/doc/gtypeDownstream.pdf, vignettes/crlmm/inst/doc/IlluminaPreprocessCN.pdf, vignettes/crlmm/inst/doc/Infrastructure.pdf vignetteTitles: Copy number estimation, Overview of copy number vignettes, crlmm Vignette - Genotyping, crlmm Vignette - Downstream Analysis, Preprocessing and genotyping Illumina arrays for copy number analysis, Infrastructure for copy number analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/crlmm/inst/doc/genotyping.R dependsOnMe: MAGAR importsMe: VanillaICE suggestsMe: oligoClasses, hapmap370k dependencyCount: 73 Package: CSAR Version: 1.58.0 Depends: R (>= 2.15.0), S4Vectors, IRanges, GenomeInfoDb, GenomicRanges Imports: stats, utils Suggests: ShortRead, Biostrings License: Artistic-2.0 MD5sum: 5d41177ffb070156de6f1e72406895dc NeedsCompilation: yes Title: Statistical tools for the analysis of ChIP-seq data Description: Statistical tools for ChIP-seq data analysis. The package includes the statistical method described in Kaufmann et al. (2009) PLoS Biology: 7(4):e1000090. Briefly, Taking the average DNA fragment size subjected to sequencing into account, the software calculates genomic single-nucleotide read-enrichment values. After normalization, sample and control are compared using a test based on the Poisson distribution. Test statistic thresholds to control the false discovery rate are obtained through random permutation. biocViews: ChIPSeq, Transcription, Genetics Author: Jose M Muino Maintainer: Jose M Muino git_url: https://git.bioconductor.org/packages/CSAR git_branch: RELEASE_3_20 git_last_commit: 2839424 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CSAR_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CSAR_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CSAR_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CSAR_1.58.0.tgz vignettes: vignettes/CSAR/inst/doc/CSAR.pdf vignetteTitles: CSAR Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CSAR/inst/doc/CSAR.R dependencyCount: 23 Package: csaw Version: 1.40.0 Depends: R (>= 3.5.0), GenomicRanges, SummarizedExperiment Imports: Rcpp, Matrix, BiocGenerics, Rsamtools, edgeR, limma, methods, S4Vectors, IRanges, GenomeInfoDb, stats, BiocParallel, metapod, utils LinkingTo: Rhtslib, zlibbioc, Rcpp Suggests: AnnotationDbi, org.Mm.eg.db, TxDb.Mmusculus.UCSC.mm10.knownGene, testthat, GenomicFeatures, GenomicAlignments, knitr, BiocStyle, rmarkdown, BiocManager License: GPL-3 Archs: x64 MD5sum: 6601f4dfee57393d098727ea875d3d06 NeedsCompilation: yes Title: ChIP-Seq Analysis with Windows Description: Detection of differentially bound regions in ChIP-seq data with sliding windows, with methods for normalization and proper FDR control. biocViews: MultipleComparison, ChIPSeq, Normalization, Sequencing, Coverage, Genetics, Annotation, DifferentialPeakCalling Author: Aaron Lun [aut, cre], Gordon Smyth [aut] Maintainer: Aaron Lun SystemRequirements: C++11, GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/csaw git_branch: RELEASE_3_20 git_last_commit: 34ea0d2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/csaw_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/csaw_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/csaw_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/csaw_1.40.0.tgz vignettes: vignettes/csaw/inst/doc/csaw.html vignetteTitles: Introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/csaw/inst/doc/csaw.R dependsOnMe: csawBook importsMe: diffHic, epigraHMM, extraChIPs, icetea, NADfinder, vulcan, treediff suggestsMe: DiffBind, GRaNIE, chipseqDB dependencyCount: 56 Package: csdR Version: 1.12.0 Depends: R (>= 4.1.0) Imports: WGCNA, glue, RhpcBLASctl, matrixStats, Rcpp LinkingTo: Rcpp Suggests: rmarkdown, knitr, testthat (>= 3.0.0), BiocStyle, magrittr, igraph, dplyr License: GPL-3 Archs: x64 MD5sum: 2849182bb98a5e009612dea807a4b677 NeedsCompilation: yes Title: Differential gene co-expression Description: This package contains functionality to run differential gene co-expression across two different conditions. The algorithm is inspired by Voigt et al. 2017 and finds Conserved, Specific and Differentiated genes (hence the name CSD). This package include efficient and variance calculation by bootstrapping and Welford's algorithm. biocViews: DifferentialExpression, GraphAndNetwork, GeneExpression, Network Author: Jakob Peder Pettersen [aut, cre] () Maintainer: Jakob Peder Pettersen URL: https://almaaslab.github.io/csdR, https://github.com/AlmaasLab/csdR VignetteBuilder: knitr BugReports: https://github.com/AlmaasLab/csdR/issues git_url: https://git.bioconductor.org/packages/csdR git_branch: RELEASE_3_20 git_last_commit: cff38f6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/csdR_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/csdR_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/csdR_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/csdR_1.12.0.tgz vignettes: vignettes/csdR/inst/doc/csdR.html vignetteTitles: csdR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/csdR/inst/doc/csdR.R dependencyCount: 115 Package: CSSQ Version: 1.18.0 Depends: SummarizedExperiment, GenomicRanges, IRanges, S4Vectors, rtracklayer Imports: GenomicAlignments, GenomicFeatures, Rsamtools, ggplot2, grDevices, stats, utils Suggests: BiocStyle, knitr, rmarkdown, markdown License: Artistic-2.0 Archs: x64 MD5sum: 147adca7f99d5844d42f1613dec985d9 NeedsCompilation: no Title: Chip-seq Signal Quantifier Pipeline Description: This package is desgined to perform statistical analysis to identify statistically significant differentially bound regions between multiple groups of ChIP-seq dataset. biocViews: ChIPSeq, DifferentialPeakCalling, Sequencing, Normalization Author: Ashwath Kumar [aut], Michael Y Hu [aut], Yajun Mei [aut], Yuhong Fan [aut] Maintainer: Fan Lab at Georgia Institute of Technology VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CSSQ git_branch: RELEASE_3_20 git_last_commit: 67d1c3a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CSSQ_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CSSQ_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CSSQ_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CSSQ_1.18.0.tgz vignettes: vignettes/CSSQ/inst/doc/CSSQ.html vignetteTitles: Introduction to CSSQ hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CSSQ/inst/doc/CSSQ.R dependencyCount: 97 Package: ctc Version: 1.80.0 Depends: amap License: GPL-2 Archs: x64 MD5sum: ee57a72b79ced1b575c9fe4f4b55ed6e NeedsCompilation: no Title: Cluster and Tree Conversion. Description: Tools for export and import classification trees and clusters to other programs biocViews: Microarray, Clustering, Classification, DataImport, Visualization Author: Antoine Lucas , Laurent Gautier Maintainer: Antoine Lucas URL: http://antoinelucas.free.fr/ctc git_url: https://git.bioconductor.org/packages/ctc git_branch: RELEASE_3_20 git_last_commit: 00f4fb6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ctc_1.80.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ctc_1.80.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ctc_1.80.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ctc_1.80.0.tgz vignettes: vignettes/ctc/inst/doc/ctc.pdf vignetteTitles: Introduction to ctc hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ctc/inst/doc/ctc.R importsMe: miRLAB, multiClust dependencyCount: 1 Package: CTdata Version: 1.6.0 Depends: R (>= 4.2) Imports: ExperimentHub, utils Suggests: testthat (>= 3.0.0), DT, BiocStyle, knitr, rmarkdown, SummarizedExperiment, SingleCellExperiment License: Artistic-2.0 MD5sum: d50ff1f52dd316752d8a277deb2b7f02 NeedsCompilation: no Title: Data companion to CTexploreR Description: Data from publicly available databases (GTEx, CCLE, TCGA and ENCODE) that go with CTexploreR in order to re-define a comprehensive and thoroughly curated list of CT genes and their main characteristics. biocViews: Transcriptomics, Epigenetics, GeneExpression, DataImport, ExperimentHubSoftware Author: Axelle Loriot [aut] (), Julie Devis [aut] (), Anna Diacofotaki [ctb], Charles De Smet [ths], Laurent Gatto [aut, ths, cre] () Maintainer: Laurent Gatto VignetteBuilder: knitr BugReports: https://github.com/UCLouvain-CBIO/CTdata/issues git_url: https://git.bioconductor.org/packages/CTdata git_branch: RELEASE_3_20 git_last_commit: 287d735 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CTdata_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CTdata_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CTdata_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CTdata_1.6.0.tgz vignettes: vignettes/CTdata/inst/doc/CTdata.html vignetteTitles: Cancer Testis Datasets hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CTdata/inst/doc/CTdata.R dependsOnMe: CTexploreR dependencyCount: 67 Package: CTDquerier Version: 2.14.0 Depends: R (>= 4.1) Imports: RCurl, stringr, S4Vectors, stringdist, ggplot2, igraph, utils, grid, gridExtra, methods, stats, BiocFileCache Suggests: BiocStyle, knitr, rmarkdown License: MIT + file LICENSE MD5sum: 92236221356925cb6b7aa0800dcef65e NeedsCompilation: no Title: Package for CTDbase data query, visualization and downstream analysis Description: Package to retrieve and visualize data from the Comparative Toxicogenomics Database (http://ctdbase.org/). The downloaded data is formated as DataFrames for further downstream analyses. biocViews: Software, BiomedicalInformatics, Infrastructure, DataImport, DataRepresentation, GeneSetEnrichment, NetworkEnrichment, Pathways, Network, GO, KEGG Author: Carles Hernandez-Ferrer [aut], Juan R. Gonzalez [aut], Xavier Escribà-Montagut [cre] Maintainer: Xavier Escribà-Montagut VignetteBuilder: rmarkdown git_url: https://git.bioconductor.org/packages/CTDquerier git_branch: RELEASE_3_20 git_last_commit: fc48ee3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CTDquerier_2.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CTDquerier_2.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CTDquerier_2.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CTDquerier_2.14.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE dependencyCount: 72 Package: CTexploreR Version: 1.2.0 Depends: R (>= 4.3), CTdata (>= 1.5.3) Imports: BiocGenerics, ComplexHeatmap, grid, SummarizedExperiment, GenomicRanges, IRanges, dplyr, tidyr, tibble, ggplot2, rlang, grDevices, stats, circlize, ggrepel, SingleCellExperiment, MatrixGenerics Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0), InteractiveComplexHeatmap License: Artistic-2.0 MD5sum: c88af5a5f9a8391e3a201b5a46f42d74 NeedsCompilation: no Title: Explores Cancer Testis Genes Description: The CTexploreR package re-defines the list of Cancer Testis/Germline (CT) genes. It is based on publicly available RNAseq databases (GTEx, CCLE and TCGA) and summarises CT genes' main characteristics. Several visualisation functions allow to explore their expression in different types of tissues and cancer cells, or to inspect the methylation status of their promoters in normal tissues. biocViews: Transcriptomics, Epigenetics, DifferentialExpression, GeneExpression, DNAMethylation, ExperimentHubSoftware, DataImport Author: Axelle Loriot [aut, cre] (), Julie Devis [aut] (), Anna Diacofotaki [ctb], Charles De Smet [ths], Laurent Gatto [aut, ths] () Maintainer: Axelle Loriot URL: https://github.com/UCLouvain-CBIO/CTexploreR VignetteBuilder: knitr BugReports: https://github.com/UCLouvain-CBIO/CTexploreR/issues git_url: https://git.bioconductor.org/packages/CTexploreR git_branch: RELEASE_3_20 git_last_commit: 5f977a5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/CTexploreR_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CTexploreR_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CTexploreR_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CTexploreR_1.2.0.tgz vignettes: vignettes/CTexploreR/inst/doc/CTexploreR.html vignetteTitles: Cancer Testis Explorer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CTexploreR/inst/doc/CTexploreR.R dependencyCount: 110 Package: cTRAP Version: 1.24.0 Depends: R (>= 4.0) Imports: AnnotationDbi, AnnotationHub, binr, cowplot, data.table, dplyr, DT, fastmatch, fgsea, ggplot2, ggrepel, graphics, highcharter, htmltools, httr, limma, methods, parallel, pbapply, purrr, qs, R.utils, readxl, reshape2, rhdf5, rlang, scales, shiny (>= 1.7.0), shinycssloaders, stats, tibble, tools, utils Suggests: testthat, knitr, covr, rmarkdown, spelling, biomaRt, remotes License: MIT + file LICENSE MD5sum: 743e07fd5c56854aec06b87ac00cd371 NeedsCompilation: no Title: Identification of candidate causal perturbations from differential gene expression data Description: Compare differential gene expression results with those from known cellular perturbations (such as gene knock-down, overexpression or small molecules) derived from the Connectivity Map. Such analyses allow not only to infer the molecular causes of the observed difference in gene expression but also to identify small molecules that could drive or revert specific transcriptomic alterations. biocViews: DifferentialExpression, GeneExpression, RNASeq, Transcriptomics, Pathways, ImmunoOncology, GeneSetEnrichment Author: Bernardo P. de Almeida [aut], Nuno Saraiva-Agostinho [aut, cre], Nuno L. Barbosa-Morais [aut, led] Maintainer: Nuno Saraiva-Agostinho URL: https://nuno-agostinho.github.io/cTRAP, https://github.com/nuno-agostinho/cTRAP VignetteBuilder: knitr BugReports: https://github.com/nuno-agostinho/cTRAP/issues git_url: https://git.bioconductor.org/packages/cTRAP git_branch: RELEASE_3_20 git_last_commit: 738ffa4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cTRAP_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cTRAP_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cTRAP_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cTRAP_1.24.0.tgz vignettes: vignettes/cTRAP/inst/doc/cTRAP.html vignetteTitles: cTRAP: identifying candidate causal perturbations from differential gene expression data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/cTRAP/inst/doc/cTRAP.R dependencyCount: 160 Package: ctsGE Version: 1.32.0 Depends: R (>= 3.2) Imports: ccaPP, ggplot2, limma, reshape2, shiny, stats, stringr, utils Suggests: BiocStyle, dplyr, DT, GEOquery, knitr, pander, rmarkdown, testthat License: GPL-2 MD5sum: be8ca2572db018bdac423cbfff0682fd NeedsCompilation: no Title: Clustering of Time Series Gene Expression data Description: Methodology for supervised clustering of potentially many predictor variables, such as genes etc., in time series datasets Provides functions that help the user assigning genes to predefined set of model profiles. biocViews: ImmunoOncology, GeneExpression, Transcription, DifferentialExpression, GeneSetEnrichment, Genetics, Bayesian, Clustering, TimeCourse, Sequencing, RNASeq Author: Michal Sharabi-Schwager [aut, cre], Ron Ophir [aut] Maintainer: Michal Sharabi-Schwager URL: https://github.com/michalsharabi/ctsGE VignetteBuilder: knitr BugReports: https://github.com/michalsharabi/ctsGE/issues git_url: https://git.bioconductor.org/packages/ctsGE git_branch: RELEASE_3_20 git_last_commit: de7c8fa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ctsGE_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ctsGE_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ctsGE_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ctsGE_1.32.0.tgz vignettes: vignettes/ctsGE/inst/doc/ctsGE.html vignetteTitles: ctsGE Package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ctsGE/inst/doc/ctsGE.R dependencyCount: 72 Package: CTSV Version: 1.8.0 Depends: R (>= 4.2), Imports: stats, pscl, qvalue, BiocParallel, methods, knitr, SpatialExperiment, SummarizedExperiment Suggests: testthat, BiocStyle License: GPL-3 MD5sum: d83d4f38dedef85ddf27d656795c72b2 NeedsCompilation: yes Title: Identification of cell-type-specific spatially variable genes accounting for excess zeros Description: The R package CTSV implements the CTSV approach developed by Jinge Yu and Xiangyu Luo that detects cell-type-specific spatially variable genes accounting for excess zeros. CTSV directly models sparse raw count data through a zero-inflated negative binomial regression model, incorporates cell-type proportions, and performs hypothesis testing based on R package pscl. The package outputs p-values and q-values for genes in each cell type, and CTSV is scalable to datasets with tens of thousands of genes measured on hundreds of spots. CTSV can be installed in Windows, Linux, and Mac OS. biocViews: GeneExpression, StatisticalMethod, Regression, Spatial, Genetics Author: Jinge Yu Developer [aut, cre], Xiangyu Luo Developer [aut] Maintainer: Jinge Yu Developer URL: https://github.com/jingeyu/CTSV VignetteBuilder: knitr BugReports: https://github.com/jingeyu/CTSV/issues git_url: https://git.bioconductor.org/packages/CTSV git_branch: RELEASE_3_20 git_last_commit: 049cc76 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CTSV_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CTSV_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CTSV_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CTSV_1.8.0.tgz vignettes: vignettes/CTSV/inst/doc/CTSV.html vignetteTitles: Basic Usage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CTSV/inst/doc/CTSV.R dependencyCount: 106 Package: cummeRbund Version: 2.48.0 Depends: R (>= 2.7.0), BiocGenerics (>= 0.3.2), RSQLite, ggplot2, reshape2, fastcluster, rtracklayer, Gviz Imports: methods, plyr, BiocGenerics, S4Vectors (>= 0.9.25), Biobase Suggests: cluster, plyr, NMFN, stringr, GenomicFeatures, GenomicRanges, rjson License: Artistic-2.0 MD5sum: 165f719d08fff1b4b4b165a0762dfca3 NeedsCompilation: no Title: Analysis, exploration, manipulation, and visualization of Cufflinks high-throughput sequencing data. Description: Allows for persistent storage, access, exploration, and manipulation of Cufflinks high-throughput sequencing data. In addition, provides numerous plotting functions for commonly used visualizations. biocViews: HighThroughputSequencing, HighThroughputSequencingData, RNAseq, RNAseqData, GeneExpression, DifferentialExpression, Infrastructure, DataImport, DataRepresentation, Visualization, Bioinformatics, Clustering, MultipleComparisons, QualityControl Author: L. Goff, C. Trapnell, D. Kelley Maintainer: Loyal A. Goff git_url: https://git.bioconductor.org/packages/cummeRbund git_branch: RELEASE_3_20 git_last_commit: 2ca240a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cummeRbund_2.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cummeRbund_2.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cummeRbund_2.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cummeRbund_2.48.0.tgz vignettes: vignettes/cummeRbund/inst/doc/cummeRbund-example-workflow.pdf, vignettes/cummeRbund/inst/doc/cummeRbund-manual.pdf vignetteTitles: Sample cummeRbund workflow, CummeRbund User Guide hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cummeRbund/inst/doc/cummeRbund-example-workflow.R, vignettes/cummeRbund/inst/doc/cummeRbund-manual.R dependencyCount: 160 Package: CuratedAtlasQueryR Version: 1.4.0 Depends: R (>= 4.2.0) Imports: dplyr, SummarizedExperiment, SingleCellExperiment, purrr (>= 1.0.0), BiocGenerics, glue, HDF5Array, DBI, tools, httr, cli, assertthat, SeuratObject, Seurat, methods, rlang, stats, S4Vectors, tibble, utils, dbplyr (>= 2.3.0), duckdb, stringr Suggests: zellkonverter, rmarkdown, knitr, testthat, basilisk, arrow, reticulate, spelling, forcats, ggplot2, tidySingleCellExperiment, rprojroot License: GPL-3 MD5sum: 00aa7d03efbbd85a4316c8f0733291b2 NeedsCompilation: no Title: Queries the Human Cell Atlas Description: Provides access to a copy of the Human Cell Atlas, but with harmonised metadata. This allows for uniform querying across numerous datasets within the Atlas using common fields such as cell type, tissue type, and patient ethnicity. Usage involves first querying the metadata table for cells of interest, and then downloading the corresponding cells into a SingleCellExperiment object. biocViews: AssayDomain, Infrastructure, RNASeq, DifferentialExpression, GeneExpression, Normalization, Clustering, QualityControl, Sequencing, Transcription, Transcriptomics Author: Stefano Mangiola [aut, cre, rev] (), Michael Milton [aut, rev] (), Martin Morgan [ctb, rev], Vincent Carey [ctb, rev], Julie Iskander [rev], Tony Papenfuss [rev], Silicon Valley Foundation CZF2019-002443 [fnd], NIH NHGRI 5U24HG004059-18 [fnd], Victoria Cancer Agency ECRF21036 [fnd], NHMRC 1116955 [fnd] Maintainer: Stefano Mangiola URL: https://github.com/stemangiola/CuratedAtlasQueryR VignetteBuilder: knitr BugReports: https://github.com/stemangiola/CuratedAtlasQueryR/issues git_url: https://git.bioconductor.org/packages/CuratedAtlasQueryR git_branch: RELEASE_3_20 git_last_commit: e343a3c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CuratedAtlasQueryR_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CuratedAtlasQueryR_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CuratedAtlasQueryR_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CuratedAtlasQueryR_1.4.0.tgz vignettes: vignettes/CuratedAtlasQueryR/inst/doc/Introduction.html vignetteTitles: CuratedAtlasQueryR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CuratedAtlasQueryR/inst/doc/Introduction.R dependencyCount: 181 Package: customCMPdb Version: 1.16.0 Depends: R (>= 4.0) Imports: AnnotationHub, RSQLite, XML, utils, ChemmineR, methods, stats, rappdirs, BiocFileCache Suggests: knitr, rmarkdown, testthat, BiocStyle License: Artistic-2.0 MD5sum: ab3e10a76d37ffae89e0f7eac786deae NeedsCompilation: no Title: Customize and Query Compound Annotation Database Description: This package serves as a query interface for important community collections of small molecules, while also allowing users to include custom compound collections. biocViews: Software, Cheminformatics,AnnotationHubSoftware Author: Yuzhu Duan [aut, cre], Thomas Girke [aut] Maintainer: Yuzhu Duan URL: https://github.com/yduan004/customCMPdb/ VignetteBuilder: knitr BugReports: https://github.com/yduan004/customCMPdb/issues git_url: https://git.bioconductor.org/packages/customCMPdb git_branch: RELEASE_3_20 git_last_commit: b564396 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/customCMPdb_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/customCMPdb_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/customCMPdb_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/customCMPdb_1.16.0.tgz vignettes: vignettes/customCMPdb/inst/doc/customCMPdb.html vignetteTitles: customCMPdb hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/customCMPdb/inst/doc/customCMPdb.R dependencyCount: 113 Package: customProDB Version: 1.46.0 Depends: R (>= 3.5.0), IRanges, AnnotationDbi, biomaRt (>= 2.17.1) Imports: S4Vectors (>= 0.9.25), DBI, GenomeInfoDb, GenomicRanges, Rsamtools (>= 1.10.2), GenomicAlignments, Biostrings (>= 2.26.3), GenomicFeatures (>= 1.32.0), stringr, RCurl, plyr, VariantAnnotation (>= 1.13.44), rtracklayer, RSQLite, txdbmaker, AhoCorasickTrie, methods Suggests: RMariaDB, BSgenome.Hsapiens.UCSC.hg19 License: Artistic-2.0 MD5sum: 546d4b85686b7f4786e4d765ee96eb44 NeedsCompilation: no Title: Generate customized protein database from NGS data, with a focus on RNA-Seq data, for proteomics search Description: Database search is the most widely used approach for peptide and protein identification in mass spectrometry-based proteomics studies. Our previous study showed that sample-specific protein databases derived from RNA-Seq data can better approximate the real protein pools in the samples and thus improve protein identification. More importantly, single nucleotide variations, short insertion and deletions and novel junctions identified from RNA-Seq data make protein database more complete and sample-specific. Here, we report an R package customProDB that enables the easy generation of customized databases from RNA-Seq data for proteomics search. This work bridges genomics and proteomics studies and facilitates cross-omics data integration. biocViews: ImmunoOncology, Sequencing, MassSpectrometry, Proteomics, SNP, RNASeq, Software, Transcription, AlternativeSplicing, FunctionalGenomics Author: Xiaojing Wang Maintainer: Xiaojing Wang Bo Wen git_url: https://git.bioconductor.org/packages/customProDB git_branch: RELEASE_3_20 git_last_commit: 585e069 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/customProDB_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/customProDB_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/customProDB_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/customProDB_1.46.0.tgz vignettes: vignettes/customProDB/inst/doc/customProDB.pdf vignetteTitles: Introduction to customProDB hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/customProDB/inst/doc/customProDB.R dependencyCount: 107 Package: cyanoFilter Version: 1.14.0 Depends: R(>= 4.1.0) Imports: Biobase, flowCore, flowDensity, flowClust, cytometree, ggplot2, GGally, graphics, grDevices, methods, mrfDepth, stats, utils Suggests: magrittr, dplyr, purrr, knitr, stringr, rmarkdown, tidyr License: MIT + file LICENSE MD5sum: 8f17dd7bcafffce3fea12da112328b52 NeedsCompilation: no Title: Phytoplankton Population Identification using Cell Pigmentation and/or Complexity Description: An approach to filter out and/or identify phytoplankton cells from all particles measured via flow cytometry pigment and cell complexity information. It does this using a sequence of one-dimensional gates on pre-defined channels measuring certain pigmentation and complexity. The package is especially tuned for cyanobacteria, but will work fine for phytoplankton communities where there is at least one cell characteristic that differentiates every phytoplankton in the community. biocViews: FlowCytometry, Clustering, OneChannel Author: Oluwafemi Olusoji [cre, aut], Aerts Marc [ctb], Delaender Frederik [ctb], Neyens Thomas [ctb], Spaak jurg [aut] Maintainer: Oluwafemi Olusoji URL: https://github.com/fomotis/cyanoFilter VignetteBuilder: knitr BugReports: https://github.com/fomotis/cyanoFilter/issues git_url: https://git.bioconductor.org/packages/cyanoFilter git_branch: RELEASE_3_20 git_last_commit: 197384a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cyanoFilter_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cyanoFilter_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cyanoFilter_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cyanoFilter_1.14.0.tgz vignettes: vignettes/cyanoFilter/inst/doc/cyanoFilter.html vignetteTitles: cyanoFilter: A Semi-Automated Framework for Identifying Phytplanktons and Cyanobacteria Population in Flow Cytometry hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/cyanoFilter/inst/doc/cyanoFilter.R dependencyCount: 117 Package: cycle Version: 1.60.0 Depends: R (>= 2.10.0), Mfuzz Imports: Biobase, stats License: GPL-2 MD5sum: 24680be77d98031eadfd4c9365f7f5fc NeedsCompilation: no Title: Significance of periodic expression pattern in time-series data Description: Package for assessing the statistical significance of periodic expression based on Fourier analysis and comparison with data generated by different background models biocViews: Microarray, TimeCourse Author: Matthias Futschik Maintainer: Matthias Futschik URL: http://cycle.sysbiolab.eu git_url: https://git.bioconductor.org/packages/cycle git_branch: RELEASE_3_20 git_last_commit: 669a48e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cycle_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cycle_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cycle_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cycle_1.60.0.tgz vignettes: vignettes/cycle/inst/doc/cycle.pdf vignetteTitles: Introduction to cycle hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cycle/inst/doc/cycle.R dependencyCount: 17 Package: cydar Version: 1.30.0 Depends: SingleCellExperiment Imports: viridis, methods, shiny, graphics, stats, grDevices, utils, BiocGenerics, S4Vectors, BiocParallel, SummarizedExperiment, flowCore, Biobase, Rcpp, BiocNeighbors LinkingTo: Rcpp Suggests: ncdfFlow, testthat, rmarkdown, knitr, edgeR, limma, glmnet, BiocStyle, flowStats License: GPL-3 MD5sum: 12f6ab38d5cbb15a89a6cca546f9c27c NeedsCompilation: yes Title: Using Mass Cytometry for Differential Abundance Analyses Description: Identifies differentially abundant populations between samples and groups in mass cytometry data. Provides methods for counting cells into hyperspheres, controlling the spatial false discovery rate, and visualizing changes in abundance in the high-dimensional marker space. biocViews: ImmunoOncology, FlowCytometry, MultipleComparison, Proteomics, SingleCell Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/cydar git_branch: RELEASE_3_20 git_last_commit: 2d3ca5d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cydar_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cydar_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cydar_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cydar_1.30.0.tgz vignettes: vignettes/cydar/inst/doc/cydar.html vignetteTitles: Detecting differential abundance hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cydar/inst/doc/cydar.R dependencyCount: 101 Package: cypress Version: 1.2.0 Depends: R(>= 4.4.0) Imports: stats, abind, sirt, MASS,TOAST, tibble, parallel, preprocessCore, SummarizedExperiment, TCA, PROPER, methods,dplyr, utils, RColorBrewer, graphics, edgeR, BiocParallel, checkmate, mvtnorm, DESeq2, rlang, e1071 Suggests: knitr, rmarkdown, MatrixGenerics, htmltools, RUnit, BiocGenerics, BiocManager, BiocStyle, Biobase License: GPL-2 | GPL-3 MD5sum: ba833b2876c4dc75fe75c208489025a7 NeedsCompilation: no Title: Cell-Type-Specific Power Assessment Description: CYPRESS is a cell-type-specific power tool. This package aims to perform power analysis for the cell-type-specific data. It calculates FDR, FDC, and power, under various study design parameters, including but not limited to sample size, and effect size. It takes the input of a SummarizeExperimental(SE) object with observed mixture data (feature by sample matrix), and the cell-type mixture proportions (sample by cell-type matrix). It can solve the cell-type mixture proportions from the reference free panel from TOAST and conduct tests to identify cell-type-specific differential expression (csDE) genes. biocViews: Software, GeneExpression, DataImport, RNASeq, Sequencing Author: Shilin Yu [aut, cre] (), Guanqun Meng [aut], Wen Tang [aut] Maintainer: Shilin Yu URL: https://github.com/renlyly/cypress VignetteBuilder: knitr BugReports: https://github.com/renlyly/cypress/issues git_url: https://git.bioconductor.org/packages/cypress git_branch: RELEASE_3_20 git_last_commit: b4c54c9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cypress_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cypress_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cypress_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cypress_1.2.0.tgz vignettes: vignettes/cypress/inst/doc/cypress.html vignetteTitles: cypress Package User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cypress/inst/doc/cypress.R dependencyCount: 129 Package: CytoDx Version: 1.26.0 Depends: R (>= 3.5) Imports: doParallel, dplyr, glmnet, rpart, rpart.plot, stats, flowCore,grDevices, graphics, utils Suggests: knitr, rmarkdown License: GPL-2 Archs: x64 MD5sum: b3ba91bd8c9fcf8579fd8694d4b178d0 NeedsCompilation: no Title: Robust prediction of clinical outcomes using cytometry data without cell gating Description: This package provides functions that predict clinical outcomes using single cell data (such as flow cytometry data, RNA single cell sequencing data) without the requirement of cell gating or clustering. biocViews: ImmunoOncology, CellBiology, FlowCytometry, StatisticalMethod, Software, CellBasedAssays, Regression, Classification, Survival Author: Zicheng Hu Maintainer: Zicheng Hu VignetteBuilder: knitr, rmarkdown git_url: https://git.bioconductor.org/packages/CytoDx git_branch: RELEASE_3_20 git_last_commit: df23be5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CytoDx_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CytoDx_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CytoDx_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CytoDx_1.26.0.tgz vignettes: vignettes/CytoDx/inst/doc/CytoDx_Vignette.pdf vignetteTitles: Introduction to CytoDx hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CytoDx/inst/doc/CytoDx_Vignette.R dependencyCount: 48 Package: cytofQC Version: 1.6.0 Imports: CATALYST, flowCore, e1071, EZtune, gbm, ggplot2, hrbrthemes, matrixStats, randomForest, rmarkdown, SingleCellExperiment, stats, SummarizedExperiment, ssc, S4Vectors, graphics, methods Suggests: gridExtra, knitr, RColorBrewer, testthat, uwot License: Artistic-2.0 MD5sum: 3884c0b74e8168170174b23717c1f6fe NeedsCompilation: no Title: Labels normalized cells for CyTOF data and assigns probabilities for each label Description: cytofQC is a package for initial cleaning of CyTOF data. It uses a semi-supervised approach for labeling cells with their most likely data type (bead, doublet, debris, dead) and the probability that they belong to each label type. This package does not remove data from the dataset, but provides labels and information to aid the data user in cleaning their data. Our algorithm is able to distinguish between doublets and large cells. biocViews: Software, SingleCell, Annotation Author: Jill Lundell [aut, cre] (), Kelly Street [aut] () Maintainer: Jill Lundell URL: https://github.com/jillbo1000/cytofQC VignetteBuilder: knitr BugReports: https://github.com/jillbo1000/cytofQC/issues git_url: https://git.bioconductor.org/packages/cytofQC git_branch: RELEASE_3_20 git_last_commit: b0619f4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cytofQC_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cytofQC_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cytofQC_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cytofQC_1.6.0.tgz vignettes: vignettes/cytofQC/inst/doc/cytofQC.html vignetteTitles: Workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cytofQC/inst/doc/cytofQC.R dependencyCount: 228 Package: CytoGLMM Version: 1.14.0 Imports: stats, methods, BiocParallel, RColorBrewer, cowplot, doParallel, dplyr, factoextra, flexmix, ggplot2, magrittr, mbest, pheatmap, stringr, strucchange, tibble, ggrepel, MASS, logging, Matrix, tidyr, caret, rlang, grDevices Suggests: knitr, rmarkdown, testthat, BiocStyle License: LGPL-3 MD5sum: 95864d621bd37ead1e3a53672a4a022c NeedsCompilation: no Title: Conditional Differential Analysis for Flow and Mass Cytometry Experiments Description: The CytoGLMM R package implements two multiple regression strategies: A bootstrapped generalized linear model (GLM) and a generalized linear mixed model (GLMM). Most current data analysis tools compare expressions across many computationally discovered cell types. CytoGLMM focuses on just one cell type. Our narrower field of application allows us to define a more specific statistical model with easier to control statistical guarantees. As a result, CytoGLMM finds differential proteins in flow and mass cytometry data while reducing biases arising from marker correlations and safeguarding against false discoveries induced by patient heterogeneity. biocViews: FlowCytometry, Proteomics, SingleCell, CellBasedAssays, CellBiology, ImmunoOncology, Regression, StatisticalMethod, Software Author: Christof Seiler [aut, cre] () Maintainer: Christof Seiler URL: https://christofseiler.github.io/CytoGLMM, https://github.com/ChristofSeiler/CytoGLMM VignetteBuilder: knitr BugReports: https://github.com/ChristofSeiler/CytoGLMM/issues git_url: https://git.bioconductor.org/packages/CytoGLMM git_branch: RELEASE_3_20 git_last_commit: 019171c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CytoGLMM_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CytoGLMM_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CytoGLMM_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CytoGLMM_1.14.0.tgz vignettes: vignettes/CytoGLMM/inst/doc/CytoGLMM.html vignetteTitles: CytoGLMM Workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/CytoGLMM/inst/doc/CytoGLMM.R dependencyCount: 173 Package: cytoKernel Version: 1.12.0 Depends: R (>= 4.1) Imports: Rcpp, SummarizedExperiment, utils, methods, ComplexHeatmap, circlize, ashr, data.table, BiocParallel, dplyr, stats, magrittr, rlang, S4Vectors LinkingTo: Rcpp Suggests: knitr, rmarkdown, BiocStyle, testthat License: GPL-3 MD5sum: 56436d895525b0b047346eba62a92171 NeedsCompilation: yes Title: Differential expression using kernel-based score test Description: cytoKernel implements a kernel-based score test to identify differentially expressed features in high-dimensional biological experiments. This approach can be applied across many different high-dimensional biological data including gene expression data and dimensionally reduced cytometry-based marker expression data. In this R package, we implement functions that compute the feature-wise p values and their corresponding adjusted p values. Additionally, it also computes the feature-wise shrunk effect sizes and their corresponding shrunken effect size. Further, it calculates the percent of differentially expressed features and plots user-friendly heatmap of the top differentially expressed features on the rows and samples on the columns. biocViews: ImmunoOncology, Proteomics, SingleCell, Software, OneChannel, FlowCytometry, DifferentialExpression, GeneExpression, Clustering Author: Tusharkanti Ghosh [aut, cre], Victor Lui [aut], Pratyaydipta Rudra [aut], Souvik Seal [aut], Thao Vu [aut], Elena Hsieh [aut], Debashis Ghosh [aut, cph] Maintainer: Tusharkanti Ghosh VignetteBuilder: knitr BugReports: https://github.com/Ghoshlab/cytoKernel/issues git_url: https://git.bioconductor.org/packages/cytoKernel git_branch: RELEASE_3_20 git_last_commit: b6280c2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cytoKernel_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cytoKernel_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cytoKernel_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cytoKernel_1.12.0.tgz vignettes: vignettes/cytoKernel/inst/doc/cytoKernel.html vignetteTitles: The CytoK user's guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cytoKernel/inst/doc/cytoKernel.R dependencyCount: 86 Package: cytolib Version: 2.18.1 Depends: R (>= 3.4) Imports: RProtoBufLib LinkingTo: BH(>= 1.84.0.0), RProtoBufLib(>= 2.13.1),Rhdf5lib Suggests: knitr, rmarkdown License: AGPL-3.0-only License_restricts_use: no MD5sum: 3b1ede14c50cf91bc3dc00b92d85a803 NeedsCompilation: yes Title: C++ infrastructure for representing and interacting with the gated cytometry data Description: This package provides the core data structure and API to represent and interact with the gated cytometry data. biocViews: ImmunoOncology, FlowCytometry, DataImport, Preprocessing, DataRepresentation Author: Mike Jiang Maintainer: Mike Jiang SystemRequirements: GNU make, C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/cytolib git_branch: RELEASE_3_20 git_last_commit: d0205f4 git_last_commit_date: 2024-12-23 Date/Publication: 2024-12-26 source.ver: src/contrib/cytolib_2.18.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/cytolib_2.18.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cytolib_2.18.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cytolib_2.18.1.tgz vignettes: vignettes/cytolib/inst/doc/cytolib.html vignetteTitles: Using cytolib hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/cytolib/inst/doc/cytolib.R importsMe: CytoML, flowCore, flowWorkspace linksToMe: CytoML, flowCore, flowWorkspace dependencyCount: 3 Package: cytomapper Version: 1.18.0 Depends: R (>= 4.0), EBImage, SingleCellExperiment, methods Imports: SpatialExperiment, S4Vectors, BiocParallel, HDF5Array, DelayedArray, RColorBrewer, viridis, utils, SummarizedExperiment, tools, graphics, raster, grDevices, stats, ggplot2, ggbeeswarm, svgPanZoom, svglite, shiny, shinydashboard, matrixStats, rhdf5, nnls Suggests: BiocStyle, knitr, rmarkdown, markdown, cowplot, testthat, shinytest License: GPL (>= 2) Archs: x64 MD5sum: 55961cd1bf5fbeb4cfaccf7974b56a10 NeedsCompilation: no Title: Visualization of highly multiplexed imaging data in R Description: Highly multiplexed imaging acquires the single-cell expression of selected proteins in a spatially-resolved fashion. These measurements can be visualised across multiple length-scales. First, pixel-level intensities represent the spatial distributions of feature expression with highest resolution. Second, after segmentation, expression values or cell-level metadata (e.g. cell-type information) can be visualised on segmented cell areas. This package contains functions for the visualisation of multiplexed read-outs and cell-level information obtained by multiplexed imaging technologies. The main functions of this package allow 1. the visualisation of pixel-level information across multiple channels, 2. the display of cell-level information (expression and/or metadata) on segmentation masks and 3. gating and visualisation of single cells. biocViews: ImmunoOncology, Software, SingleCell, OneChannel, TwoChannel, MultipleComparison, Normalization, DataImport Author: Nils Eling [aut] (), Nicolas Damond [aut] (), Tobias Hoch [ctb], Lasse Meyer [cre, ctb] () Maintainer: Lasse Meyer URL: https://github.com/BodenmillerGroup/cytomapper VignetteBuilder: knitr BugReports: https://github.com/BodenmillerGroup/cytomapper/issues git_url: https://git.bioconductor.org/packages/cytomapper git_branch: RELEASE_3_20 git_last_commit: 447e982 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cytomapper_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cytomapper_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cytomapper_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cytomapper_1.18.0.tgz vignettes: vignettes/cytomapper/inst/doc/cytomapper.html, vignettes/cytomapper/inst/doc/cytomapper_ondisk.html vignetteTitles: "Visualization of imaging cytometry data in R", "On disk storage of images" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cytomapper/inst/doc/cytomapper_ondisk.R, vignettes/cytomapper/inst/doc/cytomapper.R importsMe: cytoviewer, imcRtools, simpleSeg suggestsMe: spicyWorkflow dependencyCount: 145 Package: CytoMDS Version: 1.2.0 Depends: R (>= 4.4) Imports: methods, stats, rlang, pracma, withr, flowCore, reshape2, ggplot2, ggrepel, ggforce, patchwork, transport, smacof, BiocParallel, CytoPipeline Suggests: testthat (>= 3.0.0), vdiffr, diffviewer, knitr, rmarkdown, BiocStyle, HDCytoData License: GPL-3 Archs: x64 MD5sum: ffe29cb8a8079ecd2fa20da75d196d7b NeedsCompilation: no Title: Low Dimensions projection of cytometry samples Description: This package implements a low dimensional visualization of a set of cytometry samples, in order to visually assess the 'distances' between them. This, in turn, can greatly help the user to identify quality issues like batch effects or outlier samples, and/or check the presence of potential sample clusters that might align with the exeprimental design. The CytoMDS algorithm combines, on the one hand, the concept of Earth Mover's Distance (EMD), a.k.a. Wasserstein metric and, on the other hand, the Multi Dimensional Scaling (MDS) algorithm for the low dimensional projection. Also, the package provides some diagnostic tools for both checking the quality of the MDS projection, as well as tools to help with the interpretation of the axes of the projection. biocViews: FlowCytometry, QualityControl, DimensionReduction, MultidimensionalScaling, Software, Visualization Author: Philippe Hauchamps [aut, cre] (), Laurent Gatto [aut] (), Dan Lin [ctb] Maintainer: Philippe Hauchamps URL: https://uclouvain-cbio.github.io/CytoMDS VignetteBuilder: knitr BugReports: https://github.com/UCLouvain-CBIO/CytoMDS/issues git_url: https://git.bioconductor.org/packages/CytoMDS git_branch: RELEASE_3_20 git_last_commit: 66f50ab git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CytoMDS_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CytoMDS_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CytoMDS_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CytoMDS_1.2.0.tgz vignettes: vignettes/CytoMDS/inst/doc/CytoMDS.html vignetteTitles: Low Dimensional Projection of Cytometry Samples hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CytoMDS/inst/doc/CytoMDS.R dependencyCount: 192 Package: cytoMEM Version: 1.10.0 Depends: R (>= 4.2.0) Imports: gplots, tools, flowCore, grDevices, stats, utils, matrixStats, methods Suggests: knitr, rmarkdown License: GPL-3 MD5sum: 81a1fd3e6e1a8cb0e08ef0868dff5820 NeedsCompilation: no Title: Marker Enrichment Modeling (MEM) Description: MEM, Marker Enrichment Modeling, automatically generates and displays quantitative labels for cell populations that have been identified from single-cell data. The input for MEM is a dataset that has pre-clustered or pre-gated populations with cells in rows and features in columns. Labels convey a list of measured features and the features' levels of relative enrichment on each population. MEM can be applied to a wide variety of data types and can compare between MEM labels from flow cytometry, mass cytometry, single cell RNA-seq, and spectral flow cytometry using RMSD. biocViews: Proteomics, SystemsBiology, Classification, FlowCytometry, DataRepresentation, DataImport, CellBiology, SingleCell, Clustering Author: Sierra Lima [aut] (), Kirsten Diggins [aut] (), Jonathan Irish [aut, cre] () Maintainer: Jonathan Irish URL: https://github.com/cytolab/cytoMEM VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/cytoMEM git_branch: RELEASE_3_20 git_last_commit: 711bac5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cytoMEM_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cytoMEM_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cytoMEM_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cytoMEM_1.10.0.tgz vignettes: vignettes/cytoMEM/inst/doc/Intro_to_Marker_Enrichment_Modeling_Analysis.html vignetteTitles: Intro_to_Marker_Enrichment_Modeling_Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cytoMEM/inst/doc/Intro_to_Marker_Enrichment_Modeling_Analysis.R dependencyCount: 23 Package: CytoML Version: 2.18.1 Depends: R (>= 3.5.0) Imports: cytolib(>= 2.3.10), flowCore (>= 1.99.10), flowWorkspace (>= 4.1.8), openCyto (>= 1.99.2), XML, data.table, jsonlite, RBGL, Rgraphviz, Biobase, methods, graph, graphics, utils, jsonlite, dplyr, grDevices, methods, ggcyto (>= 1.11.4), yaml, stats, tibble LinkingTo: cpp11, BH(>= 1.62.0-1), RProtoBufLib, cytolib, Rhdf5lib, flowWorkspace Suggests: testthat, flowWorkspaceData , knitr, rmarkdown, parallel License: AGPL-3.0-only License_restricts_use: no MD5sum: f1f86f63be6bb600ac62abdf6ec0312f NeedsCompilation: yes Title: A GatingML Interface for Cross Platform Cytometry Data Sharing Description: Uses platform-specific implemenations of the GatingML2.0 standard to exchange gated cytometry data with other software platforms. biocViews: ImmunoOncology, FlowCytometry, DataImport, DataRepresentation Author: Mike Jiang, Jake Wagner Maintainer: Mike Jiang URL: https://github.com/RGLab/CytoML SystemRequirements: xml2, GNU make, C++11 VignetteBuilder: knitr BugReports: https://github.com/RGLab/CytoML/issues git_url: https://git.bioconductor.org/packages/CytoML git_branch: RELEASE_3_20 git_last_commit: 4011ed5 git_last_commit_date: 2025-01-01 Date/Publication: 2025-01-02 source.ver: src/contrib/CytoML_2.18.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/CytoML_2.18.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CytoML_2.18.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CytoML_2.18.1.tgz vignettes: vignettes/CytoML/inst/doc/cytobank2GatingSet.html, vignettes/CytoML/inst/doc/flowjo_to_gatingset.html, vignettes/CytoML/inst/doc/HowToExportGatingSet.html vignetteTitles: How to import Cytobank into a GatingSet, flowJo parser, How to export a GatingSet to GatingML hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CytoML/inst/doc/cytobank2GatingSet.R, vignettes/CytoML/inst/doc/flowjo_to_gatingset.R, vignettes/CytoML/inst/doc/HowToExportGatingSet.R suggestsMe: FlowSOM, flowWorkspace, openCyto dependencyCount: 85 Package: CytoPipeline Version: 1.6.0 Depends: R (>= 4.4) Imports: methods, stats, utils, withr, rlang, ggplot2 (>= 3.4.1), ggcyto, BiocFileCache, BiocParallel, flowCore, PeacoQC, flowAI, diagram, jsonlite, scales Suggests: testthat (>= 3.0.0), vdiffr, diffviewer, knitr, rmarkdown, BiocStyle, reshape2, dplyr, CytoPipelineGUI License: GPL-3 MD5sum: 6166a108d4604b10a9563dfc7641b35b NeedsCompilation: no Title: Automation and visualization of flow cytometry data analysis pipelines Description: This package provides support for automation and visualization of flow cytometry data analysis pipelines. In the current state, the package focuses on the preprocessing and quality control part. The framework is based on two main S4 classes, i.e. CytoPipeline and CytoProcessingStep. The pipeline steps are linked to corresponding R functions - that are either provided in the CytoPipeline package itself, or exported from a third party package, or coded by the user her/himself. The processing steps need to be specified centrally and explicitly using either a json input file or through step by step creation of a CytoPipeline object with dedicated methods. After having run the pipeline, obtained results at all steps can be retrieved and visualized thanks to file caching (the running facility uses a BiocFileCache implementation). The package provides also specific visualization tools like pipeline workflow summary display, and 1D/2D comparison plots of obtained flowFrames at various steps of the pipeline. biocViews: FlowCytometry, Preprocessing, QualityControl, WorkflowStep, ImmunoOncology, Software, Visualization Author: Philippe Hauchamps [aut, cre] (), Laurent Gatto [aut] (), Dan Lin [ctb] Maintainer: Philippe Hauchamps URL: https://uclouvain-cbio.github.io/CytoPipeline VignetteBuilder: knitr BugReports: https://github.com/UCLouvain-CBIO/CytoPipeline/issues git_url: https://git.bioconductor.org/packages/CytoPipeline git_branch: RELEASE_3_20 git_last_commit: e8d5735 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CytoPipeline_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CytoPipeline_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CytoPipeline_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CytoPipeline_1.6.0.tgz vignettes: vignettes/CytoPipeline/inst/doc/CytoPipeline.html, vignettes/CytoPipeline/inst/doc/Demo.html vignetteTitles: Automation and Visualization of Flow Cytometry Data Analysis Pipelines, Demonstration of the CytoPipeline R package suite functionalities hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CytoPipeline/inst/doc/CytoPipeline.R, vignettes/CytoPipeline/inst/doc/Demo.R dependsOnMe: CytoPipelineGUI importsMe: CytoMDS dependencyCount: 136 Package: CytoPipelineGUI Version: 1.4.0 Depends: R (>= 4.4), CytoPipeline Imports: shiny, plotly, ggplot2, flowCore Suggests: testthat (>= 3.0.0), vdiffr, diffviewer, knitr, rmarkdown, BiocStyle, patchwork License: GPL-3 Archs: x64 MD5sum: 2cd6a8f5eb5b986c2a2935c5b7c294a9 NeedsCompilation: no Title: GUI's for visualization of flow cytometry data analysis pipelines Description: This package is the companion of the `CytoPipeline` package. It provides GUI's (shiny apps) for the visualization of flow cytometry data analysis pipelines that are run with `CytoPipeline`. Two shiny applications are provided, i.e. an interactive flow frame assessment and comparison tool and an interactive scale transformations visualization and adjustment tool. biocViews: FlowCytometry, Preprocessing, QualityControl, WorkflowStep, ImmunoOncology, Software, Visualization, GUI, ShinyApps Author: Philippe Hauchamps [aut, cre] (), Laurent Gatto [aut] (), Dan Lin [ctb] Maintainer: Philippe Hauchamps URL: https://uclouvain-cbio.github.io/CytoPipelineGUI VignetteBuilder: knitr BugReports: https://github.com/UCLouvain-CBIO/CytoPipelineGUI/issues git_url: https://git.bioconductor.org/packages/CytoPipelineGUI git_branch: RELEASE_3_20 git_last_commit: b4942c3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/CytoPipelineGUI_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/CytoPipelineGUI_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/CytoPipelineGUI_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CytoPipelineGUI_1.4.0.tgz vignettes: vignettes/CytoPipelineGUI/inst/doc/CytoPipelineGUI.html, vignettes/CytoPipelineGUI/inst/doc/Demo.html vignetteTitles: CytoPipelineGUI : visualization of Flow Cytometry Data Analysis Pipelines run with CytoPipeline, Demonstration of the CytoPipeline R package suite functionalities hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/CytoPipelineGUI/inst/doc/CytoPipelineGUI.R, vignettes/CytoPipelineGUI/inst/doc/Demo.R suggestsMe: CytoPipeline dependencyCount: 148 Package: cytoviewer Version: 1.6.0 Imports: shiny, shinydashboard, utils, colourpicker, shinycssloaders, svgPanZoom, viridis, archive, grDevices, RColorBrewer, svglite, EBImage, methods, cytomapper, SingleCellExperiment, S4Vectors, SummarizedExperiment Suggests: BiocStyle, knitr, rmarkdown, markdown, testthat License: GPL-3 MD5sum: bd28f195b0b83b1d2a8d5f44012385b7 NeedsCompilation: no Title: An interactive multi-channel image viewer for R Description: This R package supports interactive visualization of multi-channel images and segmentation masks generated by imaging mass cytometry and other highly multiplexed imaging techniques using shiny. The cytoviewer interface is divided into image-level (Composite and Channels) and cell-level visualization (Masks). It allows users to overlay individual images with segmentation masks, integrates well with SingleCellExperiment and SpatialExperiment objects for metadata visualization and supports image downloads. biocViews: ImmunoOncology, Software, SingleCell, OneChannel, TwoChannel, MultiChannel, Spatial, DataImport Author: Lasse Meyer [aut, cre] (), Nils Eling [aut] () Maintainer: Lasse Meyer URL: https://github.com/BodenmillerGroup/cytoviewer VignetteBuilder: knitr BugReports: https://github.com/BodenmillerGroup/cytoviewer/issues git_url: https://git.bioconductor.org/packages/cytoviewer git_branch: RELEASE_3_20 git_last_commit: cbda7eb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/cytoviewer_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/cytoviewer_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/cytoviewer_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/cytoviewer_1.6.0.tgz vignettes: vignettes/cytoviewer/inst/doc/cytoviewer.html vignetteTitles: "Interactive multi-channel image visualization in R" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/cytoviewer/inst/doc/cytoviewer.R dependencyCount: 151 Package: dada2 Version: 1.34.0 Depends: R (>= 3.4.0), Rcpp (>= 0.12.0), methods (>= 3.4.0) Imports: Biostrings (>= 2.42.1), ggplot2 (>= 2.1.0), reshape2 (>= 1.4.1), ShortRead (>= 1.32.0), RcppParallel (>= 4.3.0), parallel (>= 3.2.0), IRanges (>= 2.6.0), XVector (>= 0.16.0), BiocGenerics (>= 0.22.0) LinkingTo: Rcpp, RcppParallel Suggests: BiocStyle, knitr, rmarkdown License: LGPL-2 MD5sum: 5dff89c66a530ab9a0a52554943e8419 NeedsCompilation: yes Title: Accurate, high-resolution sample inference from amplicon sequencing data Description: The dada2 package infers exact amplicon sequence variants (ASVs) from high-throughput amplicon sequencing data, replacing the coarser and less accurate OTU clustering approach. The dada2 pipeline takes as input demultiplexed fastq files, and outputs the sequence variants and their sample-wise abundances after removing substitution and chimera errors. Taxonomic classification is available via a native implementation of the RDP naive Bayesian classifier, and species-level assignment to 16S rRNA gene fragments by exact matching. biocViews: ImmunoOncology, Microbiome, Sequencing, Classification, Metagenomics Author: Benjamin Callahan , Paul McMurdie, Susan Holmes Maintainer: Benjamin Callahan URL: http://benjjneb.github.io/dada2/ SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/benjjneb/dada2/issues git_url: https://git.bioconductor.org/packages/dada2 git_branch: RELEASE_3_20 git_last_commit: 5d453a4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dada2_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dada2_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dada2_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dada2_1.34.0.tgz vignettes: vignettes/dada2/inst/doc/dada2-intro.html vignetteTitles: Introduction to dada2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/dada2/inst/doc/dada2-intro.R dependsOnMe: MiscMetabar importsMe: Rbec, DBTC suggestsMe: mia dependencyCount: 92 Package: dagLogo Version: 1.44.0 Depends: R (>= 3.0.1), methods, grid Imports: pheatmap, Biostrings, UniProt.ws, BiocGenerics, utils, biomaRt, motifStack, httr Suggests: XML, grImport, grImport2, BiocStyle, knitr, rmarkdown, testthat License: GPL (>=2) MD5sum: a68ad6ee07b435310316af11119dbcbd NeedsCompilation: no Title: dagLogo: a Bioconductor package for visualizing conserved amino acid sequence pattern in groups based on probability theory Description: Visualize significant conserved amino acid sequence pattern in groups based on probability theory. biocViews: SequenceMatching, Visualization Author: Jianhong Ou, Haibo Liu, Alexey Stukalov, Niraj Nirala, Usha Acharya, Lihua Julie Zhu Maintainer: Jianhong Ou VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/dagLogo git_branch: RELEASE_3_20 git_last_commit: 58133ac git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dagLogo_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dagLogo_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dagLogo_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dagLogo_1.44.0.tgz vignettes: vignettes/dagLogo/inst/doc/dagLogo.html vignetteTitles: dagLogo Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/dagLogo/inst/doc/dagLogo.R dependencyCount: 162 Package: daMA Version: 1.78.0 Imports: MASS, stats License: GPL (>= 2) Archs: x64 MD5sum: 604d8b327a5ff84e4dfb0a73f18d7abb NeedsCompilation: no Title: Efficient design and analysis of factorial two-colour microarray data Description: This package contains functions for the efficient design of factorial two-colour microarray experiments and for the statistical analysis of factorial microarray data. Statistical details are described in Bretz et al. (2003, submitted) biocViews: Microarray, TwoChannel, DifferentialExpression Author: Jobst Landgrebe and Frank Bretz Maintainer: Jobst Landgrebe URL: http://www.microarrays.med.uni-goettingen.de git_url: https://git.bioconductor.org/packages/daMA git_branch: RELEASE_3_20 git_last_commit: c0eb711 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/daMA_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/daMA_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/daMA_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/daMA_1.78.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 6 Package: DAMEfinder Version: 1.18.0 Depends: R (>= 4.0) Imports: stats, GenomeInfoDb, GenomicRanges, IRanges, S4Vectors, readr, SummarizedExperiment, GenomicAlignments, stringr, plyr, VariantAnnotation, parallel, ggplot2, Rsamtools, BiocGenerics, methods, limma, bumphunter, Biostrings, reshape2, cowplot, utils Suggests: BiocStyle, knitr, rmarkdown, testthat, rtracklayer, BSgenome.Hsapiens.UCSC.hg19 License: MIT + file LICENSE MD5sum: 3b4591363f6637491fd9899266c81ba9 NeedsCompilation: no Title: Finds DAMEs - Differential Allelicly MEthylated regions Description: 'DAMEfinder' offers functionality for taking methtuple or bismark outputs to calculate ASM scores and compute DAMEs. It also offers nice visualization of methyl-circle plots. biocViews: DNAMethylation, DifferentialMethylation, Coverage Author: Stephany Orjuela [aut, cre] (), Dania Machlab [aut], Mark Robinson [aut] Maintainer: Stephany Orjuela VignetteBuilder: knitr BugReports: https://github.com/markrobinsonuzh/DAMEfinder/issues git_url: https://git.bioconductor.org/packages/DAMEfinder git_branch: RELEASE_3_20 git_last_commit: c884301 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DAMEfinder_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DAMEfinder_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DAMEfinder_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DAMEfinder_1.18.0.tgz vignettes: vignettes/DAMEfinder/inst/doc/DAMEfinder_workflow.html vignetteTitles: DAMEfinder Workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/DAMEfinder/inst/doc/DAMEfinder_workflow.R dependencyCount: 122 Package: DaMiRseq Version: 2.18.0 Depends: R (>= 3.5.0), SummarizedExperiment, ggplot2 Imports: DESeq2, limma, EDASeq, RColorBrewer, sva, Hmisc, pheatmap, FactoMineR, corrplot, randomForest, e1071, caret, MASS, lubridate, plsVarSel, kknn, FSelector, methods, stats, utils, graphics, grDevices, reshape2, ineq, arm, pls, RSNNS, edgeR, plyr Suggests: BiocStyle, knitr, testthat License: GPL (>= 2) MD5sum: d63b5836ac8983c573f41cac1ed82fc7 NeedsCompilation: no Title: Data Mining for RNA-seq data: normalization, feature selection and classification Description: The DaMiRseq package offers a tidy pipeline of data mining procedures to identify transcriptional biomarkers and exploit them for both binary and multi-class classification purposes. The package accepts any kind of data presented as a table of raw counts and allows including both continous and factorial variables that occur with the experimental setting. A series of functions enable the user to clean up the data by filtering genomic features and samples, to adjust data by identifying and removing the unwanted source of variation (i.e. batches and confounding factors) and to select the best predictors for modeling. Finally, a "stacking" ensemble learning technique is applied to build a robust classification model. Every step includes a checkpoint that the user may exploit to assess the effects of data management by looking at diagnostic plots, such as clustering and heatmaps, RLE boxplots, MDS or correlation plot. biocViews: Sequencing, RNASeq, Classification, ImmunoOncology Author: Mattia Chiesa , Luca Piacentini Maintainer: Mattia Chiesa VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DaMiRseq git_branch: RELEASE_3_20 git_last_commit: 753fc77 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DaMiRseq_2.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DaMiRseq_2.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DaMiRseq_2.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DaMiRseq_2.18.0.tgz vignettes: vignettes/DaMiRseq/inst/doc/DaMiRseq.pdf vignetteTitles: Data Mining for RNA-seq data: normalization,, features selection and classification - DaMiRseq package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DaMiRseq/inst/doc/DaMiRseq.R importsMe: GARS dependencyCount: 251 Package: Damsel Version: 1.2.0 Depends: R (>= 4.4.0) Imports: AnnotationDbi, Biostrings, ComplexHeatmap, dplyr, edgeR, GenomeInfoDb, GenomicFeatures, GenomicRanges, ggbio, ggplot2, goseq, magrittr, patchwork, plyranges, reshape2, rlang, Rsamtools, Rsubread, stats, stringr, tidyr, utils Suggests: BiocStyle, biomaRt, biovizBase, BSgenome.Dmelanogaster.UCSC.dm6, knitr, limma, org.Dm.eg.db, rmarkdown, testthat (>= 3.0.0), TxDb.Dmelanogaster.UCSC.dm6.ensGene License: MIT + file LICENSE MD5sum: 092df2b885b7fc10b382249f5a37c4bb NeedsCompilation: no Title: Damsel: an end to end analysis of DamID Description: Damsel provides an end to end analysis of DamID data. Damsel takes bam files from Dam-only control and fusion samples and counts the reads matching to each GATC region. edgeR is utilised to identify regions of enrichment in the fusion relative to the control. Enriched regions are combined into peaks, and are associated with nearby genes. Damsel allows for IGV style plots to be built as the results build, inspired by ggcoverage, and using the functionality and layering ability of ggplot2. Damsel also conducts gene ontology testing with bias correction through goseq, and future versions of Damsel will also incorporate motif enrichment analysis. Overall, Damsel is the first package allowing for an end to end analysis with visual capabilities. The goal of Damsel was to bring all the analysis into one place, and allow for exploratory analysis within R. biocViews: DifferentialMethylation, PeakDetection, GenePrediction, GeneSetEnrichment Author: Caitlin Page [aut, cre] () Maintainer: Caitlin Page URL: https://github.com/Oshlack/Damsel VignetteBuilder: knitr BugReports: https://github.com/Oshlack/Damsel git_url: https://git.bioconductor.org/packages/Damsel git_branch: RELEASE_3_20 git_last_commit: e9a9605 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Damsel_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Damsel_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Damsel_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Damsel_1.2.0.tgz vignettes: vignettes/Damsel/inst/doc/Damsel-workflow.html vignetteTitles: Damsel-workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Damsel/inst/doc/Damsel-workflow.R dependencyCount: 182 Package: DAPAR Version: 1.38.0 Depends: R (>= 4.3.0) Imports: Biobase, MSnbase, DAPARdata (>= 1.30.0), utils, highcharter, foreach Suggests: testthat, BiocStyle, AnnotationDbi, clusterProfiler, graph, diptest, cluster, vioplot, visNetwork, vsn, igraph, FactoMineR, factoextra, dendextend, parallel, doParallel, Mfuzz, apcluster, forcats, readxl, openxlsx, multcomp, purrr, tibble, knitr, norm, scales, tidyverse, cp4p, imp4p (>= 1.1),lme4, dplyr, limma, preprocessCore, stringr, tidyr, impute, gplots, grDevices, reshape2, graphics, stats, methods, ggplot2, RColorBrewer, Matrix, org.Sc.sgd.db License: Artistic-2.0 MD5sum: dd51e0de294beab7baec943e13109940 NeedsCompilation: no Title: Tools for the Differential Analysis of Proteins Abundance with R Description: The package DAPAR is a Bioconductor distributed R package which provides all the necessary functions to analyze quantitative data from label-free proteomics experiments. Contrarily to most other similar R packages, it is endowed with rich and user-friendly graphical interfaces, so that no programming skill is required (see `Prostar` package). biocViews: Proteomics, Normalization, Preprocessing, MassSpectrometry, QualityControl, GO, DataImport Author: c(person(given = "Samuel", family = "Wieczorek", email = "samuel.wieczorek@cea.fr", role = c("aut","cre")), person(given = "Florence", family ="Combes", email = "florence.combes@cea.fr", role = "aut"), person(given = "Thomas", family ="Burger", email = "thomas.burger@cea.fr", role = "aut"), person(given = "Vasile-Cosmin", family ="Lazar", email = "vcosminlazar@gmail.com", role = "ctb"), person(given = "Enora", family ="Fremy", email = "enora.fremy@cea.fr", role = "ctb"), person(given = "Helene", family ="Borges", email = "helene.borges@cea.fr", role = "ctb")) Maintainer: Samuel Wieczorek URL: http://www.prostar-proteomics.org/ VignetteBuilder: knitr BugReports: https://github.com/edyp-lab/DAPAR/issues git_url: https://git.bioconductor.org/packages/DAPAR git_branch: RELEASE_3_20 git_last_commit: 62bc537 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DAPAR_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DAPAR_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DAPAR_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DAPAR_1.38.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE importsMe: Prostar suggestsMe: DAPARdata, mi4p dependencyCount: 150 Package: dar Version: 1.2.0 Depends: R (>= 4.4.0) Imports: cli, ComplexHeatmap, crayon, dplyr, generics, ggplot2, glue, gplots, heatmaply, magrittr, methods, mia, phyloseq, purrr, readr, rlang (>= 0.4.11), scales, stringr, tibble, tidyr, UpSetR, waldo Suggests: ALDEx2, ANCOMBC, apeglm, ashr, Biobase, corncob, covr, DESeq2, devtools, furrr, future, knitr, lefser, limma, Maaslin2, metagenomeSeq, microbiome, rmarkdown, roxygen2, roxyglobals, roxytest, rstatix, SummarizedExperiment, TreeSummarizedExperiment, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: 890a3fe2eec770fe82d3a41b5551d91c NeedsCompilation: no Title: Differential Abundance Analysis by Consensus Description: Differential abundance testing in microbiome data challenges both parametric and non-parametric statistical methods, due to its sparsity, high variability and compositional nature. Microbiome-specific statistical methods often assume classical distribution models or take into account compositional specifics. These produce results that range within the specificity vs sensitivity space in such a way that type I and type II error that are difficult to ascertain in real microbiome data when a single method is used. Recently, a consensus approach based on multiple differential abundance (DA) methods was recently suggested in order to increase robustness. With dar, you can use dplyr-like pipeable sequences of DA methods and then apply different consensus strategies. In this way we can obtain more reliable results in a fast, consistent and reproducible way. biocViews: Software, Sequencing, Microbiome, Metagenomics, MultipleComparison, Normalization Author: Francesc Catala-Moll [aut, cre] () Maintainer: Francesc Catala-Moll URL: https://github.com/MicrobialGenomics-IrsicaixaOrg/dar, https://microbialgenomics-irsicaixaorg.github.io/dar/ VignetteBuilder: knitr BugReports: https://github.com/MicrobialGenomics-IrsicaixaOrg/dar/issues git_url: https://git.bioconductor.org/packages/dar git_branch: RELEASE_3_20 git_last_commit: 5fbeccf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dar_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dar_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dar_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dar_1.2.0.tgz vignettes: vignettes/dar/inst/doc/article.html, vignettes/dar/inst/doc/dar.html, vignettes/dar/inst/doc/data_import.html, vignettes/dar/inst/doc/filtering_subsetting.html, vignettes/dar/inst/doc/import_export_recipes.html vignetteTitles: Workflow with real data, Introduction to dar, Data Import, Filtering and Subsetting, Reproducibility in Microbiome Data Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/dar/inst/doc/article.R, vignettes/dar/inst/doc/dar.R, vignettes/dar/inst/doc/data_import.R, vignettes/dar/inst/doc/filtering_subsetting.R, vignettes/dar/inst/doc/import_export_recipes.R dependencyCount: 240 Package: DART Version: 1.54.0 Depends: R (>= 2.10.0), igraph (>= 0.6.0) Suggests: breastCancerVDX, breastCancerMAINZ, Biobase License: GPL-2 MD5sum: 46ef1797530f165410506e282c9d9109 NeedsCompilation: no Title: Denoising Algorithm based on Relevance network Topology Description: Denoising Algorithm based on Relevance network Topology (DART) is an algorithm designed to evaluate the consistency of prior information molecular signatures (e.g in-vitro perturbation expression signatures) in independent molecular data (e.g gene expression data sets). If consistent, a pruning network strategy is then used to infer the activation status of the molecular signature in individual samples. biocViews: GeneExpression, DifferentialExpression, GraphAndNetwork, Pathways Author: Yan Jiao, Katherine Lawler, Andrew E Teschendorff, Charles Shijie Zheng Maintainer: Charles Shijie Zheng git_url: https://git.bioconductor.org/packages/DART git_branch: RELEASE_3_20 git_last_commit: 6ef8156 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DART_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DART_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DART_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DART_1.54.0.tgz vignettes: vignettes/DART/inst/doc/DART.pdf vignetteTitles: DART Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DART/inst/doc/DART.R dependencyCount: 17 Package: dcanr Version: 1.22.0 Depends: R (>= 3.6.0) Imports: igraph, foreach, plyr, stringr, reshape2, methods, Matrix, graphics, stats, RColorBrewer, circlize, doRNG Suggests: EBcoexpress, testthat, EBarrays, GeneNet, mclust, minqa, SummarizedExperiment, Biobase, knitr, rmarkdown, BiocStyle, edgeR Enhances: parallel, doSNOW, doParallel License: GPL-3 MD5sum: 457aab9c14c63448f2341f970742ac16 NeedsCompilation: no Title: Differential co-expression/association network analysis Description: This package implements methods and an evaluation framework to infer differential co-expression/association networks. Various methods are implemented and can be evaluated using simulated datasets. Inference of differential co-expression networks can allow identification of networks that are altered between two conditions (e.g., health and disease). biocViews: NetworkInference, GraphAndNetwork, DifferentialExpression, Network Author: Dharmesh D. Bhuva [aut, cre] () Maintainer: Dharmesh D. Bhuva URL: https://davislaboratory.github.io/dcanr/, https://github.com/DavisLaboratory/dcanr VignetteBuilder: knitr BugReports: https://github.com/DavisLaboratory/dcanr/issues git_url: https://git.bioconductor.org/packages/dcanr git_branch: RELEASE_3_20 git_last_commit: 7971c29 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dcanr_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dcanr_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dcanr_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dcanr_1.22.0.tgz vignettes: vignettes/dcanr/inst/doc/dcanr_evaluation_vignette.html, vignettes/dcanr/inst/doc/dcanr_vignette.html vignetteTitles: 2. DC method evaluation, 1. Differential co-expression analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/dcanr/inst/doc/dcanr_evaluation_vignette.R, vignettes/dcanr/inst/doc/dcanr_vignette.R importsMe: ClassifyR, multiWGCNA, SingscoreAMLMutations dependencyCount: 35 Package: DCATS Version: 1.4.0 Depends: R (>= 4.1.0), stats Imports: MCMCpack, matrixStats, robustbase, aod, e1071 Suggests: testthat (>= 3.0.0), knitr, Seurat, SeuratObject, tidyverse, rmarkdown, BiocStyle License: MIT + file LICENSE MD5sum: de7f2ed5215d0945dcb3c77705cb7394 NeedsCompilation: no Title: Differential Composition Analysis Transformed by a Similarity matrix Description: Methods to detect the differential composition abundances between conditions in singel-cell RNA-seq experiments, with or without replicates. It aims to correct bias introduced by missclaisification and enable controlling of confounding covariates. To avoid the influence of proportion change from big cell types, DCATS can use either total cell number or specific reference group as normalization term. biocViews: SingleCell, Normalization Author: Xinyi Lin [aut, cre] (), Chuen Chau [aut], Yuanhua Huang [aut], Joshua W.K. Ho [aut] Maintainer: Xinyi Lin VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DCATS git_branch: RELEASE_3_20 git_last_commit: c7354b2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DCATS_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DCATS_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DCATS_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DCATS_1.4.0.tgz vignettes: vignettes/DCATS/inst/doc/Intro_to_DCATS.html vignetteTitles: Differential Composition Analysis with DCATS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/DCATS/inst/doc/Intro_to_DCATS.R dependencyCount: 24 Package: dce Version: 1.13.0 Depends: R (>= 4.1) Imports: stats, methods, assertthat, graph, pcalg, purrr, tidyverse, Matrix, ggraph, tidygraph, ggplot2, rlang, expm, MASS, edgeR, epiNEM, igraph, metap, mnem, naturalsort, ppcor, glm2, graphite, reshape2, dplyr, magrittr, glue, Rgraphviz, harmonicmeanp, org.Hs.eg.db, logger, shadowtext Suggests: knitr, rmarkdown, testthat (>= 2.1.0), BiocStyle, formatR, cowplot, ggplotify, dagitty, lmtest, sandwich, devtools, curatedTCGAData, TCGAutils, SummarizedExperiment, RcppParallel, docopt, CARNIVAL License: GPL-3 MD5sum: 9079525e96b53b9b2d11fe7eed33f328 NeedsCompilation: no Title: Pathway Enrichment Based on Differential Causal Effects Description: Compute differential causal effects (dce) on (biological) networks. Given observational samples from a control experiment and non-control (e.g., cancer) for two genes A and B, we can compute differential causal effects with a (generalized) linear regression. If the causal effect of gene A on gene B in the control samples is different from the causal effect in the non-control samples the dce will differ from zero. We regularize the dce computation by the inclusion of prior network information from pathway databases such as KEGG. biocViews: Software, StatisticalMethod, GraphAndNetwork, Regression, GeneExpression, DifferentialExpression, NetworkEnrichment, Network, KEGG Author: Kim Philipp Jablonski [aut, cre] (), Martin Pirkl [aut] Maintainer: Kim Philipp Jablonski URL: https://github.com/cbg-ethz/dce VignetteBuilder: knitr BugReports: https://github.com/cbg-ethz/dce/issues git_url: https://git.bioconductor.org/packages/dce git_branch: devel git_last_commit: 642d99a git_last_commit_date: 2024-04-30 Date/Publication: 2024-10-21 source.ver: src/contrib/dce_1.13.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dce_1.13.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dce_1.13.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dce_1.13.0.tgz vignettes: vignettes/dce/inst/doc/dce.html, vignettes/dce/inst/doc/pathway_databases.html vignetteTitles: Get started, Overview of pathway network databases hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/dce/inst/doc/dce.R, vignettes/dce/inst/doc/pathway_databases.R dependencyCount: 243 Package: dcGSA Version: 1.34.0 Depends: R (>= 3.3), Matrix Imports: BiocParallel Suggests: knitr License: GPL-2 MD5sum: fef80ac1e4eed95e64c0ae6f1d1f725e NeedsCompilation: no Title: Distance-correlation based Gene Set Analysis for longitudinal gene expression profiles Description: Distance-correlation based Gene Set Analysis for longitudinal gene expression profiles. In longitudinal studies, the gene expression profiles were collected at each visit from each subject and hence there are multiple measurements of the gene expression profiles for each subject. The dcGSA package could be used to assess the associations between gene sets and clinical outcomes of interest by fully taking advantage of the longitudinal nature of both the gene expression profiles and clinical outcomes. biocViews: ImmunoOncology, GeneSetEnrichment,Microarray, StatisticalMethod, Sequencing, RNASeq, GeneExpression Author: Jiehuan Sun [aut, cre], Jose Herazo-Maya [aut], Xiu Huang [aut], Naftali Kaminski [aut], and Hongyu Zhao [aut] Maintainer: Jiehuan sun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/dcGSA git_branch: RELEASE_3_20 git_last_commit: f82cc6f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dcGSA_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dcGSA_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dcGSA_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dcGSA_1.34.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 18 Package: ddCt Version: 1.62.0 Depends: R (>= 2.3.0), methods Imports: Biobase (>= 1.10.0), RColorBrewer (>= 0.1-3), xtable, lattice, BiocGenerics Suggests: testthat (>= 3.0.0), RUnit License: LGPL-3 MD5sum: e85c726d144ee68358302cdcc536abc9 NeedsCompilation: no Title: The ddCt Algorithm for the Analysis of Quantitative Real-Time PCR (qRT-PCR) Description: The Delta-Delta-Ct (ddCt) Algorithm is an approximation method to determine relative gene expression with quantitative real-time PCR (qRT-PCR) experiments. Compared to other approaches, it requires no standard curve for each primer-target pair, therefore reducing the working load and yet returning accurate enough results as long as the assumptions of the amplification efficiency hold. The ddCt package implements a pipeline to collect, analyse and visualize qRT-PCR results, for example those from TaqMan SDM software, mainly using the ddCt method. The pipeline can be either invoked by a script in command-line or through the API consisting of S4-Classes, methods and functions. biocViews: GeneExpression, DifferentialExpression, MicrotitrePlateAssay, qPCR Author: Jitao David Zhang, Rudolf Biczok, and Markus Ruschhaupt Maintainer: Jitao David Zhang git_url: https://git.bioconductor.org/packages/ddCt git_branch: RELEASE_3_20 git_last_commit: 5509c57 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ddCt_1.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ddCt_1.62.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ddCt_1.62.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ddCt_1.62.0.tgz vignettes: vignettes/ddCt/inst/doc/rtPCR.pdf, vignettes/ddCt/inst/doc/RT-PCR-Script-ddCt.pdf, vignettes/ddCt/inst/doc/rtPCR-usage.pdf vignetteTitles: Introduction to the ddCt method for qRT-PCR data analysis: background,, algorithm and example, How to apply the ddCt method, Analyse RT-PCR data with the end-to-end script in ddCt package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ddCt/inst/doc/rtPCR.R, vignettes/ddCt/inst/doc/RT-PCR-Script-ddCt.R, vignettes/ddCt/inst/doc/rtPCR-usage.R dependencyCount: 11 Package: ddPCRclust Version: 1.26.0 Depends: R (>= 3.5) Imports: plotrix, clue, parallel, ggplot2, openxlsx, R.utils, flowCore, flowDensity (>= 1.13.3), SamSPECTRAL, flowPeaks Suggests: BiocStyle License: Artistic-2.0 MD5sum: 49f1c9ea525a02b3f1951e2d3e6098b0 NeedsCompilation: no Title: Clustering algorithm for ddPCR data Description: The ddPCRclust algorithm can automatically quantify the CPDs of non-orthogonal ddPCR reactions with up to four targets. In order to determine the correct droplet count for each target, it is crucial to both identify all clusters and label them correctly based on their position. For more information on what data can be analyzed and how a template needs to be formatted, please check the vignette. biocViews: ddPCR, Clustering Author: Benedikt G. Brink [aut, cre], Justin Meskas [ctb], Ryan R. Brinkman [ctb] Maintainer: Benedikt G. Brink URL: https://github.com/bgbrink/ddPCRclust BugReports: https://github.com/bgbrink/ddPCRclust/issues git_url: https://git.bioconductor.org/packages/ddPCRclust git_branch: RELEASE_3_20 git_last_commit: 5098ee0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ddPCRclust_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ddPCRclust_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ddPCRclust_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ddPCRclust_1.26.0.tgz vignettes: vignettes/ddPCRclust/inst/doc/ddPCRclust.pdf vignetteTitles: Bioconductor LaTeX Style hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ddPCRclust/inst/doc/ddPCRclust.R dependencyCount: 104 Package: dearseq Version: 1.18.0 Depends: R (>= 3.6.0) Imports: CompQuadForm, dplyr, ggplot2, KernSmooth, magrittr, matrixStats, methods, patchwork, parallel, pbapply, reshape2, rlang, scattermore, stats, statmod, survey, tibble, viridisLite Suggests: Biobase, BiocManager, BiocSet, edgeR, DESeq2, GEOquery, GSA, knitr, limma, readxl, rmarkdown, S4Vectors, SummarizedExperiment, testthat, covr License: GPL-2 | file LICENSE MD5sum: 6f4003b3e3321981299e5b5ab5bbf707 NeedsCompilation: no Title: Differential Expression Analysis for RNA-seq data through a robust variance component test Description: Differential Expression Analysis RNA-seq data with variance component score test accounting for data heteroscedasticity through precision weights. Perform both gene-wise and gene set analyses, and can deal with repeated or longitudinal data. Methods are detailed in: i) Agniel D & Hejblum BP (2017) Variance component score test for time-course gene set analysis of longitudinal RNA-seq data, Biostatistics, 18(4):589-604 ; and ii) Gauthier M, Agniel D, Thiébaut R & Hejblum BP (2020) dearseq: a variance component score test for RNA-Seq differential analysis that effectively controls the false discovery rate, NAR Genomics and Bioinformatics, 2(4):lqaa093. biocViews: BiomedicalInformatics, CellBiology, DifferentialExpression, DNASeq, GeneExpression, Genetics, GeneSetEnrichment, ImmunoOncology, KEGG, Regression, RNASeq, Sequencing, SystemsBiology, TimeCourse, Transcription, Transcriptomics Author: Denis Agniel [aut], Boris P. Hejblum [aut, cre] (), Marine Gauthier [aut], Mélanie Huchon [ctb] Maintainer: Boris P. Hejblum VignetteBuilder: knitr BugReports: https://github.com/borishejblum/dearseq/issues git_url: https://git.bioconductor.org/packages/dearseq git_branch: RELEASE_3_20 git_last_commit: d0ece5f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dearseq_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dearseq_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dearseq_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dearseq_1.18.0.tgz vignettes: vignettes/dearseq/inst/doc/dearseqUserguide.html vignetteTitles: dearseqUserguide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/dearseq/inst/doc/dearseqUserguide.R suggestsMe: GeoTcgaData, TcGSA dependencyCount: 59 Package: debCAM Version: 1.24.0 Depends: R (>= 3.5) Imports: methods, rJava, BiocParallel, stats, Biobase, SummarizedExperiment, corpcor, geometry, NMF, nnls, DMwR2, pcaPP, apcluster, graphics Suggests: knitr, rmarkdown, BiocStyle, testthat, GEOquery, rgl License: GPL-2 MD5sum: 4193a1e2dd224d47d45808040b37fa89 NeedsCompilation: no Title: Deconvolution by Convex Analysis of Mixtures Description: An R package for fully unsupervised deconvolution of complex tissues. It provides basic functions to perform unsupervised deconvolution on mixture expression profiles by Convex Analysis of Mixtures (CAM) and some auxiliary functions to help understand the subpopulation-specific results. It also implements functions to perform supervised deconvolution based on prior knowledge of molecular markers, S matrix or A matrix. Combining molecular markers from CAM and from prior knowledge can achieve semi-supervised deconvolution of mixtures. biocViews: Software, CellBiology, GeneExpression Author: Lulu Chen Maintainer: Lulu Chen SystemRequirements: Java (>= 1.8) VignetteBuilder: knitr BugReports: https://github.com/Lululuella/debCAM/issues git_url: https://git.bioconductor.org/packages/debCAM git_branch: RELEASE_3_20 git_last_commit: 134b096 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/debCAM_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/debCAM_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/debCAM_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/debCAM_1.24.0.tgz vignettes: vignettes/debCAM/inst/doc/debcam.html vignetteTitles: debCAM User Manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/debCAM/inst/doc/debcam.R dependencyCount: 118 Package: debrowser Version: 1.34.0 Depends: R (>= 3.5.0), Imports: shiny, jsonlite, shinyjs, shinydashboard, shinyBS, gplots, DT, ggplot2, RColorBrewer, annotate, AnnotationDbi, DESeq2, DOSE, igraph, grDevices, graphics, stats, utils, GenomicRanges, IRanges, S4Vectors, SummarizedExperiment, stringi, reshape2, org.Hs.eg.db, org.Mm.eg.db, limma, edgeR, clusterProfiler, methods, sva, RCurl, enrichplot, colourpicker, plotly, heatmaply, Harman, pathview, apeglm, ashr Suggests: testthat, rmarkdown, knitr License: GPL-3 + file LICENSE MD5sum: 5b2bf81aad3691865f35d0342553832e NeedsCompilation: no Title: Interactive Differential Expresion Analysis Browser Description: Bioinformatics platform containing interactive plots and tables for differential gene and region expression studies. Allows visualizing expression data much more deeply in an interactive and faster way. By changing the parameters, users can easily discover different parts of the data that like never have been done before. Manually creating and looking these plots takes time. With DEBrowser users can prepare plots without writing any code. Differential expression, PCA and clustering analysis are made on site and the results are shown in various plots such as scatter, bar, box, volcano, ma plots and Heatmaps. biocViews: Sequencing, ChIPSeq, RNASeq, DifferentialExpression, GeneExpression, Clustering, ImmunoOncology Author: Alper Kucukural , Onur Yukselen , Manuel Garber Maintainer: Alper Kucukural URL: https://github.com/UMMS-Biocore/debrowser VignetteBuilder: knitr, rmarkdown BugReports: https://github.com/UMMS-Biocore/debrowser/issues/new git_url: https://git.bioconductor.org/packages/debrowser git_branch: RELEASE_3_20 git_last_commit: e323fef git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/debrowser_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/debrowser_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/debrowser_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/debrowser_1.34.0.tgz vignettes: vignettes/debrowser/inst/doc/DEBrowser.html vignetteTitles: DEBrowser Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/debrowser/inst/doc/DEBrowser.R dependencyCount: 226 Package: DECIPHER Version: 3.2.0 Depends: R (>= 3.5.0), Biostrings (>= 2.59.1), stats Imports: methods, DBI, S4Vectors, IRanges, XVector LinkingTo: Biostrings, S4Vectors, IRanges, XVector Suggests: RSQLite (>= 1.1) License: GPL-3 MD5sum: 4c8df0ce5a47a0dd9cda5c3231fa35ab NeedsCompilation: yes Title: Tools for curating, analyzing, and manipulating biological sequences Description: A toolset for deciphering and managing biological sequences. biocViews: Clustering, Genetics, Sequencing, DataImport, Visualization, Microarray, QualityControl, qPCR, Alignment, WholeGenome, Microbiome, ImmunoOncology, GenePrediction Author: Erik Wright Maintainer: Erik Wright URL: http://DECIPHER.codes git_url: https://git.bioconductor.org/packages/DECIPHER git_branch: RELEASE_3_20 git_last_commit: 7d5caa2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DECIPHER_3.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DECIPHER_3.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DECIPHER_3.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DECIPHER_3.2.0.tgz vignettes: vignettes/DECIPHER/inst/doc/ArtOfAlignmentInR.pdf, vignettes/DECIPHER/inst/doc/ClassifySequences.pdf, vignettes/DECIPHER/inst/doc/ClusteringSequences.pdf, vignettes/DECIPHER/inst/doc/DECIPHERing.pdf, vignettes/DECIPHER/inst/doc/DesignMicroarray.pdf, vignettes/DECIPHER/inst/doc/DesignPrimers.pdf, vignettes/DECIPHER/inst/doc/DesignProbes.pdf, vignettes/DECIPHER/inst/doc/DesignSignatures.pdf, vignettes/DECIPHER/inst/doc/FindChimeras.pdf, vignettes/DECIPHER/inst/doc/FindingGenes.pdf, vignettes/DECIPHER/inst/doc/FindingNonCodingRNAs.pdf, vignettes/DECIPHER/inst/doc/GrowingTrees.pdf, vignettes/DECIPHER/inst/doc/RepeatRepeat.pdf, vignettes/DECIPHER/inst/doc/SearchForResearch.pdf vignetteTitles: The Art of Multiple Sequence Alignment in R, Classify Sequences, Upsize Your Clustering with Clusterize, Getting Started DECIPHERing, Design Microarray Probes, Design Group-Specific Primers, Design Group-Specific FISH Probes, Design Primers That Yield Group-Specific Signatures, Finding Chimeric Sequences, The Magic of Gene Finding, The Double Life of RNA: Uncovering Non-Coding RNAs, Growing Phylogenetic Trees with Treeline, Detecting Obscure Tandem Repeats in Sequences, Searching biological sequences hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DECIPHER/inst/doc/ArtOfAlignmentInR.R, vignettes/DECIPHER/inst/doc/ClassifySequences.R, vignettes/DECIPHER/inst/doc/ClusteringSequences.R, vignettes/DECIPHER/inst/doc/DECIPHERing.R, vignettes/DECIPHER/inst/doc/DesignMicroarray.R, vignettes/DECIPHER/inst/doc/DesignPrimers.R, vignettes/DECIPHER/inst/doc/DesignProbes.R, vignettes/DECIPHER/inst/doc/DesignSignatures.R, vignettes/DECIPHER/inst/doc/FindChimeras.R, vignettes/DECIPHER/inst/doc/FindingGenes.R, vignettes/DECIPHER/inst/doc/FindingNonCodingRNAs.R, vignettes/DECIPHER/inst/doc/GrowingTrees.R, vignettes/DECIPHER/inst/doc/RepeatRepeat.R, vignettes/DECIPHER/inst/doc/SearchForResearch.R dependsOnMe: AssessORF, sangeranalyseR, SynExtend importsMe: mia, openPrimeR, scifer, copyseparator, ensembleTax suggestsMe: MicrobiotaProcess, microbial, MiscMetabar dependencyCount: 26 Package: decompTumor2Sig Version: 2.22.0 Depends: R(>= 4.0), ggplot2 Imports: methods, Matrix, quadprog(>= 1.5-5), GenomicRanges, stats, GenomicFeatures, Biostrings, BiocGenerics, S4Vectors, plyr, utils, graphics, BSgenome.Hsapiens.UCSC.hg19, TxDb.Hsapiens.UCSC.hg19.knownGene, VariantAnnotation, SummarizedExperiment, ggseqlogo, gridExtra, data.table, GenomeInfoDb, readxl Suggests: knitr, rmarkdown, BiocStyle License: GPL-2 MD5sum: 933a799a10eb6517f24f3aa6e70aae41 NeedsCompilation: no Title: Decomposition of individual tumors into mutational signatures by signature refitting Description: Uses quadratic programming for signature refitting, i.e., to decompose the mutation catalog from an individual tumor sample into a set of given mutational signatures (either Alexandrov-model signatures or Shiraishi-model signatures), computing weights that reflect the contributions of the signatures to the mutation load of the tumor. biocViews: Software, SNP, Sequencing, DNASeq, GenomicVariation, SomaticMutation, BiomedicalInformatics, Genetics, BiologicalQuestion, StatisticalMethod Author: Rosario M. Piro [aut, cre], Sandra Krueger [ctb] Maintainer: Rosario M. Piro URL: http://rmpiro.net/decompTumor2Sig/, https://github.com/rmpiro/decompTumor2Sig VignetteBuilder: knitr BugReports: https://github.com/rmpiro/decompTumor2Sig/issues git_url: https://git.bioconductor.org/packages/decompTumor2Sig git_branch: RELEASE_3_20 git_last_commit: 994d317 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/decompTumor2Sig_2.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/decompTumor2Sig_2.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/decompTumor2Sig_2.22.0.tgz vignettes: vignettes/decompTumor2Sig/inst/doc/decompTumor2Sig.html vignetteTitles: A brief introduction to decompTumor2Sig hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/decompTumor2Sig/inst/doc/decompTumor2Sig.R importsMe: musicatk dependencyCount: 113 Package: DeconRNASeq Version: 1.48.0 Depends: R (>= 2.14.0), limSolve, pcaMethods, ggplot2, grid License: GPL-2 Archs: x64 MD5sum: 966402a781d69613923264344eca362a NeedsCompilation: no Title: Deconvolution of Heterogeneous Tissue Samples for mRNA-Seq data Description: DeconSeq is an R package for deconvolution of heterogeneous tissues based on mRNA-Seq data. It modeled expression levels from heterogeneous cell populations in mRNA-Seq as the weighted average of expression from different constituting cell types and predicted cell type proportions of single expression profiles. biocViews: DifferentialExpression Author: Ting Gong Joseph D. Szustakowski Maintainer: Ting Gong git_url: https://git.bioconductor.org/packages/DeconRNASeq git_branch: RELEASE_3_20 git_last_commit: fac9eb4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DeconRNASeq_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DeconRNASeq_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DeconRNASeq_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DeconRNASeq_1.48.0.tgz vignettes: vignettes/DeconRNASeq/inst/doc/DeconRNASeq.pdf vignetteTitles: DeconRNASeq Demo hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DeconRNASeq/inst/doc/DeconRNASeq.R suggestsMe: ADAPTS dependencyCount: 42 Package: decontam Version: 1.26.0 Depends: R (>= 3.4.1), methods (>= 3.4.1) Imports: ggplot2 (>= 2.1.0), reshape2 (>= 1.4.1), stats Suggests: BiocStyle, knitr, rmarkdown, phyloseq License: Artistic-2.0 MD5sum: 8f7e6f21488cf6384358db33630651d6 NeedsCompilation: no Title: Identify Contaminants in Marker-gene and Metagenomics Sequencing Data Description: Simple statistical identification of contaminating sequence features in marker-gene or metagenomics data. Works on any kind of feature derived from environmental sequencing data (e.g. ASVs, OTUs, taxonomic groups, MAGs,...). Requires DNA quantitation data or sequenced negative control samples. biocViews: ImmunoOncology, Microbiome, Sequencing, Classification, Metagenomics Author: Benjamin Callahan [aut, cre], Nicole Marie Davis [aut], Felix G.M. Ernst [ctb] () Maintainer: Benjamin Callahan URL: https://github.com/benjjneb/decontam VignetteBuilder: knitr BugReports: https://github.com/benjjneb/decontam/issues git_url: https://git.bioconductor.org/packages/decontam git_branch: RELEASE_3_20 git_last_commit: c336999 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/decontam_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/decontam_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/decontam_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/decontam_1.26.0.tgz vignettes: vignettes/decontam/inst/doc/decontam_intro.html vignetteTitles: Introduction to dada2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/decontam/inst/doc/decontam_intro.R importsMe: mia dependencyCount: 41 Package: decontX Version: 1.4.0 Depends: R (>= 4.3.0) Imports: celda, dbscan, DelayedArray, ggplot2, Matrix (>= 1.5.3), MCMCprecision, methods, patchwork, plyr, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), reshape2, rstan (>= 2.18.1), rstantools (>= 2.2.0), S4Vectors, scater, Seurat, SingleCellExperiment, SummarizedExperiment, withr LinkingTo: BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0) Suggests: BiocStyle, dplyr, knitr, rmarkdown, scran, SingleCellMultiModal, TENxPBMCData, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: 5c6db8fb24a68f239b36e8a8af5f93a8 NeedsCompilation: yes Title: Decontamination of single cell genomics data Description: This package contains implementation of DecontX (Yang et al. 2020), a decontamination algorithm for single-cell RNA-seq, and DecontPro (Yin et al. 2023), a decontamination algorithm for single cell protein expression data. DecontX is a novel Bayesian method to computationally estimate and remove RNA contamination in individual cells without empty droplet information. DecontPro is a Bayesian method that estimates the level of contamination from ambient and background sources in CITE-seq ADT dataset and decontaminate the dataset. biocViews: SingleCell, Bayesian Author: Yuan Yin [aut, cre] (), Masanao Yajima [aut] (), Joshua Campbell [aut] () Maintainer: Yuan Yin SystemRequirements: GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/decontX git_branch: RELEASE_3_20 git_last_commit: c7b1f3f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/decontX_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/decontX_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/decontX_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/decontX_1.4.0.tgz vignettes: vignettes/decontX/inst/doc/decontPro.html, vignettes/decontX/inst/doc/decontX.html vignetteTitles: decontPro, Estimate and remove cross-contamination from ambient RNA in single-cell data with DecontX hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/decontX/inst/doc/decontPro.R, vignettes/decontX/inst/doc/decontX.R dependencyCount: 237 Package: deconvR Version: 1.12.0 Depends: R (>= 4.1), data.table (>= 1.14.0) Imports: S4Vectors (>= 0.30.0), methylKit (>= 1.18.0), IRanges (>= 2.26.0), GenomicRanges (>= 1.44.0), BiocGenerics (>= 0.38.0), stats, methods, foreach (>= 1.5.1), magrittr (>= 2.0.1), matrixStats (>= 0.61.0), e1071 (>= 1.7.9), quadprog (>= 1.5.8), nnls (>= 1.4), rsq (>= 2.2), MASS, utils, dplyr (>= 1.0.7), tidyr (>= 1.1.3), assertthat, minfi Suggests: testthat (>= 3.0.0), roxygen2 (>= 7.1.2), doParallel (>= 1.0.16), parallel, knitr (>= 1.34), BiocStyle (>= 2.20.2), reshape2 (>= 1.4.4), ggplot2 (>= 3.3.5), rmarkdown, devtools (>= 2.4.2), sessioninfo (>= 1.1.1), covr, granulator, RefManageR License: Artistic-2.0 MD5sum: 02af5fc0240d7bbec1932ea9f66e1512 NeedsCompilation: no Title: Simulation and Deconvolution of Omic Profiles Description: This package provides a collection of functions designed for analyzing deconvolution of the bulk sample(s) using an atlas of reference omic signature profiles and a user-selected model. Users are given the option to create or extend a reference atlas and,also simulate the desired size of the bulk signature profile of the reference cell types.The package includes the cell-type-specific methylation atlas and, Illumina Epic B5 probe ids that can be used in deconvolution. Additionally,we included BSmeth2Probe, to make mapping WGBS data to their probe IDs easier. biocViews: DNAMethylation, Regression, GeneExpression, RNASeq, SingleCell, StatisticalMethod, Transcriptomics Author: Irem B. Gündüz [aut, cre] (), Veronika Ebenal [aut] (), Altuna Akalin [aut] () Maintainer: Irem B. Gündüz URL: https://github.com/BIMSBbioinfo/deconvR VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/deconvR git_url: https://git.bioconductor.org/packages/deconvR git_branch: RELEASE_3_20 git_last_commit: c951445 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/deconvR_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/deconvR_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/deconvR_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/deconvR_1.12.0.tgz vignettes: vignettes/deconvR/inst/doc/deconvRVignette.html vignetteTitles: deconvRVignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/deconvR/inst/doc/deconvRVignette.R dependencyCount: 183 Package: decoupleR Version: 2.12.0 Depends: R (>= 4.0) Imports: BiocParallel, broom, dplyr, magrittr, Matrix, parallelly, purrr, rlang, stats, stringr, tibble, tidyr, tidyselect, withr Suggests: glmnet (>= 4.1-7), GSVA, viper, fgsea (>= 1.15.4), AUCell, SummarizedExperiment, rpart, ranger, BiocStyle, covr, knitr, pkgdown, RefManageR, rmarkdown, roxygen2, sessioninfo, pheatmap, testthat, OmnipathR, Seurat, ggplot2, ggrepel, patchwork, magick License: GPL-3 + file LICENSE Archs: x64 MD5sum: d5e3f97892978162549b29bdd78b9f65 NeedsCompilation: no Title: decoupleR: Ensemble of computational methods to infer biological activities from omics data Description: Many methods allow us to extract biological activities from omics data using information from prior knowledge resources, reducing the dimensionality for increased statistical power and better interpretability. Here, we present decoupleR, a Bioconductor package containing different statistical methods to extract these signatures within a unified framework. decoupleR allows the user to flexibly test any method with any resource. It incorporates methods that take into account the sign and weight of network interactions. decoupleR can be used with any omic, as long as its features can be linked to a biological process based on prior knowledge. For example, in transcriptomics gene sets regulated by a transcription factor, or in phospho-proteomics phosphosites that are targeted by a kinase. biocViews: DifferentialExpression, FunctionalGenomics, GeneExpression, GeneRegulation, Network, Software, StatisticalMethod, Transcription, Author: Pau Badia-i-Mompel [aut, cre] (), Jesús Vélez-Santiago [aut] (), Jana Braunger [aut] (), Celina Geiss [aut] (), Daniel Dimitrov [aut] (), Sophia Müller-Dott [aut] (), Petr Taus [aut] (), Aurélien Dugourd [aut] (), Christian H. Holland [aut] (), Ricardo O. Ramirez Flores [aut] (), Julio Saez-Rodriguez [aut] () Maintainer: Pau Badia-i-Mompel URL: https://saezlab.github.io/decoupleR/ VignetteBuilder: knitr BugReports: https://github.com/saezlab/decoupleR/issues git_url: https://git.bioconductor.org/packages/decoupleR git_branch: RELEASE_3_20 git_last_commit: bc3245c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/decoupleR_2.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/decoupleR_2.12.0.zip vignettes: vignettes/decoupleR/inst/doc/decoupleR.html, vignettes/decoupleR/inst/doc/pw_bk.html, vignettes/decoupleR/inst/doc/pw_sc.html, vignettes/decoupleR/inst/doc/tf_bk.html, vignettes/decoupleR/inst/doc/tf_sc.html vignetteTitles: Introduction, Pathway activity inference in bulk RNA-seq, Pathway activity activity inference from scRNA-seq, Transcription factor activity inference in bulk RNA-seq, Transcription factor activity inference from scRNA-seq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/decoupleR/inst/doc/decoupleR.R, vignettes/decoupleR/inst/doc/pw_bk.R, vignettes/decoupleR/inst/doc/pw_sc.R, vignettes/decoupleR/inst/doc/tf_bk.R, vignettes/decoupleR/inst/doc/tf_sc.R importsMe: cosmosR, easier, progeny suggestsMe: SCpubr dependencyCount: 42 Package: DeepPINCS Version: 1.14.0 Depends: keras, R (>= 4.1) Imports: tensorflow, CatEncoders, matlab, rcdk, stringdist, tokenizers, webchem, purrr, ttgsea, PRROC, reticulate, stats Suggests: knitr, testthat, rmarkdown License: Artistic-2.0 MD5sum: bccffa092f6a224af833650957782fe3 NeedsCompilation: no Title: Protein Interactions and Networks with Compounds based on Sequences using Deep Learning Description: The identification of novel compound-protein interaction (CPI) is important in drug discovery. Revealing unknown compound-protein interactions is useful to design a new drug for a target protein by screening candidate compounds. The accurate CPI prediction assists in effective drug discovery process. To identify potential CPI effectively, prediction methods based on machine learning and deep learning have been developed. Data for sequences are provided as discrete symbolic data. In the data, compounds are represented as SMILES (simplified molecular-input line-entry system) strings and proteins are sequences in which the characters are amino acids. The outcome is defined as a variable that indicates how strong two molecules interact with each other or whether there is an interaction between them. In this package, a deep-learning based model that takes only sequence information of both compounds and proteins as input and the outcome as output is used to predict CPI. The model is implemented by using compound and protein encoders with useful features. The CPI model also supports other modeling tasks, including protein-protein interaction (PPI), chemical-chemical interaction (CCI), or single compounds and proteins. Although the model is designed for proteins, DNA and RNA can be used if they are represented as sequences. biocViews: Software, Network, GraphAndNetwork, NeuralNetwork Author: Dongmin Jung [cre, aut] () Maintainer: Dongmin Jung VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DeepPINCS git_branch: RELEASE_3_20 git_last_commit: ec9c3b1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DeepPINCS_1.14.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DeepPINCS_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DeepPINCS_1.14.0.tgz vignettes: vignettes/DeepPINCS/inst/doc/DeepPINCS.html vignetteTitles: DeepPINCS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DeepPINCS/inst/doc/DeepPINCS.R importsMe: GenProSeq, VAExprs dependencyCount: 145 Package: deepSNV Version: 1.52.0 Depends: R (>= 2.13.0), methods, graphics, parallel, IRanges, GenomicRanges, SummarizedExperiment, Biostrings, VGAM, VariantAnnotation (>= 1.27.6), Imports: Rhtslib LinkingTo: Rhtslib (>= 1.13.1) Suggests: RColorBrewer, knitr, rmarkdown License: GPL-3 MD5sum: 23f4830f8b5ad3b1c38ef91ad6427a9a NeedsCompilation: yes Title: Detection of subclonal SNVs in deep sequencing data. Description: This package provides provides quantitative variant callers for detecting subclonal mutations in ultra-deep (>=100x coverage) sequencing experiments. The deepSNV algorithm is used for a comparative setup with a control experiment of the same loci and uses a beta-binomial model and a likelihood ratio test to discriminate sequencing errors and subclonal SNVs. The shearwater algorithm computes a Bayes classifier based on a beta-binomial model for variant calling with multiple samples for precisely estimating model parameters - such as local error rates and dispersion - and prior knowledge, e.g. from variation data bases such as COSMIC. biocViews: GeneticVariability, SNP, Sequencing, Genetics, DataImport Author: Niko Beerenwinkel [ths], Raul Alcantara [ctb], David Jones [ctb], John Marshall [ctb], Inigo Martincorena [ctb], Moritz Gerstung [aut, cre] Maintainer: Moritz Gerstung SystemRequirements: GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/deepSNV git_branch: RELEASE_3_20 git_last_commit: 44ed617 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/deepSNV_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/deepSNV_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/deepSNV_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/deepSNV_1.52.0.tgz vignettes: vignettes/deepSNV/inst/doc/deepSNV.pdf, vignettes/deepSNV/inst/doc/shearwater.pdf, vignettes/deepSNV/inst/doc/shearwaterML.html vignetteTitles: An R package for detecting low frequency variants in deep sequencing experiments, Subclonal variant calling with multiple samples and prior knowledge using shearwater, Shearwater ML hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/deepSNV/inst/doc/deepSNV.R, vignettes/deepSNV/inst/doc/shearwaterML.R, vignettes/deepSNV/inst/doc/shearwater.R importsMe: mitoClone2 suggestsMe: GenomicFiles dependencyCount: 81 Package: DeepTarget Version: 1.0.0 Depends: R (>= 4.2.0) Imports: fgsea, ggplot2, stringr, ggpubr, BiocParallel, pROC, stats, grDevices, graphics, depmap, readr, dplyr Suggests: BiocStyle, knitr, rmarkdown License: GPL-2 MD5sum: f915639c27146a68c56c4f495bb3da50 NeedsCompilation: no Title: Deep characterization of cancer drugs Description: This package predicts a drug’s primary target(s) or secondary target(s) by integrating large-scale genetic and drug screens from the Cancer Dependency Map project run by the Broad Institute. It further investigates whether the drug specifically targets the wild-type or mutated target forms. To show how to use this package in practice, we provided sample data along with step-by-step example. biocViews: GeneTarget, GenePrediction,Pathways, GeneExpression, RNASeq, ImmunoOncology,DifferentialExpression, GeneSetEnrichment, ReportWriting,CRISPR Author: Sanju Sinha [aut], Trinh Nguyen [aut, cre] (), Ying Hu [aut] Maintainer: Trinh Nguyen VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DeepTarget git_branch: RELEASE_3_20 git_last_commit: 5e2d027 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DeepTarget_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DeepTarget_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DeepTarget_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DeepTarget_1.0.0.tgz vignettes: vignettes/DeepTarget/inst/doc/DeepTarget_Vignette.html vignetteTitles: Workflow Demonstration for Deep characterization of cancer drugs hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DeepTarget/inst/doc/DeepTarget_Vignette.R dependencyCount: 139 Package: DEFormats Version: 1.34.0 Imports: checkmate, data.table, DESeq2, edgeR (>= 3.13.4), GenomicRanges, methods, S4Vectors, stats, SummarizedExperiment Suggests: BiocStyle (>= 1.8.0), knitr, rmarkdown, testthat License: GPL-3 Archs: x64 MD5sum: a0a1cd102dae3cf3e95e61067c3f8b80 NeedsCompilation: no Title: Differential gene expression data formats converter Description: Convert between different data formats used by differential gene expression analysis tools. biocViews: ImmunoOncology, DifferentialExpression, GeneExpression, RNASeq, Sequencing, Transcription Author: Andrzej Oleś Maintainer: Andrzej Oleś URL: https://github.com/aoles/DEFormats VignetteBuilder: knitr BugReports: https://github.com/aoles/DEFormats/issues git_url: https://git.bioconductor.org/packages/DEFormats git_branch: RELEASE_3_20 git_last_commit: e066b73 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DEFormats_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DEFormats_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DEFormats_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DEFormats_1.34.0.tgz vignettes: vignettes/DEFormats/inst/doc/DEFormats.html vignetteTitles: Differential gene expression data formats converter hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DEFormats/inst/doc/DEFormats.R importsMe: regionReport suggestsMe: ideal dependencyCount: 82 Package: DegCre Version: 1.2.0 Depends: R (>= 4.4) Imports: GenomicRanges, InteractionSet, plotgardener, S4Vectors, stats, graphics, grDevices, BiocGenerics, GenomeInfoDb, IRanges, BiocParallel, qvalue, TxDb.Hsapiens.UCSC.hg38.knownGene, org.Hs.eg.db, utils Suggests: BSgenome, BSgenome.Hsapiens.UCSC.hg38, BiocStyle, magick, knitr, rmarkdown, TxDb.Mmusculus.UCSC.mm10.knownGene, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: e20e09465bcfbff03f342e8a4619639d NeedsCompilation: no Title: Probabilistic association of DEGs to CREs from differential data Description: DegCre generates associations between differentially expressed genes (DEGs) and cis-regulatory elements (CREs) based on non-parametric concordance between differential data. The user provides GRanges of DEG TSS and CRE regions with differential p-value and optionally log-fold changes and DegCre returns an annotated Hits object with associations and their calculated probabilities. Additionally, the package provides functionality for visualization and conversion to other formats. biocViews: GeneExpression, GeneRegulation, ATACSeq, ChIPSeq, DNaseSeq, RNASeq Author: Brian S. Roberts [aut, cre] () Maintainer: Brian S. Roberts URL: https://github.com/brianSroberts/DegCre VignetteBuilder: knitr BugReports: https://github.com/brianSroberts/DegCre/issues git_url: https://git.bioconductor.org/packages/DegCre git_branch: RELEASE_3_20 git_last_commit: 49a300c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DegCre_1.2.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DegCre_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DegCre_1.1.0.tgz vignettes: vignettes/DegCre/inst/doc/degcre_introduction_and_examples.html vignetteTitles: DegCre Introduction and Examples hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/DegCre/inst/doc/degcre_introduction_and_examples.R dependencyCount: 122 Package: DegNorm Version: 1.16.0 Depends: R (>= 4.0.0), methods Imports: Rcpp (>= 1.0.2),GenomicFeatures, txdbmaker, parallel, foreach, S4Vectors, doParallel, Rsamtools (>= 1.31.2), GenomicAlignments, heatmaply, data.table, stats, ggplot2, GenomicRanges, IRanges, plyr, plotly, utils,viridis LinkingTo: Rcpp, RcppArmadillo,S4Vectors,IRanges Suggests: knitr,rmarkdown,formatR License: LGPL (>= 3) MD5sum: 8a748f1e380b01592e3ae7b67dab5db2 NeedsCompilation: yes Title: DegNorm: degradation normalization for RNA-seq data Description: This package performs degradation normalization in bulk RNA-seq data to improve differential expression analysis accuracy. biocViews: RNASeq, Normalization, GeneExpression, Alignment,Coverage, DifferentialExpression, BatchEffect,Software,Sequencing, ImmunoOncology, QualityControl, DataImport Author: Bin Xiong and Ji-Ping Wang Maintainer: Ji-Ping Wang VignetteBuilder: knitr BugReports: https://github.com/jipingw/DegNorm/issues git_url: https://git.bioconductor.org/packages/DegNorm git_branch: RELEASE_3_20 git_last_commit: c2580b9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DegNorm_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DegNorm_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DegNorm_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DegNorm_1.16.0.tgz vignettes: vignettes/DegNorm/inst/doc/DegNorm.html vignetteTitles: DegNorm hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DegNorm/inst/doc/DegNorm.R dependencyCount: 163 Package: DEGraph Version: 1.58.0 Depends: R (>= 2.10.0), R.utils Imports: graph, KEGGgraph, lattice, mvtnorm, R.methodsS3, RBGL, Rgraphviz, rrcov, NCIgraph Suggests: corpcor, fields, graph, KEGGgraph, lattice, marray, RBGL, rrcov, Rgraphviz, NCIgraph License: GPL-3 MD5sum: 34bf1f3fcf16cb6fa2ad9ea26595762e NeedsCompilation: no Title: Two-sample tests on a graph Description: DEGraph implements recent hypothesis testing methods which directly assess whether a particular gene network is differentially expressed between two conditions. This is to be contrasted with the more classical two-step approaches which first test individual genes, then test gene sets for enrichment in differentially expressed genes. These recent methods take into account the topology of the network to yield more powerful detection procedures. DEGraph provides methods to easily test all KEGG pathways for differential expression on any gene expression data set and tools to visualize the results. biocViews: Microarray, DifferentialExpression, GraphAndNetwork, Network, NetworkEnrichment, DecisionTree Author: Laurent Jacob, Pierre Neuvial and Sandrine Dudoit Maintainer: Laurent Jacob git_url: https://git.bioconductor.org/packages/DEGraph git_branch: RELEASE_3_20 git_last_commit: 30cb3c1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DEGraph_1.58.0.tar.gz vignettes: vignettes/DEGraph/inst/doc/DEGraph.pdf vignetteTitles: DEGraph: differential expression testing for gene networks hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DEGraph/inst/doc/DEGraph.R dependencyCount: 64 Package: DEGreport Version: 1.42.0 Depends: R (>= 4.0.0) Imports: utils, methods, Biobase, BiocGenerics, broom, circlize, ComplexHeatmap, cowplot, ConsensusClusterPlus, cluster, dendextend, DESeq2, dplyr, edgeR, ggplot2, ggdendro, grid, ggrepel, grDevices, knitr, logging, magrittr, psych, RColorBrewer, reshape, rlang, scales, stats, stringr, stringi, S4Vectors, SummarizedExperiment, tidyr, tibble Suggests: BiocStyle, AnnotationDbi, limma, pheatmap, rmarkdown, statmod, testthat License: MIT + file LICENSE MD5sum: 6fb70abc2614171e46f5abab6d9aad2a NeedsCompilation: no Title: Report of DEG analysis Description: Creation of ready-to-share figures of differential expression analyses of count data. It integrates some of the code mentioned in DESeq2 and edgeR vignettes, and report a ranked list of genes according to the fold changes mean and variability for each selected gene. biocViews: DifferentialExpression, Visualization, RNASeq, ReportWriting, GeneExpression, ImmunoOncology Author: Lorena Pantano [aut, cre], John Hutchinson [ctb], Victor Barrera [ctb], Mary Piper [ctb], Radhika Khetani [ctb], Kenneth Daily [ctb], Thanneer Malai Perumal [ctb], Rory Kirchner [ctb], Michael Steinbaugh [ctb], Ivo Zeller [ctb] Maintainer: Lorena Pantano URL: http://lpantano.github.io/DEGreport/ VignetteBuilder: knitr BugReports: https://github.com/lpantano/DEGreport/issues git_url: https://git.bioconductor.org/packages/DEGreport git_branch: RELEASE_3_20 git_last_commit: fa4a10b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DEGreport_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DEGreport_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DEGreport_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DEGreport_1.42.0.tgz vignettes: vignettes/DEGreport/inst/doc/DEGreport.html vignetteTitles: QC and downstream analysis for differential expression RNA-seq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/DEGreport/inst/doc/DEGreport.R importsMe: isomiRs dependencyCount: 121 Package: DEGseq Version: 1.60.0 Depends: R (>= 2.8.0), qvalue, methods Imports: graphics, grDevices, methods, stats, utils License: LGPL (>=2) Archs: x64 MD5sum: 145b014bc5a5494fdc9d361b383c9017 NeedsCompilation: yes Title: Identify Differentially Expressed Genes from RNA-seq data Description: DEGseq is an R package to identify differentially expressed genes from RNA-Seq data. biocViews: RNASeq, Preprocessing, GeneExpression, DifferentialExpression, ImmunoOncology Author: Likun Wang , Xiaowo Wang and Xuegong Zhang . Maintainer: Likun Wang git_url: https://git.bioconductor.org/packages/DEGseq git_branch: RELEASE_3_20 git_last_commit: 710c6a3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DEGseq_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DEGseq_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DEGseq_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DEGseq_1.60.0.tgz vignettes: vignettes/DEGseq/inst/doc/DEGseq.pdf vignetteTitles: DEGseq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DEGseq/inst/doc/DEGseq.R dependencyCount: 42 Package: DelayedArray Version: 0.32.0 Depends: R (>= 4.0.0), methods, stats4, Matrix, BiocGenerics (>= 0.51.3), MatrixGenerics (>= 1.1.3), S4Vectors (>= 0.27.2), IRanges (>= 2.17.3), S4Arrays (>= 1.5.4), SparseArray (>= 1.5.42) Imports: stats LinkingTo: S4Vectors Suggests: BiocParallel, HDF5Array (>= 1.17.12), genefilter, SummarizedExperiment, airway, lobstr, DelayedMatrixStats, knitr, rmarkdown, BiocStyle, RUnit License: Artistic-2.0 MD5sum: 518800dac5483993eae24c728967cb7d NeedsCompilation: yes Title: A unified framework for working transparently with on-disk and in-memory array-like datasets Description: Wrapping an array-like object (typically an on-disk object) in a DelayedArray object allows one to perform common array operations on it without loading the object in memory. In order to reduce memory usage and optimize performance, operations on the object are either delayed or executed using a block processing mechanism. Note that this also works on in-memory array-like objects like DataFrame objects (typically with Rle columns), Matrix objects, ordinary arrays and, data frames. biocViews: Infrastructure, DataRepresentation, Annotation, GenomeAnnotation Author: Hervé Pagès [aut, cre], Aaron Lun [ctb], Peter Hickey [ctb] Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/DelayedArray VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/DelayedArray/issues git_url: https://git.bioconductor.org/packages/DelayedArray git_branch: RELEASE_3_20 git_last_commit: 980c34e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DelayedArray_0.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DelayedArray_0.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DelayedArray_0.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DelayedArray_0.32.0.tgz vignettes: vignettes/DelayedArray/inst/doc/A-Working_with_large_arrays.pdf, vignettes/DelayedArray/inst/doc/C-DelayedArray_HDF5Array_update.pdf, vignettes/DelayedArray/inst/doc/B-Implementing_a_backend.html vignetteTitles: 1. Working with large arrays in R (slides from July 2017), 3. A DelayedArray / HDF5Array update (slides from April 2021), 2. Implementing A DelayedArray Backend hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DelayedArray/inst/doc/A-Working_with_large_arrays.R, vignettes/DelayedArray/inst/doc/C-DelayedArray_HDF5Array_update.R dependsOnMe: chihaya, DelayedDataFrame, DelayedMatrixStats, DelayedRandomArray, GDSArray, HDF5Array, Rarr, rhdf5client, SCArray, singleCellTK, SQLDataFrame, TileDBArray, VCFArray importsMe: adverSCarial, alabaster.matrix, AUCell, batchelor, beachmat, beachmat.hdf5, BiocSingular, bsseq, celaref, celda, Cepo, ChromSCape, clusterExperiment, concordexR, CRISPRseek, cytomapper, decontX, DelayedTensor, DEScan2, dreamlet, DropletUtils, ELMER, EWCE, flowWorkspace, FRASER, GenomicScores, glmGamPoi, GSVA, hipathia, LoomExperiment, mariner, mbkmeans, methodical, methrix, methylSig, mia, miaViz, minfi, MOFA2, MuData, MultiAssayExperiment, mumosa, NetActivity, netSmooth, NewWave, orthogene, orthos, PCAtools, ResidualMatrix, RTCGAToolbox, ScaledMatrix, SCArray.sat, scater, scDblFinder, scFeatures, scMerge, scmeth, scPCA, scran, scrapper, scry, scuttle, signatureSearch, SingleCellAlleleExperiment, SingleCellExperiment, SingleR, sketchR, SpliceWiz, SummarizedExperiment, transformGamPoi, TSCAN, VariantExperiment, velociraptor, Voyager, weitrix, xcore, zellkonverter, ZygosityPredictor, celldex, imcdatasets, scRNAseq, ebvcube, scDiffCom suggestsMe: BiocGenerics, ChIPpeakAnno, gwascat, hermes, iSEE, lute, MAST, MatrixGenerics, ProteoDisco, S4Arrays, S4Vectors, satuRn, SPOTlight, TrajectoryUtils, Seurat, SeuratObject, SpatialDDLS dependencyCount: 21 Package: DelayedDataFrame Version: 1.22.0 Depends: R (>= 3.6), S4Vectors (>= 0.23.19), DelayedArray (>= 0.7.5) Imports: methods, stats, BiocGenerics Suggests: testthat, knitr, rmarkdown, BiocStyle, SeqArray, GDSArray License: GPL-3 Archs: x64 MD5sum: 9dbea588b6d677efbb0917b8a6674cd2 NeedsCompilation: no Title: Delayed operation on DataFrame using standard DataFrame metaphor Description: Based on the standard DataFrame metaphor, we are trying to implement the feature of delayed operation on the DelayedDataFrame, with a slot of lazyIndex, which saves the mapping indexes for each column of DelayedDataFrame. Methods like show, validity check, [/[[ subsetting, rbind/cbind are implemented for DelayedDataFrame to be operated around lazyIndex. The listData slot stays untouched until a realization call e.g., DataFrame constructor OR as.list() is invoked. biocViews: Infrastructure, DataRepresentation Author: Qian Liu [aut, cre], Hervé Pagès [aut], Martin Morgan [aut] Maintainer: Qian Liu URL: https://github.com/Bioconductor/DelayedDataFrame VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/DelayedDataFrame/issues git_url: https://git.bioconductor.org/packages/DelayedDataFrame git_branch: RELEASE_3_20 git_last_commit: 2d2806b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DelayedDataFrame_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DelayedDataFrame_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DelayedDataFrame_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DelayedDataFrame_1.22.0.tgz vignettes: vignettes/DelayedDataFrame/inst/doc/DelayedDataFrame.html vignetteTitles: DelayedDataFrame hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DelayedDataFrame/inst/doc/DelayedDataFrame.R importsMe: VariantExperiment dependencyCount: 22 Package: DelayedMatrixStats Version: 1.28.0 Depends: MatrixGenerics (>= 1.15.1), DelayedArray (>= 0.31.7) Imports: methods, sparseMatrixStats (>= 1.13.2), Matrix (>= 1.5-0), S4Vectors (>= 0.17.5), IRanges (>= 2.25.10), SparseArray (>= 1.5.19) Suggests: testthat, knitr, rmarkdown, BiocStyle, microbenchmark, profmem, HDF5Array, matrixStats (>= 1.0.0) License: MIT + file LICENSE Archs: x64 MD5sum: 1417e01b05f813b1955f3bd2cc62043c NeedsCompilation: no Title: Functions that Apply to Rows and Columns of 'DelayedMatrix' Objects Description: A port of the 'matrixStats' API for use with DelayedMatrix objects from the 'DelayedArray' package. High-performing functions operating on rows and columns of DelayedMatrix objects, e.g. col / rowMedians(), col / rowRanks(), and col / rowSds(). Functions optimized per data type and for subsetted calculations such that both memory usage and processing time is minimized. biocViews: Infrastructure, DataRepresentation, Software Author: Peter Hickey [aut, cre] (), Hervé Pagès [ctb], Aaron Lun [ctb] Maintainer: Peter Hickey URL: https://github.com/PeteHaitch/DelayedMatrixStats VignetteBuilder: knitr BugReports: https://github.com/PeteHaitch/DelayedMatrixStats/issues git_url: https://git.bioconductor.org/packages/DelayedMatrixStats git_branch: RELEASE_3_20 git_last_commit: 1cf7f74 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DelayedMatrixStats_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DelayedMatrixStats_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DelayedMatrixStats_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DelayedMatrixStats_1.28.0.tgz vignettes: vignettes/DelayedMatrixStats/inst/doc/DelayedMatrixStatsOverview.html vignetteTitles: Overview of DelayedMatrixStats hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/DelayedMatrixStats/inst/doc/DelayedMatrixStatsOverview.R importsMe: AUCell, batchelor, biscuiteer, bsseq, Cepo, dmrseq, dreamlet, DropletUtils, FRASER, glmGamPoi, GSVA, lemur, methrix, methylSig, mia, minfi, mumosa, NetActivity, PCAtools, recountmethylation, SCArray, scFeatures, scMerge, scone, singleCellTK, SingleR, sparrow, SpliceWiz, weitrix, celldex suggestsMe: condiments, DelayedArray, EWCE, HDF5Array, lute, MatrixGenerics, mbkmeans, ScaledMatrix, scater, scPCA, scran, scuttle, slingshot, tradeSeq, TrajectoryUtils, SpatialDDLS dependencyCount: 24 Package: DelayedRandomArray Version: 1.14.0 Depends: SparseArray (>= 1.5.15), DelayedArray (>= 0.31.6) Imports: methods, dqrng, Rcpp LinkingTo: dqrng, BH, Rcpp Suggests: testthat, knitr, BiocStyle, rmarkdown, Matrix License: GPL-3 MD5sum: 1f0a54dc7043aa1fb5ae32e44d1b5249 NeedsCompilation: yes Title: Delayed Arrays of Random Values Description: Implements a DelayedArray of random values where the realization of the sampled values is delayed until they are needed. Reproducible sampling within any subarray is achieved by chunking where each chunk is initialized with a different random seed and stream. The usual distributions in the stats package are supported, along with scalar, vector and arrays for the parameters. biocViews: DataRepresentation Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun URL: https://github.com/LTLA/DelayedRandomArray SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/LTLA/DelayedRandomArray/issues git_url: https://git.bioconductor.org/packages/DelayedRandomArray git_branch: RELEASE_3_20 git_last_commit: a2f1a94 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DelayedRandomArray_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DelayedRandomArray_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DelayedRandomArray_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DelayedRandomArray_1.14.0.tgz vignettes: vignettes/DelayedRandomArray/inst/doc/userguide.html vignetteTitles: User's guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DelayedRandomArray/inst/doc/userguide.R importsMe: DelayedTensor dependencyCount: 26 Package: DelayedTensor Version: 1.12.0 Depends: R (>= 4.1.0) Imports: methods, utils, S4Arrays, SparseArray, DelayedArray (>= 0.31.8), HDF5Array, BiocSingular, rTensor, DelayedRandomArray (>= 1.13.1), irlba, Matrix, einsum, Suggests: markdown, rmarkdown, BiocStyle, knitr, testthat, magrittr, dplyr, reticulate License: Artistic-2.0 MD5sum: a49d895a1b5c9a63ce9bd298119907fb NeedsCompilation: no Title: R package for sparse and out-of-core arithmetic and decomposition of Tensor Description: DelayedTensor operates Tensor arithmetic directly on DelayedArray object. DelayedTensor provides some generic function related to Tensor arithmetic/decompotision and dispatches it on the DelayedArray class. DelayedTensor also suppors Tensor contraction by einsum function, which is inspired by numpy einsum. biocViews: Software, Infrastructure, DataRepresentation, DimensionReduction Author: Koki Tsuyuzaki [aut, cre] Maintainer: Koki Tsuyuzaki VignetteBuilder: knitr BugReports: https://github.com/rikenbit/DelayedTensor/issues git_url: https://git.bioconductor.org/packages/DelayedTensor git_branch: RELEASE_3_20 git_last_commit: a576fe4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DelayedTensor_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DelayedTensor_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DelayedTensor_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DelayedTensor_1.12.0.tgz vignettes: vignettes/DelayedTensor/inst/doc/DelayedTensor_1.html, vignettes/DelayedTensor/inst/doc/DelayedTensor_2.html, vignettes/DelayedTensor/inst/doc/DelayedTensor_3.html, vignettes/DelayedTensor/inst/doc/DelayedTensor_4.html vignetteTitles: DelayedTensor, TensorArithmetic, TensorDecomposition, Einsum hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DelayedTensor/inst/doc/DelayedTensor_1.R, vignettes/DelayedTensor/inst/doc/DelayedTensor_2.R, vignettes/DelayedTensor/inst/doc/DelayedTensor_3.R, vignettes/DelayedTensor/inst/doc/DelayedTensor_4.R dependencyCount: 50 Package: DELocal Version: 1.6.0 Imports: DESeq2, dplyr, reshape2, limma, SummarizedExperiment, ggplot2, matrixStats, stats Suggests: biomaRt, knitr, rmarkdown, stringr, BiocStyle License: MIT + file LICENSE Archs: x64 MD5sum: bf1f669d1cfeb5fc1b7e5b448a46ffac NeedsCompilation: no Title: Identifies differentially expressed genes with respect to other local genes Description: The goal of DELocal is to identify DE genes compared to their neighboring genes from the same chromosomal location. It has been shown that genes of related functions are generally very far from each other in the chromosome. DELocal utilzes this information to identify DE genes comparing with their neighbouring genes. biocViews: GeneExpression, DifferentialExpression, RNASeq, Transcriptomics Author: Rishi Das Roy [aut, cre] () Maintainer: Rishi Das Roy URL: https://github.com/dasroy/DELocal VignetteBuilder: knitr BugReports: https://github.com/dasroy/DELocal/issues git_url: https://git.bioconductor.org/packages/DELocal git_branch: RELEASE_3_20 git_last_commit: 5d503b9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DELocal_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DELocal_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DELocal_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DELocal_1.6.0.tgz vignettes: vignettes/DELocal/inst/doc/DELocal.html vignetteTitles: DELocal hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/DELocal/inst/doc/DELocal.R importsMe: broadSeq dependencyCount: 85 Package: deltaCaptureC Version: 1.20.0 Depends: R (>= 3.6) Imports: IRanges, GenomicRanges, SummarizedExperiment, ggplot2, DESeq2, tictoc Suggests: knitr, rmarkdown License: MIT + file LICENSE MD5sum: 60553473556a2603e8b2e3ead74e6078 NeedsCompilation: no Title: This Package Discovers Meso-scale Chromatin Remodeling from 3C Data Description: This package discovers meso-scale chromatin remodelling from 3C data. 3C data is local in nature. It givens interaction counts between restriction enzyme digestion fragments and a preferred 'viewpoint' region. By binning this data and using permutation testing, this package can test whether there are statistically significant changes in the interaction counts between the data from two cell types or two treatments. biocViews: BiologicalQuestion, StatisticalMethod Author: Michael Shapiro [aut, cre] () Maintainer: Michael Shapiro VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/deltaCaptureC git_branch: RELEASE_3_20 git_last_commit: 24996f5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/deltaCaptureC_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/deltaCaptureC_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/deltaCaptureC_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/deltaCaptureC_1.20.0.tgz vignettes: vignettes/deltaCaptureC/inst/doc/deltaCaptureC.html vignetteTitles: Delta Capture-C hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/deltaCaptureC/inst/doc/deltaCaptureC.R dependencyCount: 77 Package: deltaGseg Version: 1.46.0 Depends: R (>= 2.15.1), methods, ggplot2, changepoint, wavethresh, tseries, pvclust, fBasics, grid, reshape, scales Suggests: knitr License: GPL-2 MD5sum: 0ca03a53234fb95dd82971bbd443d912 NeedsCompilation: no Title: deltaGseg Description: Identifying distinct subpopulations through multiscale time series analysis biocViews: Proteomics, TimeCourse, Visualization, Clustering Author: Diana Low, Efthymios Motakis Maintainer: Diana Low VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/deltaGseg git_branch: RELEASE_3_20 git_last_commit: f608068 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/deltaGseg_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/deltaGseg_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/deltaGseg_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/deltaGseg_1.46.0.tgz vignettes: vignettes/deltaGseg/inst/doc/deltaGseg.pdf vignetteTitles: deltaGseg hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/deltaGseg/inst/doc/deltaGseg.R dependencyCount: 55 Package: DeMAND Version: 1.36.0 Depends: R (>= 2.14.0), KernSmooth, methods License: file LICENSE MD5sum: 95e46f54af4ce19f9d6c81ad31d13aed NeedsCompilation: no Title: DeMAND Description: DEMAND predicts Drug MoA by interrogating a cell context specific regulatory network with a small number (N >= 6) of compound-induced gene expression signatures, to elucidate specific proteins whose interactions in the network is dysregulated by the compound. biocViews: SystemsBiology, NetworkEnrichment, GeneExpression, StatisticalMethod, Network Author: Jung Hoon Woo , Yishai Shimoni Maintainer: Jung Hoon Woo , Mariano Alvarez git_url: https://git.bioconductor.org/packages/DeMAND git_branch: RELEASE_3_20 git_last_commit: 6a3e15d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DeMAND_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DeMAND_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DeMAND_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DeMAND_1.36.0.tgz vignettes: vignettes/DeMAND/inst/doc/DeMAND.pdf vignetteTitles: Using DeMAND hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/DeMAND/inst/doc/DeMAND.R dependencyCount: 3 Package: DeMixT Version: 1.22.0 Depends: R (>= 3.6.0), parallel, Rcpp (>= 1.0.0), SummarizedExperiment, knitr, KernSmooth, matrixcalc, rmarkdown, DSS, dendextend, psych, sva Imports: matrixStats, stats, truncdist, base64enc, ggplot2 LinkingTo: Rcpp License: GPL-3 MD5sum: eb2787dc4a420364dc9af2b2f8262cc1 NeedsCompilation: yes Title: Cell type-specific deconvolution of heterogeneous tumor samples with two or three components using expression data from RNAseq or microarray platforms Description: DeMixT is a software package that performs deconvolution on transcriptome data from a mixture of two or three components. biocViews: Software, StatisticalMethod, Classification, GeneExpression, Sequencing, Microarray, TissueMicroarray, Coverage Author: Zeya Wang , Shaolong Cao, Wenyi Wang Maintainer: Ruonan Li VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DeMixT git_branch: RELEASE_3_20 git_last_commit: 71bb355 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DeMixT_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DeMixT_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DeMixT_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DeMixT_1.22.0.tgz vignettes: vignettes/DeMixT/inst/doc/demixt.html vignetteTitles: DeMixT.Rmd hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DeMixT/inst/doc/demixt.R dependencyCount: 149 Package: demuxmix Version: 1.8.0 Depends: R (>= 4.0.0) Imports: stats, MASS, Matrix, ggplot2, gridExtra, methods Suggests: BiocStyle, cowplot, DropletUtils, knitr, reshape2, rmarkdown, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: c0fd77abf91ae084a776a415876a3bea NeedsCompilation: no Title: Demultiplexing oligo-barcoded scRNA-seq data using regression mixture models Description: A package for demultiplexing single-cell sequencing experiments of pooled cells labeled with barcode oligonucleotides. The package implements methods to fit regression mixture models for a probabilistic classification of cells, including multiplet detection. Demultiplexing error rates can be estimated, and methods for quality control are provided. biocViews: SingleCell, Sequencing, Preprocessing, Classification, Regression Author: Hans-Ulrich Klein [aut, cre] () Maintainer: Hans-Ulrich Klein URL: https://github.com/huklein/demuxmix VignetteBuilder: knitr BugReports: https://github.com/huklein/demuxmix/issues git_url: https://git.bioconductor.org/packages/demuxmix git_branch: RELEASE_3_20 git_last_commit: 62f089e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/demuxmix_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/demuxmix_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/demuxmix_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/demuxmix_1.8.0.tgz vignettes: vignettes/demuxmix/inst/doc/demuxmix.html vignetteTitles: Demultiplexing cells with demuxmix hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/demuxmix/inst/doc/demuxmix.R importsMe: demuxSNP dependencyCount: 36 Package: demuxSNP Version: 1.4.0 Depends: R (>= 4.3.0), SingleCellExperiment, VariantAnnotation, ensembldb Imports: MatrixGenerics, BiocGenerics, class, GenomeInfoDb, IRanges, Matrix, SummarizedExperiment, demuxmix, methods, KernelKnn, dplyr Suggests: knitr, rmarkdown, ComplexHeatmap, viridisLite, ggpubr, dittoSeq, EnsDb.Hsapiens.v86, BiocStyle, RefManageR, testthat (>= 3.0.0), Seurat License: GPL-3 Archs: x64 MD5sum: 3b31e85995d4a7c5a2f43a26bc515cfe NeedsCompilation: no Title: scRNAseq demultiplexing using cell hashing and SNPs Description: This package assists in demultiplexing scRNAseq data using both cell hashing and SNPs data. The SNP profile of each group os learned using high confidence assignments from the cell hashing data. Cells which cannot be assigned with high confidence from the cell hashing data are assigned to their most similar group based on their SNPs. We also provide some helper function to optimise SNP selection, create training data and merge SNP data into the SingleCellExperiment framework. biocViews: Classification, SingleCell Author: Michael Lynch [aut, cre] (), Aedin Culhane [aut] () Maintainer: Michael Lynch URL: https://github.com/michaelplynch/demuxSNP VignetteBuilder: knitr BugReports: https://github.com/michaelplynch/demuxSNP/issues git_url: https://git.bioconductor.org/packages/demuxSNP git_branch: RELEASE_3_20 git_last_commit: f7d4f62 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/demuxSNP_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/demuxSNP_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/demuxSNP_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/demuxSNP_1.4.0.tgz vignettes: vignettes/demuxSNP/inst/doc/supervised_demultiplexing.html vignetteTitles: Supervised Demultiplexing using Cell Hashing and SNPs hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/demuxSNP/inst/doc/supervised_demultiplexing.R dependencyCount: 113 Package: densvis Version: 1.16.0 Imports: Rcpp, basilisk, assertthat, reticulate, Rtsne, irlba LinkingTo: Rcpp Suggests: knitr, rmarkdown, BiocStyle, ggplot2, uwot, testthat License: MIT + file LICENSE MD5sum: 7a064a7b3f4051ea071e9704bfe8817e NeedsCompilation: yes Title: Density-Preserving Data Visualization via Non-Linear Dimensionality Reduction Description: Implements the density-preserving modification to t-SNE and UMAP described by Narayan et al. (2020) . The non-linear dimensionality reduction techniques t-SNE and UMAP enable users to summarise complex high-dimensional sequencing data such as single cell RNAseq using lower dimensional representations. These lower dimensional representations enable the visualisation of discrete transcriptional states, as well as continuous trajectory (for example, in early development). However, these methods focus on the local neighbourhood structure of the data. In some cases, this results in misleading visualisations, where the density of cells in the low-dimensional embedding does not represent the transcriptional heterogeneity of data in the original high-dimensional space. den-SNE and densMAP aim to enable more accurate visual interpretation of high-dimensional datasets by producing lower-dimensional embeddings that accurately represent the heterogeneity of the original high-dimensional space, enabling the identification of homogeneous and heterogeneous cell states. This accuracy is accomplished by including in the optimisation process a term which considers the local density of points in the original high-dimensional space. This can help to create visualisations that are more representative of heterogeneity in the original high-dimensional space. biocViews: DimensionReduction, Visualization, Software, SingleCell, Sequencing Author: Alan O'Callaghan [aut, cre], Ashwinn Narayan [aut], Hyunghoon Cho [aut] Maintainer: Alan O'Callaghan URL: https://bioconductor.org/packages/densvis VignetteBuilder: knitr BugReports: https://github.com/Alanocallaghan/densvis/issues git_url: https://git.bioconductor.org/packages/densvis git_branch: RELEASE_3_20 git_last_commit: c6a55af git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/densvis_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/densvis_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/densvis_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/densvis_1.16.0.tgz vignettes: vignettes/densvis/inst/doc/densvis.html vignetteTitles: Introduction to densvis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/densvis/inst/doc/densvis.R suggestsMe: scater dependencyCount: 27 Package: DEP Version: 1.28.0 Depends: R (>= 3.5) Imports: ggplot2, dplyr, purrr, readr, tibble, tidyr, SummarizedExperiment (>= 1.11.5), MSnbase, limma, vsn, fdrtool, ggrepel, ComplexHeatmap, RColorBrewer, circlize, shiny, shinydashboard, DT, rmarkdown, assertthat, gridExtra, grid, stats, imputeLCMD, cluster Suggests: testthat, enrichR, knitr, BiocStyle License: Artistic-2.0 MD5sum: e3c15ed03cc63a3d310192734f426cc7 NeedsCompilation: no Title: Differential Enrichment analysis of Proteomics data Description: This package provides an integrated analysis workflow for robust and reproducible analysis of mass spectrometry proteomics data for differential protein expression or differential enrichment. It requires tabular input (e.g. txt files) as generated by quantitative analysis softwares of raw mass spectrometry data, such as MaxQuant or IsobarQuant. Functions are provided for data preparation, filtering, variance normalization and imputation of missing values, as well as statistical testing of differentially enriched / expressed proteins. It also includes tools to check intermediate steps in the workflow, such as normalization and missing values imputation. Finally, visualization tools are provided to explore the results, including heatmap, volcano plot and barplot representations. For scientists with limited experience in R, the package also contains wrapper functions that entail the complete analysis workflow and generate a report. Even easier to use are the interactive Shiny apps that are provided by the package. biocViews: ImmunoOncology, Proteomics, MassSpectrometry, DifferentialExpression, DataRepresentation Author: Arne Smits [cre, aut], Wolfgang Huber [aut] Maintainer: Arne Smits VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DEP git_branch: RELEASE_3_20 git_last_commit: 609a72c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DEP_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DEP_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DEP_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DEP_1.28.0.tgz vignettes: vignettes/DEP/inst/doc/DEP.html, vignettes/DEP/inst/doc/MissingValues.html vignetteTitles: DEP: Introduction, DEP: Missing value handling hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DEP/inst/doc/DEP.R, vignettes/DEP/inst/doc/MissingValues.R suggestsMe: proDA, RforProteomics dependencyCount: 171 Package: DepecheR Version: 1.22.0 Depends: R (>= 4.0) Imports: ggplot2 (>= 3.1.0), MASS (>= 7.3.51), Rcpp (>= 1.0.0), dplyr (>= 0.7.8), gplots (>= 3.0.1), viridis (>= 0.5.1), foreach (>= 1.4.4), doSNOW (>= 1.0.16), matrixStats (>= 0.54.0), mixOmics (>= 6.6.1), moments (>= 0.14), grDevices (>= 3.5.2), graphics (>= 3.5.2), stats (>= 3.5.2), utils (>= 3.5), methods (>= 3.5), parallel (>= 3.5.2), reshape2 (>= 1.4.3), beanplot (>= 1.2), FNN (>= 1.1.3), robustbase (>= 0.93.5), gmodels (>= 2.18.1), collapse (>= 1.9.2), ClusterR (>= 1.3.2) LinkingTo: Rcpp, RcppEigen Suggests: uwot, testthat, knitr, rmarkdown, BiocStyle License: MIT + file LICENSE Archs: x64 MD5sum: 92e4d0d9bdaa1db09f4a2785693aa15e NeedsCompilation: yes Title: Determination of essential phenotypic elements of clusters in high-dimensional entities Description: The purpose of this package is to identify traits in a dataset that can separate groups. This is done on two levels. First, clustering is performed, using an implementation of sparse K-means. Secondly, the generated clusters are used to predict outcomes of groups of individuals based on their distribution of observations in the different clusters. As certain clusters with separating information will be identified, and these clusters are defined by a sparse number of variables, this method can reduce the complexity of data, to only emphasize the data that actually matters. biocViews: Software,CellBasedAssays,Transcription,DifferentialExpression, DataRepresentation,ImmunoOncology,Transcriptomics,Classification,Clustering, DimensionReduction,FeatureExtraction,FlowCytometry,RNASeq,SingleCell, Visualization Author: Jakob Theorell [aut, cre] (), Axel Theorell [aut] Maintainer: Jakob Theorell VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DepecheR git_branch: RELEASE_3_20 git_last_commit: 0f0d9e5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/DepecheR_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DepecheR_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DepecheR_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DepecheR_1.22.0.tgz vignettes: vignettes/DepecheR/inst/doc/DepecheR_test.html, vignettes/DepecheR/inst/doc/GroupProbPlot_usage.html vignetteTitles: Example of a cytometry data analysis with DepecheR, Using the groupProbPlot plot function for single-cell probability display hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/DepecheR/inst/doc/DepecheR_test.R, vignettes/DepecheR/inst/doc/GroupProbPlot_usage.R suggestsMe: flowSpecs dependencyCount: 111 Package: DepInfeR Version: 1.10.0 Depends: R (>= 4.2.0) Imports: matrixStats, glmnet, stats, BiocParallel Suggests: testthat (>= 3.0.0), knitr, rmarkdown, dplyr, tidyr, tibble, ggplot2, missForest, pheatmap, RColorBrewer, ggrepel, BiocStyle, ggbeeswarm License: GPL-3 MD5sum: 9b73ea2db7a9bf683124b5ba5d603c50 NeedsCompilation: no Title: Inferring tumor-specific cancer dependencies through integrating ex-vivo drug response assays and drug-protein profiling Description: DepInfeR integrates two experimentally accessible input data matrices: the drug sensitivity profiles of cancer cell lines or primary tumors ex-vivo (X), and the drug affinities of a set of proteins (Y), to infer a matrix of molecular protein dependencies of the cancers (ß). DepInfeR deconvolutes the protein inhibition effect on the viability phenotype by using regularized multivariate linear regression. It assigns a “dependence coefficient” to each protein and each sample, and therefore could be used to gain a causal and accurate understanding of functional consequences of genomic aberrations in a heterogeneous disease, as well as to guide the choice of pharmacological intervention for a specific cancer type, sub-type, or an individual patient. For more information, please read out preprint on bioRxiv: https://doi.org/10.1101/2022.01.11.475864. biocViews: Software, Regression, Pharmacogenetics, Pharmacogenomics, FunctionalGenomics Author: Junyan Lu [aut, cre] (), Alina Batzilla [aut] Maintainer: Junyan Lu VignetteBuilder: knitr BugReports: https://github.com/Huber-group-EMBL/DepInfeR/issues git_url: https://git.bioconductor.org/packages/DepInfeR git_branch: RELEASE_3_20 git_last_commit: 90d1c1a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DepInfeR_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DepInfeR_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DepInfeR_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DepInfeR_1.10.0.tgz vignettes: vignettes/DepInfeR/inst/doc/vignette.html vignetteTitles: DepInfeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DepInfeR/inst/doc/vignette.R dependencyCount: 27 Package: DEqMS Version: 1.24.0 Depends: R(>= 3.5),graphics,stats,ggplot2,matrixStats,limma(>= 3.34) Suggests: BiocStyle,knitr,rmarkdown,markdown,plyr,reshape2,utils,ggrepel,ExperimentHub,LSD License: LGPL Archs: x64 MD5sum: 8eaf7116c761b1cb77ba33ff389536d9 NeedsCompilation: no Title: a tool to perform statistical analysis of differential protein expression for quantitative proteomics data. Description: DEqMS is developped on top of Limma. However, Limma assumes same prior variance for all genes. In proteomics, the accuracy of protein abundance estimates varies by the number of peptides/PSMs quantified in both label-free and labelled data. Proteins quantification by multiple peptides or PSMs are more accurate. DEqMS package is able to estimate different prior variances for proteins quantified by different number of PSMs/peptides, therefore acchieving better accuracy. The package can be applied to analyze both label-free and labelled proteomics data. biocViews: ImmunoOncology, Proteomics, MassSpectrometry, Preprocessing, DifferentialExpression, MultipleComparison,Normalization,Bayesian,ExperimentHubSoftware Author: Yafeng Zhu Maintainer: Yafeng Zhu VignetteBuilder: knitr BugReports: https://github.com/yafeng/DEqMS/issues git_url: https://git.bioconductor.org/packages/DEqMS git_branch: RELEASE_3_20 git_last_commit: cd119ff git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DEqMS_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DEqMS_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DEqMS_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DEqMS_1.24.0.tgz vignettes: vignettes/DEqMS/inst/doc/DEqMS-package-vignette.html vignetteTitles: DEqMS R Markdown vignettes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DEqMS/inst/doc/DEqMS-package-vignette.R importsMe: PRONE dependencyCount: 38 Package: derfinder Version: 1.40.0 Depends: R (>= 3.5.0) Imports: BiocGenerics (>= 0.25.1), AnnotationDbi (>= 1.27.9), BiocParallel (>= 1.15.15), bumphunter (>= 1.9.2), derfinderHelper (>= 1.1.0), GenomeInfoDb (>= 1.3.3), GenomicAlignments, GenomicFeatures, GenomicFiles, GenomicRanges (>= 1.17.40), Hmisc, IRanges (>= 2.3.23), methods, qvalue (>= 1.99.0), Rsamtools (>= 1.25.0), rtracklayer, S4Vectors (>= 0.23.19), stats, utils Suggests: BiocStyle (>= 2.5.19), sessioninfo, derfinderData (>= 0.99.0), derfinderPlot, DESeq2, ggplot2, knitr (>= 1.6), limma, RefManageR, rmarkdown (>= 0.3.3), testthat (>= 2.1.0), TxDb.Hsapiens.UCSC.hg19.knownGene, covr License: Artistic-2.0 MD5sum: ed63e8dd5060fbfc0dac93c18ada5876 NeedsCompilation: no Title: Annotation-agnostic differential expression analysis of RNA-seq data at base-pair resolution via the DER Finder approach Description: This package provides functions for annotation-agnostic differential expression analysis of RNA-seq data. Two implementations of the DER Finder approach are included in this package: (1) single base-level F-statistics and (2) DER identification at the expressed regions-level. The DER Finder approach can also be used to identify differentially bounded ChIP-seq peaks. biocViews: DifferentialExpression, Sequencing, RNASeq, ChIPSeq, DifferentialPeakCalling, Software, ImmunoOncology, Coverage Author: Leonardo Collado-Torres [aut, cre] (), Alyssa C. Frazee [ctb], Andrew E. Jaffe [aut] (), Jeffrey T. Leek [aut, ths] () Maintainer: Leonardo Collado-Torres URL: https://github.com/lcolladotor/derfinder VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/derfinder/ git_url: https://git.bioconductor.org/packages/derfinder git_branch: RELEASE_3_20 git_last_commit: 245c1b5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/derfinder_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/derfinder_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/derfinder_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/derfinder_1.40.0.tgz vignettes: vignettes/derfinder/inst/doc/derfinder-quickstart.html, vignettes/derfinder/inst/doc/derfinder-users-guide.html vignetteTitles: derfinder quick start guide, derfinder users guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/derfinder/inst/doc/derfinder-quickstart.R, vignettes/derfinder/inst/doc/derfinder-users-guide.R importsMe: derfinderPlot, recount, regionReport, GenomicState, recountWorkflow suggestsMe: megadepth dependencyCount: 144 Package: derfinderHelper Version: 1.40.0 Depends: R(>= 3.2.2) Imports: IRanges (>= 1.99.27), Matrix, methods, S4Vectors (>= 0.2.2) Suggests: sessioninfo, knitr (>= 1.6), BiocStyle (>= 2.5.19), RefManageR, rmarkdown (>= 0.3.3), testthat, covr License: Artistic-2.0 MD5sum: 214937e15ae7769c646482c71ca7f02a NeedsCompilation: no Title: derfinder helper package Description: Helper package for speeding up the derfinder package when using multiple cores. This package is particularly useful when using BiocParallel and it helps reduce the time spent loading the full derfinder package when running the F-statistics calculation in parallel. biocViews: DifferentialExpression, Sequencing, RNASeq, Software, ImmunoOncology Author: Leonardo Collado-Torres [aut, cre] (), Andrew E. Jaffe [aut] (), Jeffrey T. Leek [aut, ths] () Maintainer: Leonardo Collado-Torres URL: https://github.com/leekgroup/derfinderHelper VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/derfinderHelper git_url: https://git.bioconductor.org/packages/derfinderHelper git_branch: RELEASE_3_20 git_last_commit: cb8d99a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/derfinderHelper_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/derfinderHelper_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/derfinderHelper_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/derfinderHelper_1.40.0.tgz vignettes: vignettes/derfinderHelper/inst/doc/derfinderHelper.html vignetteTitles: Introduction to derfinderHelper hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/derfinderHelper/inst/doc/derfinderHelper.R importsMe: derfinder dependencyCount: 12 Package: derfinderPlot Version: 1.40.0 Depends: R(>= 3.2) Imports: derfinder (>= 1.1.0), GenomeInfoDb (>= 1.3.3), GenomicFeatures, GenomicRanges (>= 1.17.40), ggbio (>= 1.13.13), ggplot2, graphics, grDevices, IRanges (>= 1.99.28), limma, methods, plyr, RColorBrewer, reshape2, S4Vectors (>= 0.9.38), scales, utils Suggests: biovizBase (>= 1.27.2), bumphunter (>= 1.7.6), derfinderData (>= 0.99.0), sessioninfo, knitr (>= 1.6), BiocStyle (>= 2.5.19), org.Hs.eg.db, RefManageR, rmarkdown (>= 0.3.3), testthat, TxDb.Hsapiens.UCSC.hg19.knownGene, covr License: Artistic-2.0 MD5sum: 972812349ec65988ca88d2593f523574 NeedsCompilation: no Title: Plotting functions for derfinder Description: This package provides plotting functions for results from the derfinder package. This helps separate the graphical dependencies required for making these plots from the core functionality of derfinder. biocViews: DifferentialExpression, Sequencing, RNASeq, Software, Visualization, ImmunoOncology Author: Leonardo Collado-Torres [aut, cre] (), Andrew E. Jaffe [aut] (), Jeffrey T. Leek [aut, ths] () Maintainer: Leonardo Collado-Torres URL: https://github.com/leekgroup/derfinderPlot VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/derfinderPlot git_url: https://git.bioconductor.org/packages/derfinderPlot git_branch: RELEASE_3_20 git_last_commit: 0c32cf3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/derfinderPlot_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/derfinderPlot_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/derfinderPlot_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/derfinderPlot_1.40.0.tgz vignettes: vignettes/derfinderPlot/inst/doc/derfinderPlot.html vignetteTitles: Introduction to derfinderPlot hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/derfinderPlot/inst/doc/derfinderPlot.R importsMe: recountWorkflow suggestsMe: derfinder, regionReport, GenomicState dependencyCount: 175 Package: DEScan2 Version: 1.26.0 Depends: R (>= 3.5), GenomicRanges Imports: BiocParallel, BiocGenerics, ChIPpeakAnno, data.table, DelayedArray, GenomeInfoDb, GenomicAlignments, glue, IRanges, plyr, Rcpp (>= 0.12.13), rtracklayer, S4Vectors (>= 0.23.19), SummarizedExperiment, tools, utils LinkingTo: Rcpp, RcppArmadillo Suggests: BiocStyle, knitr, rmarkdown, testthat, edgeR, limma, EDASeq, RUVSeq, RColorBrewer, statmod License: Artistic-2.0 MD5sum: e11dbe2954f8936d2d3a0df5f8239aac NeedsCompilation: yes Title: Differential Enrichment Scan 2 Description: Integrated peak and differential caller, specifically designed for broad epigenomic signals. biocViews: ImmunoOncology, PeakDetection, Epigenetics, Software, Sequencing, Coverage Author: Dario Righelli [aut, cre], John Koberstein [aut], Bruce Gomes [aut], Nancy Zhang [aut], Claudia Angelini [aut], Lucia Peixoto [aut], Davide Risso [aut] Maintainer: Dario Righelli VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DEScan2 git_branch: RELEASE_3_20 git_last_commit: 5fbff52 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DEScan2_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DEScan2_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DEScan2_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DEScan2_1.26.0.tgz vignettes: vignettes/DEScan2/inst/doc/DEScan2.html vignetteTitles: DEScan2 Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DEScan2/inst/doc/DEScan2.R dependencyCount: 135 Package: DESeq2 Version: 1.46.0 Depends: S4Vectors (>= 0.23.18), IRanges, GenomicRanges, SummarizedExperiment (>= 1.1.6) Imports: BiocGenerics (>= 0.7.5), Biobase, BiocParallel, matrixStats, methods, stats4, locfit, ggplot2 (>= 3.4.0), Rcpp (>= 0.11.0), MatrixGenerics LinkingTo: Rcpp, RcppArmadillo Suggests: testthat, knitr, rmarkdown, vsn, pheatmap, RColorBrewer, apeglm, ashr, tximport, tximeta, tximportData, readr, pbapply, airway, pasilla (>= 0.2.10), glmGamPoi, BiocManager License: LGPL (>= 3) MD5sum: 211812c23e1a25da4396c82582cba27e NeedsCompilation: yes Title: Differential gene expression analysis based on the negative binomial distribution Description: Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution. biocViews: Sequencing, RNASeq, ChIPSeq, GeneExpression, Transcription, Normalization, DifferentialExpression, Bayesian, Regression, PrincipalComponent, Clustering, ImmunoOncology Author: Michael Love [aut, cre], Constantin Ahlmann-Eltze [ctb], Kwame Forbes [ctb], Simon Anders [aut, ctb], Wolfgang Huber [aut, ctb], RADIANT EU FP7 [fnd], NIH NHGRI [fnd], CZI [fnd] Maintainer: Michael Love URL: https://github.com/thelovelab/DESeq2 VignetteBuilder: knitr, rmarkdown git_url: https://git.bioconductor.org/packages/DESeq2 git_branch: RELEASE_3_20 git_last_commit: 4887eb4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DESeq2_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DESeq2_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DESeq2_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DESeq2_1.46.0.tgz vignettes: vignettes/DESeq2/inst/doc/DESeq2.html vignetteTitles: Analyzing RNA-seq data with DESeq2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DESeq2/inst/doc/DESeq2.R dependsOnMe: DEWSeq, DEXSeq, metaseqR2, octad, rgsepd, SeqGSEA, TCC, tRanslatome, rnaseqDTU, rnaseqGene, Anaconda, DRomics, ordinalbayes importsMe: Anaquin, animalcules, APAlyzer, BatchQC, broadSeq, CeTF, circRNAprofiler, CleanUpRNAseq, consensusDE, coseq, countsimQC, cypress, DaMiRseq, debrowser, DEFormats, DEGreport, DELocal, deltaCaptureC, DEsubs, DiffBind, easier, EBSEA, ERSSA, GDCRNATools, GeneTonic, gg4way, Glimma, GRaNIE, hermes, HTSFilter, HybridExpress, icetea, ideal, INSPEcT, IntEREst, iSEEde, isomiRs, kissDE, magpie, MIRit, MLSeq, mobileRNA, mosdef, MultiRNAflow, muscat, NBAMSeq, NetActivity, ORFik, OUTRIDER, pairedGSEA, PathoStat, pcaExplorer, phantasus, POMA, proActiv, RegEnrich, regionReport, ReportingTools, RiboDiPA, Rmmquant, saseR, scBFA, scGPS, SEtools, singleCellTK, SNPhood, SurfR, systemPipeTools, TEKRABber, UMI4Cats, vidger, vulcan, zitools, BloodCancerMultiOmics2017, FieldEffectCrc, homosapienDEE2CellScore, IHWpaper, ExpHunterSuite, recountWorkflow, bulkAnalyseR, cinaR, ExpGenetic, HeritSeq, limorhyde2, microbial, RCPA, RNAseqQC, sRNAGenetic, TransProR, wilson suggestsMe: aggregateBioVar, apeglm, bambu, BindingSiteFinder, biobroom, BiocGenerics, BioCor, BiocSet, BioNERO, CAGEr, compcodeR, dar, dearseq, derfinder, dittoSeq, EDASeq, EnhancedVolcano, EnrichmentBrowser, EWCE, extraChIPs, fishpond, gage, GeDi, GenomicAlignments, GenomicRanges, GeoTcgaData, glmGamPoi, HiCDCPlus, IHW, InteractiveComplexHeatmap, methodical, OPWeight, pathlinkR, PCAtools, phyloseq, progeny, raer, recount, ribosomeProfilingQC, roastgsa, RUVSeq, Rvisdiff, scran, sparrow, spatialHeatmap, SpliceWiz, subSeq, systemPipeR, systemPipeShiny, TFEA.ChIP, tidybulk, topconfects, tximeta, tximport, variancePartition, Wrench, zinbwave, curatedAdipoChIP, curatedAdipoRNA, GSE62944, RegParallel, Single.mTEC.Transcriptomes, CAGEWorkflow, fluentGenomics, seqpac, bakR, cellpypes, conos, FateID, GiANT, glmmSeq, grandR, lfc, LorMe, metaRNASeq, MiscMetabar, pctax, pmartR, RaceID, rliger, SCdeconR, seqgendiff, Seurat, SQMtools, volcano3D dependencyCount: 75 Package: DEsingle Version: 1.26.0 Depends: R (>= 3.4.0) Imports: stats, Matrix (>= 1.2-14), MASS (>= 7.3-45), VGAM (>= 1.0-2), bbmle (>= 1.0.18), gamlss (>= 4.4-0), maxLik (>= 1.3-4), pscl (>= 1.4.9), BiocParallel (>= 1.12.0), Suggests: knitr, rmarkdown, SingleCellExperiment License: GPL-2 Archs: x64 MD5sum: 6d854234a35297b998abc3086af9af28 NeedsCompilation: no Title: DEsingle for detecting three types of differential expression in single-cell RNA-seq data Description: DEsingle is an R package for differential expression (DE) analysis of single-cell RNA-seq (scRNA-seq) data. It defines and detects 3 types of differentially expressed genes between two groups of single cells, with regard to different expression status (DEs), differential expression abundance (DEa), and general differential expression (DEg). DEsingle employs Zero-Inflated Negative Binomial model to estimate the proportion of real and dropout zeros and to define and detect the 3 types of DE genes. Results showed that DEsingle outperforms existing methods for scRNA-seq DE analysis, and can reveal different types of DE genes that are enriched in different biological functions. biocViews: DifferentialExpression, GeneExpression, SingleCell, ImmunoOncology, RNASeq, Transcriptomics, Sequencing, Preprocessing, Software Author: Zhun Miao Maintainer: Zhun Miao URL: https://miaozhun.github.io/DEsingle/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DEsingle git_branch: RELEASE_3_20 git_last_commit: 4ea8704 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DEsingle_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DEsingle_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DEsingle_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DEsingle_1.26.0.tgz vignettes: vignettes/DEsingle/inst/doc/DEsingle.html vignetteTitles: DEsingle hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DEsingle/inst/doc/DEsingle.R dependencyCount: 39 Package: DESpace Version: 1.6.0 Depends: R (>= 4.3.0) Imports: edgeR, limma, dplyr, stats, Matrix, SpatialExperiment, ggplot2, ggpubr, scales, SummarizedExperiment, S4Vectors, BiocGenerics, data.table, assertthat, cowplot, ggforce, ggnewscale, patchwork, BiocParallel, methods Suggests: knitr, rmarkdown, testthat, BiocStyle, ExperimentHub, concaveman, spatialLIBD, purrr, scuttle, utils License: GPL-3 Archs: x64 MD5sum: dc34a1f5bdc23f3ab631228c10f1a4b6 NeedsCompilation: no Title: DESpace: a framework to discover spatially variable genes Description: Intuitive framework for identifying spatially variable genes (SVGs) via edgeR, a popular method for performing differential expression analyses. Based on pre-annotated spatial clusters as summarized spatial information, DESpace models gene expression using a negative binomial (NB), via edgeR, with spatial clusters as covariates. SVGs are then identified by testing the significance of spatial clusters. The method is flexible and robust, and is faster than the most SV methods. Furthermore, to the best of our knowledge, it is the only SV approach that allows: - performing a SV test on each individual spatial cluster, hence identifying the key regions of the tissue affected by spatial variability; - jointly fitting multiple samples, targeting genes with consistent spatial patterns across replicates. biocViews: Spatial, SingleCell, RNASeq, Transcriptomics, GeneExpression, Sequencing, DifferentialExpression,StatisticalMethod, Visualization Author: Peiying Cai [aut, cre] (), Simone Tiberi [aut] () Maintainer: Peiying Cai URL: https://github.com/peicai/DESpace VignetteBuilder: knitr BugReports: https://github.com/peicai/DESpace/issues git_url: https://git.bioconductor.org/packages/DESpace git_branch: RELEASE_3_20 git_last_commit: a65ba1c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DESpace_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DESpace_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DESpace_1.5.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DESpace_1.6.0.tgz vignettes: vignettes/DESpace/inst/doc/DESpace.html vignetteTitles: A framework to discover spatially variable genes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DESpace/inst/doc/DESpace.R dependencyCount: 138 Package: destiny Version: 3.20.0 Depends: R (>= 3.4.0) Imports: methods, graphics, grDevices, grid, utils, stats, Matrix, Rcpp (>= 0.10.3), RcppEigen, RSpectra (>= 0.14-0), irlba, pcaMethods, Biobase, BiocGenerics, SummarizedExperiment, SingleCellExperiment, ggplot2, ggplot.multistats, rlang, tidyr, tidyselect, ggthemes, VIM, knn.covertree, proxy, RcppHNSW, smoother, scales, scatterplot3d LinkingTo: Rcpp, RcppEigen, grDevices Suggests: knitr, rmarkdown, igraph, testthat, FNN, tidyverse, gridExtra, cowplot, conflicted, viridis, rgl, scRNAseq, org.Mm.eg.db, scran, repr Enhances: rgl, SingleCellExperiment License: GPL-3 MD5sum: 6e17b0ccc1e97189ac710f25a2f16061 NeedsCompilation: yes Title: Creates diffusion maps Description: Create and plot diffusion maps. biocViews: CellBiology, CellBasedAssays, Clustering, Software, Visualization Author: Philipp Angerer [cre, aut] (), Laleh Haghverdi [ctb], Maren Büttner [ctb] (), Fabian Theis [ctb] (), Carsten Marr [ctb] (), Florian Büttner [ctb] () Maintainer: Philipp Angerer URL: https://theislab.github.io/destiny/, https://github.com/theislab/destiny/, https://www.helmholtz-muenchen.de/icb/destiny, https://bioconductor.org/packages/destiny, https://doi.org/10.1093/bioinformatics/btv715 SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/theislab/destiny/issues git_url: https://git.bioconductor.org/packages/destiny git_branch: RELEASE_3_20 git_last_commit: b0e8a1c git_last_commit_date: 2024-11-15 Date/Publication: 2024-11-15 source.ver: src/contrib/destiny_3.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/destiny_3.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/destiny_3.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/destiny_3.20.0.tgz vignettes: vignettes/destiny/inst/doc/Diffusion-Map-recap.html, vignettes/destiny/inst/doc/Diffusion-Maps.html, vignettes/destiny/inst/doc/DPT.html, vignettes/destiny/inst/doc/Gene-Relevance.html, vignettes/destiny/inst/doc/Global-Sigma.html, vignettes/destiny/inst/doc/tidyverse.html vignetteTitles: Reproduce the Diffusion Map vignette with the supplied data(), destiny main vignette: Start here!, destiny 2.0 brought the Diffusion Pseudo Time (DPT) class, detecting relevant genes with destiny 3, The effects of a global vs. local kernel, tidyverse and ggplot integration with destiny hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/destiny/inst/doc/Diffusion-Map-recap.R, vignettes/destiny/inst/doc/Diffusion-Maps.R, vignettes/destiny/inst/doc/DPT.R, vignettes/destiny/inst/doc/Gene-Relevance.R, vignettes/destiny/inst/doc/Global-Sigma.R, vignettes/destiny/inst/doc/tidyverse.R suggestsMe: CelliD, CellTrails, monocle dependencyCount: 120 Package: DEsubs Version: 1.32.0 Depends: R (>= 3.3), locfit Imports: graph, igraph, RBGL, circlize, limma, edgeR, EBSeq, NBPSeq, stats, grDevices, graphics, pheatmap, utils, ggplot2, Matrix, jsonlite, tools, DESeq2, methods Suggests: RUnit, BiocGenerics, knitr, rmarkdown License: GPL-3 MD5sum: 7eeaa2d15bdfdfcbc3b957b3688e873d NeedsCompilation: no Title: DEsubs: an R package for flexible identification of differentially expressed subpathways using RNA-seq expression experiments Description: DEsubs is a network-based systems biology package that extracts disease-perturbed subpathways within a pathway network as recorded by RNA-seq experiments. It contains an extensive and customizable framework covering a broad range of operation modes at all stages of the subpathway analysis, enabling a case-specific approach. The operation modes refer to the pathway network construction and processing, the subpathway extraction, visualization and enrichment analysis with regard to various biological and pharmacological features. Its capabilities render it a tool-guide for both the modeler and experimentalist for the identification of more robust systems-level biomarkers for complex diseases. biocViews: SystemsBiology, GraphAndNetwork, Pathways, KEGG, GeneExpression, NetworkEnrichment, Network, RNASeq, DifferentialExpression, Normalization, ImmunoOncology Author: Aristidis G. Vrahatis and Panos Balomenos Maintainer: Aristidis G. Vrahatis , Panos Balomenos VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DEsubs git_branch: RELEASE_3_20 git_last_commit: 5a48f9f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DEsubs_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DEsubs_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DEsubs_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DEsubs_1.32.0.tgz vignettes: vignettes/DEsubs/inst/doc/DEsubs.pdf vignetteTitles: DEsubs hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DEsubs/inst/doc/DEsubs.R dependencyCount: 115 Package: DEWSeq Version: 1.20.0 Depends: R(>= 4.0.0), R.utils, DESeq2, BiocParallel Imports: BiocGenerics, data.table(>= 1.11.8), GenomeInfoDb, GenomicRanges, methods, S4Vectors, SummarizedExperiment, stats, utils Suggests: knitr, tidyverse, rmarkdown, testthat, BiocStyle, IHW License: LGPL (>= 3) Archs: x64 MD5sum: 85f79fefdd2693dd19a371f5c1cd47e2 NeedsCompilation: no Title: Differential Expressed Windows Based on Negative Binomial Distribution Description: DEWSeq is a sliding window approach for the analysis of differentially enriched binding regions eCLIP or iCLIP next generation sequencing data. biocViews: Sequencing, GeneRegulation, FunctionalGenomics, DifferentialExpression Author: Sudeep Sahadevan [aut], Thomas Schwarzl [aut], bioinformatics team Hentze [aut, cre] Maintainer: bioinformatics team Hentze URL: https://github.com/EMBL-Hentze-group/DEWSeq/ VignetteBuilder: knitr BugReports: https://github.com/EMBL-Hentze-group/DEWSeq/issues git_url: https://git.bioconductor.org/packages/DEWSeq git_branch: RELEASE_3_20 git_last_commit: d0b1b25 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DEWSeq_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DEWSeq_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DEWSeq_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DEWSeq_1.20.0.tgz vignettes: vignettes/DEWSeq/inst/doc/DEWSeq.html vignetteTitles: Analyzing eCLIP/iCLIP data with DEWSeq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DEWSeq/inst/doc/DEWSeq.R dependencyCount: 80 Package: DExMA Version: 1.14.0 Depends: R (>= 4.1), DExMAdata Imports: Biobase, GEOquery, impute, limma, pheatmap, plyr, scales, snpStats, sva, swamp, stats, methods, utils, bnstruct, RColorBrewer, grDevices Suggests: BiocStyle, qpdf, BiocGenerics, RUnit License: GPL-2 MD5sum: 2db6cbb01b58ca63b9372cd70d698f1a NeedsCompilation: no Title: Differential Expression Meta-Analysis Description: performing all the steps of gene expression meta-analysis considering the possible existence of missing genes. It provides the necessary functions to be able to perform the different methods of gene expression meta-analysis. In addition, it contains functions to apply quality controls, download GEO datasets and show graphical representations of the results. biocViews: DifferentialExpression, GeneExpression, StatisticalMethod, QualityControl Author: Juan Antonio Villatoro-García [aut, cre], Pedro Carmona-Sáez [aut] Maintainer: Juan Antonio Villatoro-García git_url: https://git.bioconductor.org/packages/DExMA git_branch: RELEASE_3_20 git_last_commit: 480833f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DExMA_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DExMA_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DExMA_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DExMA_1.14.0.tgz vignettes: vignettes/DExMA/inst/doc/DExMA.pdf vignetteTitles: Differential Expression Meta-Analysis with DExMA package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DExMA/inst/doc/DExMA.R dependencyCount: 133 Package: DEXSeq Version: 1.52.0 Depends: BiocParallel, Biobase, SummarizedExperiment, IRanges (>= 2.5.17), GenomicRanges (>= 1.23.7), DESeq2 (>= 1.39.6), AnnotationDbi, RColorBrewer, S4Vectors (>= 0.23.18) Imports: BiocGenerics, biomaRt, hwriter, methods, stringr, Rsamtools, statmod, geneplotter, genefilter Suggests: GenomicFeatures, txdbmaker, pasilla (>= 0.2.22), parathyroidSE, BiocStyle, knitr, rmarkdown, testthat, pasillaBamSubset, GenomicAlignments, roxygen2, glmGamPoi License: GPL (>= 3) MD5sum: 065a8022b6c167143856252edcf4ff8e NeedsCompilation: no Title: Inference of differential exon usage in RNA-Seq Description: The package is focused on finding differential exon usage using RNA-seq exon counts between samples with different experimental designs. It provides functions that allows the user to make the necessary statistical tests based on a model that uses the negative binomial distribution to estimate the variance between biological replicates and generalized linear models for testing. The package also provides functions for the visualization and exploration of the results. biocViews: ImmunoOncology, Sequencing, RNASeq, DifferentialExpression, AlternativeSplicing, DifferentialSplicing, GeneExpression, Visualization Author: Simon Anders and Alejandro Reyes Maintainer: Alejandro Reyes VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DEXSeq git_branch: RELEASE_3_20 git_last_commit: 02d945a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DEXSeq_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DEXSeq_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DEXSeq_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DEXSeq_1.52.0.tgz vignettes: vignettes/DEXSeq/inst/doc/DEXSeq.html vignetteTitles: Inferring differential exon usage in RNA-Seq data with the DEXSeq package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DEXSeq/inst/doc/DEXSeq.R dependsOnMe: IsoformSwitchAnalyzeR, pasilla, rnaseqDTU importsMe: diffUTR, IntEREst, pairedGSEA, saseR suggestsMe: bambu, GenomicRanges, satuRn, stageR, subSeq, BioPlex dependencyCount: 118 Package: DFP Version: 1.64.0 Depends: methods, Biobase (>= 2.5.5) License: GPL-2 MD5sum: 7da84966f3e54463d5c52c1d432b8d71 NeedsCompilation: no Title: Gene Selection Description: This package provides a supervised technique able to identify differentially expressed genes, based on the construction of \emph{Fuzzy Patterns} (FPs). The Fuzzy Patterns are built by means of applying 3 Membership Functions to discretized gene expression values. biocViews: Microarray, DifferentialExpression Author: R. Alvarez-Gonzalez, D. Glez-Pena, F. Diaz, F. Fdez-Riverola Maintainer: Rodrigo Alvarez-Glez git_url: https://git.bioconductor.org/packages/DFP git_branch: RELEASE_3_20 git_last_commit: 80b8394 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DFP_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DFP_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DFP_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DFP_1.64.0.tgz vignettes: vignettes/DFP/inst/doc/DFP.pdf vignetteTitles: Howto: Discriminat Fuzzy Pattern hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DFP/inst/doc/DFP.R dependencyCount: 6 Package: DFplyr Version: 1.0.0 Depends: dplyr Imports: BiocGenerics, methods, rlang, S4Vectors, tidyselect Suggests: BiocStyle, GenomeInfoDb, GenomicRanges, IRanges, knitr, rmarkdown, sessioninfo, testthat (>= 3.0.0), tibble License: GPL-3 MD5sum: 56bdadfe6079d09a0fe0457b20f519bb NeedsCompilation: no Title: A `DataFrame` (`S4Vectors`) backend for `dplyr` Description: Provides `dplyr` verbs (`mutate`, `select`, `filter`, etc...) supporting `S4Vectors::DataFrame` objects. Importantly, this is achieved without conversion to an intermediate `tibble`. Adds grouping infrastructure to `DataFrame` which is respected by the transformation verbs. biocViews: DataRepresentation, Infrastructure, Software Author: Jonathan Carroll [aut, cre] () Maintainer: Jonathan Carroll URL: https://github.com/jonocarroll/DFplyr VignetteBuilder: knitr BugReports: https://github.com/jonocarroll/DFplyr/issues git_url: https://git.bioconductor.org/packages/DFplyr git_branch: RELEASE_3_20 git_last_commit: 08b5a21 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DFplyr_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DFplyr_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DFplyr_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DFplyr_1.0.0.tgz vignettes: vignettes/DFplyr/inst/doc/example_usage.html vignetteTitles: Example Usage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DFplyr/inst/doc/example_usage.R dependencyCount: 24 Package: DiffBind Version: 3.16.0 Depends: R (>= 4.0), GenomicRanges, SummarizedExperiment Imports: RColorBrewer, amap, gplots, grDevices, limma, GenomicAlignments, locfit, stats, utils, IRanges, lattice, systemPipeR, tools, Rcpp, dplyr, ggplot2, BiocParallel, parallel, S4Vectors, Rsamtools (>= 2.13.1), DESeq2, methods, graphics, ggrepel, apeglm, ashr, GreyListChIP LinkingTo: Rhtslib (>= 1.99.1), Rcpp Suggests: BiocStyle, testthat, xtable, rgl, XLConnect, edgeR, csaw, BSgenome, GenomeInfoDb, profileplyr, rtracklayer, grid License: Artistic-2.0 MD5sum: efe14379a227c57892f1e0a5985b728c NeedsCompilation: yes Title: Differential Binding Analysis of ChIP-Seq Peak Data Description: Compute differentially bound sites from multiple ChIP-seq experiments using affinity (quantitative) data. Also enables occupancy (overlap) analysis and plotting functions. biocViews: Sequencing, ChIPSeq,ATACSeq, DNaseSeq, MethylSeq, RIPSeq, DifferentialPeakCalling, DifferentialMethylation, GeneRegulation, HistoneModification, PeakDetection, BiomedicalInformatics, CellBiology, MultipleComparison, Normalization, ReportWriting, Epigenetics, FunctionalGenomics Author: Rory Stark [aut, cre], Gord Brown [aut] Maintainer: Rory Stark URL: https://www.cruk.cam.ac.uk/core-facilities/bioinformatics-core/software/DiffBind SystemRequirements: GNU make git_url: https://git.bioconductor.org/packages/DiffBind git_branch: RELEASE_3_20 git_last_commit: da0b044 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DiffBind_3.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DiffBind_3.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DiffBind_3.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DiffBind_3.16.0.tgz vignettes: vignettes/DiffBind/inst/doc/DiffBind.pdf vignetteTitles: DiffBind: Differential binding analysis of ChIP-Seq peak data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DiffBind/inst/doc/DiffBind.R dependsOnMe: ChIPQC, vulcan dependencyCount: 148 Package: diffcoexp Version: 1.26.0 Depends: R (>= 3.5), WGCNA, SummarizedExperiment Imports: stats, DiffCorr, psych, igraph, BiocGenerics Suggests: GEOquery, RUnit License: GPL (>2) MD5sum: fc417bab57f77a79a0dd5ac9cced3569 NeedsCompilation: no Title: Differential Co-expression Analysis Description: A tool for the identification of differentially coexpressed links (DCLs) and differentially coexpressed genes (DCGs). DCLs are gene pairs with significantly different correlation coefficients under two conditions. DCGs are genes with significantly more DCLs than by chance. biocViews: GeneExpression, DifferentialExpression, Transcription, Microarray, OneChannel, TwoChannel, RNASeq, Sequencing, Coverage, ImmunoOncology Author: Wenbin Wei, Sandeep Amberkar, Winston Hide Maintainer: Wenbin Wei URL: https://github.com/hidelab/diffcoexp git_url: https://git.bioconductor.org/packages/diffcoexp git_branch: RELEASE_3_20 git_last_commit: cce9d66 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/diffcoexp_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/diffcoexp_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/diffcoexp_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/diffcoexp_1.26.0.tgz vignettes: vignettes/diffcoexp/inst/doc/diffcoexp.pdf vignetteTitles: About diffcoexp hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/diffcoexp/inst/doc/diffcoexp.R importsMe: ExpHunterSuite, easyDifferentialGeneCoexpression dependencyCount: 129 Package: diffcyt Version: 1.26.0 Depends: R (>= 3.4.0) Imports: flowCore, FlowSOM, SummarizedExperiment, S4Vectors, limma, edgeR, lme4, multcomp, dplyr, tidyr, reshape2, magrittr, stats, methods, utils, grDevices, graphics, ComplexHeatmap, circlize, grid Suggests: BiocStyle, knitr, rmarkdown, testthat, HDCytoData, CATALYST License: MIT + file LICENSE Archs: x64 MD5sum: 36746fa6a908f973272a264242b0b39a NeedsCompilation: no Title: Differential discovery in high-dimensional cytometry via high-resolution clustering Description: Statistical methods for differential discovery analyses in high-dimensional cytometry data (including flow cytometry, mass cytometry or CyTOF, and oligonucleotide-tagged cytometry), based on a combination of high-resolution clustering and empirical Bayes moderated tests adapted from transcriptomics. biocViews: ImmunoOncology, FlowCytometry, Proteomics, SingleCell, CellBasedAssays, CellBiology, Clustering, FeatureExtraction, Software Author: Lukas M. Weber [aut, cre] () Maintainer: Lukas M. Weber URL: https://github.com/lmweber/diffcyt VignetteBuilder: knitr BugReports: https://github.com/lmweber/diffcyt/issues git_url: https://git.bioconductor.org/packages/diffcyt git_branch: RELEASE_3_20 git_last_commit: 50c9265 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/diffcyt_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/diffcyt_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/diffcyt_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/diffcyt_1.26.0.tgz vignettes: vignettes/diffcyt/inst/doc/diffcyt_workflow.html vignetteTitles: diffcyt workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/diffcyt/inst/doc/diffcyt_workflow.R dependsOnMe: censcyt, cytofWorkflow importsMe: treeclimbR, treekoR suggestsMe: CATALYST, tidytof dependencyCount: 144 Package: DifferentialRegulation Version: 2.4.0 Depends: R (>= 4.3.0) Imports: methods, Rcpp, doRNG, MASS, data.table, doParallel, parallel, foreach, stats, BANDITS, Matrix, SingleCellExperiment, SummarizedExperiment, ggplot2, tximport, gridExtra LinkingTo: Rcpp, RcppArmadillo Suggests: knitr, rmarkdown, testthat, BiocStyle License: GPL-3 MD5sum: a246cfd93fb21229ebb7ff130557a983 NeedsCompilation: yes Title: Differentially regulated genes from scRNA-seq data Description: DifferentialRegulation is a method for detecting differentially regulated genes between two groups of samples (e.g., healthy vs. disease, or treated vs. untreated samples), by targeting differences in the balance of spliced and unspliced mRNA abundances, obtained from single-cell RNA-sequencing (scRNA-seq) data. From a mathematical point of view, DifferentialRegulation accounts for the sample-to-sample variability, and embeds multiple samples in a Bayesian hierarchical model. Furthermore, our method also deals with two major sources of mapping uncertainty: i) 'ambiguous' reads, compatible with both spliced and unspliced versions of a gene, and ii) reads mapping to multiple genes. In particular, ambiguous reads are treated separately from spliced and unsplced reads, while reads that are compatible with multiple genes are allocated to the gene of origin. Parameters are inferred via Markov chain Monte Carlo (MCMC) techniques (Metropolis-within-Gibbs). biocViews: DifferentialSplicing, Bayesian, Genetics, RNASeq, Sequencing, DifferentialExpression, GeneExpression, MultipleComparison, Software, Transcription, StatisticalMethod, Visualization, SingleCell, GeneTarget Author: Simone Tiberi [aut, cre] (), Charlotte Soneson [aut] () Maintainer: Simone Tiberi URL: https://github.com/SimoneTiberi/DifferentialRegulation SystemRequirements: C++17 VignetteBuilder: knitr BugReports: https://github.com/SimoneTiberi/DifferentialRegulation/issues git_url: https://git.bioconductor.org/packages/DifferentialRegulation git_branch: RELEASE_3_20 git_last_commit: 55dc369 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DifferentialRegulation_2.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DifferentialRegulation_2.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DifferentialRegulation_2.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DifferentialRegulation_2.4.0.tgz vignettes: vignettes/DifferentialRegulation/inst/doc/DifferentialRegulation.html vignetteTitles: DifferentialRegulation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DifferentialRegulation/inst/doc/DifferentialRegulation.R dependencyCount: 97 Package: diffGeneAnalysis Version: 1.88.0 Imports: graphics, grDevices, minpack.lm (>= 1.0-4), stats, utils License: GPL MD5sum: f79e8f1c7aa51cabcccbc4ec0a2af842 NeedsCompilation: no Title: Performs differential gene expression Analysis Description: Analyze microarray data biocViews: Microarray, DifferentialExpression Author: Choudary Jagarlamudi Maintainer: Choudary Jagarlamudi git_url: https://git.bioconductor.org/packages/diffGeneAnalysis git_branch: RELEASE_3_20 git_last_commit: 853ce7b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/diffGeneAnalysis_1.88.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/diffGeneAnalysis_1.88.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/diffGeneAnalysis_1.88.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/diffGeneAnalysis_1.88.0.tgz vignettes: vignettes/diffGeneAnalysis/inst/doc/diffGeneAnalysis.pdf vignetteTitles: Documentation on diffGeneAnalysis hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/diffGeneAnalysis/inst/doc/diffGeneAnalysis.R dependencyCount: 5 Package: diffHic Version: 1.38.0 Depends: R (>= 3.5), GenomicRanges, InteractionSet, SummarizedExperiment Imports: Rsamtools, Rhtslib, Biostrings, BSgenome, rhdf5, edgeR, limma, csaw, locfit, methods, IRanges, S4Vectors, GenomeInfoDb, BiocGenerics, grDevices, graphics, stats, utils, Rcpp, rtracklayer LinkingTo: Rhtslib (>= 1.13.1), zlibbioc, Rcpp Suggests: BSgenome.Ecoli.NCBI.20080805, Matrix, testthat License: GPL-3 Archs: x64 MD5sum: 9fc3ba56d7699aad6f36a0437a8753f4 NeedsCompilation: yes Title: Differential Analysis of Hi-C Data Description: Detects differential interactions across biological conditions in a Hi-C experiment. Methods are provided for read alignment and data pre-processing into interaction counts. Statistical analysis is based on edgeR and supports normalization and filtering. Several visualization options are also available. biocViews: MultipleComparison, Preprocessing, Sequencing, Coverage, Alignment, Normalization, Clustering, HiC Author: Aaron Lun, Gordon Smyth Maintainer: Aaron Lun , Gordon Smyth , Hannah Coughlin SystemRequirements: C++, GNU make git_url: https://git.bioconductor.org/packages/diffHic git_branch: RELEASE_3_20 git_last_commit: d60781d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/diffHic_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/diffHic_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/diffHic_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/diffHic_1.38.0.tgz vignettes: vignettes/diffHic/inst/doc/diffHic.pdf, vignettes/diffHic/inst/doc/diffHicUsersGuide.pdf vignetteTitles: diffHic Vignette, diffHicUsersGuide.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE importsMe: OHCA dependencyCount: 70 Package: DiffLogo Version: 2.30.0 Depends: R (>= 3.4), stats, cba Imports: grDevices, graphics, utils, tools Suggests: knitr, testthat, seqLogo, MotifDb License: GPL (>= 2) MD5sum: 74d723e9fde469a861d01ece063de837 NeedsCompilation: no Title: DiffLogo: A comparative visualisation of biooligomer motifs Description: DiffLogo is an easy-to-use tool to visualize motif differences. biocViews: Software, SequenceMatching, MultipleComparison, MotifAnnotation, Visualization, Alignment Author: c( person("Martin", "Nettling", role = c("aut", "cre"), email = "martin.nettling@informatik.uni-halle.de"), person("Hendrik", "Treutler", role = c("aut", "cre"), email = "hendrik.treutler@ipb-halle.de"), person("Jan", "Grau", role = c("aut", "ctb"), email = "grau@informatik.uni-halle.de"), person("Andrey", "Lando", role = c("aut", "ctb"), email = "dronte@autosome.ru"), person("Jens", "Keilwagen", role = c("aut", "ctb"), email = "jens.keilwagen@julius-kuehn.de"), person("Stefan", "Posch", role = "aut", email = "posch@informatik.uni-halle.de"), person("Ivo", "Grosse", role = "aut", email = "grosse@informatik.uni-halle.de")) Maintainer: Hendrik Treutler URL: https://github.com/mgledi/DiffLogo/ BugReports: https://github.com/mgledi/DiffLogo/issues git_url: https://git.bioconductor.org/packages/DiffLogo git_branch: RELEASE_3_20 git_last_commit: cfef849 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DiffLogo_2.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DiffLogo_2.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DiffLogo_2.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DiffLogo_2.30.0.tgz vignettes: vignettes/DiffLogo/inst/doc/DiffLogoBasics.pdf vignetteTitles: Basics of the DiffLogo package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DiffLogo/inst/doc/DiffLogoBasics.R dependencyCount: 9 Package: diffuStats Version: 1.26.0 Depends: R (>= 3.4) Imports: grDevices, stats, methods, Matrix, MASS, checkmate, expm, igraph, Rcpp, RcppArmadillo, RcppParallel, plyr, precrec LinkingTo: Rcpp, RcppArmadillo, RcppParallel Suggests: testthat, knitr, rmarkdown, ggplot2, ggsci, igraphdata, BiocStyle, reshape2, utils License: GPL-3 Archs: x64 MD5sum: 898b1d3d9490425dac135e1cc272f6f7 NeedsCompilation: yes Title: Diffusion scores on biological networks Description: Label propagation approaches are a widely used procedure in computational biology for giving context to molecular entities using network data. Node labels, which can derive from gene expression, genome-wide association studies, protein domains or metabolomics profiling, are propagated to their neighbours in the network, effectively smoothing the scores through prior annotated knowledge and prioritising novel candidates. The R package diffuStats contains a collection of diffusion kernels and scoring approaches that facilitates their computation, characterisation and benchmarking. biocViews: Network, GeneExpression, GraphAndNetwork, Metabolomics, Transcriptomics, Proteomics, Genetics, GenomeWideAssociation, Normalization Author: Sergio Picart-Armada [aut, cre], Alexandre Perera-Lluna [aut] Maintainer: Sergio Picart-Armada SystemRequirements: GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/diffuStats git_branch: RELEASE_3_20 git_last_commit: f1d4aaa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/diffuStats_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/diffuStats_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/diffuStats_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/diffuStats_1.26.0.tgz vignettes: vignettes/diffuStats/inst/doc/diffuStats.pdf, vignettes/diffuStats/inst/doc/intro.html vignetteTitles: Case study: predicting protein function, Quick start hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/diffuStats/inst/doc/diffuStats.R, vignettes/diffuStats/inst/doc/intro.R dependencyCount: 49 Package: diffUTR Version: 1.14.0 Depends: R (>= 4.0) Imports: S4Vectors, SummarizedExperiment, limma, edgeR, DEXSeq, GenomicRanges, Rsubread, ggplot2, rtracklayer, ComplexHeatmap, ggrepel, stringi, methods, stats, GenomeInfoDb, dplyr, matrixStats, IRanges, ensembldb, viridisLite Suggests: BiocStyle, knitr, rmarkdown License: GPL-3 MD5sum: f091028afb4cf2572d5db0e04a87c17b NeedsCompilation: no Title: diffUTR: Streamlining differential exon and 3' UTR usage Description: The diffUTR package provides a uniform interface and plotting functions for limma/edgeR/DEXSeq -powered differential bin/exon usage. It includes in addition an improved version of the limma::diffSplice method. Most importantly, diffUTR further extends the application of these frameworks to differential UTR usage analysis using poly-A site databases. biocViews: GeneExpression Author: Pierre-Luc Germain [cre, aut] (), Stefan Gerber [aut] Maintainer: Pierre-Luc Germain VignetteBuilder: knitr BugReports: https://github.com/ETHZ-INS/diffUTR git_url: https://git.bioconductor.org/packages/diffUTR git_branch: RELEASE_3_20 git_last_commit: 48b3fcf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/diffUTR_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/diffUTR_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/diffUTR_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/diffUTR_1.14.0.tgz vignettes: vignettes/diffUTR/inst/doc/diffSplice2.html, vignettes/diffUTR/inst/doc/diffUTR.html vignetteTitles: diffUTR_diffSplice2, 1_diffUTR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/diffUTR/inst/doc/diffSplice2.R, vignettes/diffUTR/inst/doc/diffUTR.R dependencyCount: 145 Package: diggit Version: 1.38.0 Depends: R (>= 3.0.2), Biobase, methods Imports: ks, viper(>= 1.3.1), parallel Suggests: diggitdata License: file LICENSE Archs: x64 MD5sum: 4e6dafcb2e7245fd3f1cb6020a94986e NeedsCompilation: no Title: Inference of Genetic Variants Driving Cellular Phenotypes Description: Inference of Genetic Variants Driving Cellullar Phenotypes by the DIGGIT algorithm biocViews: SystemsBiology, NetworkEnrichment, GeneExpression, FunctionalPrediction, GeneRegulation Author: Mariano J Alvarez Maintainer: Mariano J Alvarez git_url: https://git.bioconductor.org/packages/diggit git_branch: RELEASE_3_20 git_last_commit: 826d656 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/diggit_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/diggit_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/diggit_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/diggit_1.38.0.tgz vignettes: vignettes/diggit/inst/doc/diggit.pdf vignetteTitles: Using DIGGIT hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/diggit/inst/doc/diggit.R dependencyCount: 96 Package: Dino Version: 1.12.0 Depends: R (>= 4.0.0) Imports: BiocParallel, BiocSingular, SummarizedExperiment, SingleCellExperiment, S4Vectors, Matrix, Seurat, matrixStats, parallel, scran, grDevices, stats, methods Suggests: testthat (>= 2.1.0), knitr, rmarkdown, BiocStyle, devtools, ggplot2, gridExtra, ggpubr, grid, magick, hexbin License: GPL-3 MD5sum: c83c67fd5a0a83ab3ac6ea080fbfbc8b NeedsCompilation: no Title: Normalization of Single-Cell mRNA Sequencing Data Description: Dino normalizes single-cell, mRNA sequencing data to correct for technical variation, particularly sequencing depth, prior to downstream analysis. The approach produces a matrix of corrected expression for which the dependency between sequencing depth and the full distribution of normalized expression; many existing methods aim to remove only the dependency between sequencing depth and the mean of the normalized expression. This is particuarly useful in the context of highly sparse datasets such as those produced by 10X genomics and other uninque molecular identifier (UMI) based microfluidics protocols for which the depth-dependent proportion of zeros in the raw expression data can otherwise present a challenge. biocViews: Software, Normalization, RNASeq, SingleCell, Sequencing, GeneExpression, Transcriptomics, Regression, CellBasedAssays Author: Jared Brown [aut, cre] (), Christina Kendziorski [ctb] Maintainer: Jared Brown URL: https://github.com/JBrownBiostat/Dino VignetteBuilder: knitr BugReports: https://github.com/JBrownBiostat/Dino/issues git_url: https://git.bioconductor.org/packages/Dino git_branch: RELEASE_3_20 git_last_commit: ba125c5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Dino_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Dino_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Dino_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Dino_1.12.0.tgz vignettes: vignettes/Dino/inst/doc/Dino.html vignetteTitles: Normalization by distributional resampling of high throughput single-cell RNA-sequencing data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Dino/inst/doc/Dino.R dependencyCount: 192 Package: dinoR Version: 1.2.0 Depends: R (>= 4.3.0), SummarizedExperiment Imports: BiocGenerics, circlize, ComplexHeatmap, cowplot, dplyr, edgeR, GenomicRanges, ggplot2, Matrix, methods, rlang, stats, stringr, tibble, tidyr, tidyselect Suggests: knitr, rmarkdown, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: 5c4fc734805779e90b1678bc575f104a NeedsCompilation: no Title: Differential NOMe-seq analysis Description: dinoR tests for significant differences in NOMe-seq footprints between two conditions, using genomic regions of interest (ROI) centered around a landmark, for example a transcription factor (TF) motif. This package takes NOMe-seq data (GCH methylation/protection) in the form of a Ranged Summarized Experiment as input. dinoR can be used to group sequencing fragments into 3 or 5 categories representing characteristic footprints (TF bound, nculeosome bound, open chromatin), plot the percentage of fragments in each category in a heatmap, or averaged across different ROI groups, for example, containing a common TF motif. It is designed to compare footprints between two sample groups, using edgeR's quasi-likelihood methods on the total fragment counts per ROI, sample, and footprint category. biocViews: NucleosomePositioning, Epigenetics, MethylSeq, DifferentialMethylation, Coverage, Transcription, Sequencing, Software Author: Michaela Schwaiger [aut, cre] () Maintainer: Michaela Schwaiger URL: https://github.com/xxxmichixxx/dinoR VignetteBuilder: knitr BugReports: https://github.com/xxxmichixxx/dinoR/issues git_url: https://git.bioconductor.org/packages/dinoR git_branch: RELEASE_3_20 git_last_commit: 4068b9f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dinoR_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dinoR_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dinoR_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dinoR_1.2.0.tgz vignettes: vignettes/dinoR/inst/doc/dinoR-vignette.html vignetteTitles: dinoR-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/dinoR/inst/doc/dinoR-vignette.R dependencyCount: 90 Package: Director Version: 1.32.0 Depends: R (>= 4.0) Imports: htmltools, utils, grDevices License: GPL-3 + file LICENSE MD5sum: 635f5ad07d7d794137c72fc43d06e122 NeedsCompilation: no Title: A dynamic visualization tool of multi-level data Description: Director is an R package designed to streamline the visualization of molecular effects in regulatory cascades. It utilizes the R package htmltools and a modified Sankey plugin of the JavaScript library D3 to provide a fast and easy, browser-enabled solution to discovering potentially interesting downstream effects of regulatory and/or co-expressed molecules. The diagrams are robust, interactive, and packaged as highly-portable HTML files that eliminate the need for third-party software to view. This enables a straightforward approach for scientists to interpret the data produced, and bioinformatics developers an alternative means to present relevant data. biocViews: Visualization Author: Katherine Icay [aut, cre] Maintainer: Katherine Icay URL: https://github.com/kzouchka/Director BugReports: https://github.com/kzouchka/Director/issues git_url: https://git.bioconductor.org/packages/Director git_branch: RELEASE_3_20 git_last_commit: 326f7e7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Director_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Director_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Director_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Director_1.32.0.tgz vignettes: vignettes/Director/inst/doc/vignette.pdf vignetteTitles: Using Director hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Director/inst/doc/vignette.R dependencyCount: 7 Package: dir.expiry Version: 1.14.0 Imports: utils, filelock Suggests: rmarkdown, knitr, testthat, BiocStyle License: GPL-3 MD5sum: c34f1ba65eeb7ab02784f252fe20477b NeedsCompilation: no Title: Managing Expiration for Cache Directories Description: Implements an expiration system for access to versioned directories. Directories that have not been accessed by a registered function within a certain time frame are deleted. This aims to reduce disk usage by eliminating obsolete caches generated by old versions of packages. biocViews: Software, Infrastructure Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/dir.expiry git_branch: RELEASE_3_20 git_last_commit: 350a482 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dir.expiry_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dir.expiry_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dir.expiry_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dir.expiry_1.14.0.tgz vignettes: vignettes/dir.expiry/inst/doc/userguide.html vignetteTitles: Managing directory expiration hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/dir.expiry/inst/doc/userguide.R importsMe: basilisk, basilisk.utils, rebook dependencyCount: 2 Package: DirichletMultinomial Version: 1.48.0 Depends: S4Vectors, IRanges Imports: stats4, methods, BiocGenerics Suggests: lattice, parallel, MASS, RColorBrewer, DT, knitr, rmarkdown, BiocStyle License: LGPL-3 MD5sum: ff5ee6c605c511ad6e8f2e3e6ad1165c NeedsCompilation: yes Title: Dirichlet-Multinomial Mixture Model Machine Learning for Microbiome Data Description: Dirichlet-multinomial mixture models can be used to describe variability in microbial metagenomic data. This package is an interface to code originally made available by Holmes, Harris, and Quince, 2012, PLoS ONE 7(2): 1-15, as discussed further in the man page for this package, ?DirichletMultinomial. biocViews: ImmunoOncology, Microbiome, Sequencing, Clustering, Classification, Metagenomics Author: Martin Morgan [aut, cre] () Maintainer: Martin Morgan URL: https://mtmorgan.github.io/DirichletMultinomial/ SystemRequirements: gsl VignetteBuilder: knitr BugReports: https://github.com/mtmorgan/DirichletMultinomial/issues git_url: https://git.bioconductor.org/packages/DirichletMultinomial git_branch: RELEASE_3_20 git_last_commit: 37dd5f3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DirichletMultinomial_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DirichletMultinomial_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DirichletMultinomial_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DirichletMultinomial_1.48.0.tgz vignettes: vignettes/DirichletMultinomial/inst/doc/DirichletMultinomial.html vignetteTitles: DirichletMultinomial for Clustering and Classification of Microbiome Data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DirichletMultinomial/inst/doc/DirichletMultinomial.R importsMe: mia, miaViz, TFBSTools suggestsMe: bluster, MicrobiotaProcess dependencyCount: 8 Package: discordant Version: 1.30.0 Depends: R (>= 4.1.0) Imports: Rcpp, Biobase, stats, biwt, gtools, MASS, tools, dplyr, methods, utils LinkingTo: Rcpp Suggests: BiocStyle, knitr, testthat (>= 3.0.0) License: GPL-3 MD5sum: 7498dbbb0f00998da67fb537e1fe5ed0 NeedsCompilation: yes Title: The Discordant Method: A Novel Approach for Differential Correlation Description: Discordant is an R package that identifies pairs of features that correlate differently between phenotypic groups, with application to -omics data sets. Discordant uses a mixture model that “bins” molecular feature pairs based on their type of coexpression or coabbundance. Algorithm is explained further in "Differential Correlation for Sequencing Data"" (Siska et al. 2016). biocViews: ImmunoOncology, BiologicalQuestion, StatisticalMethod, mRNAMicroarray, Microarray, Genetics, RNASeq Author: Charlotte Siska [aut], McGrath Max [aut, cre], Katerina Kechris [aut, cph, ths] Maintainer: McGrath Max URL: https://github.com/siskac/discordant VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/discordant git_branch: RELEASE_3_20 git_last_commit: 2ee91e2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/discordant_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/discordant_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/discordant_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/discordant_1.30.0.tgz vignettes: vignettes/discordant/inst/doc/Using_discordant.html vignetteTitles: The discordant R Package: A Novel Approach to Differential Correlation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/discordant/inst/doc/Using_discordant.R dependencyCount: 30 Package: DiscoRhythm Version: 1.22.0 Depends: R (>= 3.6.0) Imports: matrixTests, matrixStats, MetaCycle (>= 1.2.0), data.table, ggplot2, ggExtra, dplyr, broom, shiny, shinyBS, shinycssloaders, shinydashboard, shinyjs, BiocStyle, rmarkdown, knitr, kableExtra, magick, VennDiagram, UpSetR, heatmaply, viridis, plotly, DT, gridExtra, methods, stats, SummarizedExperiment, BiocGenerics, S4Vectors, zip, reshape2 Suggests: testthat License: GPL-3 Archs: x64 MD5sum: 7e233ff69cf7337ec1e8115d4c8f6130 NeedsCompilation: no Title: Interactive Workflow for Discovering Rhythmicity in Biological Data Description: Set of functions for estimation of cyclical characteristics, such as period, phase, amplitude, and statistical significance in large temporal datasets. Supporting functions are available for quality control, dimensionality reduction, spectral analysis, and analysis of experimental replicates. Contains a R Shiny web interface to execute all workflow steps. biocViews: Software, TimeCourse, QualityControl, Visualization, GUI, PrincipalComponent Author: Matthew Carlucci [aut, cre], Algimantas Kriščiūnas [aut], Haohan Li [aut], Povilas Gibas [aut], Karolis Koncevičius [aut], Art Petronis [aut], Gabriel Oh [aut] Maintainer: Matthew Carlucci URL: https://github.com/matthewcarlucci/DiscoRhythm SystemRequirements: To generate html reports pandoc (http://pandoc.org/installing.html) is required. VignetteBuilder: knitr BugReports: https://github.com/matthewcarlucci/DiscoRhythm/issues git_url: https://git.bioconductor.org/packages/DiscoRhythm git_branch: RELEASE_3_20 git_last_commit: c84efd0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DiscoRhythm_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DiscoRhythm_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DiscoRhythm_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DiscoRhythm_1.22.0.tgz vignettes: vignettes/DiscoRhythm/inst/doc/disco_workflow_vignette.html vignetteTitles: Introduction to DiscoRhythm hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DiscoRhythm/inst/doc/disco_workflow_vignette.R dependencyCount: 159 Package: distinct Version: 1.18.0 Depends: R (>= 4.3) Imports: Rcpp, stats, SummarizedExperiment, SingleCellExperiment, methods, Matrix, foreach, parallel, doParallel, doRNG, ggplot2, limma, scater LinkingTo: Rcpp, RcppArmadillo Suggests: knitr, rmarkdown, testthat, UpSetR, BiocStyle License: GPL (>= 3) Archs: x64 MD5sum: 468ef5d0f94a8ef22c78d0bfbb7be45e NeedsCompilation: yes Title: distinct: a method for differential analyses via hierarchical permutation tests Description: distinct is a statistical method to perform differential testing between two or more groups of distributions; differential testing is performed via hierarchical non-parametric permutation tests on the cumulative distribution functions (cdfs) of each sample. While most methods for differential expression target differences in the mean abundance between conditions, distinct, by comparing full cdfs, identifies, both, differential patterns involving changes in the mean, as well as more subtle variations that do not involve the mean (e.g., unimodal vs. bi-modal distributions with the same mean). distinct is a general and flexible tool: due to its fully non-parametric nature, which makes no assumptions on how the data was generated, it can be applied to a variety of datasets. It is particularly suitable to perform differential state analyses on single cell data (i.e., differential analyses within sub-populations of cells), such as single cell RNA sequencing (scRNA-seq) and high-dimensional flow or mass cytometry (HDCyto) data. To use distinct one needs data from two or more groups of samples (i.e., experimental conditions), with at least 2 samples (i.e., biological replicates) per group. biocViews: Genetics, RNASeq, Sequencing, DifferentialExpression, GeneExpression, MultipleComparison, Software, Transcription, StatisticalMethod, Visualization, SingleCell, FlowCytometry, GeneTarget Author: Simone Tiberi [aut, cre]. Maintainer: Simone Tiberi URL: https://github.com/SimoneTiberi/distinct SystemRequirements: C++17 VignetteBuilder: knitr BugReports: https://github.com/SimoneTiberi/distinct/issues git_url: https://git.bioconductor.org/packages/distinct git_branch: RELEASE_3_20 git_last_commit: 3fccf23 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/distinct_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/distinct_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/distinct_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/distinct_1.18.0.tgz vignettes: vignettes/distinct/inst/doc/distinct.html vignetteTitles: distinct: a method for differential analyses via hierarchical permutation tests hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/distinct/inst/doc/distinct.R importsMe: condiments dependencyCount: 115 Package: dittoSeq Version: 1.18.0 Depends: ggplot2 Imports: methods, colorspace (>= 1.4), gridExtra, cowplot, reshape2, pheatmap, grDevices, ggrepel, ggridges, stats, utils, SummarizedExperiment, SingleCellExperiment, S4Vectors Suggests: plotly, testthat, Seurat (>= 2.2), DESeq2, edgeR, ggplot.multistats, knitr, rmarkdown, BiocStyle, scRNAseq, ggrastr (>= 0.2.0), ComplexHeatmap, bluster, scater, scran License: MIT + file LICENSE MD5sum: 3cf2635611082328b10df0bd1a96960c NeedsCompilation: no Title: User Friendly Single-Cell and Bulk RNA Sequencing Visualization Description: A universal, user friendly, single-cell and bulk RNA sequencing visualization toolkit that allows highly customizable creation of color blindness friendly, publication-quality figures. dittoSeq accepts both SingleCellExperiment (SCE) and Seurat objects, as well as the import and usage, via conversion to an SCE, of SummarizedExperiment or DGEList bulk data. Visualizations include dimensionality reduction plots, heatmaps, scatterplots, percent composition or expression across groups, and more. Customizations range from size and title adjustments to automatic generation of annotations for heatmaps, overlay of trajectory analysis onto any dimensionality reduciton plot, hidden data overlay upon cursor hovering via ggplotly conversion, and many more. All with simple, discrete inputs. Color blindness friendliness is powered by legend adjustments (enlarged keys), and by allowing the use of shapes or letter-overlay in addition to the carefully selected dittoColors(). biocViews: Software, Visualization, RNASeq, SingleCell, GeneExpression, Transcriptomics, DataImport Author: Daniel Bunis [aut, cre], Jared Andrews [aut, ctb] Maintainer: Daniel Bunis VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/dittoSeq git_branch: RELEASE_3_20 git_last_commit: f9288fa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dittoSeq_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dittoSeq_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dittoSeq_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dittoSeq_1.18.0.tgz vignettes: vignettes/dittoSeq/inst/doc/dittoSeq.html vignetteTitles: Annotating scRNA-seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/dittoSeq/inst/doc/dittoSeq.R importsMe: CRISPRball, SPIAT suggestsMe: demuxSNP, tidySingleCellExperiment, magmaR, scCustomize dependencyCount: 73 Package: divergence Version: 1.22.0 Depends: R (>= 3.6), SummarizedExperiment Suggests: knitr, rmarkdown License: GPL-2 Archs: x64 MD5sum: 88ffd440264bcc970ecdb76ca53b8d2c NeedsCompilation: no Title: Divergence: Functionality for assessing omics data by divergence with respect to a baseline Description: This package provides functionality for performing divergence analysis as presented in Dinalankara et al, "Digitizing omics profiles by divergence from a baseline", PANS 2018. This allows the user to simplify high dimensional omics data into a binary or ternary format which encapsulates how the data is divergent from a specified baseline group with the same univariate or multivariate features. biocViews: Software, StatisticalMethod Author: Wikum Dinalankara , Luigi Marchionni , Qian Ke Maintainer: Wikum Dinalankara , Luigi Marchionni VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/divergence git_branch: RELEASE_3_20 git_last_commit: 4cd2c7e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/divergence_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/divergence_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/divergence_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/divergence_1.22.0.tgz vignettes: vignettes/divergence/inst/doc/divergence.html vignetteTitles: Performing Divergence Analysis hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/divergence/inst/doc/divergence.R dependencyCount: 36 Package: dks Version: 1.52.0 Depends: R (>= 2.8) Imports: cubature License: GPL MD5sum: 63404c3bfc062f81249bdd219e229ef5 NeedsCompilation: no Title: The double Kolmogorov-Smirnov package for evaluating multiple testing procedures. Description: The dks package consists of a set of diagnostic functions for multiple testing methods. The functions can be used to determine if the p-values produced by a multiple testing procedure are correct. These functions are designed to be applied to simulated data. The functions require the entire set of p-values from multiple simulated studies, so that the joint distribution can be evaluated. biocViews: MultipleComparison, QualityControl Author: Jeffrey T. Leek Maintainer: Jeffrey T. Leek git_url: https://git.bioconductor.org/packages/dks git_branch: RELEASE_3_20 git_last_commit: 056be19 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dks_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dks_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dks_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dks_1.52.0.tgz vignettes: vignettes/dks/inst/doc/dks.pdf vignetteTitles: dksTutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/dks/inst/doc/dks.R dependencyCount: 4 Package: DMCFB Version: 1.20.0 Depends: R (>= 4.0.0), SummarizedExperiment, methods, S4Vectors, BiocParallel, GenomicRanges, IRanges Imports: utils, stats, speedglm, MASS, data.table, splines, arm, rtracklayer, benchmarkme, tibble, matrixStats, fastDummies, graphics Suggests: testthat, knitr, rmarkdown, BiocStyle License: GPL-3 MD5sum: 454e7d7fc1d95d097ea4ed164531fe23 NeedsCompilation: no Title: Differentially Methylated Cytosines via a Bayesian Functional Approach Description: DMCFB is a pipeline for identifying differentially methylated cytosines using a Bayesian functional regression model in bisulfite sequencing data. By using a functional regression data model, it tries to capture position-specific, group-specific and other covariates-specific methylation patterns as well as spatial correlation patterns and unknown underlying models of methylation data. It is robust and flexible with respect to the true underlying models and inclusion of any covariates, and the missing values are imputed using spatial correlation between positions and samples. A Bayesian approach is adopted for estimation and inference in the proposed method. biocViews: DifferentialMethylation, Sequencing, Coverage, Bayesian, Regression Author: Farhad Shokoohi [aut, cre] () Maintainer: Farhad Shokoohi VignetteBuilder: knitr BugReports: https://github.com/shokoohi/DMCFB/issues git_url: https://git.bioconductor.org/packages/DMCFB git_branch: RELEASE_3_20 git_last_commit: 69e5098 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DMCFB_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DMCFB_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DMCFB_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DMCFB_1.20.0.tgz vignettes: vignettes/DMCFB/inst/doc/DMCFB.html vignetteTitles: Identifying DMCs using Bayesian functional regressions in BS-Seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DMCFB/inst/doc/DMCFB.R dependencyCount: 97 Package: DMCHMM Version: 1.28.0 Depends: R (>= 4.1.0), SummarizedExperiment, methods, S4Vectors, BiocParallel, GenomicRanges, IRanges, fdrtool Imports: utils, stats, grDevices, rtracklayer, multcomp, calibrate, graphics Suggests: testthat, knitr, rmarkdown License: GPL-3 MD5sum: 48059a3a3eccca8c9da8fb433be4d43b NeedsCompilation: no Title: Differentially Methylated CpG using Hidden Markov Model Description: A pipeline for identifying differentially methylated CpG sites using Hidden Markov Model in bisulfite sequencing data. DNA methylation studies have enabled researchers to understand methylation patterns and their regulatory roles in biological processes and disease. However, only a limited number of statistical approaches have been developed to provide formal quantitative analysis. Specifically, a few available methods do identify differentially methylated CpG (DMC) sites or regions (DMR), but they suffer from limitations that arise mostly due to challenges inherent in bisulfite sequencing data. These challenges include: (1) that read-depths vary considerably among genomic positions and are often low; (2) both methylation and autocorrelation patterns change as regions change; and (3) CpG sites are distributed unevenly. Furthermore, there are several methodological limitations: almost none of these tools is capable of comparing multiple groups and/or working with missing values, and only a few allow continuous or multiple covariates. The last of these is of great interest among researchers, as the goal is often to find which regions of the genome are associated with several exposures and traits. To tackle these issues, we have developed an efficient DMC identification method based on Hidden Markov Models (HMMs) called “DMCHMM” which is a three-step approach (model selection, prediction, testing) aiming to address the aforementioned drawbacks. biocViews: DifferentialMethylation, Sequencing, HiddenMarkovModel, Coverage Author: Farhad Shokoohi Maintainer: Farhad Shokoohi VignetteBuilder: knitr BugReports: https://github.com/shokoohi/DMCHMM/issues git_url: https://git.bioconductor.org/packages/DMCHMM git_branch: RELEASE_3_20 git_last_commit: 4608f96 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DMCHMM_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DMCHMM_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DMCHMM_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DMCHMM_1.28.0.tgz vignettes: vignettes/DMCHMM/inst/doc/DMCHMM.html vignetteTitles: DMCHMM: Differentially Methylated CpG using Hidden Markov Model hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DMCHMM/inst/doc/DMCHMM.R dependencyCount: 68 Package: DMRcaller Version: 1.38.0 Depends: R (>= 3.5), GenomicRanges, IRanges, S4Vectors (>= 0.23.10) Imports: parallel, Rcpp, RcppRoll, betareg, grDevices, graphics, methods, stats, utils Suggests: knitr, RUnit, BiocGenerics License: GPL-3 MD5sum: f8f0246094a04c162577b779e291467f NeedsCompilation: no Title: Differentially Methylated Regions caller Description: Uses Bisulfite sequencing data in two conditions and identifies differentially methylated regions between the conditions in CG and non-CG context. The input is the CX report files produced by Bismark and the output is a list of DMRs stored as GRanges objects. biocViews: DifferentialMethylation, DNAMethylation, Software, Sequencing, Coverage Author: Nicolae Radu Zabet , Jonathan Michael Foonlan Tsang , Alessandro Pio Greco and Ryan Merritt Maintainer: Nicolae Radu Zabet VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DMRcaller git_branch: RELEASE_3_20 git_last_commit: c659d0b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DMRcaller_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DMRcaller_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DMRcaller_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DMRcaller_1.38.0.tgz vignettes: vignettes/DMRcaller/inst/doc/DMRcaller.pdf vignetteTitles: DMRcaller hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DMRcaller/inst/doc/DMRcaller.R dependencyCount: 37 Package: DMRcate Version: 3.2.1 Depends: R (>= 4.3.0) Imports: AnnotationHub, ExperimentHub, bsseq, GenomeInfoDb, limma, edgeR, minfi, missMethyl, GenomicRanges, plyr, Gviz, IRanges, stats, utils, S4Vectors, methods, graphics, SummarizedExperiment, biomaRt, grDevices Suggests: knitr, RUnit, BiocGenerics, IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylationEPICanno.ilm10b4.hg19, IlluminaHumanMethylationEPICv2anno.20a1.hg38, FlowSorted.Blood.EPIC, tissueTreg, DMRcatedata, EPICv2manifest License: file LICENSE MD5sum: d09073dbe144053f29cdc0d2b7544473 NeedsCompilation: no Title: Methylation array and sequencing spatial analysis methods Description: De novo identification and extraction of differentially methylated regions (DMRs) from the human genome using Whole Genome Bisulfite Sequencing (WGBS) and Illumina Infinium Array (450K and EPIC) data. Provides functionality for filtering probes possibly confounded by SNPs and cross-hybridisation. Includes GRanges generation and plotting functions. biocViews: DifferentialMethylation, GeneExpression, Microarray, MethylationArray, Genetics, DifferentialExpression, GenomeAnnotation, DNAMethylation, OneChannel, TwoChannel, MultipleComparison, QualityControl, TimeCourse, Sequencing, WholeGenome, Epigenetics, Coverage, Preprocessing, DataImport Author: Tim Peters Maintainer: Tim Peters VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DMRcate git_branch: RELEASE_3_20 git_last_commit: e441ab4 git_last_commit_date: 2024-12-16 Date/Publication: 2024-12-19 source.ver: src/contrib/DMRcate_3.2.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/DMRcate_3.2.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DMRcate_3.2.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DMRcate_3.2.1.tgz vignettes: vignettes/DMRcate/inst/doc/EPICv1_and_450K.pdf, vignettes/DMRcate/inst/doc/EPICv2.pdf, vignettes/DMRcate/inst/doc/sequencing.pdf vignetteTitles: DMRcate for EPICv1 and 450K assays, DMR calling from EPICv2 arrays, DMRcate for bisulfite sequencing assays (WGBS and RRBS) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/DMRcate/inst/doc/EPICv1_and_450K.R, vignettes/DMRcate/inst/doc/EPICv2.R, vignettes/DMRcate/inst/doc/sequencing.R dependsOnMe: methylationArrayAnalysis suggestsMe: missMethyl dependencyCount: 224 Package: DMRScan Version: 1.28.0 Depends: R (>= 3.6.0) Imports: Matrix, MASS, RcppRoll,GenomicRanges, IRanges, GenomeInfoDb, methods, mvtnorm, stats, parallel Suggests: knitr, rmarkdown, BiocStyle, BiocManager License: GPL-3 MD5sum: 627081fa7eccd3d649e117ef14b351ec NeedsCompilation: no Title: Detection of Differentially Methylated Regions Description: This package detects significant differentially methylated regions (for both qualitative and quantitative traits), using a scan statistic with underlying Poisson heuristics. The scan statistic will depend on a sequence of window sizes (# of CpGs within each window) and on a threshold for each window size. This threshold can be calculated by three different means: i) analytically using Siegmund et.al (2012) solution (preferred), ii) an important sampling as suggested by Zhang (2008), and a iii) full MCMC modeling of the data, choosing between a number of different options for modeling the dependency between each CpG. biocViews: Software, Technology, Sequencing, WholeGenome Author: Christian M Page [aut, cre], Linda Vos [aut], Trine B Rounge [ctb, dtc], Hanne F Harbo [ths], Bettina K Andreassen [aut] Maintainer: Christian M Page URL: https://github.com/christpa/DMRScan VignetteBuilder: knitr BugReports: https://github.com/christpa/DMRScan/issues PackageStatus: Active git_url: https://git.bioconductor.org/packages/DMRScan git_branch: RELEASE_3_20 git_last_commit: 5a736e2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DMRScan_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DMRScan_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DMRScan_1.28.0.tgz vignettes: vignettes/DMRScan/inst/doc/DMRScan_vignette.html vignetteTitles: DMR Scan Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DMRScan/inst/doc/DMRScan_vignette.R dependencyCount: 32 Package: dmrseq Version: 1.26.0 Depends: R (>= 3.5), bsseq Imports: GenomicRanges, nlme, ggplot2, S4Vectors, RColorBrewer, bumphunter, DelayedMatrixStats (>= 1.1.13), matrixStats, BiocParallel, outliers, methods, locfit, IRanges, grDevices, graphics, stats, utils, annotatr, AnnotationHub, rtracklayer, GenomeInfoDb, splines Suggests: knitr, rmarkdown, BiocStyle, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db License: MIT + file LICENSE MD5sum: 2d2587cf01f801f71925719e452948bd NeedsCompilation: no Title: Detection and inference of differentially methylated regions from Whole Genome Bisulfite Sequencing Description: This package implements an approach for scanning the genome to detect and perform accurate inference on differentially methylated regions from Whole Genome Bisulfite Sequencing data. The method is based on comparing detected regions to a pooled null distribution, that can be implemented even when as few as two samples per population are available. Region-level statistics are obtained by fitting a generalized least squares (GLS) regression model with a nested autoregressive correlated error structure for the effect of interest on transformed methylation proportions. biocViews: ImmunoOncology, DNAMethylation, Epigenetics, MultipleComparison, Software, Sequencing, DifferentialMethylation, WholeGenome, Regression, FunctionalGenomics Author: Keegan Korthauer [cre, aut] (), Rafael Irizarry [aut] (), Yuval Benjamini [aut], Sutirtha Chakraborty [aut] Maintainer: Keegan Korthauer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/dmrseq git_branch: RELEASE_3_20 git_last_commit: cc1f2e2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dmrseq_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dmrseq_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dmrseq_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dmrseq_1.26.0.tgz vignettes: vignettes/dmrseq/inst/doc/dmrseq.html vignetteTitles: Analyzing Bisulfite-seq data with dmrseq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/dmrseq/inst/doc/dmrseq.R importsMe: biscuiteer dependencyCount: 149 Package: DNABarcodeCompatibility Version: 1.22.0 Depends: R (>= 3.6.0) Imports: dplyr, tidyr, numbers, purrr, stringr, stats, utils, methods, Rcpp (>= 0.11.2), BH LinkingTo: Rcpp, BH Suggests: knitr, rmarkdown, BiocStyle, testthat License: file LICENSE MD5sum: e57f1831f939739ea375d835f0447a5e NeedsCompilation: yes Title: A Tool for Optimizing Combinations of DNA Barcodes Used in Multiplexed Experiments on Next Generation Sequencing Platforms Description: The package allows one to obtain optimised combinations of DNA barcodes to be used for multiplex sequencing. In each barcode combination, barcodes are pooled with respect to Illumina chemistry constraints. Combinations can be filtered to keep those that are robust against substitution and insertion/deletion errors thereby facilitating the demultiplexing step. In addition, the package provides an optimiser function to further favor the selection of barcode combinations with least heterogeneity in barcode usage. biocViews: Preprocessing, Sequencing Author: Céline Trébeau [cre] (), Jacques Boutet de Monvel [aut] (), Fabienne Wong Jun Tai [ctb], Raphaël Etournay [aut] () Maintainer: Céline Trébeau URL: https://dnabarcodecompatibility.pasteur.fr/ VignetteBuilder: knitr BugReports: https://gitlab.pasteur.fr/ida-public/dnabarcodecompatibility/-/issues git_url: https://git.bioconductor.org/packages/DNABarcodeCompatibility git_branch: RELEASE_3_20 git_last_commit: 9b758d6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DNABarcodeCompatibility_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DNABarcodeCompatibility_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DNABarcodeCompatibility_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DNABarcodeCompatibility_1.22.0.tgz vignettes: vignettes/DNABarcodeCompatibility/inst/doc/introduction.html vignetteTitles: Introduction to DNABarcodeCompatibility hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/DNABarcodeCompatibility/inst/doc/introduction.R dependencyCount: 30 Package: DNABarcodes Version: 1.36.0 Depends: Matrix, parallel Imports: Rcpp (>= 0.11.2), BH LinkingTo: Rcpp, BH Suggests: knitr, BiocStyle, rmarkdown License: GPL-2 MD5sum: a095e98696182153e9e2cd36bac1c728 NeedsCompilation: yes Title: A tool for creating and analysing DNA barcodes used in Next Generation Sequencing multiplexing experiments Description: The package offers a function to create DNA barcode sets capable of correcting insertion, deletion, and substitution errors. Existing barcodes can be analysed regarding their minimal, maximal and average distances between barcodes. Finally, reads that start with a (possibly mutated) barcode can be demultiplexed, i.e., assigned to their original reference barcode. biocViews: Preprocessing, Sequencing Author: Tilo Buschmann Maintainer: Tilo Buschmann VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DNABarcodes git_branch: RELEASE_3_20 git_last_commit: 090bc96 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DNABarcodes_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DNABarcodes_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DNABarcodes_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DNABarcodes_1.36.0.tgz vignettes: vignettes/DNABarcodes/inst/doc/DNABarcodes.html vignetteTitles: DNABarcodes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DNABarcodes/inst/doc/DNABarcodes.R dependencyCount: 11 Package: DNAcopy Version: 1.80.0 License: GPL (>= 2) Archs: x64 MD5sum: be3239ff013047618e2b859e8c9c7209 NeedsCompilation: yes Title: DNA Copy Number Data Analysis Description: Implements the circular binary segmentation (CBS) algorithm to segment DNA copy number data and identify genomic regions with abnormal copy number. biocViews: Microarray, CopyNumberVariation Author: Venkatraman E. Seshan, Adam Olshen Maintainer: Venkatraman E. Seshan git_url: https://git.bioconductor.org/packages/DNAcopy git_branch: RELEASE_3_20 git_last_commit: f89937b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DNAcopy_1.80.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DNAcopy_1.80.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DNAcopy_1.80.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DNAcopy_1.80.0.tgz vignettes: vignettes/DNAcopy/inst/doc/DNAcopy.pdf vignetteTitles: DNAcopy hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DNAcopy/inst/doc/DNAcopy.R dependsOnMe: CGHcall, cghMCR, CRImage, PureCN, CSclone, ParDNAcopy, saasCNV importsMe: ADaCGH2, AneuFinder, ChAMP, CNAnorm, cn.farms, CNVrd2, conumee, GWASTools, maftools, MDTS, MEDIPS, MinimumDistance, QDNAseq, Repitools, SCOPE, jointseg, PSCBS suggestsMe: cn.mops, CopyNumberPlots, fastseg, nullranges, sesame, ACNE, aroma.cn, aroma.core, calmate dependencyCount: 0 Package: DNAfusion Version: 1.8.0 Depends: R (>= 4.2.0) Imports: bamsignals, GenomicRanges, IRanges, Rsamtools, GenomicAlignments, BiocBaseUtils, S4Vectors, GenomicFeatures, TxDb.Hsapiens.UCSC.hg38.knownGene, BiocGenerics Suggests: knitr, rmarkdown, testthat, sessioninfo, BiocStyle License: GPL-3 Archs: x64 MD5sum: 1cda8d4924a5b43b55cff5f17ec1ade3 NeedsCompilation: no Title: Identification of gene fusions using paired-end sequencing Description: DNAfusion can identify gene fusions such as EML4-ALK based on paired-end sequencing results. This package was developed using position deduplicated BAM files generated with the AVENIO Oncology Analysis Software. These files are made using the AVENIO ctDNA surveillance kit and Illumina Nextseq 500 sequencing. This is a targeted hybridization NGS approach and includes ALK-specific but not EML4-specific probes. biocViews: TargetedResequencing, Genetics, GeneFusionDetection, Sequencing Author: Christoffer Trier Maansson [aut, cre] (), Emma Roger Andersen [ctb, rev], Maiken Parm Ulhoi [dtc], Peter Meldgaard [dtc], Boe Sandahl Sorensen [rev, fnd] Maintainer: Christoffer Trier Maansson URL: https://github.com/CTrierMaansson/DNAfusion VignetteBuilder: knitr BugReports: https://github.com/CTrierMaansson/DNAfusion/issues git_url: https://git.bioconductor.org/packages/DNAfusion git_branch: RELEASE_3_20 git_last_commit: d932728 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DNAfusion_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DNAfusion_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DNAfusion_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DNAfusion_1.8.0.tgz vignettes: vignettes/DNAfusion/inst/doc/Introduction_to_DNAfusion.html vignetteTitles: Introduction to DNAfusion hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DNAfusion/inst/doc/Introduction_to_DNAfusion.R dependencyCount: 81 Package: DNAshapeR Version: 1.34.0 Depends: R (>= 3.4), GenomicRanges Imports: Rcpp (>= 0.12.1), Biostrings, fields LinkingTo: Rcpp Suggests: AnnotationHub, knitr, rmarkdown, testthat, BSgenome.Scerevisiae.UCSC.sacCer3, BSgenome.Hsapiens.UCSC.hg19, caret License: GPL-2 Archs: x64 MD5sum: f6735dc4a979507e5af6b7385bab61da NeedsCompilation: yes Title: High-throughput prediction of DNA shape features Description: DNAhapeR is an R/BioConductor package for ultra-fast, high-throughput predictions of DNA shape features. The package allows to predict, visualize and encode DNA shape features for statistical learning. biocViews: StructuralPrediction, DNA3DStructure, Software Author: Tsu-Pei Chiu and Federico Comoglio Maintainer: Tsu-Pei Chiu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DNAshapeR git_branch: RELEASE_3_20 git_last_commit: 0bfd414 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DNAshapeR_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DNAshapeR_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DNAshapeR_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DNAshapeR_1.34.0.tgz vignettes: vignettes/DNAshapeR/inst/doc/DNAshapeR.html vignetteTitles: DNAshapeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DNAshapeR/inst/doc/DNAshapeR.R dependencyCount: 33 Package: DominoEffect Version: 1.26.0 Depends: R(>= 3.5) Imports: biomaRt, data.table, utils, stats, Biostrings, pwalign, SummarizedExperiment, VariantAnnotation, AnnotationDbi, GenomeInfoDb, IRanges, GenomicRanges, methods Suggests: knitr, testthat, rmarkdown License: GPL (>= 3) MD5sum: fb13c8fd16dd9cd3426bc1c39b02447e NeedsCompilation: no Title: Identification and Annotation of Protein Hotspot Residues Description: The functions support identification and annotation of hotspot residues in proteins. These are individual amino acids that accumulate mutations at a much higher rate than their surrounding regions. biocViews: Software, SomaticMutation, Proteomics, SequenceMatching, Alignment Author: Marija Buljan and Peter Blattmann Maintainer: Marija Buljan , Peter Blattmann VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DominoEffect git_branch: RELEASE_3_20 git_last_commit: fbe9b0a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DominoEffect_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DominoEffect_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DominoEffect_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DominoEffect_1.26.0.tgz vignettes: vignettes/DominoEffect/inst/doc/Vignette.html vignetteTitles: Vignette for DominoEffect package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DominoEffect/inst/doc/Vignette.R dependencyCount: 105 Package: dominoSignal Version: 1.0.0 Depends: R(>= 4.2.0), Imports: biomaRt, ComplexHeatmap, circlize, ggpubr, grDevices, grid, igraph, Matrix, methods, plyr, stats, utils Suggests: knitr, patchwork, rmarkdown, Seurat, testthat, formatR, BiocFileCache, SingleCellExperiment License: GPL-3 | file LICENSE Archs: x64 MD5sum: 8a23703b89f2fb779fbb0af24625120f NeedsCompilation: no Title: Cell Communication Analysis for Single Cell RNA Sequencing Description: dominoSignal is a package developed to analyze cell signaling through ligand - receptor - transcription factor networks in scRNAseq data. It takes as input information transcriptomic data, requiring counts, z-scored counts, and cluster labels, as well as information on transcription factor activation (such as from SCENIC) and a database of ligand and receptor pairings (such as from CellPhoneDB). This package creates an object storing ligand - receptor - transcription factor linkages by cluster and provides several methods for exploring, summarizing, and visualizing the analysis. biocViews: SystemsBiology, SingleCell, Transcriptomics, Network Author: Christopher Cherry [aut] (), Jacob T Mitchell [aut, cre] (), Sushma Nagaraj [aut] (), Kavita Krishnan [aut] (), Dmitrijs Lvovs [aut], Elana Fertig [ctb] (), Jennifer Elisseeff [ctb] () Maintainer: Jacob T Mitchell URL: https://fertiglab.github.io/dominoSignal/ VignetteBuilder: knitr BugReports: https://github.com/FertigLab/dominoSignal/issues git_url: https://git.bioconductor.org/packages/dominoSignal git_branch: RELEASE_3_20 git_last_commit: b8fea56 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dominoSignal_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dominoSignal_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dominoSignal_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dominoSignal_1.0.0.tgz vignettes: vignettes/dominoSignal/inst/doc/domino_object_vignette.html, vignettes/dominoSignal/inst/doc/dominoSignal.html, vignettes/dominoSignal/inst/doc/plotting_vignette.html vignetteTitles: Interacting with domino Objects, Get Started with dominoSignal, Plotting Functions and Options hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/dominoSignal/inst/doc/domino_object_vignette.R, vignettes/dominoSignal/inst/doc/dominoSignal.R, vignettes/dominoSignal/inst/doc/plotting_vignette.R dependencyCount: 134 Package: doppelgangR Version: 1.34.0 Depends: R (>= 3.5.0), Biobase, BiocParallel Imports: sva, impute, digest, mnormt, methods, grDevices, graphics, stats, SummarizedExperiment, utils Suggests: BiocStyle, knitr, rmarkdown, curatedOvarianData, testthat License: GPL (>=2.0) MD5sum: dc715e98732ecc99e88ce2418cbf2b45 NeedsCompilation: no Title: Identify likely duplicate samples from genomic or meta-data Description: The main function is doppelgangR(), which takes as minimal input a list of ExpressionSet object, and searches all list pairs for duplicated samples. The search is based on the genomic data (exprs(eset)), phenotype/clinical data (pData(eset)), and "smoking guns" - supposedly unique identifiers found in pData(eset). biocViews: ImmunoOncology, RNASeq, Microarray, GeneExpression, QualityControl Author: Levi Waldron [aut, cre], Markus Reister [aut, ctb], Marcel Ramos [ctb] Maintainer: Levi Waldron URL: https://github.com/lwaldron/doppelgangR VignetteBuilder: knitr BugReports: https://github.com/lwaldron/doppelgangR/issues git_url: https://git.bioconductor.org/packages/doppelgangR git_branch: RELEASE_3_20 git_last_commit: 978a75d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/doppelgangR_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/doppelgangR_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/doppelgangR_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/doppelgangR_1.34.0.tgz vignettes: vignettes/doppelgangR/inst/doc/doppelgangR.html vignetteTitles: doppelgangR vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/doppelgangR/inst/doc/doppelgangR.R dependencyCount: 81 Package: Doscheda Version: 1.28.0 Depends: R (>= 3.4) Imports: methods, drc, stats, httr, jsonlite, reshape2 , vsn, affy, limma, stringr, ggplot2, graphics, grDevices, calibrate, corrgram, gridExtra, DT, shiny, shinydashboard, readxl, prodlim, matrixStats Suggests: BiocStyle, knitr, rmarkdown, testthat License: GPL-3 MD5sum: 7384a205a6521c4073d181cf3c9d1645 NeedsCompilation: no Title: A DownStream Chemo-Proteomics Analysis Pipeline Description: Doscheda focuses on quantitative chemoproteomics used to determine protein interaction profiles of small molecules from whole cell or tissue lysates using Mass Spectrometry data. The package provides a shiny application to run the pipeline, several visualisations and a downloadable report of an experiment. biocViews: Proteomics, Normalization, Preprocessing, MassSpectrometry, QualityControl, DataImport, Regression Author: Bruno Contrino, Piero Ricchiuto Maintainer: Bruno Contrino VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Doscheda git_branch: RELEASE_3_20 git_last_commit: 2b7a2d2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-01 source.ver: src/contrib/Doscheda_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Doscheda_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Doscheda_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Doscheda_1.28.0.tgz vignettes: vignettes/Doscheda/inst/doc/Doscheda.html vignetteTitles: Doscheda hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Doscheda/inst/doc/Doscheda.R dependencyCount: 152 Package: DOSE Version: 4.0.0 Depends: R (>= 3.5.0) Imports: AnnotationDbi, BiocParallel, fgsea, ggplot2, GOSemSim (>= 2.31.2), methods, qvalue, reshape2, stats, utils, yulab.utils (>= 0.1.6) Suggests: prettydoc, clusterProfiler, gson (>= 0.0.5), knitr, memoise, org.Hs.eg.db, rmarkdown, testthat License: Artistic-2.0 MD5sum: 01b762c6bd25214fd4fa713df1da6e52 NeedsCompilation: no Title: Disease Ontology Semantic and Enrichment analysis Description: This package implements five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively for measuring semantic similarities among DO terms and gene products. Enrichment analyses including hypergeometric model and gene set enrichment analysis are also implemented for discovering disease associations of high-throughput biological data. biocViews: Annotation, Visualization, MultipleComparison, GeneSetEnrichment, Pathways, Software Author: Guangchuang Yu [aut, cre], Li-Gen Wang [ctb], Vladislav Petyuk [ctb], Giovanni Dall'Olio [ctb] Maintainer: Guangchuang Yu URL: https://yulab-smu.top/contribution-knowledge-mining/ VignetteBuilder: knitr BugReports: https://github.com/GuangchuangYu/DOSE/issues git_url: https://git.bioconductor.org/packages/DOSE git_branch: RELEASE_3_20 git_last_commit: 5c3c2f3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DOSE_4.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DOSE_4.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DOSE_4.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DOSE_4.0.0.tgz vignettes: vignettes/DOSE/inst/doc/DOSE.html vignetteTitles: DOSE hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DOSE/inst/doc/DOSE.R importsMe: bioCancer, clusterProfiler, debrowser, enrichplot, enrichViewNet, GDCRNATools, MAGeCKFlute, meshes, miRSM, miRspongeR, Moonlight2R, MoonlightR, Pigengene, ReactomePA, RegEnrich, scTensor, signatureSearch, SVMDO, TDbasedUFEadv, ExpHunterSuite, GseaVis, immcp suggestsMe: cola, GOSemSim, GRaNIE, rrvgo, scGPS, aPEAR dependencyCount: 95 Package: doseR Version: 1.22.0 Depends: R (>= 3.6) Imports: edgeR, methods, stats, graphics, matrixStats, mclust, lme4, RUnit, SummarizedExperiment, digest, S4Vectors Suggests: BiocStyle, knitr, rmarkdown License: GPL MD5sum: 0cb977802d565342d2a516ee39f3a13c NeedsCompilation: no Title: doseR Description: doseR package is a next generation sequencing package for sex chromosome dosage compensation which can be applied broadly to detect shifts in gene expression among an arbitrary number of pre-defined groups of loci. doseR is a differential gene expression package for count data, that detects directional shifts in expression for multiple, specific subsets of genes, broad utility in systems biology research. doseR has been prepared to manage the nature of the data and the desired set of inferences. doseR uses S4 classes to store count data from sequencing experiment. It contains functions to normalize and filter count data, as well as to plot and calculate statistics of count data. It contains a framework for linear modeling of count data. The package has been tested using real and simulated data. biocViews: Infrastructure, Software, DataRepresentation, Sequencing, GeneExpression, SystemsBiology, DifferentialExpression Author: AJ Vaestermark, JR Walters. Maintainer: ake.vastermark VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/doseR git_branch: RELEASE_3_20 git_last_commit: 106fc8d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/doseR_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/doseR_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/doseR_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/doseR_1.22.0.tgz vignettes: vignettes/doseR/inst/doc/doseR.html vignetteTitles: "doseR" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/doseR/inst/doc/doseR.R dependencyCount: 53 Package: doubletrouble Version: 1.6.0 Depends: R (>= 4.2.0) Imports: syntenet, GenomicRanges, Biostrings, mclust, MSA2dist (>= 1.1.5), ggplot2, rlang, stats, utils, AnnotationDbi, GenomicFeatures Suggests: txdbmaker, testthat (>= 3.0.0), knitr, feature, patchwork, BiocStyle, rmarkdown, covr, sessioninfo License: GPL-3 MD5sum: 75b4d3b74df39726954baba245e872ea NeedsCompilation: no Title: Identification and classification of duplicated genes Description: doubletrouble aims to identify duplicated genes from whole-genome protein sequences and classify them based on their modes of duplication. The duplication modes are i. segmental duplication (SD); ii. tandem duplication (TD); iii. proximal duplication (PD); iv. transposed duplication (TRD) and; v. dispersed duplication (DD). Transposon-derived duplicates (TRD) can be further subdivided into rTRD (retrotransposon-derived duplication) and dTRD (DNA transposon-derived duplication). If users want a simpler classification scheme, duplicates can also be classified into SD- and SSD-derived (small-scale duplication) gene pairs. Besides classifying gene pairs, users can also classify genes, so that each gene is assigned a unique mode of duplication. Users can also calculate substitution rates per substitution site (i.e., Ka and Ks) from duplicate pairs, find peaks in Ks distributions with Gaussian Mixture Models (GMMs), and classify gene pairs into age groups based on Ks peaks. biocViews: Software, WholeGenome, ComparativeGenomics, FunctionalGenomics, Phylogenetics, Network, Classification Author: Fabrício Almeida-Silva [aut, cre] (), Yves Van de Peer [aut] () Maintainer: Fabrício Almeida-Silva URL: https://github.com/almeidasilvaf/doubletrouble VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/doubletrouble git_url: https://git.bioconductor.org/packages/doubletrouble git_branch: RELEASE_3_20 git_last_commit: 3e5e5a2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/doubletrouble_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/doubletrouble_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/doubletrouble_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/doubletrouble_1.6.0.tgz vignettes: vignettes/doubletrouble/inst/doc/doubletrouble_vignette.html vignetteTitles: Identification and classification of duplicated genes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/doubletrouble/inst/doc/doubletrouble_vignette.R dependencyCount: 144 Package: drawProteins Version: 1.26.0 Depends: R (>= 4.0) Imports: ggplot2, httr, dplyr, readr, tidyr Suggests: covr, testthat, knitr, rmarkdown, BiocStyle License: MIT + file LICENSE MD5sum: 86c0434b0dffac8f856ec5c3e2336808 NeedsCompilation: no Title: Package to Draw Protein Schematics from Uniprot API output Description: This package draws protein schematics from Uniprot API output. From the JSON returned by the GET command, it creates a dataframe from the Uniprot Features API. This dataframe can then be used by geoms based on ggplot2 and base R to draw protein schematics. biocViews: Visualization, FunctionalPrediction, Proteomics Author: Paul Brennan [aut, cre] Maintainer: Paul Brennan URL: https://github.com/brennanpincardiff/drawProteins VignetteBuilder: knitr BugReports: https://github.com/brennanpincardiff/drawProteins/issues/new git_url: https://git.bioconductor.org/packages/drawProteins git_branch: RELEASE_3_20 git_last_commit: 9eb5bac git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/drawProteins_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/drawProteins_1.26.0.zip mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/drawProteins_1.26.0.tgz vignettes: vignettes/drawProteins/inst/doc/drawProteins_BiocStyle.html, vignettes/drawProteins/inst/doc/drawProteins_extract_transcripts_BiocStyle.html vignetteTitles: Using drawProteins, Using extract_transcripts in drawProteins hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/drawProteins/inst/doc/drawProteins_BiocStyle.R, vignettes/drawProteins/inst/doc/drawProteins_extract_transcripts_BiocStyle.R importsMe: factR dependencyCount: 61 Package: dreamlet Version: 1.4.1 Depends: R (>= 4.3.0), variancePartition (>= 1.33.11), SingleCellExperiment, ggplot2 Imports: edgeR, SummarizedExperiment, DelayedMatrixStats, sparseMatrixStats, MatrixGenerics, Matrix, methods, purrr, GSEABase, data.table, zenith (>= 1.1.2), mashr (>= 0.2.52), ashr, dplyr, BiocParallel, ggbeeswarm, S4Vectors, IRanges, irlba, limma, metafor, remaCor, broom, tidyr, rlang, BiocGenerics, S4Arrays, SparseArray, DelayedArray, gtools, reshape2, ggrepel, scattermore, Rcpp, lme4 (>= 1.1-33), MASS, Rdpack, utils, stats LinkingTo: Rcpp, beachmat Suggests: BiocStyle, knitr, pander, rmarkdown, muscat, ExperimentHub, RUnit, muscData, scater, scuttle License: Artistic-2.0 MD5sum: b5cd6cd68be53312c7ece0ea02c6e80a NeedsCompilation: yes Title: Scalable differential expression analysis of single cell transcriptomics datasets with complex study designs Description: Recent advances in single cell/nucleus transcriptomic technology has enabled collection of cohort-scale datasets to study cell type specific gene expression differences associated disease state, stimulus, and genetic regulation. The scale of these data, complex study designs, and low read count per cell mean that characterizing cell type specific molecular mechanisms requires a user-frieldly, purpose-build analytical framework. We have developed the dreamlet package that applies a pseudobulk approach and fits a regression model for each gene and cell cluster to test differential expression across individuals associated with a trait of interest. Use of precision-weighted linear mixed models enables accounting for repeated measures study designs, high dimensional batch effects, and varying sequencing depth or observed cells per biosample. biocViews: RNASeq, GeneExpression, DifferentialExpression, BatchEffect, QualityControl, Regression, GeneSetEnrichment, GeneRegulation, Epigenetics, FunctionalGenomics, Transcriptomics, Normalization, SingleCell, Preprocessing, Sequencing, ImmunoOncology, Software Author: Gabriel Hoffman [aut, cre] () Maintainer: Gabriel Hoffman URL: https://DiseaseNeurogenomics.github.io/dreamlet SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/DiseaseNeurogenomics/dreamlet/issues git_url: https://git.bioconductor.org/packages/dreamlet git_branch: RELEASE_3_20 git_last_commit: 3b64d2c git_last_commit_date: 2024-11-05 Date/Publication: 2024-11-06 source.ver: src/contrib/dreamlet_1.4.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/dreamlet_1.4.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dreamlet_1.4.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dreamlet_1.4.1.tgz vignettes: vignettes/dreamlet/inst/doc/cell_covs.html, vignettes/dreamlet/inst/doc/dreamlet.html, vignettes/dreamlet/inst/doc/errors.html, vignettes/dreamlet/inst/doc/h5ad_on_disk.html, vignettes/dreamlet/inst/doc/mashr.html, vignettes/dreamlet/inst/doc/non_lin_eff.html vignetteTitles: Modeling continuous cell-level covariates, Dreamlet analysis of single cell RNA-seq, Error handling, Loading large-scale H5AD datasets, mashr analysis following dreamlet, Testing non-linear effects hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/dreamlet/inst/doc/cell_covs.R, vignettes/dreamlet/inst/doc/dreamlet.R, vignettes/dreamlet/inst/doc/errors.R, vignettes/dreamlet/inst/doc/h5ad_on_disk.R, vignettes/dreamlet/inst/doc/non_lin_eff.R dependencyCount: 191 Package: DRIMSeq Version: 1.34.0 Depends: R (>= 3.4.0) Imports: utils, stats, MASS, GenomicRanges, IRanges, S4Vectors, BiocGenerics, methods, BiocParallel, limma, edgeR, ggplot2, reshape2 Suggests: PasillaTranscriptExpr, GeuvadisTranscriptExpr, grid, BiocStyle, knitr, testthat License: GPL (>= 3) MD5sum: f952192f16a1d28d15d55a63bb693bb1 NeedsCompilation: no Title: Differential transcript usage and tuQTL analyses with Dirichlet-multinomial model in RNA-seq Description: The package provides two frameworks. One for the differential transcript usage analysis between different conditions and one for the tuQTL analysis. Both are based on modeling the counts of genomic features (i.e., transcripts) with the Dirichlet-multinomial distribution. The package also makes available functions for visualization and exploration of the data and results. biocViews: ImmunoOncology, SNP, AlternativeSplicing, DifferentialSplicing, Genetics, RNASeq, Sequencing, WorkflowStep, MultipleComparison, GeneExpression, DifferentialExpression Author: Malgorzata Nowicka [aut, cre] Maintainer: Malgorzata Nowicka VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DRIMSeq git_branch: RELEASE_3_20 git_last_commit: cbf534d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DRIMSeq_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DRIMSeq_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DRIMSeq_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DRIMSeq_1.34.0.tgz vignettes: vignettes/DRIMSeq/inst/doc/DRIMSeq.pdf vignetteTitles: Differential transcript usage and transcript usage QTL analyses in RNA-seq with the DRIMSeq package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DRIMSeq/inst/doc/DRIMSeq.R dependsOnMe: rnaseqDTU importsMe: BANDITS dependencyCount: 72 Package: DriverNet Version: 1.46.0 Depends: R (>= 2.10), methods License: GPL-3 Archs: x64 MD5sum: b17a31108a784ec376ad3aa6e7f0da14 NeedsCompilation: no Title: Drivernet: uncovering somatic driver mutations modulating transcriptional networks in cancer Description: DriverNet is a package to predict functional important driver genes in cancer by integrating genome data (mutation and copy number variation data) and transcriptome data (gene expression data). The different kinds of data are combined by an influence graph, which is a gene-gene interaction network deduced from pathway data. A greedy algorithm is used to find the possible driver genes, which may mutated in a larger number of patients and these mutations will push the gene expression values of the connected genes to some extreme values. biocViews: Network Author: Ali Bashashati, Reza Haffari, Jiarui Ding, Gavin Ha, Kenneth Liu, Jamie Rosner and Sohrab Shah Maintainer: Jiarui Ding git_url: https://git.bioconductor.org/packages/DriverNet git_branch: RELEASE_3_20 git_last_commit: 2874d8d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DriverNet_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DriverNet_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DriverNet_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DriverNet_1.46.0.tgz vignettes: vignettes/DriverNet/inst/doc/DriverNet-Overview.pdf vignetteTitles: An introduction to DriverNet hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DriverNet/inst/doc/DriverNet-Overview.R dependencyCount: 1 Package: DropletUtils Version: 1.26.0 Depends: SingleCellExperiment Imports: utils, stats, methods, Matrix, Rcpp, BiocGenerics, S4Vectors, IRanges, GenomicRanges, SummarizedExperiment, BiocParallel, SparseArray (>= 1.5.18), DelayedArray (>= 0.31.9), DelayedMatrixStats, HDF5Array, rhdf5, edgeR, R.utils, dqrng, beachmat, scuttle LinkingTo: Rcpp, beachmat, Rhdf5lib, BH, dqrng, scuttle Suggests: testthat, knitr, BiocStyle, rmarkdown, jsonlite, DropletTestFiles License: GPL-3 MD5sum: 0137dbe60c919b23d861ff226a1b933b NeedsCompilation: yes Title: Utilities for Handling Single-Cell Droplet Data Description: Provides a number of utility functions for handling single-cell (RNA-seq) data from droplet technologies such as 10X Genomics. This includes data loading from count matrices or molecule information files, identification of cells from empty droplets, removal of barcode-swapped pseudo-cells, and downsampling of the count matrix. biocViews: ImmunoOncology, SingleCell, Sequencing, RNASeq, GeneExpression, Transcriptomics, DataImport, Coverage Author: Aaron Lun [aut], Jonathan Griffiths [ctb, cre], Davis McCarthy [ctb], Dongze He [ctb], Rob Patro [ctb] Maintainer: Jonathan Griffiths SystemRequirements: C++11, GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DropletUtils git_branch: RELEASE_3_20 git_last_commit: 5adf632 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DropletUtils_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DropletUtils_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DropletUtils_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DropletUtils_1.26.0.tgz vignettes: vignettes/DropletUtils/inst/doc/DropletUtils.html vignetteTitles: Utilities for handling droplet-based single-cell RNA-seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DropletUtils/inst/doc/DropletUtils.R dependsOnMe: OSCA.intro, OSCA.workflows importsMe: FLAMES, scCB2, scPipe, singleCellTK, Spaniel, SpatialFeatureExperiment suggestsMe: alabaster.spatial, demuxmix, mumosa, Nebulosa, SingleCellAlleleExperiment, SpatialExperiment, SPOTlight, tidySpatialExperiment, DropletTestFiles, MerfishData, muscData, spatialLIBD, scCustomize, SoupX dependencyCount: 66 Package: drugTargetInteractions Version: 1.14.0 Depends: methods, R (>= 4.1) Imports: utils, RSQLite, UniProt.ws, biomaRt,ensembldb, BiocFileCache,dplyr,rappdirs, AnnotationFilter, S4Vectors Suggests: RUnit, BiocStyle, knitr, rmarkdown, ggplot2, reshape2, DT, EnsDb.Hsapiens.v86 License: Artistic-2.0 MD5sum: c3a5b2c3bfffb066cc015a2cdfbda44a NeedsCompilation: no Title: Drug-Target Interactions Description: Provides utilities for identifying drug-target interactions for sets of small molecule or gene/protein identifiers. The required drug-target interaction information is obained from a local SQLite instance of the ChEMBL database. ChEMBL has been chosen for this purpose, because it provides one of the most comprehensive and best annotatated knowledge resources for drug-target information available in the public domain. biocViews: Cheminformatics, BiomedicalInformatics, Pharmacogenetics, Pharmacogenomics, Proteomics, Metabolomics Author: Thomas Girke [cre, aut] Maintainer: Thomas Girke URL: https://github.com/girke-lab/drugTargetInteractions VignetteBuilder: knitr BugReports: https://github.com/girke-lab/drugTargetInteractions git_url: https://git.bioconductor.org/packages/drugTargetInteractions git_branch: RELEASE_3_20 git_last_commit: 09f273e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/drugTargetInteractions_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/drugTargetInteractions_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/drugTargetInteractions_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/drugTargetInteractions_1.14.0.tgz vignettes: vignettes/drugTargetInteractions/inst/doc/drugTargetInteractions.html vignetteTitles: Drug-Target Interactions hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/drugTargetInteractions/inst/doc/drugTargetInteractions.R dependencyCount: 109 Package: DrugVsDisease Version: 2.48.0 Depends: R (>= 2.10), affy, limma, biomaRt, ArrayExpress, GEOquery, DrugVsDiseasedata, cMap2data, qvalue Imports: annotate, hgu133a.db, hgu133a2.db, hgu133plus2.db, RUnit, BiocGenerics, xtable License: GPL-3 Archs: x64 MD5sum: 5f8a0210c876582dc57b8fd1e5fdcde5 NeedsCompilation: no Title: Comparison of disease and drug profiles using Gene set Enrichment Analysis Description: This package generates ranked lists of differential gene expression for either disease or drug profiles. Input data can be downloaded from Array Express or GEO, or from local CEL files. Ranked lists of differential expression and associated p-values are calculated using Limma. Enrichment scores (Subramanian et al. PNAS 2005) are calculated to a reference set of default drug or disease profiles, or a set of custom data supplied by the user. Network visualisation of significant scores are output in Cytoscape format. biocViews: Microarray, GeneExpression, Clustering Author: C. Pacini Maintainer: j. Saez-Rodriguez git_url: https://git.bioconductor.org/packages/DrugVsDisease git_branch: RELEASE_3_20 git_last_commit: 1acdd86 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DrugVsDisease_2.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DrugVsDisease_2.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DrugVsDisease_2.48.0.tgz vignettes: vignettes/DrugVsDisease/inst/doc/DrugVsDisease.pdf vignetteTitles: DrugVsDisease hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DrugVsDisease/inst/doc/DrugVsDisease.R dependencyCount: 134 Package: DSS Version: 2.54.0 Depends: R (>= 3.5.0), methods, Biobase, BiocParallel, bsseq, parallel Imports: utils, graphics, stats, splines Suggests: BiocStyle, knitr, rmarkdown, edgeR License: GPL MD5sum: 3fd544ed0a03c9cef006ac13e158249a NeedsCompilation: yes Title: Dispersion shrinkage for sequencing data Description: DSS is an R library performing differntial analysis for count-based sequencing data. It detectes differentially expressed genes (DEGs) from RNA-seq, and differentially methylated loci or regions (DML/DMRs) from bisulfite sequencing (BS-seq). The core of DSS is a new dispersion shrinkage method for estimating the dispersion parameter from Gamma-Poisson or Beta-Binomial distributions. biocViews: Sequencing, RNASeq, DNAMethylation,GeneExpression, DifferentialExpression,DifferentialMethylation Author: Hao Wu, Hao Feng Maintainer: Hao Wu , Hao Feng VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/DSS git_branch: RELEASE_3_20 git_last_commit: d18c722 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DSS_2.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DSS_2.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DSS_2.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DSS_2.54.0.tgz vignettes: vignettes/DSS/inst/doc/DSS.html vignetteTitles: The DSS User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DSS/inst/doc/DSS.R dependsOnMe: DeMixT importsMe: borealis, kissDE, metaseqR2, methylSig suggestsMe: biscuiteer, methrix, NanoMethViz dependencyCount: 90 Package: dStruct Version: 1.12.0 Depends: R (>= 4.1) Imports: zoo, ggplot2, purrr, reshape2, parallel, IRanges, S4Vectors, rlang, grDevices, stats, utils Suggests: BiocStyle, knitr, rmarkdown, tidyverse, testthat (>= 3.0.0) License: GPL (>= 2) MD5sum: 2a08d655623318d111774316db4707c8 NeedsCompilation: no Title: Identifying differentially reactive regions from RNA structurome profiling data Description: dStruct identifies differentially reactive regions from RNA structurome profiling data. dStruct is compatible with a broad range of structurome profiling technologies, e.g., SHAPE-MaP, DMS-MaPseq, Structure-Seq, SHAPE-Seq, etc. See Choudhary et al., Genome Biology, 2019 for the underlying method. biocViews: StatisticalMethod, StructuralPrediction, Sequencing, Software Author: Krishna Choudhary [aut, cre] (), Sharon Aviran [aut] () Maintainer: Krishna Choudhary URL: https://github.com/dataMaster-Kris/dStruct VignetteBuilder: knitr BugReports: https://github.com/dataMaster-Kris/dStruct/issues git_url: https://git.bioconductor.org/packages/dStruct git_branch: RELEASE_3_20 git_last_commit: 86d9f15 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dStruct_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dStruct_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dStruct_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dStruct_1.12.0.tgz vignettes: vignettes/dStruct/inst/doc/dStruct.html vignetteTitles: Differential RNA structurome analysis using `dStruct` hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/dStruct/inst/doc/dStruct.R dependencyCount: 48 Package: DTA Version: 2.52.0 Depends: R (>= 2.10), LSD Imports: scatterplot3d License: Artistic-2.0 Archs: x64 MD5sum: 80978164209532213255a996f4b91b67 NeedsCompilation: no Title: Dynamic Transcriptome Analysis Description: Dynamic Transcriptome Analysis (DTA) can monitor the cellular response to perturbations with higher sensitivity and temporal resolution than standard transcriptomics. The package implements the underlying kinetic modeling approach capable of the precise determination of synthesis- and decay rates from individual microarray or RNAseq measurements. biocViews: Microarray, DifferentialExpression, GeneExpression, Transcription Author: Bjoern Schwalb, Benedikt Zacher, Sebastian Duemcke, Achim Tresch Maintainer: Bjoern Schwalb git_url: https://git.bioconductor.org/packages/DTA git_branch: RELEASE_3_20 git_last_commit: 55b8f69 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DTA_2.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DTA_2.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DTA_2.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DTA_2.52.0.tgz vignettes: vignettes/DTA/inst/doc/DTA.pdf vignetteTitles: A guide to Dynamic Transcriptome Analysis (DTA) hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DTA/inst/doc/DTA.R importsMe: rifiComparative dependencyCount: 5 Package: Dune Version: 1.18.0 Depends: R (>= 3.6) Imports: BiocParallel, SummarizedExperiment, utils, ggplot2, dplyr, tidyr, RColorBrewer, magrittr, gganimate, purrr, aricode Suggests: knitr, rmarkdown, testthat (>= 2.1.0) License: MIT + file LICENSE MD5sum: 2550b356019d43f1dd52fc997a55f115 NeedsCompilation: no Title: Improving replicability in single-cell RNA-Seq cell type discovery Description: Given a set of clustering labels, Dune merges pairs of clusters to increase mean ARI between labels, improving replicability. biocViews: Clustering, GeneExpression, RNASeq, Software, SingleCell, Transcriptomics, Visualization Author: Hector Roux de Bezieux [aut, cre] (), Kelly Street [aut] Maintainer: Hector Roux de Bezieux VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Dune git_branch: RELEASE_3_20 git_last_commit: d012af1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Dune_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Dune_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Dune_1.18.0.tgz vignettes: vignettes/Dune/inst/doc/Dune.html vignetteTitles: Dune Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Dune/inst/doc/Dune.R dependencyCount: 98 Package: DuplexDiscovereR Version: 1.0.0 Depends: R (>= 4.4), InteractionSet Imports: Gviz, Biostrings, rtracklayer, GenomicAlignments, GenomicRanges, ggsci, igraph, rlang, scales, stringr, dplyr, tibble, tidyr, purrr, methods, grDevices, stats, utils Suggests: knitr, UpSetR, BiocStyle, rmarkdown, testthat (>= 3.0.0) License: GPL-3 MD5sum: ea563a8a0d98a2b3ac68c30d5c5909cd NeedsCompilation: no Title: Analysis of the data from RNA duplex probing experiments Description: DuplexDiscovereR is a package designed for analyzing data from RNA cross-linking and proximity ligation protocols such as SPLASH, PARIS, LIGR-seq, and others. DuplexDiscovereR accepts input in the form of chimerically or split-aligned reads. It includes procedures for alignment classification, filtering, and efficient clustering of individual chimeric reads into duplex groups (DGs). Once DGs are identified, the package predicts RNA duplex formation and their hybridization energies. Additional metrics, such as p-values for random ligation hypothesis or mean DG alignment scores, can be calculated to rank final set of RNA duplexes. Data from multiple experiments or replicates can be processed separately and further compared to check the reproducibility of the experimental method. biocViews: Sequencing, Transcriptomics, StructuralPrediction, Clustering, SplicedAlignment Author: Egor Semenchenko [aut, cre, cph] (), Volodymyr Tsybulskyi [ctb] (), Irmtraud M. Meyer [aut, cph] () Maintainer: Egor Semenchenko URL: https://github.com/Egors01/DuplexDiscovereR/ VignetteBuilder: knitr BugReports: https://github.com/Egors01/DuplexDiscovereR/issues/ git_url: https://git.bioconductor.org/packages/DuplexDiscovereR git_branch: RELEASE_3_20 git_last_commit: f80518d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DuplexDiscovereR_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DuplexDiscovereR_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DuplexDiscovereR_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DuplexDiscovereR_1.0.0.tgz vignettes: vignettes/DuplexDiscovereR/inst/doc/DuplexDiscovereR.html vignetteTitles: DuplexDiscovereR tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/DuplexDiscovereR/inst/doc/DuplexDiscovereR.R dependencyCount: 160 Package: dupRadar Version: 1.36.0 Depends: R (>= 3.2.0) Imports: Rsubread (>= 1.14.1), KernSmooth Suggests: BiocStyle, knitr, rmarkdown, AnnotationHub License: GPL-3 MD5sum: 879bcf1c2da3dd0fd29b22263fc05fb7 NeedsCompilation: no Title: Assessment of duplication rates in RNA-Seq datasets Description: Duplication rate quality control for RNA-Seq datasets. biocViews: Technology, Sequencing, RNASeq, QualityControl, ImmunoOncology Author: Sergi Sayols , Holger Klein Maintainer: Sergi Sayols , Holger Klein URL: https://www.bioconductor.org/packages/dupRadar, https://ssayols.github.io/dupRadar/index.html VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/dupRadar git_branch: RELEASE_3_20 git_last_commit: f219b1d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dupRadar_1.36.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dupRadar_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dupRadar_1.36.0.tgz vignettes: vignettes/dupRadar/inst/doc/dupRadar.html vignetteTitles: Using dupRadar hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/dupRadar/inst/doc/dupRadar.R dependencyCount: 10 Package: dyebias Version: 1.66.0 Depends: R (>= 1.4.1), marray, Biobase Suggests: limma, convert, GEOquery, dyebiasexamples, methods License: GPL-3 MD5sum: ff4b8a165d42629cc2794925b2afb926 NeedsCompilation: no Title: The GASSCO method for correcting for slide-dependent gene-specific dye bias Description: Many two-colour hybridizations suffer from a dye bias that is both gene-specific and slide-specific. The former depends on the content of the nucleotide used for labeling; the latter depends on the labeling percentage. The slide-dependency was hitherto not recognized, and made addressing the artefact impossible. Given a reasonable number of dye-swapped pairs of hybridizations, or of same vs. same hybridizations, both the gene- and slide-biases can be estimated and corrected using the GASSCO method (Margaritis et al., Mol. Sys. Biol. 5:266 (2009), doi:10.1038/msb.2009.21) biocViews: Microarray, TwoChannel, QualityControl, Preprocessing Author: Philip Lijnzaad and Thanasis Margaritis Maintainer: Philip Lijnzaad URL: http://www.holstegelab.nl/publications/margaritis_lijnzaad git_url: https://git.bioconductor.org/packages/dyebias git_branch: RELEASE_3_20 git_last_commit: 540f1c8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/dyebias_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/dyebias_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/dyebias_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/dyebias_1.66.0.tgz vignettes: vignettes/dyebias/inst/doc/dyebias-vignette.pdf vignetteTitles: dye bias correction hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/dyebias/inst/doc/dyebias-vignette.R suggestsMe: dyebiasexamples dependencyCount: 10 Package: DynDoc Version: 1.84.0 Depends: methods, utils Imports: methods License: Artistic-2.0 MD5sum: c224a8b539655fa7ded03e4f0ec5b2f7 NeedsCompilation: no Title: Dynamic document tools Description: A set of functions to create and interact with dynamic documents and vignettes. biocViews: ReportWriting, Infrastructure Author: R. Gentleman, Jeff Gentry Maintainer: Bioconductor Package Maintainer git_url: https://git.bioconductor.org/packages/DynDoc git_branch: RELEASE_3_20 git_last_commit: cd28c85 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/DynDoc_1.84.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/DynDoc_1.84.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DynDoc_1.84.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/DynDoc_1.84.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: tkWidgets dependencyCount: 2 Package: easier Version: 1.12.0 Depends: R (>= 4.2.0) Imports: progeny, easierData, dorothea (>= 1.6.0), decoupleR, quantiseqr, ROCR, grDevices, stats, graphics, ggplot2, ggpubr, DESeq2, utils, dplyr, tidyr, tibble, matrixStats, rlang, BiocParallel, reshape2, rstatix, ggrepel, magrittr, coin Suggests: knitr, rmarkdown, BiocStyle, testthat, SummarizedExperiment, viper License: MIT + file LICENSE MD5sum: bd5033bb11657c5b0a89b7d633fddf09 NeedsCompilation: no Title: Estimate Systems Immune Response from RNA-seq data Description: This package provides a workflow for the use of EaSIeR tool, developed to assess patients' likelihood to respond to ICB therapies providing just the patients' RNA-seq data as input. We integrate RNA-seq data with different types of prior knowledge to extract quantitative descriptors of the tumor microenvironment from several points of view, including composition of the immune repertoire, and activity of intra- and extra-cellular communications. Then, we use multi-task machine learning trained in TCGA data to identify how these descriptors can simultaneously predict several state-of-the-art hallmarks of anti-cancer immune response. In this way we derive cancer-specific models and identify cancer-specific systems biomarkers of immune response. These biomarkers have been experimentally validated in the literature and the performance of EaSIeR predictions has been validated using independent datasets form four different cancer types with patients treated with anti-PD1 or anti-PDL1 therapy. biocViews: GeneExpression, Software, Transcription, SystemsBiology, Pathways, GeneSetEnrichment, ImmunoOncology, Epigenetics, Classification, BiomedicalInformatics, Regression, ExperimentHubSoftware Author: Oscar Lapuente-Santana [aut, cre] (), Federico Marini [aut] (), Arsenij Ustjanzew [aut] (), Francesca Finotello [aut] (), Federica Eduati [aut] () Maintainer: Oscar Lapuente-Santana VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/easier git_branch: RELEASE_3_20 git_last_commit: c956677 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/easier_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/easier_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/easier_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/easier_1.12.0.tgz vignettes: vignettes/easier/inst/doc/easier_user_manual.html vignetteTitles: easier User Manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/easier/inst/doc/easier_user_manual.R dependencyCount: 162 Package: EasyCellType Version: 1.8.0 Depends: R (>= 4.2.0) Imports: clusterProfiler, dplyr, forcats, ggplot2, magrittr, rlang, stats, org.Hs.eg.db, org.Mm.eg.db, AnnotationDbi, vctrs (>= 0.6.4), BiocStyle Suggests: knitr, rmarkdown, testthat (>= 3.0.0), Seurat, BiocManager, devtools, BiocStyle License: Artistic-2.0 MD5sum: 0f729cb62a1682ad1e0d282612989734 NeedsCompilation: no Title: Annotate cell types for scRNA-seq data Description: We developed EasyCellType which can automatically examine the input marker lists obtained from existing software such as Seurat over the cell markerdatabases. Two quantification approaches to annotate cell types are provided: Gene set enrichment analysis (GSEA) and a modified versio of Fisher's exact test. The function presents annotation recommendations in graphical outcomes: bar plots for each cluster showing candidate cell types, as well as a dot plot summarizing the top 5 significant annotations for each cluster. biocViews: SingleCell, Software, GeneExpression, GeneSetEnrichment Author: Ruoxing Li [aut, cre, ctb], Ziyi Li [ctb] Maintainer: Ruoxing Li VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/EasyCellType git_branch: RELEASE_3_20 git_last_commit: befcc4c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EasyCellType_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EasyCellType_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EasyCellType_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EasyCellType_1.8.0.tgz vignettes: vignettes/EasyCellType/inst/doc/my-vignette.html vignetteTitles: my-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EasyCellType/inst/doc/my-vignette.R dependencyCount: 144 Package: easylift Version: 1.4.0 Depends: GenomicRanges, BiocFileCache Imports: rtracklayer, GenomeInfoDb, R.utils, tools, methods Suggests: testthat (>= 3.0.0), IRanges, knitr, BiocStyle, rmarkdown License: MIT + file LICENSE MD5sum: ffc5f970619f6de99418696f4534c2c6 NeedsCompilation: no Title: An R package to perform genomic liftover Description: The easylift package provides a convenient tool for genomic liftover operations between different genome assemblies. It seamlessly works with Bioconductor's GRanges objects and chain files from the UCSC Genome Browser, allowing for straightforward handling of genomic ranges across various genome versions. One noteworthy feature of easylift is its integration with the BiocFileCache package. This integration automates the management and caching of chain files necessary for liftover operations. Users no longer need to manually specify chain file paths in their function calls, reducing the complexity of the liftover process. biocViews: Software, WorkflowStep, Sequencing, Coverage, GenomeAssembly, DataImport Author: Abdullah Al Nahid [aut, cre] (), Hervé Pagès [aut, rev], Michael Love [aut, rev] () Maintainer: Abdullah Al Nahid URL: https://github.com/nahid18/easylift, https://nahid18.github.io/easylift VignetteBuilder: knitr BugReports: https://github.com/nahid18/easylift/issues git_url: https://git.bioconductor.org/packages/easylift git_branch: RELEASE_3_20 git_last_commit: 1610fdf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/easylift_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/easylift_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/easylift_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/easylift_1.4.0.tgz vignettes: vignettes/easylift/inst/doc/easylift.html vignetteTitles: Perform Genomic Liftover hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/easylift/inst/doc/easylift.R dependencyCount: 92 Package: easyreporting Version: 1.18.0 Depends: R (>= 3.5.0) Imports: rmarkdown, methods, tools, shiny, rlang Suggests: distill, BiocStyle, knitr, readxl, edgeR, limma, EDASeq, statmod License: Artistic-2.0 MD5sum: b512509c72239b8dbb0cb1f7ce63629a NeedsCompilation: no Title: Helps creating report for improving Reproducible Computational Research Description: An S4 class for facilitating the automated creation of rmarkdown files inside other packages/software even without knowing rmarkdown language. Best if implemented in functions as "recursive" style programming. biocViews: ReportWriting Author: Dario Righelli [cre, aut] Maintainer: Dario Righelli VignetteBuilder: knitr BugReports: https://github.com/drighelli/easyreporting/issues git_url: https://git.bioconductor.org/packages/easyreporting git_branch: RELEASE_3_20 git_last_commit: 6762dd5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/easyreporting_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/easyreporting_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/easyreporting_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/easyreporting_1.18.0.tgz vignettes: vignettes/easyreporting/inst/doc/bio_usage.html, vignettes/easyreporting/inst/doc/standard_usage.html vignetteTitles: bio_usage.html, standard_usage.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/easyreporting/inst/doc/bio_usage.R, vignettes/easyreporting/inst/doc/standard_usage.R dependencyCount: 43 Package: easyRNASeq Version: 2.42.0 Imports: Biobase (>= 2.64.0), BiocFileCache (>= 2.12.0), BiocGenerics (>= 0.50.0), BiocParallel (>= 1.38.0), biomaRt (>= 2.60.1), Biostrings (>= 2.72.1), edgeR (>= 4.2.1), GenomeInfoDb (>= 1.40.1), genomeIntervals (>= 1.60.0), GenomicAlignments (>= 1.40.0), GenomicRanges (>= 1.56.1), SummarizedExperiment (>= 1.34.0), graphics, IRanges (>= 2.38.1), LSD (>= 4.1-0), methods, parallel, rappdirs (>= 0.3.3), Rsamtools (>= 2.20.0), S4Vectors (>= 0.42.1), ShortRead (>= 1.62.0), utils Suggests: BiocStyle (>= 2.32.1), BSgenome (>= 1.72.0), BSgenome.Dmelanogaster.UCSC.dm3 (>= 1.4.0), curl, knitr, rmarkdown, RUnit (>= 0.4.33) License: Artistic-2.0 MD5sum: 30fc573f9978a1e3e1d4aa767074567f NeedsCompilation: no Title: Count summarization and normalization for RNA-Seq data Description: Calculates the coverage of high-throughput short-reads against a genome of reference and summarizes it per feature of interest (e.g. exon, gene, transcript). The data can be normalized as 'RPKM' or by the 'DESeq' or 'edgeR' package. biocViews: GeneExpression, RNASeq, Genetics, Preprocessing, ImmunoOncology Author: Nicolas Delhomme, Ismael Padioleau, Bastian Schiffthaler, Niklas Maehler Maintainer: Nicolas Delhomme VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/easyRNASeq git_branch: RELEASE_3_20 git_last_commit: bc77aca git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/easyRNASeq_2.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/easyRNASeq_2.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/easyRNASeq_2.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/easyRNASeq_2.42.0.tgz vignettes: vignettes/easyRNASeq/inst/doc/easyRNASeq.pdf, vignettes/easyRNASeq/inst/doc/simpleRNASeq.html vignetteTitles: R / Bioconductor for High Throughput Sequence Analysis, geneNetworkR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/easyRNASeq/inst/doc/easyRNASeq.R, vignettes/easyRNASeq/inst/doc/simpleRNASeq.R importsMe: msgbsR dependencyCount: 111 Package: EBarrays Version: 2.70.0 Depends: R (>= 1.8.0), Biobase, lattice, methods Imports: Biobase, cluster, graphics, grDevices, lattice, methods, stats License: GPL (>= 2) MD5sum: 42b160cbe3852901a1e5b964aff75c42 NeedsCompilation: yes Title: Unified Approach for Simultaneous Gene Clustering and Differential Expression Identification Description: EBarrays provides tools for the analysis of replicated/unreplicated microarray data. biocViews: Clustering, DifferentialExpression Author: Ming Yuan, Michael Newton, Deepayan Sarkar and Christina Kendziorski Maintainer: Ming Yuan git_url: https://git.bioconductor.org/packages/EBarrays git_branch: RELEASE_3_20 git_last_commit: 67792f0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EBarrays_2.70.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EBarrays_2.70.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EBarrays_2.70.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EBarrays_2.70.0.tgz vignettes: vignettes/EBarrays/inst/doc/vignette.pdf vignetteTitles: Introduction to EBarrays hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EBarrays/inst/doc/vignette.R dependsOnMe: EBcoexpress, gaga, geNetClassifier importsMe: casper suggestsMe: Category, dcanr dependencyCount: 10 Package: EBcoexpress Version: 1.50.0 Depends: EBarrays, mclust, minqa Suggests: graph, igraph, colorspace License: GPL (>= 2) MD5sum: 131412269ffc5281f53b02f89df14d48 NeedsCompilation: yes Title: EBcoexpress for Differential Co-Expression Analysis Description: An Empirical Bayesian Approach to Differential Co-Expression Analysis at the Gene-Pair Level biocViews: Bayesian Author: John A. Dawson Maintainer: John A. Dawson git_url: https://git.bioconductor.org/packages/EBcoexpress git_branch: RELEASE_3_20 git_last_commit: 52c5ee9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EBcoexpress_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EBcoexpress_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EBcoexpress_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EBcoexpress_1.50.0.tgz vignettes: vignettes/EBcoexpress/inst/doc/EBcoexpressVignette.pdf vignetteTitles: EBcoexpress Demo hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EBcoexpress/inst/doc/EBcoexpressVignette.R suggestsMe: dcanr dependencyCount: 14 Package: EBImage Version: 4.48.0 Depends: methods Imports: BiocGenerics (>= 0.7.1), graphics, grDevices, stats, abind, tiff, jpeg, png, locfit, fftwtools (>= 0.9-7), utils, htmltools, htmlwidgets, RCurl Suggests: BiocStyle, digest, knitr, rmarkdown, shiny License: LGPL Archs: x64 MD5sum: e8bcb4c4a3c7c36005ad0c7992f836fd NeedsCompilation: yes Title: Image processing and analysis toolbox for R Description: EBImage provides general purpose functionality for image processing and analysis. In the context of (high-throughput) microscopy-based cellular assays, EBImage offers tools to segment cells and extract quantitative cellular descriptors. This allows the automation of such tasks using the R programming language and facilitates the use of other tools in the R environment for signal processing, statistical modeling, machine learning and visualization with image data. biocViews: Visualization Author: Andrzej Oleś, Gregoire Pau, Mike Smith, Oleg Sklyar, Wolfgang Huber, with contributions from Joseph Barry and Philip A. Marais Maintainer: Andrzej Oleś URL: https://github.com/aoles/EBImage VignetteBuilder: knitr BugReports: https://github.com/aoles/EBImage/issues git_url: https://git.bioconductor.org/packages/EBImage git_branch: RELEASE_3_20 git_last_commit: 5cd923e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EBImage_4.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EBImage_4.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EBImage_4.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EBImage_4.48.0.tgz vignettes: vignettes/EBImage/inst/doc/EBImage-introduction.html vignetteTitles: Introduction to EBImage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EBImage/inst/doc/EBImage-introduction.R dependsOnMe: CRImage, cytomapper, flowcatchR, DonaPLLP2013, furrowSeg, MerfishData, nucim importsMe: bnbc, Cardinal, CatsCradle, cytoviewer, flowCHIC, heatmaps, imcRtools, MoleculeExperiment, RBioFormats, simpleSeg, SpatialFeatureExperiment, SpatialOmicsOverlay, synapsis, xenLite, yamss, BioImageDbs, bioimagetools, GoogleImage2Array, LFApp, LOMAR, RockFab, SAFARI suggestsMe: HilbertVis, Voyager, DmelSGI, spicyWorkflow, aroma.core, cooltools, ExpImage, glow, ijtiff, juicr, lidR, metagear, pliman, rcaiman dependencyCount: 44 Package: EBSEA Version: 1.34.0 Depends: R (>= 4.0.0) Imports: DESeq2, graphics, stats, EmpiricalBrownsMethod Suggests: knitr, rmarkdown License: GPL-2 Archs: x64 MD5sum: 210e0c09dc646a8a07edfa0c9f5a5b3d NeedsCompilation: no Title: Exon Based Strategy for Expression Analysis of genes Description: Calculates differential expression of genes based on exon counts of genes obtained from RNA-seq sequencing data. biocViews: Software, DifferentialExpression, GeneExpression, Sequencing Author: Arfa Mehmood, Asta Laiho, Laura L. Elo Maintainer: Arfa Mehmood VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/EBSEA git_branch: RELEASE_3_20 git_last_commit: 286c0d5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EBSEA_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EBSEA_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EBSEA_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EBSEA_1.34.0.tgz vignettes: vignettes/EBSEA/inst/doc/EBSEA.html vignetteTitles: EBSEA hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EBSEA/inst/doc/EBSEA.R dependencyCount: 77 Package: EBSeq Version: 2.4.0 Depends: blockmodeling, gplots, testthat, R (>= 3.0.0) Imports: Rcpp (>= 0.12.11), RcppEigen (>= 0.3.2.9.0) LinkingTo: Rcpp,RcppEigen,BH License: Artistic-2.0 Archs: x64 MD5sum: 31e2325303d52aadc8a034eec7cab8cd NeedsCompilation: yes Title: An R package for gene and isoform differential expression analysis of RNA-seq data Description: Differential Expression analysis at both gene and isoform level using RNA-seq data biocViews: ImmunoOncology, StatisticalMethod, DifferentialExpression, MultipleComparison, RNASeq, Sequencing Author: Xiuyu Ma [cre, aut], Ning Leng [aut], Christina Kendziorski [ctb], Michael A. Newton [ctb] Maintainer: Xiuyu Ma SystemRequirements: c++11 git_url: https://git.bioconductor.org/packages/EBSeq git_branch: RELEASE_3_20 git_last_commit: 6f13304 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EBSeq_2.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EBSeq_2.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EBSeq_2.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EBSeq_2.4.0.tgz vignettes: vignettes/EBSeq/inst/doc/EBSeq_Vignette.pdf vignetteTitles: EBSeq Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EBSeq/inst/doc/EBSeq_Vignette.R dependsOnMe: Oscope importsMe: BatchQC, broadSeq, DEsubs, scDD suggestsMe: compcodeR dependencyCount: 43 Package: ecolitk Version: 1.78.0 Depends: R (>= 2.10) Imports: Biobase, graphics, methods Suggests: ecoliLeucine, ecolicdf, graph, multtest, affy License: GPL (>= 2) MD5sum: 9382890863bad6e353aba9689cde885f NeedsCompilation: no Title: Meta-data and tools for E. coli Description: Meta-data and tools to work with E. coli. The tools are mostly plotting functions to work with circular genomes. They can used with other genomes/plasmids. biocViews: Annotation, Visualization Author: Laurent Gautier Maintainer: Laurent Gautier git_url: https://git.bioconductor.org/packages/ecolitk git_branch: RELEASE_3_20 git_last_commit: 39309be git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ecolitk_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ecolitk_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ecolitk_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ecolitk_1.78.0.tgz vignettes: vignettes/ecolitk/inst/doc/ecolitk.pdf vignetteTitles: ecolitk hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ecolitk/inst/doc/ecolitk.R dependencyCount: 6 Package: EDASeq Version: 2.40.0 Depends: Biobase (>= 2.15.1), ShortRead (>= 1.11.42) Imports: methods, graphics, BiocGenerics, IRanges (>= 1.13.9), aroma.light, Rsamtools (>= 1.5.75), biomaRt, Biostrings, AnnotationDbi, GenomicFeatures, GenomicRanges, BiocManager Suggests: BiocStyle, knitr, yeastRNASeq, leeBamViews, edgeR, KernSmooth, testthat, DESeq2, rmarkdown License: Artistic-2.0 Archs: x64 MD5sum: 69a8fca452bc37e8e641366bce4357df NeedsCompilation: no Title: Exploratory Data Analysis and Normalization for RNA-Seq Description: Numerical and graphical summaries of RNA-Seq read data. Within-lane normalization procedures to adjust for GC-content effect (or other gene-level effects) on read counts: loess robust local regression, global-scaling, and full-quantile normalization (Risso et al., 2011). Between-lane normalization procedures to adjust for distributional differences between lanes (e.g., sequencing depth): global-scaling and full-quantile normalization (Bullard et al., 2010). biocViews: ImmunoOncology, Sequencing, RNASeq, Preprocessing, QualityControl, DifferentialExpression Author: Davide Risso [aut, cre, cph], Sandrine Dudoit [aut], Ludwig Geistlinger [ctb] Maintainer: Davide Risso URL: https://github.com/drisso/EDASeq VignetteBuilder: knitr BugReports: https://github.com/drisso/EDASeq/issues git_url: https://git.bioconductor.org/packages/EDASeq git_branch: RELEASE_3_20 git_last_commit: fdb405f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EDASeq_2.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EDASeq_2.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EDASeq_2.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EDASeq_2.40.0.tgz vignettes: vignettes/EDASeq/inst/doc/EDASeq.html vignetteTitles: EDASeq Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EDASeq/inst/doc/EDASeq.R dependsOnMe: RUVSeq importsMe: consensusDE, DaMiRseq, metaseqR2, octad, ribosomeProfilingQC suggestsMe: awst, DEScan2, easyreporting, GRaNIE, HTSFilter, MOSClip, TCGAbiolinks dependencyCount: 117 Package: edge Version: 2.38.0 Depends: R(>= 3.1.0), Biobase Imports: methods, splines, sva, qvalue(>= 1.99.0), MASS Suggests: testthat, knitr, ggplot2, reshape2 License: MIT + file LICENSE MD5sum: 99f1e4889963beb7376407c4dc92fd15 NeedsCompilation: yes Title: Extraction of Differential Gene Expression Description: The edge package implements methods for carrying out differential expression analyses of genome-wide gene expression studies. Significance testing using the optimal discovery procedure and generalized likelihood ratio tests (equivalent to F-tests and t-tests) are implemented for general study designs. Special functions are available to facilitate the analysis of common study designs, including time course experiments. Other packages such as sva and qvalue are integrated in edge to provide a wide range of tools for gene expression analysis. biocViews: MultipleComparison, DifferentialExpression, TimeCourse, Regression, GeneExpression, DataImport Author: John D. Storey, Jeffrey T. Leek and Andrew J. Bass Maintainer: John D. Storey , Andrew J. Bass URL: https://github.com/jdstorey/edge VignetteBuilder: knitr BugReports: https://github.com/jdstorey/edge/issues git_url: https://git.bioconductor.org/packages/edge git_branch: RELEASE_3_20 git_last_commit: 06f0779 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/edge_2.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/edge_2.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/edge_2.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/edge_2.38.0.tgz vignettes: vignettes/edge/inst/doc/edge.pdf vignetteTitles: edge Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/edge/inst/doc/edge.R dependencyCount: 95 Package: edgeR Version: 4.4.1 Depends: R (>= 3.6.0), limma (>= 3.61.9) Imports: methods, graphics, stats, utils, locfit Suggests: jsonlite, readr, rhdf5, splines, knitr, AnnotationDbi, Biobase, BiocStyle, SummarizedExperiment, org.Hs.eg.db, Matrix, SeuratObject License: GPL (>=2) MD5sum: cb9ead4c16515508ce0e2d91a7286b80 NeedsCompilation: yes Title: Empirical Analysis of Digital Gene Expression Data in R Description: Differential expression analysis of RNA-seq expression profiles with biological replication. Implements a range of statistical methodology based on the negative binomial distributions, including empirical Bayes estimation, exact tests, generalized linear models and quasi-likelihood tests. As well as RNA-seq, it be applied to differential signal analysis of other types of genomic data that produce read counts, including ChIP-seq, ATAC-seq, Bisulfite-seq, SAGE and CAGE. biocViews: GeneExpression, Transcription, AlternativeSplicing, Coverage, DifferentialExpression, DifferentialSplicing, DifferentialMethylation, GeneSetEnrichment, Pathways, Genetics, DNAMethylation, Bayesian, Clustering, ChIPSeq, Regression, TimeCourse, Sequencing, RNASeq, BatchEffect, SAGE, Normalization, QualityControl, MultipleComparison, BiomedicalInformatics, CellBiology, FunctionalGenomics, Epigenetics, Genetics, ImmunoOncology, SystemsBiology, Transcriptomics, SingleCell Author: Yunshun Chen, Aaron TL Lun, Davis J McCarthy, Lizhong Chen, Pedro Baldoni, Matthew E Ritchie, Belinda Phipson, Yifang Hu, Xiaobei Zhou, Mark D Robinson, Gordon K Smyth Maintainer: Yunshun Chen , Gordon Smyth , Aaron Lun , Mark Robinson URL: https://bioinf.wehi.edu.au/edgeR/, https://bioconductor.org/packages/edgeR VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/edgeR git_branch: RELEASE_3_20 git_last_commit: 797c535 git_last_commit_date: 2024-11-30 Date/Publication: 2024-12-02 source.ver: src/contrib/edgeR_4.4.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/edgeR_4.4.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/edgeR_4.4.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/edgeR_4.4.1.tgz vignettes: vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf, vignettes/edgeR/inst/doc/intro.html vignetteTitles: edgeR User's Guide, A brief introduction to edgeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/edgeR/inst/doc/intro.R dependsOnMe: ASpli, IntEREst, methylMnM, miloR, octad, RUVSeq, TCC, tRanslatome, ReactomeGSA.data, EGSEA123, RNAseq123, rnaseqDTU, RnaSeqGeneEdgeRQL, csawBook, OSCA.workflows, babel, BALLI, BioInsight, SCdeconR importsMe: affycoretools, ATACseqQC, autonomics, AWFisher, baySeq, beer, BioQC, broadSeq, censcyt, ChromSCape, circRNAprofiler, CleanUpRNAseq, clusterExperiment, CNVRanger, compcodeR, consensusDE, coseq, countsimQC, csaw, cypress, DaMiRseq, Damsel, dce, debrowser, DEFormats, DEGreport, DESpace, DEsubs, diffcyt, diffHic, diffUTR, dinoR, DMRcate, doseR, dreamlet, DRIMSeq, DropletUtils, easyRNASeq, EGSEA, eisaR, EnrichmentBrowser, erccdashboard, ERSSA, extraChIPs, GDCRNATools, GenomicPlot, GEOexplorer, gg4way, gINTomics, Glimma, GSEABenchmarkeR, hermes, HTSFilter, icetea, infercnv, iSEEde, IsoformSwitchAnalyzeR, KnowSeq, mastR, MEB, MEDIPS, metaseqR2, MIRit, MLSeq, moanin, mobileRNA, MOSim, Motif2Site, msgbsR, msmsTests, multiHiCcompare, muscat, PathoStat, phantasus, PhIPData, ppcseq, PRONE, PROPER, psichomics, RCM, regsplice, Repitools, RNAseqCovarImpute, ROSeq, Rvisdiff, saseR, scCB2, scde, scone, scran, ScreenR, SEtools, SIMD, SingleCellSignalR, singscore, SpaNorm, sparrow, spatialHeatmap, speckle, splatter, SPsimSeq, sSNAPPY, standR, STATegRa, SurfR, sva, TCseq, tradeSeq, treeclimbR, treekoR, tweeDEseq, vidger, xcore, yarn, zinbwave, emtdata, spatialLIBD, ExpHunterSuite, recountWorkflow, SingscoreAMLMutations, aIc, bulkAnalyseR, CAMML, cinaR, CoreMicrobiomeR, HTSCluster, microbial, RCPA, RVA, scITD, SCRIP, scRNAtools, SPUTNIK, ssizeRNA, TransProR, TSGS suggestsMe: ABSSeq, biobroom, ClassifyR, cqn, cydar, dcanr, dearseq, DEScan2, DiffBind, dittoSeq, DSS, easyreporting, EDASeq, gage, gCrisprTools, GenomicAlignments, GenomicRanges, GeoTcgaData, glmGamPoi, goseq, groHMM, GSAR, GSVA, ideal, iSEEpathways, iSEEu, lemur, missMethyl, MoonlightR, multiMiR, raer, recount, regionReport, ribosomeProfilingQC, satuRn, scider, SeqGate, SpliceWiz, stageR, subSeq, systemPipeR, TCGAbiolinks, tidybulk, topconfects, tximeta, tximport, variancePartition, weitrix, Wrench, zenith, zFPKM, leeBamViews, CAGEWorkflow, chipseqDB, DGEobj, DGEobj.utils, DiPALM, easybio, glmmSeq, MiscMetabar, palasso, pctax, pmartR, seqgendiff, SIBERG, volcano3D dependencyCount: 10 Package: EDIRquery Version: 1.6.0 Depends: R (>= 4.2.0) Imports: tibble (>= 3.1.6), tictoc (>= 1.0.1), utils (>= 4.1.3), stats (>= 4.1.3), readr (>= 2.1.2), InteractionSet (>= 1.22.0), GenomicRanges (>= 1.46.1) Suggests: knitr, rmarkdown, testthat (>= 3.0.0) License: GPL-3 Archs: x64 MD5sum: db302d2df4cfbadc64b20c9d9c800cbf NeedsCompilation: no Title: Query the EDIR Database For Specific Gene Description: EDIRquery provides a tool to search for genes of interest within the Exome Database of Interspersed Repeats (EDIR). A gene name is a required input, and users can additionally specify repeat sequence lengths, minimum and maximum distance between sequences, and whether to allow a 1-bp mismatch. Outputs include a summary of results by repeat length, as well as a dataframe of query results. Example data provided includes a subset of the data for the gene GAA (ENSG00000171298). To query the full database requires providing a path to the downloaded database files as a parameter. biocViews: Genetics, SequenceMatching Author: Laura D.T. Vo Ngoc [aut, cre] () Maintainer: Laura D.T. Vo Ngoc VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/EDIRquery git_branch: RELEASE_3_20 git_last_commit: 69d6416 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EDIRquery_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EDIRquery_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EDIRquery_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EDIRquery_1.6.0.tgz vignettes: vignettes/EDIRquery/inst/doc/EDIRquery.pdf vignetteTitles: EDIRquery hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EDIRquery/inst/doc/EDIRquery.R dependencyCount: 62 Package: eds Version: 1.8.0 Depends: Matrix Imports: Rcpp LinkingTo: Rcpp Suggests: knitr, tximportData, testthat (>= 3.0.0) License: GPL-2 Archs: x64 MD5sum: 82a00e0316df5d28613dcfedd4c7d488 NeedsCompilation: yes Title: eds: Low-level reader for Alevin EDS format Description: This packages provides a single function, readEDS. This is a low-level utility for reading in Alevin EDS format into R. This function is not designed for end-users but instead the package is predominantly for simplifying package dependency graph for other Bioconductor packages. biocViews: Sequencing, RNASeq, GeneExpression, SingleCell Author: Avi Srivastava [aut, cre], Michael Love [aut, ctb] Maintainer: Avi Srivastava URL: https://github.com/mikelove/eds SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/eds git_branch: RELEASE_3_20 git_last_commit: 69ccdfc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/eds_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/eds_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/eds_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/eds_1.8.0.tgz vignettes: vignettes/eds/inst/doc/eds.html vignetteTitles: eds: Low-level reader function for Alevin EDS format hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/eds/inst/doc/eds.R importsMe: singleCellTK suggestsMe: tximport dependencyCount: 9 Package: EGAD Version: 1.34.0 Depends: R(>= 3.5) Imports: gplots, Biobase, GEOquery, limma, impute, RColorBrewer, zoo, igraph, plyr, MASS, RCurl, methods Suggests: knitr, testthat, rmarkdown, markdown License: GPL-2 MD5sum: 450678549ca33c6c8e9f15cf4dedcb41 NeedsCompilation: no Title: Extending guilt by association by degree Description: The package implements a series of highly efficient tools to calculate functional properties of networks based on guilt by association methods. biocViews: Software, FunctionalGenomics, SystemsBiology, GenePrediction, FunctionalPrediction, NetworkEnrichment, GraphAndNetwork, Network Author: Sara Ballouz [aut, cre], Melanie Weber [aut, ctb], Paul Pavlidis [aut], Jesse Gillis [aut, ctb] Maintainer: Sara Ballouz VignetteBuilder: rmarkdown git_url: https://git.bioconductor.org/packages/EGAD git_branch: RELEASE_3_20 git_last_commit: 8f0740a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EGAD_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EGAD_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EGAD_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EGAD_1.34.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 92 Package: EGSEA Version: 1.34.0 Depends: R (>= 4.3.0), Biobase, gage (>= 2.14.4), AnnotationDbi, topGO (>= 2.16.0), pathview (>= 1.4.2) Imports: PADOG (>= 1.6.0), GSVA (>= 1.12.0), globaltest (>= 5.18.0), limma (>= 3.20.9), edgeR (>= 3.6.8), HTMLUtils (>= 0.1.5), hwriter (>= 1.2.2), gplots (>= 2.14.2), ggplot2 (>= 1.0.0), safe (>= 3.4.0), stringi (>= 0.5.0), parallel, stats, metap, grDevices, graphics, utils, org.Hs.eg.db, org.Mm.eg.db, org.Rn.eg.db, RColorBrewer, methods, EGSEAdata (>= 1.3.1), htmlwidgets, plotly, DT Suggests: BiocStyle, knitr, testthat License: GPL-3 Archs: x64 MD5sum: dd9dc90dceecdd45b7b37e62fbbbcdf8 NeedsCompilation: no Title: Ensemble of Gene Set Enrichment Analyses Description: This package implements the Ensemble of Gene Set Enrichment Analyses (EGSEA) method for gene set testing. EGSEA algorithm utilizes the analysis results of twelve prominent GSE algorithms in the literature to calculate collective significance scores for each gene set. biocViews: ImmunoOncology, DifferentialExpression, GO, GeneExpression, GeneSetEnrichment, Genetics, Microarray, MultipleComparison, OneChannel, Pathways, RNASeq, Sequencing, Software, SystemsBiology, TwoChannel,Metabolomics, Proteomics, KEGG, GraphAndNetwork, GeneSignaling, GeneTarget, NetworkEnrichment, Network, Classification Author: Monther Alhamdoosh [aut, cre], Luyi Tian [aut], Milica Ng [aut], Matthew Ritchie [ctb] Maintainer: Monther Alhamdoosh VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/EGSEA git_branch: RELEASE_3_20 git_last_commit: 0f9f847 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EGSEA_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EGSEA_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EGSEA_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EGSEA_1.34.0.tgz vignettes: vignettes/EGSEA/inst/doc/EGSEA.pdf vignetteTitles: EGSEA vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EGSEA/inst/doc/EGSEA.R dependsOnMe: EGSEA123 suggestsMe: tidybulk, EGSEAdata dependencyCount: 200 Package: eiR Version: 1.46.0 Depends: R (>= 2.10.0), ChemmineR (>= 2.15.15), methods, DBI Imports: snow, tools, snowfall, RUnit, methods, ChemmineR, RCurl, digest, BiocGenerics, RcppAnnoy (>= 0.0.9) Suggests: BiocStyle, knitcitations, knitr, knitrBootstrap,rmarkdown,RSQLite License: Artistic-2.0 MD5sum: 201d0aca2349715fe0295945ad1fe34a NeedsCompilation: yes Title: Accelerated similarity searching of small molecules Description: The eiR package provides utilities for accelerated structure similarity searching of very large small molecule data sets using an embedding and indexing approach. biocViews: Cheminformatics, BiomedicalInformatics, Pharmacogenetics, Pharmacogenomics, MicrotitrePlateAssay, CellBasedAssays, Visualization, Infrastructure, DataImport, Clustering, Proteomics, Metabolomics Author: Kevin Horan, Yiqun Cao and Tyler Backman Maintainer: Thomas Girke URL: https://github.com/girke-lab/eiR VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/eiR git_branch: RELEASE_3_20 git_last_commit: 2983267 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/eiR_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/eiR_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/eiR_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/eiR_1.46.0.tgz vignettes: vignettes/eiR/inst/doc/eiR.html vignetteTitles: eiR: Accelerated Similarity Searching of Small Molecules hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: TRUE Rfiles: vignettes/eiR/inst/doc/eiR.R dependencyCount: 80 Package: eisaR Version: 1.18.0 Depends: R (>= 4.1) Imports: graphics, stats, GenomicRanges, S4Vectors, IRanges, limma, edgeR (>= 4.0), methods, SummarizedExperiment, BiocGenerics, utils Suggests: knitr, rmarkdown, testthat, BiocStyle, QuasR, Rbowtie, Rhisat2, Biostrings, BSgenome, BSgenome.Hsapiens.UCSC.hg38, ensembldb, AnnotationDbi, GenomicFeatures, txdbmaker, rtracklayer License: GPL-3 MD5sum: e105d18727c70098da1a0efbc9686c51 NeedsCompilation: no Title: Exon-Intron Split Analysis (EISA) in R Description: Exon-intron split analysis (EISA) uses ordinary RNA-seq data to measure changes in mature RNA and pre-mRNA reads across different experimental conditions to quantify transcriptional and post-transcriptional regulation of gene expression. For details see Gaidatzis et al., Nat Biotechnol 2015. doi: 10.1038/nbt.3269. eisaR implements the major steps of EISA in R. biocViews: Transcription, GeneExpression, GeneRegulation, FunctionalGenomics, Transcriptomics, Regression, RNASeq Author: Michael Stadler [aut, cre], Dimos Gaidatzis [aut], Lukas Burger [aut], Charlotte Soneson [aut] Maintainer: Michael Stadler URL: https://github.com/fmicompbio/eisaR VignetteBuilder: knitr BugReports: https://github.com/fmicompbio/eisaR/issues git_url: https://git.bioconductor.org/packages/eisaR git_branch: RELEASE_3_20 git_last_commit: e3717a1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/eisaR_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/eisaR_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/eisaR_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/eisaR_1.18.0.tgz vignettes: vignettes/eisaR/inst/doc/eisaR.html, vignettes/eisaR/inst/doc/rna-velocity.html vignetteTitles: Using eisaR for Exon-Intron Split Analysis (EISA), Generating reference files for spliced and unspliced abundance estimation with alignment-free methods hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/eisaR/inst/doc/eisaR.R, vignettes/eisaR/inst/doc/rna-velocity.R dependencyCount: 40 Package: ELMER Version: 2.30.0 Depends: R (>= 3.4.0), ELMER.data (>= 2.9.3) Imports: GenomicRanges, ggplot2, reshape, grid, grDevices, graphics, methods, parallel, stats, utils, IRanges, GenomeInfoDb, S4Vectors, GenomicFeatures, TCGAbiolinks (>= 2.23.7), plyr, Matrix, dplyr, Gviz, ComplexHeatmap, circlize, MultiAssayExperiment, SummarizedExperiment, biomaRt, doParallel, downloader, ggrepel, lattice, magrittr, readr, scales, rvest, xml2, plotly, gridExtra, rmarkdown, stringr, tibble, tidyr, progress, purrr, reshape2, ggpubr, rtracklayer (>= 1.61.2), DelayedArray Suggests: BiocStyle, AnnotationHub, ExperimentHub, knitr, testthat, data.table, DT, GenomicInteractions, webshot, R.utils, covr, sesameData License: GPL-3 Archs: x64 MD5sum: d21ee994d4b8293e2d097f38206b8fcd NeedsCompilation: no Title: Inferring Regulatory Element Landscapes and Transcription Factor Networks Using Cancer Methylomes Description: ELMER is designed to use DNA methylation and gene expression from a large number of samples to infere regulatory element landscape and transcription factor network in primary tissue. biocViews: DNAMethylation, GeneExpression, MotifAnnotation, Software, GeneRegulation, Transcription, Network Author: Tiago Chedraoui Silva [aut, cre], Lijing Yao [aut], Simon Coetzee [aut], Nicole Gull [ctb], Hui Shen [ctb], Peter Laird [ctb], Peggy Farnham [aut], Dechen Li [ctb], Benjamin Berman [aut] Maintainer: Tiago Chedraoui Silva VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ELMER git_branch: RELEASE_3_20 git_last_commit: c28589d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ELMER_2.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ELMER_2.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ELMER_2.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ELMER_2.30.0.tgz vignettes: vignettes/ELMER/inst/doc/analysis_data_input.html, vignettes/ELMER/inst/doc/analysis_diff_meth.html, vignettes/ELMER/inst/doc/analysis_get_pair.html, vignettes/ELMER/inst/doc/analysis_gui.html, vignettes/ELMER/inst/doc/analysis_motif_enrichment.html, vignettes/ELMER/inst/doc/analysis_regulatory_tf.html, vignettes/ELMER/inst/doc/index.html, vignettes/ELMER/inst/doc/input.html, vignettes/ELMER/inst/doc/pipe.html, vignettes/ELMER/inst/doc/plots_heatmap.html, vignettes/ELMER/inst/doc/plots_motif_enrichment.html, vignettes/ELMER/inst/doc/plots_scatter.html, vignettes/ELMER/inst/doc/plots_schematic.html, vignettes/ELMER/inst/doc/plots_TF.html, vignettes/ELMER/inst/doc/usecase.html vignetteTitles: "3.1 - Data input - Creating MAE object", "3.2 - Identifying differentially methylated probes", "3.3 - Identifying putative probe-gene pairs", 5 - Integrative analysis workshop with TCGAbiolinks and ELMER - Analysis GUI, "3.4 - Motif enrichment analysis on the selected probes", "3.5 - Identifying regulatory TFs", "1 - ELMER v.2: An R/Bioconductor package to reconstruct gene regulatory networks from DNA methylation and transcriptome profiles", "2 - Introduction: Input data", "3.6 - TCGA.pipe: Running ELMER for TCGA data in a compact way", "4.5 - Heatmap plots", "4.3 - Motif enrichment plots", "4.1 - Scatter plots", "4.2 - Schematic plots", "4.4 - Regulatory TF plots", "11 - ELMER: Use case" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ELMER/inst/doc/analysis_data_input.R, vignettes/ELMER/inst/doc/analysis_diff_meth.R, vignettes/ELMER/inst/doc/analysis_get_pair.R, vignettes/ELMER/inst/doc/analysis_gui.R, vignettes/ELMER/inst/doc/analysis_motif_enrichment.R, vignettes/ELMER/inst/doc/analysis_regulatory_tf.R, vignettes/ELMER/inst/doc/index.R, vignettes/ELMER/inst/doc/input.R, vignettes/ELMER/inst/doc/pipe.R, vignettes/ELMER/inst/doc/plots_heatmap.R, vignettes/ELMER/inst/doc/plots_motif_enrichment.R, vignettes/ELMER/inst/doc/plots_scatter.R, vignettes/ELMER/inst/doc/plots_schematic.R, vignettes/ELMER/inst/doc/plots_TF.R, vignettes/ELMER/inst/doc/usecase.R importsMe: TCGAWorkflow dependencyCount: 213 Package: EMDomics Version: 2.36.0 Depends: R (>= 3.2.1) Imports: emdist, BiocParallel, matrixStats, ggplot2, CDFt, preprocessCore Suggests: knitr License: MIT + file LICENSE MD5sum: 0e828323561e9f1264bae1cb25717efe NeedsCompilation: no Title: Earth Mover's Distance for Differential Analysis of Genomics Data Description: The EMDomics algorithm is used to perform a supervised multi-class analysis to measure the magnitude and statistical significance of observed continuous genomics data between groups. Usually the data will be gene expression values from array-based or sequence-based experiments, but data from other types of experiments can also be analyzed (e.g. copy number variation). Traditional methods like Significance Analysis of Microarrays (SAM) and Linear Models for Microarray Data (LIMMA) use significance tests based on summary statistics (mean and standard deviation) of the distributions. This approach lacks power to identify expression differences between groups that show high levels of intra-group heterogeneity. The Earth Mover's Distance (EMD) algorithm instead computes the "work" needed to transform one distribution into another, thus providing a metric of the overall difference in shape between two distributions. Permutation of sample labels is used to generate q-values for the observed EMD scores. This package also incorporates the Komolgorov-Smirnov (K-S) test and the Cramer von Mises test (CVM), which are both common distribution comparison tests. biocViews: Software, DifferentialExpression, GeneExpression, Microarray Author: Sadhika Malladi [aut, cre], Daniel Schmolze [aut, cre], Andrew Beck [aut], Sheida Nabavi [aut] Maintainer: Sadhika Malladi and Daniel Schmolze VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/EMDomics git_branch: RELEASE_3_20 git_last_commit: c6619ed git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EMDomics_2.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EMDomics_2.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EMDomics_2.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EMDomics_2.36.0.tgz vignettes: vignettes/EMDomics/inst/doc/EMDomics.html vignetteTitles: EMDomics Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/EMDomics/inst/doc/EMDomics.R dependencyCount: 49 Package: EmpiricalBrownsMethod Version: 1.34.0 Depends: R (>= 3.2.0) Suggests: BiocStyle, testthat, knitr, rmarkdown License: MIT + file LICENSE MD5sum: d1aa72408cdb1d64b5527f9dd93a6abe NeedsCompilation: no Title: Uses Brown's method to combine p-values from dependent tests Description: Combining P-values from multiple statistical tests is common in bioinformatics. However, this procedure is non-trivial for dependent P-values. This package implements an empirical adaptation of Brown’s Method (an extension of Fisher’s Method) for combining dependent P-values which is appropriate for highly correlated data sets found in high-throughput biological experiments. biocViews: StatisticalMethod, GeneExpression, Pathways Author: William Poole Maintainer: David Gibbs URL: https://github.com/IlyaLab/CombiningDependentPvaluesUsingEBM.git VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/EmpiricalBrownsMethod git_branch: RELEASE_3_20 git_last_commit: 073c95a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EmpiricalBrownsMethod_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EmpiricalBrownsMethod_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EmpiricalBrownsMethod_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EmpiricalBrownsMethod_1.34.0.tgz vignettes: vignettes/EmpiricalBrownsMethod/inst/doc/ebmVignette.html vignetteTitles: Empirical Browns Method hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/EmpiricalBrownsMethod/inst/doc/ebmVignette.R dependsOnMe: poolVIM importsMe: EBSEA dependencyCount: 0 Package: EnhancedVolcano Version: 1.24.0 Depends: ggplot2, ggrepel Imports: methods Suggests: ggalt, ggrastr, RUnit, BiocGenerics, knitr, DESeq2, pasilla, airway, org.Hs.eg.db, gridExtra, magrittr, rmarkdown License: GPL-3 MD5sum: 6a01a421edeb41c12b7dbd150c511184 NeedsCompilation: no Title: Publication-ready volcano plots with enhanced colouring and labeling Description: Volcano plots represent a useful way to visualise the results of differential expression analyses. Here, we present a highly-configurable function that produces publication-ready volcano plots. EnhancedVolcano will attempt to fit as many point labels in the plot window as possible, thus avoiding 'clogging' up the plot with labels that could not otherwise have been read. Other functionality allows the user to identify up to 4 different types of attributes in the same plot space via colour, shape, size, and shade parameter configurations. biocViews: RNASeq, GeneExpression, Transcription, DifferentialExpression, ImmunoOncology Author: Kevin Blighe [aut, cre], Sharmila Rana [aut], Emir Turkes [ctb], Benjamin Ostendorf [ctb], Andrea Grioni [ctb], Myles Lewis [aut] Maintainer: Kevin Blighe URL: https://github.com/kevinblighe/EnhancedVolcano VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/EnhancedVolcano git_branch: RELEASE_3_20 git_last_commit: 1749233 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EnhancedVolcano_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EnhancedVolcano_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EnhancedVolcano_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EnhancedVolcano_1.24.0.tgz vignettes: vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html vignetteTitles: Publication-ready volcano plots with enhanced colouring and labeling hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.R importsMe: ExpHunterSuite suggestsMe: rliger dependencyCount: 37 Package: enhancerHomologSearch Version: 1.12.0 Depends: R (>= 4.1.0), methods Imports: BiocGenerics, Biostrings, BSgenome, BiocParallel, BiocFileCache, GenomeInfoDb, GenomicRanges, httr, IRanges, jsonlite, motifmatchr, Matrix, pwalign, rtracklayer, Rcpp, S4Vectors, stats, utils LinkingTo: Rcpp Suggests: knitr, rmarkdown, BSgenome.Drerio.UCSC.danRer10, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm10, TxDb.Hsapiens.UCSC.hg38.knownGene, org.Hs.eg.db, TxDb.Mmusculus.UCSC.mm10.knownGene, org.Mm.eg.db, MotifDb, testthat, TFBSTools License: GPL (>= 2) MD5sum: c7826171752570183616e0d2063f50e0 NeedsCompilation: yes Title: Identification of putative mammalian orthologs to given enhancer Description: Get ENCODE data of enhancer region via H3K4me1 peaks and search homolog regions for given sequences. The candidates of enhancer homolog regions can be filtered by distance to target TSS. The top candidates from human and mouse will be aligned to each other and then exported as multiple alignments with given enhancer. biocViews: Sequencing, GeneRegulation, Alignment Author: Jianhong Ou [aut, cre] (), Valentina Cigliola [dtc], Kenneth Poss [fnd] Maintainer: Jianhong Ou URL: https://jianhong.github.io/enhancerHomologSearch VignetteBuilder: knitr BugReports: https://github.com/jianhong/enhancerHomologSearch/issues git_url: https://git.bioconductor.org/packages/enhancerHomologSearch git_branch: RELEASE_3_20 git_last_commit: 1f62e7e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/enhancerHomologSearch_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/enhancerHomologSearch_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/enhancerHomologSearch_1.12.0.tgz vignettes: vignettes/enhancerHomologSearch/inst/doc/enhancerHomologSearch.html vignetteTitles: enhancerHomologSearch Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/enhancerHomologSearch/inst/doc/enhancerHomologSearch.R dependencyCount: 135 Package: EnMCB Version: 1.18.0 Depends: R (>= 4.0) Imports: survivalROC, glmnet, rms, mboost, Matrix, igraph, methods, survivalsvm, ggplot2, boot, e1071, survival, BiocFileCache Suggests: SummarizedExperiment, testthat, Biobase, survminer, affycoretools, knitr, plotROC, limma, rmarkdown License: GPL-2 MD5sum: 8ffa6ebe8f3a3038947a7a113cb601ca NeedsCompilation: no Title: Predicting Disease Progression Based on Methylation Correlated Blocks using Ensemble Models Description: Creation of the correlated blocks using DNA methylation profiles. Machine learning models can be constructed to predict differentially methylated blocks and disease progression. biocViews: Normalization, DNAMethylation, MethylationArray, SupportVectorMachine Author: Xin Yu Maintainer: Xin Yu VignetteBuilder: knitr BugReports: https://github.com/whirlsyu/EnMCB/issues git_url: https://git.bioconductor.org/packages/EnMCB git_branch: RELEASE_3_20 git_last_commit: 8348d44 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EnMCB_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EnMCB_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EnMCB_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EnMCB_1.18.0.tgz vignettes: vignettes/EnMCB/inst/doc/vignette.html vignetteTitles: vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EnMCB/inst/doc/vignette.R dependencyCount: 128 Package: ENmix Version: 1.42.0 Depends: parallel,doParallel,foreach,SummarizedExperiment,stats,R (>= 3.5.0) Imports: grDevices,graphics,matrixStats,methods,utils,irlba, geneplotter,impute,minfi,RPMM,illuminaio,dynamicTreeCut,IRanges,gtools, Biobase,ExperimentHub,AnnotationHub,genefilter,gplots,quadprog,S4Vectors Suggests: minfiData, RUnit, BiocGenerics, BiocStyle, knitr, rmarkdown License: Artistic-2.0 Archs: x64 MD5sum: 656f87e801362779b919ff4f8a81e6de NeedsCompilation: no Title: Quality control and analysis tools for Illumina DNA methylation BeadChip Description: Tools for quanlity control, analysis and visulization of Illumina DNA methylation array data. biocViews: DNAMethylation, Preprocessing, QualityControl, TwoChannel, Microarray, OneChannel, MethylationArray, BatchEffect, Normalization, DataImport, Regression, PrincipalComponent,Epigenetics, MultiChannel, DifferentialMethylation, ImmunoOncology Author: Zongli Xu [cre, aut], Liang Niu [aut], Jack Taylor [ctb] Maintainer: Zongli Xu URL: https://github.com/Bioconductor/ENmix VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/ENmix/issues git_url: https://git.bioconductor.org/packages/ENmix git_branch: RELEASE_3_20 git_last_commit: b75e1b5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ENmix_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ENmix_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ENmix_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ENmix_1.42.0.tgz vignettes: vignettes/ENmix/inst/doc/ENmix.html vignetteTitles: ENmix User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ENmix/inst/doc/ENmix.R dependencyCount: 163 Package: EnrichDO Version: 1.0.0 Depends: R (>= 3.5.0) Imports: BiocGenerics, Rgraphviz, clusterProfiler, hash, S4Vectors, dplyr, ggplot2, graph, magrittr, methods, pheatmap, graphics, utils, purrr, readr, stringr, tidyr, grDevices, stats, RColorBrewer Suggests: knitr, rmarkdown, org.Hs.eg.db, testthat (>= 3.0.0), BiocStyle License: MIT + file LICENSE MD5sum: 76c2dbebc8d829a78054c6591f81266a NeedsCompilation: no Title: a Global Weighted Model for Disease Ontology Enrichment Analysis Description: To implement disease ontology (DO) enrichment analysis, this package is designed and presents a double weighted model based on the latest annotations of the human genome with DO terms, by integrating the DO graph topology on a global scale. This package exhibits high accuracy that it can identify more specific DO terms, which alleviates the over enriched problem. The package includes various statistical models and visualization schemes for discovering the associations between genes and diseases from biological big data. biocViews: Annotation, Visualization, GeneSetEnrichment, Software Author: Liang Cheng [aut], Haixiu Yang [aut], Hongyu Fu [cre] Maintainer: Hongyu Fu <2287531995@qq.com> VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/EnrichDO git_branch: RELEASE_3_20 git_last_commit: 49283aa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EnrichDO_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EnrichDO_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EnrichDO_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EnrichDO_1.0.0.tgz vignettes: vignettes/EnrichDO/inst/doc/EnrichDO.html vignetteTitles: EnrichDO: Disease Ontology Enrichment Analysis hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/EnrichDO/inst/doc/EnrichDO.R dependencyCount: 135 Package: EnrichedHeatmap Version: 1.36.0 Depends: R (>= 3.6.0), methods, grid, ComplexHeatmap (>= 2.11.0), GenomicRanges Imports: matrixStats, stats, GetoptLong, Rcpp, utils, locfit, circlize (>= 0.4.5), IRanges LinkingTo: Rcpp Suggests: testthat (>= 0.3), knitr, markdown, rmarkdown, genefilter, RColorBrewer License: MIT + file LICENSE MD5sum: 13e7e9874c4f2dc40e48d2d8235d37b8 NeedsCompilation: yes Title: Making Enriched Heatmaps Description: Enriched heatmap is a special type of heatmap which visualizes the enrichment of genomic signals on specific target regions. Here we implement enriched heatmap by ComplexHeatmap package. Since this type of heatmap is just a normal heatmap but with some special settings, with the functionality of ComplexHeatmap, it would be much easier to customize the heatmap as well as concatenating to a list of heatmaps to show correspondance between different data sources. biocViews: Software, Visualization, Sequencing, GenomeAnnotation, Coverage Author: Zuguang Gu [aut, cre] () Maintainer: Zuguang Gu URL: https://github.com/jokergoo/EnrichedHeatmap VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/EnrichedHeatmap git_branch: RELEASE_3_20 git_last_commit: c9d18c2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EnrichedHeatmap_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EnrichedHeatmap_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EnrichedHeatmap_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EnrichedHeatmap_1.36.0.tgz vignettes: vignettes/EnrichedHeatmap/inst/doc/EnrichedHeatmap.html, vignettes/EnrichedHeatmap/inst/doc/roadmap.html, vignettes/EnrichedHeatmap/inst/doc/row_odering.html, vignettes/EnrichedHeatmap/inst/doc/visualize_categorical_signals_wrapper.html vignetteTitles: 1. Make Enriched Heatmaps, 4. Visualize Comprehensive Associations in Roadmap dataset, 3. Compare row ordering methods, 2. Visualize Categorical Signals hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/EnrichedHeatmap/inst/doc/EnrichedHeatmap.R, vignettes/EnrichedHeatmap/inst/doc/roadmap.R, vignettes/EnrichedHeatmap/inst/doc/row_odering.R, vignettes/EnrichedHeatmap/inst/doc/visualize_categorical_signals_wrapper.R importsMe: profileplyr suggestsMe: ComplexHeatmap, epistack, extraChIPs, InteractiveComplexHeatmap dependencyCount: 47 Package: EnrichmentBrowser Version: 2.36.0 Depends: SummarizedExperiment, graph Imports: AnnotationDbi, BiocFileCache, BiocManager, GSEABase, GO.db, KEGGREST, KEGGgraph, Rgraphviz, S4Vectors, SPIA, edgeR, graphite, hwriter, limma, methods, pathview, safe Suggests: ALL, BiocStyle, ComplexHeatmap, DESeq2, ReportingTools, airway, biocGraph, hgu95av2.db, geneplotter, knitr, msigdbr, rmarkdown, statmod License: Artistic-2.0 MD5sum: 7df62f32d727300cf5941fe822abaf2f NeedsCompilation: no Title: Seamless navigation through combined results of set-based and network-based enrichment analysis Description: The EnrichmentBrowser package implements essential functionality for the enrichment analysis of gene expression data. The analysis combines the advantages of set-based and network-based enrichment analysis in order to derive high-confidence gene sets and biological pathways that are differentially regulated in the expression data under investigation. Besides, the package facilitates the visualization and exploration of such sets and pathways. biocViews: ImmunoOncology, Microarray, RNASeq, GeneExpression, DifferentialExpression, Pathways, GraphAndNetwork, Network, GeneSetEnrichment, NetworkEnrichment, Visualization, ReportWriting Author: Ludwig Geistlinger [aut, cre], Gergely Csaba [aut], Mara Santarelli [ctb], Mirko Signorelli [ctb], Rohit Satyam [ctb], Marcel Ramos [ctb], Levi Waldron [ctb], Ralf Zimmer [aut] Maintainer: Ludwig Geistlinger VignetteBuilder: knitr BugReports: https://github.com/lgeistlinger/EnrichmentBrowser/issues git_url: https://git.bioconductor.org/packages/EnrichmentBrowser git_branch: RELEASE_3_20 git_last_commit: c5d2911 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EnrichmentBrowser_2.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EnrichmentBrowser_2.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EnrichmentBrowser_2.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EnrichmentBrowser_2.36.0.tgz vignettes: vignettes/EnrichmentBrowser/inst/doc/EnrichmentBrowser.html vignetteTitles: Seamless navigation through combined results of set- & network-based enrichment analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EnrichmentBrowser/inst/doc/EnrichmentBrowser.R importsMe: GSEABenchmarkeR, zenith suggestsMe: epiregulon.extra, GenomicSuperSignature, roastgsa, bugphyzz dependencyCount: 95 Package: enrichplot Version: 1.26.5 Depends: R (>= 3.5.0) Imports: aplot (>= 0.2.1), DOSE (>= 3.31.2), ggfun (>= 0.1.7), ggnewscale, ggplot2, ggrepel (>= 0.9.0), ggtangle (>= 0.0.4), graphics, grid, igraph, methods, plyr, purrr, RColorBrewer, reshape2, rlang, stats, utils, scatterpie, GOSemSim (>= 2.31.2), magrittr, ggtree, yulab.utils (>= 0.1.6) Suggests: clusterProfiler, dplyr, europepmc, ggarchery, ggupset, knitr, rmarkdown, org.Hs.eg.db, prettydoc, tibble, tidyr, ggforce, ggHoriPlot, AnnotationDbi, ggplotify, ggridges, grDevices, gridExtra, ggstar, scales, ggtreeExtra, tidydr License: Artistic-2.0 Archs: x64 MD5sum: a32747fd3fa4cabfd690642094ef68cc NeedsCompilation: no Title: Visualization of Functional Enrichment Result Description: The 'enrichplot' package implements several visualization methods for interpreting functional enrichment results obtained from ORA or GSEA analysis. It is mainly designed to work with the 'clusterProfiler' package suite. All the visualization methods are developed based on 'ggplot2' graphics. biocViews: Annotation, GeneSetEnrichment, GO, KEGG, Pathways, Software, Visualization Author: Guangchuang Yu [aut, cre] (), Chun-Hui Gao [ctb] () Maintainer: Guangchuang Yu URL: https://yulab-smu.top/biomedical-knowledge-mining-book/ VignetteBuilder: knitr BugReports: https://github.com/GuangchuangYu/enrichplot/issues git_url: https://git.bioconductor.org/packages/enrichplot git_branch: RELEASE_3_20 git_last_commit: fcb6e51 git_last_commit_date: 2024-12-12 Date/Publication: 2024-12-12 source.ver: src/contrib/enrichplot_1.26.5.tar.gz win.binary.ver: bin/windows/contrib/4.4/enrichplot_1.26.5.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/enrichplot_1.26.5.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/enrichplot_1.26.5.tgz vignettes: vignettes/enrichplot/inst/doc/enrichplot.html vignetteTitles: enrichplot hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: maEndToEnd importsMe: CBNplot, ChIPseeker, clusterProfiler, debrowser, enrichViewNet, MAGeCKFlute, meshes, MicrobiomeProfiler, ReactomePA, TDbasedUFEadv, ExpHunterSuite suggestsMe: GeoTcgaData, mastR, methylGSA, ReporterScore, SCpubr dependencyCount: 121 Package: enrichViewNet Version: 1.4.0 Depends: R (>= 4.2.0) Imports: gprofiler2, strex, RCy3, jsonlite, stringr, enrichplot, DOSE, methods Suggests: BiocStyle, knitr, rmarkdown, ggplot2, testthat, magick License: Artistic-2.0 MD5sum: 24bfac4e66bb94854260dd6a535e7c6e NeedsCompilation: no Title: From functional enrichment results to biological networks Description: This package enables the visualization of functional enrichment results as network graphs. First the package enables the visualization of enrichment results, in a format corresponding to the one generated by gprofiler2, as a customizable Cytoscape network. In those networks, both gene datasets (GO terms/pathways/protein complexes) and genes associated to the datasets are represented as nodes. While the edges connect each gene to its dataset(s). The package also provides the option to create enrichment maps from functional enrichment results. Enrichment maps enable the visualization of enriched terms into a network with edges connecting overlapping genes. biocViews: BiologicalQuestion, Software, Network, NetworkEnrichment, GO Author: Astrid Deschênes [aut, cre] (), Pascal Belleau [aut] (), Robert L. Faure [aut] (), Maria J. Fernandes [aut] (), Alexander Krasnitz [aut], David A. Tuveson [aut] () Maintainer: Astrid Deschênes URL: https://github.com/adeschen/enrichViewNet, https://adeschen.github.io/enrichViewNet/ VignetteBuilder: knitr BugReports: https://github.com/adeschen/enrichViewNet/issues git_url: https://git.bioconductor.org/packages/enrichViewNet git_branch: RELEASE_3_20 git_last_commit: e3cbb8a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/enrichViewNet_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/enrichViewNet_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/enrichViewNet_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/enrichViewNet_1.4.0.tgz vignettes: vignettes/enrichViewNet/inst/doc/enrichViewNet.html vignetteTitles: From functional enrichment results to biological networks hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/enrichViewNet/inst/doc/enrichViewNet.R dependencyCount: 162 Package: ensembldb Version: 2.30.0 Depends: R (>= 3.5.0), BiocGenerics (>= 0.15.10), GenomicRanges (>= 1.31.18), GenomicFeatures (>= 1.49.6), AnnotationFilter (>= 1.5.2) Imports: methods, RSQLite (>= 1.1), DBI, Biobase, GenomeInfoDb, AnnotationDbi (>= 1.31.19), rtracklayer, S4Vectors (>= 0.23.10), Rsamtools, IRanges (>= 2.13.24), ProtGenerics, Biostrings (>= 2.47.9), curl Suggests: BiocStyle, knitr, EnsDb.Hsapiens.v86 (>= 0.99.8), testthat, BSgenome.Hsapiens.NCBI.GRCh38, ggbio (>= 1.24.0), Gviz (>= 1.20.0), rmarkdown, AnnotationHub Enhances: RMariaDB, shiny License: LGPL MD5sum: 4e6f2211c1cfbcf026fd4302a42d8912 NeedsCompilation: no Title: Utilities to create and use Ensembl-based annotation databases Description: The package provides functions to create and use transcript centric annotation databases/packages. The annotation for the databases are directly fetched from Ensembl using their Perl API. The functionality and data is similar to that of the TxDb packages from the GenomicFeatures package, but, in addition to retrieve all gene/transcript models and annotations from the database, ensembldb provides a filter framework allowing to retrieve annotations for specific entries like genes encoded on a chromosome region or transcript models of lincRNA genes. EnsDb databases built with ensembldb contain also protein annotations and mappings between proteins and their encoding transcripts. Finally, ensembldb provides functions to map between genomic, transcript and protein coordinates. biocViews: Genetics, AnnotationData, Sequencing, Coverage Author: Johannes Rainer with contributions from Tim Triche, Sebastian Gibb, Laurent Gatto Christian Weichenberger and Boyu Yu. Maintainer: Johannes Rainer URL: https://github.com/jorainer/ensembldb VignetteBuilder: knitr BugReports: https://github.com/jorainer/ensembldb/issues git_url: https://git.bioconductor.org/packages/ensembldb git_branch: RELEASE_3_20 git_last_commit: 1376f59 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ensembldb_2.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ensembldb_2.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ensembldb_2.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ensembldb_2.30.0.tgz vignettes: vignettes/ensembldb/inst/doc/coordinate-mapping.html, vignettes/ensembldb/inst/doc/coordinate-mapping-use-cases.html, vignettes/ensembldb/inst/doc/ensembldb.html, vignettes/ensembldb/inst/doc/MySQL-backend.html, vignettes/ensembldb/inst/doc/proteins.html vignetteTitles: Mapping between genome,, transcript and protein coordinates, Use cases for coordinate mapping with ensembldb, Generating an using Ensembl based annotation packages, Using a MariaDB/MySQL server backend, Querying protein features hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ensembldb/inst/doc/coordinate-mapping.R, vignettes/ensembldb/inst/doc/coordinate-mapping-use-cases.R, vignettes/ensembldb/inst/doc/ensembldb.R, vignettes/ensembldb/inst/doc/MySQL-backend.R, vignettes/ensembldb/inst/doc/proteins.R dependsOnMe: chimeraviz, demuxSNP, AHEnsDbs, EnsDb.Hsapiens.v75, EnsDb.Hsapiens.v79, EnsDb.Hsapiens.v86, EnsDb.Mmusculus.v75, EnsDb.Mmusculus.v79, EnsDb.Rnorvegicus.v75, EnsDb.Rnorvegicus.v79 importsMe: biovizBase, BUSpaRse, ChIPpeakAnno, CleanUpRNAseq, consensusDE, diffUTR, epimutacions, epivizrData, ggbio, GRaNIE, Gviz, RAIDS, RITAN, scanMiRApp, scFeatures, singleCellTK, TVTB, tximeta, GenomicDistributionsData, scRNAseq, crosstalkr, GRIN2, locuszoomr, MOCHA, RNAseqQC suggestsMe: AlphaMissenseR, AnnotationHub, autonomics, CNVRanger, eisaR, EpiTxDb, fishpond, GenomicFeatures, ldblock, multicrispr, nullranges, satuRn, txdbmaker, wiggleplotr, celldex, GeneSelectR dependencyCount: 80 Package: epialleleR Version: 1.14.0 Depends: R (>= 4.1) Imports: stats, methods, utils, data.table, BiocGenerics, GenomicRanges, Rcpp LinkingTo: Rcpp, BH, Rhtslib Suggests: GenomeInfoDb, SummarizedExperiment, VariantAnnotation, RUnit, knitr, rmarkdown, ggplot2 License: Artistic-2.0 MD5sum: 4bfbef7adb6ed8da885b81a9b72335ca NeedsCompilation: yes Title: Fast, Epiallele-Aware Methylation Caller and Reporter Description: Epialleles are specific DNA methylation patterns that are mitotically and/or meiotically inherited. This package calls and reports cytosine methylation as well as frequencies of hypermethylated epialleles at the level of genomic regions or individual cytosines in next-generation sequencing data using binary alignment map (BAM) files as an input. Among other things, this package can also extract and visualise methylation patterns and assess allele specificity of methylation. biocViews: DNAMethylation, Epigenetics, MethylSeq, LongRead Author: Oleksii Nikolaienko [aut, cre] () Maintainer: Oleksii Nikolaienko URL: https://github.com/BBCG/epialleleR SystemRequirements: C++17, GNU make VignetteBuilder: knitr BugReports: https://github.com/BBCG/epialleleR/issues git_url: https://git.bioconductor.org/packages/epialleleR git_branch: RELEASE_3_20 git_last_commit: 11c16c9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epialleleR_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epialleleR_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epialleleR_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epialleleR_1.14.0.tgz vignettes: vignettes/epialleleR/inst/doc/epialleleR.html, vignettes/epialleleR/inst/doc/values.html vignetteTitles: epialleleR, values hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/epialleleR/inst/doc/epialleleR.R, vignettes/epialleleR/inst/doc/values.R dependencyCount: 27 Package: EpiCompare Version: 1.10.0 Depends: R (>= 4.2.0) Imports: AnnotationHub, ChIPseeker, data.table, genomation, GenomicRanges, IRanges, GenomeInfoDb, ggplot2 (>= 3.5.0), htmltools, methods, plotly, reshape2, rmarkdown, rtracklayer, stats, stringr, utils, BiocGenerics, downloadthis, parallel Suggests: rworkflows, BiocFileCache, BiocParallel, BiocStyle, clusterProfiler, GenomicAlignments, grDevices, knitr, org.Hs.eg.db, testthat (>= 3.0.0), tidyr, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg38.knownGene, TxDb.Mmusculus.UCSC.mm9.knownGene, TxDb.Mmusculus.UCSC.mm10.knownGene, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm9, BSgenome.Mmusculus.UCSC.mm10, ComplexUpset, plyranges, scales, Matrix, consensusSeekeR, heatmaply, viridis License: GPL-3 MD5sum: 43fa9bd01394be7668434ee655901dad NeedsCompilation: no Title: Comparison, Benchmarking & QC of Epigenomic Datasets Description: EpiCompare is used to compare and analyse epigenetic datasets for quality control and benchmarking purposes. The package outputs an HTML report consisting of three sections: (1. General metrics) Metrics on peaks (percentage of blacklisted and non-standard peaks, and peak widths) and fragments (duplication rate) of samples, (2. Peak overlap) Percentage and statistical significance of overlapping and non-overlapping peaks. Also includes upset plot and (3. Functional annotation) functional annotation (ChromHMM, ChIPseeker and enrichment analysis) of peaks. Also includes peak enrichment around TSS. biocViews: Epigenetics, Genetics, QualityControl, ChIPSeq, MultipleComparison, FunctionalGenomics, ATACSeq, DNaseSeq Author: Sera Choi [aut] (), Brian Schilder [aut] (), Leyla Abbasova [aut], Alan Murphy [aut] (), Nathan Skene [aut] (), Thomas Roberts [ctb], Hiranyamaya Dash [cre] () Maintainer: Hiranyamaya Dash URL: https://github.com/neurogenomics/EpiCompare VignetteBuilder: knitr BugReports: https://github.com/neurogenomics/EpiCompare/issues git_url: https://git.bioconductor.org/packages/EpiCompare git_branch: RELEASE_3_20 git_last_commit: debc9b1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EpiCompare_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EpiCompare_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EpiCompare_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EpiCompare_1.10.0.tgz vignettes: vignettes/EpiCompare/inst/doc/docker.html, vignettes/EpiCompare/inst/doc/EpiCompare.html, vignettes/EpiCompare/inst/doc/example_report.html vignetteTitles: docker, EpiCompare, example_report hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EpiCompare/inst/doc/docker.R, vignettes/EpiCompare/inst/doc/EpiCompare.R, vignettes/EpiCompare/inst/doc/example_report.R dependencyCount: 193 Package: epidecodeR Version: 1.14.0 Depends: R (>= 3.1.0) Imports: EnvStats, ggplot2, rtracklayer, GenomicRanges, IRanges, rstatix, ggpubr, methods, stats, utils, dplyr Suggests: knitr, rmarkdown License: GPL-3 Archs: x64 MD5sum: df73afdcff0bc97e8d155b692eecb61e NeedsCompilation: no Title: epidecodeR: a functional exploration tool for epigenetic and epitranscriptomic regulation Description: epidecodeR is a package capable of analysing impact of degree of DNA/RNA epigenetic chemical modifications on dysregulation of genes or proteins. This package integrates chemical modification data generated from a host of epigenomic or epitranscriptomic techniques such as ChIP-seq, ATAC-seq, m6A-seq, etc. and dysregulated gene lists in the form of differential gene expression, ribosome occupancy or differential protein translation and identify impact of dysregulation of genes caused due to varying degrees of chemical modifications associated with the genes. epidecodeR generates cumulative distribution function (CDF) plots showing shifts in trend of overall log2FC between genes divided into groups based on the degree of modification associated with the genes. The tool also tests for significance of difference in log2FC between groups of genes. biocViews: DifferentialExpression, GeneRegulation, HistoneModification, FunctionalPrediction, Transcription, GeneExpression, Epitranscriptomics, Epigenetics, FunctionalGenomics, SystemsBiology, Transcriptomics, ChipOnChip Author: Kandarp Joshi [aut, cre], Dan Ohtan Wang [aut] Maintainer: Kandarp Joshi URL: https://github.com/kandarpRJ/epidecodeR, https://epidecoder.shinyapps.io/shinyapp VignetteBuilder: knitr BugReports: https://github.com/kandarpRJ/epidecodeR/issues git_url: https://git.bioconductor.org/packages/epidecodeR git_branch: RELEASE_3_20 git_last_commit: 2e8d50f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epidecodeR_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epidecodeR_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epidecodeR_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epidecodeR_1.14.0.tgz vignettes: vignettes/epidecodeR/inst/doc/epidecodeR.html vignetteTitles: epidecodeR: a functional exploration tool for epigenetic and epitranscriptomic regulation hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/epidecodeR/inst/doc/epidecodeR.R dependencyCount: 124 Package: EpiDISH Version: 2.22.0 Depends: R (>= 4.1) Imports: MASS, e1071, quadprog, parallel, stats, matrixStats, stringr, locfdr, Matrix Suggests: roxygen2, GEOquery, BiocStyle, knitr, rmarkdown, Biobase, testthat License: GPL-2 MD5sum: 0cdee5ee225c0101a6a65342b98d010c NeedsCompilation: no Title: Epigenetic Dissection of Intra-Sample-Heterogeneity Description: EpiDISH is a R package to infer the proportions of a priori known cell-types present in a sample representing a mixture of such cell-types. Right now, the package can be used on DNAm data of whole blood, generic epithelial tissue and breast tissue. Besides, the package provides a function that allows the identification of differentially methylated cell-types and their directionality of change in Epigenome-Wide Association Studies. biocViews: DNAMethylation, MethylationArray, Epigenetics, DifferentialMethylation, ImmunoOncology Author: Andrew E. Teschendorff [aut], Shijie C. Zheng [aut, cre] Maintainer: Shijie C. Zheng URL: https://github.com/sjczheng/EpiDISH VignetteBuilder: knitr BugReports: https://github.com/sjczheng/EpiDISH/issues git_url: https://git.bioconductor.org/packages/EpiDISH git_branch: RELEASE_3_20 git_last_commit: 5b6daf6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EpiDISH_2.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EpiDISH_2.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EpiDISH_2.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EpiDISH_2.22.0.tgz vignettes: vignettes/EpiDISH/inst/doc/EpiDISH.html vignetteTitles: Epigenetic Dissection of Intra-Sample-Heterogeneity hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EpiDISH/inst/doc/EpiDISH.R dependsOnMe: TOAST suggestsMe: planet dependencyCount: 26 Package: epigenomix Version: 1.46.0 Depends: R (>= 3.5.0), methods, Biobase, S4Vectors, IRanges, GenomicRanges, SummarizedExperiment Imports: BiocGenerics, MCMCpack, Rsamtools, parallel, GenomeInfoDb, beadarray License: LGPL-3 MD5sum: a7046c9b26598dec36381afa98854f48 NeedsCompilation: no Title: Epigenetic and gene transcription data normalization and integration with mixture models Description: A package for the integrative analysis of RNA-seq or microarray based gene transcription and histone modification data obtained by ChIP-seq. The package provides methods for data preprocessing and matching as well as methods for fitting bayesian mixture models in order to detect genes with differences in both data types. biocViews: ChIPSeq, GeneExpression, DifferentialExpression, Classification Author: Hans-Ulrich Klein, Martin Schaefer Maintainer: Hans-Ulrich Klein git_url: https://git.bioconductor.org/packages/epigenomix git_branch: RELEASE_3_20 git_last_commit: 4579662 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epigenomix_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epigenomix_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epigenomix_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epigenomix_1.46.0.tgz vignettes: vignettes/epigenomix/inst/doc/epigenomix.pdf vignetteTitles: epigenomix package vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/epigenomix/inst/doc/epigenomix.R dependencyCount: 107 Package: epigraHMM Version: 1.14.0 Depends: R (>= 3.5.0) Imports: Rcpp, magrittr, data.table, SummarizedExperiment, methods, GenomeInfoDb, GenomicRanges, rtracklayer, IRanges, Rsamtools, bamsignals, csaw, S4Vectors, limma, stats, Rhdf5lib, rhdf5, Matrix, MASS, scales, ggpubr, ggplot2, GreyListChIP, pheatmap, grDevices LinkingTo: Rcpp, RcppArmadillo, Rhdf5lib Suggests: testthat, knitr, rmarkdown, BiocStyle, BSgenome.Rnorvegicus.UCSC.rn4, gcapc, chromstaRData License: MIT + file LICENSE MD5sum: 6d9e1195bcf7500a41b6de80b212b3d0 NeedsCompilation: yes Title: Epigenomic R-based analysis with hidden Markov models Description: epigraHMM provides a set of tools for the analysis of epigenomic data based on hidden Markov Models. It contains two separate peak callers, one for consensus peaks from biological or technical replicates, and one for differential peaks from multi-replicate multi-condition experiments. In differential peak calling, epigraHMM provides window-specific posterior probabilities associated with every possible combinatorial pattern of read enrichment across conditions. biocViews: ChIPSeq, ATACSeq, DNaseSeq, HiddenMarkovModel, Epigenetics Author: Pedro Baldoni [aut, cre] Maintainer: Pedro Baldoni SystemRequirements: GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/epigraHMM git_branch: RELEASE_3_20 git_last_commit: a45cf5e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epigraHMM_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epigraHMM_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epigraHMM_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epigraHMM_1.14.0.tgz vignettes: vignettes/epigraHMM/inst/doc/epigraHMM.html vignetteTitles: Consensus and Differential Peak Calling With epigraHMM hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/epigraHMM/inst/doc/epigraHMM.R dependencyCount: 137 Package: EpiMix Version: 1.8.0 Depends: R (>= 4.2.0), EpiMix.data (>= 1.2.2) Imports: AnnotationHub, AnnotationDbi, Biobase, biomaRt, data.table, doParallel, doSNOW, downloader, dplyr, ELMER.data, ExperimentHub, foreach, GenomeInfoDb, GenomicFeatures, GenomicRanges, ggplot2, graphics, grDevices, impute, IRanges, limma, methods, parallel, plyr, progress, R.matlab, RColorBrewer, RCurl, rlang, RPMM, S4Vectors, stats, SummarizedExperiment, tibble, tidyr, utils Suggests: BiocStyle, clusterProfiler, DT, GEOquery, karyoploteR, knitr, org.Hs.eg.db, regioneR, Seurat, survival, survminer, TxDb.Hsapiens.UCSC.hg19.knownGene, RUnit, BiocGenerics, multiMiR, miRBaseConverter License: GPL-3 MD5sum: 57f538e07e645b5c7599f157ef2716ad NeedsCompilation: no Title: EpiMix: an integrative tool for the population-level analysis of DNA methylation Description: EpiMix is a comprehensive tool for the integrative analysis of high-throughput DNA methylation data and gene expression data. EpiMix enables automated data downloading (from TCGA or GEO), preprocessing, methylation modeling, interactive visualization and functional annotation.To identify hypo- or hypermethylated CpG sites across physiological or pathological conditions, EpiMix uses a beta mixture modeling to identify the methylation states of each CpG probe and compares the methylation of the experimental group to the control group.The output from EpiMix is the functional DNA methylation that is predictive of gene expression. EpiMix incorporates specialized algorithms to identify functional DNA methylation at various genetic elements, including proximal cis-regulatory elements of protein-coding genes, distal enhancers, and genes encoding microRNAs and lncRNAs. biocViews: Software, Epigenetics, Preprocessing, DNAMethylation, GeneExpression, DifferentialMethylation Author: Yuanning Zheng [aut, cre], Markus Sujansky [aut], John Jun [aut], Olivier Gevaert [aut] Maintainer: Yuanning Zheng VignetteBuilder: knitr BugReports: https://github.com/gevaertlab/EpiMix/issues git_url: https://git.bioconductor.org/packages/EpiMix git_branch: RELEASE_3_20 git_last_commit: 5a1afba git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EpiMix_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EpiMix_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EpiMix_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EpiMix_1.8.0.tgz vignettes: vignettes/EpiMix/inst/doc/Methylation_Modeling.html vignetteTitles: vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EpiMix/inst/doc/Methylation_Modeling.R importsMe: Moonlight2R dependencyCount: 138 Package: epimutacions Version: 1.10.0 Depends: R (>= 4.3.0), epimutacionsData Imports: minfi, bumphunter, isotree, robustbase, ggplot2, GenomicRanges, GenomicFeatures, IRanges, SummarizedExperiment, stats, matrixStats, BiocGenerics, S4Vectors, utils, biomaRt, BiocParallel, GenomeInfoDb, Homo.sapiens, purrr, tibble, Gviz, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg18.knownGene, TxDb.Hsapiens.UCSC.hg38.knownGene, rtracklayer, AnnotationDbi, AnnotationHub, ExperimentHub, reshape2, grid, ensembldb, gridExtra, IlluminaHumanMethylation450kmanifest, IlluminaHumanMethylationEPICmanifest, IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylationEPICanno.ilm10b2.hg19, ggrepel Suggests: testthat, knitr, rmarkdown, BiocStyle, a4Base, kableExtra, methods, grDevices License: MIT + file LICENSE Archs: x64 MD5sum: 30df10a44d353e8f963c72c0822682e3 NeedsCompilation: yes Title: Robust outlier identification for DNA methylation data Description: The package includes some statistical outlier detection methods for epimutations detection in DNA methylation data. The methods included in the package are MANOVA, Multivariate linear models, isolation forest, robust mahalanobis distance, quantile and beta. The methods compare a case sample with a suspected disease against a reference panel (composed of healthy individuals) to identify epimutations in the given case sample. It also contains functions to annotate and visualize the identified epimutations. biocViews: DNAMethylation, BiologicalQuestion, Preprocessing, StatisticalMethod, Normalization Author: Dolors Pelegri-Siso [aut, cre] (), Juan R. Gonzalez [aut] (), Carlos Ruiz-Arenas [aut] (), Carles Hernandez-Ferrer [aut] (), Leire Abarrategui [aut] () Maintainer: Dolors Pelegri-Siso URL: https://github.com/isglobal-brge/epimutacions VignetteBuilder: knitr BugReports: https://github.com/isglobal-brge/epimutacions/issues git_url: https://git.bioconductor.org/packages/epimutacions git_branch: RELEASE_3_20 git_last_commit: cdcc71a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epimutacions_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epimutacions_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epimutacions_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epimutacions_1.10.0.tgz vignettes: vignettes/epimutacions/inst/doc/epimutacions.html vignetteTitles: Detection of epimutations with state of the art methods in methylation data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/epimutacions/inst/doc/epimutacions.R dependencyCount: 224 Package: epiNEM Version: 1.30.0 Depends: R (>= 4.1) Imports: BoutrosLab.plotting.general, BoolNet, e1071, gtools, stats, igraph, utils, lattice, latticeExtra, RColorBrewer, pcalg, minet, grDevices, graph, mnem, latex2exp Suggests: knitr, RUnit, BiocGenerics, STRINGdb, devtools, rmarkdown, GOSemSim, AnnotationHub, org.Sc.sgd.db, BiocStyle License: GPL-3 MD5sum: adaa278273f422c193ade7a17158f16f NeedsCompilation: no Title: epiNEM Description: epiNEM is an extension of the original Nested Effects Models (NEM). EpiNEM is able to take into account double knockouts and infer more complex network signalling pathways. It is tailored towards large scale double knock-out screens. biocViews: Pathways, SystemsBiology, NetworkInference, Network Author: Madeline Diekmann & Martin Pirkl Maintainer: Martin Pirkl URL: https://github.com/cbg-ethz/epiNEM/ VignetteBuilder: knitr BugReports: https://github.com/cbg-ethz/epiNEM/issues git_url: https://git.bioconductor.org/packages/epiNEM git_branch: RELEASE_3_20 git_last_commit: befa45a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epiNEM_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epiNEM_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epiNEM_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epiNEM_1.30.0.tgz vignettes: vignettes/epiNEM/inst/doc/epiNEM.html vignetteTitles: epiNEM hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/epiNEM/inst/doc/epiNEM.R importsMe: bnem, dce, nempi suggestsMe: mnem dependencyCount: 112 Package: EpipwR Version: 1.0.0 Depends: R (>= 4.4.0) Imports: EpipwR.data, ExperimentHub (>= 2.10.0), ggplot2 Suggests: knitr, rmarkdown, testthat (>= 3.0.0), sessioninfo License: Artistic-2.0 Archs: x64 MD5sum: 807fb6b772de6ed66fb07375bb6d37ae NeedsCompilation: no Title: Efficient Power Analysis for EWAS with Continuous or Binary Outcomes Description: A quasi-simulation based approach to performing power analysis for EWAS (Epigenome-wide association studies) with continuous or binary outcomes. 'EpipwR' relies on empirical EWAS datasets to determine power at specific sample sizes while keeping computational cost low. EpipwR can be run with a variety of standard statistical tests, controlling for either a false discovery rate or a family-wise type I error rate. biocViews: Epigenetics, ExperimentalDesign Author: Jackson Barth [aut, cre] (), Austin Reynolds [aut], Mary Lauren Benton [ctb], Carissa Fong [ctb] Maintainer: Jackson Barth URL: https://github.com/jbarth216/EpipwR VignetteBuilder: knitr BugReports: https://github.com/jbarth216/EpipwR git_url: https://git.bioconductor.org/packages/EpipwR git_branch: RELEASE_3_20 git_last_commit: 9e2b25e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EpipwR_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EpipwR_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EpipwR_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EpipwR_1.0.0.tgz vignettes: vignettes/EpipwR/inst/doc/EpipwR.html vignetteTitles: EpipwR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EpipwR/inst/doc/EpipwR.R dependencyCount: 85 Package: epiregulon Version: 1.2.0 Depends: R (>= 4.4), SingleCellExperiment Imports: AnnotationHub, BiocParallel, ExperimentHub, Matrix, Rcpp, S4Vectors, SummarizedExperiment, bluster, checkmate, entropy, lifecycle, methods, scran, scuttle, stats, utils, scMultiome, GenomeInfoDb, GenomicRanges, AUCell, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm10, motifmatchr, IRanges, beachmat LinkingTo: Rcpp, beachmat, assorthead Suggests: knitr, rmarkdown, parallel, BiocStyle, testthat (>= 3.0.0), coin, scater, beachmat.hdf5 License: MIT + file LICENSE MD5sum: 02404d676e884de53853503c0b8dc5a1 NeedsCompilation: yes Title: Gene regulatory network inference from single cell epigenomic data Description: Gene regulatory networks model the underlying gene regulation hierarchies that drive gene expression and observed phenotypes. Epiregulon infers TF activity in single cells by constructing a gene regulatory network (regulons). This is achieved through integration of scATAC-seq and scRNA-seq data and incorporation of public bulk TF ChIP-seq data. Links between regulatory elements and their target genes are established by computing correlations between chromatin accessibility and gene expressions. biocViews: SingleCell, GeneRegulation,NetworkInference,Network, GeneExpression, Transcription, GeneTarget Author: Xiaosai Yao [aut, cre] (), Tomasz Włodarczyk [aut] (), Aaron Lun [aut], Shang-Yang Chen [aut] Maintainer: Xiaosai Yao URL: https://github.com/xiaosaiyao/epiregulon/ VignetteBuilder: knitr BugReports: https://github.com/xiaosaiyao/epiregulon/issues git_url: https://git.bioconductor.org/packages/epiregulon git_branch: RELEASE_3_20 git_last_commit: 78c24d9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epiregulon_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epiregulon_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epiregulon_1.2.0.tgz vignettes: vignettes/epiregulon/inst/doc/multiome.mae.html vignetteTitles: Epiregulon tutorial with MultiAssayExperiment hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/epiregulon/inst/doc/multiome.mae.R suggestsMe: epiregulon.extra dependencyCount: 215 Package: epiregulon.extra Version: 1.2.0 Depends: R (>= 4.4), SingleCellExperiment Imports: scran, ComplexHeatmap, Matrix, SummarizedExperiment, checkmate, circlize, clusterProfiler, ggplot2, ggraph, igraph, lifecycle, patchwork, reshape2, scales, scater, stats Suggests: epiregulon, knitr, rmarkdown, parallel, BiocStyle, testthat (>= 3.0.0), EnrichmentBrowser, msigdbr, dorothea, scMultiome, S4Vectors, scuttle, vdiffr, ggrastr, ggrepel License: MIT + file LICENSE MD5sum: fb307e3793cb8874546e7767238ae58b NeedsCompilation: no Title: Companion package to epiregulon with additional plotting, differential and graph functions Description: Gene regulatory networks model the underlying gene regulation hierarchies that drive gene expression and observed phenotypes. Epiregulon infers TF activity in single cells by constructing a gene regulatory network (regulons). This is achieved through integration of scATAC-seq and scRNA-seq data and incorporation of public bulk TF ChIP-seq data. Links between regulatory elements and their target genes are established by computing correlations between chromatin accessibility and gene expressions. biocViews: GeneRegulation, Network, GeneExpression, Transcription, ChipOnChip, DifferentialExpression, GeneTarget, Normalization, GraphAndNetwork Author: Xiaosai Yao [aut, cre] (), Tomasz Włodarczyk [aut] (), Timothy Keyes [aut], Shang-Yang Chen [aut] Maintainer: Xiaosai Yao URL: https://github.com/xiaosaiyao/epiregulon.extra/ VignetteBuilder: knitr BugReports: https://github.com/xiaosaiyao/epiregulon.extra/issues git_url: https://git.bioconductor.org/packages/epiregulon.extra git_branch: RELEASE_3_20 git_last_commit: 51b17a0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epiregulon.extra_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epiregulon.extra_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epiregulon.extra_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epiregulon.extra_1.2.0.tgz vignettes: vignettes/epiregulon.extra/inst/doc/Data_visualization.html vignetteTitles: Data visualization with epiregulon.extra hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/epiregulon.extra/inst/doc/Data_visualization.R dependencyCount: 185 Package: epistack Version: 1.12.0 Depends: R (>= 4.1) Imports: GenomicRanges, SummarizedExperiment, BiocGenerics, S4Vectors, IRanges, graphics, plotrix, grDevices, stats, methods Suggests: testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown, EnrichedHeatmap, biomaRt, rtracklayer, covr, vdiffr, magick License: MIT + file LICENSE Archs: x64 MD5sum: cb4dbd8d61a6ed76a1c078fa0c3443e6 NeedsCompilation: no Title: Heatmaps of Stack Profiles from Epigenetic Signals Description: The epistack package main objective is the visualizations of stacks of genomic tracks (such as, but not restricted to, ChIP-seq, ATAC-seq, DNA methyation or genomic conservation data) centered at genomic regions of interest. epistack needs three different inputs: 1) a genomic score objects, such as ChIP-seq coverage or DNA methylation values, provided as a `GRanges` (easily obtained from `bigwig` or `bam` files). 2) a list of feature of interest, such as peaks or transcription start sites, provided as a `GRanges` (easily obtained from `gtf` or `bed` files). 3) a score to sort the features, such as peak height or gene expression value. biocViews: RNASeq, Preprocessing, ChIPSeq, GeneExpression, Coverage Author: SACI Safia [aut], DEVAILLY Guillaume [cre, aut] Maintainer: DEVAILLY Guillaume URL: https://github.com/GenEpi-GenPhySE/epistack VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/epistack git_branch: RELEASE_3_20 git_last_commit: bea6e71 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epistack_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epistack_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epistack_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epistack_1.12.0.tgz vignettes: vignettes/epistack/inst/doc/using_epistack.html vignetteTitles: Using epistack hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/epistack/inst/doc/using_epistack.R dependencyCount: 37 Package: epistasisGA Version: 1.8.0 Depends: R (>= 4.2) Imports: BiocParallel, data.table, matrixStats, stats, survival, igraph, batchtools, qgraph, grDevices, parallel, ggplot2, grid, bigmemory, graphics, utils LinkingTo: Rcpp, RcppArmadillo, BH, bigmemory Suggests: BiocStyle, knitr, rmarkdown, magrittr, kableExtra, testthat (>= 3.0.0) License: GPL-3 MD5sum: becb50c407ab48cee495562d867da943 NeedsCompilation: yes Title: An R package to identify multi-snp effects in nuclear family studies using the GADGETS method Description: This package runs the GADGETS method to identify epistatic effects in nuclear family studies. It also provides functions for permutation-based inference and graphical visualization of the results. biocViews: Genetics, SNP, GeneticVariability Author: Michael Nodzenski [aut, cre], Juno Krahn [ctb] Maintainer: Michael Nodzenski URL: https://github.com/mnodzenski/epistasisGA VignetteBuilder: knitr BugReports: https://github.com/mnodzenski/epistasisGA/issues git_url: https://git.bioconductor.org/packages/epistasisGA git_branch: RELEASE_3_20 git_last_commit: 8a85b57 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epistasisGA_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epistasisGA_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epistasisGA_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epistasisGA_1.8.0.tgz vignettes: vignettes/epistasisGA/inst/doc/E_GADGETS.html, vignettes/epistasisGA/inst/doc/GADGETS.html, vignettes/epistasisGA/inst/doc/Including_Maternal_SNPs.html vignetteTitles: E-GADGETS, GADGETS, Detecting Maternal-SNP Interactions hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/epistasisGA/inst/doc/E_GADGETS.R, vignettes/epistasisGA/inst/doc/GADGETS.R, vignettes/epistasisGA/inst/doc/Including_Maternal_SNPs.R dependencyCount: 117 Package: EpiTxDb Version: 1.18.0 Depends: R (>= 4.0), AnnotationDbi, Modstrings Imports: methods, utils, httr, xml2, curl, rex, GenomicFeatures, txdbmaker, GenomicRanges, GenomeInfoDb, BiocGenerics, BiocFileCache, S4Vectors, IRanges, RSQLite, DBI, Biostrings, tRNAdbImport Suggests: BiocStyle, knitr, rmarkdown, testthat, httptest, AnnotationHub, ensembldb, ggplot2, EpiTxDb.Hs.hg38, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Scerevisiae.UCSC.sacCer3, TxDb.Hsapiens.UCSC.hg38.knownGene License: Artistic-2.0 MD5sum: 9eaa3d39c3126909d669fd4e98b76ac7 NeedsCompilation: no Title: Storing and accessing epitranscriptomic information using the AnnotationDbi interface Description: EpiTxDb facilitates the storage of epitranscriptomic information. More specifically, it can keep track of modification identity, position, the enzyme for introducing it on the RNA, a specifier which determines the position on the RNA to be modified and the literature references each modification is associated with. biocViews: Software, Epitranscriptomics Author: Felix G.M. Ernst [aut, cre] () Maintainer: Felix G.M. Ernst URL: https://github.com/FelixErnst/EpiTxDb VignetteBuilder: knitr BugReports: https://github.com/FelixErnst/EpiTxDb/issues git_url: https://git.bioconductor.org/packages/EpiTxDb git_branch: RELEASE_3_20 git_last_commit: 421b805 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EpiTxDb_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EpiTxDb_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EpiTxDb_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EpiTxDb_1.18.0.tgz vignettes: vignettes/EpiTxDb/inst/doc/EpiTxDb-creation.html, vignettes/EpiTxDb/inst/doc/EpiTxDb.html vignetteTitles: EpiTxDb-creation, EpiTxDb hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EpiTxDb/inst/doc/EpiTxDb-creation.R, vignettes/EpiTxDb/inst/doc/EpiTxDb.R dependsOnMe: EpiTxDb.Hs.hg38, EpiTxDb.Mm.mm10, EpiTxDb.Sc.sacCer3 dependencyCount: 122 Package: epivizr Version: 2.36.0 Depends: R (>= 3.5.0), methods Imports: epivizrServer (>= 1.1.1), epivizrData (>= 1.3.4), GenomicRanges, S4Vectors, IRanges, bumphunter, GenomeInfoDb Suggests: testthat, roxygen2, knitr, Biobase, SummarizedExperiment, antiProfilesData, hgu133plus2.db, Mus.musculus, BiocStyle, minfi, rmarkdown License: Artistic-2.0 Archs: x64 MD5sum: b10969252af0074ea50a17cab34b5cca NeedsCompilation: no Title: R Interface to epiviz web app Description: This package provides connections to the epiviz web app (http://epiviz.cbcb.umd.edu) for interactive visualization of genomic data. Objects in R/bioc interactive sessions can be displayed in genome browser tracks or plots to be explored by navigation through genomic regions. Fundamental Bioconductor data structures are supported (e.g., GenomicRanges and RangedSummarizedExperiment objects), while providing an easy mechanism to support other data structures (through package epivizrData). Visualizations (using d3.js) can be easily added to the web app as well. biocViews: Visualization, Infrastructure, GUI Author: Hector Corrada Bravo, Florin Chelaru, Llewellyn Smith, Naomi Goldstein, Jayaram Kancherla, Morgan Walter, Brian Gottfried Maintainer: Hector Corrada Bravo VignetteBuilder: knitr Video: https://www.youtube.com/watch?v=099c4wUxozA git_url: https://git.bioconductor.org/packages/epivizr git_branch: RELEASE_3_20 git_last_commit: c58d76b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epivizr_2.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epivizr_2.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epivizr_2.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epivizr_2.36.0.tgz vignettes: vignettes/epivizr/inst/doc/IntroToEpivizr.html vignetteTitles: Introduction to epivizr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/epivizr/inst/doc/IntroToEpivizr.R dependsOnMe: epivizrStandalone, scTreeViz dependencyCount: 124 Package: epivizrChart Version: 1.28.0 Depends: R (>= 3.5.0) Imports: epivizrData (>= 1.5.1), epivizrServer, htmltools, rjson, methods, BiocGenerics Suggests: testthat, roxygen2, knitr, Biobase, GenomicRanges, S4Vectors, IRanges, SummarizedExperiment, antiProfilesData, hgu133plus2.db, Mus.musculus, BiocStyle, Homo.sapiens, shiny, minfi, Rsamtools, rtracklayer, RColorBrewer, magrittr, AnnotationHub License: Artistic-2.0 MD5sum: 531a00665452b6e44af700a0f779d789 NeedsCompilation: no Title: R interface to epiviz web components Description: This package provides an API for interactive visualization of genomic data using epiviz web components. Objects in R/BioConductor can be used to generate interactive R markdown/notebook documents or can be visualized in the R Studio's default viewer. biocViews: Visualization, GUI Author: Brian Gottfried [aut], Jayaram Kancherla [aut], Hector Corrada Bravo [aut, cre] Maintainer: Hector Corrada Bravo VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/epivizrChart git_branch: RELEASE_3_20 git_last_commit: 7dc2814 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epivizrChart_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epivizrChart_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epivizrChart_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epivizrChart_1.28.0.tgz vignettes: vignettes/epivizrChart/inst/doc/IntegrationWithIGVjs.html, vignettes/epivizrChart/inst/doc/IntegrationWithShiny.html, vignettes/epivizrChart/inst/doc/IntroToEpivizrChart.html, vignettes/epivizrChart/inst/doc/VisualizeSumExp.html vignetteTitles: Visualizing Files with epivizrChart, Visualizing genomic data in Shiny Apps using epivizrChart, Introduction to epivizrChart, Visualizing `RangeSummarizedExperiment` objects Shiny Apps using epivizrChart hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/epivizrChart/inst/doc/IntegrationWithIGVjs.R, vignettes/epivizrChart/inst/doc/IntegrationWithShiny.R, vignettes/epivizrChart/inst/doc/IntroToEpivizrChart.R, vignettes/epivizrChart/inst/doc/VisualizeSumExp.R dependencyCount: 118 Package: epivizrData Version: 1.34.0 Depends: R (>= 3.4), methods, epivizrServer (>= 1.1.1), Biobase Imports: S4Vectors, GenomicRanges, SummarizedExperiment (>= 0.2.0), OrganismDbi, GenomicFeatures, GenomeInfoDb, IRanges, ensembldb Suggests: testthat, roxygen2, bumphunter, hgu133plus2.db, Mus.musculus, TxDb.Mmusculus.UCSC.mm10.knownGene, rjson, knitr, rmarkdown, BiocStyle, EnsDb.Mmusculus.v79, AnnotationHub, rtracklayer, utils, RMySQL, DBI, matrixStats License: MIT + file LICENSE MD5sum: 5b011ec28c3b00330f80c0f691457ef4 NeedsCompilation: no Title: Data Management API for epiviz interactive visualization app Description: Serve data from Bioconductor Objects through a WebSocket connection. biocViews: Infrastructure, Visualization Author: Hector Corrada Bravo [aut, cre], Florin Chelaru [aut] Maintainer: Hector Corrada Bravo URL: http://epiviz.github.io VignetteBuilder: knitr BugReports: https://github.com/epiviz/epivizrData/issues git_url: https://git.bioconductor.org/packages/epivizrData git_branch: RELEASE_3_20 git_last_commit: ed35bd8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epivizrData_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epivizrData_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epivizrData_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epivizrData_1.34.0.tgz vignettes: vignettes/epivizrData/inst/doc/epivizrData.html vignetteTitles: epivizrData Usage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/epivizrData/inst/doc/epivizrData.R importsMe: epivizr, epivizrChart, scTreeViz dependencyCount: 115 Package: epivizrServer Version: 1.34.0 Depends: R (>= 3.2.3), methods Imports: httpuv (>= 1.3.0), R6 (>= 2.0.0), rjson, mime (>= 0.2) Suggests: testthat, knitr, rmarkdown, BiocStyle License: MIT + file LICENSE MD5sum: 6156ae07bce88bf1bc59d633186cc1b3 NeedsCompilation: no Title: WebSocket server infrastructure for epivizr apps and packages Description: This package provides objects to manage WebSocket connections to epiviz apps. Other epivizr package use this infrastructure. biocViews: Infrastructure, Visualization Author: Hector Corrada Bravo [aut, cre] Maintainer: Hector Corrada Bravo URL: https://epiviz.github.io VignetteBuilder: knitr BugReports: https://github.com/epiviz/epivizrServer git_url: https://git.bioconductor.org/packages/epivizrServer git_branch: RELEASE_3_20 git_last_commit: daa642b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epivizrServer_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epivizrServer_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epivizrServer_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epivizrServer_1.34.0.tgz vignettes: vignettes/epivizrServer/inst/doc/epivizrServer.html vignetteTitles: epivizrServer Usage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE dependsOnMe: epivizrData importsMe: epivizr, epivizrChart, epivizrStandalone, scTreeViz dependencyCount: 14 Package: epivizrStandalone Version: 1.34.0 Depends: R (>= 3.2.3), epivizr (>= 2.3.6), methods Imports: git2r, epivizrServer, GenomeInfoDb, BiocGenerics, GenomicFeatures, S4Vectors Suggests: testthat, knitr, rmarkdown, OrganismDbi (>= 1.13.9), Mus.musculus, Biobase, BiocStyle License: MIT + file LICENSE MD5sum: d28db86675c8d23e2d6c19c8e7f834d2 NeedsCompilation: no Title: Run Epiviz Interactive Genomic Data Visualization App within R Description: This package imports the epiviz visualization JavaScript app for genomic data interactive visualization. The 'epivizrServer' package is used to provide a web server running completely within R. This standalone version allows to browse arbitrary genomes through genome annotations provided by Bioconductor packages. biocViews: Visualization, Infrastructure, GUI Author: Hector Corrada Bravo, Jayaram Kancherla Maintainer: Hector Corrada Bravo VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/epivizrStandalone git_branch: RELEASE_3_20 git_last_commit: 94beb58 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/epivizrStandalone_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/epivizrStandalone_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/epivizrStandalone_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/epivizrStandalone_1.34.0.tgz vignettes: vignettes/epivizrStandalone/inst/doc/EpivizrStandalone.html vignetteTitles: Introduction to epivizrStandalone hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE suggestsMe: scTreeViz dependencyCount: 126 Package: erccdashboard Version: 1.40.0 Depends: R (>= 4.0), ggplot2 (>= 2.1.0), gridExtra (>= 2.0.0) Imports: edgeR, gplots, grid, gtools, limma, locfit, MASS, plyr, qvalue, reshape2, ROCR, scales, stringr, knitr Suggests: BiocStyle, knitr, rmarkdown License: GPL (>=2) MD5sum: 937e15f505e42ce6d612dfb53423772c NeedsCompilation: no Title: Assess Differential Gene Expression Experiments with ERCC Controls Description: Technical performance metrics for differential gene expression experiments using External RNA Controls Consortium (ERCC) spike-in ratio mixtures. biocViews: ImmunoOncology, GeneExpression, Transcription, AlternativeSplicing, DifferentialExpression, DifferentialSplicing, Genetics, Microarray, mRNAMicroarray, RNASeq, BatchEffect, MultipleComparison, QualityControl Author: Sarah Munro, Steve Lund Maintainer: Sarah Munro VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/erccdashboard git_branch: RELEASE_3_20 git_last_commit: f1c8641 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/erccdashboard_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/erccdashboard_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/erccdashboard_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/erccdashboard_1.40.0.tgz vignettes: vignettes/erccdashboard/inst/doc/erccdashboard.html vignetteTitles: erccdashboard introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/erccdashboard/inst/doc/erccdashboard.R dependencyCount: 58 Package: erma Version: 1.22.0 Depends: R (>= 3.1), methods, Homo.sapiens, GenomicFiles (>= 1.5.2) Imports: rtracklayer (>= 1.38.1), S4Vectors (>= 0.23.18), BiocGenerics, GenomicRanges, SummarizedExperiment, ggplot2, GenomeInfoDb, Biobase, shiny, BiocParallel, IRanges, AnnotationDbi Suggests: rmarkdown, BiocStyle, knitr, GO.db, png, DT, doParallel License: Artistic-2.0 MD5sum: e14b464c4f13677f6bb28677bb121427 NeedsCompilation: no Title: epigenomic road map adventures Description: Software and data to support epigenomic road map adventures. Author: VJ Carey Maintainer: VJ Carey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/erma git_branch: RELEASE_3_20 git_last_commit: 543f6ff git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/erma_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/erma_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/erma_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/erma_1.22.0.tgz vignettes: vignettes/erma/inst/doc/erma.html vignetteTitles: ermaInteractive hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/erma/inst/doc/erma.R dependencyCount: 142 Package: ERSSA Version: 1.24.0 Depends: R (>= 4.0.0) Imports: edgeR (>= 3.23.3), DESeq2 (>= 1.21.16), ggplot2 (>= 3.0.0), RColorBrewer (>= 1.1-2), plyr (>= 1.8.4), BiocParallel (>= 1.15.8), apeglm (>= 1.4.2), grDevices, stats, utils Suggests: BiocStyle, knitr, rmarkdown License: GPL-3 | file LICENSE MD5sum: 4e7fad04389212d758c60234001a521d NeedsCompilation: no Title: Empirical RNA-seq Sample Size Analysis Description: The ERSSA package takes user supplied RNA-seq differential expression dataset and calculates the number of differentially expressed genes at varying biological replicate levels. This allows the user to determine, without relying on any a priori assumptions, whether sufficient differential detection has been acheived with their RNA-seq dataset. biocViews: ImmunoOncology, GeneExpression, Transcription, DifferentialExpression, RNASeq, MultipleComparison, QualityControl Author: Zixuan Shao [aut, cre] Maintainer: Zixuan Shao URL: https://github.com/zshao1/ERSSA VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ERSSA git_branch: RELEASE_3_20 git_last_commit: 193c677 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ERSSA_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ERSSA_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ERSSA_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ERSSA_1.24.0.tgz vignettes: vignettes/ERSSA/inst/doc/ERSSA.html vignetteTitles: ERSSA Package Introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ERSSA/inst/doc/ERSSA.R dependencyCount: 89 Package: esATAC Version: 1.28.0 Depends: R (>= 4.0.0), Rsamtools, GenomicRanges, ShortRead, pipeFrame Imports: Rcpp (>= 0.12.11), methods, knitr, Rbowtie2, rtracklayer, ggplot2, Biostrings, ChIPseeker, clusterProfiler, igraph, rJava, magrittr, digest, BSgenome, AnnotationDbi, GenomicAlignments, GenomicFeatures, R.utils, GenomeInfoDb, BiocGenerics, S4Vectors, IRanges, rmarkdown, tools, VennDiagram, grid, JASPAR2018, TFBSTools, grDevices, graphics, stats, utils, parallel, corrplot, BiocManager, motifmatchr LinkingTo: Rcpp Suggests: BSgenome.Hsapiens.UCSC.hg19, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, testthat, webshot, prettydoc License: GPL-3 | file LICENSE Archs: x64 MD5sum: 9a8b1fef6ff14f18a9b532b60e1cdc5c NeedsCompilation: yes Title: An Easy-to-use Systematic pipeline for ATACseq data analysis Description: This package provides a framework and complete preset pipeline for quantification and analysis of ATAC-seq Reads. It covers raw sequencing reads preprocessing (FASTQ files), reads alignment (Rbowtie2), aligned reads file operations (SAM, BAM, and BED files), peak calling (F-seq), genome annotations (Motif, GO, SNP analysis) and quality control report. The package is managed by dataflow graph. It is easy for user to pass variables seamlessly between processes and understand the workflow. Users can process FASTQ files through end-to-end preset pipeline which produces a pretty HTML report for quality control and preliminary statistical results, or customize workflow starting from any intermediate stages with esATAC functions easily and flexibly. biocViews: ImmunoOncology, Sequencing, DNASeq, QualityControl, Alignment, Preprocessing, Coverage, ATACSeq, DNaseSeq Author: Zheng Wei, Wei Zhang Maintainer: Zheng Wei URL: https://github.com/wzthu/esATAC SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/wzthu/esATAC/issues git_url: https://git.bioconductor.org/packages/esATAC git_branch: RELEASE_3_20 git_last_commit: 25abdd5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/esATAC_1.28.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/esATAC_1.28.0.tgz vignettes: vignettes/esATAC/inst/doc/esATAC-Introduction.html vignetteTitles: esATAC: an Easy-to-use Systematic pipeline for ATAC-seq data analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/esATAC/inst/doc/esATAC-Introduction.R dependencyCount: 200 Package: escape Version: 2.2.2 Depends: R (>= 4.1) Imports: AUCell, BiocParallel, grDevices, dplyr, ggdist, ggplot2, ggpointdensity, GSEABase, GSVA, SingleCellExperiment, ggridges, msigdbr, stats, reshape2, patchwork, MatrixGenerics, utils, SummarizedExperiment, UCell, stringr, methods, SeuratObject, Matrix Suggests: Seurat, hexbin, scran, knitr, rmarkdown, markdown, BiocStyle, RColorBrewer, rlang, spelling, testthat (>= 3.0.0), vdiffr License: MIT + file LICENSE MD5sum: a58caa378fda4e3ee31e4d211a05eb88 NeedsCompilation: no Title: Easy single cell analysis platform for enrichment Description: A bridging R package to facilitate gene set enrichment analysis (GSEA) in the context of single-cell RNA sequencing. Using raw count information, Seurat objects, or SingleCellExperiment format, users can perform and visualize ssGSEA, GSVA, AUCell, and UCell-based enrichment calculations across individual cells. biocViews: Software, SingleCell, Classification, Annotation, GeneSetEnrichment, Sequencing, GeneSignaling, Pathways Author: Nick Borcherding [aut, cre], Jared Andrews [aut], Alexei Martsinkovskiy [ctb] Maintainer: Nick Borcherding VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/escape git_branch: RELEASE_3_20 git_last_commit: 156d772 git_last_commit_date: 2024-11-27 Date/Publication: 2024-11-28 source.ver: src/contrib/escape_2.2.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/escape_2.2.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/escape_2.2.2.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/escape_2.2.2.tgz vignettes: vignettes/escape/inst/doc/vignette.html vignetteTitles: Escape-ingToWork hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/escape/inst/doc/vignette.R suggestsMe: Cepo dependencyCount: 173 Package: escheR Version: 1.6.0 Depends: ggplot2, R (>= 4.3) Imports: SpatialExperiment (>= 1.6.1), SingleCellExperiment, rlang, SummarizedExperiment Suggests: STexampleData, BumpyMatrix, knitr, rmarkdown, BiocStyle, ggpubr, scran, scater, scuttle, Seurat, hexbin License: MIT + file LICENSE MD5sum: 3980a08dda22b12c250f35ad9c738ce6 NeedsCompilation: no Title: Unified multi-dimensional visualizations with Gestalt principles Description: The creation of effective visualizations is a fundamental component of data analysis. In biomedical research, new challenges are emerging to visualize multi-dimensional data in a 2D space, but current data visualization tools have limited capabilities. To address this problem, we leverage Gestalt principles to improve the design and interpretability of multi-dimensional data in 2D data visualizations, layering aesthetics to display multiple variables. The proposed visualization can be applied to spatially-resolved transcriptomics data, but also broadly to data visualized in 2D space, such as embedding visualizations. We provide this open source R package escheR, which is built off of the state-of-the-art ggplot2 visualization framework and can be seamlessly integrated into genomics toolboxes and workflows. biocViews: Spatial, SingleCell, Transcriptomics, Visualization, Software Author: Boyi Guo [aut, cre] (), Stephanie C. Hicks [aut] (), Erik D. Nelson [ctb] () Maintainer: Boyi Guo URL: https://github.com/boyiguo1/escheR VignetteBuilder: knitr BugReports: https://github.com/boyiguo1/escheR/issues git_url: https://git.bioconductor.org/packages/escheR git_branch: RELEASE_3_20 git_last_commit: 70999bb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/escheR_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/escheR_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/escheR_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/escheR_1.6.0.tgz vignettes: vignettes/escheR/inst/doc/more_than_visium.html, vignettes/escheR/inst/doc/SRT_eg.html vignetteTitles: beyond_visium, Getting Start with `escheR` hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/escheR/inst/doc/more_than_visium.R, vignettes/escheR/inst/doc/SRT_eg.R importsMe: SpotSweeper suggestsMe: tpSVG dependencyCount: 87 Package: esetVis Version: 1.32.0 Imports: mpm, hexbin, Rtsne, MLP, grid, Biobase, MASS, stats, utils, grDevices, methods Suggests: ggplot2, ggvis, plotly, ggrepel, knitr, rmarkdown, ALL, hgu95av2.db, AnnotationDbi, pander, SummarizedExperiment, GO.db License: GPL-3 MD5sum: 34b45c706cd1ff67811d71c67cce0d98 NeedsCompilation: no Title: Visualizations of expressionSet Bioconductor object Description: Utility functions for visualization of expressionSet (or SummarizedExperiment) Bioconductor object, including spectral map, tsne and linear discriminant analysis. Static plot via the ggplot2 package or interactive via the ggvis or rbokeh packages are available. biocViews: Visualization, DataRepresentation, DimensionReduction, PrincipalComponent, Pathways Author: Laure Cougnaud Maintainer: Laure Cougnaud VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/esetVis git_branch: RELEASE_3_20 git_last_commit: e3637dd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/esetVis_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/esetVis_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/esetVis_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/esetVis_1.32.0.tgz vignettes: vignettes/esetVis/inst/doc/esetVis-vignette.html vignetteTitles: esetVis package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/esetVis/inst/doc/esetVis-vignette.R dependencyCount: 58 Package: eudysbiome Version: 1.36.0 Depends: R (>= 3.1.0) Imports: plyr, Rsamtools, R.utils, Biostrings License: GPL-2 MD5sum: 72f91101f718f87703e7846bb596a02a NeedsCompilation: no Title: Cartesian plot and contingency test on 16S Microbial data Description: eudysbiome a package that permits to annotate the differential genera as harmful/harmless based on their ability to contribute to host diseases (as indicated in literature) or unknown based on their ambiguous genus classification. Further, the package statistically measures the eubiotic (harmless genera increase or harmful genera decrease) or dysbiotic(harmless genera decrease or harmful genera increase) impact of a given treatment or environmental change on the (gut-intestinal, GI) microbiome in comparison to the microbiome of the reference condition. Author: Xiaoyuan Zhou, Christine Nardini Maintainer: Xiaoyuan Zhou git_url: https://git.bioconductor.org/packages/eudysbiome git_branch: RELEASE_3_20 git_last_commit: a7cdde1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/eudysbiome_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/eudysbiome_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/eudysbiome_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/eudysbiome_1.36.0.tgz vignettes: vignettes/eudysbiome/inst/doc/eudysbiome.pdf vignetteTitles: eudysbiome User Manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/eudysbiome/inst/doc/eudysbiome.R dependencyCount: 44 Package: evaluomeR Version: 1.22.0 Depends: R (>= 3.6), SummarizedExperiment, MultiAssayExperiment, cluster (>= 2.0.9), fpc (>= 2.2-3), randomForest (>= 4.6.14), flexmix (>= 2.3.15), RSKC (>= 2.4.2), sparcl (>= 1.0.4) Imports: corrplot (>= 0.84), grDevices, graphics, reshape2, ggplot2, ggdendro, plotrix, stats, matrixStats, Rdpack, MASS, class, prabclus, mclust, kableExtra, dplyr, dendextend (>= 1.16.0) Suggests: BiocStyle, knitr, rmarkdown, magrittr License: GPL-3 MD5sum: 0e266ceb6584309cbed2a0e4c5808390 NeedsCompilation: no Title: Evaluation of Bioinformatics Metrics Description: Evaluating the reliability of your own metrics and the measurements done on your own datasets by analysing the stability and goodness of the classifications of such metrics. biocViews: Clustering, Classification, FeatureExtraction Author: José Antonio Bernabé-Díaz [aut, cre], Manuel Franco [aut], Juana-María Vivo [aut], Manuel Quesada-Martínez [aut], Astrid Duque-Ramos [aut], Jesualdo Tomás Fernández-Breis [aut] Maintainer: José Antonio Bernabé-Díaz URL: https://github.com/neobernad/evaluomeR VignetteBuilder: knitr BugReports: https://github.com/neobernad/evaluomeR/issues git_url: https://git.bioconductor.org/packages/evaluomeR git_branch: RELEASE_3_20 git_last_commit: 1d4b337 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/evaluomeR_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/evaluomeR_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/evaluomeR_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/evaluomeR_1.22.0.tgz vignettes: vignettes/evaluomeR/inst/doc/manual.html vignetteTitles: Evaluation of Bioinformatics Metrics with evaluomeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/evaluomeR/inst/doc/manual.R dependencyCount: 125 Package: EventPointer Version: 3.14.0 Depends: R (>= 3.5.0), SGSeq, Matrix, SummarizedExperiment Imports: GenomicFeatures, stringr, GenomeInfoDb, igraph, MASS, nnls, limma, matrixStats, RBGL, prodlim, graph, methods, utils, stats, doParallel, foreach, affxparser, GenomicRanges, S4Vectors, IRanges, qvalue, cobs, rhdf5, BSgenome, Biostrings, glmnet, abind, iterators, lpSolve, poibin, speedglm, tximport, fgsea Suggests: knitr, rmarkdown, BiocStyle, RUnit, BiocGenerics, dplyr, kableExtra License: Artistic-2.0 MD5sum: 3a6367af008681a816461b940909bca8 NeedsCompilation: yes Title: An effective identification of alternative splicing events using junction arrays and RNA-Seq data Description: EventPointer is an R package to identify alternative splicing events that involve either simple (case-control experiment) or complex experimental designs such as time course experiments and studies including paired-samples. The algorithm can be used to analyze data from either junction arrays (Affymetrix Arrays) or sequencing data (RNA-Seq). The software returns a data.frame with the detected alternative splicing events: gene name, type of event (cassette, alternative 3',...,etc), genomic position, statistical significance and increment of the percent spliced in (Delta PSI) for all the events. The algorithm can generate a series of files to visualize the detected alternative splicing events in IGV. This eases the interpretation of results and the design of primers for standard PCR validation. biocViews: AlternativeSplicing, DifferentialSplicing, mRNAMicroarray, RNASeq, Transcription, Sequencing, TimeCourse, ImmunoOncology Author: Juan Pablo Romero [aut], Juan A. Ferrer-Bonsoms [aut, cre], Pablo Sacristan [aut], Ander Muniategui [aut], Fernando Carazo [aut], Ander Aramburu [aut], Angel Rubio [aut] Maintainer: Juan A. Ferrer-Bonsoms VignetteBuilder: knitr BugReports: https://github.com/jpromeror/EventPointer/issues git_url: https://git.bioconductor.org/packages/EventPointer git_branch: RELEASE_3_20 git_last_commit: b29b157 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EventPointer_3.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EventPointer_3.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EventPointer_3.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EventPointer_3.14.0.tgz vignettes: vignettes/EventPointer/inst/doc/EventPointer.html vignetteTitles: EventPointer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EventPointer/inst/doc/EventPointer.R dependencyCount: 149 Package: EWCE Version: 1.14.0 Depends: R (>= 4.2), RNOmni (>= 1.0) Imports: stats, utils, methods, ewceData (>= 1.7.1), dplyr, ggplot2, reshape2, limma, stringr, HGNChelper, Matrix, parallel, SingleCellExperiment, SummarizedExperiment, DelayedArray, BiocParallel, orthogene (>= 0.99.8), data.table Suggests: rworkflows, remotes, knitr, BiocStyle, rmarkdown, testthat (>= 3.0.0), readxl, memoise, markdown, sctransform, DESeq2, MAST, DelayedMatrixStats, ggdendro, scales, patchwork License: GPL-3 MD5sum: e13b2171ed0942acfd68bc0fb37d8ee0 NeedsCompilation: no Title: Expression Weighted Celltype Enrichment Description: Used to determine which cell types are enriched within gene lists. The package provides tools for testing enrichments within simple gene lists (such as human disease associated genes) and those resulting from differential expression studies. The package does not depend upon any particular Single Cell Transcriptome dataset and user defined datasets can be loaded in and used in the analyses. biocViews: GeneExpression, Transcription, DifferentialExpression, GeneSetEnrichment, Genetics, Microarray, mRNAMicroarray, OneChannel, RNASeq, BiomedicalInformatics, Proteomics, Visualization, FunctionalGenomics, SingleCell Author: Alan Murphy [cre] (), Brian Schilder [aut] (), Nathan Skene [aut] () Maintainer: Alan Murphy URL: https://github.com/NathanSkene/EWCE VignetteBuilder: knitr BugReports: https://github.com/NathanSkene/EWCE/issues git_url: https://git.bioconductor.org/packages/EWCE git_branch: RELEASE_3_20 git_last_commit: a4535e3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/EWCE_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/EWCE_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/EWCE_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/EWCE_1.14.0.tgz vignettes: vignettes/EWCE/inst/doc/EWCE.html, vignettes/EWCE/inst/doc/extended.html vignetteTitles: Getting started, Extended examples hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/EWCE/inst/doc/EWCE.R, vignettes/EWCE/inst/doc/extended.R dependencyCount: 192 Package: ExCluster Version: 1.24.0 Depends: Rsubread, GenomicRanges, rtracklayer, matrixStats, IRanges Imports: stats, methods, grDevices, graphics, utils License: GPL-3 MD5sum: 6e63697c865c6a3e6870c64c9f445c5f NeedsCompilation: no Title: ExCluster robustly detects differentially expressed exons between two conditions of RNA-seq data, requiring at least two independent biological replicates per condition Description: ExCluster flattens Ensembl and GENCODE GTF files into GFF files, which are used to count reads per non-overlapping exon bin from BAM files. This read counting is done using the function featureCounts from the package Rsubread. Library sizes are normalized across all biological replicates, and ExCluster then compares two different conditions to detect signifcantly differentially spliced genes. This process requires at least two independent biological repliates per condition, and ExCluster accepts only exactly two conditions at a time. ExCluster ultimately produces false discovery rates (FDRs) per gene, which are used to detect significance. Exon log2 fold change (log2FC) means and variances may be plotted for each significantly differentially spliced gene, which helps scientists develop hypothesis and target differential splicing events for RT-qPCR validation in the wet lab. biocViews: ImmunoOncology, DifferentialSplicing, RNASeq, Software Author: R. Matthew Tanner, William L. Stanford, and Theodore J. Perkins Maintainer: R. Matthew Tanner git_url: https://git.bioconductor.org/packages/ExCluster git_branch: RELEASE_3_20 git_last_commit: 5da526d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ExCluster_1.24.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ExCluster_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ExCluster_1.24.0.tgz vignettes: vignettes/ExCluster/inst/doc/ExCluster.pdf vignetteTitles: ExCluster Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ExCluster/inst/doc/ExCluster.R dependencyCount: 59 Package: ExiMiR Version: 2.48.0 Depends: R (>= 2.10), Biobase (>= 2.5.5), affy (>= 1.26.1), limma Imports: affyio(>= 1.13.3), Biobase(>= 2.5.5), preprocessCore(>= 1.10.0) Suggests: mirna10cdf License: GPL-2 Archs: x64 MD5sum: 1731710afbb17675530b4164c95fe599 NeedsCompilation: no Title: R functions for the normalization of Exiqon miRNA array data Description: This package contains functions for reading raw data in ImaGene TXT format obtained from Exiqon miRCURY LNA arrays, annotating them with appropriate GAL files, and normalizing them using a spike-in probe-based method. Other platforms and data formats are also supported. biocViews: Microarray, OneChannel, TwoChannel, Preprocessing, GeneExpression, Transcription Author: Sylvain Gubian , Alain Sewer , PMP SA Maintainer: Sylvain Gubian git_url: https://git.bioconductor.org/packages/ExiMiR git_branch: RELEASE_3_20 git_last_commit: 0cc3a75 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ExiMiR_2.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ExiMiR_2.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ExiMiR_2.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ExiMiR_2.48.0.tgz vignettes: vignettes/ExiMiR/inst/doc/ExiMiR-vignette.pdf vignetteTitles: Description of ExiMiR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ExiMiR/inst/doc/ExiMiR-vignette.R dependencyCount: 14 Package: ExperimentHub Version: 2.14.0 Depends: methods, BiocGenerics (>= 0.15.10), AnnotationHub (>= 3.3.6), BiocFileCache (>= 1.5.1) Imports: utils, S4Vectors, BiocManager, rappdirs Suggests: knitr, BiocStyle, rmarkdown, HubPub, GenomicAlignments Enhances: ExperimentHubData License: Artistic-2.0 MD5sum: 3608b4b40bdde65c4ed1b960412c2d47 NeedsCompilation: no Title: Client to access ExperimentHub resources Description: This package provides a client for the Bioconductor ExperimentHub web resource. ExperimentHub provides a central location where curated data from experiments, publications or training courses can be accessed. Each resource has associated metadata, tags and date of modification. The client creates and manages a local cache of files retrieved enabling quick and reproducible access. biocViews: Infrastructure, DataImport, GUI, ThirdPartyClient Author: Bioconductor Package Maintainer [cre], Martin Morgan [aut], Marc Carlson [ctb], Dan Tenenbaum [ctb], Sonali Arora [ctb], Valerie Oberchain [ctb], Kayla Morrell [ctb], Lori Shepherd [aut] Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/ExperimentHub/issues git_url: https://git.bioconductor.org/packages/ExperimentHub git_branch: RELEASE_3_20 git_last_commit: 2bac493 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ExperimentHub_2.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ExperimentHub_2.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ExperimentHub_2.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ExperimentHub_2.14.0.tgz vignettes: vignettes/ExperimentHub/inst/doc/ExperimentHub.html vignetteTitles: ExperimentHub: Access the ExperimentHub Web Service hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ExperimentHub/inst/doc/ExperimentHub.R dependsOnMe: adductomicsR, CoSIA, iSEEhub, LRcell, octad, SeqSQC, BeadSorted.Saliva.EPIC, benchmarkfdrData2019, biscuiteerData, bodymapRat, CellMapperData, clustifyrdatahub, CoSIAdata, crisprScoreData, curatedAdipoChIP, CytoMethIC, DMRcatedata, eoPredData, EpiMix.data, ewceData, FlowSorted.Blood.EPIC, FlowSorted.CordBloodCombined.450k, HDCytoData, HiContactsData, HighlyReplicatedRNASeq, HumanAffyData, mcsurvdata, MetaGxBreast, MetaGxOvarian, MetaGxPancreas, multiWGCNAdata, muscData, NanoporeRNASeq, NestLink, nullrangesData, ObMiTi, octad.db, RNAmodR.Data, scMultiome, scpdata, sesameData, SimBenchData, SpatialDatasets, spatialDmelxsim, STexampleData, tartare, TENxVisiumData, TENxXeniumData, VectraPolarisData, WeberDivechaLCdata importsMe: BiocHubsShiny, BloodGen3Module, CBNplot, coMethDMR, CTdata, DMRcate, EpiMix, epimutacions, EpipwR, epiregulon, ExperimentHubData, GSEABenchmarkeR, hpar, m6Aboost, MACSr, MatrixQCvis, methodical, methylclock, Moonlight2R, MsDataHub, orthos, PhyloProfile, signatureSearch, singleCellTK, adductData, BioImageDbs, celldex, cfToolsData, chipseqDBData, CLLmethylation, curatedMetagenomicData, curatedPCaData, curatedTBData, curatedTCGAData, depmap, DropletTestFiles, DuoClustering2018, easierData, emtdata, EpipwR.data, FieldEffectCrc, gDNAinRNAseqData, GenomicDistributionsData, HarmonizedTCGAData, HCAData, HCATonsilData, HMP16SData, HMP2Data, homosapienDEE2CellScore, imcdatasets, JohnsonKinaseData, LRcellTypeMarkers, marinerData, MerfishData, methylclockData, MethylSeqData, microbiomeDataSets, MouseAgingData, MouseGastrulationData, MouseThymusAgeing, msigdb, NxtIRFdata, orthosData, PhyloProfileData, preciseTADhub, ProteinGymR, raerdata, scaeData, scRNAseq, SFEData, signatureSearchData, SingleCellMultiModal, SingleMoleculeFootprintingData, spatialLIBD, TabulaMurisData, TabulaMurisSenisData, TENxBrainData, TENxBUSData, TENxPBMCData, tuberculosis, TumourMethData, xcoredata suggestsMe: AlphaMissenseR, ANF, AnnotationHub, bambu, Banksy, celaref, CellMapper, DESpace, dreamlet, ELMER, genomicInstability, HDF5Array, lute, mariner, missMethyl, MsBackendRawFileReader, multiWGCNA, muscat, nullranges, quantiseqr, rawDiag, rawrr, recountmethylation, SparseArray, SPOTlight, standR, TCGAbiolinks, TENxIO, Voyager, xcore, BioPlex, celarefData, curatedAdipoArray, epimutacionsData, GSE103322, GSE13015, GSE159526, GSE62944, muleaData, smokingMouse, SubcellularSpatialData, tissueTreg, TransOmicsData dependencyCount: 66 Package: ExperimentHubData Version: 1.32.0 Depends: utils, BiocGenerics (>= 0.15.10), S4Vectors, AnnotationHubData (>= 1.21.3) Imports: methods, ExperimentHub, BiocManager, DBI, httr, curl Suggests: GenomeInfoDb, RUnit, knitr, BiocStyle, rmarkdown, HubPub License: Artistic-2.0 MD5sum: cd6859088d3aa6cbeca30efde006244e NeedsCompilation: no Title: Add resources to ExperimentHub Description: Functions to add metadata to ExperimentHub db and resource files to AWS S3 buckets. biocViews: Infrastructure, DataImport, GUI, ThirdPartyClient Author: Bioconductor Maintainer [cre] Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ExperimentHubData git_branch: RELEASE_3_20 git_last_commit: 36d8474 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ExperimentHubData_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ExperimentHubData_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ExperimentHubData_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ExperimentHubData_1.32.0.tgz vignettes: vignettes/ExperimentHubData/inst/doc/ExperimentHubData.html vignetteTitles: Introduction to ExperimentHubData hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: RNAmodR.Data importsMe: methylclockData, TumourMethData suggestsMe: HubPub, MsDataHub, cfToolsData, homosapienDEE2CellScore, JohnsonKinaseData, marinerData, scMultiome, smokingMouse dependencyCount: 125 Package: ExperimentSubset Version: 1.16.0 Depends: R (>= 4.0.0), SummarizedExperiment, SingleCellExperiment, SpatialExperiment, TreeSummarizedExperiment Imports: methods, Matrix, S4Vectors Suggests: BiocStyle, knitr, rmarkdown, testthat, covr, stats, scran, scater, scds, TENxPBMCData, airway License: MIT + file LICENSE MD5sum: c44f4126bb15efbf7c758493862a1e48 NeedsCompilation: no Title: Manages subsets of data with Bioconductor Experiment objects Description: Experiment objects such as the SummarizedExperiment or SingleCellExperiment are data containers for one or more matrix-like assays along with the associated row and column data. Often only a subset of the original data is needed for down-stream analysis. For example, filtering out poor quality samples will require excluding some columns before analysis. The ExperimentSubset object is a container to efficiently manage different subsets of the same data without having to make separate objects for each new subset. biocViews: Infrastructure, Software, DataImport, DataRepresentation Author: Irzam Sarfraz [aut, cre] (), Muhammad Asif [aut, ths] (), Joshua D. Campbell [aut] () Maintainer: Irzam Sarfraz VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ExperimentSubset git_branch: RELEASE_3_20 git_last_commit: 5e03e0f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ExperimentSubset_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ExperimentSubset_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ExperimentSubset_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ExperimentSubset_1.16.0.tgz vignettes: vignettes/ExperimentSubset/inst/doc/ExperimentSubset.html vignetteTitles: An introduction to ExperimentSubset class hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ExperimentSubset/inst/doc/ExperimentSubset.R dependencyCount: 92 Package: ExploreModelMatrix Version: 1.18.0 Imports: shiny (>= 1.5.0), shinydashboard, DT, cowplot, utils, dplyr, magrittr, tidyr, ggplot2, stats, methods, rintrojs, scales, tibble, MASS, limma, S4Vectors, shinyjs Suggests: testthat (>= 2.1.0), knitr, rmarkdown, htmltools, BiocStyle License: MIT + file LICENSE MD5sum: 39297c72f297757b65253adc109a23a6 NeedsCompilation: no Title: Graphical Exploration of Design Matrices Description: Given a sample data table and a design formula, ExploreModelMatrix generates an interactive application for exploration of the resulting design matrix. This can be helpful for interpreting model coefficients and constructing appropriate contrasts in (generalized) linear models. Static visualizations can also be generated. biocViews: ExperimentalDesign, Regression, DifferentialExpression, ShinyApps Author: Charlotte Soneson [aut, cre] (), Federico Marini [aut] (), Michael Love [aut] (), Florian Geier [aut] (), Michael Stadler [aut] () Maintainer: Charlotte Soneson URL: https://github.com/csoneson/ExploreModelMatrix VignetteBuilder: knitr BugReports: https://github.com/csoneson/ExploreModelMatrix/issues git_url: https://git.bioconductor.org/packages/ExploreModelMatrix git_branch: RELEASE_3_20 git_last_commit: fb933c5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ExploreModelMatrix_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ExploreModelMatrix_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ExploreModelMatrix_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ExploreModelMatrix_1.18.0.tgz vignettes: vignettes/ExploreModelMatrix/inst/doc/EMMdeploy.html, vignettes/ExploreModelMatrix/inst/doc/ExploreModelMatrix.html vignetteTitles: ExploreModelMatrix-deploy, ExploreModelMatrix hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ExploreModelMatrix/inst/doc/EMMdeploy.R, vignettes/ExploreModelMatrix/inst/doc/ExploreModelMatrix.R dependencyCount: 87 Package: ExpressionAtlas Version: 1.34.0 Depends: R (>= 4.2.0), methods, Biobase, SummarizedExperiment, limma, S4Vectors, xml2, RCurl, jsonlite, BiocStyle Imports: utils, XML, httr Suggests: knitr, testthat, rmarkdown License: GPL (>= 3) MD5sum: ec6bb311127f2fa788c3786cdd4f1ddb NeedsCompilation: no Title: Download datasets from EMBL-EBI Expression Atlas Description: This package is for searching for datasets in EMBL-EBI Expression Atlas, and downloading them into R for further analysis. Each Expression Atlas dataset is represented as a SimpleList object with one element per platform. Sequencing data is contained in a SummarizedExperiment object, while microarray data is contained in an ExpressionSet or MAList object. biocViews: ExpressionData, ExperimentData, SequencingData, MicroarrayData, ArrayExpress Author: Maria Keays [aut] (), Pedro Madrigal [cre] () Maintainer: Pedro Madrigal VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ExpressionAtlas git_branch: RELEASE_3_20 git_last_commit: 2e0afbc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ExpressionAtlas_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ExpressionAtlas_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ExpressionAtlas_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ExpressionAtlas_1.34.0.tgz vignettes: vignettes/ExpressionAtlas/inst/doc/ExpressionAtlas.html vignetteTitles: ExpressionAtlas hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ExpressionAtlas/inst/doc/ExpressionAtlas.R suggestsMe: spatialHeatmap dependencyCount: 68 Package: extraChIPs Version: 1.10.0 Depends: BiocParallel, R (>= 4.2.0), GenomicRanges, ggplot2 (>= 3.5.0), ggside (>= 0.3.1), SummarizedExperiment, tibble Imports: BiocIO, broom, ComplexUpset, csaw, dplyr (>= 1.1.1), edgeR (>= 4.0), forcats, GenomeInfoDb, GenomicAlignments, GenomicInteractions, ggforce, ggrepel, glue, grDevices, grid, InteractionSet, IRanges, matrixStats, methods, patchwork, RColorBrewer, rlang, Rsamtools, rtracklayer, S4Vectors, scales, stats, stringr, tidyr, tidyselect, utils, vctrs, VennDiagram Suggests: apeglm, BiocStyle, covr, DESeq2, EnrichedHeatmap, Gviz, harmonicmeanp, here, knitr, limma, magrittr, plyranges, quantro, rmarkdown, testthat (>= 3.0.0), tidyverse License: GPL-3 MD5sum: 922d1c66195a54c8d0918f64196a3ab3 NeedsCompilation: yes Title: Additional functions for working with ChIP-Seq data Description: This package builds on existing tools and adds some simple but extremely useful capabilities for working wth ChIP-Seq data. The focus is on detecting differential binding windows/regions. One set of functions focusses on set-operations retaining mcols for GRanges objects, whilst another group of functions are to aid visualisation of results. Coercion to tibble objects is also implemented. biocViews: ChIPSeq, HiC, Sequencing, Coverage Author: Stevie Pederson [aut, cre] () Maintainer: Stevie Pederson URL: https://github.com/smped/extraChIPs VignetteBuilder: knitr BugReports: https://github.com/smped/extraChIPs/issues git_url: https://git.bioconductor.org/packages/extraChIPs git_branch: RELEASE_3_20 git_last_commit: 606c1fb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/extraChIPs_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/extraChIPs_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/extraChIPs_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/extraChIPs_1.10.0.tgz vignettes: vignettes/extraChIPs/inst/doc/differential_signal_fixed.html, vignettes/extraChIPs/inst/doc/differential_signal_sliding.html, vignettes/extraChIPs/inst/doc/range_based_functions.html vignetteTitles: Differential Signal Analysis (Fixed-Width Windows), Differential Signal Analysis (Sliding Windows), Range-Based Operations hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/extraChIPs/inst/doc/differential_signal_fixed.R, vignettes/extraChIPs/inst/doc/differential_signal_sliding.R, vignettes/extraChIPs/inst/doc/range_based_functions.R suggestsMe: motifTestR, transmogR dependencyCount: 177 Package: fabia Version: 2.52.0 Depends: R (>= 3.6.0), Biobase Imports: methods, graphics, grDevices, stats, utils License: LGPL (>= 2.1) MD5sum: c723d86c1d22e511ae29ad03f922be6a NeedsCompilation: yes Title: FABIA: Factor Analysis for Bicluster Acquisition Description: Biclustering by "Factor Analysis for Bicluster Acquisition" (FABIA). FABIA is a model-based technique for biclustering, that is clustering rows and columns simultaneously. Biclusters are found by factor analysis where both the factors and the loading matrix are sparse. FABIA is a multiplicative model that extracts linear dependencies between samples and feature patterns. It captures realistic non-Gaussian data distributions with heavy tails as observed in gene expression measurements. FABIA utilizes well understood model selection techniques like the EM algorithm and variational approaches and is embedded into a Bayesian framework. FABIA ranks biclusters according to their information content and separates spurious biclusters from true biclusters. The code is written in C. biocViews: StatisticalMethod, Microarray, DifferentialExpression, MultipleComparison, Clustering, Visualization Author: Sepp Hochreiter Maintainer: Andreas Mitterecker URL: http://www.bioinf.jku.at/software/fabia/fabia.html git_url: https://git.bioconductor.org/packages/fabia git_branch: RELEASE_3_20 git_last_commit: 43ea39a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fabia_2.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fabia_2.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fabia_2.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fabia_2.52.0.tgz vignettes: vignettes/fabia/inst/doc/fabia.pdf vignetteTitles: FABIA: Manual for the R package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/fabia/inst/doc/fabia.R dependsOnMe: hapFabia, RcmdrPlugin.BiclustGUI, superbiclust importsMe: miRSM, mosbi, BcDiag suggestsMe: fabiaData dependencyCount: 7 Package: factDesign Version: 1.82.0 Depends: Biobase (>= 2.5.5) Imports: stats Suggests: affy, genefilter, multtest License: LGPL Archs: x64 MD5sum: e8df9ca9d1db52d2c8180e2447bdb8c5 NeedsCompilation: no Title: Factorial designed microarray experiment analysis Description: This package provides a set of tools for analyzing data from a factorial designed microarray experiment, or any microarray experiment for which a linear model is appropriate. The functions can be used to evaluate tests of contrast of biological interest and perform single outlier detection. biocViews: Microarray, DifferentialExpression Author: Denise Scholtens Maintainer: Denise Scholtens git_url: https://git.bioconductor.org/packages/factDesign git_branch: RELEASE_3_20 git_last_commit: 6804ff1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/factDesign_1.82.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/factDesign_1.82.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/factDesign_1.82.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/factDesign_1.82.0.tgz vignettes: vignettes/factDesign/inst/doc/factDesign.pdf vignetteTitles: factDesign hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/factDesign/inst/doc/factDesign.R dependencyCount: 6 Package: factR Version: 1.8.0 Depends: R (>= 4.2) Imports: BiocGenerics (>= 0.46), Biostrings (>= 2.68), GenomeInfoDb (>= 1.36), dplyr (>= 1.1), GenomicFeatures (>= 1.52), GenomicRanges (>= 1.52), IRanges (>= 2.34), purrr (>= 1.0), rtracklayer (>= 1.60), tidyr (>= 1.3), methods (>= 4.3), BiocParallel (>= 1.34), S4Vectors (>= 0.38), data.table (>= 1.14), rlang (>= 1.1), tibble (>= 3.2), wiggleplotr (>= 1.24), RCurl (>= 1.98), XML (>= 3.99), drawProteins (>= 1.20), ggplot2 (>= 3.4), stringr (>= 1.5), pbapply (>= 1.7), stats (>= 4.3), utils (>= 4.3), graphics (>= 4.3), crayon (>= 1.5) Suggests: AnnotationHub (>= 2.22), BSgenome (>= 1.58), BSgenome.Mmusculus.UCSC.mm10, testthat, knitr, rmarkdown, markdown, zeallot, rmdformats, bio3d (>= 2.4), signalHsmm (>= 1.5), tidyverse (>= 1.3), covr, patchwork License: file LICENSE Archs: x64 MD5sum: 7398ad1642ccd6524192c11bf748a93b NeedsCompilation: no Title: Functional Annotation of Custom Transcriptomes Description: factR contain tools to process and interact with custom-assembled transcriptomes (GTF). At its core, factR constructs CDS information on custom transcripts and subsequently predicts its functional output. In addition, factR has tools capable of plotting transcripts, correcting chromosome and gene information and shortlisting new transcripts. biocViews: AlternativeSplicing, FunctionalPrediction, GenePrediction Author: Fursham Hamid [aut, cre] Maintainer: Fursham Hamid URL: https://fursham-h.github.io/factR/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/factR git_branch: RELEASE_3_20 git_last_commit: 670ac33 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/factR_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/factR_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/factR_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/factR_1.8.0.tgz vignettes: vignettes/factR/inst/doc/factR.html vignetteTitles: factR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/factR/inst/doc/factR.R dependencyCount: 117 Package: faers Version: 1.2.0 Depends: R (>= 3.5.0) Imports: BiocParallel, brio, cli, curl (>= 5.0.0), data.table, httr2 (>= 1.0.0), MCMCpack, methods, openEBGM, rlang (>= 1.1.0), rvest, tools, utils, vroom, xml2 Suggests: BiocStyle, countrycode, knitr, rmarkdown, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: 6f5b9f73f58794d713d58eb894d029cf NeedsCompilation: no Title: R interface for FDA Adverse Event Reporting System Description: The FDA Adverse Event Reporting System (FAERS) is a database used for the spontaneous reporting of adverse events and medication errors related to human drugs and therapeutic biological products. faers pacakge serves as the interface between the FAERS database and R. Furthermore, faers pacakge offers a standardized approach for performing pharmacovigilance analysis. biocViews: Software, DataImport, BiomedicalInformatics, Pharmacogenomics, Pharmacogenomics Author: Yun Peng [aut, cre] (), YuXuan Song [aut], Caipeng Qin [aut], JiaXing Lin [aut] Maintainer: Yun Peng VignetteBuilder: knitr BugReports: https://github.com/Yunuuuu/faers git_url: https://git.bioconductor.org/packages/faers git_branch: RELEASE_3_20 git_last_commit: 5389011 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/faers_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/faers_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/faers_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/faers_1.2.0.tgz vignettes: vignettes/faers/inst/doc/FAERS-Pharmacovigilance.html vignetteTitles: FAERS-Pharmacovigilance hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/faers/inst/doc/FAERS-Pharmacovigilance.R dependencyCount: 79 Package: FamAgg Version: 1.34.0 Depends: methods, kinship2, igraph Imports: gap (>= 1.1-17), Matrix, BiocGenerics, utils, survey Suggests: BiocStyle, knitr, RUnit, rmarkdown License: MIT + file LICENSE MD5sum: 1fb97ae7499d620a5b30effc29cd5fe9 NeedsCompilation: no Title: Pedigree Analysis and Familial Aggregation Description: Framework providing basic pedigree analysis and plotting utilities as well as a variety of methods to evaluate familial aggregation of traits in large pedigrees. biocViews: Genetics Author: J. Rainer, D. Taliun, C.X. Weichenberger Maintainer: Johannes Rainer URL: https://github.com/EuracBiomedicalResearch/FamAgg VignetteBuilder: knitr BugReports: https://github.com/EuracBiomedicalResearch/FamAgg/issues git_url: https://git.bioconductor.org/packages/FamAgg git_branch: RELEASE_3_20 git_last_commit: 853f123 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FamAgg_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FamAgg_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FamAgg_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FamAgg_1.34.0.tgz vignettes: vignettes/FamAgg/inst/doc/FamAgg.html vignetteTitles: Pedigree Analysis and Familial Aggregation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/FamAgg/inst/doc/FamAgg.R dependencyCount: 93 Package: famat Version: 1.16.0 Depends: R (>= 4.0) Imports: KEGGREST, mgcv, stats, BiasedUrn, dplyr, gprofiler2, rWikiPathways, reactome.db, stringr, GO.db, ontologyIndex, tidyr, shiny, shinydashboard, shinyBS, plotly, magrittr, DT, clusterProfiler, org.Hs.eg.db Suggests: BiocStyle, knitr, rmarkdown, testthat, BiocManager License: GPL-3 MD5sum: 986dd091cadc19b393396a41dfb898d3 NeedsCompilation: no Title: Functional analysis of metabolic and transcriptomic data Description: Famat is made to collect data about lists of genes and metabolites provided by user, and to visualize it through a Shiny app. Information collected is: - Pathways containing some of the user's genes and metabolites (obtained using a pathway enrichment analysis). - Direct interactions between user's elements inside pathways. - Information about elements (their identifiers and descriptions). - Go terms enrichment analysis performed on user's genes. The Shiny app is composed of: - information about genes, metabolites, and direct interactions between them inside pathways. - an heatmap showing which elements from the list are in pathways (pathways are structured in hierarchies). - hierarchies of enriched go terms using Molecular Function and Biological Process. biocViews: FunctionalPrediction, GeneSetEnrichment, Pathways, GO, Reactome, KEGG Author: Mathieu Charles [aut, cre] () Maintainer: Mathieu Charles URL: https://github.com/emiliesecherre/famat VignetteBuilder: knitr BugReports: https://github.com/emiliesecherre/famat/issues git_url: https://git.bioconductor.org/packages/famat git_branch: RELEASE_3_20 git_last_commit: d127f46 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/famat_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/famat_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/famat_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/famat_1.16.0.tgz vignettes: vignettes/famat/inst/doc/famat.html vignetteTitles: famat hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/famat/inst/doc/famat.R dependencyCount: 171 Package: fastLiquidAssociation Version: 1.42.0 Depends: methods, LiquidAssociation, parallel, doParallel, stats, Hmisc, utils Imports: WGCNA, impute, preprocessCore Suggests: GOstats, yeastCC, org.Sc.sgd.db License: GPL-2 MD5sum: 1d83122b0da29a445f44549a39efa3f4 NeedsCompilation: no Title: functions for genome-wide application of Liquid Association Description: This package extends the function of the LiquidAssociation package for genome-wide application. It integrates a screening method into the LA analysis to reduce the number of triplets to be examined for a high LA value and provides code for use in subsequent significance analyses. biocViews: Software, GeneExpression, Genetics, Pathways, CellBiology Author: Tina Gunderson Maintainer: Tina Gunderson git_url: https://git.bioconductor.org/packages/fastLiquidAssociation git_branch: RELEASE_3_20 git_last_commit: 53cf8d8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fastLiquidAssociation_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fastLiquidAssociation_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fastLiquidAssociation_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fastLiquidAssociation_1.42.0.tgz vignettes: vignettes/fastLiquidAssociation/inst/doc/fastLiquidAssociation.pdf vignetteTitles: fastLiquidAssociation Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/fastLiquidAssociation/inst/doc/fastLiquidAssociation.R dependencyCount: 124 Package: FastqCleaner Version: 1.24.0 Imports: methods, shiny, stats, IRanges, Biostrings, ShortRead, DT, S4Vectors, graphics, htmltools, shinyBS, Rcpp (>= 0.12.12) LinkingTo: Rcpp Suggests: BiocStyle, testthat, knitr, rmarkdown License: MIT + file LICENSE MD5sum: f47adc4ac67b674b457019978bbc1313 NeedsCompilation: yes Title: A Shiny Application for Quality Control, Filtering and Trimming of FASTQ Files Description: An interactive web application for quality control, filtering and trimming of FASTQ files. This user-friendly tool combines a pipeline for data processing based on Biostrings and ShortRead infrastructure, with a cutting-edge visual environment. Single-Read and Paired-End files can be locally processed. Diagnostic interactive plots (CG content, per-base sequence quality, etc.) are provided for both the input and output files. biocViews: QualityControl,Sequencing,Software,SangerSeq,SequenceMatching Author: Leandro Roser [aut, cre], Fernán Agüero [aut], Daniel Sánchez [aut] Maintainer: Leandro Roser VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/FastqCleaner git_branch: RELEASE_3_20 git_last_commit: 886d112 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FastqCleaner_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FastqCleaner_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FastqCleaner_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FastqCleaner_1.24.0.tgz vignettes: vignettes/FastqCleaner/inst/doc/Overview.html vignetteTitles: An Introduction to FastqCleaner hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/FastqCleaner/inst/doc/Overview.R dependencyCount: 100 Package: fastreeR Version: 1.10.0 Depends: R (>= 4.4) Imports: ape, data.table, dynamicTreeCut, methods, R.utils, rJava, stats, stringr, utils Suggests: BiocFileCache, BiocStyle, graphics, knitr, memuse, rmarkdown, spelling, testthat (>= 3.0.0) License: GPL-3 MD5sum: a6a0b1b9179ba80a049c4f873f216154 NeedsCompilation: no Title: Phylogenetic, Distance and Other Calculations on VCF and Fasta Files Description: Calculate distances, build phylogenetic trees or perform hierarchical clustering between the samples of a VCF or FASTA file. Functions are implemented in Java and called via rJava. Parallel implementation that operates directly on the VCF or FASTA file for fast execution. biocViews: Phylogenetics, Metagenomics, Clustering Author: Anestis Gkanogiannis [aut, cre] () Maintainer: Anestis Gkanogiannis URL: https://github.com/gkanogiannis/fastreeR, https://github.com/gkanogiannis/BioInfoJava-Utils SystemRequirements: Java (>= 8) VignetteBuilder: knitr BugReports: https://github.com/gkanogiannis/fastreeR/issues git_url: https://git.bioconductor.org/packages/fastreeR git_branch: RELEASE_3_20 git_last_commit: 219c789 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fastreeR_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fastreeR_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fastreeR_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fastreeR_1.10.0.tgz vignettes: vignettes/fastreeR/inst/doc/fastreeR_vignette.html vignetteTitles: fastreeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/fastreeR/inst/doc/fastreeR_vignette.R dependencyCount: 27 Package: fastseg Version: 1.52.0 Depends: R (>= 2.13), GenomicRanges, Biobase Imports: methods, graphics, grDevices, stats, BiocGenerics, S4Vectors, IRanges Suggests: DNAcopy, oligo, BiocStyle, knitr License: LGPL (>= 2.0) Archs: x64 MD5sum: ee2d82665f214b479c99618ff566a7eb NeedsCompilation: yes Title: fastseg - a fast segmentation algorithm Description: fastseg implements a very fast and efficient segmentation algorithm. It has similar functionality as DNACopy (Olshen and Venkatraman 2004), but is considerably faster and more flexible. fastseg can segment data from DNA microarrays and data from next generation sequencing for example to detect copy number segments. Further it can segment data from RNA microarrays like tiling arrays to identify transcripts. Most generally, it can segment data given as a matrix or as a vector. Various data formats can be used as input to fastseg like expression set objects for microarrays or GRanges for sequencing data. The segmentation criterion of fastseg is based on a statistical test in a Bayesian framework, namely the cyber t-test (Baldi 2001). The speed-up arises from the facts, that sampling is not necessary in for fastseg and that a dynamic programming approach is used for calculation of the segments' first and higher order moments. biocViews: Classification, CopyNumberVariation Author: Guenter Klambauer [aut], Sonali Kumari [ctb], Alexander Blume [cre] Maintainer: Alexander Blume URL: http://www.bioinf.jku.at/software/fastseg/index.html VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/fastseg git_branch: RELEASE_3_20 git_last_commit: ad218bf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fastseg_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fastseg_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fastseg_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fastseg_1.52.0.tgz vignettes: vignettes/fastseg/inst/doc/fastseg.html vignetteTitles: An R Package for fast segmentation hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/fastseg/inst/doc/fastseg.R importsMe: methylKit dependencyCount: 25 Package: fCCAC Version: 1.32.0 Depends: R (>= 4.2.0), S4Vectors, IRanges, GenomicRanges, grid Imports: fda, RColorBrewer, genomation, ggplot2, ComplexHeatmap, grDevices, stats, utils Suggests: RUnit, BiocGenerics, BiocStyle, knitr, rmarkdown License: Artistic-2.0 MD5sum: fdc39a1bc4364b4639d38de2066b50e9 NeedsCompilation: no Title: functional Canonical Correlation Analysis to evaluate Covariance between nucleic acid sequencing datasets Description: Computational evaluation of variability across DNA or RNA sequencing datasets is a crucial step in genomics, as it allows both to evaluate reproducibility of replicates, and to compare different datasets to identify potential correlations. fCCAC applies functional Canonical Correlation Analysis to allow the assessment of: (i) reproducibility of biological or technical replicates, analyzing their shared covariance in higher order components; and (ii) the associations between different datasets. fCCAC represents a more sophisticated approach that complements Pearson correlation of genomic coverage. biocViews: Epigenetics, Transcription, Sequencing, Coverage, ChIPSeq, FunctionalGenomics, RNASeq, ATACSeq, MNaseSeq Author: Pedro Madrigal [aut, cre] () Maintainer: Pedro Madrigal git_url: https://git.bioconductor.org/packages/fCCAC git_branch: RELEASE_3_20 git_last_commit: 8ee5fcc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fCCAC_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fCCAC_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fCCAC_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fCCAC_1.32.0.tgz vignettes: vignettes/fCCAC/inst/doc/fCCAC.pdf vignetteTitles: fCCAC Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/fCCAC/inst/doc/fCCAC.R dependencyCount: 134 Package: fCI Version: 1.36.0 Depends: R (>= 3.1),FNN, psych, gtools, zoo, rgl, grid, VennDiagram Suggests: knitr, rmarkdown, BiocStyle License: GPL (>= 2) Archs: x64 MD5sum: 78b2c630b7bbfd7653b2ba78aa7bf84b NeedsCompilation: no Title: f-divergence Cutoff Index for Differential Expression Analysis in Transcriptomics and Proteomics Description: (f-divergence Cutoff Index), is to find DEGs in the transcriptomic & proteomic data, and identify DEGs by computing the difference between the distribution of fold-changes for the control-control and remaining (non-differential) case-control gene expression ratio data. fCI provides several advantages compared to existing methods. biocViews: Proteomics Author: Shaojun Tang Maintainer: Shaojun Tang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/fCI git_branch: RELEASE_3_20 git_last_commit: 2d75697 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fCI_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fCI_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fCI_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fCI_1.36.0.tgz vignettes: vignettes/fCI/inst/doc/fCI.html vignetteTitles: fCI hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/fCI/inst/doc/fCI.R dependencyCount: 50 Package: fcScan Version: 1.20.0 Imports: stats, plyr, VariantAnnotation, SummarizedExperiment, rtracklayer, GenomicRanges, methods, IRanges, foreach, doParallel, parallel Suggests: RUnit, BiocGenerics, BiocStyle, knitr, rmarkdown License: Artistic-2.0 MD5sum: f16e62a21e927d148ab2847ce804c2a6 NeedsCompilation: no Title: fcScan for detecting clusters of coordinates with user defined options Description: This package is used to detect combination of genomic coordinates falling within a user defined window size along with user defined overlap between identified neighboring clusters. It can be used for genomic data where the clusters are built on a specific chromosome or specific strand. Clustering can be performed with a "greedy" option allowing thus the presence of additional sites within the allowed window size. biocViews: GenomeAnnotation, Clustering Author: Abdullah El-Kurdi [aut], Ghiwa khalil [aut], Georges Khazen [ctb], Pierre Khoueiry [aut, cre] Maintainer: Pierre Khoueiry Abdullah El-Kurdi VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/fcScan git_branch: RELEASE_3_20 git_last_commit: be6c200 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fcScan_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fcScan_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fcScan_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fcScan_1.20.0.tgz vignettes: vignettes/fcScan/inst/doc/fcScan_vignette.html vignetteTitles: fcScan hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/fcScan/inst/doc/fcScan_vignette.R dependencyCount: 84 Package: fdrame Version: 1.78.0 Imports: tcltk, graphics, grDevices, stats, utils License: GPL (>= 2) MD5sum: 6de56b8d555e47e22016d7db11cfd809 NeedsCompilation: yes Title: FDR adjustments of Microarray Experiments (FDR-AME) Description: This package contains two main functions. The first is fdr.ma which takes normalized expression data array, experimental design and computes adjusted p-values It returns the fdr adjusted p-values and plots, according to the methods described in (Reiner, Yekutieli and Benjamini 2002). The second, is fdr.gui() which creates a simple graphic user interface to access fdr.ma biocViews: Microarray, DifferentialExpression, MultipleComparison Author: Yoav Benjamini, Effi Kenigsberg, Anat Reiner, Daniel Yekutieli Maintainer: Effi Kenigsberg git_url: https://git.bioconductor.org/packages/fdrame git_branch: RELEASE_3_20 git_last_commit: 3eb4692 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/fdrame_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fdrame_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fdrame_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fdrame_1.78.0.tgz vignettes: vignettes/fdrame/inst/doc/fdrame.pdf vignetteTitles: Annotation Overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 5 Package: FEAST Version: 1.14.0 Depends: R (>= 4.1), mclust, BiocParallel, SummarizedExperiment Imports: SingleCellExperiment, methods, stats, utils, irlba, TSCAN, SC3, matrixStats Suggests: rmarkdown, Seurat, ggpubr, knitr, testthat (>= 3.0.0), BiocStyle License: GPL-2 MD5sum: d33e020a1f78f62b8d8a2a4372b4cd25 NeedsCompilation: yes Title: FEAture SelcTion (FEAST) for Single-cell clustering Description: Cell clustering is one of the most important and commonly performed tasks in single-cell RNA sequencing (scRNA-seq) data analysis. An important step in cell clustering is to select a subset of genes (referred to as “features”), whose expression patterns will then be used for downstream clustering. A good set of features should include the ones that distinguish different cell types, and the quality of such set could have significant impact on the clustering accuracy. FEAST is an R library for selecting most representative features before performing the core of scRNA-seq clustering. It can be used as a plug-in for the etablished clustering algorithms such as SC3, TSCAN, SHARP, SIMLR, and Seurat. The core of FEAST algorithm includes three steps: 1. consensus clustering; 2. gene-level significance inference; 3. validation of an optimized feature set. biocViews: Sequencing, SingleCell, Clustering, FeatureExtraction Author: Kenong Su [aut, cre], Hao Wu [aut] Maintainer: Kenong Su VignetteBuilder: knitr BugReports: https://github.com/suke18/FEAST/issues git_url: https://git.bioconductor.org/packages/FEAST git_branch: RELEASE_3_20 git_last_commit: 995a034 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FEAST_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FEAST_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FEAST_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FEAST_1.14.0.tgz vignettes: vignettes/FEAST/inst/doc/FEAST.html vignetteTitles: The FEAST User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/FEAST/inst/doc/FEAST.R dependencyCount: 125 Package: FeatSeekR Version: 1.6.0 Imports: pheatmap, MASS, pracma, stats, SummarizedExperiment, methods Suggests: rmarkdown, knitr, BiocStyle, DmelSGI, testthat (>= 3.0.0) License: GPL-3 Archs: x64 MD5sum: 23c49ca8d640009f029e1d88ae812f0c NeedsCompilation: no Title: FeatSeekR an R package for unsupervised feature selection Description: FeatSeekR performs unsupervised feature selection using replicated measurements. It iteratively selects features with the highest reproducibility across replicates, after projecting out those dimensions from the data that are spanned by the previously selected features. The selected a set of features has a high replicate reproducibility and a high degree of uniqueness. biocViews: Software, StatisticalMethod, FeatureExtraction, MassSpectrometry Author: Tuemay Capraz [cre, aut] () Maintainer: Tuemay Capraz URL: https://github.com/tcapraz/FeatSeekR VignetteBuilder: knitr BugReports: https://github.com/tcapraz/FeatSeekR/issues git_url: https://git.bioconductor.org/packages/FeatSeekR git_branch: RELEASE_3_20 git_last_commit: d9aaa1f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FeatSeekR_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FeatSeekR_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FeatSeekR_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FeatSeekR_1.6.0.tgz vignettes: vignettes/FeatSeekR/inst/doc/FeatSeekR-vignette.html vignetteTitles: `FeatSeekR` user guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/FeatSeekR/inst/doc/FeatSeekR-vignette.R dependencyCount: 51 Package: fedup Version: 1.14.0 Depends: R (>= 4.1) Imports: openxlsx, tibble, dplyr, data.table, ggplot2, ggthemes, forcats, RColorBrewer, RCy3, utils, stats Suggests: biomaRt, tidyr, testthat, knitr, rmarkdown, devtools, covr License: MIT + file LICENSE Archs: x64 MD5sum: 2fb7cdf5b4e1ff7c7db26097ff526ceb NeedsCompilation: no Title: Fisher's Test for Enrichment and Depletion of User-Defined Pathways Description: An R package that tests for enrichment and depletion of user-defined pathways using a Fisher's exact test. The method is designed for versatile pathway annotation formats (eg. gmt, txt, xlsx) to allow the user to run pathway analysis on custom annotations. This package is also integrated with Cytoscape to provide network-based pathway visualization that enhances the interpretability of the results. biocViews: GeneSetEnrichment, Pathways, NetworkEnrichment, Network Author: Catherine Ross [aut, cre] Maintainer: Catherine Ross URL: https://github.com/rosscm/fedup VignetteBuilder: knitr BugReports: https://github.com/rosscm/fedup/issues git_url: https://git.bioconductor.org/packages/fedup git_branch: RELEASE_3_20 git_last_commit: f3b116a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fedup_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fedup_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fedup_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fedup_1.14.0.tgz vignettes: vignettes/fedup/inst/doc/fedup_doubleTest.html, vignettes/fedup/inst/doc/fedup_mutliTest.html, vignettes/fedup/inst/doc/fedup_singleTest.html vignetteTitles: fedup_doubleTest.html, fedup_mutliTest.html, fedup_singleTest.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/fedup/inst/doc/fedup_doubleTest.R, vignettes/fedup/inst/doc/fedup_mutliTest.R, vignettes/fedup/inst/doc/fedup_singleTest.R dependencyCount: 81 Package: FELLA Version: 1.26.0 Depends: R (>= 3.5.0) Imports: methods, igraph, Matrix, KEGGREST, plyr, stats, graphics, utils Suggests: shiny, DT, magrittr, visNetwork, knitr, BiocStyle, rmarkdown, testthat, biomaRt, org.Hs.eg.db, org.Mm.eg.db, AnnotationDbi, GOSemSim License: GPL-3 MD5sum: d75553fa94f41f0c2076f9db1e28ca78 NeedsCompilation: no Title: Interpretation and enrichment for metabolomics data Description: Enrichment of metabolomics data using KEGG entries. Given a set of affected compounds, FELLA suggests affected reactions, enzymes, modules and pathways using label propagation in a knowledge model network. The resulting subnetwork can be visualised and exported. biocViews: Software, Metabolomics, GraphAndNetwork, KEGG, GO, Pathways, Network, NetworkEnrichment Author: Sergio Picart-Armada [aut, cre], Francesc Fernandez-Albert [aut], Alexandre Perera-Lluna [aut] Maintainer: Sergio Picart-Armada VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/FELLA git_branch: RELEASE_3_20 git_last_commit: f61c33f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FELLA_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FELLA_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FELLA_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FELLA_1.26.0.tgz vignettes: vignettes/FELLA/inst/doc/FELLA.pdf, vignettes/FELLA/inst/doc/musmusculus.pdf, vignettes/FELLA/inst/doc/zebrafish.pdf, vignettes/FELLA/inst/doc/quickstart.html vignetteTitles: FELLA, Example: a fatty liver study on Mus musculus, Example: oxybenzone exposition in gilt-head bream, Quick start hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/FELLA/inst/doc/FELLA.R, vignettes/FELLA/inst/doc/musmusculus.R, vignettes/FELLA/inst/doc/quickstart.R, vignettes/FELLA/inst/doc/zebrafish.R dependencyCount: 41 Package: fenr Version: 1.4.0 Depends: R (>= 4.1.0) Imports: tools, methods, assertthat, rlang, dplyr, tidyr, tidyselect, tibble, purrr, readr, stringr, httr2, rvest, progress, BiocFileCache, shiny, ggplot2 Suggests: BiocStyle, testthat, knitr, rmarkdown, topGO License: MIT + file LICENSE MD5sum: 8dabad11245207b7387522c33936103c NeedsCompilation: no Title: Fast functional enrichment for interactive applications Description: Perform fast functional enrichment on feature lists (like genes or proteins) using the hypergeometric distribution. Tailored for speed, this package is ideal for interactive platforms such as Shiny. It supports the retrieval of functional data from sources like GO, KEGG, Reactome, Bioplanet and WikiPathways. By downloading and preparing data first, it allows for rapid successive tests on various feature selections without the need for repetitive, time-consuming preparatory steps typical of other packages. biocViews: FunctionalPrediction, DifferentialExpression, GeneSetEnrichment, GO, KEGG, Reactome, Proteomics Author: Marek Gierlinski [aut, cre] () Maintainer: Marek Gierlinski URL: https://github.com/bartongroup/fenr VignetteBuilder: knitr BugReports: https://github.com/bartongroup/fenr/issues git_url: https://git.bioconductor.org/packages/fenr git_branch: RELEASE_3_20 git_last_commit: a28c4f5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fenr_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fenr_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fenr_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fenr_1.4.0.tgz vignettes: vignettes/fenr/inst/doc/fenr.html vignetteTitles: Fast functional enrichment hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/fenr/inst/doc/fenr.R dependencyCount: 93 Package: ffpe Version: 1.50.0 Depends: R (>= 2.10.0), TTR, methods Imports: Biobase, BiocGenerics, affy, lumi, methylumi, sfsmisc Suggests: genefilter, ffpeExampleData License: GPL (>2) MD5sum: 03c8fd5b65c89bd2ea1cbe61e45fda1f NeedsCompilation: no Title: Quality assessment and control for FFPE microarray expression data Description: Identify low-quality data using metrics developed for expression data derived from Formalin-Fixed, Paraffin-Embedded (FFPE) data. Also a function for making Concordance at the Top plots (CAT-plots). biocViews: Microarray, GeneExpression, QualityControl Author: Levi Waldron Maintainer: Levi Waldron git_url: https://git.bioconductor.org/packages/ffpe git_branch: RELEASE_3_20 git_last_commit: 7286cb2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ffpe_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ffpe_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ffpe_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ffpe_1.50.0.tgz vignettes: vignettes/ffpe/inst/doc/ffpe.pdf vignetteTitles: ffpe package user guide hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ffpe/inst/doc/ffpe.R dependencyCount: 170 Package: fgga Version: 1.14.0 Depends: R (>= 4.3), RBGL Imports: graph, stats, e1071, methods, gRbase, jsonlite, BiocFileCache, curl, igraph Suggests: knitr, rmarkdown, GOstats, GO.db, BiocGenerics, pROC, RUnit, BiocStyle License: GPL-3 MD5sum: 74238ec93d8563e6f4477a065b954889 NeedsCompilation: no Title: Hierarchical ensemble method based on factor graph Description: Package that implements the FGGA algorithm. This package provides a hierarchical ensemble method based ob factor graphs for the consistent cross-ontology annotation of protein coding genes. FGGA embodies elements of predicate logic, communication theory, supervised learning and inference in graphical models. biocViews: Software, StatisticalMethod, Classification, Network, NetworkInference, SupportVectorMachine, GraphAndNetwork, GO Author: Flavio Spetale [aut, cre] Maintainer: Flavio Spetale URL: https://github.com/fspetale/fgga VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/fgga git_branch: RELEASE_3_20 git_last_commit: fe9142f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fgga_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fgga_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fgga_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fgga_1.14.0.tgz vignettes: vignettes/fgga/inst/doc/fgga.html vignetteTitles: FGGA: Factor Graph GO Annotation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/fgga/inst/doc/fgga.R dependencyCount: 63 Package: FGNet Version: 3.40.0 Depends: R (>= 4.2.0) Imports: igraph (>= 0.6), hwriter, R.utils, XML, plotrix, reshape2, RColorBrewer, png, methods, stats, utils, graphics, grDevices Suggests: RCurl, gage, topGO, GO.db, reactome.db, RUnit, BiocGenerics, org.Sc.sgd.db, knitr, rmarkdown, AnnotationDbi, BiocManager License: GPL (>= 2) MD5sum: 5f52e86b12e3148c9c3b571964b8b5da NeedsCompilation: no Title: Functional Gene Networks derived from biological enrichment analyses Description: Build and visualize functional gene and term networks from clustering of enrichment analyses in multiple annotation spaces. The package includes a graphical user interface (GUI) and functions to perform the functional enrichment analysis through DAVID, GeneTerm Linker, gage (GSEA) and topGO. biocViews: Annotation, GO, Pathways, GeneSetEnrichment, Network, Visualization, FunctionalGenomics, NetworkEnrichment, Clustering Author: Sara Aibar, Celia Fontanillo, Conrad Droste and Javier De Las Rivas. Maintainer: Sara Aibar URL: http://www.cicancer.org VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/FGNet git_branch: RELEASE_3_20 git_last_commit: 7d336b7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FGNet_3.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FGNet_3.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FGNet_3.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FGNet_3.40.0.tgz vignettes: vignettes/FGNet/inst/doc/FGNet.html vignetteTitles: FGNet hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/FGNet/inst/doc/FGNet.R importsMe: IntramiRExploreR dependencyCount: 31 Package: fgsea Version: 1.32.2 Depends: R (>= 4.1) Imports: Rcpp, data.table, BiocParallel, stats, ggplot2 (>= 2.2.0), cowplot, grid, fastmatch, Matrix, scales, utils LinkingTo: Rcpp, BH Suggests: testthat, knitr, rmarkdown, reactome.db, AnnotationDbi, parallel, org.Mm.eg.db, limma, GEOquery, msigdbr, aggregation, Seurat License: MIT + file LICENCE MD5sum: ff7d3a6bf3cc8bdfea0c100fd59cec2f NeedsCompilation: yes Title: Fast Gene Set Enrichment Analysis Description: The package implements an algorithm for fast gene set enrichment analysis. Using the fast algorithm allows to make more permutations and get more fine grained p-values, which allows to use accurate stantard approaches to multiple hypothesis correction. biocViews: GeneExpression, DifferentialExpression, GeneSetEnrichment, Pathways Author: Gennady Korotkevich [aut], Vladimir Sukhov [aut], Nikolay Budin [ctb], Nikita Gusak [ctb], Zieman Mark [ctb], Alexey Sergushichev [aut, cre] Maintainer: Alexey Sergushichev URL: https://github.com/ctlab/fgsea/ VignetteBuilder: knitr BugReports: https://github.com/ctlab/fgsea/issues git_url: https://git.bioconductor.org/packages/fgsea git_branch: RELEASE_3_20 git_last_commit: 4620281 git_last_commit_date: 2024-12-19 Date/Publication: 2024-12-19 source.ver: src/contrib/fgsea_1.32.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/fgsea_1.32.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fgsea_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fgsea_1.32.0.tgz vignettes: vignettes/fgsea/inst/doc/fgsea-tutorial.html, vignettes/fgsea/inst/doc/geseca-tutorial.html vignetteTitles: Using fgsea package, Gene set co-regulation analysis tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/fgsea/inst/doc/fgsea-tutorial.R, vignettes/fgsea/inst/doc/geseca-tutorial.R dependsOnMe: gsean, metapone, PPInfer importsMe: BioNAR, CelliD, CEMiTool, clustifyr, CoGAPS, cTRAP, DeepTarget, DOSE, EventPointer, fobitools, lipidr, mCSEA, MIRit, MPAC, multiGSEA, NanoTube, nipalsMCIA, omicsViewer, pairedGSEA, pathlinkR, phantasus, piano, POMA, projectR, RegEnrich, RegionalST, signatureSearch, cinaR, DTSEA, mulea, scITD suggestsMe: Cepo, decoupleR, gatom, gCrisprTools, iSEEpathways, mdp, sparrow, SpliceWiz, ttgsea, easybio, genekitr, GeneNMF, goat, grandR, Platypus, RCPA, rliger dependencyCount: 49 Package: FilterFFPE Version: 1.16.0 Imports: foreach, doParallel, GenomicRanges, IRanges, Rsamtools, parallel, S4Vectors Suggests: BiocStyle License: LGPL-3 MD5sum: 51160456b5a170058da3be7cf01c2a02 NeedsCompilation: no Title: FFPE Artificial Chimeric Read Filter for NGS data Description: This package finds and filters artificial chimeric reads specifically generated in next-generation sequencing (NGS) process of formalin-fixed paraffin-embedded (FFPE) tissues. These artificial chimeric reads can lead to a large number of false positive structural variation (SV) calls. The required input is an indexed BAM file of a FFPE sample. biocViews: StructuralVariation, Sequencing, Alignment, QualityControl, Preprocessing Author: Lanying Wei [aut, cre] () Maintainer: Lanying Wei git_url: https://git.bioconductor.org/packages/FilterFFPE git_branch: RELEASE_3_20 git_last_commit: 09c2baa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FilterFFPE_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FilterFFPE_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FilterFFPE_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FilterFFPE_1.16.0.tgz vignettes: vignettes/FilterFFPE/inst/doc/FilterFFPE.pdf vignetteTitles: An introduction to FilterFFPE hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/FilterFFPE/inst/doc/FilterFFPE.R dependencyCount: 42 Package: findIPs Version: 1.2.0 Depends: graphics, R (>= 4.4.0) Imports: Biobase, BiocParallel, parallel, stats, SummarizedExperiment, survival, utils Suggests: BiocStyle, knitr, rmarkdown, testthat License: GPL-3 Archs: x64 MD5sum: 0868885cd07398436176fda01ce31de0 NeedsCompilation: no Title: Influential Points Detection for Feature Rankings Description: Feature rankings can be distorted by a single case in the context of high-dimensional data. The cases exerts abnormal influence on feature rankings are called influential points (IPs). The package aims at detecting IPs based on case deletion and quantifies their effects by measuring the rank changes (DOI:10.48550/arXiv.2303.10516). The package applies a novel rank comparing measure using the adaptive weights that stress the top-ranked important features and adjust the weights to ranking properties. biocViews: GeneExpression, DifferentialExpression, Regression, Survival Author: Shuo Wang [aut, cre] (), Junyan Lu [aut] Maintainer: Shuo Wang URL: https://github.com/ShuoStat/findIPs VignetteBuilder: knitr BugReports: https://github.com/ShuoStat/findIPs git_url: https://git.bioconductor.org/packages/findIPs git_branch: RELEASE_3_20 git_last_commit: 11b3394 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/findIPs_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/findIPs_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/findIPs_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/findIPs_1.2.0.tgz vignettes: vignettes/findIPs/inst/doc/findIPs.html vignetteTitles: Introduction to package findIPs hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/findIPs/inst/doc/findIPs.R dependencyCount: 48 Package: FindIT2 Version: 1.12.0 Depends: GenomicRanges, R (>= 3.5.0) Imports: withr, BiocGenerics, GenomeInfoDb, rtracklayer, S4Vectors, GenomicFeatures, dplyr, rlang, patchwork, ggplot2, BiocParallel, qvalue, stringr, utils, stats, ggrepel, tibble, tidyr, SummarizedExperiment, MultiAssayExperiment, IRanges, progress, purrr, glmnet, methods Suggests: BiocStyle, knitr, rmarkdown, sessioninfo, testthat (>= 3.0.0), TxDb.Athaliana.BioMart.plantsmart28 License: Artistic-2.0 MD5sum: 3aee2d54a0360824c1edc2be3a7c021e NeedsCompilation: no Title: find influential TF and Target based on multi-omics data Description: This package implements functions to find influential TF and target based on different input type. It have five module: Multi-peak multi-gene annotaion(mmPeakAnno module), Calculate regulation potential(calcRP module), Find influential Target based on ChIP-Seq and RNA-Seq data(Find influential Target module), Find influential TF based on different input(Find influential TF module), Calculate peak-gene or peak-peak correlation(peakGeneCor module). And there are also some other useful function like integrate different source information, calculate jaccard similarity for your TF. biocViews: Software, Annotation, ChIPSeq, ATACSeq, GeneRegulation, MultipleComparison, GeneTarget Author: Guandong Shang [aut, cre] () Maintainer: Guandong Shang URL: https://github.com/shangguandong1996/FindIT2 VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/FindIT2 git_url: https://git.bioconductor.org/packages/FindIT2 git_branch: RELEASE_3_20 git_last_commit: 1bcb4fc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FindIT2_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FindIT2_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FindIT2_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FindIT2_1.12.0.tgz vignettes: vignettes/FindIT2/inst/doc/FindIT2.html vignetteTitles: Introduction to FindIT2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/FindIT2/inst/doc/FindIT2.R dependencyCount: 121 Package: FISHalyseR Version: 1.40.0 Depends: EBImage,abind Suggests: knitr License: Artistic-2.0 MD5sum: b6fb1a67f22be6ffd631e1d69c2e5e3a NeedsCompilation: no Title: FISHalyseR a package for automated FISH quantification Description: FISHalyseR provides functionality to process and analyse digital cell culture images, in particular to quantify FISH probes within nuclei. Furthermore, it extract the spatial location of each nucleus as well as each probe enabling spatial co-localisation analysis. biocViews: CellBiology Author: Karesh Arunakirinathan , Andreas Heindl Maintainer: Karesh Arunakirinathan , Andreas Heindl VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/FISHalyseR git_branch: RELEASE_3_20 git_last_commit: 55f998b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FISHalyseR_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FISHalyseR_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FISHalyseR_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FISHalyseR_1.40.0.tgz vignettes: vignettes/FISHalyseR/inst/doc/FISHalyseR.pdf vignetteTitles: FISHAlyseR Automated fluorescence in situ hybridisation quantification in R hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/FISHalyseR/inst/doc/FISHalyseR.R dependencyCount: 45 Package: fishpond Version: 2.12.0 Imports: graphics, stats, utils, methods, abind, gtools, qvalue, S4Vectors, IRanges, SummarizedExperiment, GenomicRanges, matrixStats, svMisc, Matrix, SingleCellExperiment, jsonlite Suggests: testthat, knitr, rmarkdown, macrophage, tximeta, org.Hs.eg.db, samr, DESeq2, apeglm, tximportData, limma, ensembldb, EnsDb.Hsapiens.v86, GenomicFeatures, AnnotationDbi, pheatmap, Gviz, GenomeInfoDb, data.table License: GPL-2 MD5sum: 2a80b5aebb1d25f196c64571dac63941 NeedsCompilation: no Title: Fishpond: downstream methods and tools for expression data Description: Fishpond contains methods for differential transcript and gene expression analysis of RNA-seq data using inferential replicates for uncertainty of abundance quantification, as generated by Gibbs sampling or bootstrap sampling. Also the package contains a number of utilities for working with Salmon and Alevin quantification files. biocViews: Sequencing, RNASeq, GeneExpression, Transcription, Normalization, Regression, MultipleComparison, BatchEffect, Visualization, DifferentialExpression, DifferentialSplicing, AlternativeSplicing, SingleCell Author: Anqi Zhu [aut, ctb], Michael Love [aut, cre], Avi Srivastava [aut, ctb], Rob Patro [aut, ctb], Joseph Ibrahim [aut, ctb], Hirak Sarkar [ctb], Euphy Wu [ctb], Noor Pratap Singh [ctb], Scott Van Buren [ctb], Dongze He [ctb], Steve Lianoglou [ctb], Wes Wilson [ctb], Jeroen Gilis [ctb] Maintainer: Michael Love URL: https://thelovelab.github.io/fishpond, https://thelovelab.com/mikelove/fishpond VignetteBuilder: knitr BugReports: https://support.bioconductor.org/tag/fishpond git_url: https://git.bioconductor.org/packages/fishpond git_branch: RELEASE_3_20 git_last_commit: 10b80e1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fishpond_2.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fishpond_2.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fishpond_2.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fishpond_2.12.0.tgz vignettes: vignettes/fishpond/inst/doc/allelic.html, vignettes/fishpond/inst/doc/swish.html vignetteTitles: 2. SEESAW - Allelic expression analysis with Salmon and Swish, 1. Swish: DE analysis accounting for inferential uncertainty hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/fishpond/inst/doc/allelic.R, vignettes/fishpond/inst/doc/swish.R suggestsMe: tximeta dependencyCount: 71 Package: FitHiC Version: 1.32.0 Imports: data.table, fdrtool, grDevices, graphics, Rcpp, stats, utils LinkingTo: Rcpp Suggests: knitr, rmarkdown License: GPL (>= 2) MD5sum: f47acf05e3efbc1d9718fe0b050cbee4 NeedsCompilation: yes Title: Confidence estimation for intra-chromosomal contact maps Description: Fit-Hi-C is a tool for assigning statistical confidence estimates to intra-chromosomal contact maps produced by genome-wide genome architecture assays such as Hi-C. biocViews: DNA3DStructure, Software Author: Ferhat Ay [aut] (Python original, https://noble.gs.washington.edu/proj/fit-hi-c/), Timothy L. Bailey [aut], William S. Noble [aut], Ruyu Tan [aut, cre, trl] (R port) Maintainer: Ruyu Tan VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/FitHiC git_branch: RELEASE_3_20 git_last_commit: 2c4f0b3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FitHiC_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FitHiC_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FitHiC_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FitHiC_1.32.0.tgz vignettes: vignettes/FitHiC/inst/doc/fithic.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/FitHiC/inst/doc/fithic.R dependencyCount: 8 Package: flagme Version: 1.62.0 Depends: gcspikelite, xcms, CAMERA Imports: gplots, graphics, MASS, methods, SparseM, stats, utils License: LGPL (>= 2) MD5sum: c6d9abc07580087cde4663471c082727 NeedsCompilation: yes Title: Analysis of Metabolomics GC/MS Data Description: Fragment-level analysis of gas chromatography-massspectrometry metabolomics data. biocViews: DifferentialExpression, MassSpectrometry Author: Mark Robinson , Riccardo Romoli Maintainer: Mark Robinson , Riccardo Romoli git_url: https://git.bioconductor.org/packages/flagme git_branch: RELEASE_3_20 git_last_commit: 8706d82 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flagme_1.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flagme_1.62.0.zip vignettes: vignettes/flagme/inst/doc/flagme-knitr.pdf, vignettes/flagme/inst/doc/flagme.pdf vignetteTitles: Using flagme -- Fragment-level analysis of GC-MS-based metabolomics data, \texttt{flagme}: Fragment-level analysis of \\ GC-MS-based metabolomics data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flagme/inst/doc/flagme-knitr.R, vignettes/flagme/inst/doc/flagme.R dependencyCount: 168 Package: FLAMES Version: 2.0.2 Depends: R (>= 4.1.0) Imports: basilisk, bambu, BiocParallel, Biostrings, BiocGenerics, circlize, ComplexHeatmap, cowplot, dplyr, DropletUtils, GenomicRanges, GenomicFeatures, txdbmaker, GenomicAlignments, GenomeInfoDb, ggplot2, ggbio, grid, gridExtra, igraph, jsonlite, magrittr, Matrix, MatrixGenerics, parallel, readr, reticulate, Rsamtools, rtracklayer, RColorBrewer, SingleCellExperiment, SummarizedExperiment, SpatialExperiment, scater, scatterpie, S4Vectors, scuttle, stats, scran, stringr, tidyr, utils, withr, future, methods, tibble, tidyselect, IRanges LinkingTo: Rcpp, Rhtslib, testthat Suggests: BiocStyle, GEOquery, knitr, rmarkdown, BiocFileCache, R.utils, ShortRead, uwot, testthat (>= 3.0.0), xml2 License: GPL (>= 3) MD5sum: 169654a23c4ff538f5952294320398fa NeedsCompilation: yes Title: FLAMES: Full Length Analysis of Mutations and Splicing in long read RNA-seq data Description: Semi-supervised isoform detection and annotation from both bulk and single-cell long read RNA-seq data. Flames provides automated pipelines for analysing isoforms, as well as intermediate functions for manual execution. biocViews: RNASeq, SingleCell, Transcriptomics, DataImport, DifferentialSplicing, AlternativeSplicing, GeneExpression, LongRead Author: Luyi Tian [aut], Changqing Wang [aut, cre], Yupei You [aut], Oliver Voogd [aut], Jakob Schuster [aut], Shian Su [aut], Matthew Ritchie [ctb] Maintainer: Changqing Wang URL: https://mritchielab.github.io/FLAMES SystemRequirements: GNU make, C++17, samtools (>= 1.19), minimap2 (>= 2.17) VignetteBuilder: knitr BugReports: https://github.com/mritchielab/FLAMES/issues git_url: https://git.bioconductor.org/packages/FLAMES git_branch: RELEASE_3_20 git_last_commit: 8b0f8a9 git_last_commit_date: 2024-12-05 Date/Publication: 2024-12-09 source.ver: src/contrib/FLAMES_2.0.2.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FLAMES_2.0.2.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FLAMES_2.0.2.tgz vignettes: vignettes/FLAMES/inst/doc/FLAMES_vignette.html vignetteTitles: FLAMES hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/FLAMES/inst/doc/FLAMES_vignette.R dependencyCount: 258 Package: flowAI Version: 1.36.0 Depends: R (>= 4.3.0) Imports: ggplot2, flowCore, plyr, changepoint, knitr, reshape2, RColorBrewer, scales, methods, graphics, stats, utils, rmarkdown Suggests: testthat, shiny, BiocStyle License: GPL (>= 2) Archs: x64 MD5sum: d91a44359ec49ba9c4639ea7881e48a0 NeedsCompilation: no Title: Automatic and interactive quality control for flow cytometry data Description: The package is able to perform an automatic or interactive quality control on FCS data acquired using flow cytometry instruments. By evaluating three different properties: 1) flow rate, 2) signal acquisition, 3) dynamic range, the quality control enables the detection and removal of anomalies. biocViews: FlowCytometry, QualityControl, BiomedicalInformatics, ImmunoOncology Author: Gianni Monaco [aut], Chen Hao [ctb] Maintainer: Gianni Monaco VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/flowAI git_branch: RELEASE_3_20 git_last_commit: 2b43cb1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowAI_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowAI_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowAI_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowAI_1.36.0.tgz vignettes: vignettes/flowAI/inst/doc/flowAI.html vignetteTitles: Automatic and GUI methods to do quality control on Flow cytometry Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowAI/inst/doc/flowAI.R importsMe: CytoPipeline dependencyCount: 75 Package: flowBeads Version: 1.44.0 Depends: R (>= 2.15.0), methods, Biobase, rrcov, flowCore Imports: flowCore, rrcov, knitr, xtable Suggests: flowViz License: Artistic-2.0 Archs: x64 MD5sum: dc5401946ec5a96b9a8a8b73faa4baf9 NeedsCompilation: no Title: flowBeads: Analysis of flow bead data Description: This package extends flowCore to provide functionality specific to bead data. One of the goals of this package is to automate analysis of bead data for the purpose of normalisation. biocViews: ImmunoOncology, Infrastructure, FlowCytometry, CellBasedAssays Author: Nikolas Pontikos Maintainer: Nikolas Pontikos git_url: https://git.bioconductor.org/packages/flowBeads git_branch: RELEASE_3_20 git_last_commit: e5ff4fc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowBeads_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowBeads_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowBeads_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowBeads_1.44.0.tgz vignettes: vignettes/flowBeads/inst/doc/HowTo-flowBeads.pdf vignetteTitles: Analysis of Flow Cytometry Bead Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowBeads/inst/doc/HowTo-flowBeads.R dependencyCount: 31 Package: flowBin Version: 1.42.0 Depends: methods, flowCore, flowFP, R (>= 2.10) Imports: class, limma, snow, BiocGenerics Suggests: parallel License: Artistic-2.0 MD5sum: f05c3c067de2d922e69795ec37957999 NeedsCompilation: no Title: Combining multitube flow cytometry data by binning Description: Software to combine flow cytometry data that has been multiplexed into multiple tubes with common markers between them, by establishing common bins across tubes in terms of the common markers, then determining expression within each tube for each bin in terms of the tube-specific markers. biocViews: ImmunoOncology, CellBasedAssays, FlowCytometry Author: Kieran O'Neill Maintainer: Kieran O'Neill git_url: https://git.bioconductor.org/packages/flowBin git_branch: RELEASE_3_20 git_last_commit: 58980d6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowBin_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowBin_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowBin_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowBin_1.42.0.tgz vignettes: vignettes/flowBin/inst/doc/flowBin.pdf vignetteTitles: flowBin hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowBin/inst/doc/flowBin.R dependencyCount: 36 Package: flowcatchR Version: 1.40.0 Depends: R (>= 2.10), methods, EBImage Imports: colorRamps, abind, BiocParallel, graphics, stats, utils, plotly, shiny Suggests: BiocStyle, knitr, rmarkdown License: BSD_3_clause + file LICENSE MD5sum: e205cf7f16c865551d2ad270faacf51c NeedsCompilation: no Title: Tools to analyze in vivo microscopy imaging data focused on tracking flowing blood cells Description: flowcatchR is a set of tools to analyze in vivo microscopy imaging data, focused on tracking flowing blood cells. It guides the steps from segmentation to calculation of features, filtering out particles not of interest, providing also a set of utilities to help checking the quality of the performed operations (e.g. how good the segmentation was). It allows investigating the issue of tracking flowing cells such as in blood vessels, to categorize the particles in flowing, rolling and adherent. This classification is applied in the study of phenomena such as hemostasis and study of thrombosis development. Moreover, flowcatchR presents an integrated workflow solution, based on the integration with a Shiny App and Jupyter notebooks, which is delivered alongside the package, and can enable fully reproducible bioimage analysis in the R environment. biocViews: Software, Visualization, CellBiology, Classification, Infrastructure, GUI, ShinyApps Author: Federico Marini [aut, cre] () Maintainer: Federico Marini URL: https://github.com/federicomarini/flowcatchR, https://federicomarini.github.io/flowcatchR/ SystemRequirements: ImageMagick VignetteBuilder: knitr BugReports: https://github.com/federicomarini/flowcatchR/issues git_url: https://git.bioconductor.org/packages/flowcatchR git_branch: RELEASE_3_20 git_last_commit: 5a53959 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowcatchR_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowcatchR_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowcatchR_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowcatchR_1.40.0.tgz vignettes: vignettes/flowcatchR/inst/doc/flowcatchr_vignette.html vignetteTitles: flowcatchR: tracking and analyzing cells in time lapse microscopy images hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/flowcatchR/inst/doc/flowcatchr_vignette.R dependencyCount: 104 Package: flowCHIC Version: 1.40.0 Depends: R (>= 3.1.0) Imports: methods, flowCore, EBImage, vegan, hexbin, ggplot2, grid License: GPL-2 MD5sum: 50b1faabdbe5df483bca814fc0a3968e NeedsCompilation: no Title: Analyze flow cytometric data using histogram information Description: A package to analyze flow cytometric data of complex microbial communities based on histogram images biocViews: ImmunoOncology, CellBasedAssays, Clustering, FlowCytometry, Software, Visualization Author: Joachim Schumann , Christin Koch , Ingo Fetzer , Susann Müller Maintainer: Author: Joachim Schumann URL: http://www.ufz.de/index.php?en=16773 git_url: https://git.bioconductor.org/packages/flowCHIC git_branch: RELEASE_3_20 git_last_commit: 107cf65 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowCHIC_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowCHIC_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowCHIC_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowCHIC_1.40.0.tgz vignettes: vignettes/flowCHIC/inst/doc/flowCHICmanual.pdf vignetteTitles: Analyze flow cytometric data using histogram information hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowCHIC/inst/doc/flowCHICmanual.R dependencyCount: 83 Package: flowClean Version: 1.44.0 Depends: R (>= 2.15.0), flowCore Imports: bit, changepoint, sfsmisc Suggests: flowViz, grid, gridExtra License: Artistic-2.0 MD5sum: eee02602a4a92cfc96c356f4b2551001 NeedsCompilation: no Title: flowClean Description: A quality control tool for flow cytometry data based on compositional data analysis. biocViews: FlowCytometry, QualityControl, ImmunoOncology Author: Kipper Fletez-Brant Maintainer: Kipper Fletez-Brant git_url: https://git.bioconductor.org/packages/flowClean git_branch: RELEASE_3_20 git_last_commit: 3c5e2f4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowClean_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowClean_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowClean_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowClean_1.44.0.tgz vignettes: vignettes/flowClean/inst/doc/flowClean.pdf vignetteTitles: flowClean hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowClean/inst/doc/flowClean.R dependencyCount: 24 Package: flowClust Version: 3.44.0 Depends: R(>= 2.5.0) Imports: BiocGenerics, methods, Biobase, graph, flowCore, parallel Suggests: testthat, flowWorkspace, flowWorkspaceData, knitr, rmarkdown, openCyto, flowStats(>= 4.7.1) License: MIT MD5sum: b1190a9b07cbb7a05d2e88572a2b7523 NeedsCompilation: yes Title: Clustering for Flow Cytometry Description: Robust model-based clustering using a t-mixture model with Box-Cox transformation. Note: users should have GSL installed. Windows users: 'consult the README file available in the inst directory of the source distribution for necessary configuration instructions'. biocViews: ImmunoOncology, Clustering, Visualization, FlowCytometry Author: Raphael Gottardo, Kenneth Lo , Greg Finak Maintainer: Greg Finak , Mike Jiang SystemRequirements: GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/flowClust git_branch: RELEASE_3_20 git_last_commit: 7fe1c3c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowClust_3.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowClust_3.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowClust_3.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowClust_3.44.0.tgz vignettes: vignettes/flowClust/inst/doc/flowClust.html vignetteTitles: Robust Model-based Clustering of Flow Cytometry Data\\ The flowClust package hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowClust/inst/doc/flowClust.R importsMe: cyanoFilter, flowTrans suggestsMe: BiocGenerics, flowTime, segmenTier dependencyCount: 19 Package: flowCore Version: 2.18.0 Depends: R (>= 3.5.0) Imports: Biobase, BiocGenerics (>= 0.29.2), grDevices, graphics, methods, stats, utils, stats4, Rcpp, matrixStats, cytolib (>= 2.13.1), S4Vectors LinkingTo: cpp11, BH(>= 1.81.0.0), cytolib, RProtoBufLib Suggests: Rgraphviz, flowViz, flowStats (>= 3.43.4), testthat, flowWorkspace, flowWorkspaceData, openCyto, knitr, ggcyto, gridExtra License: Artistic-2.0 MD5sum: b411dca0e1a3795bfb137ff69c12be5c NeedsCompilation: yes Title: flowCore: Basic structures for flow cytometry data Description: Provides S4 data structures and basic functions to deal with flow cytometry data. biocViews: ImmunoOncology, Infrastructure, FlowCytometry, CellBasedAssays Author: B Ellis [aut], Perry Haaland [aut], Florian Hahne [aut], Nolwenn Le Meur [aut], Nishant Gopalakrishnan [aut], Josef Spidlen [aut], Mike Jiang [aut, cre], Greg Finak [aut], Samuel Granjeaud [ctb] Maintainer: Mike Jiang SystemRequirements: GNU make, C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/flowCore git_branch: RELEASE_3_20 git_last_commit: b94a145 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowCore_2.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowCore_2.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowCore_2.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowCore_2.18.0.tgz vignettes: vignettes/flowCore/inst/doc/HowTo-flowCore.pdf, vignettes/flowCore/inst/doc/fcs3.html, vignettes/flowCore/inst/doc/hyperlog.notice.html vignetteTitles: Basic Functions for Flow Cytometry Data, fcs3.html, hyperlog.notice.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowCore/inst/doc/HowTo-flowCore.R dependsOnMe: flowBeads, flowBin, flowClean, flowCut, flowFP, flowMatch, flowTime, flowTrans, flowViz, flowVS, ggcyto, immunoClust, infinityFlow, ncdfFlow, HDCytoData, healthyFlowData, highthroughputassays importsMe: CATALYST, cmapR, cyanoFilter, cydar, cytofQC, CytoMDS, cytoMEM, CytoML, CytoPipeline, CytoPipelineGUI, ddPCRclust, diffcyt, flowAI, flowBeads, flowCHIC, flowClust, flowDensity, flowGate, flowMeans, flowPloidy, FlowSOM, flowSpecs, flowStats, flowTrans, flowViz, flowWorkspace, GateFinder, MAPFX, MetaCyto, PeacoQC, scDataviz, scifer, Sconify, tidyFlowCore, tidytof, MuPETFlow suggestsMe: COMPASS, flowPeaks, flowPloidyData, hypergate, segmenTier dependencyCount: 16 Package: flowCut Version: 1.16.0 Depends: R (>= 3.4), flowCore Imports: flowDensity (>= 1.13.1), Cairo, e1071, grDevices, graphics, stats,methods Suggests: RUnit, BiocGenerics, knitr, markdown, rmarkdown License: Artistic-2.0 Archs: x64 MD5sum: 6f7365a1629078183175226e937235df NeedsCompilation: no Title: Automated Removal of Outlier Events and Flagging of Files Based on Time Versus Fluorescence Analysis Description: Common techinical complications such as clogging can result in spurious events and fluorescence intensity shifting, flowCut is designed to detect and remove technical artifacts from your data by removing segments that show statistical differences from other segments. biocViews: FlowCytometry, Preprocessing, QualityControl, CellBasedAssays Author: Justin Meskas [cre, aut], Sherrie Wang [aut] Maintainer: Justin Meskas VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/flowCut git_branch: RELEASE_3_20 git_last_commit: 9757866 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowCut_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowCut_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowCut_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowCut_1.16.0.tgz vignettes: vignettes/flowCut/inst/doc/flowCut.html vignetteTitles: _**flowCut**_: Precise and Accurate Automated Removal of Outlier Events and Flagging of Files Based on Time Versus Fluorescence Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowCut/inst/doc/flowCut.R dependencyCount: 98 Package: flowCyBar Version: 1.42.0 Depends: R (>= 3.0.0) Imports: gplots, vegan, methods License: GPL-2 Archs: x64 MD5sum: 1a3b177d6f50d31ac264a2ae92be1088 NeedsCompilation: no Title: Analyze flow cytometric data using gate information Description: A package to analyze flow cytometric data using gate information to follow population/community dynamics biocViews: ImmunoOncology, CellBasedAssays, Clustering, FlowCytometry, Software, Visualization Author: Joachim Schumann , Christin Koch , Susanne Günther , Ingo Fetzer , Susann Müller Maintainer: Joachim Schumann URL: http://www.ufz.de/index.php?de=16773 git_url: https://git.bioconductor.org/packages/flowCyBar git_branch: RELEASE_3_20 git_last_commit: 66b9307 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowCyBar_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowCyBar_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowCyBar_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowCyBar_1.42.0.tgz vignettes: vignettes/flowCyBar/inst/doc/flowCyBar-manual.pdf vignetteTitles: Analyze flow cytometric data using gate information hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowCyBar/inst/doc/flowCyBar-manual.R dependencyCount: 20 Package: flowDensity Version: 1.40.0 Imports: flowCore, graphics, flowViz (>= 1.42), car, polyclip, gplots, methods, stats, grDevices Suggests: knitr,rmarkdown License: Artistic-2.0 MD5sum: f8a6179a1f1db37cd7145195943ea570 NeedsCompilation: no Title: Sequential Flow Cytometry Data Gating Description: This package provides tools for automated sequential gating analogous to the manual gating strategy based on the density of the data. biocViews: Bioinformatics, FlowCytometry, CellBiology, Clustering, Cancer, FlowCytData, DataRepresentation, StemCell, DensityGating Author: Mehrnoush Malek,M. Jafar Taghiyar Maintainer: Mehrnoush Malek SystemRequirements: xml2, GNU make, C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/flowDensity git_branch: RELEASE_3_20 git_last_commit: a20a74c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowDensity_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowDensity_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowDensity_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowDensity_1.40.0.tgz hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowDensity/inst/doc/flowDensity.R importsMe: cyanoFilter, ddPCRclust, flowCut dependencyCount: 93 Package: flowFP Version: 1.64.0 Depends: R (>= 2.10), flowCore, flowViz Imports: Biobase, BiocGenerics (>= 0.1.6), graphics, grDevices, methods, stats, stats4 Suggests: RUnit License: Artistic-2.0 MD5sum: 4acdf7ed2e759488602cf4625b99f1f5 NeedsCompilation: yes Title: Fingerprinting for Flow Cytometry Description: Fingerprint generation of flow cytometry data, used to facilitate the application of machine learning and datamining tools for flow cytometry. biocViews: FlowCytometry, CellBasedAssays, Clustering, Visualization Author: Herb Holyst , Wade Rogers Maintainer: Herb Holyst , Wade Rogers git_url: https://git.bioconductor.org/packages/flowFP git_branch: RELEASE_3_20 git_last_commit: d538e5b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowFP_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowFP_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowFP_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowFP_1.64.0.tgz vignettes: vignettes/flowFP/inst/doc/flowFP_HowTo.pdf vignetteTitles: Fingerprinting for Flow Cytometry hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowFP/inst/doc/flowFP_HowTo.R dependsOnMe: flowBin importsMe: GateFinder dependencyCount: 31 Package: flowGate Version: 1.6.0 Depends: flowWorkspace (>= 4.0.6), ggcyto (>= 1.16.0), R (>= 4.2) Imports: shiny (>= 1.5.0), BiocManager (>= 1.30.10), flowCore (>= 2.0.1), dplyr (>= 1.0.0), ggplot2 (>= 3.3.2), rlang (>= 0.4.7), purrr, tibble, methods Suggests: knitr, rmarkdown, stringr, tidyverse, testthat License: MIT + file LICENSE MD5sum: 6839d6a9ee70a9095f5c78417d5e1c4a NeedsCompilation: no Title: Interactive Cytometry Gating in R Description: flowGate adds an interactive Shiny app to allow manual GUI-based gating of flow cytometry data in R. Using flowGate, you can draw 1D and 2D span/rectangle gates, quadrant gates, and polygon gates on flow cytometry data by interactively drawing the gates on a plot of your data, rather than by specifying gate coordinates. This package is especially geared toward wet-lab cytometerists looking to take advantage of R for cytometry analysis, without necessarily having a lot of R experience. biocViews: Software, WorkflowStep, FlowCytometry, Preprocessing, ImmunoOncology, DataImport Author: Andrew Wight [aut, cre], Harvey Cantor [aut, ldr] Maintainer: Andrew Wight VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/flowGate git_branch: RELEASE_3_20 git_last_commit: 439865b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowGate_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowGate_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowGate_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowGate_1.6.0.tgz vignettes: vignettes/flowGate/inst/doc/flowGate.html vignetteTitles: flowGate hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/flowGate/inst/doc/flowGate.R dependencyCount: 94 Package: flowGraph Version: 1.14.0 Depends: R (>= 4.1) Imports: effsize, furrr, future, purrr, ggiraph, ggrepel, ggplot2, igraph, Matrix, matrixStats, stats, utils, visNetwork, htmlwidgets, grDevices, methods, stringr, stringi, Rdpack, data.table (>= 1.9.5), gridExtra, Suggests: BiocStyle, dplyr, knitr, rmarkdown, testthat (>= 2.1.0) License: Artistic-2.0 Archs: x64 MD5sum: 3e0352ed9503c0f07870b7cdb680e16e NeedsCompilation: no Title: Identifying differential cell populations in flow cytometry data accounting for marker frequency Description: Identifies maximal differential cell populations in flow cytometry data taking into account dependencies between cell populations; flowGraph calculates and plots SpecEnr abundance scores given cell population cell counts. biocViews: FlowCytometry, StatisticalMethod, ImmunoOncology, Software, CellBasedAssays, Visualization Author: Alice Yue [aut, cre] Maintainer: Alice Yue URL: https://github.com/aya49/flowGraph VignetteBuilder: knitr BugReports: https://github.com/aya49/flowGraph/issues git_url: https://git.bioconductor.org/packages/flowGraph git_branch: RELEASE_3_20 git_last_commit: 7723b92 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowGraph_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowGraph_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowGraph_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowGraph_1.14.0.tgz vignettes: vignettes/flowGraph/inst/doc/flowGraph.html vignetteTitles: flowGraph hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowGraph/inst/doc/flowGraph.R dependencyCount: 82 Package: flowMatch Version: 1.42.0 Depends: R (>= 3.0.0), Rcpp (>= 0.11.0), methods, flowCore Imports: Biobase LinkingTo: Rcpp Suggests: healthyFlowData License: Artistic-2.0 MD5sum: 92ecb83b13231e14d0da52577b4d337d NeedsCompilation: yes Title: Matching and meta-clustering in flow cytometry Description: Matching cell populations and building meta-clusters and templates from a collection of FC samples. biocViews: ImmunoOncology, Clustering, FlowCytometry Author: Ariful Azad Maintainer: Ariful Azad git_url: https://git.bioconductor.org/packages/flowMatch git_branch: RELEASE_3_20 git_last_commit: 7e9a55f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowMatch_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowMatch_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowMatch_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowMatch_1.42.0.tgz vignettes: vignettes/flowMatch/inst/doc/flowMatch.pdf vignetteTitles: flowMatch: Cell population matching and meta-clustering in Flow Cytometry hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowMatch/inst/doc/flowMatch.R dependencyCount: 17 Package: flowMeans Version: 1.66.0 Depends: R (>= 2.10.0) Imports: Biobase, graphics, grDevices, methods, rrcov, stats, feature, flowCore License: Artistic-2.0 MD5sum: 8fb6fa14a8a5b2081c6c48cda14a45ff NeedsCompilation: no Title: Non-parametric Flow Cytometry Data Gating Description: Identifies cell populations in Flow Cytometry data using non-parametric clustering and segmented-regression-based change point detection. Note: R 2.11.0 or newer is required. biocViews: ImmunoOncology, FlowCytometry, CellBiology, Clustering Author: Nima Aghaeepour Maintainer: Nima Aghaeepour git_url: https://git.bioconductor.org/packages/flowMeans git_branch: RELEASE_3_20 git_last_commit: 5db41b2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowMeans_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowMeans_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowMeans_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowMeans_1.66.0.tgz vignettes: vignettes/flowMeans/inst/doc/flowMeans.pdf vignetteTitles: flowMeans: Non-parametric Flow Cytometry Data Gating hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowMeans/inst/doc/flowMeans.R importsMe: optimalFlow dependencyCount: 39 Package: flowMerge Version: 2.54.0 Depends: graph,feature,flowClust,Rgraphviz,foreach,snow Imports: rrcov,flowCore, graphics, methods, stats, utils Suggests: knitr, rmarkdown Enhances: doMC, multicore License: Artistic-2.0 Archs: x64 MD5sum: 19db512773324d4b85928cc44e5622ef NeedsCompilation: no Title: Cluster Merging for Flow Cytometry Data Description: Merging of mixture components for model-based automated gating of flow cytometry data using the flowClust framework. Note: users should have a working copy of flowClust 2.0 installed. biocViews: ImmunoOncology, Clustering, FlowCytometry Author: Greg Finak , Raphael Gottardo Maintainer: Greg Finak VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/flowMerge git_branch: RELEASE_3_20 git_last_commit: aaabf5a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowMerge_2.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowMerge_2.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowMerge_2.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowMerge_2.54.0.tgz vignettes: vignettes/flowMerge/inst/doc/flowmerge.html vignetteTitles: Merging Mixture Components for Cell Population Identification in Flow Cytometry Data The flowMerge Package. hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowMerge/inst/doc/flowmerge.R suggestsMe: segmenTier dependencyCount: 47 Package: flowPeaks Version: 1.52.0 Depends: R (>= 2.12.0) Suggests: flowCore License: Artistic-1.0 MD5sum: c4329653202e60c9d1d73f5134e36f8e NeedsCompilation: yes Title: An R package for flow data clustering Description: A fast and automatic clustering to classify the cells into subpopulations based on finding the peaks from the overall density function generated by K-means. biocViews: ImmunoOncology, FlowCytometry, Clustering, Gating Author: Yongchao Ge Maintainer: Yongchao Ge SystemRequirements: gsl git_url: https://git.bioconductor.org/packages/flowPeaks git_branch: RELEASE_3_20 git_last_commit: 2a8b9e9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowPeaks_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowPeaks_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowPeaks_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowPeaks_1.52.0.tgz vignettes: vignettes/flowPeaks/inst/doc/flowPeaks-guide.pdf vignetteTitles: Tutorial of flowPeaks package hasREADME: TRUE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowPeaks/inst/doc/flowPeaks-guide.R importsMe: ddPCRclust dependencyCount: 0 Package: flowPloidy Version: 1.32.0 Imports: flowCore, car, caTools, knitr, rmarkdown, minpack.lm, shiny, methods, graphics, stats, utils Suggests: flowPloidyData, testthat License: GPL-3 MD5sum: ab6d11a779e6a9112cd52b81ccd5f7f3 NeedsCompilation: no Title: Analyze flow cytometer data to determine sample ploidy Description: Determine sample ploidy via flow cytometry histogram analysis. Reads Flow Cytometry Standard (FCS) files via the flowCore bioconductor package, and provides functions for determining the DNA ploidy of samples based on internal standards. biocViews: FlowCytometry, GUI, Regression, Visualization Author: Tyler Smith Maintainer: Tyler Smith URL: https://github.com/plantarum/flowPloidy VignetteBuilder: knitr BugReports: https://github.com/plantarum/flowPloidy/issues git_url: https://git.bioconductor.org/packages/flowPloidy git_branch: RELEASE_3_20 git_last_commit: acd321e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowPloidy_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowPloidy_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowPloidy_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowPloidy_1.32.0.tgz vignettes: vignettes/flowPloidy/inst/doc/flowPloidy-gettingStarted.pdf, vignettes/flowPloidy/inst/doc/histogram-tour.pdf vignetteTitles: flowPloidy: Getting Started, flowPloidy: FCM Histograms hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowPloidy/inst/doc/flowPloidy-gettingStarted.R, vignettes/flowPloidy/inst/doc/histogram-tour.R dependencyCount: 111 Package: flowPlots Version: 1.54.0 Depends: R (>= 2.13.0), methods Suggests: vcd License: Artistic-2.0 Archs: x64 MD5sum: 807698c9a81aec5ad37757a55f41eee9 NeedsCompilation: no Title: flowPlots: analysis plots and data class for gated flow cytometry data Description: Graphical displays with embedded statistical tests for gated ICS flow cytometry data, and a data class which stores "stacked" data and has methods for computing summary measures on stacked data, such as marginal and polyfunctional degree data. biocViews: ImmunoOncology, FlowCytometry, CellBasedAssays, Visualization, DataRepresentation Author: N. Hawkins, S. Self Maintainer: N. Hawkins git_url: https://git.bioconductor.org/packages/flowPlots git_branch: RELEASE_3_20 git_last_commit: e274b6f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowPlots_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowPlots_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowPlots_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowPlots_1.54.0.tgz vignettes: vignettes/flowPlots/inst/doc/flowPlots.pdf vignetteTitles: Plots with Embedded Tests for Gated Flow Cytometry Data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowPlots/inst/doc/flowPlots.R dependencyCount: 1 Package: FlowSOM Version: 2.14.0 Depends: R (>= 4.0), igraph Imports: stats, utils, colorRamps, ConsensusClusterPlus, dplyr, flowCore, ggforce, ggnewscale, ggplot2, ggpubr, grDevices, magrittr, methods, rlang, Rtsne, tidyr, BiocGenerics, XML Suggests: BiocStyle, testthat, CytoML, flowWorkspace, ggrepel, scattermore, pheatmap, ggpointdensity License: GPL (>= 2) MD5sum: 77f31b52207d411114cfa91650cee894 NeedsCompilation: yes Title: Using self-organizing maps for visualization and interpretation of cytometry data Description: FlowSOM offers visualization options for cytometry data, by using Self-Organizing Map clustering and Minimal Spanning Trees. biocViews: CellBiology, FlowCytometry, Clustering, Visualization, Software, CellBasedAssays Author: Sofie Van Gassen [aut, cre], Artuur Couckuyt [aut], Katrien Quintelier [aut], Annelies Emmaneel [aut], Britt Callebaut [aut], Yvan Saeys [aut] Maintainer: Sofie Van Gassen URL: http://www.r-project.org, http://dambi.ugent.be git_url: https://git.bioconductor.org/packages/FlowSOM git_branch: RELEASE_3_20 git_last_commit: 85b1db5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FlowSOM_2.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FlowSOM_2.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FlowSOM_2.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FlowSOM_2.14.0.tgz vignettes: vignettes/FlowSOM/inst/doc/FlowSOM.pdf vignetteTitles: FlowSOM hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/FlowSOM/inst/doc/FlowSOM.R importsMe: CATALYST, diffcyt suggestsMe: tidytof, HDCytoData dependencyCount: 99 Package: flowSpecs Version: 1.20.0 Depends: R (>= 4.0) Imports: ggplot2 (>= 3.1.0), BiocGenerics (>= 0.30.0), BiocParallel (>= 1.18.1), Biobase (>= 2.48.0), reshape2 (>= 1.4.3), flowCore (>= 1.50.0), zoo (>= 1.8.6), stats (>= 3.6.0), methods (>= 3.6.0) Suggests: testthat, knitr, rmarkdown, BiocStyle, DepecheR License: MIT + file LICENSE MD5sum: 19ea4a763cdd2ad429f47472c348b87a NeedsCompilation: no Title: Tools for processing of high-dimensional cytometry data Description: This package is intended to fill the role of conventional cytometry pre-processing software, for spectral decomposition, transformation, visualization and cleanup, and to aid further downstream analyses, such as with DepecheR, by enabling transformation of flowFrames and flowSets to dataframes. Functions for flowCore-compliant automatic 1D-gating/filtering are in the pipe line. The package name has been chosen both as it will deal with spectral cytometry and as it will hopefully give the user a nice pair of spectacles through which to view their data. biocViews: Software,CellBasedAssays,DataRepresentation,ImmunoOncology, FlowCytometry,SingleCell,Visualization,Normalization,DataImport Author: Jakob Theorell [aut, cre] Maintainer: Jakob Theorell VignetteBuilder: knitr BugReports: https://github.com/jtheorell/flowSpecs/issues git_url: https://git.bioconductor.org/packages/flowSpecs git_branch: RELEASE_3_20 git_last_commit: cb25ade git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowSpecs_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowSpecs_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowSpecs_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowSpecs_1.20.0.tgz vignettes: vignettes/flowSpecs/inst/doc/flowSpecs_vinjette.html vignetteTitles: Example workflow for processing of raw spectral cytometry files hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/flowSpecs/inst/doc/flowSpecs_vinjette.R dependencyCount: 61 Package: flowStats Version: 4.18.0 Depends: R (>= 3.0.2) Imports: BiocGenerics, MASS, flowCore (>= 1.99.6), flowWorkspace, ncdfFlow(>= 2.19.5), flowViz, fda (>= 2.2.6), Biobase, methods, grDevices, graphics, stats, cluster, utils, KernSmooth, lattice, ks, RColorBrewer, rrcov, corpcor, mnormt, clue Suggests: xtable, testthat, openCyto, ggcyto, ggridges Enhances: RBGL,graph License: Artistic-2.0 Archs: x64 MD5sum: 40303230fdbecf52ebe00053c8509533 NeedsCompilation: no Title: Statistical methods for the analysis of flow cytometry data Description: Methods and functionality to analyse flow data that is beyond the basic infrastructure provided by the flowCore package. biocViews: ImmunoOncology, FlowCytometry, CellBasedAssays Author: Florian Hahne, Nishant Gopalakrishnan, Alireza Hadj Khodabakhshi, Chao-Jen Wong, Kyongryun Lee Maintainer: Greg Finak , Mike Jiang URL: http://www.github.com/RGLab/flowStats BugReports: http://www.github.com/RGLab/flowStats/issues git_url: https://git.bioconductor.org/packages/flowStats git_branch: RELEASE_3_20 git_last_commit: 5485473 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowStats_4.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowStats_4.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowStats_4.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowStats_4.18.0.tgz vignettes: vignettes/flowStats/inst/doc/GettingStartedWithFlowStats.pdf vignetteTitles: flowStats Overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowStats/inst/doc/GettingStartedWithFlowStats.R dependsOnMe: flowVS, highthroughputassays suggestsMe: cydar, flowClust, flowCore, flowTime, flowViz, ggcyto, openCyto dependencyCount: 101 Package: flowTime Version: 1.30.0 Depends: R (>= 3.4), flowCore Imports: utils, dplyr (>= 1.0.0), tibble, magrittr, plyr, rlang Suggests: knitr, rmarkdown, flowViz, ggplot2, BiocGenerics, stats, flowClust, openCyto, flowStats, ggcyto License: Artistic-2.0 MD5sum: 4cf8fa191c53e28f93497bda45dcfa88 NeedsCompilation: no Title: Annotation and analysis of biological dynamical systems using flow cytometry Description: This package facilitates analysis of both timecourse and steady state flow cytometry experiments. This package was originially developed for quantifying the function of gene regulatory networks in yeast (strain W303) expressing fluorescent reporter proteins using BD Accuri C6 and SORP cytometers. However, the functions are for the most part general and may be adapted for analysis of other organisms using other flow cytometers. Functions in this package facilitate the annotation of flow cytometry data with experimental metadata, as often required for publication and general ease-of-reuse. Functions for creating, saving and loading gate sets are also included. In the past, we have typically generated summary statistics for each flowset for each timepoint and then annotated and analyzed these summary statistics. This method loses a great deal of the power that comes from the large amounts of individual cell data generated in flow cytometry, by essentially collapsing this data into a bulk measurement after subsetting. In addition to these summary functions, this package also contains functions to facilitate annotation and analysis of steady-state or time-lapse data utilizing all of the data collected from the thousands of individual cells in each sample. biocViews: FlowCytometry, TimeCourse, Visualization, DataImport, CellBasedAssays, ImmunoOncology Author: R. Clay Wright [aut, cre], Nick Bolten [aut], Edith Pierre-Jerome [aut] Maintainer: R. Clay Wright VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/flowTime git_branch: RELEASE_3_20 git_last_commit: e3d1768 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowTime_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowTime_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowTime_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowTime_1.30.0.tgz vignettes: vignettes/flowTime/inst/doc/gating-vignette.html, vignettes/flowTime/inst/doc/steady-state-vignette.html, vignettes/flowTime/inst/doc/time-course-vignette.html vignetteTitles: Yeast gating, Steady-state analysis of flow cytometry data, Time course analysis of flow cytometry data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowTime/inst/doc/gating-vignette.R, vignettes/flowTime/inst/doc/steady-state-vignette.R, vignettes/flowTime/inst/doc/time-course-vignette.R dependencyCount: 34 Package: flowTrans Version: 1.58.0 Depends: R (>= 2.11.0), flowCore, flowViz,flowClust Imports: flowCore, methods, flowViz, stats, flowClust License: Artistic-2.0 MD5sum: 514414edb07e7be8c6528334b4742cda NeedsCompilation: no Title: Parameter Optimization for Flow Cytometry Data Transformation Description: Profile maximum likelihood estimation of parameters for flow cytometry data transformations. biocViews: ImmunoOncology, FlowCytometry Author: Greg Finak , Juan Manuel-Perez , Raphael Gottardo Maintainer: Greg Finak git_url: https://git.bioconductor.org/packages/flowTrans git_branch: RELEASE_3_20 git_last_commit: e22bea2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowTrans_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowTrans_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowTrans_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowTrans_1.58.0.tgz vignettes: vignettes/flowTrans/inst/doc/flowTrans.pdf vignetteTitles: flowTrans package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowTrans/inst/doc/flowTrans.R dependencyCount: 34 Package: flowViz Version: 1.70.0 Depends: R (>= 2.7.0), flowCore(>= 1.41.9), lattice Imports: stats4, Biobase, flowCore, graphics, grDevices, grid, KernSmooth, lattice, latticeExtra, MASS, methods, RColorBrewer, stats, utils, hexbin,IDPmisc Suggests: colorspace, flowStats, knitr, rmarkdown, markdown, testthat License: Artistic-2.0 MD5sum: 5a244ca03b2106555274d5dab9d19d41 NeedsCompilation: no Title: Visualization for flow cytometry Description: Provides visualization tools for flow cytometry data. biocViews: ImmunoOncology, Infrastructure, FlowCytometry, CellBasedAssays, Visualization Author: B. Ellis, R. Gentleman, F. Hahne, N. Le Meur, D. Sarkar, M. Jiang Maintainer: Mike Jiang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/flowViz git_branch: RELEASE_3_20 git_last_commit: 2a5634b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowViz_1.70.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowViz_1.70.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowViz_1.70.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowViz_1.70.0.tgz vignettes: vignettes/flowViz/inst/doc/filters.html vignetteTitles: Visualizing Gates with Flow Cytometry Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowViz/inst/doc/filters.R dependsOnMe: flowFP, flowVS importsMe: flowDensity, flowStats, flowTrans suggestsMe: flowBeads, flowClean, flowCore, flowTime, ggcyto dependencyCount: 30 Package: flowVS Version: 1.38.0 Depends: R (>= 3.2), methods, flowCore, flowViz, flowStats Suggests: knitr, vsn, License: Artistic-2.0 MD5sum: dcad670495d2a289eadf70ce8367f928 NeedsCompilation: no Title: Variance stabilization in flow cytometry (and microarrays) Description: Per-channel variance stabilization from a collection of flow cytometry samples by Bertlett test for homogeneity of variances. The approach is applicable to microarrays data as well. biocViews: ImmunoOncology, FlowCytometry, CellBasedAssays, Microarray Author: Ariful Azad Maintainer: Ariful Azad VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/flowVS git_branch: RELEASE_3_20 git_last_commit: 17faffd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowVS_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowVS_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowVS_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowVS_1.38.0.tgz vignettes: vignettes/flowVS/inst/doc/flowVS.pdf vignetteTitles: flowVS: Cell population matching and meta-clustering in Flow Cytometry hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/flowVS/inst/doc/flowVS.R dependencyCount: 102 Package: flowWorkspace Version: 4.18.0 Depends: R (>= 3.5.0) Imports: Biobase, BiocGenerics, cytolib (>= 2.13.1), XML, ggplot2, graph, graphics, grDevices, methods, stats, stats4, utils, RBGL, tools, Rgraphviz, data.table, dplyr, scales(>= 1.3.0), matrixStats, RProtoBufLib, flowCore(>= 2.1.1), ncdfFlow(>= 2.25.4), DelayedArray, S4Vectors LinkingTo: cpp11, BH(>= 1.62.0-1), RProtoBufLib(>= 1.99.4), cytolib (>= 2.3.7),Rhdf5lib Suggests: testthat, flowWorkspaceData (>= 2.23.2), knitr, rmarkdown, ggcyto, parallel, CytoML, openCyto License: AGPL-3.0-only License_restricts_use: no MD5sum: 6c2010307be1f1484a32a9d09a4752b3 NeedsCompilation: yes Title: Infrastructure for representing and interacting with gated and ungated cytometry data sets. Description: This package is designed to facilitate comparison of automated gating methods against manual gating done in flowJo. This package allows you to import basic flowJo workspaces into BioConductor and replicate the gating from flowJo using the flowCore functionality. Gating hierarchies, groups of samples, compensation, and transformation are performed so that the output matches the flowJo analysis. biocViews: ImmunoOncology, FlowCytometry, DataImport, Preprocessing, DataRepresentation Author: Greg Finak, Mike Jiang Maintainer: Greg Finak , Mike Jiang SystemRequirements: GNU make, C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/flowWorkspace git_branch: RELEASE_3_20 git_last_commit: 58cdf1d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/flowWorkspace_4.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/flowWorkspace_4.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/flowWorkspace_4.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/flowWorkspace_4.18.0.tgz vignettes: vignettes/flowWorkspace/inst/doc/flowWorkspace-Introduction.html, vignettes/flowWorkspace/inst/doc/HowToMergeGatingSet.html vignetteTitles: flowWorkspace Introduction: A Package to store and maninpulate gated flow data, How to merge GatingSets hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: TRUE Rfiles: vignettes/flowWorkspace/inst/doc/flowWorkspace-Introduction.R, vignettes/flowWorkspace/inst/doc/HowToMergeGatingSet.R dependsOnMe: flowGate, ggcyto, highthroughputassays importsMe: CytoML, flowStats, PeacoQC suggestsMe: CATALYST, COMPASS, flowClust, flowCore, FlowSOM linksToMe: CytoML dependencyCount: 66 Package: fmcsR Version: 1.48.0 Depends: R (>= 2.10.0), ChemmineR, methods Imports: RUnit, methods, ChemmineR, BiocGenerics, parallel Suggests: BiocStyle, knitr, knitcitations, knitrBootstrap,rmarkdown, codetools License: Artistic-2.0 MD5sum: 3f2343f3b7a3f5e98c2c46020dd4794b NeedsCompilation: yes Title: Mismatch Tolerant Maximum Common Substructure Searching Description: The fmcsR package introduces an efficient maximum common substructure (MCS) algorithms combined with a novel matching strategy that allows for atom and/or bond mismatches in the substructures shared among two small molecules. The resulting flexible MCSs (FMCSs) are often larger than strict MCSs, resulting in the identification of more common features in their source structures, as well as a higher sensitivity in finding compounds with weak structural similarities. The fmcsR package provides several utilities to use the FMCS algorithm for pairwise compound comparisons, structure similarity searching and clustering. biocViews: Cheminformatics, BiomedicalInformatics, Pharmacogenetics, Pharmacogenomics, MicrotitrePlateAssay, CellBasedAssays, Visualization, Infrastructure, DataImport, Clustering, Proteomics, Metabolomics Author: Yan Wang, Tyler Backman, Kevin Horan, Thomas Girke Maintainer: Thomas Girke URL: https://github.com/girke-lab/fmcsR VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/fmcsR git_branch: RELEASE_3_20 git_last_commit: e74e4ed git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fmcsR_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fmcsR_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fmcsR_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fmcsR_1.48.0.tgz vignettes: vignettes/fmcsR/inst/doc/fmcsR.html vignetteTitles: fmcsR hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/fmcsR/inst/doc/fmcsR.R importsMe: chemodiv suggestsMe: ChemmineR, xnet dependencyCount: 78 Package: fmrs Version: 1.16.0 Depends: R (>= 4.3.0) Imports: methods, survival, stats Suggests: BiocGenerics, testthat, knitr, utils License: GPL-3 Archs: x64 MD5sum: f0f16341a2b953039012da537bba3d6c NeedsCompilation: yes Title: Variable Selection in Finite Mixture of AFT Regression and FMR Models Description: The package obtains parameter estimation, i.e., maximum likelihood estimators (MLE), via the Expectation-Maximization (EM) algorithm for the Finite Mixture of Regression (FMR) models with Normal distribution, and MLE for the Finite Mixture of Accelerated Failure Time Regression (FMAFTR) subject to right censoring with Log-Normal and Weibull distributions via the EM algorithm and the Newton-Raphson algorithm (for Weibull distribution). More importantly, the package obtains the maximum penalized likelihood (MPLE) for both FMR and FMAFTR models (collectively called FMRs). A component-wise tuning parameter selection based on a component-wise BIC is implemented in the package. Furthermore, this package provides Ridge Regression and Elastic Net. biocViews: Survival, Regression, DimensionReduction Author: Farhad Shokoohi [aut, cre] () Maintainer: Farhad Shokoohi VignetteBuilder: knitr BugReports: https://github.com/shokoohi/fmrs/issues git_url: https://git.bioconductor.org/packages/fmrs git_branch: RELEASE_3_20 git_last_commit: 2e192f4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fmrs_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fmrs_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fmrs_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fmrs_1.16.0.tgz vignettes: vignettes/fmrs/inst/doc/usingfmrs.html vignetteTitles: Using fmrs package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/fmrs/inst/doc/usingfmrs.R importsMe: HhP dependencyCount: 10 Package: fobitools Version: 1.14.0 Depends: R (>= 4.1) Imports: clisymbols, crayon, dplyr, fgsea, ggplot2, ggraph, magrittr, ontologyIndex, purrr, RecordLinkage, stringr, textclean, tictoc, tidygraph, tidyr, vroom Suggests: BiocStyle, covr, ggrepel, kableExtra, knitr, metabolomicsWorkbenchR, POMA, rmarkdown, rvest, SummarizedExperiment, testthat (>= 2.3.2), tidyverse License: GPL-3 Archs: x64 MD5sum: a1bfbea449a5e6fdfb29e5847eeb07f8 NeedsCompilation: no Title: Tools for Manipulating the FOBI Ontology Description: A set of tools for interacting with the Food-Biomarker Ontology (FOBI). A collection of basic manipulation tools for biological significance analysis, graphs, and text mining strategies for annotating nutritional data. biocViews: MassSpectrometry, Metabolomics, Software, Visualization, BiomedicalInformatics, GraphAndNetwork, Annotation, Cheminformatics, Pathways, GeneSetEnrichment Author: Pol Castellano-Escuder [aut, cre] (), Alex Sánchez-Pla [aut] () Maintainer: Pol Castellano-Escuder URL: https://github.com/pcastellanoescuder/fobitools/ VignetteBuilder: knitr BugReports: https://github.com/pcastellanoescuder/fobitools/issues git_url: https://git.bioconductor.org/packages/fobitools git_branch: RELEASE_3_20 git_last_commit: 4e8eee6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/fobitools_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/fobitools_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/fobitools_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/fobitools_1.14.0.tgz vignettes: vignettes/fobitools/inst/doc/Dietary_data_annotation.html, vignettes/fobitools/inst/doc/food_enrichment_analysis.html, vignettes/fobitools/inst/doc/MW_ST000291_enrichment.html, vignettes/fobitools/inst/doc/MW_ST000629_enrichment.html vignetteTitles: Dietary text annotation, Simple food ORA, Use case ST000291, Use case ST000629 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/fobitools/inst/doc/Dietary_data_annotation.R, vignettes/fobitools/inst/doc/food_enrichment_analysis.R, vignettes/fobitools/inst/doc/MW_ST000291_enrichment.R, vignettes/fobitools/inst/doc/MW_ST000629_enrichment.R dependencyCount: 126 Package: FRASER Version: 2.2.0 Depends: BiocParallel, data.table, Rsamtools, SummarizedExperiment Imports: AnnotationDbi, BBmisc, Biobase, BiocGenerics, biomaRt, BSgenome, cowplot, DelayedArray (>= 0.5.11), DelayedMatrixStats, extraDistr, generics, GenomeInfoDb, GenomicAlignments, GenomicFeatures, GenomicRanges, IRanges, grDevices, ggplot2, ggrepel, HDF5Array, matrixStats, methods, OUTRIDER, pcaMethods, pheatmap, plotly, PRROC, RColorBrewer, rhdf5, Rsubread, R.utils, S4Vectors, stats, tibble, tools, utils, VGAM LinkingTo: RcppArmadillo, Rcpp Suggests: magick, BiocStyle, knitr, rmarkdown, testthat, covr, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, rtracklayer, SGSeq, ggbio, biovizBase License: MIT + file LICENSE Archs: x64 MD5sum: 4c5df0ae54e1b564d4c1b886a125ee58 NeedsCompilation: yes Title: Find RAre Splicing Events in RNA-Seq Data Description: Detection of rare aberrant splicing events in transcriptome profiles. Read count ratio expectations are modeled by an autoencoder to control for confounding factors in the data. Given these expectations, the ratios are assumed to follow a beta-binomial distribution with a junction specific dispersion. Outlier events are then identified as read-count ratios that deviate significantly from this distribution. FRASER is able to detect alternative splicing, but also intron retention. The package aims to support diagnostics in the field of rare diseases where RNA-seq is performed to identify aberrant splicing defects. biocViews: RNASeq, AlternativeSplicing, Sequencing, Software, Genetics, Coverage Author: Christian Mertes [aut, cre] (), Ines Scheller [aut] (), Karoline Lutz [ctb], Vicente Yepez [aut] (), Julien Gagneur [aut] () Maintainer: Christian Mertes URL: https://github.com/gagneurlab/FRASER VignetteBuilder: knitr BugReports: https://github.com/gagneurlab/FRASER/issues git_url: https://git.bioconductor.org/packages/FRASER git_branch: RELEASE_3_20 git_last_commit: 755c216 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FRASER_2.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FRASER_2.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FRASER_2.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FRASER_2.2.0.tgz vignettes: vignettes/FRASER/inst/doc/FRASER.pdf vignetteTitles: FRASER: Find RAre Splicing Events in RNA-seq Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/FRASER/inst/doc/FRASER.R dependencyCount: 186 Package: frenchFISH Version: 1.18.0 Imports: utils, MCMCpack, NHPoisson Suggests: knitr, rmarkdown, testthat License: Artistic-2.0 MD5sum: 21e4686d1b7f0ed6819c9f862aec2c78 NeedsCompilation: no Title: Poisson Models for Quantifying DNA Copy-number from FISH Images of Tissue Sections Description: FrenchFISH comprises a nuclear volume correction method coupled with two types of Poisson models: either a Poisson model for improved manual spot counting without the need for control probes; or a homogenous Poisson Point Process model for automated spot counting. biocViews: Software, BiomedicalInformatics, CellBiology, Genetics, HiddenMarkovModel, Preprocessing Author: Adam Berman, Geoff Macintyre Maintainer: Adam Berman VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/frenchFISH git_branch: RELEASE_3_20 git_last_commit: 065ea7f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/frenchFISH_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/frenchFISH_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/frenchFISH_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/frenchFISH_1.18.0.tgz vignettes: vignettes/frenchFISH/inst/doc/frenchFISH.html vignetteTitles: Correcting FISH probe counts with frenchFISH hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/frenchFISH/inst/doc/frenchFISH.R dependencyCount: 74 Package: FRGEpistasis Version: 1.42.0 Depends: R (>= 2.15), MASS, fda, methods, stats Imports: utils License: GPL-2 Archs: x64 MD5sum: 490532f8cee43117ff346a5cab8209cb NeedsCompilation: no Title: Epistasis Analysis for Quantitative Traits by Functional Regression Model Description: A Tool for Epistasis Analysis Based on Functional Regression Model biocViews: Genetics, NetworkInference, GeneticVariability, Software Author: Futao Zhang Maintainer: Futao Zhang git_url: https://git.bioconductor.org/packages/FRGEpistasis git_branch: RELEASE_3_20 git_last_commit: f8f8d29 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FRGEpistasis_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FRGEpistasis_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FRGEpistasis_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FRGEpistasis_1.42.0.tgz vignettes: vignettes/FRGEpistasis/inst/doc/FRGEpistasis.pdf vignetteTitles: FRGEpistasis: A Tool for Epistasis Analysis Based on Functional Regression Model hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/FRGEpistasis/inst/doc/FRGEpistasis.R dependencyCount: 55 Package: frma Version: 1.58.0 Depends: R (>= 2.10.0), Biobase (>= 2.6.0) Imports: Biobase, MASS, DBI, affy, methods, oligo, oligoClasses, preprocessCore, utils, BiocGenerics Suggests: hgu133afrmavecs, frmaExampleData License: GPL (>= 2) MD5sum: 102ea012249dc8c3bc37e6d37b4f5d2e NeedsCompilation: no Title: Frozen RMA and Barcode Description: Preprocessing and analysis for single microarrays and microarray batches. biocViews: Software, Microarray, Preprocessing Author: Matthew N. McCall , Rafael A. Irizarry , with contributions from Terry Therneau Maintainer: Matthew N. McCall URL: http://bioconductor.org git_url: https://git.bioconductor.org/packages/frma git_branch: RELEASE_3_20 git_last_commit: 8d26896 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/frma_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/frma_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/frma_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/frma_1.58.0.tgz vignettes: vignettes/frma/inst/doc/frma.pdf vignetteTitles: frma: Preprocessing for single arrays and array batches hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/frma/inst/doc/frma.R importsMe: ChIPXpress, rat2302frmavecs, DeSousa2013 suggestsMe: frmaTools, ath1121501frmavecs, antiProfilesData dependencyCount: 66 Package: frmaTools Version: 1.58.0 Depends: R (>= 2.10.0), affy Imports: Biobase, DBI, methods, preprocessCore, stats, utils Suggests: oligo, pd.huex.1.0.st.v2, pd.hugene.1.0.st.v1, frma, affyPLM, hgu133aprobe, hgu133atagprobe, hgu133plus2probe, hgu133acdf, hgu133atagcdf, hgu133plus2cdf, hgu133afrmavecs, frmaExampleData License: GPL (>= 2) MD5sum: e8d187a2f6dab22515c8c8e152ae1ff3 NeedsCompilation: no Title: Frozen RMA Tools Description: Tools for advanced use of the frma package. biocViews: Software, Microarray, Preprocessing Author: Matthew N. McCall , Rafael A. Irizarry Maintainer: Matthew N. McCall URL: http://bioconductor.org git_url: https://git.bioconductor.org/packages/frmaTools git_branch: RELEASE_3_20 git_last_commit: 63a4b14 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/frmaTools_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/frmaTools_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/frmaTools_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/frmaTools_1.58.0.tgz vignettes: vignettes/frmaTools/inst/doc/frmaTools.pdf vignetteTitles: frmaTools: Create packages containing the vectors used by frma. hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/frmaTools/inst/doc/frmaTools.R importsMe: DeSousa2013 dependencyCount: 13 Package: funOmics Version: 1.0.0 Depends: R (>= 4.4.0), NMF Imports: NMF, pathifier, stats, KEGGREST, AnnotationDbi, org.Hs.eg.db, dplyr, stringr Suggests: knitr, rmarkdown, testthat (>= 3.0.0), MultiAssayExperiment, SummarizedExperiment, airway License: MIT + file LICENSE MD5sum: 6867595da227797a2b908224aad5fbc2 NeedsCompilation: no Title: Aggregating Omics Data into Higher-Level Functional Representations Description: The 'funOmics' package ggregates or summarizes omics data into higher level functional representations such as GO terms gene sets or KEGG metabolic pathways. The aggregated data matrix represents functional activity scores that facilitate the analysis of functional molecular sets while allowing to reduce dimensionality and provide easier and faster biological interpretations. Coordinated functional activity scores can be as informative as single molecules! biocViews: Software, Transcriptomics, Metabolomics, Proteomics, Pathways, GO, KEGG Author: Elisa Gomez de Lope [aut, cre] (), Enrico Glaab [ctb] () Maintainer: Elisa Gomez de Lope URL: https://github.com/elisagdelope/funomics VignetteBuilder: knitr BugReports: https://github.com/elisagdelope/funomics/issues git_url: https://git.bioconductor.org/packages/funOmics git_branch: RELEASE_3_20 git_last_commit: 5b3aeff git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/funOmics_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/funOmics_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/funOmics_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/funOmics_1.0.0.tgz vignettes: vignettes/funOmics/inst/doc/funomics_vignette.html vignetteTitles: funOmics hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/funOmics/inst/doc/funomics_vignette.R dependencyCount: 93 Package: funtooNorm Version: 1.30.0 Depends: R(>= 3.4) Imports: pls, matrixStats, minfi, methods, IlluminaHumanMethylation450kmanifest, IlluminaHumanMethylation450kanno.ilmn12.hg19, GenomeInfoDb, grDevices, graphics, stats Suggests: prettydoc, minfiData, knitr, rmarkdown License: GPL-3 MD5sum: ff2b3bc8feb6504131ef20038bce3f22 NeedsCompilation: no Title: Normalization Procedure for Infinium HumanMethylation450 BeadChip Kit Description: Provides a function to normalize Illumina Infinium Human Methylation 450 BeadChip (Illumina 450K), correcting for tissue and/or cell type. biocViews: DNAMethylation, Preprocessing, Normalization Author: Celia Greenwood ,Stepan Grinek , Maxime Turgeon , Kathleen Klein Maintainer: Kathleen Klein VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/funtooNorm git_branch: RELEASE_3_20 git_last_commit: aaa108d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/funtooNorm_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/funtooNorm_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/funtooNorm_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/funtooNorm_1.30.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 148 Package: FuseSOM Version: 1.8.0 Depends: R (>= 4.2.0) Imports: psych, FCPS, analogue, coop, pheatmap, ggplotify, fastcluster, fpc, ggplot2, stringr, ggpubr, proxy, cluster, diptest, methods, SummarizedExperiment, stats, S4Vectors LinkingTo: Rcpp Suggests: knitr, BiocStyle, rmarkdown, SingleCellExperiment License: GPL-2 MD5sum: c3ce10f4ae9e1beeb75462de27e8c7ae NeedsCompilation: yes Title: A Correlation Based Multiview Self Organizing Maps Clustering For IMC Datasets Description: A correlation-based multiview self-organizing map for the characterization of cell types in highly multiplexed in situ imaging cytometry assays (`FuseSOM`) is a tool for unsupervised clustering. `FuseSOM` is robust and achieves high accuracy by combining a `Self Organizing Map` architecture and a `Multiview` integration of correlation based metrics. This allows FuseSOM to cluster highly multiplexed in situ imaging cytometry assays. biocViews: SingleCell, CellBasedAssays, Clustering, Spatial Author: Elijah Willie [aut, cre] Maintainer: Elijah Willie VignetteBuilder: knitr BugReports: https://github.com/ecool50/FuseSOM/issues git_url: https://git.bioconductor.org/packages/FuseSOM git_branch: RELEASE_3_20 git_last_commit: 787eb18 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/FuseSOM_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/FuseSOM_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/FuseSOM_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/FuseSOM_1.8.0.tgz vignettes: vignettes/FuseSOM/inst/doc/Introduction.html vignetteTitles: FuseSOM package manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/FuseSOM/inst/doc/Introduction.R suggestsMe: spicyWorkflow dependencyCount: 138 Package: GA4GHclient Version: 1.30.0 Depends: R (>= 3.5.0), S4Vectors Imports: BiocGenerics, Biostrings, dplyr, GenomeInfoDb, GenomicRanges, httr, IRanges, jsonlite, methods, VariantAnnotation Suggests: AnnotationDbi, BiocStyle, DT, knitr, org.Hs.eg.db, rmarkdown, testthat, TxDb.Hsapiens.UCSC.hg19.knownGene License: GPL (>= 2) MD5sum: 3de0274ec327a93066b76d5d9f2dc0e8 NeedsCompilation: no Title: A Bioconductor package for accessing GA4GH API data servers Description: GA4GHclient provides an easy way to access public data servers through Global Alliance for Genomics and Health (GA4GH) genomics API. It provides low-level access to GA4GH API and translates response data into Bioconductor-based class objects. biocViews: DataRepresentation, ThirdPartyClient Author: Welliton Souza [aut, cre], Benilton Carvalho [ctb], Cristiane Rocha [ctb] Maintainer: Welliton Souza URL: https://github.com/labbcb/GA4GHclient VignetteBuilder: knitr BugReports: https://github.com/labbcb/GA4GHclient/issues git_url: https://git.bioconductor.org/packages/GA4GHclient git_branch: RELEASE_3_20 git_last_commit: 6955fc5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GA4GHclient_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GA4GHclient_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GA4GHclient_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GA4GHclient_1.30.0.tgz vignettes: vignettes/GA4GHclient/inst/doc/GA4GHclient.html vignetteTitles: GA4GHclient hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GA4GHclient/inst/doc/GA4GHclient.R dependsOnMe: GA4GHshiny dependencyCount: 88 Package: GA4GHshiny Version: 1.28.0 Depends: GA4GHclient Imports: AnnotationDbi, BiocGenerics, dplyr, DT, GenomeInfoDb, openxlsx, GenomicFeatures, methods, purrr, S4Vectors, shiny, shinyjs, tidyr, shinythemes Suggests: BiocStyle, org.Hs.eg.db, knitr, rmarkdown, testthat, TxDb.Hsapiens.UCSC.hg19.knownGene License: GPL-3 Archs: x64 MD5sum: 4b034c674d3a0c0ed0756bfb0f8b2829 NeedsCompilation: no Title: Shiny application for interacting with GA4GH-based data servers Description: GA4GHshiny package provides an easy way to interact with data servers based on Global Alliance for Genomics and Health (GA4GH) genomics API through a Shiny application. It also integrates with Beacon Network. biocViews: GUI Author: Welliton Souza [aut, cre], Benilton Carvalho [ctb], Cristiane Rocha [ctb], Elizabeth Borgognoni [ctb] Maintainer: Welliton Souza URL: https://github.com/labbcb/GA4GHshiny VignetteBuilder: knitr BugReports: https://github.com/labbcb/GA4GHshiny/issues git_url: https://git.bioconductor.org/packages/GA4GHshiny git_branch: RELEASE_3_20 git_last_commit: adb44a0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GA4GHshiny_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GA4GHshiny_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GA4GHshiny_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GA4GHshiny_1.28.0.tgz vignettes: vignettes/GA4GHshiny/inst/doc/GA4GHshiny.html vignetteTitles: GA4GHshiny hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GA4GHshiny/inst/doc/GA4GHshiny.R dependencyCount: 124 Package: gaga Version: 2.52.0 Depends: R (>= 2.8.0), Biobase, coda, EBarrays, mgcv Enhances: parallel License: GPL (>= 2) MD5sum: 6daf11229cf54709ab828ea07e7a1874 NeedsCompilation: yes Title: GaGa hierarchical model for high-throughput data analysis Description: Implements the GaGa model for high-throughput data analysis, including differential expression analysis, supervised gene clustering and classification. Additionally, it performs sequential sample size calculations using the GaGa and LNNGV models (the latter from EBarrays package). biocViews: ImmunoOncology, OneChannel, MassSpectrometry, MultipleComparison, DifferentialExpression, Classification Author: David Rossell . Maintainer: David Rossell git_url: https://git.bioconductor.org/packages/gaga git_branch: RELEASE_3_20 git_last_commit: 753fbbb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gaga_2.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gaga_2.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gaga_2.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gaga_2.52.0.tgz vignettes: vignettes/gaga/inst/doc/gagamanual.pdf vignetteTitles: Manual for the gaga library hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gaga/inst/doc/gagamanual.R importsMe: casper dependencyCount: 16 Package: gage Version: 2.56.0 Depends: R (>= 3.5.0) Imports: graph, KEGGREST, AnnotationDbi, GO.db Suggests: pathview, gageData, org.Hs.eg.db, hgu133a.db, GSEABase, Rsamtools, GenomicAlignments, TxDb.Hsapiens.UCSC.hg19.knownGene, DESeq2, edgeR, limma License: GPL (>=2.0) MD5sum: b911a6e61d639d7b20accdfd00600806 NeedsCompilation: no Title: Generally Applicable Gene-set Enrichment for Pathway Analysis Description: GAGE is a published method for gene set (enrichment or GSEA) or pathway analysis. GAGE is generally applicable independent of microarray or RNA-Seq data attributes including sample sizes, experimental designs, assay platforms, and other types of heterogeneity, and consistently achieves superior performance over other frequently used methods. In gage package, we provide functions for basic GAGE analysis, result processing and presentation. We have also built pipeline routines for of multiple GAGE analyses in a batch, comparison between parallel analyses, and combined analysis of heterogeneous data from different sources/studies. In addition, we provide demo microarray data and commonly used gene set data based on KEGG pathways and GO terms. These funtions and data are also useful for gene set analysis using other methods. biocViews: Pathways, GO, DifferentialExpression, Microarray, OneChannel, TwoChannel, RNASeq, Genetics, MultipleComparison, GeneSetEnrichment, GeneExpression, SystemsBiology, Sequencing Author: Weijun Luo Maintainer: Weijun Luo URL: https://github.com/datapplab/gage, http://www.biomedcentral.com/1471-2105/10/161 git_url: https://git.bioconductor.org/packages/gage git_branch: RELEASE_3_20 git_last_commit: 04d50ac git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gage_2.56.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gage_2.56.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gage_2.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gage_2.56.0.tgz vignettes: vignettes/gage/inst/doc/dataPrep.pdf, vignettes/gage/inst/doc/gage.pdf, vignettes/gage/inst/doc/RNA-seqWorkflow.pdf vignetteTitles: Gene set and data preparation, Generally Applicable Gene-set/Pathway Analysis, RNA-Seq Data Pathway and Gene-set Analysis Workflows hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gage/inst/doc/dataPrep.R, vignettes/gage/inst/doc/gage.R, vignettes/gage/inst/doc/RNA-seqWorkflow.R dependsOnMe: EGSEA suggestsMe: FGNet, pathview, SBGNview, gageData dependencyCount: 47 Package: GAprediction Version: 1.32.0 Depends: R (>= 3.3) Imports: glmnet, stats, utils, Matrix Suggests: knitr, rmarkdown License: GPL (>=2) Archs: x64 MD5sum: fdeeff05707a2548faf9b7059e96c076 NeedsCompilation: no Title: Prediction of gestational age with Illumina HumanMethylation450 data Description: [GAprediction] predicts gestational age using Illumina HumanMethylation450 CpG data. biocViews: ImmunoOncology, DNAMethylation, Epigenetics, Regression, BiomedicalInformatics Author: Jon Bohlin Maintainer: Jon Bohlin VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GAprediction git_branch: RELEASE_3_20 git_last_commit: 2aa96a7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GAprediction_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GAprediction_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GAprediction_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GAprediction_1.32.0.tgz vignettes: vignettes/GAprediction/inst/doc/GAprediction.html vignetteTitles: GAprediction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GAprediction/inst/doc/GAprediction.R dependencyCount: 17 Package: garfield Version: 1.34.0 Suggests: knitr License: GPL-3 MD5sum: 5ed9866ae0522a9c2741de17f6f42da2 NeedsCompilation: yes Title: GWAS Analysis of Regulatory or Functional Information Enrichment with LD correction Description: GARFIELD is a non-parametric functional enrichment analysis approach described in the paper GARFIELD: GWAS analysis of regulatory or functional information enrichment with LD correction. Briefly, it is a method that leverages GWAS findings with regulatory or functional annotations (primarily from ENCODE and Roadmap epigenomics data) to find features relevant to a phenotype of interest. It performs greedy pruning of GWAS SNPs (LD r2 > 0.1) and then annotates them based on functional information overlap. Next, it quantifies Fold Enrichment (FE) at various GWAS significance cutoffs and assesses them by permutation testing, while matching for minor allele frequency, distance to nearest transcription start site and number of LD proxies (r2 > 0.8). biocViews: Software, StatisticalMethod, Annotation, FunctionalPrediction, GenomeAnnotation Author: Sandro Morganella Maintainer: Valentina Iotchkova VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/garfield git_branch: RELEASE_3_20 git_last_commit: c8f3627 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/garfield_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/garfield_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/garfield_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/garfield_1.34.0.tgz vignettes: vignettes/garfield/inst/doc/vignette.pdf vignetteTitles: garfield Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 0 Package: GARS Version: 1.26.0 Depends: R (>= 3.5), ggplot2, cluster Imports: DaMiRseq, MLSeq, stats, methods, SummarizedExperiment Suggests: BiocStyle, knitr, testthat License: GPL (>= 2) MD5sum: d0bc85304436facb815d3ee3cc5c3f0b NeedsCompilation: no Title: GARS: Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and challenging datasets Description: Feature selection aims to identify and remove redundant, irrelevant and noisy variables from high-dimensional datasets. Selecting informative features affects the subsequent classification and regression analyses by improving their overall performances. Several methods have been proposed to perform feature selection: most of them relies on univariate statistics, correlation, entropy measurements or the usage of backward/forward regressions. Herein, we propose an efficient, robust and fast method that adopts stochastic optimization approaches for high-dimensional. GARS is an innovative implementation of a genetic algorithm that selects robust features in high-dimensional and challenging datasets. biocViews: Classification, FeatureExtraction, Clustering Author: Mattia Chiesa , Luca Piacentini Maintainer: Mattia Chiesa VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GARS git_branch: RELEASE_3_20 git_last_commit: 47b45ab git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GARS_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GARS_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GARS_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GARS_1.26.0.tgz vignettes: vignettes/GARS/inst/doc/GARS.pdf vignetteTitles: GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and challenging datasets hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GARS/inst/doc/GARS.R dependencyCount: 269 Package: GateFinder Version: 1.26.0 Imports: splancs, mvoutlier, methods, stats, diptest, flowCore, flowFP Suggests: RUnit, BiocGenerics License: Artistic-2.0 Archs: x64 MD5sum: 7ded8c08a5b2f23aae8bb9328c11668a NeedsCompilation: no Title: Projection-based Gating Strategy Optimization for Flow and Mass Cytometry Description: Given a vector of cluster memberships for a cell population, identifies a sequence of gates (polygon filters on 2D scatter plots) for isolation of that cell type. biocViews: ImmunoOncology, FlowCytometry, CellBiology, Clustering Author: Nima Aghaeepour , Erin F. Simonds Maintainer: Nima Aghaeepour git_url: https://git.bioconductor.org/packages/GateFinder git_branch: RELEASE_3_20 git_last_commit: 1cc0da0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GateFinder_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GateFinder_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GateFinder_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GateFinder_1.26.0.tgz vignettes: vignettes/GateFinder/inst/doc/GateFinder.pdf vignetteTitles: GateFinder hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GateFinder/inst/doc/GateFinder.R dependencyCount: 39 Package: gatom Version: 1.4.0 Depends: R (>= 4.3.0) Imports: data.table, igraph, BioNet, plyr, methods, XML, sna, intergraph, network, GGally, grid, ggplot2, mwcsr, pryr, htmlwidgets, htmltools, shinyCyJS (>= 1.0.0) Suggests: testthat, knitr, rmarkdown, KEGGREST, AnnotationDbi, org.Mm.eg.db, reactome.db, fgsea, readr, BiocStyle, R.utils License: MIT + file LICENCE MD5sum: 53c7f36266f15eca255e6c6ef3c83cc1 NeedsCompilation: no Title: Finding an Active Metabolic Module in Atom Transition Network Description: This package implements a metabolic network analysis pipeline to identify an active metabolic module based on high throughput data. The pipeline takes as input transcriptional and/or metabolic data and finds a metabolic subnetwork (module) most regulated between the two conditions of interest. The package further provides functions for module post-processing, annotation and visualization. biocViews: GeneExpression, DifferentialExpression, Pathways, Network Author: Anastasiia Gainullina [aut], Mariia Emelianova [aut], Alexey Sergushichev [aut, cre] Maintainer: Alexey Sergushichev URL: https://github.com/ctlab/gatom/ VignetteBuilder: knitr BugReports: https://github.com/ctlab/gatom/issues git_url: https://git.bioconductor.org/packages/gatom git_branch: RELEASE_3_20 git_last_commit: 1d197db git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gatom_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gatom_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gatom_1.3.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gatom_1.4.0.tgz vignettes: vignettes/gatom/inst/doc/gatom-tutorial.html vignetteTitles: Using gatom package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gatom/inst/doc/gatom-tutorial.R dependencyCount: 119 Package: GBScleanR Version: 2.0.2 Depends: SeqArray Imports: stats, utils, methods, ggplot2, tidyr, expm, Rcpp, RcppParallel, gdsfmt LinkingTo: Rcpp, RcppParallel Suggests: BiocStyle, testthat (>= 3.0.0), knitr, rmarkdown License: GPL-3 + file LICENSE MD5sum: 5d2b0379d1feb8d5326fdd8de9041407 NeedsCompilation: yes Title: Error correction tool for noisy genotyping by sequencing (GBS) data Description: GBScleanR is a package for quality check, filtering, and error correction of genotype data derived from next generation sequcener (NGS) based genotyping platforms. GBScleanR takes Variant Call Format (VCF) file as input. The main function of this package is `estGeno()` which estimates the true genotypes of samples from given read counts for genotype markers using a hidden Markov model with incorporating uneven observation ratio of allelic reads. This implementation gives robust genotype estimation even in noisy genotype data usually observed in Genotyping-By-Sequnencing (GBS) and similar methods, e.g. RADseq. The current implementation accepts genotype data of a diploid population at any generation of multi-parental cross, e.g. biparental F2 from inbred parents, biparental F2 from outbred parents, and 8-way recombinant inbred lines (8-way RILs) which can be refered to as MAGIC population. biocViews: GeneticVariability, SNP, Genetics, HiddenMarkovModel, Sequencing, QualityControl Author: Tomoyuki Furuta [aut, cre] () Maintainer: Tomoyuki Furuta URL: https://github.com/tomoyukif/GBScleanR SystemRequirements: GNU make, C++11 VignetteBuilder: knitr BugReports: https://github.com/tomoyukif/GBScleanR/issues git_url: https://git.bioconductor.org/packages/GBScleanR git_branch: RELEASE_3_20 git_last_commit: c18bfaa git_last_commit_date: 2024-10-31 Date/Publication: 2024-11-01 source.ver: src/contrib/GBScleanR_2.0.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/GBScleanR_2.0.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GBScleanR_2.0.2.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GBScleanR_2.0.2.tgz vignettes: vignettes/GBScleanR/inst/doc/BasicUsageOfGBScleanR.html vignetteTitles: BasicUsageOfGBScleanR.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GBScleanR/inst/doc/BasicUsageOfGBScleanR.R dependencyCount: 69 Package: gcapc Version: 1.30.0 Depends: R (>= 3.4) Imports: BiocGenerics, GenomeInfoDb, S4Vectors, IRanges, Biostrings, BSgenome, GenomicRanges, Rsamtools, GenomicAlignments, matrixStats, MASS, splines, grDevices, graphics, stats, methods Suggests: BiocStyle, knitr, rmarkdown, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Mmusculus.UCSC.mm10 License: GPL-3 MD5sum: 0a44b8ff045c206665d0f3ee8355f717 NeedsCompilation: no Title: GC Aware Peak Caller Description: Peak calling for ChIP-seq data with consideration of potential GC bias in sequencing reads. GC bias is first estimated with generalized linear mixture models using effective GC strategy, then applied into peak significance estimation. biocViews: Sequencing, ChIPSeq, BatchEffect, PeakDetection Author: Mingxiang Teng and Rafael A. Irizarry Maintainer: Mingxiang Teng URL: https://github.com/tengmx/gcapc VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/gcapc git_branch: RELEASE_3_20 git_last_commit: c158af6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gcapc_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gcapc_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gcapc_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gcapc_1.30.0.tgz vignettes: vignettes/gcapc/inst/doc/gcapc.html vignetteTitles: The gcapc user's guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gcapc/inst/doc/gcapc.R suggestsMe: epigraHMM dependencyCount: 61 Package: gcatest Version: 2.6.0 Depends: R (>= 4.0) Imports: methods, lfa Suggests: knitr, ggplot2, testthat, BEDMatrix, genio License: GPL (>= 3) Archs: x64 MD5sum: 4b1cc9bf33fbed8d138db711a9fbd6cd NeedsCompilation: no Title: Genotype Conditional Association TEST Description: GCAT is an association test for genome wide association studies that controls for population structure under a general class of trait models. This test conditions on the trait, which makes it immune to confounding by unmodeled environmental factors. Population structure is modeled via logistic factors, which are estimated using the `lfa` package. biocViews: SNP, DimensionReduction, PrincipalComponent, GenomeWideAssociation Author: Wei Hao [aut], Minsun Song [aut], Alejandro Ochoa [aut, cre] (), John D. Storey [aut] () Maintainer: Alejandro Ochoa URL: https://github.com/StoreyLab/gcatest VignetteBuilder: knitr BugReports: https://github.com/StoreyLab/gcatest/issues git_url: https://git.bioconductor.org/packages/gcatest git_branch: RELEASE_3_20 git_last_commit: 6a8978e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gcatest_2.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gcatest_2.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gcatest_2.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gcatest_2.6.0.tgz vignettes: vignettes/gcatest/inst/doc/gcatest.pdf vignetteTitles: gcat Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gcatest/inst/doc/gcatest.R suggestsMe: jackstraw dependencyCount: 13 Package: gCrisprTools Version: 2.12.0 Depends: R (>= 4.1) Imports: Biobase, limma, RobustRankAggreg, ggplot2, SummarizedExperiment, grid, rmarkdown, grDevices, graphics, methods, ComplexHeatmap, stats, utils, parallel Suggests: edgeR, knitr, AnnotationDbi, org.Mm.eg.db, org.Hs.eg.db, BiocGenerics, markdown, RUnit, sparrow, msigdbr, fgsea License: Artistic-2.0 MD5sum: 523c4cdbf2b7285014df7a7f25ef5df1 NeedsCompilation: no Title: Suite of Functions for Pooled Crispr Screen QC and Analysis Description: Set of tools for evaluating pooled high-throughput screening experiments, typically employing CRISPR/Cas9 or shRNA expression cassettes. Contains methods for interrogating library and cassette behavior within an experiment, identifying differentially abundant cassettes, aggregating signals to identify candidate targets for empirical validation, hypothesis testing, and comprehensive reporting. Version 2.0 extends these applications to include a variety of tools for contextualizing and integrating signals across many experiments, incorporates extended signal enrichment methodologies via the "sparrow" package, and streamlines many formal requirements to aid in interpretablity. biocViews: ImmunoOncology, CRISPR, PooledScreens, ExperimentalDesign, BiomedicalInformatics, CellBiology, FunctionalGenomics, Pharmacogenomics, Pharmacogenetics, SystemsBiology, DifferentialExpression, GeneSetEnrichment, Genetics, MultipleComparison, Normalization, Preprocessing, QualityControl, RNASeq, Regression, Software, Visualization Author: Russell Bainer, Dariusz Ratman, Steve Lianoglou, Peter Haverty Maintainer: Russell Bainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/gCrisprTools git_branch: RELEASE_3_20 git_last_commit: bc6c181 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gCrisprTools_2.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gCrisprTools_2.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gCrisprTools_2.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gCrisprTools_2.12.0.tgz vignettes: vignettes/gCrisprTools/inst/doc/Contrast_Comparisons.html, vignettes/gCrisprTools/inst/doc/Crispr_example_workflow.html, vignettes/gCrisprTools/inst/doc/gCrisprTools_Vignette.html vignetteTitles: Contrast_Comparisons_gCrisprTools, Example_Workflow_gCrisprTools, gCrisprTools_Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gCrisprTools/inst/doc/Contrast_Comparisons.R, vignettes/gCrisprTools/inst/doc/Crispr_example_workflow.R, vignettes/gCrisprTools/inst/doc/gCrisprTools_Vignette.R dependencyCount: 98 Package: gcrma Version: 2.78.0 Depends: R (>= 2.6.0), affy (>= 1.23.2), graphics, methods, stats, utils Imports: Biobase, affy (>= 1.23.2), affyio (>= 1.13.3), XVector, Biostrings (>= 2.11.32), splines, BiocManager Suggests: affydata, tools, splines, hgu95av2cdf, hgu95av2probe License: LGPL MD5sum: aa2eac73f440177d1ad450a9faa09b27 NeedsCompilation: yes Title: Background Adjustment Using Sequence Information Description: Background adjustment using sequence information biocViews: Microarray, OneChannel, Preprocessing Author: Jean(ZHIJIN) Wu, Rafael Irizarry with contributions from James MacDonald Jeff Gentry Maintainer: Z. Wu git_url: https://git.bioconductor.org/packages/gcrma git_branch: RELEASE_3_20 git_last_commit: dc3bef2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gcrma_2.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gcrma_2.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gcrma_2.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gcrma_2.78.0.tgz vignettes: vignettes/gcrma/inst/doc/gcrma2.0.pdf vignetteTitles: gcrma1.2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: affyILM, affyPLM, maskBAD, webbioc importsMe: affycoretools, affylmGUI suggestsMe: panp, aroma.affymetrix dependencyCount: 31 Package: GDCRNATools Version: 1.26.0 Depends: R (>= 3.5.0) Imports: shiny, jsonlite, rjson, XML, limma, edgeR, DESeq2, clusterProfiler, DOSE, org.Hs.eg.db, biomaRt, survival, survminer, pathview, ggplot2, gplots, DT, GenomicDataCommons, BiocParallel Suggests: knitr, testthat, prettydoc, rmarkdown License: Artistic-2.0 MD5sum: dc35fc44cf7a39cda5f87e23adefbe2f NeedsCompilation: no Title: GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, mRNA, and miRNA data in GDC Description: This is an easy-to-use package for downloading, organizing, and integrative analyzing RNA expression data in GDC with an emphasis on deciphering the lncRNA-mRNA related ceRNA regulatory network in cancer. Three databases of lncRNA-miRNA interactions including spongeScan, starBase, and miRcode, as well as three databases of mRNA-miRNA interactions including miRTarBase, starBase, and miRcode are incorporated into the package for ceRNAs network construction. limma, edgeR, and DESeq2 can be used to identify differentially expressed genes/miRNAs. Functional enrichment analyses including GO, KEGG, and DO can be performed based on the clusterProfiler and DO packages. Both univariate CoxPH and KM survival analyses of multiple genes can be implemented in the package. Besides some routine visualization functions such as volcano plot, bar plot, and KM plot, a few simply shiny apps are developed to facilitate visualization of results on a local webpage. biocViews: ImmunoOncology, GeneExpression, DifferentialExpression, GeneRegulation, GeneTarget, NetworkInference, Survival, Visualization, GeneSetEnrichment, NetworkEnrichment, Network, RNASeq, GO, KEGG Author: Ruidong Li, Han Qu, Shibo Wang, Julong Wei, Le Zhang, Renyuan Ma, Jianming Lu, Jianguo Zhu, Wei-De Zhong, Zhenyu Jia Maintainer: Ruidong Li , Han Qu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GDCRNATools git_branch: RELEASE_3_20 git_last_commit: d8c163d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GDCRNATools_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GDCRNATools_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GDCRNATools_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GDCRNATools_1.26.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE dependencyCount: 228 Package: gDNAx Version: 1.4.0 Depends: R (>= 4.3) Imports: methods, BiocGenerics, BiocParallel, matrixStats, Biostrings, S4Vectors, IRanges, GenomeInfoDb, GenomicRanges, GenomicFiles, GenomicAlignments, GenomicFeatures, Rsamtools, AnnotationHub, RColorBrewer, AnnotationDbi, bitops, plotrix, SummarizedExperiment, grDevices, graphics, stats, utils, cli Suggests: BiocStyle, knitr, rmarkdown, RUnit, TxDb.Hsapiens.UCSC.hg38.knownGene, gDNAinRNAseqData License: Artistic-2.0 Archs: x64 MD5sum: 6926dccba12870cb64efe08bdeff939a NeedsCompilation: no Title: Diagnostics for assessing genomic DNA contamination in RNA-seq data Description: Provides diagnostics for assessing genomic DNA contamination in RNA-seq data, as well as plots representing these diagnostics. Moreover, the package can be used to get an insight into the strand library protocol used and, in case of strand-specific libraries, the strandedness of the data. Furthermore, it provides functionality to filter out reads of potential gDNA origin. biocViews: Transcription, Transcriptomics, RNASeq, Sequencing, Preprocessing, Software, GeneExpression, Coverage, DifferentialExpression, FunctionalGenomics, SplicedAlignment, Alignment Author: Beatriz Calvo-Serra [aut], Robert Castelo [aut, cre] Maintainer: Robert Castelo URL: https://github.com/functionalgenomics/gDNAx VignetteBuilder: knitr BugReports: https://github.com/functionalgenomics/gDNAx/issues git_url: https://git.bioconductor.org/packages/gDNAx git_branch: RELEASE_3_20 git_last_commit: 677cebe git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gDNAx_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gDNAx_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gDNAx_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gDNAx_1.4.0.tgz vignettes: vignettes/gDNAx/inst/doc/gDNAx.html vignetteTitles: The gDNAx package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gDNAx/inst/doc/gDNAx.R dependencyCount: 102 Package: gDR Version: 1.4.0 Depends: R (>= 4.2), gDRcore (>= 1.1.19), gDRimport (>= 1.1.9), gDRutils (>= 1.1.12) Suggests: BiocStyle, BumpyMatrix, futile.logger, gDRstyle (>= 1.1.5), gDRtestData (>= 1.1.10), kableExtra, knitr, markdown, purrr, rmarkdown, SummarizedExperiment, testthat, yaml License: Artistic-2.0 MD5sum: b438eb9a45f17715858b15e4ba01e004 NeedsCompilation: no Title: Umbrella package for R packages in the gDR suite Description: Package is a part of the gDR suite. It reexports functions from other packages in the gDR suite that contain critical processing functions and utilities. The vignette walks through the full processing pipeline for drug response analyses that the gDR suite offers. biocViews: Software, DataImport, ShinyApps Author: Allison Vuong [aut], Bartosz Czech [aut] (), Arkadiusz Gladki [cre, aut] (), Marc Hafner [aut] (), Dariusz Scigocki [aut], Janina Smola [aut], Sergiu Mocanu [aut] Maintainer: Arkadiusz Gladki URL: https://github.com/gdrplatform/gDR, https://gdrplatform.github.io/gDR/ VignetteBuilder: knitr BugReports: https://github.com/gdrplatform/gDR/issues git_url: https://git.bioconductor.org/packages/gDR git_branch: RELEASE_3_20 git_last_commit: 8a27060 git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-01 source.ver: src/contrib/gDR_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gDR_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gDR_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gDR_1.4.0.tgz vignettes: vignettes/gDR/inst/doc/gDR.html vignetteTitles: Running the drug response processing pipeline hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gDR/inst/doc/gDR.R dependencyCount: 210 Package: gDRcore Version: 1.4.0 Depends: R (>= 4.2) Imports: BumpyMatrix, BiocParallel, checkmate, futile.logger, gDRutils (>= 1.3.9), MultiAssayExperiment, purrr, stringr, S4Vectors, SummarizedExperiment, data.table Suggests: BiocStyle, gDRstyle (>= 1.1.5), gDRimport (>= 1.1.9), gDRtestData (>= 1.1.10), IRanges, knitr, pkgbuild, qs, testthat, yaml License: Artistic-2.0 MD5sum: bb7ea3782d4eaa6fe7faf4ae08251bd6 NeedsCompilation: yes Title: Processing functions and interface to process and analyze drug dose-response data Description: This package contains core functions to process and analyze drug response data. The package provides tools for normalizing, averaging, and calculation of gDR metrics data. All core functions are wrapped into the pipeline function allowing analyzing the data in a straightforward way. biocViews: Software, ShinyApps Author: Bartosz Czech [aut] (), Arkadiusz Gladki [cre, aut] (), Marc Hafner [aut] (), Pawel Piatkowski [aut], Natalia Potocka [aut], Dariusz Scigocki [aut], Janina Smola [aut], Sergiu Mocanu [aut], Marcin Kamianowski [aut], Allison Vuong [aut] Maintainer: Arkadiusz Gladki URL: https://github.com/gdrplatform/gDRcore, https://gdrplatform.github.io/gDRcore/ VignetteBuilder: knitr BugReports: https://github.com/gdrplatform/gDRcore/issues git_url: https://git.bioconductor.org/packages/gDRcore git_branch: RELEASE_3_20 git_last_commit: 13ad3fa git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-01 source.ver: src/contrib/gDRcore_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gDRcore_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gDRcore_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gDRcore_1.4.0.tgz vignettes: vignettes/gDRcore/inst/doc/gDR-annotation.html, vignettes/gDRcore/inst/doc/gDRcore.html, vignettes/gDRcore/inst/doc/gDR-data-model.html vignetteTitles: gDRcore, gDRcore, Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gDRcore/inst/doc/gDR-annotation.R, vignettes/gDRcore/inst/doc/gDRcore.R, vignettes/gDRcore/inst/doc/gDR-data-model.R dependsOnMe: gDR dependencyCount: 118 Package: gDRimport Version: 1.4.0 Depends: R (>= 4.2) Imports: assertthat, BumpyMatrix, checkmate, CoreGx, PharmacoGx, data.table, futile.logger, gDRutils (>= 1.1.12), magrittr, methods, MultiAssayExperiment, readxl, rio, S4Vectors, stats, stringi, SummarizedExperiment, tibble, tools, utils, XML, yaml, openxlsx Suggests: BiocStyle, gDRtestData (>= 1.1.10), gDRstyle (>= 1.1.5), knitr, purrr, qs, testthat License: Artistic-2.0 MD5sum: 78229e1a4d3bca3bd0ab7b71deb53512 NeedsCompilation: no Title: Package for handling the import of dose-response data Description: The package is a part of the gDR suite. It helps to prepare raw drug response data for downstream processing. It mainly contains helper functions for importing/loading/validating dose-response data provided in different file formats. biocViews: Software, Infrastructure, DataImport Author: Arkadiusz Gladki [aut, cre] (), Bartosz Czech [aut] (), Marc Hafner [aut] (), Sergiu Mocanu [aut], Dariusz Scigocki [aut], Allison Vuong [aut], Luca Gerosa [aut] (), Janina Smola [aut] Maintainer: Arkadiusz Gladki URL: https://github.com/gdrplatform/gDRimport, https://gdrplatform.github.io/gDRimport/ VignetteBuilder: knitr BugReports: https://github.com/gdrplatform/gDRimport/issues git_url: https://git.bioconductor.org/packages/gDRimport git_branch: RELEASE_3_20 git_last_commit: 42daf09 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gDRimport_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gDRimport_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gDRimport_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gDRimport_1.4.0.tgz vignettes: vignettes/gDRimport/inst/doc/ConvertingMAEtoPharmacoSet.html, vignettes/gDRimport/inst/doc/ConvertingPharmacoSetToGDR.html, vignettes/gDRimport/inst/doc/gDRimport.html vignetteTitles: Converting a gDR-generated MultiAssayExperiment object into a PharmacoSet, Converting PharmacoSet Drug Response Data into gDR object, gDRimport hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gDRimport/inst/doc/ConvertingMAEtoPharmacoSet.R, vignettes/gDRimport/inst/doc/ConvertingPharmacoSetToGDR.R, vignettes/gDRimport/inst/doc/gDRimport.R dependsOnMe: gDR suggestsMe: gDRcore dependencyCount: 208 Package: gDRstyle Version: 1.4.0 Depends: R (>= 4.2) Imports: BiocCheck, BiocManager, checkmate, desc, git2r, lintr (>= 3.0.0), rcmdcheck, remotes, yaml, rjson, pkgbuild, withr Suggests: BiocStyle, knitr, testthat (>= 3.0.0) License: Artistic-2.0 Archs: x64 MD5sum: 8c65fb73bd818d5a00adbc49fab2de0c NeedsCompilation: no Title: A package with style requirements for the gDR suite Description: Package fills a helper package role for whole gDR suite. It helps to support good development practices by keeping style requirements and style tests for other packages. It also contains build helpers to make all package requirements met. biocViews: Software, Infrastructure Author: Allison Vuong [aut], Dariusz Scigocki [aut], Marcin Kamianowski [aut], Aleksander Chlebowski [ctb], Janina Smola [aut], Arkadiusz Gladki [cre, aut] (), Bartosz Czech [aut] () Maintainer: Arkadiusz Gladki URL: https://github.com/gdrplatform/gDRstyle, https://gdrplatform.github.io/gDRstyle/ VignetteBuilder: knitr BugReports: https://github.com/gdrplatform/gDRstyle/issues git_url: https://git.bioconductor.org/packages/gDRstyle git_branch: RELEASE_3_20 git_last_commit: 3f2fc1c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gDRstyle_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gDRstyle_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gDRstyle_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gDRstyle_1.4.0.tgz vignettes: vignettes/gDRstyle/inst/doc/gDRstyle.html, vignettes/gDRstyle/inst/doc/style_guide.html vignetteTitles: gDRstyle-package, gDR-style-guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gDRstyle/inst/doc/gDRstyle.R, vignettes/gDRstyle/inst/doc/style_guide.R suggestsMe: gDR, gDRcore, gDRimport, gDRutils, gDRtestData dependencyCount: 95 Package: gDRutils Version: 1.4.0 Depends: R (>= 4.2) Imports: BiocParallel, BumpyMatrix, checkmate, data.table, drc, jsonlite, jsonvalidate, methods, MultiAssayExperiment, S4Vectors, stats, stringr, SummarizedExperiment Suggests: BiocManager, BiocStyle, futile.logger, gDRstyle (>= 1.1.5), gDRtestData (>= 1.1.10), IRanges, knitr, lintr, purrr, qs, rcmdcheck, rmarkdown, scales, testthat, tools, yaml License: Artistic-2.0 MD5sum: f357676625d090a95321b1b293bd3d45 NeedsCompilation: no Title: A package with helper functions for processing drug response data Description: This package contains utility functions used throughout the gDR platform to fit data, manipulate data, and convert and validate data structures. This package also has the necessary default constants for gDR platform. Many of the functions are utilized by the gDRcore package. biocViews: Software, Infrastructure Author: Bartosz Czech [aut] (), Arkadiusz Gladki [cre, aut] (), Aleksander Chlebowski [aut], Marc Hafner [aut] (), Pawel Piatkowski [aut], Dariusz Scigocki [aut], Janina Smola [aut], Sergiu Mocanu [aut], Allison Vuong [aut] Maintainer: Arkadiusz Gladki URL: https://github.com/gdrplatform/gDRutils, https://gdrplatform.github.io/gDRutils/ VignetteBuilder: knitr BugReports: https://github.com/gdrplatform/gDRutils/issues git_url: https://git.bioconductor.org/packages/gDRutils git_branch: RELEASE_3_20 git_last_commit: 1433886 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gDRutils_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gDRutils_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gDRutils_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gDRutils_1.4.0.tgz vignettes: vignettes/gDRutils/inst/doc/gDRutils.html vignetteTitles: gDRutils hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gDRutils/inst/doc/gDRutils.R dependsOnMe: gDR importsMe: gDRcore, gDRimport dependencyCount: 117 Package: GDSArray Version: 1.26.0 Depends: R (>= 3.5), gdsfmt, methods, BiocGenerics, DelayedArray (>= 0.5.32) Imports: tools, S4Vectors (>= 0.17.34), SNPRelate, SeqArray Suggests: testthat, knitr, markdown, rmarkdown, BiocStyle, BiocManager License: GPL-3 MD5sum: a218ee5f76a8115b1126dfa077be9a3e NeedsCompilation: no Title: Representing GDS files as array-like objects Description: GDS files are widely used to represent genotyping or sequence data. The GDSArray package implements the `GDSArray` class to represent nodes in GDS files in a matrix-like representation that allows easy manipulation (e.g., subsetting, mathematical transformation) in _R_. The data remains on disk until needed, so that very large files can be processed. biocViews: Infrastructure, DataRepresentation, Sequencing, GenotypingArray Author: Qian Liu [aut, cre], Martin Morgan [aut], Hervé Pagès [aut], Xiuwen Zheng [aut] Maintainer: Qian Liu URL: https://github.com/Bioconductor/GDSArray VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/GDSArray/issues git_url: https://git.bioconductor.org/packages/GDSArray git_branch: RELEASE_3_20 git_last_commit: 18f0680 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GDSArray_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GDSArray_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GDSArray_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GDSArray_1.26.0.tgz vignettes: vignettes/GDSArray/inst/doc/GDSArray.html vignetteTitles: GDSArray: Representing GDS files as array-like objects hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GDSArray/inst/doc/GDSArray.R importsMe: CNVRanger, VariantExperiment suggestsMe: DelayedDataFrame dependencyCount: 39 Package: gdsfmt Version: 1.42.1 Depends: R (>= 2.15.0), methods Suggests: parallel, digest, Matrix, crayon, RUnit, knitr, markdown, rmarkdown, BiocGenerics License: LGPL-3 MD5sum: fdc3bbc0b47ad7a7996f2b1d401c37d1 NeedsCompilation: yes Title: R Interface to CoreArray Genomic Data Structure (GDS) Files Description: Provides a high-level R interface to CoreArray Genomic Data Structure (GDS) data files. GDS is portable across platforms with hierarchical structure to store multiple scalable array-oriented data sets with metadata information. It is suited for large-scale datasets, especially for data which are much larger than the available random-access memory. The gdsfmt package offers the efficient operations specifically designed for integers of less than 8 bits, since a diploid genotype, like single-nucleotide polymorphism (SNP), usually occupies fewer bits than a byte. Data compression and decompression are available with relatively efficient random access. It is also allowed to read a GDS file in parallel with multiple R processes supported by the package parallel. biocViews: Infrastructure, DataImport Author: Xiuwen Zheng [aut, cre] (), Stephanie Gogarten [ctb], Jean-loup Gailly and Mark Adler [ctb] (for the included zlib sources), Yann Collet [ctb] (for the included LZ4 sources), xz contributors [ctb] (for the included liblzma sources) Maintainer: Xiuwen Zheng URL: https://github.com/zhengxwen/gdsfmt VignetteBuilder: knitr BugReports: https://github.com/zhengxwen/gdsfmt/issues git_url: https://git.bioconductor.org/packages/gdsfmt git_branch: RELEASE_3_20 git_last_commit: a1256b8 git_last_commit_date: 2024-12-26 Date/Publication: 2024-12-26 source.ver: src/contrib/gdsfmt_1.42.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/gdsfmt_1.42.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gdsfmt_1.42.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gdsfmt_1.42.1.tgz vignettes: vignettes/gdsfmt/inst/doc/gdsfmt.html vignetteTitles: Introduction to GDS Format hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gdsfmt/inst/doc/gdsfmt.R dependsOnMe: bigmelon, GDSArray, RAIDS, SAIGEgds, SCArray, SeqArray, SNPRelate, Mega2R importsMe: CNVRanger, GBScleanR, GENESIS, ggmanh, GWASTools, SCArray.sat, SeqSQC, SeqVarTools, VariantExperiment, EthSEQ, gwid, simplePHENOTYPES, snplinkage suggestsMe: AnnotationHub, HIBAG linksToMe: SeqArray, SNPRelate dependencyCount: 1 Package: GeDi Version: 1.2.0 Depends: R (>= 4.4.0) Imports: GOSemSim, Matrix, shiny, shinyWidgets, bs4Dash, rintrojs, utils, DT, dplyr, shinyBS, STRINGdb, igraph, visNetwork, shinycssloaders, fontawesome, grDevices, parallel, stats, ggplot2, plotly, GeneTonic, RColorBrewer, scales, readxl, ggdendro, ComplexHeatmap, BiocNeighbors, tm, wordcloud2, tools, BiocParallel, BiocFileCache, cluster, circlize Suggests: knitr, rmarkdown, testthat (>= 3.0.0), DESeq2, htmltools, pcaExplorer, AnnotationDbi, macrophage, topGO, biomaRt, ReactomePA, clusterProfiler, BiocStyle, org.Hs.eg.db License: MIT + file LICENSE MD5sum: a5e96aeb6b6faf38a3d9a9c4d73943f5 NeedsCompilation: no Title: Defining and visualizing the distances between different genesets Description: The package provides different distances measurements to calculate the difference between genesets. Based on these scores the genesets are clustered and visualized as graph. This is all presented in an interactive Shiny application for easy usage. biocViews: GUI, GeneSetEnrichment, Software, Transcription, RNASeq, Visualization, Clustering, Pathways, ReportWriting, GO, KEGG, Reactome, ShinyApps Author: Annekathrin Nedwed [aut, cre] (), Federico Marini [aut] () Maintainer: Annekathrin Nedwed URL: https://github.com/AnnekathrinSilvia/GeDi VignetteBuilder: knitr BugReports: https://github.com/AnnekathrinSilvia/GeDi/issues git_url: https://git.bioconductor.org/packages/GeDi git_branch: RELEASE_3_20 git_last_commit: abf007a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeDi_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeDi_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeDi_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeDi_1.2.0.tgz vignettes: vignettes/GeDi/inst/doc/GeDi_manual.html vignetteTitles: The GeDi User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GeDi/inst/doc/GeDi_manual.R dependencyCount: 243 Package: GEM Version: 1.32.0 Depends: R (>= 3.3) Imports: tcltk, ggplot2, methods, stats, grDevices, graphics, utils Suggests: knitr, RUnit, testthat, BiocGenerics, rmarkdown, markdown License: Artistic-2.0 Archs: x64 MD5sum: 58de7f773c0abeb5b13dff866cf05f0a NeedsCompilation: no Title: GEM: fast association study for the interplay of Gene, Environment and Methylation Description: Tools for analyzing EWAS, methQTL and GxE genome widely. biocViews: MethylSeq, MethylationArray, GenomeWideAssociation, Regression, DNAMethylation, SNP, GeneExpression, GUI Author: Hong Pan, Joanna D Holbrook, Neerja Karnani, Chee-Keong Kwoh Maintainer: Hong Pan VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GEM git_branch: RELEASE_3_20 git_last_commit: 62ff449 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GEM_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GEM_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GEM_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GEM_1.32.0.tgz vignettes: vignettes/GEM/inst/doc/user_guide.html vignetteTitles: The GEM User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GEM/inst/doc/user_guide.R dependencyCount: 36 Package: gemini Version: 1.20.0 Depends: R (>= 4.1.0) Imports: dplyr, grDevices, ggplot2, magrittr, mixtools, scales, pbmcapply, parallel, stats, utils Suggests: knitr, rmarkdown, testthat License: BSD_3_clause + file LICENSE MD5sum: f51d601db3f201a97c98935260e12446 NeedsCompilation: no Title: GEMINI: Variational inference approach to infer genetic interactions from pairwise CRISPR screens Description: GEMINI uses log-fold changes to model sample-dependent and independent effects, and uses a variational Bayes approach to infer these effects. The inferred effects are used to score and identify genetic interactions, such as lethality and recovery. More details can be found in Zamanighomi et al. 2019 (in press). biocViews: Software, CRISPR, Bayesian, DataImport Author: Mahdi Zamanighomi [aut], Sidharth Jain [aut, cre] Maintainer: Sidharth Jain VignetteBuilder: knitr BugReports: https://github.com/sellerslab/gemini/issues git_url: https://git.bioconductor.org/packages/gemini git_branch: RELEASE_3_20 git_last_commit: 20bfc98 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gemini_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gemini_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gemini_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gemini_1.20.0.tgz vignettes: vignettes/gemini/inst/doc/gemini-quickstart.html vignetteTitles: QuickStart hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/gemini/inst/doc/gemini-quickstart.R dependencyCount: 84 Package: gemma.R Version: 3.2.1 Imports: magrittr, glue, memoise, jsonlite, data.table, rlang, lubridate, utils, stringr, SummarizedExperiment, Biobase, tibble, tidyr, S4Vectors, httr, rappdirs, bit64, assertthat, digest, R.utils, kableExtra, base64enc Suggests: testthat (>= 2.0.0), rmarkdown, knitr, dplyr, covr, ggplot2, ggrepel, BiocStyle, microbenchmark, magick, purrr, pheatmap, viridis, poolr, listviewer, shiny License: Apache License (>= 2) MD5sum: 65d022e0ea01fb4b0ae9953111139f39 NeedsCompilation: no Title: A wrapper for Gemma's Restful API to access curated gene expression data and differential expression analyses Description: Low- and high-level wrappers for Gemma's RESTful API. They enable access to curated expression and differential expression data from over 10,000 published studies. Gemma is a web site, database and a set of tools for the meta-analysis, re-use and sharing of genomics data, currently primarily targeted at the analysis of gene expression profiles. biocViews: Software, DataImport, Microarray, SingleCell, ThirdPartyClient, DifferentialExpression, GeneExpression, Bayesian, Annotation, ExperimentalDesign, Normalization, BatchEffect, Preprocessing Author: Javier Castillo-Arnemann [aut] (), Jordan Sicherman [aut] (), Ogan Mancarci [cre, aut] (), Guillaume Poirier-Morency [aut] () Maintainer: Ogan Mancarci URL: https://pavlidislab.github.io/gemma.R/, https://github.com/PavlidisLab/gemma.R VignetteBuilder: knitr BugReports: https://github.com/PavlidisLab/gemma.R/issues git_url: https://git.bioconductor.org/packages/gemma.R git_branch: RELEASE_3_20 git_last_commit: 1427efe git_last_commit_date: 2024-11-26 Date/Publication: 2024-11-28 source.ver: src/contrib/gemma.R_3.2.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/gemma.R_3.2.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gemma.R_3.2.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gemma.R_3.2.1.tgz vignettes: vignettes/gemma.R/inst/doc/gemma.R.html, vignettes/gemma.R/inst/doc/metadata.html, vignettes/gemma.R/inst/doc/metanalysis.html vignetteTitles: Accessing curated gene expression data with gemma.R, A guide to metadata for samples and differential expression analyses, A meta analysis on effects of Parkinson's Disease using Gemma.R hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gemma.R/inst/doc/gemma.R.R, vignettes/gemma.R/inst/doc/metadata.R, vignettes/gemma.R/inst/doc/metanalysis.R dependencyCount: 96 Package: genArise Version: 1.82.0 Depends: R (>= 1.7.1), locfit, tkrplot, methods Imports: graphics, grDevices, methods, stats, tcltk, utils, xtable License: file LICENSE License_restricts_use: yes MD5sum: 514f7c20dc7d1821f39817ad00c0af8e NeedsCompilation: no Title: Microarray Analysis tool Description: genArise is an easy to use tool for dual color microarray data. Its GUI-Tk based environment let any non-experienced user performs a basic, but not simple, data analysis just following a wizard. In addition it provides some tools for the developer. biocViews: Microarray, TwoChannel, Preprocessing Author: Ana Patricia Gomez Mayen ,\\ Gustavo Corral Guille , \\ Lina Riego Ruiz ,\\ Gerardo Coello Coutino Maintainer: IFC Development Team URL: http://www.ifc.unam.mx/genarise git_url: https://git.bioconductor.org/packages/genArise git_branch: RELEASE_3_20 git_last_commit: 840304a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/genArise_1.82.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/genArise_1.82.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/genArise_1.82.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/genArise_1.82.0.tgz vignettes: vignettes/genArise/inst/doc/genArise.pdf vignetteTitles: genAriseGUI Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/genArise/inst/doc/genArise.R dependencyCount: 11 Package: geneAttribution Version: 1.32.0 Imports: utils, GenomicRanges, org.Hs.eg.db, BiocGenerics, GenomeInfoDb, GenomicFeatures, IRanges, rtracklayer Suggests: TxDb.Hsapiens.UCSC.hg38.knownGene, TxDb.Hsapiens.UCSC.hg19.knownGene, knitr, rmarkdown, testthat License: Artistic-2.0 MD5sum: 70b1dc253483bd498bbfb18412cabe08 NeedsCompilation: no Title: Identification of candidate genes associated with genetic variation Description: Identification of the most likely gene or genes through which variation at a given genomic locus in the human genome acts. The most basic functionality assumes that the closer gene is to the input locus, the more likely the gene is to be causative. Additionally, any empirical data that links genomic regions to genes (e.g. eQTL or genome conformation data) can be used if it is supplied in the UCSC .BED file format. biocViews: SNP, GenePrediction, GenomeWideAssociation, VariantAnnotation, GenomicVariation Author: Arthur Wuster Maintainer: Arthur Wuster VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/geneAttribution git_branch: RELEASE_3_20 git_last_commit: 7bbfdc1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/geneAttribution_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/geneAttribution_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/geneAttribution_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/geneAttribution_1.32.0.tgz vignettes: vignettes/geneAttribution/inst/doc/geneAttribution.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 78 Package: GeneBreak Version: 1.36.0 Depends: R(>= 3.2), QDNAseq, CGHcall, CGHbase, GenomicRanges Imports: graphics, methods License: GPL-2 MD5sum: fad78dcf860cd3a3c9a9960ddae99aa9 NeedsCompilation: no Title: Gene Break Detection Description: Recurrent breakpoint gene detection on copy number aberration profiles. biocViews: aCGH, CopyNumberVariation, DNASeq, Genetics, Sequencing, WholeGenome, Visualization Author: Evert van den Broek, Stef van Lieshout Maintainer: Evert van den Broek URL: https://github.com/stefvanlieshout/GeneBreak git_url: https://git.bioconductor.org/packages/GeneBreak git_branch: RELEASE_3_20 git_last_commit: 82f97c3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeneBreak_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeneBreak_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeneBreak_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeneBreak_1.36.0.tgz vignettes: vignettes/GeneBreak/inst/doc/GeneBreak.pdf vignetteTitles: GeneBreak hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GeneBreak/inst/doc/GeneBreak.R dependencyCount: 59 Package: geneClassifiers Version: 1.30.0 Depends: R (>= 3.6.0) Imports: utils, methods, stats, Biobase, BiocGenerics Suggests: testthat License: GPL-2 MD5sum: 237032d0dffde4694d5de463536ec1f5 NeedsCompilation: no Title: Application of gene classifiers Description: This packages aims for easy accessible application of classifiers which have been published in literature using an ExpressionSet as input. biocViews: GeneExpression, BiomedicalInformatics, Classification, Survival, Microarray Author: R Kuiper [cre, aut] () Maintainer: R Kuiper URL: https://doi.org/doi:10.18129/B9.bioc.geneClassifiers BugReports: https://github.com/rkuiper/geneClassifiers/issues git_url: https://git.bioconductor.org/packages/geneClassifiers git_branch: RELEASE_3_20 git_last_commit: e5df2db git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/geneClassifiers_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/geneClassifiers_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/geneClassifiers_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/geneClassifiers_1.30.0.tgz vignettes: vignettes/geneClassifiers/inst/doc/geneClassifiers.pdf, vignettes/geneClassifiers/inst/doc/MissingCovariates.pdf vignetteTitles: geneClassifiers introduction, geneClassifiers and missing probesets hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/geneClassifiers/inst/doc/geneClassifiers.R dependencyCount: 6 Package: GeneExpressionSignature Version: 1.52.0 Depends: R (>= 4.0) Imports: Biobase, stats, methods Suggests: apcluster, GEOquery, knitr, rmarkdown, BiocStyle License: GPL-2 MD5sum: 4a1d31a2fe3f57f4429534a22317aee1 NeedsCompilation: no Title: Gene Expression Signature based Similarity Metric Description: This package gives the implementations of the gene expression signature and its distance to each. Gene expression signature is represented as a list of genes whose expression is correlated with a biological state of interest. And its distance is defined using a nonparametric, rank-based pattern-matching strategy based on the Kolmogorov-Smirnov statistic. Gene expression signature and its distance can be used to detect similarities among the signatures of drugs, diseases, and biological states of interest. biocViews: GeneExpression Author: Yang Cao [aut, cre], Fei Li [ctb], Lu Han [ctb] Maintainer: Yang Cao URL: https://github.com/yiluheihei/GeneExpressionSignature VignetteBuilder: knitr BugReports: https://github.com/yiluheihei/GeneExpressionSignature/issues/ git_url: https://git.bioconductor.org/packages/GeneExpressionSignature git_branch: RELEASE_3_20 git_last_commit: e37b45b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeneExpressionSignature_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeneExpressionSignature_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeneExpressionSignature_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeneExpressionSignature_1.52.0.tgz vignettes: vignettes/GeneExpressionSignature/inst/doc/GeneExpressionSignature.html vignetteTitles: GeneExpressionSignature hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GeneExpressionSignature/inst/doc/GeneExpressionSignature.R dependencyCount: 6 Package: genefilter Version: 1.88.0 Imports: MatrixGenerics (>= 1.11.1), AnnotationDbi, annotate, Biobase, graphics, methods, stats, survival, grDevices Suggests: class, hgu95av2.db, tkWidgets, ALL, ROC, RColorBrewer, BiocStyle, knitr License: Artistic-2.0 MD5sum: 95bc8cdec8e895d1f36507ace3dc0b3c NeedsCompilation: yes Title: genefilter: methods for filtering genes from high-throughput experiments Description: Some basic functions for filtering genes. biocViews: Microarray Author: Robert Gentleman [aut], Vincent J. Carey [aut], Wolfgang Huber [aut], Florian Hahne [aut], Emmanuel Taiwo [ctb] ('howtogenefinder' vignette translation from Sweave to RMarkdown / HTML.), Khadijah Amusat [ctb] (Converted genefilter vignette from Sweave to RMarkdown / HTML.), Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/genefilter git_branch: RELEASE_3_20 git_last_commit: f0d698a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/genefilter_1.88.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/genefilter_1.88.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/genefilter_1.88.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/genefilter_1.88.0.tgz vignettes: vignettes/genefilter/inst/doc/independent_filtering_plots.pdf, vignettes/genefilter/inst/doc/howtogenefilter.html, vignettes/genefilter/inst/doc/howtogenefinder.html vignetteTitles: 03 - Additional plots for: Independent filtering increases power for detecting differentially expressed genes,, Bourgon et al.,, PNAS (2010), Using the genefilter function to filter genes from a microarray, howtogenefinder.knit hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/genefilter/inst/doc/howtogenefilter.R, vignettes/genefilter/inst/doc/howtogenefinder.R, vignettes/genefilter/inst/doc/independent_filtering_plots.R dependsOnMe: CNTools, GeneMeta, sva, Hiiragi2013, maEndToEnd, rnaseqGene, lmQCM importsMe: a4Base, annmap, arrayQualityMetrics, broadSeq, Category, cbaf, ClassifyR, countsimQC, covRNA, DEXSeq, GSRI, metaseqR2, methylCC, methylumi, minfi, MLInterfaces, mogsa, NBAMSeq, pcaExplorer, PECA, phenoTest, protGear, SGCP, spatialHeatmap, SpliceWiz, tilingArray, XDE, zinbwave, FlowSorted.Blood.EPIC, IHWpaper, RNAinteractMAPK, causalBatch, CoNI, dGAselID, INCATome, MiDA, netgsa suggestsMe: annotate, BioNet, categoryCompare, clusterStab, codelink, cola, compcodeR, DelayedArray, EnrichedHeatmap, factDesign, ffpe, GenomicFiles, GOstats, GSAR, GSEAlm, GSVA, HDF5Array, logicFS, lumi, npGSEA, oligo, phyloseq, pvac, qpgraph, rtracklayer, siggenes, simplifyEnrichment, TCGAbiolinks, topGO, BloodCancerMultiOmics2017, curatedBladderData, curatedOvarianData, estrogen, ffpeExampleData, gageData, MAQCsubset, RforProteomics, rheumaticConditionWOLLBOLD, Single.mTEC.Transcriptomes, maGUI, oncoPredict, SuperLearner dependencyCount: 55 Package: GeneGA Version: 1.56.0 Depends: seqinr, hash, methods License: GPL version 2 MD5sum: dc0258cfb1f0c223cba51aa35f738057 NeedsCompilation: no Title: Design gene based on both mRNA secondary structure and codon usage bias using Genetic algorithm Description: R based Genetic algorithm for gene expression optimization by considering both mRNA secondary structure and codon usage bias, GeneGA includes the information of highly expressed genes of almost 200 genomes. Meanwhile, Vienna RNA Package is needed to ensure GeneGA to function properly. biocViews: GeneExpression Author: Zhenpeng Li and Haixiu Huang Maintainer: Zhenpeng Li URL: http://www.tbi.univie.ac.at/~ivo/RNA/ git_url: https://git.bioconductor.org/packages/GeneGA git_branch: RELEASE_3_20 git_last_commit: ddd9602 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeneGA_1.56.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeneGA_1.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeneGA_1.56.0.tgz vignettes: vignettes/GeneGA/inst/doc/GeneGA.pdf vignetteTitles: GeneGA hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GeneGA/inst/doc/GeneGA.R dependencyCount: 17 Package: GeneGeneInteR Version: 1.32.0 Depends: R (>= 4.0) Imports: snpStats, mvtnorm, Rsamtools, igraph, kernlab, FactoMineR, IRanges, GenomicRanges, data.table,grDevices, graphics,stats, utils, methods License: GPL (>= 2) MD5sum: f7913598aed390843211d46146aef0a9 NeedsCompilation: yes Title: Tools for Testing Gene-Gene Interaction at the Gene Level Description: The aim of this package is to propose several methods for testing gene-gene interaction in case-control association studies. Such a test can be done by aggregating SNP-SNP interaction tests performed at the SNP level (SSI) or by using gene-gene multidimensionnal methods (GGI) methods. The package also proposes tools for a graphic display of the results. . biocViews: GenomeWideAssociation, SNP, Genetics, GeneticVariability Author: Mathieu Emily [aut, cre], Nicolas Sounac [ctb], Florian Kroell [ctb], Magalie Houee-Bigot [aut] Maintainer: Mathieu Emily git_url: https://git.bioconductor.org/packages/GeneGeneInteR git_branch: RELEASE_3_20 git_last_commit: 9cc2589 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeneGeneInteR_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeneGeneInteR_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeneGeneInteR_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeneGeneInteR_1.32.0.tgz vignettes: vignettes/GeneGeneInteR/inst/doc/GenePair.pdf, vignettes/GeneGeneInteR/inst/doc/VignetteGeneGeneInteR_Introduction.pdf vignetteTitles: Pairwise interaction tests, GeneGeneInteR Introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GeneGeneInteR/inst/doc/GenePair.R, vignettes/GeneGeneInteR/inst/doc/VignetteGeneGeneInteR_Introduction.R dependencyCount: 140 Package: GeneMeta Version: 1.78.0 Depends: R (>= 2.10), methods, Biobase (>= 2.5.5), genefilter Imports: methods, Biobase (>= 2.5.5) Suggests: RColorBrewer License: Artistic-2.0 Archs: x64 MD5sum: 485b54a222fe7a17466df0c1d85c9107 NeedsCompilation: no Title: MetaAnalysis for High Throughput Experiments Description: A collection of meta-analysis tools for analysing high throughput experimental data biocViews: Sequencing, GeneExpression, Microarray Author: Lara Lusa , R. Gentleman, M. Ruschhaupt Maintainer: Bioconductor Package Maintainer git_url: https://git.bioconductor.org/packages/GeneMeta git_branch: RELEASE_3_20 git_last_commit: 4d17ec8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeneMeta_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeneMeta_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeneMeta_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeneMeta_1.78.0.tgz vignettes: vignettes/GeneMeta/inst/doc/GeneMeta.pdf vignetteTitles: GeneMeta Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GeneMeta/inst/doc/GeneMeta.R importsMe: XDE dependencyCount: 56 Package: GeneNetworkBuilder Version: 1.48.0 Depends: R (>= 2.15.1), Rcpp (>= 0.9.13) Imports: plyr, graph, htmlwidgets, Rgraphviz, RCy3, rjson, XML, methods, grDevices, stats, graphics LinkingTo: Rcpp Suggests: RUnit, BiocGenerics, RBGL, knitr, shiny, STRINGdb, BiocStyle, magick, rmarkdown, org.Hs.eg.db License: GPL (>= 2) Archs: x64 MD5sum: 9c30af079b04a3731ce69403dbefb465 NeedsCompilation: yes Title: GeneNetworkBuilder: a bioconductor package for building regulatory network using ChIP-chip/ChIP-seq data and Gene Expression Data Description: Appliation for discovering direct or indirect targets of transcription factors using ChIP-chip or ChIP-seq, and microarray or RNA-seq gene expression data. Inputting a list of genes of potential targets of one TF from ChIP-chip or ChIP-seq, and the gene expression results, GeneNetworkBuilder generates a regulatory network of the TF. biocViews: Sequencing, Microarray, GraphAndNetwork Author: Jianhong Ou, Haibo Liu, Heidi A Tissenbaum and Lihua Julie Zhu Maintainer: Jianhong Ou VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GeneNetworkBuilder git_branch: RELEASE_3_20 git_last_commit: b97fc69 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeneNetworkBuilder_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeneNetworkBuilder_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeneNetworkBuilder_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeneNetworkBuilder_1.48.0.tgz vignettes: vignettes/GeneNetworkBuilder/inst/doc/GeneNetworkBuilder_vignettes.html, vignettes/GeneNetworkBuilder/inst/doc/GeneNetworkFromGenes.html vignetteTitles: GeneNetworkBuilder Vignette, Generate Network from a list of gene hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GeneNetworkBuilder/inst/doc/GeneNetworkBuilder_vignettes.R, vignettes/GeneNetworkBuilder/inst/doc/GeneNetworkFromGenes.R dependencyCount: 68 Package: GeneOverlap Version: 1.42.0 Imports: stats, RColorBrewer, gplots, methods Suggests: RUnit, BiocGenerics, BiocStyle License: GPL-3 MD5sum: 4ae5390946a3e0a23aca20198e6474ab NeedsCompilation: no Title: Test and visualize gene overlaps Description: Test two sets of gene lists and visualize the results. biocViews: MultipleComparison, Visualization Author: Li Shen, Icahn School of Medicine at Mount Sinai Maintainer: Antnio Miguel de Jesus Domingues, Max-Planck Institute for Cell Biology and Genetics URL: http://shenlab-sinai.github.io/shenlab-sinai/ git_url: https://git.bioconductor.org/packages/GeneOverlap git_branch: RELEASE_3_20 git_last_commit: a029419 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeneOverlap_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeneOverlap_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeneOverlap_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeneOverlap_1.42.0.tgz vignettes: vignettes/GeneOverlap/inst/doc/GeneOverlap.pdf vignetteTitles: Testing and visualizing gene overlaps with the "GeneOverlap" package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GeneOverlap/inst/doc/GeneOverlap.R dependencyCount: 9 Package: geneplast Version: 1.32.0 Depends: R (>= 4.0), methods Imports: igraph, snow, ape, grDevices, graphics, stats, utils, data.table Suggests: RTN, RUnit, BiocGenerics, BiocStyle, knitr, rmarkdown, Fletcher2013b, geneplast.data, geneplast.data.string.v91, ggplot2, ggpubr, plyr License: GPL (>= 2) Archs: x64 MD5sum: c2117a32bc2ff90ecf3890b5571dc730 NeedsCompilation: no Title: Evolutionary and plasticity analysis of orthologous groups Description: Geneplast is designed for evolutionary and plasticity analysis based on orthologous groups distribution in a given species tree. It uses Shannon information theory and orthologs abundance to estimate the Evolutionary Plasticity Index. Additionally, it implements the Bridge algorithm to determine the evolutionary root of a given gene based on its orthologs distribution. biocViews: Genetics, GeneRegulation, SystemsBiology Author: Rodrigo Dalmolin, Mauro Castro Maintainer: Mauro Castro VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/geneplast git_branch: RELEASE_3_20 git_last_commit: 7918cba git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/geneplast_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/geneplast_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/geneplast_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/geneplast_1.32.0.tgz vignettes: vignettes/geneplast/inst/doc/geneplast.html, vignettes/geneplast/inst/doc/geneplast_Trefflich2019.html vignetteTitles: "Geneplast: evolutionary analysis of orthologous groups.", "Supporting Material for Trefflich2019." hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/geneplast/inst/doc/geneplast.R, vignettes/geneplast/inst/doc/geneplast_Trefflich2019.R importsMe: geneplast.data suggestsMe: TreeAndLeaf, geneplast.data dependencyCount: 24 Package: geneplotter Version: 1.84.0 Depends: R (>= 2.10), methods, Biobase, BiocGenerics, lattice, annotate Imports: AnnotationDbi, graphics, grDevices, grid, RColorBrewer, stats, utils Suggests: Rgraphviz, fibroEset, hgu95av2.db, hu6800.db, hgu133a.db, BiocStyle, knitr License: Artistic-2.0 MD5sum: e2c75ec7716edbbc43de5a768f2eac85 NeedsCompilation: no Title: Graphics related functions for Bioconductor Description: Functions for plotting genomic data biocViews: Visualization Author: Robert Gentleman [aut], Rohit Satyam [ctb] (Converted geneplotter vignette from Sweave to RMarkdown / HTML.), Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/geneplotter git_branch: RELEASE_3_20 git_last_commit: 1995856 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/geneplotter_1.84.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/geneplotter_1.84.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/geneplotter_1.84.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/geneplotter_1.84.0.tgz vignettes: vignettes/geneplotter/inst/doc/visualize.pdf, vignettes/geneplotter/inst/doc/byChroms.html vignetteTitles: Visualization of Microarray Data, How to Assemble a chromLocation Object hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/geneplotter/inst/doc/byChroms.R, vignettes/geneplotter/inst/doc/visualize.R dependsOnMe: HD2013SGI, Hiiragi2013, maEndToEnd importsMe: biocGraph, DEXSeq, MethylSeekR suggestsMe: biocGraph, Category, EnrichmentBrowser, GOstats, Single.mTEC.Transcriptomes dependencyCount: 51 Package: geneRecommender Version: 1.78.0 Depends: R (>= 1.8.0), Biobase (>= 1.4.22), methods Imports: Biobase, methods, stats License: GPL (>= 2) MD5sum: 8e6c386e1aaa70a6b04cda30cc0cbf92 NeedsCompilation: no Title: A gene recommender algorithm to identify genes coexpressed with a query set of genes Description: This package contains a targeted clustering algorithm for the analysis of microarray data. The algorithm can aid in the discovery of new genes with similar functions to a given list of genes already known to have closely related functions. biocViews: Microarray, Clustering Author: Gregory J. Hather , with contributions from Art B. Owen and Terence P. Speed Maintainer: Greg Hather git_url: https://git.bioconductor.org/packages/geneRecommender git_branch: RELEASE_3_20 git_last_commit: 473fa5f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/geneRecommender_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/geneRecommender_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/geneRecommender_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/geneRecommender_1.78.0.tgz vignettes: vignettes/geneRecommender/inst/doc/geneRecommender.pdf vignetteTitles: Using the geneRecommender Package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/geneRecommender/inst/doc/geneRecommender.R dependencyCount: 6 Package: GeneRegionScan Version: 1.62.0 Depends: methods, Biobase (>= 2.5.5), Biostrings Imports: S4Vectors (>= 0.9.25), Biobase (>= 2.5.5), affxparser, RColorBrewer, Biostrings Suggests: BSgenome, affy, AnnotationDbi License: GPL (>= 2) MD5sum: eda7a12b518083d821d7243e3a756749 NeedsCompilation: no Title: GeneRegionScan Description: A package with focus on analysis of discrete regions of the genome. This package is useful for investigation of one or a few genes using Affymetrix data, since it will extract probe level data using the Affymetrix Power Tools application and wrap these data into a ProbeLevelSet. A ProbeLevelSet directly extends the expressionSet, but includes additional information about the sequence of each probe and the probe set it is derived from. The package includes a number of functions used for plotting these probe level data as a function of location along sequences of mRNA-strands. This can be used for analysis of variable splicing, and is especially well suited for use with exon-array data. biocViews: Microarray, DataImport, SNP, OneChannel, Visualization Author: Lasse Folkersen, Diego Diez Maintainer: Lasse Folkersen git_url: https://git.bioconductor.org/packages/GeneRegionScan git_branch: RELEASE_3_20 git_last_commit: 9775930 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeneRegionScan_1.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeneRegionScan_1.62.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeneRegionScan_1.62.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeneRegionScan_1.62.0.tgz vignettes: vignettes/GeneRegionScan/inst/doc/GeneRegionScan.pdf vignetteTitles: GeneRegionScan hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GeneRegionScan/inst/doc/GeneRegionScan.R dependencyCount: 28 Package: geneRxCluster Version: 1.42.0 Depends: GenomicRanges,IRanges Suggests: RUnit, BiocGenerics License: GPL (>= 2) MD5sum: b73e1f6855885ab29b6ccfbd19247bd4 NeedsCompilation: yes Title: gRx Differential Clustering Description: Detect Differential Clustering of Genomic Sites such as gene therapy integrations. The package provides some functions for exploring genomic insertion sites originating from two different sources. Possibly, the two sources are two different gene therapy vectors. Vectors are preferred that target sensitive regions less frequently, motivating the search for localized clusters of insertions and comparison of the clusters formed by integration of different vectors. Scan statistics allow the discovery of spatial differences in clustering and calculation of False Discovery Rates (FDRs) providing statistical methods for comparing retroviral vectors. A scan statistic for comparing two vectors using multiple window widths to detect clustering differentials and compute FDRs is implemented here. biocViews: Sequencing, Clustering, Genetics Author: Charles Berry Maintainer: Charles Berry git_url: https://git.bioconductor.org/packages/geneRxCluster git_branch: RELEASE_3_20 git_last_commit: 069a020 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/geneRxCluster_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/geneRxCluster_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/geneRxCluster_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/geneRxCluster_1.42.0.tgz vignettes: vignettes/geneRxCluster/inst/doc/tutorial.pdf vignetteTitles: Using geneRxCluster hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/geneRxCluster/inst/doc/tutorial.R dependencyCount: 23 Package: GeneSelectMMD Version: 2.50.0 Depends: R (>= 2.13.2), Biobase Imports: MASS, graphics, stats, limma Suggests: ALL License: GPL (>= 2) MD5sum: 92000e264119ad74cd9a7fcccbe73706 NeedsCompilation: yes Title: Gene selection based on the marginal distributions of gene profiles that characterized by a mixture of three-component multivariate distributions Description: Gene selection based on a mixture of marginal distributions. biocViews: DifferentialExpression Author: Jarrett Morrow , Weiliang Qiu , Wenqing He , Xiaogang Wang , Ross Lazarus . Maintainer: Weiliang Qiu git_url: https://git.bioconductor.org/packages/GeneSelectMMD git_branch: RELEASE_3_20 git_last_commit: 60828a5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeneSelectMMD_2.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeneSelectMMD_2.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeneSelectMMD_2.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeneSelectMMD_2.50.0.tgz vignettes: vignettes/GeneSelectMMD/inst/doc/gsMMD.pdf vignetteTitles: Gene Selection based on a mixture of marginal distributions hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GeneSelectMMD/inst/doc/gsMMD.R importsMe: iCheck dependencyCount: 10 Package: GENESIS Version: 2.36.0 Imports: Biobase, BiocGenerics, BiocParallel, GWASTools, gdsfmt, GenomicRanges, IRanges, S4Vectors, SeqArray, SeqVarTools, SNPRelate, data.table, graphics, grDevices, igraph, Matrix, methods, reshape2, stats, utils Suggests: CompQuadForm, COMPoissonReg, poibin, SPAtest, survey, testthat, BiocStyle, knitr, rmarkdown, GWASdata, dplyr, ggplot2, GGally, RColorBrewer, TxDb.Hsapiens.UCSC.hg19.knownGene License: GPL-3 Archs: x64 MD5sum: 34c9fbd04570d82dc6d31539b9c958f9 NeedsCompilation: yes Title: GENetic EStimation and Inference in Structured samples (GENESIS): Statistical methods for analyzing genetic data from samples with population structure and/or relatedness Description: The GENESIS package provides methodology for estimating, inferring, and accounting for population and pedigree structure in genetic analyses. The current implementation provides functions to perform PC-AiR (Conomos et al., 2015, Gen Epi) and PC-Relate (Conomos et al., 2016, AJHG). PC-AiR performs a Principal Components Analysis on genome-wide SNP data for the detection of population structure in a sample that may contain known or cryptic relatedness. Unlike standard PCA, PC-AiR accounts for relatedness in the sample to provide accurate ancestry inference that is not confounded by family structure. PC-Relate uses ancestry representative principal components to adjust for population structure/ancestry and accurately estimate measures of recent genetic relatedness such as kinship coefficients, IBD sharing probabilities, and inbreeding coefficients. Additionally, functions are provided to perform efficient variance component estimation and mixed model association testing for both quantitative and binary phenotypes. biocViews: SNP, GeneticVariability, Genetics, StatisticalMethod, DimensionReduction, PrincipalComponent, GenomeWideAssociation, QualityControl, BiocViews Author: Matthew P. Conomos, Stephanie M. Gogarten, Lisa Brown, Han Chen, Thomas Lumley, Kenneth Rice, Tamar Sofer, Adrienne Stilp, Timothy Thornton, Chaoyu Yu Maintainer: Stephanie M. Gogarten URL: https://github.com/UW-GAC/GENESIS VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GENESIS git_branch: RELEASE_3_20 git_last_commit: cc74fb6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GENESIS_2.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GENESIS_2.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GENESIS_2.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GENESIS_2.36.0.tgz vignettes: vignettes/GENESIS/inst/doc/assoc_test.html, vignettes/GENESIS/inst/doc/assoc_test_seq.html, vignettes/GENESIS/inst/doc/pcair.html vignetteTitles: Genetic Association Testing using the GENESIS Package, Analyzing Sequence Data using the GENESIS Package, Population Structure and Relatedness Inference using the GENESIS Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GENESIS/inst/doc/assoc_test.R, vignettes/GENESIS/inst/doc/assoc_test_seq.R, vignettes/GENESIS/inst/doc/pcair.R dependsOnMe: RAIDS dependencyCount: 124 Package: GeneStructureTools Version: 1.26.0 Imports: Biostrings,GenomicRanges,IRanges,data.table,plyr,stringdist,stringr,S4Vectors,BSgenome.Mmusculus.UCSC.mm10,stats,utils,Gviz,rtracklayer,methods Suggests: BiocStyle, knitr, rmarkdown License: BSD_3_clause + file LICENSE Archs: x64 MD5sum: 7134d4484dfd9541cb421473da018aa8 NeedsCompilation: no Title: Tools for spliced gene structure manipulation and analysis Description: GeneStructureTools can be used to create in silico alternative splicing events, and analyse potential effects this has on functional gene products. biocViews: ImmunoOncology, Software, DifferentialSplicing, FunctionalPrediction, Transcriptomics, AlternativeSplicing, RNASeq Author: Beth Signal Maintainer: Beth Signal VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GeneStructureTools git_branch: RELEASE_3_20 git_last_commit: 09532c7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeneStructureTools_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeneStructureTools_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeneStructureTools_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeneStructureTools_1.26.0.tgz vignettes: vignettes/GeneStructureTools/inst/doc/Vignette.html vignetteTitles: Introduction to GeneStructureTools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GeneStructureTools/inst/doc/Vignette.R dependencyCount: 160 Package: geNetClassifier Version: 1.46.0 Depends: R (>= 2.10.1), Biobase (>= 2.5.5), EBarrays, minet, methods Imports: e1071, graphics, grDevices Suggests: leukemiasEset, RUnit, BiocGenerics Enhances: RColorBrewer, igraph, infotheo License: GPL (>= 2) Archs: x64 MD5sum: bc29ee3feafccc630ed6268b887eca7a NeedsCompilation: no Title: Classify diseases and build associated gene networks using gene expression profiles Description: Comprehensive package to automatically train and validate a multi-class SVM classifier based on gene expression data. Provides transparent selection of gene markers, their coexpression networks, and an interface to query the classifier. biocViews: Classification, DifferentialExpression, Microarray Author: Sara Aibar, Celia Fontanillo and Javier De Las Rivas. Bioinformatics and Functional Genomics Group. Cancer Research Center (CiC-IBMCC, CSIC/USAL). Salamanca. Spain. Maintainer: Sara Aibar URL: http://www.cicancer.org git_url: https://git.bioconductor.org/packages/geNetClassifier git_branch: RELEASE_3_20 git_last_commit: 7d5dc0e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/geNetClassifier_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/geNetClassifier_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/geNetClassifier_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/geNetClassifier_1.46.0.tgz vignettes: vignettes/geNetClassifier/inst/doc/geNetClassifier-vignette.pdf vignetteTitles: geNetClassifier-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/geNetClassifier/inst/doc/geNetClassifier-vignette.R importsMe: bioCancer, canceR dependencyCount: 17 Package: GeneticsPed Version: 1.68.0 Depends: R (>= 2.4.0), MASS Imports: gdata, genetics Suggests: RUnit, gtools License: LGPL (>= 2.1) | file LICENSE MD5sum: 39ef0bf3833462aaa66cef37ea4da4b9 NeedsCompilation: yes Title: Pedigree and genetic relationship functions Description: Classes and methods for handling pedigree data. It also includes functions to calculate genetic relationship measures as relationship and inbreeding coefficients and other utilities. Note that package is not yet stable. Use it with care! biocViews: Genetics Author: Gregor Gorjanc and David A. Henderson , with code contributions by Brian Kinghorn and Andrew Percy (see file COPYING) Maintainer: David Henderson URL: http://rgenetics.org git_url: https://git.bioconductor.org/packages/GeneticsPed git_branch: RELEASE_3_20 git_last_commit: 7af2cb6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeneticsPed_1.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeneticsPed_1.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeneticsPed_1.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeneticsPed_1.68.0.tgz vignettes: vignettes/GeneticsPed/inst/doc/geneticRelatedness.pdf, vignettes/GeneticsPed/inst/doc/pedigreeHandling.pdf, vignettes/GeneticsPed/inst/doc/quanGenAnimalModel.pdf vignetteTitles: Calculation of genetic relatedness/relationship between individuals in the pedigree, Pedigree handling, Quantitative genetic (animal) model example in R hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GeneticsPed/inst/doc/geneticRelatedness.R, vignettes/GeneticsPed/inst/doc/pedigreeHandling.R, vignettes/GeneticsPed/inst/doc/quanGenAnimalModel.R dependencyCount: 11 Package: GeneTonic Version: 3.0.0 Depends: R (>= 4.0.0) Imports: AnnotationDbi, backbone, bs4Dash (>= 2.0.0), circlize, colorspace, colourpicker, ComplexHeatmap, ComplexUpset, dendextend, DESeq2, dplyr, DT, dynamicTreeCut, expm, ggforce, ggplot2 (>= 3.5.0), ggrepel, ggridges, GO.db, graphics, grDevices, grid, igraph, matrixStats, methods, mosdef (>= 1.1.0), plotly, RColorBrewer, rintrojs, rlang, rmarkdown, S4Vectors, scales, shiny, shinyAce, shinycssloaders, shinyWidgets, stats, SummarizedExperiment, tidyr, tippy, tools, utils, viridis, visNetwork Suggests: knitr, BiocStyle, htmltools, clusterProfiler, macrophage, org.Hs.eg.db, magrittr, testthat (>= 2.1.0) License: MIT + file LICENSE MD5sum: df5cb9fd911fbad1896f64fa0b7c2089 NeedsCompilation: no Title: Enjoy Analyzing And Integrating The Results From Differential Expression Analysis And Functional Enrichment Analysis Description: This package provides functionality to combine the existing pieces of the transcriptome data and results, making it easier to generate insightful observations and hypothesis. Its usage is made easy with a Shiny application, combining the benefits of interactivity and reproducibility e.g. by capturing the features and gene sets of interest highlighted during the live session, and creating an HTML report as an artifact where text, code, and output coexist. Using the GeneTonicList as a standardized container for all the required components, it is possible to simplify the generation of multiple visualizations and summaries. biocViews: GUI, GeneExpression, Software, Transcription, Transcriptomics, Visualization, DifferentialExpression, Pathways, ReportWriting, GeneSetEnrichment, Annotation, GO, ShinyApps Author: Federico Marini [aut, cre] (), Annekathrin Ludt [aut] () Maintainer: Federico Marini URL: https://github.com/federicomarini/GeneTonic VignetteBuilder: knitr BugReports: https://github.com/federicomarini/GeneTonic/issues git_url: https://git.bioconductor.org/packages/GeneTonic git_branch: RELEASE_3_20 git_last_commit: d04704c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeneTonic_3.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeneTonic_3.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeneTonic_3.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeneTonic_3.0.0.tgz vignettes: vignettes/GeneTonic/inst/doc/GeneTonic_manual.html vignetteTitles: The GeneTonic User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GeneTonic/inst/doc/GeneTonic_manual.R importsMe: GeDi suggestsMe: mosdef dependencyCount: 220 Package: geneXtendeR Version: 1.32.0 Depends: rtracklayer, GO.db, R (>= 3.5.0) Imports: data.table, dplyr, graphics, networkD3, RColorBrewer, SnowballC, tm, utils, wordcloud, AnnotationDbi, BiocStyle, org.Rn.eg.db Suggests: knitr, rmarkdown, testthat, org.Ag.eg.db, org.Bt.eg.db, org.Ce.eg.db, org.Cf.eg.db, org.Dm.eg.db, org.Dr.eg.db, org.Gg.eg.db, org.Hs.eg.db, org.Mm.eg.db, org.Pt.eg.db, org.Sc.sgd.db, org.Ss.eg.db, org.Xl.eg.db, rtracklayer License: GPL (>= 3) Archs: x64 MD5sum: 0d04eee225b9e1593e7aa54b4bbd359b NeedsCompilation: yes Title: Optimized Functional Annotation Of ChIP-seq Data Description: geneXtendeR optimizes the functional annotation of ChIP-seq peaks by exploring relative differences in annotating ChIP-seq peak sets to variable-length gene bodies. In contrast to prior techniques, geneXtendeR considers peak annotations beyond just the closest gene, allowing users to see peak summary statistics for the first-closest gene, second-closest gene, ..., n-closest gene whilst ranking the output according to biologically relevant events and iteratively comparing the fidelity of peak-to-gene overlap across a user-defined range of upstream and downstream extensions on the original boundaries of each gene's coordinates. Since different ChIP-seq peak callers produce different differentially enriched peaks with a large variance in peak length distribution and total peak count, annotating peak lists with their nearest genes can often be a noisy process. As such, the goal of geneXtendeR is to robustly link differentially enriched peaks with their respective genes, thereby aiding experimental follow-up and validation in designing primers for a set of prospective gene candidates during qPCR. biocViews: ChIPSeq, Genetics, Annotation, GenomeAnnotation, DifferentialPeakCalling, Coverage, PeakDetection, ChipOnChip, HistoneModification, DataImport, NaturalLanguageProcessing, Visualization, GO, Software Author: Bohdan Khomtchouk [aut, cre], William Koehler [aut] Maintainer: Bohdan Khomtchouk URL: https://github.com/Bohdan-Khomtchouk/geneXtendeR VignetteBuilder: knitr BugReports: https://github.com/Bohdan-Khomtchouk/geneXtendeR/issues git_url: https://git.bioconductor.org/packages/geneXtendeR git_branch: RELEASE_3_20 git_last_commit: 94a7410 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/geneXtendeR_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/geneXtendeR_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/geneXtendeR_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/geneXtendeR_1.32.0.tgz vignettes: vignettes/geneXtendeR/inst/doc/geneXtendeR.pdf vignetteTitles: geneXtendeR.pdf hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 117 Package: GENIE3 Version: 1.28.0 Imports: stats, reshape2, dplyr Suggests: knitr, rmarkdown, foreach, doRNG, doParallel, Biobase, SummarizedExperiment, testthat, methods, BiocStyle License: GPL (>= 2) MD5sum: d6b04353b7e95c5e8cc60c6b7d701922 NeedsCompilation: yes Title: GEne Network Inference with Ensemble of trees Description: This package implements the GENIE3 algorithm for inferring gene regulatory networks from expression data. biocViews: NetworkInference, SystemsBiology, DecisionTree, Regression, Network, GraphAndNetwork, GeneExpression Author: Van Anh Huynh-Thu, Sara Aibar, Pierre Geurts Maintainer: Van Anh Huynh-Thu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GENIE3 git_branch: RELEASE_3_20 git_last_commit: ccc2873 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/GENIE3_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GENIE3_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GENIE3_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GENIE3_1.28.0.tgz vignettes: vignettes/GENIE3/inst/doc/GENIE3.html vignetteTitles: GENIE3 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GENIE3/inst/doc/GENIE3.R importsMe: BioNERO, MetNet, bulkAnalyseR dependencyCount: 27 Package: genoCN Version: 1.58.0 Imports: graphics, stats, utils License: GPL (>=2) Archs: x64 MD5sum: f1d64e3799c3378276c6921f175ec367 NeedsCompilation: yes Title: genotyping and copy number study tools Description: Simultaneous identification of copy number states and genotype calls for regions of either copy number variations or copy number aberrations biocViews: Microarray, Genetics Author: Wei Sun and ZhengZheng Tang Maintainer: Wei Sun git_url: https://git.bioconductor.org/packages/genoCN git_branch: RELEASE_3_20 git_last_commit: f53faf3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/genoCN_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/genoCN_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/genoCN_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/genoCN_1.58.0.tgz vignettes: vignettes/genoCN/inst/doc/genoCN.pdf vignetteTitles: add stuff hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/genoCN/inst/doc/genoCN.R dependencyCount: 3 Package: genomation Version: 1.38.0 Depends: R (>= 3.5.0), grid Imports: Biostrings (>= 2.47.6), BSgenome (>= 1.47.3), data.table, GenomeInfoDb, GenomicRanges (>= 1.31.8), GenomicAlignments (>= 1.15.6), S4Vectors (>= 0.17.25), ggplot2, gridBase, impute, IRanges (>= 2.13.12), matrixStats, methods, parallel, plotrix, plyr, readr, reshape2, Rsamtools (>= 1.31.2), seqPattern, rtracklayer (>= 1.39.7), Rcpp (>= 0.12.14) LinkingTo: Rcpp Suggests: BiocGenerics, genomationData, knitr, RColorBrewer, rmarkdown, RUnit License: Artistic-2.0 Archs: x64 MD5sum: 42c83bf663d193ae51b9baaabc45f648 NeedsCompilation: yes Title: Summary, annotation and visualization of genomic data Description: A package for summary and annotation of genomic intervals. Users can visualize and quantify genomic intervals over pre-defined functional regions, such as promoters, exons, introns, etc. The genomic intervals represent regions with a defined chromosome position, which may be associated with a score, such as aligned reads from HT-seq experiments, TF binding sites, methylation scores, etc. The package can use any tabular genomic feature data as long as it has minimal information on the locations of genomic intervals. In addition, It can use BAM or BigWig files as input. biocViews: Annotation, Sequencing, Visualization, CpGIsland Author: Altuna Akalin [aut, cre], Vedran Franke [aut, cre], Katarzyna Wreczycka [aut], Alexander Gosdschan [ctb], Liz Ing-Simmons [ctb], Bozena Mika-Gospodorz [ctb] Maintainer: Altuna Akalin , Vedran Franke , Katarzyna Wreczycka URL: http://bioinformatics.mdc-berlin.de/genomation/ VignetteBuilder: knitr BugReports: https://github.com/BIMSBbioinfo/genomation/issues git_url: https://git.bioconductor.org/packages/genomation git_branch: RELEASE_3_20 git_last_commit: e6cf148 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/genomation_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/genomation_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/genomation_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/genomation_1.38.0.tgz vignettes: vignettes/genomation/inst/doc/GenomationManual.html vignetteTitles: genomation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/genomation/inst/doc/GenomationManual.R importsMe: CexoR, EpiCompare, fCCAC, GenomicPlot, RCAS suggestsMe: methylKit dependencyCount: 106 Package: GenomAutomorphism Version: 1.8.1 Depends: R (>= 4.4.0), Imports: Biostrings, BiocGenerics, BiocParallel, GenomeInfoDb, GenomicRanges, IRanges, matrixStats, XVector, dplyr, data.table, parallel, doParallel, foreach, methods, S4Vectors, stats, numbers, utils Suggests: spelling, rmarkdown, BiocStyle, testthat (>= 3.0.0), knitr License: Artistic-2.0 Archs: x64 MD5sum: 8974d9a99cb8fb48a5433026fca4334b NeedsCompilation: no Title: Compute the automorphisms between DNA's Abelian group representations Description: This is a R package to compute the automorphisms between pairwise aligned DNA sequences represented as elements from a Genomic Abelian group. In a general scenario, from genomic regions till the whole genomes from a given population (from any species or close related species) can be algebraically represented as a direct sum of cyclic groups or more specifically Abelian p-groups. Basically, we propose the representation of multiple sequence alignments of length N bp as element of a finite Abelian group created by the direct sum of homocyclic Abelian group of prime-power order. biocViews: MathematicalBiology, ComparativeGenomics, FunctionalGenomics, MultipleSequenceAlignment, WholeGenome Author: Robersy Sanchez [aut, cre] () Maintainer: Robersy Sanchez URL: https://github.com/genomaths/GenomAutomorphism VignetteBuilder: knitr BugReports: https://github.com/genomaths/GenomAutomorphism/issues git_url: https://git.bioconductor.org/packages/GenomAutomorphism git_branch: RELEASE_3_20 git_last_commit: 7a7dfcf git_last_commit_date: 2024-12-29 Date/Publication: 2024-12-30 source.ver: src/contrib/GenomAutomorphism_1.8.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomAutomorphism_1.8.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomAutomorphism_1.8.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomAutomorphism_1.8.1.tgz vignettes: vignettes/GenomAutomorphism/inst/doc/GenomAutomorphism.html vignetteTitles: Get started-with GenomAutomorphism hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenomAutomorphism/inst/doc/GenomAutomorphism.R dependencyCount: 57 Package: GenomeInfoDb Version: 1.42.1 Depends: R (>= 4.0.0), methods, BiocGenerics (>= 0.37.0), S4Vectors (>= 0.25.12), IRanges (>= 2.13.12) Imports: stats, stats4, utils, UCSC.utils, GenomeInfoDbData Suggests: R.utils, data.table, GenomicRanges, Rsamtools, GenomicAlignments, GenomicFeatures, BSgenome, TxDb.Dmelanogaster.UCSC.dm3.ensGene, BSgenome.Scerevisiae.UCSC.sacCer2, BSgenome.Celegans.UCSC.ce2, BSgenome.Hsapiens.NCBI.GRCh38, RUnit, BiocStyle, knitr License: Artistic-2.0 Archs: x64 MD5sum: 5e864808486f67789a9fea09c3bf2e78 NeedsCompilation: no Title: Utilities for manipulating chromosome names, including modifying them to follow a particular naming style Description: Contains data and functions that define and allow translation between different chromosome sequence naming conventions (e.g., "chr1" versus "1"), including a function that attempts to place sequence names in their natural, rather than lexicographic, order. biocViews: Genetics, DataRepresentation, Annotation, GenomeAnnotation Author: Sonali Arora [aut], Martin Morgan [aut], Marc Carlson [aut], Hervé Pagès [aut, cre], Prisca Chidimma Maduka [ctb], Atuhurira Kirabo Kakopo [ctb], Haleema Khan [ctb] (vignette translation from Sweave to Rmarkdown / HTML), Emmanuel Chigozie Elendu [ctb] Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/GenomeInfoDb VignetteBuilder: knitr Video: http://youtu.be/wdEjCYSXa7w BugReports: https://github.com/Bioconductor/GenomeInfoDb/issues git_url: https://git.bioconductor.org/packages/GenomeInfoDb git_branch: RELEASE_3_20 git_last_commit: 4ed5e0d git_last_commit_date: 2024-11-27 Date/Publication: 2024-11-28 source.ver: src/contrib/GenomeInfoDb_1.42.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomeInfoDb_1.42.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomeInfoDb_1.42.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomeInfoDb_1.42.1.tgz vignettes: vignettes/GenomeInfoDb/inst/doc/GenomeInfoDb.pdf, vignettes/GenomeInfoDb/inst/doc/Accept-organism-for-GenomeInfoDb.html vignetteTitles: GenomeInfoDb: Introduction to GenomeInfoDb, Submitting your organism to GenomeInfoDb hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenomeInfoDb/inst/doc/Accept-organism-for-GenomeInfoDb.R, vignettes/GenomeInfoDb/inst/doc/GenomeInfoDb.R dependsOnMe: Biostrings, BSgenome, BSgenomeForge, bumphunter, CODEX, CSAR, GenomicAlignments, GenomicFeatures, GenomicRanges, GenomicTuples, gmapR, groHMM, HelloRanges, IdeoViz, Rsamtools, SCOPE, txdbmaker, VariantAnnotation, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Hsapiens.UCSC.hg38.masked, UCSCRepeatMasker, RTIGER importsMe: alabaster.ranges, AllelicImbalance, amplican, AneuFinder, AnnotationHubData, annotatr, ATACseqQC, ATACseqTFEA, atena, BaalChIP, ballgown, bambu, BindingSiteFinder, biovizBase, biscuiteer, BiSeq, bnbc, branchpointer, breakpointR, bsseq, BUSpaRse, CAGEfightR, cageminer, CAGEr, cardelino, casper, cBioPortalData, CexoR, cfdnakit, cfDNAPro, chimeraviz, chipenrich, ChIPexoQual, ChIPpeakAnno, ChIPseeker, chromstaR, chromVAR, circRNAprofiler, cleanUpdTSeq, CleanUpRNAseq, CNEr, cn.mops, CNVfilteR, CNVPanelizer, CNVRanger, Cogito, comapr, compEpiTools, consensusSeekeR, conumee, CopyNumberPlots, crisprBowtie, crisprBwa, crisprDesign, CRISPRseek, crisprShiny, CrispRVariants, crisprViz, csaw, customProDB, DAMEfinder, Damsel, decompTumor2Sig, DegCre, demuxSNP, derfinder, derfinderPlot, DEScan2, DEWSeq, diffHic, diffUTR, DMRcate, DMRScan, dmrseq, DominoEffect, easylift, easyRNASeq, ELMER, enhancerHomologSearch, ensembldb, EpiCompare, epigenomix, epigraHMM, EpiMix, epimutacions, epiregulon, EpiTxDb, epivizr, epivizrData, epivizrStandalone, erma, esATAC, EventPointer, extraChIPs, factR, FindIT2, FLAMES, FRASER, funtooNorm, GA4GHclient, GA4GHshiny, gcapc, gDNAx, geneAttribution, genomation, GenomAutomorphism, genomeIntervals, GenomicDistributions, GenomicFiles, GenomicInteractionNodes, GenomicInteractions, GenomicOZone, GenomicPlot, GenomicScores, GenVisR, geomeTriD, ggbio, gmoviz, goseq, GOTHiC, GRaNIE, GreyListChIP, GUIDEseq, Gviz, gwascat, h5vc, heatmaps, HicAggR, HiCBricks, HiCDOC, HiCExperiment, HiContacts, hicVennDiagram, HiTC, idr2d, IMAS, INSPEcT, InteractionSet, IsoformSwitchAnalyzeR, IVAS, karyoploteR, katdetectr, MADSEQ, mariner, maser, metagene2, metaseqR2, methimpute, methInheritSim, methodical, methylKit, methylPipe, methylSig, methylumi, minfi, MinimumDistance, mobileRNA, monaLisa, mosaics, Motif2Site, motifbreakR, motifmatchr, motifTestR, MouseFM, msgbsR, multicrispr, multiHiCcompare, MungeSumstats, musicatk, MutationalPatterns, myvariant, NADfinder, nearBynding, normr, nucleR, nullranges, OGRE, OMICsPCA, ORFik, Organism.dplyr, panelcn.mops, periodicDNA, pipeFrame, plotgardener, plyinteractions, plyranges, podkat, pram, prebs, proActiv, profileplyr, ProteoDisco, PureCN, qpgraph, qsea, QuasR, R3CPET, r3Cseq, raer, RaggedExperiment, RareVariantVis, RCAS, RcisTarget, recount, recoup, regioneR, regionReport, REMP, Repitools, RESOLVE, rfPred, RgnTX, rGREAT, RiboCrypt, RiboProfiling, riboSeqR, ribosomeProfilingQC, RJMCMCNucleosomes, rnaEditr, RNAmodR, roar, RTCGAToolbox, rtracklayer, scanMiR, scanMiRApp, scDblFinder, scmeth, scRNAseqApp, scruff, segmentSeq, seqArchRplus, SeqArray, seqCAT, seqsetvis, sesame, sevenC, SGSeq, ShortRead, signeR, SigsPack, sitadela, SNPhood, soGGi, SomaticSignatures, SOMNiBUS, SparseSignatures, spatzie, spiky, SpliceWiz, SplicingGraphs, SPLINTER, strandCheckR, SummarizedExperiment, svaNUMT, svaRetro, tadar, TAPseq, TCGAutils, TEKRABber, TENxIO, TFBSTools, tidyCoverage, TitanCNA, TnT, trackViewer, transcriptR, transmogR, tRNAscanImport, TVTB, tximeta, Ularcirc, UMI4Cats, VanillaICE, VariantFiltering, VariantTools, VaSP, VplotR, wiggleplotr, YAPSA, fitCons.UCSC.hg19, GenomicState, grasp2db, MafDb.1Kgenomes.phase1.GRCh38, MafDb.1Kgenomes.phase1.hs37d5, MafDb.1Kgenomes.phase3.GRCh38, MafDb.1Kgenomes.phase3.hs37d5, MafDb.ExAC.r1.0.GRCh38, MafDb.ExAC.r1.0.hs37d5, MafDb.ExAC.r1.0.nonTCGA.GRCh38, MafDb.ExAC.r1.0.nonTCGA.hs37d5, MafDb.gnomAD.r2.1.GRCh38, MafDb.gnomAD.r2.1.hs37d5, MafDb.gnomADex.r2.1.GRCh38, MafDb.gnomADex.r2.1.hs37d5, MafDb.TOPMed.freeze5.hg19, MafDb.TOPMed.freeze5.hg38, MafH5.gnomAD.v4.0.GRCh38, phastCons100way.UCSC.hg19, phastCons100way.UCSC.hg38, phastCons7way.UCSC.hg38, SNPlocs.Hsapiens.dbSNP144.GRCh37, SNPlocs.Hsapiens.dbSNP144.GRCh38, SNPlocs.Hsapiens.dbSNP149.GRCh38, SNPlocs.Hsapiens.dbSNP150.GRCh38, SNPlocs.Hsapiens.dbSNP155.GRCh37, SNPlocs.Hsapiens.dbSNP155.GRCh38, XtraSNPlocs.Hsapiens.dbSNP144.GRCh37, XtraSNPlocs.Hsapiens.dbSNP144.GRCh38, BioPlex, chipenrich.data, GenomicDistributionsData, MethylSeqData, sesameData, TCGAWorkflow, crispRdesignR, driveR, GRIN2, ICAMS, locuszoomr, MAAPER, Mega2R, MicroSEC, MOCHA, SeedMatchR, Signac, simMP suggestsMe: AlphaMissenseR, AnnotationForge, AnnotationHub, DFplyr, DiffBind, epialleleR, ExperimentHubData, fishpond, ldblock, megadepth, methrix, OUTRIDER, parglms, QDNAseq, RAIDS, regioneReloaded, scTreeViz, splatter, systemPipeR, TFutils, UCSC.utils, BioMartGOGeneSets, xcoredata, seqpac, gkmSVM, polyRAD, Seurat dependencyCount: 19 Package: genomeIntervals Version: 1.62.0 Depends: R (>= 2.15.0), methods, intervals (>= 0.14.0), BiocGenerics (>= 0.15.2) Imports: GenomeInfoDb (>= 1.5.8), GenomicRanges (>= 1.21.16), IRanges(>= 2.3.14), S4Vectors (>= 0.7.10) License: Artistic-2.0 MD5sum: 0978b8fa7f7194aec99680f891662758 NeedsCompilation: no Title: Operations on genomic intervals Description: This package defines classes for representing genomic intervals and provides functions and methods for working with these. Note: The package provides the basic infrastructure for and is enhanced by the package 'girafe'. biocViews: DataImport, Infrastructure, Genetics Author: Julien Gagneur , Joern Toedling, Richard Bourgon, Nicolas Delhomme Maintainer: Julien Gagneur git_url: https://git.bioconductor.org/packages/genomeIntervals git_branch: RELEASE_3_20 git_last_commit: da43918 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/genomeIntervals_1.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/genomeIntervals_1.62.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/genomeIntervals_1.62.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/genomeIntervals_1.62.0.tgz vignettes: vignettes/genomeIntervals/inst/doc/genomeIntervals.pdf vignetteTitles: Overview of the genomeIntervals package. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/genomeIntervals/inst/doc/genomeIntervals.R dependsOnMe: girafe importsMe: easyRNASeq dependencyCount: 24 Package: genomes Version: 3.36.0 Depends: readr, curl License: GPL-3 MD5sum: 8e7e01f2b21493fe25d60b78a8a3c051 NeedsCompilation: no Title: Genome sequencing project metadata Description: Download genome and assembly reports from NCBI biocViews: Annotation, Genetics Author: Chris Stubben Maintainer: Chris Stubben git_url: https://git.bioconductor.org/packages/genomes git_branch: RELEASE_3_20 git_last_commit: ae16e0f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/genomes_3.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/genomes_3.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/genomes_3.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/genomes_3.36.0.tgz vignettes: vignettes/genomes/inst/doc/genomes.pdf vignetteTitles: Genome metadata hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/genomes/inst/doc/genomes.R dependencyCount: 31 Package: GenomicAlignments Version: 1.42.0 Depends: R (>= 4.0.0), methods, BiocGenerics (>= 0.37.0), S4Vectors (>= 0.27.12), IRanges (>= 2.23.9), GenomeInfoDb (>= 1.13.1), GenomicRanges (>= 1.55.3), SummarizedExperiment (>= 1.9.13), Biostrings (>= 2.55.7), Rsamtools (>= 1.31.2) Imports: methods, utils, stats, BiocGenerics, S4Vectors, IRanges, GenomicRanges, Biostrings, Rsamtools, BiocParallel LinkingTo: S4Vectors, IRanges Suggests: ShortRead, rtracklayer, BSgenome, GenomicFeatures, RNAseqData.HNRNPC.bam.chr14, pasillaBamSubset, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Dmelanogaster.UCSC.dm3.ensGene, BSgenome.Dmelanogaster.UCSC.dm3, BSgenome.Hsapiens.UCSC.hg19, DESeq2, edgeR, RUnit, knitr, BiocStyle License: Artistic-2.0 MD5sum: 70693f9d949390658a171ad2139860c8 NeedsCompilation: yes Title: Representation and manipulation of short genomic alignments Description: Provides efficient containers for storing and manipulating short genomic alignments (typically obtained by aligning short reads to a reference genome). This includes read counting, computing the coverage, junction detection, and working with the nucleotide content of the alignments. biocViews: Infrastructure, DataImport, Genetics, Sequencing, RNASeq, SNP, Coverage, Alignment, ImmunoOncology Author: Hervé Pagès [aut, cre], Valerie Obenchain [aut], Martin Morgan [aut], Fedor Bezrukov [ctb], Robert Castelo [ctb], Halimat C. Atanda [ctb] (Translated 'WorkingWithAlignedNucleotides' vignette from Sweave to RMarkdown / HTML.) Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/GenomicAlignments VignetteBuilder: knitr Video: https://www.youtube.com/watch?v=2KqBSbkfhRo , https://www.youtube.com/watch?v=3PK_jx44QTs BugReports: https://github.com/Bioconductor/GenomicAlignments/issues git_url: https://git.bioconductor.org/packages/GenomicAlignments git_branch: RELEASE_3_20 git_last_commit: 5a82c79 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenomicAlignments_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomicAlignments_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomicAlignments_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomicAlignments_1.42.0.tgz vignettes: vignettes/GenomicAlignments/inst/doc/GenomicAlignmentsIntroduction.pdf, vignettes/GenomicAlignments/inst/doc/OverlapEncodings.pdf, vignettes/GenomicAlignments/inst/doc/summarizeOverlaps.pdf, vignettes/GenomicAlignments/inst/doc/WorkingWithAlignedNucleotides.html vignetteTitles: An Introduction to the GenomicAlignments Package, Overlap encodings, Counting reads with summarizeOverlaps, Working with aligned nucleotides (WORK-IN-PROGRESS!) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenomicAlignments/inst/doc/GenomicAlignmentsIntroduction.R, vignettes/GenomicAlignments/inst/doc/OverlapEncodings.R, vignettes/GenomicAlignments/inst/doc/summarizeOverlaps.R, vignettes/GenomicAlignments/inst/doc/WorkingWithAlignedNucleotides.R dependsOnMe: AllelicImbalance, Basic4Cseq, ChIPexoQual, groHMM, HelloRanges, hiReadsProcessor, igvR, ORFik, prebs, recoup, RiboDiPA, ShortRead, SplicingGraphs, sequencing importsMe: AneuFinder, APAlyzer, ASpli, ATACseqQC, ATACseqTFEA, atena, BaalChIP, bambu, biovizBase, breakpointR, CAGEfightR, CAGEr, cfDNAPro, chimeraviz, ChIPpeakAnno, ChIPQC, chromstaR, CNEr, consensusDE, CoverageView, CrispRVariants, CSSQ, customProDB, DAMEfinder, DegNorm, derfinder, DEScan2, DiffBind, DNAfusion, DuplexDiscovereR, easyRNASeq, esATAC, extraChIPs, FLAMES, FRASER, gcapc, gDNAx, genomation, GenomicFiles, GenomicPlot, ggbio, gmapR, gmoviz, GreyListChIP, GUIDEseq, Gviz, icetea, IMAS, INSPEcT, IntEREst, MADSEQ, MDTS, metagene2, metaseqR2, methylPipe, mosaics, Motif2Site, msgbsR, NADfinder, PICS, plyranges, pram, proActiv, raer, ramwas, Repitools, RiboProfiling, ribosomeProfilingQC, RNAmodR, roar, Rqc, rtracklayer, saseR, scPipe, scruff, seqsetvis, SGSeq, soGGi, spiky, SPLINTER, strandCheckR, TAPseq, TCseq, trackViewer, transcriptR, Ularcirc, UMI4Cats, VaSP, VplotR, ZygosityPredictor, leeBamViews, alakazam, iimi, MAAPER, PACVr, VALERIE suggestsMe: amplican, BindingSiteFinder, BiocParallel, csaw, DEXSeq, EpiCompare, ExperimentHub, gage, GenomeInfoDb, GenomicDataCommons, GenomicFeatures, GenomicRanges, GenomicTuples, igvShiny, IRanges, QuasR, Rsamtools, SARC, similaRpeak, Streamer, systemPipeR, NanoporeRNASeq, parathyroidSE, RNAseqData.HNRNPC.bam.chr14, seqmagick dependencyCount: 50 Package: GenomicDataCommons Version: 1.30.0 Depends: R (>= 4.1.0) Imports: stats, httr, xml2, jsonlite, utils, rlang, readr, GenomicRanges, IRanges, dplyr, rappdirs, tibble, tidyr Suggests: BiocStyle, knitr, rmarkdown, DT, testthat, listviewer, ggplot2, GenomicAlignments, Rsamtools, BiocParallel, TxDb.Hsapiens.UCSC.hg38.knownGene, VariantAnnotation, maftools, R.utils, data.table License: Artistic-2.0 MD5sum: 94e0717882cfec78f9f0479a47886b59 NeedsCompilation: no Title: NIH / NCI Genomic Data Commons Access Description: Programmatically access the NIH / NCI Genomic Data Commons RESTful service. biocViews: DataImport, Sequencing Author: Martin Morgan [aut], Sean Davis [aut, cre], Marcel Ramos [ctb] Maintainer: Sean Davis URL: https://bioconductor.org/packages/GenomicDataCommons, http://github.com/Bioconductor/GenomicDataCommons, http://bioconductor.github.io/GenomicDataCommons/ VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/GenomicDataCommons/issues/new git_url: https://git.bioconductor.org/packages/GenomicDataCommons git_branch: RELEASE_3_20 git_last_commit: b1e7125 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenomicDataCommons_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomicDataCommons_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomicDataCommons_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomicDataCommons_1.30.0.tgz vignettes: vignettes/GenomicDataCommons/inst/doc/overview.html, vignettes/GenomicDataCommons/inst/doc/questions-and-answers.html, vignettes/GenomicDataCommons/inst/doc/somatic_mutations.html vignetteTitles: Introduction to Accessing the NCI Genomic Data Commons, Questions and answers from over the years, Somatic Mutation Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenomicDataCommons/inst/doc/overview.R, vignettes/GenomicDataCommons/inst/doc/questions-and-answers.R, vignettes/GenomicDataCommons/inst/doc/somatic_mutations.R importsMe: GDCRNATools, TCGAutils suggestsMe: autonomics dependencyCount: 56 Package: GenomicDistributions Version: 1.14.0 Depends: R (>= 4.0), IRanges, GenomicRanges Imports: data.table, ggplot2, reshape2, methods, utils, Biostrings, plyr, dplyr, scales, broom, GenomeInfoDb, stats Suggests: AnnotationFilter, rtracklayer, testthat, knitr, BiocStyle, rmarkdown, GenomicDistributionsData Enhances: BSgenome, extrafont, ensembldb, GenomicFeatures License: BSD_2_clause + file LICENSE Archs: x64 MD5sum: 81bc808ceb76e2e9bd841a5de5f454f0 NeedsCompilation: no Title: GenomicDistributions: fast analysis of genomic intervals with Bioconductor Description: If you have a set of genomic ranges, this package can help you with visualization and comparison. It produces several kinds of plots, for example: Chromosome distribution plots, which visualize how your regions are distributed over chromosomes; feature distance distribution plots, which visualizes how your regions are distributed relative to a feature of interest, like Transcription Start Sites (TSSs); genomic partition plots, which visualize how your regions overlap given genomic features such as promoters, introns, exons, or intergenic regions. It also makes it easy to compare one set of ranges to another. biocViews: Software, GenomeAnnotation, GenomeAssembly, DataRepresentation, Sequencing, Coverage, FunctionalGenomics, Visualization Author: Kristyna Kupkova [aut, cre], Jose Verdezoto [aut], Tessa Danehy [aut], John Lawson [aut], Jose Verdezoto [aut], Michal Stolarczyk [aut], Jason Smith [aut], Bingjie Xue [aut], Sophia Rogers [aut], John Stubbs [aut], Nathan C. Sheffield [aut] Maintainer: Kristyna Kupkova URL: http://code.databio.org/GenomicDistributions VignetteBuilder: knitr BugReports: http://github.com/databio/GenomicDistributions git_url: https://git.bioconductor.org/packages/GenomicDistributions git_branch: RELEASE_3_20 git_last_commit: 7263442 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenomicDistributions_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomicDistributions_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomicDistributions_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomicDistributions_1.14.0.tgz vignettes: vignettes/GenomicDistributions/inst/doc/full-power.html, vignettes/GenomicDistributions/inst/doc/intro.html vignetteTitles: 2. Full power GenomicDistributions, 1. Getting started with GenomicDistributions hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GenomicDistributions/inst/doc/intro.R dependencyCount: 69 Package: GenomicFeatures Version: 1.58.0 Depends: R (>= 3.5.0), BiocGenerics (>= 0.51.2), S4Vectors (>= 0.17.29), IRanges (>= 2.37.1), GenomeInfoDb (>= 1.35.8), GenomicRanges (>= 1.55.2), AnnotationDbi (>= 1.41.4) Imports: methods, utils, stats, DBI, XVector, Biostrings, rtracklayer Suggests: txdbmaker, org.Mm.eg.db, org.Hs.eg.db, BSgenome, BSgenome.Hsapiens.UCSC.hg19 (>= 1.3.17), BSgenome.Celegans.UCSC.ce11, BSgenome.Dmelanogaster.UCSC.dm3 (>= 1.3.17), mirbase.db, FDb.UCSC.tRNAs, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Celegans.UCSC.ce11.ensGene, TxDb.Dmelanogaster.UCSC.dm3.ensGene (>= 2.7.1), TxDb.Mmusculus.UCSC.mm10.knownGene (>= 3.4.7), TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts, TxDb.Hsapiens.UCSC.hg38.knownGene (>= 3.4.6), SNPlocs.Hsapiens.dbSNP144.GRCh38, Rsamtools, pasillaBamSubset (>= 0.0.5), GenomicAlignments (>= 1.15.7), ensembldb, AnnotationFilter, RUnit, BiocStyle, knitr, markdown License: Artistic-2.0 MD5sum: 0a02cd9968d3de134153953d7320c44a NeedsCompilation: no Title: Query the gene models of a given organism/assembly Description: Extract the genomic locations of genes, transcripts, exons, introns, and CDS, for the gene models stored in a TxDb object. A TxDb object is a small database that contains the gene models of a given organism/assembly. Bioconductor provides a small collection of TxDb objects in the form of ready-to-install TxDb packages for the most commonly studied organisms. Additionally, the user can easily make a TxDb object (or package) for the organism/assembly of their choice by using the tools from the txdbmaker package. biocViews: Genetics, Infrastructure, Annotation, Sequencing, GenomeAnnotation Author: M. Carlson [aut], H. Pagès [aut, cre], P. Aboyoun [aut], S. Falcon [aut], M. Morgan [aut], D. Sarkar [aut], M. Lawrence [aut], V. Obenchain [aut], S. Arora [ctb], J. MacDonald [ctb], M. Ramos [ctb], S. Saini [ctb], P. Shannon [ctb], L. Shepherd [ctb], D. Tenenbaum [ctb], D. Van Twisk [ctb] Maintainer: H. Pagès URL: https://bioconductor.org/packages/GenomicFeatures VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/GenomicFeatures/issues git_url: https://git.bioconductor.org/packages/GenomicFeatures git_branch: RELEASE_3_20 git_last_commit: a6e2405 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenomicFeatures_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomicFeatures_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomicFeatures_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomicFeatures_1.58.0.tgz vignettes: vignettes/GenomicFeatures/inst/doc/GenomicFeatures.html vignetteTitles: Obtaining and Utilizing TxDb Objects hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenomicFeatures/inst/doc/GenomicFeatures.R dependsOnMe: Cogito, cpvSNP, ensembldb, GSReg, Guitar, HelloRanges, mygene, OrganismDbi, OUTRIDER, RareVariantVis, RiboDiPA, SplicingGraphs, txdbmaker, FDb.FANTOM4.promoters.hg19, FDb.InfiniumMethylation.hg18, FDb.InfiniumMethylation.hg19, FDb.UCSC.snp135common.hg19, FDb.UCSC.snp137common.hg19, FDb.UCSC.tRNAs, Homo.sapiens, Mus.musculus, Rattus.norvegicus, TxDb.Athaliana.BioMart.plantsmart22, TxDb.Athaliana.BioMart.plantsmart25, TxDb.Athaliana.BioMart.plantsmart28, TxDb.Athaliana.BioMart.plantsmart51, TxDb.Btaurus.UCSC.bosTau8.refGene, TxDb.Btaurus.UCSC.bosTau9.refGene, TxDb.Celegans.UCSC.ce11.ensGene, TxDb.Celegans.UCSC.ce11.refGene, TxDb.Celegans.UCSC.ce6.ensGene, TxDb.Cfamiliaris.UCSC.canFam3.refGene, TxDb.Cfamiliaris.UCSC.canFam4.refGene, TxDb.Cfamiliaris.UCSC.canFam5.refGene, TxDb.Cfamiliaris.UCSC.canFam6.refGene, TxDb.Dmelanogaster.UCSC.dm3.ensGene, TxDb.Dmelanogaster.UCSC.dm6.ensGene, TxDb.Drerio.UCSC.danRer10.refGene, TxDb.Drerio.UCSC.danRer11.refGene, TxDb.Ggallus.UCSC.galGal4.refGene, TxDb.Ggallus.UCSC.galGal5.refGene, TxDb.Ggallus.UCSC.galGal6.refGene, TxDb.Hsapiens.BioMart.igis, TxDb.Hsapiens.UCSC.hg18.knownGene, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts, TxDb.Hsapiens.UCSC.hg38.knownGene, TxDb.Hsapiens.UCSC.hg38.refGene, TxDb.Mmulatta.UCSC.rheMac10.refGene, TxDb.Mmulatta.UCSC.rheMac3.refGene, TxDb.Mmulatta.UCSC.rheMac8.refGene, TxDb.Mmusculus.UCSC.mm10.ensGene, TxDb.Mmusculus.UCSC.mm10.knownGene, TxDb.Mmusculus.UCSC.mm39.knownGene, TxDb.Mmusculus.UCSC.mm39.refGene, TxDb.Mmusculus.UCSC.mm9.knownGene, TxDb.Ptroglodytes.UCSC.panTro4.refGene, TxDb.Ptroglodytes.UCSC.panTro5.refGene, TxDb.Ptroglodytes.UCSC.panTro6.refGene, TxDb.Rnorvegicus.BioMart.igis, TxDb.Rnorvegicus.UCSC.rn4.ensGene, TxDb.Rnorvegicus.UCSC.rn5.refGene, TxDb.Rnorvegicus.UCSC.rn6.ncbiRefSeq, TxDb.Rnorvegicus.UCSC.rn6.refGene, TxDb.Rnorvegicus.UCSC.rn7.refGene, TxDb.Scerevisiae.UCSC.sacCer2.sgdGene, TxDb.Scerevisiae.UCSC.sacCer3.sgdGene, TxDb.Sscrofa.UCSC.susScr11.refGene, TxDb.Sscrofa.UCSC.susScr3.refGene, generegulation importsMe: AllelicImbalance, AnnotationHubData, annotatr, APAlyzer, appreci8R, ASpli, atena, bambu, BgeeCall, BindingSiteFinder, biovizBase, bumphunter, BUSpaRse, CAGEfightR, CAGEr, casper, ChIPpeakAnno, ChIPQC, ChIPseeker, compEpiTools, consensusDE, crisprDesign, crisprViz, CSSQ, customProDB, Damsel, decompTumor2Sig, derfinder, derfinderPlot, DNAfusion, doubletrouble, EDASeq, ELMER, EpiMix, epimutacions, EpiTxDb, epivizrData, epivizrStandalone, esATAC, EventPointer, factR, FindIT2, FLAMES, FRASER, GA4GHshiny, gDNAx, geneAttribution, GenomicInteractionNodes, GenomicPlot, GenVisR, ggbio, gINTomics, gmapR, gmoviz, goseq, GUIDEseq, Gviz, gwascat, HiLDA, icetea, InPAS, INSPEcT, IntEREst, karyoploteR, lumi, magpie, mCSEA, metaseqR2, methylumi, msgbsR, multicrispr, musicatk, ORFik, Organism.dplyr, OutSplice, proActiv, proBAMr, ProteoDisco, PureCN, qpgraph, QuasR, raer, RCAS, recoup, RgnTX, rGREAT, RiboCrypt, RiboProfiling, ribosomeProfilingQC, RITAN, RNAmodR, SARC, saseR, scanMiRApp, scruff, SGSeq, sitadela, spatzie, SPLINTER, StructuralVariantAnnotation, svaNUMT, svaRetro, TAPseq, TCGAutils, TFEA.ChIP, trackViewer, transcriptR, transmogR, TRESS, txcutr, tximeta, Ularcirc, UMI4Cats, VariantAnnotation, VariantFiltering, VariantTools, wavClusteR, FDb.FANTOM4.promoters.hg19, FDb.InfiniumMethylation.hg18, FDb.InfiniumMethylation.hg19, FDb.UCSC.snp135common.hg19, FDb.UCSC.snp137common.hg19, FDb.UCSC.tRNAs, GenomicState, Homo.sapiens, Mus.musculus, Rattus.norvegicus, TxDb.Athaliana.BioMart.plantsmart22, TxDb.Athaliana.BioMart.plantsmart25, TxDb.Hsapiens.BioMart.igis, TxDb.Rnorvegicus.BioMart.igis, DMRcatedata, geneLenDataBase, GenomicDistributionsData, scRNAseq, ExpHunterSuite, driveR, MAAPER, MOCHA, oncoPredict, SeedMatchR suggestsMe: BANDITS, biomvRCNS, Biostrings, BSgenomeForge, chipseq, chromPlot, CrispRVariants, csaw, cummeRbund, DEXSeq, eisaR, fishpond, GenomeInfoDb, GenomicAlignments, GenomicRanges, groHMM, HDF5Array, HiContacts, InteractiveComplexHeatmap, IRanges, MiRaGE, MutationalPatterns, pageRank, plotgardener, recount, RNAmodR.ML, Rsamtools, rtracklayer, scPipe, ShortRead, SummarizedExperiment, systemPipeR, TFutils, tidyCoverage, TnT, VplotR, wiggleplotr, BSgenome.Btaurus.UCSC.bosTau3, BSgenome.Btaurus.UCSC.bosTau4, BSgenome.Btaurus.UCSC.bosTau6, BSgenome.Btaurus.UCSC.bosTau8, BSgenome.Btaurus.UCSC.bosTau9, BSgenome.Celegans.UCSC.ce10, BSgenome.Celegans.UCSC.ce11, BSgenome.Celegans.UCSC.ce2, BSgenome.Cfamiliaris.UCSC.canFam2, BSgenome.Cfamiliaris.UCSC.canFam3, BSgenome.Dmelanogaster.UCSC.dm2, BSgenome.Dmelanogaster.UCSC.dm6, BSgenome.Drerio.UCSC.danRer10, BSgenome.Drerio.UCSC.danRer11, BSgenome.Drerio.UCSC.danRer5, BSgenome.Drerio.UCSC.danRer6, BSgenome.Drerio.UCSC.danRer7, BSgenome.Gaculeatus.UCSC.gasAcu1, BSgenome.Ggallus.UCSC.galGal3, BSgenome.Ggallus.UCSC.galGal4, BSgenome.Hsapiens.UCSC.hg17, BSgenome.Mmulatta.UCSC.rheMac2, BSgenome.Mmulatta.UCSC.rheMac3, BSgenome.Mmusculus.UCSC.mm8, BSgenome.Ptroglodytes.UCSC.panTro2, BSgenome.Ptroglodytes.UCSC.panTro3, BSgenome.Rnorvegicus.UCSC.rn6, BioPlex, curatedAdipoChIP, ObMiTi, parathyroidSE, Single.mTEC.Transcriptomes, systemPipeRdata, CAGEWorkflow, polyRAD dependencyCount: 76 Package: GenomicFiles Version: 1.42.0 Depends: R (>= 3.1.0), methods, BiocGenerics (>= 0.11.2), MatrixGenerics, GenomicRanges (>= 1.31.16), SummarizedExperiment, BiocParallel (>= 1.1.0), Rsamtools (>= 1.17.29), rtracklayer (>= 1.25.3) Imports: GenomicAlignments (>= 1.7.7), IRanges, S4Vectors (>= 0.9.25), VariantAnnotation (>= 1.27.9), GenomeInfoDb Suggests: BiocStyle, RUnit, genefilter, deepSNV, snpStats, knitr, RNAseqData.HNRNPC.bam.chr14, Biostrings, Homo.sapiens License: Artistic-2.0 MD5sum: c70e78283b0a1f90ddd4cbcddf71d7df NeedsCompilation: no Title: Distributed computing by file or by range Description: This package provides infrastructure for parallel computations distributed 'by file' or 'by range'. User defined MAPPER and REDUCER functions provide added flexibility for data combination and manipulation. biocViews: Genetics, Infrastructure, DataImport, Sequencing, Coverage Author: Bioconductor Package Maintainer [aut, cre], Valerie Obenchain [aut], Michael Love [aut], Lori Shepherd [aut], Martin Morgan [aut], Sonali Kumari [ctb] (Converted 'GenomicFiles' vignettes from Sweave to RMarkdown / HTML.) Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr Video: https://www.youtube.com/watch?v=3PK_jx44QTs git_url: https://git.bioconductor.org/packages/GenomicFiles git_branch: RELEASE_3_20 git_last_commit: 21deb72 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenomicFiles_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomicFiles_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomicFiles_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomicFiles_1.42.0.tgz vignettes: vignettes/GenomicFiles/inst/doc/GenomicFiles.html vignetteTitles: Introduction to GenomicFiles hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenomicFiles/inst/doc/GenomicFiles.R dependsOnMe: erma, IntEREst importsMe: CAGEfightR, derfinder, gDNAx, QuasR, Rqc, VCFArray suggestsMe: ldblock, MungeSumstats, TFutils dependencyCount: 79 Package: genomicInstability Version: 1.12.0 Depends: R (>= 4.1.0), checkmate Imports: mixtools, SummarizedExperiment Suggests: SingleCellExperiment, ExperimentHub, pROC License: file LICENSE MD5sum: 6393fc6f34d3774e5be91fd04fe04b57 NeedsCompilation: no Title: Genomic Instability estimation for scRNA-Seq Description: This package contain functions to run genomic instability analysis (GIA) from scRNA-Seq data. GIA estimates the association between gene expression and genomic location of the coding genes. It uses the aREA algorithm to quantify the enrichment of sets of contiguous genes (loci-blocks) on the gene expression profiles and estimates the Genomic Instability Score (GIS) for each analyzed cell. biocViews: SystemsBiology, GeneExpression, SingleCell Author: Mariano Alvarez [aut, cre], Pasquale Laise [aut], DarwinHealth [cph] Maintainer: Mariano Alvarez URL: https://github.com/DarwinHealth/genomicInstability BugReports: https://github.com/DarwinHealth/genomicInstability git_url: https://git.bioconductor.org/packages/genomicInstability git_branch: RELEASE_3_20 git_last_commit: e5a992c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/genomicInstability_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/genomicInstability_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/genomicInstability_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/genomicInstability_1.12.0.tgz vignettes: vignettes/genomicInstability/inst/doc/genomicInstability.pdf vignetteTitles: Using genomicInstability hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/genomicInstability/inst/doc/genomicInstability.R dependencyCount: 103 Package: GenomicInteractionNodes Version: 1.10.0 Depends: R (>= 4.2.0), stats Imports: AnnotationDbi, graph, GO.db, GenomicRanges, GenomicFeatures, GenomeInfoDb, methods, IRanges, RBGL, S4Vectors Suggests: RUnit, BiocStyle, knitr, rmarkdown, rtracklayer, testthat, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db License: file LICENSE MD5sum: 5d250124934c9785b2c9b3c53727330f NeedsCompilation: no Title: A R/Bioconductor package to detect the interaction nodes from HiC/HiChIP/HiCAR data Description: The GenomicInteractionNodes package can import interactions from bedpe file and define the interaction nodes, the genomic interaction sites with multiple interaction loops. The interaction nodes is a binding platform regulates one or multiple genes. The detected interaction nodes will be annotated for downstream validation. biocViews: HiC, Sequencing, Software Author: Jianhong Ou [aut, cre], Yarui Diao [fnd] Maintainer: Jianhong Ou URL: https://github.com/jianhong/GenomicInteractionNodes VignetteBuilder: knitr BugReports: https://github.com/jianhong/GenomicInteractionNodes/issues git_url: https://git.bioconductor.org/packages/GenomicInteractionNodes git_branch: RELEASE_3_20 git_last_commit: f27f0de git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenomicInteractionNodes_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomicInteractionNodes_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomicInteractionNodes_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomicInteractionNodes_1.10.0.tgz vignettes: vignettes/GenomicInteractionNodes/inst/doc/GenomicInteractionNodes_vignettes.html vignetteTitles: GenomicInteractionNodes Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GenomicInteractionNodes/inst/doc/GenomicInteractionNodes_vignettes.R dependencyCount: 80 Package: GenomicInteractions Version: 1.40.0 Depends: R (>= 3.5), InteractionSet Imports: Rsamtools, rtracklayer, GenomicRanges (>= 1.29.6), IRanges, BiocGenerics (>= 0.15.3), data.table, stringr, GenomeInfoDb, ggplot2, grid, gridExtra, methods, igraph, S4Vectors (>= 0.13.13), dplyr, Gviz, Biobase, graphics, stats, utils, grDevices Suggests: knitr, rmarkdown, BiocStyle, testthat License: GPL-3 MD5sum: 371e9bf3be8b30da67681dccba28c670 NeedsCompilation: no Title: Utilities for handling genomic interaction data Description: Utilities for handling genomic interaction data such as ChIA-PET or Hi-C, annotating genomic features with interaction information, and producing plots and summary statistics. biocViews: Software,Infrastructure,DataImport,DataRepresentation,HiC Author: Harmston, N., Ing-Simmons, E., Perry, M., Baresic, A., Lenhard, B. Maintainer: Liz Ing-Simmons URL: https://github.com/ComputationalRegulatoryGenomicsICL/GenomicInteractions/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GenomicInteractions git_branch: RELEASE_3_20 git_last_commit: efe25b2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenomicInteractions_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomicInteractions_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomicInteractions_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomicInteractions_1.40.0.tgz vignettes: vignettes/GenomicInteractions/inst/doc/chiapet_vignette.html, vignettes/GenomicInteractions/inst/doc/hic_vignette.html vignetteTitles: chiapet_vignette.html, GenomicInteractions-HiC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenomicInteractions/inst/doc/chiapet_vignette.R, vignettes/GenomicInteractions/inst/doc/hic_vignette.R importsMe: CAGEfightR, extraChIPs, spatzie, OHCA suggestsMe: Chicago, ELMER, sevenC, chicane dependencyCount: 159 Package: GenomicOZone Version: 1.20.0 Depends: R (>= 4.0.0), Ckmeans.1d.dp (>= 4.3.0), GenomicRanges, biomaRt, ggplot2 Imports: grDevices, stats, utils, plyr, gridExtra, lsr, parallel, ggbio, S4Vectors, IRanges, GenomeInfoDb, Rdpack Suggests: readxl, GEOquery, knitr, rmarkdown License: LGPL (>=3) MD5sum: 463dff2c8d2d97d3df176d57b2a5a377 NeedsCompilation: no Title: Delineate outstanding genomic zones of differential gene activity Description: The package clusters gene activity along chromosome into zones, detects differential zones as outstanding, and visualizes maps of outstanding zones across the genome. It enables characterization of effects on multiple genes within adaptive genomic neighborhoods, which could arise from genome reorganization, structural variation, or epigenome alteration. It guarantees cluster optimality, linear runtime to sample size, and reproducibility. One can apply it on genome-wide activity measurements such as copy number, transcriptomic, proteomic, and methylation data. biocViews: Software, GeneExpression, Transcription, DifferentialExpression, FunctionalPrediction, GeneRegulation, BiomedicalInformatics, CellBiology, FunctionalGenomics, Genetics, SystemsBiology, Transcriptomics, Clustering, Regression, RNASeq, Annotation, Visualization, Sequencing, Coverage, DifferentialMethylation, GenomicVariation, StructuralVariation, CopyNumberVariation Author: Hua Zhong, Mingzhou Song Maintainer: Hua Zhong, Mingzhou Song VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GenomicOZone git_branch: RELEASE_3_20 git_last_commit: 6898b46 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenomicOZone_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomicOZone_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomicOZone_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomicOZone_1.20.0.tgz vignettes: vignettes/GenomicOZone/inst/doc/GenomicOZone.html vignetteTitles: GenomicOZone hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenomicOZone/inst/doc/GenomicOZone.R dependencyCount: 167 Package: GenomicPlot Version: 1.4.0 Depends: R (>= 4.4.0), GenomicRanges (>= 1.46.1) Imports: methods, Rsamtools, parallel, tidyr, rtracklayer (>= 1.54.0), plyranges (>= 1.14.0), cowplot (>= 1.1.1), VennDiagram, ggplotify, GenomeInfoDb, IRanges, ComplexHeatmap, RCAS (>= 1.20.0), scales (>= 1.2.0), GenomicAlignments (>= 1.30.0), edgeR, circlize, viridis, ggsignif (>= 0.6.3), ggsci (>= 2.9), ggpubr, grDevices, graphics, stats, utils, GenomicFeatures, genomation (>= 1.36.0), txdbmaker, ggplot2 (>= 3.3.5), BiocGenerics, dplyr, grid Suggests: knitr, rmarkdown, R.utils, Biobase, BiocStyle, testthat, AnnotationDbi License: GPL-2 MD5sum: 6427ba00460ed3545974ecbfdf27fc41 NeedsCompilation: no Title: Plot profiles of next generation sequencing data in genomic features Description: Visualization of next generation sequencing (NGS) data is essential for interpreting high-throughput genomics experiment results. 'GenomicPlot' facilitates plotting of NGS data in various formats (bam, bed, wig and bigwig); both coverage and enrichment over input can be computed and displayed with respect to genomic features (such as UTR, CDS, enhancer), and user defined genomic loci or regions. Statistical tests on signal intensity within user defined regions of interest can be performed and represented as boxplots or bar graphs. Parallel processing is used to speed up computation on multicore platforms. In addition to genomic plots which is suitable for displaying of coverage of genomic DNA (such as ChIPseq data), metagenomic (without introns) plots can also be made for RNAseq or CLIPseq data as well. biocViews: AlternativeSplicing, ChIPSeq, Coverage, GeneExpression, RNASeq, Sequencing, Software, Transcription, Visualization, Annotation Author: Shuye Pu [aut, cre] () Maintainer: Shuye Pu URL: https://github.com/shuye2009/GenomicPlot VignetteBuilder: knitr BugReports: https://github.com/shuye2009/GenomicPlot/issues git_url: https://git.bioconductor.org/packages/GenomicPlot git_branch: RELEASE_3_20 git_last_commit: 6b50b97 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenomicPlot_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomicPlot_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomicPlot_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomicPlot_1.4.0.tgz vignettes: vignettes/GenomicPlot/inst/doc/GenomicPlot_vignettes.html vignetteTitles: GenomicPlot_vignettes.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenomicPlot/inst/doc/GenomicPlot_vignettes.R dependencyCount: 210 Package: GenomicRanges Version: 1.58.0 Depends: R (>= 4.0.0), methods, stats4, BiocGenerics (>= 0.37.0), S4Vectors (>= 0.27.12), IRanges (>= 2.37.1), GenomeInfoDb (>= 1.15.2) Imports: utils, stats, XVector (>= 0.29.2) LinkingTo: S4Vectors, IRanges Suggests: Matrix, Biobase, AnnotationDbi, annotate, Biostrings (>= 2.25.3), SummarizedExperiment (>= 0.1.5), Rsamtools (>= 1.13.53), GenomicAlignments, rtracklayer, BSgenome, GenomicFeatures, txdbmaker, Gviz, VariantAnnotation, AnnotationHub, DESeq2, DEXSeq, edgeR, KEGGgraph, RNAseqData.HNRNPC.bam.chr14, pasillaBamSubset, KEGGREST, hgu95av2.db, hgu95av2probe, BSgenome.Scerevisiae.UCSC.sacCer2, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm10, TxDb.Athaliana.BioMart.plantsmart22, TxDb.Dmelanogaster.UCSC.dm3.ensGene, TxDb.Hsapiens.UCSC.hg38.knownGene, TxDb.Mmusculus.UCSC.mm10.knownGene, RUnit, digest, knitr, rmarkdown, BiocStyle License: Artistic-2.0 MD5sum: cca337e05cca2a77511c410397e8d415 NeedsCompilation: yes Title: Representation and manipulation of genomic intervals Description: The ability to efficiently represent and manipulate genomic annotations and alignments is playing a central role when it comes to analyzing high-throughput sequencing data (a.k.a. NGS data). The GenomicRanges package defines general purpose containers for storing and manipulating genomic intervals and variables defined along a genome. More specialized containers for representing and manipulating short alignments against a reference genome, or a matrix-like summarization of an experiment, are defined in the GenomicAlignments and SummarizedExperiment packages, respectively. Both packages build on top of the GenomicRanges infrastructure. biocViews: Genetics, Infrastructure, DataRepresentation, Sequencing, Annotation, GenomeAnnotation, Coverage Author: Patrick Aboyoun [aut], Hervé Pagès [aut, cre], Michael Lawrence [aut], Sonali Arora [ctb], Martin Morgan [ctb], Kayla Morrell [ctb], Valerie Obenchain [ctb], Marcel Ramos [ctb], Lori Shepherd [ctb], Dan Tenenbaum [ctb], Daniel van Twisk [ctb] Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/GenomicRanges VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/GenomicRanges/issues git_url: https://git.bioconductor.org/packages/GenomicRanges git_branch: RELEASE_3_20 git_last_commit: 31ad89c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenomicRanges_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomicRanges_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomicRanges_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomicRanges_1.58.0.tgz vignettes: vignettes/GenomicRanges/inst/doc/ExtendingGenomicRanges.pdf, vignettes/GenomicRanges/inst/doc/GenomicRangesHOWTOs.pdf, vignettes/GenomicRanges/inst/doc/GRanges_and_GRangesList_slides.pdf, vignettes/GenomicRanges/inst/doc/Ten_things_slides.pdf, vignettes/GenomicRanges/inst/doc/GenomicRangesIntroduction.html vignetteTitles: 5. Extending GenomicRanges, 2. GenomicRanges HOWTOs, 3. A quick introduction to GRanges and GRangesList objects (slides), 4. Ten Things You Didn't Know (slides from BioC 2016), 1. An Introduction to the GenomicRanges Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenomicRanges/inst/doc/ExtendingGenomicRanges.R, vignettes/GenomicRanges/inst/doc/GenomicRangesHOWTOs.R, vignettes/GenomicRanges/inst/doc/GenomicRangesIntroduction.R, vignettes/GenomicRanges/inst/doc/GRanges_and_GRangesList_slides.R, vignettes/GenomicRanges/inst/doc/Ten_things_slides.R dependsOnMe: alabaster.ranges, AllelicImbalance, AneuFinder, annmap, AnnotationHubData, BaalChIP, Basic4Cseq, betaHMM, BindingSiteFinder, biomvRCNS, BiSeq, bnbc, BPRMeth, breakpointR, BSgenome, bsseq, BubbleTree, bumphunter, CAFE, CAGEfightR, casper, chimeraviz, ChIPpeakAnno, ChIPQC, chipseq, chromPlot, chromstaR, CINdex, cn.mops, cnvGSA, CNVPanelizer, CNVRanger, COCOA, Cogito, compEpiTools, consensusSeekeR, CSAR, csaw, CSSQ, deepSNV, DEScan2, DESeq2, DEXSeq, DiffBind, diffHic, DMCFB, DMCHMM, DMRcaller, DNAshapeR, easylift, EnrichedHeatmap, ensembldb, epigenomix, esATAC, ExCluster, extraChIPs, fastseg, fCCAC, FindIT2, GeneBreak, GenomicAlignments, GenomicDistributions, GenomicFeatures, GenomicFiles, GenomicOZone, GenomicPlot, GenomicScores, GenomicTuples, gmapR, gmoviz, GOTHiC, GreyListChIP, groHMM, gtrellis, GUIDEseq, Guitar, Gviz, HelloRanges, HERON, hiAnnotator, HiCDOC, HiTC, IdeoViz, igvR, igvShiny, InTAD, intansv, InteractionSet, IntEREst, IWTomics, karyoploteR, m6Aboost, maser, MBASED, Melissa, metagene2, methimpute, methodical, methylKit, methylPipe, minfi, MotifDb, motifTestR, msgbsR, MutationalPatterns, NADfinder, oncoscanR, ORFik, periodicDNA, plyranges, podkat, QuasR, r3Cseq, RaggedExperiment, ramr, recoup, regioneR, RepViz, rGREAT, riboSeqR, ribosomeProfilingQC, RJMCMCNucleosomes, RNAmodR, RnBeads, Rsamtools, RSVSim, rtracklayer, SARC, Scale4C, SCOPE, segmentSeq, seqArchRplus, seqCAT, SeqGate, SGSeq, SICtools, SigFuge, SMITE, SNPhood, SomaticSignatures, spiky, StructuralVariantAnnotation, SummarizedExperiment, svaNUMT, svaRetro, tadar, TnT, trackViewer, transmogR, traseR, tRNA, tRNAdbImport, tRNAscanImport, txdbmaker, VanillaICE, VarCon, VariantAnnotation, VariantTools, VplotR, vtpnet, vulcan, wavClusteR, YAPSA, EuPathDB, excluderanges, ChAMPdata, EatonEtAlChIPseq, nullrangesData, RnBeads.hg19, RnBeads.hg38, RnBeads.mm10, RnBeads.mm9, RnBeads.rn5, WGSmapp, liftOver, sequencing, PlasmaMutationDetector, PlasmaMutationDetector2, rnaCrosslinkOO, RTIGER importsMe: ACE, alabaster.se, ALDEx2, amplican, AnnotationFilter, annotatr, APAlyzer, apeglm, appreci8R, ASpli, AssessORF, ATACseqQC, ATACseqTFEA, atena, BadRegionFinder, ballgown, bambu, bamsignals, baySeq, BBCAnalyzer, beadarray, BEAT, BiFET, BioTIP, biovizBase, biscuiteer, BiSeq, BOBaFIT, borealis, branchpointer, BREW3R.r, BSgenomeForge, BUSpaRse, cageminer, CAGEr, cardelino, cBioPortalData, CexoR, cfdnakit, cfDNAPro, cfTools, chipenrich, ChIPexoQual, ChIPseeker, chipseq, ChIPseqR, chromDraw, ChromHeatMap, ChromSCape, chromVAR, cicero, circRNAprofiler, cleanUpdTSeq, CleanUpRNAseq, cliProfiler, CNEr, CNVfilteR, CNViz, CNVMetrics, comapr, coMethDMR, conumee, CopyNumberPlots, CoverageView, crisprBase, crisprBowtie, crisprDesign, CRISPRseek, CrispRVariants, crisprViz, CTexploreR, customProDB, DAMEfinder, Damsel, debrowser, decompTumor2Sig, deconvR, DEFormats, DegCre, DegNorm, deltaCaptureC, derfinder, derfinderPlot, DEWSeq, diffUTR, dinoR, DMRcate, dmrseq, DNAfusion, DominoEffect, doubletrouble, DRIMSeq, DropletUtils, DuplexDiscovereR, easyRNASeq, EDASeq, EDIRquery, eisaR, ELMER, enhancerHomologSearch, epialleleR, EpiCompare, epidecodeR, epigraHMM, EpiMix, epimutacions, epiregulon, epistack, EpiTxDb, epivizr, epivizrData, erma, EventPointer, factR, fcScan, FilterFFPE, fishpond, FLAMES, FRASER, GA4GHclient, gcapc, gDNAx, geneAttribution, GeneGeneInteR, GENESIS, genomation, GenomAutomorphism, genomeIntervals, GenomicAlignments, GenomicDataCommons, GenomicInteractionNodes, GenomicInteractions, GenVisR, geomeTriD, ggbio, gINTomics, GOfuncR, GrafGen, GRaNIE, gwascat, h5vc, heatmaps, hermes, HicAggR, HiCBricks, HiCcompare, HiCExperiment, HiContacts, HiCool, hicVennDiagram, HilbertCurve, HiLDA, hiReadsProcessor, hummingbird, icetea, ideal, idr2d, IMAS, iNETgrate, INSPEcT, ipdDb, IsoformSwitchAnalyzeR, isomiRs, IVAS, karyoploteR, katdetectr, knowYourCG, loci2path, LOLA, LoomExperiment, lumi, MADSEQ, magpie, mariner, mCSEA, MDTS, MEAL, MEDIPS, megadepth, memes, metaseqR2, methInheritSim, methrix, methylCC, methylInheritance, MethylSeekR, methylSig, methylumi, MinimumDistance, MIRA, missMethyl, mitoClone2, MMDiff2, mobileRNA, Modstrings, monaLisa, Moonlight2R, mosaics, Motif2Site, motifbreakR, motifmatchr, MouseFM, MSA2dist, MultiAssayExperiment, multicrispr, MultiDataSet, multiHiCcompare, MungeSumstats, musicatk, NanoMethViz, ncRNAtools, nearBynding, normr, nucleR, nullranges, OGRE, oligoClasses, OmaDB, openPrimeR, OrganismDbi, Organism.dplyr, OUTRIDER, OutSplice, packFinder, pageRank, panelcn.mops, partCNV, PAST, pcaExplorer, pepStat, pgxRpi, PhIPData, PICS, PING, PIPETS, plotgardener, plyinteractions, pqsfinder, pram, prebs, preciseTAD, primirTSS, proActiv, proBAMr, profileplyr, ProteoDisco, PureCN, Pviz, QDNAseq, qpgraph, qsea, Qtlizer, R3CPET, R453Plus1Toolbox, raer, RAIDS, RareVariantVis, RCAS, RcisTarget, recount, recount3, regionalpcs, regioneR, regionReport, regutools, REMP, Repitools, RESOLVE, rfPred, rGADEM, RgnTX, Rhisat2, RiboCrypt, RiboDiPA, RiboProfiling, Rmmquant, rmspc, rnaEditr, RNAmodR.AlkAnilineSeq, RNAmodR.ML, RNAmodR.RiboMethSeq, roar, RTCGAToolbox, saseR, scanMiR, scanMiRApp, scDblFinder, scmeth, scoreInvHap, scPipe, scRNAseqApp, scruff, scuttle, segmenter, seq2pathway, SeqArray, seqPattern, seqsetvis, SeqSQC, SeqVarTools, sesame, sevenC, shinyepico, ShortRead, signeR, SigsPack, SimFFPE, SingleCellExperiment, sitadela, snapcount, soGGi, SOMNiBUS, SparseSignatures, spatzie, SpectralTAD, SpliceWiz, SplicingGraphs, SPLINTER, strandCheckR, syntenet, systemPipeR, TAPseq, target, TCGAbiolinks, TCGAutils, TCseq, TDbasedUFE, TDbasedUFEadv, TENxIO, terraTCGAdata, TFARM, TFBSTools, TFEA.ChIP, TFHAZ, tidybulk, tidyCoverage, TitanCNA, tLOH, tracktables, transcriptR, transite, TRESS, tricycle, triplex, TVTB, txcutr, tximeta, Ularcirc, UMI4Cats, uncoverappLib, Uniquorn, UPDhmm, VariantFiltering, VaSP, VCFArray, wiggleplotr, xcore, XNAString, ZygosityPredictor, BioMartGOGeneSets, fitCons.UCSC.hg19, MafDb.1Kgenomes.phase1.GRCh38, MafDb.1Kgenomes.phase1.hs37d5, MafDb.1Kgenomes.phase3.GRCh38, MafDb.1Kgenomes.phase3.hs37d5, MafDb.ExAC.r1.0.GRCh38, MafDb.ExAC.r1.0.hs37d5, MafDb.ExAC.r1.0.nonTCGA.GRCh38, MafDb.ExAC.r1.0.nonTCGA.hs37d5, MafDb.gnomAD.r2.1.GRCh38, MafDb.gnomAD.r2.1.hs37d5, MafDb.gnomADex.r2.1.GRCh38, MafDb.gnomADex.r2.1.hs37d5, MafDb.TOPMed.freeze5.hg19, MafDb.TOPMed.freeze5.hg38, MafH5.gnomAD.v4.0.GRCh38, phastCons100way.UCSC.hg19, phastCons100way.UCSC.hg38, phastCons7way.UCSC.hg38, SNPlocs.Hsapiens.dbSNP144.GRCh37, SNPlocs.Hsapiens.dbSNP144.GRCh38, SNPlocs.Hsapiens.dbSNP149.GRCh38, SNPlocs.Hsapiens.dbSNP150.GRCh38, SNPlocs.Hsapiens.dbSNP155.GRCh37, SNPlocs.Hsapiens.dbSNP155.GRCh38, TENET.AnnotationHub, XtraSNPlocs.Hsapiens.dbSNP144.GRCh37, XtraSNPlocs.Hsapiens.dbSNP144.GRCh38, BioPlex, biscuiteerData, chipenrich.data, COSMIC.67, ELMER.data, fourDNData, GenomicDistributionsData, leeBamViews, mCSEAdata, MethylSeqData, pepDat, scMultiome, scRNAseq, sesameData, SomaticCancerAlterations, spatialLIBD, TumourMethData, VariantToolsData, ExpHunterSuite, recountWorkflow, seqpac, TCGAWorkflow, cinaR, cpp11bigwig, crispRdesignR, driveR, geneHapR, geno2proteo, GenoPop, hahmmr, hoardeR, ICAMS, karyotapR, locuszoomr, lolliplot, LoopRig, MAAPER, MitoHEAR, MOCHA, noisyr, numbat, oncoPredict, PACVr, RapidoPGS, revert, scPloidy, Signac, simMP, VALERIE suggestsMe: AlphaMissenseR, AnnotationHub, autonomics, biobroom, BiocGenerics, BiocParallel, Chicago, ComplexHeatmap, cummeRbund, DFplyr, epivizrChart, GenomeInfoDb, ggmanh, Glimma, GSReg, GWASTools, HDF5Array, InteractiveComplexHeatmap, interactiveDisplay, IRanges, iSEE, lute, maftools, MiRaGE, MIRit, omicsPrint, parglms, recountmethylation, RTCGA, S4Vectors, SeqGSEA, shiny.gosling, splatter, TFutils, universalmotif, updateObject, alternativeSplicingEvents.hg19, alternativeSplicingEvents.hg38, CTCF, GenomicState, BeadArrayUseCases, GeuvadisTranscriptExpr, MetaScope, nanotubes, RNAmodR.Data, Single.mTEC.Transcriptomes, systemPipeRdata, xcoredata, CAGEWorkflow, chicane, DGEobj, gkmSVM, MARVEL, polyRAD, Rgff, rliger, seqmagick, Seurat, sigminer, SNPassoc, updog, valr dependencyCount: 22 Package: GenomicScores Version: 2.18.0 Depends: R (>= 3.5), S4Vectors (>= 0.7.21), GenomicRanges, methods, BiocGenerics (>= 0.13.8) Imports: stats, utils, XML, httr, Biobase, BiocManager, BiocFileCache, IRanges (>= 2.3.23), Biostrings, GenomeInfoDb, AnnotationHub, rhdf5, DelayedArray, HDF5Array Suggests: RUnit, BiocStyle, knitr, rmarkdown, VariantAnnotation, gwascat, RColorBrewer, shiny, shinyjs, shinycustomloader, data.table, DT, magrittr, shinydashboard, BSgenome.Hsapiens.UCSC.hg38, phastCons100way.UCSC.hg38, MafDb.1Kgenomes.phase1.hs37d5, MafH5.gnomAD.v4.0.GRCh38, SNPlocs.Hsapiens.dbSNP144.GRCh37, TxDb.Hsapiens.UCSC.hg38.knownGene License: Artistic-2.0 MD5sum: 9ca3e21913a73d4e1cacfff4e0e72fb8 NeedsCompilation: no Title: Infrastructure to work with genomewide position-specific scores Description: Provide infrastructure to store and access genomewide position-specific scores within R and Bioconductor. biocViews: Infrastructure, Genetics, Annotation, Sequencing, Coverage, AnnotationHubSoftware Author: Robert Castelo [aut, cre], Pau Puigdevall [ctb], Pablo Rodríguez [ctb] Maintainer: Robert Castelo URL: https://github.com/rcastelo/GenomicScores VignetteBuilder: knitr BugReports: https://github.com/rcastelo/GenomicScores/issues git_url: https://git.bioconductor.org/packages/GenomicScores git_branch: RELEASE_3_20 git_last_commit: 8088f9b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenomicScores_2.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomicScores_2.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomicScores_2.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomicScores_2.18.0.tgz vignettes: vignettes/GenomicScores/inst/doc/GenomicScores.html vignetteTitles: An introduction to the GenomicScores package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenomicScores/inst/doc/GenomicScores.R dependsOnMe: AlphaMissense.v2023.hg19, AlphaMissense.v2023.hg38, cadd.v1.6.hg19, cadd.v1.6.hg38, fitCons.UCSC.hg19, MafDb.1Kgenomes.phase1.GRCh38, MafDb.1Kgenomes.phase1.hs37d5, MafDb.1Kgenomes.phase3.GRCh38, MafDb.1Kgenomes.phase3.hs37d5, MafDb.ExAC.r1.0.GRCh38, MafDb.ExAC.r1.0.hs37d5, MafDb.ExAC.r1.0.nonTCGA.GRCh38, MafDb.ExAC.r1.0.nonTCGA.hs37d5, MafDb.gnomAD.r2.1.GRCh38, MafDb.gnomAD.r2.1.hs37d5, MafDb.gnomADex.r2.1.GRCh38, MafDb.gnomADex.r2.1.hs37d5, MafDb.TOPMed.freeze5.hg19, MafDb.TOPMed.freeze5.hg38, MafH5.gnomAD.v4.0.GRCh38, phastCons100way.UCSC.hg19, phastCons100way.UCSC.hg38, phastCons30way.UCSC.hg38, phastCons35way.UCSC.mm39, phastCons7way.UCSC.hg38, phyloP35way.UCSC.mm39 importsMe: appreci8R, ATACseqQC, primirTSS, RareVariantVis, VariantFiltering suggestsMe: methrix dependencyCount: 81 Package: GenomicSuperSignature Version: 1.14.0 Depends: R (>= 4.1.0), SummarizedExperiment Imports: ComplexHeatmap, ggplot2, methods, S4Vectors, Biobase, ggpubr, dplyr, plotly, BiocFileCache, grid, flextable, irlba Suggests: knitr, rmarkdown, devtools, roxygen2, pkgdown, usethis, BiocStyle, testthat, forcats, stats, wordcloud, circlize, EnrichmentBrowser, clusterProfiler, msigdbr, cluster, RColorBrewer, reshape2, tibble, BiocManager, bcellViper, readr, utils License: Artistic-2.0 Archs: x64 MD5sum: efa8078ab97b7a012aeed34e7e966e9e NeedsCompilation: no Title: Interpretation of RNA-seq experiments through robust, efficient comparison to public databases Description: This package provides a novel method for interpreting new transcriptomic datasets through near-instantaneous comparison to public archives without high-performance computing requirements. Through the pre-computed index, users can identify public resources associated with their dataset such as gene sets, MeSH term, and publication. Functions to identify interpretable annotations and intuitive visualization options are implemented in this package. biocViews: Transcriptomics, SystemsBiology, PrincipalComponent, RNASeq, Sequencing, Pathways, Clustering Author: Sehyun Oh [aut, cre], Levi Waldron [aut], Sean Davis [aut] Maintainer: Sehyun Oh URL: https://github.com/shbrief/GenomicSuperSignature VignetteBuilder: knitr BugReports: https://github.com/shbrief/GenomicSuperSignature/issues git_url: https://git.bioconductor.org/packages/GenomicSuperSignature git_branch: RELEASE_3_20 git_last_commit: 42a9dcd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenomicSuperSignature_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomicSuperSignature_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomicSuperSignature_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomicSuperSignature_1.14.0.tgz vignettes: vignettes/GenomicSuperSignature/inst/doc/Contents.html, vignettes/GenomicSuperSignature/inst/doc/Quickstart.html vignetteTitles: Introduction on RAVmodel, Quickstart hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenomicSuperSignature/inst/doc/Contents.R, vignettes/GenomicSuperSignature/inst/doc/Quickstart.R dependencyCount: 163 Package: GenomicTuples Version: 1.40.0 Depends: R (>= 4.0), GenomicRanges (>= 1.37.4), GenomeInfoDb (>= 1.15.2), S4Vectors (>= 0.17.25) Imports: methods, BiocGenerics (>= 0.21.2), Rcpp (>= 0.11.2), IRanges (>= 2.19.13), data.table, stats4, stats, utils LinkingTo: Rcpp Suggests: testthat, knitr, BiocStyle, rmarkdown, covr, GenomicAlignments, Biostrings License: Artistic-2.0 MD5sum: 5169bf3e778f72a79c992445d8555b0c NeedsCompilation: yes Title: Representation and Manipulation of Genomic Tuples Description: GenomicTuples defines general purpose containers for storing genomic tuples. It aims to provide functionality for tuples of genomic co-ordinates that are analogous to those available for genomic ranges in the GenomicRanges Bioconductor package. biocViews: Infrastructure, DataRepresentation, Sequencing Author: Peter Hickey [aut, cre], Marcin Cieslik [ctb], Hervé Pagès [ctb] Maintainer: Peter Hickey URL: www.github.com/PeteHaitch/GenomicTuples VignetteBuilder: knitr BugReports: https://github.com/PeteHaitch/GenomicTuples/issues git_url: https://git.bioconductor.org/packages/GenomicTuples git_branch: RELEASE_3_20 git_last_commit: f2af7e6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenomicTuples_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenomicTuples_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenomicTuples_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenomicTuples_1.40.0.tgz vignettes: vignettes/GenomicTuples/inst/doc/GenomicTuplesIntroduction.html vignetteTitles: GenomicTuplesIntroduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenomicTuples/inst/doc/GenomicTuplesIntroduction.R dependencyCount: 25 Package: GenProSeq Version: 1.10.0 Depends: keras, mclust, R (>= 4.2) Imports: tensorflow, word2vec, DeepPINCS, ttgsea, CatEncoders, reticulate, stats Suggests: VAExprs, stringdist, knitr, testthat, rmarkdown License: Artistic-2.0 MD5sum: a32d030b971c3014f578dd24c9ca4858 NeedsCompilation: no Title: Generating Protein Sequences with Deep Generative Models Description: Generative modeling for protein engineering is key to solving fundamental problems in synthetic biology, medicine, and material science. Machine learning has enabled us to generate useful protein sequences on a variety of scales. Generative models are machine learning methods which seek to model the distribution underlying the data, allowing for the generation of novel samples with similar properties to those on which the model was trained. Generative models of proteins can learn biologically meaningful representations helpful for a variety of downstream tasks. Furthermore, they can learn to generate protein sequences that have not been observed before and to assign higher probability to protein sequences that satisfy desired criteria. In this package, common deep generative models for protein sequences, such as variational autoencoder (VAE), generative adversarial networks (GAN), and autoregressive models are available. In the VAE and GAN, the Word2vec is used for embedding. The transformer encoder is applied to protein sequences for the autoregressive model. biocViews: Software, Proteomics Author: Dongmin Jung [cre, aut] () Maintainer: Dongmin Jung VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GenProSeq git_branch: RELEASE_3_20 git_last_commit: 5a971fe git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenProSeq_1.10.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenProSeq_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenProSeq_1.10.0.tgz vignettes: vignettes/GenProSeq/inst/doc/GenProSeq.html vignetteTitles: GenProSeq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GenProSeq/inst/doc/GenProSeq.R dependencyCount: 149 Package: GenVisR Version: 1.38.0 Depends: R (>= 3.3.0), methods Imports: AnnotationDbi, biomaRt (>= 2.45.8), BiocGenerics, Biostrings, DBI, GenomicFeatures, GenomicRanges (>= 1.25.4), ggplot2 (>= 2.1.0), gridExtra (>= 2.0.0), gtable, gtools, IRanges (>= 2.7.5), plyr (>= 1.8.3), reshape2, Rsamtools, scales, viridis, data.table, BSgenome, GenomeInfoDb, VariantAnnotation Suggests: BiocStyle, BSgenome.Hsapiens.UCSC.hg19, knitr, RMySQL, roxygen2, testthat, TxDb.Hsapiens.UCSC.hg19.knownGene, rmarkdown, vdiffr, formatR, TxDb.Hsapiens.UCSC.hg38.knownGene, BSgenome.Hsapiens.UCSC.hg38 License: GPL-3 + file LICENSE MD5sum: 80e65c64b1130682ef831f38e4d9227a NeedsCompilation: no Title: Genomic Visualizations in R Description: Produce highly customizable publication quality graphics for genomic data primarily at the cohort level. biocViews: Infrastructure, DataRepresentation, Classification, DNASeq Author: Zachary Skidmore [aut, cre], Alex Wagner [aut], Robert Lesurf [aut], Katie Campbell [aut], Jason Kunisaki [aut], Obi Griffith [aut], Malachi Griffith [aut] Maintainer: Zachary Skidmore VignetteBuilder: knitr BugReports: https://github.com/griffithlab/GenVisR/issues git_url: https://git.bioconductor.org/packages/GenVisR git_branch: RELEASE_3_20 git_last_commit: 84e2b21 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GenVisR_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GenVisR_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GenVisR_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GenVisR_1.38.0.tgz vignettes: vignettes/GenVisR/inst/doc/Intro.html, vignettes/GenVisR/inst/doc/waterfall_introduction.html vignetteTitles: GenVisR: An introduction, waterfall: function introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GenVisR/inst/doc/Intro.R, vignettes/GenVisR/inst/doc/waterfall_introduction.R dependencyCount: 124 Package: GeoDiff Version: 1.12.0 Depends: R (>= 4.1.0), Biobase Imports: Matrix, robust, plyr, lme4, Rcpp (>= 1.0.4.6), withr, methods, graphics, stats, testthat, GeomxTools, NanoStringNCTools LinkingTo: Rcpp, RcppArmadillo, roptim Suggests: knitr, rmarkdown, dplyr License: MIT + file LICENSE Archs: x64 MD5sum: a3c5d6ea2abd61fa18c86ed57e6a5432 NeedsCompilation: yes Title: Count model based differential expression and normalization on GeoMx RNA data Description: A series of statistical models using count generating distributions for background modelling, feature and sample QC, normalization and differential expression analysis on GeoMx RNA data. The application of these methods are demonstrated by example data analysis vignette. biocViews: GeneExpression, DifferentialExpression, Normalization Author: Nicole Ortogero [cre], Lei Yang [aut], Zhi Yang [aut] Maintainer: Nicole Ortogero URL: https://github.com/Nanostring-Biostats/GeoDiff VignetteBuilder: knitr BugReports: https://github.com/Nanostring-Biostats/GeoDiff git_url: https://git.bioconductor.org/packages/GeoDiff git_branch: RELEASE_3_20 git_last_commit: 7713c2b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeoDiff_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeoDiff_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeoDiff_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeoDiff_1.12.0.tgz vignettes: vignettes/GeoDiff/inst/doc/Workflow_WTA_kidney.html vignetteTitles: Workflow_WTA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GeoDiff/inst/doc/Workflow_WTA_kidney.R dependencyCount: 150 Package: GEOexplorer Version: 1.12.0 Depends: shiny, limma, Biobase, plotly, enrichR, R (>= 4.1.0) Imports: DT, XML, httr, sva, xfun, edgeR, htmltools, factoextra, heatmaply, pheatmap, scales, shinyHeatmaply, shinybusy, ggplot2, stringr, umap, GEOquery, impute, grDevices, stats, graphics, markdown, knitr, utils, xml2, R.utils, readxl, shinycssloaders, car Suggests: rmarkdown, usethis, testthat (>= 3.0.0) License: GPL-3 MD5sum: 4c551b3a32be33591646d06feae085b9 NeedsCompilation: no Title: GEOexplorer: a webserver for gene expression analysis and visualisation Description: GEOexplorer is a webserver and R/Bioconductor package and web application that enables users to perform gene expression analysis. The development of GEOexplorer was made possible because of the excellent code provided by GEO2R (https: //www.ncbi.nlm.nih.gov/geo/geo2r/). biocViews: Software, GeneExpression, mRNAMicroarray, DifferentialExpression, Microarray, MicroRNAArray, Transcriptomics, RNASeq Author: Guy Hunt [aut, cre] (), Rafael Henkin [ctb, ths] (), Alfredo Iacoangeli [ctb, ths] (), Fabrizio Smeraldi [ctb, ths] (), Michael Barnes [ctb, ths] () Maintainer: Guy Hunt URL: https://github.com/guypwhunt/GEOexplorer/ VignetteBuilder: knitr BugReports: https://github.com/guypwhunt/GEOexplorer/issues git_url: https://git.bioconductor.org/packages/GEOexplorer git_branch: RELEASE_3_20 git_last_commit: 2b234ee git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GEOexplorer_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GEOexplorer_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GEOexplorer_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GEOexplorer_1.11.0.tgz vignettes: vignettes/GEOexplorer/inst/doc/GEOexplorer.html vignetteTitles: GEOexplorer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GEOexplorer/inst/doc/GEOexplorer.R dependencyCount: 225 Package: GEOfastq Version: 1.14.0 Imports: xml2, rvest, stringr, RCurl, doParallel, foreach, plyr Suggests: BiocCheck, roxygen2, knitr, rmarkdown, testthat License: MIT + file LICENSE Archs: x64 MD5sum: a47fe421885d917b2bf5ad557778d5fb NeedsCompilation: no Title: Downloads ENA Fastqs With GEO Accessions Description: GEOfastq is used to download fastq files from the European Nucleotide Archive (ENA) starting with an accession from the Gene Expression Omnibus (GEO). To do this, sample metadata is retrieved from GEO and the Sequence Read Archive (SRA). SRA run accessions are then used to construct FTP and aspera download links for fastq files generated by the ENA. biocViews: RNASeq, DataImport Author: Alex Pickering [cre, aut] () Maintainer: Alex Pickering VignetteBuilder: knitr BugReports: https://github.com/alexvpickering/GEOfastq/issues git_url: https://git.bioconductor.org/packages/GEOfastq git_branch: RELEASE_3_20 git_last_commit: b5fd027 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GEOfastq_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GEOfastq_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GEOfastq_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GEOfastq_1.14.0.tgz vignettes: vignettes/GEOfastq/inst/doc/GEOfastq.html vignetteTitles: Using the GEOfastq Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GEOfastq/inst/doc/GEOfastq.R dependencyCount: 38 Package: GEOmetadb Version: 1.68.1 Depends: R.utils,RSQLite Suggests: knitr, rmarkdown, dplyr, dbplyr, tm, wordcloud License: Artistic-2.0 MD5sum: 3d42478fe4653fd83a4e45685937e42b NeedsCompilation: no Title: A compilation of metadata from NCBI GEO Description: The NCBI Gene Expression Omnibus (GEO) represents the largest public repository of microarray data. However, finding data of interest can be challenging using current tools. GEOmetadb is an attempt to make access to the metadata associated with samples, platforms, and datasets much more feasible. This is accomplished by parsing all the NCBI GEO metadata into a SQLite database that can be stored and queried locally. GEOmetadb is simply a thin wrapper around the SQLite database along with associated documentation. Finally, the SQLite database is updated regularly as new data is added to GEO and can be downloaded at will for the most up-to-date metadata. GEOmetadb paper: http://bioinformatics.oxfordjournals.org/cgi/content/short/24/23/2798 . biocViews: Infrastructure Author: Jack Zhu and Sean Davis Maintainer: Jack Zhu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GEOmetadb git_branch: RELEASE_3_20 git_last_commit: a842cf8 git_last_commit_date: 2024-12-10 Date/Publication: 2024-12-12 source.ver: src/contrib/GEOmetadb_1.68.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/GEOmetadb_1.68.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GEOmetadb_1.68.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GEOmetadb_1.68.1.tgz vignettes: vignettes/GEOmetadb/inst/doc/GEOmetadb.html vignetteTitles: GEOmetadb hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GEOmetadb/inst/doc/GEOmetadb.R suggestsMe: antiProfilesData, maGUI dependencyCount: 23 Package: geomeTriD Version: 1.0.0 Depends: R (>= 4.4.0) Imports: BiocGenerics, GenomeInfoDb, GenomicRanges, graphics, grDevices, grid, htmlwidgets, igraph, InteractionSet, IRanges, MASS, Matrix, methods, plotrix, rgl, rjson, S4Vectors, scales, stats, trackViewer Suggests: RUnit, org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg19.knownGene, manipulateWidget, shiny, BiocStyle, knitr, rmarkdown, testthat License: MIT + file LICENSE MD5sum: 6092ecf8968b1166fd6bfe30e6858dd6 NeedsCompilation: no Title: A R/Bioconductor package for interactive 3D plot of epigenetic data or single cell data Description: geomeTriD (Three Dimensional Geometry Package) create interactive 3D plots using the GL library with the 'three.js' visualization library (https://threejs.org) or the rgl library. In addition to creating interactive 3D plots, the application also generates simplified models in 2D. These 2D models provide a more straightforward visual representation, making it easier to analyze and interpret the data quickly. This functionality ensures that users have access to both detailed three-dimensional visualizations and more accessible two-dimensional views, catering to various analytical needs. biocViews: Visualization Author: Jianhong Ou [aut, cre] () Maintainer: Jianhong Ou URL: https://github.com/jianhong/geomeTriD VignetteBuilder: knitr BugReports: https://github.com/jianhong/geomeTriD/issues git_url: https://git.bioconductor.org/packages/geomeTriD git_branch: RELEASE_3_20 git_last_commit: 30e2f2e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/geomeTriD_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/geomeTriD_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/geomeTriD_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/geomeTriD_1.0.0.tgz vignettes: vignettes/geomeTriD/inst/doc/geomeTriD.html vignetteTitles: geomeTriD Vignette: Plot data in 3D hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/geomeTriD/inst/doc/geomeTriD.R dependencyCount: 168 Package: GeomxTools Version: 3.10.0 Depends: R (>= 3.6), Biobase, NanoStringNCTools, S4Vectors Imports: BiocGenerics, rjson, readxl, EnvStats, reshape2, methods, utils, stats, data.table, lmerTest, dplyr, stringr, grDevices, graphics, GGally, rlang, ggplot2, SeuratObject Suggests: rmarkdown, knitr, testthat (>= 3.0.0), parallel, ggiraph, Seurat, SpatialExperiment (>= 1.4.0), SpatialDecon, patchwork License: MIT MD5sum: aa853eaa64a4d45a48c8c825136eae3d NeedsCompilation: no Title: NanoString GeoMx Tools Description: Tools for NanoString Technologies GeoMx Technology. Package provides functions for reading in DCC and PKC files based on an ExpressionSet derived object. Normalization and QC functions are also included. biocViews: GeneExpression, Transcription, CellBasedAssays, DataImport, Transcriptomics, Proteomics, mRNAMicroarray, ProprietaryPlatforms, RNASeq, Sequencing, ExperimentalDesign, Normalization, Spatial Author: Maddy Griswold [cre, aut], Nicole Ortogero [aut], Zhi Yang [aut], Ronalyn Vitancol [aut], David Henderson [aut] Maintainer: Maddy Griswold VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GeomxTools git_branch: RELEASE_3_20 git_last_commit: 234c5d0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/GeomxTools_3.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeomxTools_3.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeomxTools_3.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeomxTools_3.9.1.tgz vignettes: vignettes/GeomxTools/inst/doc/Developer_Introduction_to_the_NanoStringGeoMxSet.html, vignettes/GeomxTools/inst/doc/GeomxSet_coercions.html, vignettes/GeomxTools/inst/doc/Protein_in_GeomxTools.html vignetteTitles: Developer Introduction to the NanoStringGeoMxSet, Coercion of GeoMxSet to Seurat and SpatialExperiment Objects, Protein data using GeomxTools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GeomxTools/inst/doc/Developer_Introduction_to_the_NanoStringGeoMxSet.R, vignettes/GeomxTools/inst/doc/GeomxSet_coercions.R, vignettes/GeomxTools/inst/doc/Protein_in_GeomxTools.R dependsOnMe: GeoMxWorkflows importsMe: GeoDiff, SpatialDecon, SpatialOmicsOverlay dependencyCount: 128 Package: GEOquery Version: 2.74.0 Depends: methods, Biobase Imports: readr (>= 1.3.1), xml2, dplyr, data.table, tidyr, magrittr, limma, curl, rentrez, R.utils, stringr, SummarizedExperiment, S4Vectors, rvest, httr2 Suggests: knitr, rmarkdown, BiocGenerics, testthat, covr, markdown License: MIT + file LICENSE MD5sum: ce6364a7f5cc1085e48a8639e7afba50 NeedsCompilation: no Title: Get data from NCBI Gene Expression Omnibus (GEO) Description: The NCBI Gene Expression Omnibus (GEO) is a public repository of microarray data. Given the rich and varied nature of this resource, it is only natural to want to apply BioConductor tools to these data. GEOquery is the bridge between GEO and BioConductor. biocViews: Microarray, DataImport, OneChannel, TwoChannel, SAGE Author: Sean Davis [aut, cre] () Maintainer: Sean Davis URL: https://github.com/seandavi/GEOquery, http://seandavi.github.io/GEOquery, http://seandavi.github.io/GEOquery/ VignetteBuilder: knitr BugReports: https://github.com/seandavi/GEOquery/issues/new git_url: https://git.bioconductor.org/packages/GEOquery git_branch: RELEASE_3_20 git_last_commit: c85b111 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GEOquery_2.74.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GEOquery_2.74.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GEOquery_2.74.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GEOquery_2.74.0.tgz vignettes: vignettes/GEOquery/inst/doc/GEOquery.html vignetteTitles: Using GEOquery hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GEOquery/inst/doc/GEOquery.R dependsOnMe: DrugVsDisease, SCAN.UPC, dyebiasexamples, GSE103322, GSE13015, GSE62944 importsMe: bigmelon, ChIPXpress, DExMA, EGAD, GEOexplorer, minfi, Moonlight2R, MoonlightR, phantasus, recount, BeadArrayUseCases, BioPlex, GSE13015, healthyControlsPresenceChecker, easyDifferentialGeneCoexpression, geneExpressionFromGEO, RCPA, seeker suggestsMe: AUCell, autonomics, COTAN, ctsGE, dearseq, debCAM, diffcoexp, dyebias, EpiDISH, EpiMix, fgsea, FLAMES, GeneExpressionSignature, GenomicOZone, GeoTcgaData, methylclock, multiClust, MultiDataSet, omicsPrint, PCAtools, phantasusLite, quantiseqr, RegEnrich, RGSEA, Rnits, runibic, skewr, spatialHeatmap, TargetScore, zFPKM, ath1121501frmavecs, airway, antiProfilesData, muscData, parathyroidSE, prostateCancerCamcap, prostateCancerGrasso, prostateCancerStockholm, prostateCancerTaylor, prostateCancerVarambally, RegParallel, AnnoProbe, BED, easybio, fdrci, maGUI, metaMA, MLML2R, NACHO, TcGSA, tinyarray dependencyCount: 78 Package: GEOsubmission Version: 1.58.0 Imports: affy, Biobase, utils License: GPL (>= 2) MD5sum: 3feade6905874636f47697d1a9f30595 NeedsCompilation: no Title: Prepares microarray data for submission to GEO Description: Helps to easily submit a microarray dataset and the associated sample information to GEO by preparing a single file for upload (direct deposit). biocViews: Microarray Author: Alexandre Kuhn Maintainer: Alexandre Kuhn git_url: https://git.bioconductor.org/packages/GEOsubmission git_branch: RELEASE_3_20 git_last_commit: 2c2d35f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GEOsubmission_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GEOsubmission_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GEOsubmission_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GEOsubmission_1.58.0.tgz vignettes: vignettes/GEOsubmission/inst/doc/GEOsubmission.pdf vignetteTitles: GEOsubmission Overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GEOsubmission/inst/doc/GEOsubmission.R dependencyCount: 12 Package: GeoTcgaData Version: 2.6.0 Depends: R (>= 4.2.0) Imports: utils, data.table, plyr, cqn, topconfects, stats, SummarizedExperiment, methods Suggests: knitr, rmarkdown, DESeq2, S4Vectors, ChAMP, impute, tidyr, clusterProfiler, org.Hs.eg.db, edgeR, limma, quantreg, minfi, IlluminaHumanMethylation450kanno.ilmn12.hg19, dearseq, NOISeq, testthat (>= 3.0.0), CATT, TCGAbiolinks, enrichplot, GEOquery, BiocGenerics License: Artistic-2.0 MD5sum: e666c601fc82d083681c9a74e6f43bd6 NeedsCompilation: no Title: Processing Various Types of Data on GEO and TCGA Description: Gene Expression Omnibus(GEO) and The Cancer Genome Atlas (TCGA) provide us with a wealth of data, such as RNA-seq, DNA Methylation, SNP and Copy number variation data. It's easy to download data from TCGA using the gdc tool, but processing these data into a format suitable for bioinformatics analysis requires more work. This R package was developed to handle these data. biocViews: GeneExpression, DifferentialExpression, RNASeq, CopyNumberVariation, Microarray, Software, DNAMethylation, DifferentialMethylation, SNP, ATACSeq, MethylationArray Author: Erqiang Hu [aut, cre] () Maintainer: Erqiang Hu <13766876214@163.com> URL: https://github.com/YuLab-SMU/GeoTcgaData VignetteBuilder: knitr BugReports: https://github.com/YuLab-SMU/GeoTcgaData/issues git_url: https://git.bioconductor.org/packages/GeoTcgaData git_branch: RELEASE_3_20 git_last_commit: 786889f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GeoTcgaData_2.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GeoTcgaData_2.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GeoTcgaData_2.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GeoTcgaData_2.6.0.tgz vignettes: vignettes/GeoTcgaData/inst/doc/GeoTcgaData.html vignetteTitles: GeoTcgaData hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GeoTcgaData/inst/doc/GeoTcgaData.R dependencyCount: 74 Package: gep2pep Version: 1.26.0 Imports: repo (>= 2.1.1), foreach, stats, utils, GSEABase, methods, Biobase, XML, rhdf5, digest, iterators Suggests: WriteXLS, testthat, knitr, rmarkdown License: GPL-3 MD5sum: b8045fd5dedd9cd25f0266817795fb6d NeedsCompilation: no Title: Creation and Analysis of Pathway Expression Profiles (PEPs) Description: Pathway Expression Profiles (PEPs) are based on the expression of pathways (defined as sets of genes) as opposed to individual genes. This package converts gene expression profiles to PEPs and performs enrichment analysis of both pathways and experimental conditions, such as "drug set enrichment analysis" and "gene2drug" drug discovery analysis respectively. biocViews: GeneExpression, DifferentialExpression, GeneSetEnrichment, DimensionReduction, Pathways, GO Author: Francesco Napolitano Maintainer: Francesco Napolitano VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/gep2pep git_branch: RELEASE_3_20 git_last_commit: 6d56a56 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gep2pep_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gep2pep_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gep2pep_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gep2pep_1.26.0.tgz vignettes: vignettes/gep2pep/inst/doc/vignette.html vignetteTitles: Introduction to gep2pep hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gep2pep/inst/doc/vignette.R dependencyCount: 58 Package: getDEE2 Version: 1.16.0 Depends: R (>= 4.0) Imports: stats, utils, SummarizedExperiment, htm2txt Suggests: knitr, testthat, rmarkdown License: GPL-3 MD5sum: de5f9b90fe00b79fea973088dca042fe NeedsCompilation: no Title: Programmatic access to the DEE2 RNA expression dataset Description: Digital Expression Explorer 2 (or DEE2 for short) is a repository of processed RNA-seq data in the form of counts. It was designed so that researchers could undertake re-analysis and meta-analysis of published RNA-seq studies quickly and easily. As of April 2020, over 1 million SRA datasets have been processed. This package provides an R interface to access these expression data. More information about the DEE2 project can be found at the project homepage (http://dee2.io) and main publication (https://doi.org/10.1093/gigascience/giz022). biocViews: GeneExpression, Transcriptomics, Sequencing Author: Mark Ziemann [aut, cre], Antony Kaspi [aut] Maintainer: Mark Ziemann URL: https://github.com/markziemann/getDEE2 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/getDEE2 git_branch: RELEASE_3_20 git_last_commit: a328347 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/getDEE2_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/getDEE2_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/getDEE2_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/getDEE2_1.16.0.tgz vignettes: vignettes/getDEE2/inst/doc/getDEE2.html vignetteTitles: getDEE2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/getDEE2/inst/doc/getDEE2.R importsMe: homosapienDEE2CellScore dependencyCount: 37 Package: geva Version: 1.14.0 Depends: R (>= 4.1) Imports: grDevices, graphics, methods, stats, utils, dbscan, fastcluster, matrixStats Suggests: devtools, knitr, rmarkdown, roxygen2, limma, topGO, testthat (>= 3.0.0) License: LGPL-3 MD5sum: 4367f4a5c6e06d2241d403a920b73e18 NeedsCompilation: no Title: Gene Expression Variation Analysis (GEVA) Description: Statistic methods to evaluate variations of differential expression (DE) between multiple biological conditions. It takes into account the fold-changes and p-values from previous differential expression (DE) results that use large-scale data (*e.g.*, microarray and RNA-seq) and evaluates which genes would react in response to the distinct experiments. This evaluation involves an unique pipeline of statistical methods, including weighted summarization, quantile detection, cluster analysis, and ANOVA tests, in order to classify a subset of relevant genes whose DE is similar or dependent to certain biological factors. biocViews: Classification, DifferentialExpression, GeneExpression, Microarray, MultipleComparison, RNASeq, SystemsBiology, Transcriptomics Author: Itamar José Guimarães Nunes [aut, cre] (), Murilo Zanini David [ctb], Bruno César Feltes [ctb] (), Marcio Dorn [ctb] () Maintainer: Itamar José Guimarães Nunes URL: https://github.com/sbcblab/geva VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/geva git_branch: RELEASE_3_20 git_last_commit: ed3a38a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/geva_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/geva_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/geva_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/geva_1.14.0.tgz vignettes: vignettes/geva/inst/doc/geva.pdf vignetteTitles: GEVA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/geva/inst/doc/geva.R dependencyCount: 10 Package: GEWIST Version: 1.50.0 Depends: R (>= 2.10), car License: GPL-2 MD5sum: 930a8d333795fde8f0bd0299b6db5b7d NeedsCompilation: no Title: Gene Environment Wide Interaction Search Threshold Description: This 'GEWIST' package provides statistical tools to efficiently optimize SNP prioritization for gene-gene and gene-environment interactions. biocViews: MultipleComparison, Genetics Author: Wei Q. Deng, Guillaume Pare Maintainer: Wei Q. Deng git_url: https://git.bioconductor.org/packages/GEWIST git_branch: RELEASE_3_20 git_last_commit: be12173 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GEWIST_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GEWIST_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GEWIST_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GEWIST_1.50.0.tgz vignettes: vignettes/GEWIST/inst/doc/GEWIST.pdf vignetteTitles: GEWIST.pdf hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GEWIST/inst/doc/GEWIST.R dependencyCount: 69 Package: gg4way Version: 1.4.0 Depends: R (>= 4.3.0), ggplot2 Imports: DESeq2, dplyr, edgeR, ggrepel, glue, janitor, limma, magrittr, methods, purrr, rlang, scales, stats, stringr, tibble, tidyr Suggests: airway, BiocStyle, knitr, org.Hs.eg.db, rmarkdown, testthat, vdiffr License: MIT + file LICENSE MD5sum: 707ade7d103b74d1c1d71f8e001ea561 NeedsCompilation: no Title: 4way Plots of Differential Expression Description: 4way plots enable a comparison of the logFC values from two contrasts of differential gene expression. The gg4way package creates 4way plots using the ggplot2 framework and supports popular Bioconductor objects. The package also provides information about the correlation between contrasts and significant genes of interest. biocViews: Software, Visualization, DifferentialExpression, GeneExpression, Transcription, RNASeq, SingleCell, Sequencing Author: Benjamin I Laufer [aut, cre], Brad A Friedman [aut] Maintainer: Benjamin I Laufer URL: https://github.com/ben-laufer/gg4way VignetteBuilder: knitr BugReports: https://github.com/ben-laufer/gg4way/issues git_url: https://git.bioconductor.org/packages/gg4way git_branch: RELEASE_3_20 git_last_commit: a3d5bb6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gg4way_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gg4way_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gg4way_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gg4way_1.4.0.tgz vignettes: vignettes/gg4way/inst/doc/gg4way.html vignetteTitles: gg4way hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/gg4way/inst/doc/gg4way.R dependencyCount: 92 Package: ggbio Version: 1.54.0 Depends: methods, BiocGenerics, ggplot2 (>= 1.0.0) Imports: grid, grDevices, graphics, stats, utils, gridExtra, scales, reshape2, gtable, Hmisc, biovizBase (>= 1.29.2), Biobase, S4Vectors (>= 0.13.13), IRanges (>= 2.11.16), GenomeInfoDb (>= 1.1.3), GenomicRanges (>= 1.29.14), SummarizedExperiment, Biostrings, Rsamtools (>= 1.17.28), GenomicAlignments (>= 1.1.16), BSgenome, VariantAnnotation (>= 1.11.4), rtracklayer (>= 1.25.16), GenomicFeatures (>= 1.29.11), OrganismDbi, GGally, ensembldb (>= 1.99.13), AnnotationDbi, AnnotationFilter, rlang Suggests: vsn, BSgenome.Hsapiens.UCSC.hg19, Homo.sapiens, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Mmusculus.UCSC.mm9.knownGene, knitr, BiocStyle, testthat, EnsDb.Hsapiens.v75, tinytex License: Artistic-2.0 MD5sum: c5c9142454e8930f9837b82eefb2477e NeedsCompilation: no Title: Visualization tools for genomic data Description: The ggbio package extends and specializes the grammar of graphics for biological data. The graphics are designed to answer common scientific questions, in particular those often asked of high throughput genomics data. All core Bioconductor data structures are supported, where appropriate. The package supports detailed views of particular genomic regions, as well as genome-wide overviews. Supported overviews include ideograms and grand linear views. High-level plots include sequence fragment length, edge-linked interval to data view, mismatch pileup, and several splicing summaries. biocViews: Infrastructure, Visualization Author: Tengfei Yin [aut], Michael Lawrence [aut, ths, cre], Dianne Cook [aut, ths], Johannes Rainer [ctb] Maintainer: Michael Lawrence URL: https://lawremi.github.io/ggbio/ VignetteBuilder: knitr BugReports: https://github.com/lawremi/ggbio/issues git_url: https://git.bioconductor.org/packages/ggbio git_branch: RELEASE_3_20 git_last_commit: f8a48fa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ggbio_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ggbio_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ggbio_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ggbio_1.54.0.tgz vignettes: vignettes/ggbio/inst/doc/ggbio.pdf vignetteTitles: Part 0: Introduction and quick start hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: CAFE, intansv importsMe: BOBaFIT, cageminer, Damsel, derfinderPlot, FLAMES, GenomicOZone, msgbsR, R3CPET, ReportingTools, RiboProfiling, scruff, SomaticSignatures, OHCA, MOCHA suggestsMe: bambu, beadarray, ensembldb, FRASER, gwascat, interactiveDisplay, NanoStringNCTools, OUTRIDER, regionReport, RnBeads, shiny.gosling, StructuralVariantAnnotation, universalmotif, NanoporeRNASeq, Single.mTEC.Transcriptomes, SomaticCancerAlterations dependencyCount: 162 Package: ggcyto Version: 1.34.0 Depends: methods, ggplot2(>= 3.5.0), flowCore(>= 1.41.5), ncdfFlow(>= 2.17.1), flowWorkspace(>= 4.3.1) Imports: plyr, scales, hexbin, data.table, RColorBrewer, gridExtra, rlang Suggests: testthat, flowWorkspaceData, knitr, rmarkdown, flowStats, openCyto, flowViz, ggridges, vdiffr License: file LICENSE MD5sum: 21deb9ad12806e54f05b1e58aa75f99f NeedsCompilation: no Title: Visualize Cytometry data with ggplot Description: With the dedicated fortify method implemented for flowSet, ncdfFlowSet and GatingSet classes, both raw and gated flow cytometry data can be plotted directly with ggplot. ggcyto wrapper and some customed layers also make it easy to add gates and population statistics to the plot. biocViews: ImmunoOncology, FlowCytometry, CellBasedAssays, Infrastructure, Visualization Author: Mike Jiang Maintainer: Mike Jiang URL: https://github.com/RGLab/ggcyto/issues VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ggcyto git_branch: RELEASE_3_20 git_last_commit: a13f21f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ggcyto_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ggcyto_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ggcyto_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ggcyto_1.34.0.tgz vignettes: vignettes/ggcyto/inst/doc/autoplot.html, vignettes/ggcyto/inst/doc/ggcyto.flowSet.html, vignettes/ggcyto/inst/doc/ggcyto.GatingSet.html, vignettes/ggcyto/inst/doc/Top_features_of_ggcyto.html vignetteTitles: Quick plot for cytometry data, Visualize flowSet with ggcyto, Visualize GatingSet with ggcyto, Feature summary of ggcyto hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ggcyto/inst/doc/autoplot.R, vignettes/ggcyto/inst/doc/ggcyto.flowSet.R, vignettes/ggcyto/inst/doc/ggcyto.GatingSet.R, vignettes/ggcyto/inst/doc/Top_features_of_ggcyto.R dependsOnMe: flowGate importsMe: CytoML, CytoPipeline suggestsMe: CATALYST, flowCore, flowStats, flowTime, flowWorkspace, openCyto dependencyCount: 70 Package: ggkegg Version: 1.4.0 Depends: R (>= 4.3.0), ggplot2, ggraph, XML, igraph, tidygraph Imports: BiocFileCache, GetoptLong, data.table, dplyr, magick, patchwork, shadowtext, stringr, tibble, methods, utils, stats, grDevices, gtable Suggests: knitr, clusterProfiler, bnlearn, rmarkdown, BiocStyle, AnnotationDbi, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: e67f320ba80e9456e60289f919285c14 NeedsCompilation: no Title: Analyzing and visualizing KEGG information using the grammar of graphics Description: This package aims to import, parse, and analyze KEGG data such as KEGG PATHWAY and KEGG MODULE. The package supports visualizing KEGG information using ggplot2 and ggraph through using the grammar of graphics. The package enables the direct visualization of the results from various omics analysis packages. biocViews: Pathways, DataImport, KEGG Author: Noriaki Sato [cre, aut] Maintainer: Noriaki Sato URL: https://github.com/noriakis/ggkegg VignetteBuilder: knitr BugReports: https://github.com/noriakis/ggkegg/issues git_url: https://git.bioconductor.org/packages/ggkegg git_branch: RELEASE_3_20 git_last_commit: 17630e2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ggkegg_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ggkegg_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ggkegg_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ggkegg_1.4.0.tgz vignettes: vignettes/ggkegg/inst/doc/usage_of_ggkegg.html vignetteTitles: ggkegg hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ggkegg/inst/doc/usage_of_ggkegg.R importsMe: pathfindR dependencyCount: 86 Package: ggmanh Version: 1.10.0 Depends: methods, ggplot2 Imports: gdsfmt, ggrepel, grDevices, paletteer, RColorBrewer, rlang, scales, SeqArray (>= 1.32.0), stats, tidyr, dplyr, pals, magrittr Suggests: BiocStyle, rmarkdown, knitr, testthat (>= 3.0.0), GenomicRanges License: MIT + file LICENSE MD5sum: d94150a3e04430c48f8fa76d3b0bf870 NeedsCompilation: no Title: Visualization Tool for GWAS Result Description: Manhattan plot and QQ Plot are commonly used to visualize the end result of Genome Wide Association Study. The "ggmanh" package aims to keep the generation of these plots simple while maintaining customizability. Main functions include manhattan_plot, qqunif, and thinPoints. biocViews: Visualization, GenomeWideAssociation, Genetics Author: John Lee [aut, cre], John Lee [aut] (AbbVie), Xiuwen Zheng [ctb, dtc] Maintainer: John Lee VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ggmanh git_branch: RELEASE_3_20 git_last_commit: 687a625 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ggmanh_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ggmanh_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ggmanh_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ggmanh_1.10.0.tgz vignettes: vignettes/ggmanh/inst/doc/ggmanh.html vignetteTitles: Guide to ggmanh Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ggmanh/inst/doc/ggmanh.R suggestsMe: SAIGEgds dependencyCount: 76 Package: ggmsa Version: 1.12.0 Depends: R (>= 4.1.0) Imports: Biostrings, ggplot2, magrittr, tidyr, utils, stats, aplot, RColorBrewer, ggalt, ggforce, dplyr, R4RNA, grDevices, seqmagick, grid, methods, statebins, ggtree (>= 1.17.1) Suggests: ggtreeExtra, ape, cowplot, knitr, BiocStyle, rmarkdown, readxl, ggnewscale, kableExtra, gggenes, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: ed87adaaf651d7d5aafdd910d47395e8 NeedsCompilation: no Title: Plot Multiple Sequence Alignment using 'ggplot2' Description: A visual exploration tool for multiple sequence alignment and associated data. Supports MSA of DNA, RNA, and protein sequences using 'ggplot2'. Multiple sequence alignment can easily be combined with other 'ggplot2' plots, such as phylogenetic tree Visualized by 'ggtree', boxplot, genome map and so on. More features: visualization of sequence logos, sequence bundles, RNA secondary structures and detection of sequence recombinations. biocViews: Software, Visualization, Alignment, Annotation, MultipleSequenceAlignment Author: Lang Zhou [aut, cre], Guangchuang Yu [aut, ths] (), Shuangbin Xu [ctb], Huina Huang [ctb] Maintainer: Lang Zhou URL: https://doi.org/10.1093/bib/bbac222(paper), https://www.amazon.com/Integration-Manipulation-Visualization-Phylogenetic-Computational-ebook/dp/B0B5NLZR1Z/ (book) VignetteBuilder: knitr BugReports: https://github.com/YuLab-SMU/ggmsa/issues git_url: https://git.bioconductor.org/packages/ggmsa git_branch: RELEASE_3_20 git_last_commit: c09df2f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ggmsa_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ggmsa_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ggmsa_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ggmsa_1.12.0.tgz vignettes: vignettes/ggmsa/inst/doc/ggmsa.html vignetteTitles: ggmsa hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ggmsa/inst/doc/ggmsa.R importsMe: ggaligner, SeedMatchR dependencyCount: 116 Package: GGPA Version: 1.18.0 Depends: R (>= 4.0.0), stats, methods, graphics, GGally, network, sna, scales, matrixStats Imports: Rcpp (>= 0.11.3) LinkingTo: Rcpp, RcppArmadillo Suggests: BiocStyle License: GPL (>= 2) MD5sum: 41f5478a2aa44282a8e74e8a9ac5a334 NeedsCompilation: yes Title: graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture Description: Genome-wide association studies (GWAS) is a widely used tool for identification of genetic variants associated with phenotypes and diseases, though complex diseases featuring many genetic variants with small effects present difficulties for traditional these studies. By leveraging pleiotropy, the statistical power of a single GWAS can be increased. This package provides functions for fitting graph-GPA, a statistical framework to prioritize GWAS results by integrating pleiotropy. 'GGPA' package provides user-friendly interface to fit graph-GPA models, implement association mapping, and generate a phenotype graph. biocViews: Software, StatisticalMethod, Classification, GenomeWideAssociation, SNP, Genetics, Clustering, MultipleComparison, Preprocessing, GeneExpression, DifferentialExpression Author: Dongjun Chung, Hang J. Kim, Carter Allen Maintainer: Dongjun Chung URL: https://github.com/dongjunchung/GGPA/ SystemRequirements: GNU make git_url: https://git.bioconductor.org/packages/GGPA git_branch: RELEASE_3_20 git_last_commit: bce4fb5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GGPA_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GGPA_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GGPA_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GGPA_1.18.0.tgz vignettes: vignettes/GGPA/inst/doc/GGPA-example.pdf vignetteTitles: GGPA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GGPA/inst/doc/GGPA-example.R dependencyCount: 61 Package: ggsc Version: 1.4.0 Imports: Rcpp, RcppParallel, cli, dplyr, ggfun (>= 0.1.5), ggplot2, grDevices, grid, methods, rlang, scattermore, stats, Seurat, SingleCellExperiment, SummarizedExperiment, tidydr, tidyr, tibble, utils, RColorBrewer, yulab.utils, scales LinkingTo: Rcpp, RcppArmadillo, RcppParallel Suggests: aplot, BiocParallel, forcats, ggforce, ggnewscale, igraph, knitr, ks, Matrix, prettydoc, rmarkdown, scran, scater, scatterpie (>= 0.2.4), scuttle, shadowtext, sf, SeuratObject, SpatialExperiment, STexampleData, testthat (>= 3.0.0), MASS License: Artistic-2.0 MD5sum: 1caafa93bcd57a5ba6fbf0725f899fa4 NeedsCompilation: yes Title: Visualizing Single Cell and Spatial Transcriptomics Description: Useful functions to visualize single cell and spatial data. It supports visualizing 'Seurat', 'SingleCellExperiment' and 'SpatialExperiment' objects through grammar of graphics syntax implemented in 'ggplot2'. biocViews: DimensionReduction, GeneExpression, SingleCell, Software, Spatial, Transcriptomics,Visualization Author: Guangchuang Yu [aut, cre, cph] (), Shuangbin Xu [aut] (), Noriaki Sato [ctb] Maintainer: Guangchuang Yu URL: https://github.com/YuLab-SMU/ggsc (devel), https://yulab-smu.top/ggsc/ (docs) SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/YuLab-SMU/ggsc/issues git_url: https://git.bioconductor.org/packages/ggsc git_branch: RELEASE_3_20 git_last_commit: 2ab4b64 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ggsc_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ggsc_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ggsc_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ggsc_1.4.0.tgz vignettes: vignettes/ggsc/inst/doc/ggsc.html vignetteTitles: Visualizing single cell data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ggsc/inst/doc/ggsc.R dependencyCount: 176 Package: ggseqalign Version: 1.0.0 Depends: R (>= 4.4.0) Imports: pwalign, dplyr, ggplot2 Suggests: Biostrings, BiocStyle, knitr, rmarkdown License: Artistic-2.0 Archs: x64 MD5sum: b463e7352980ec3297edb2ba877a5a8c NeedsCompilation: no Title: Minimal Visualization of Sequence Alignments Description: Simple visualizations of alignments of DNA or AA sequences as well as arbitrary strings. Compatible with Biostrings and ggplot2. The plots are fully customizable using ggplot2 modifiers such as theme(). biocViews: Alignment, MultipleSequenceAlignment, Software, Visualization Author: Simeon Lim Rossmann [aut, cre] () Maintainer: Simeon Lim Rossmann URL: https://github.com/simeross/ggseqalign VignetteBuilder: knitr BugReports: https://github.com/simeross/ggseqalign/issues git_url: https://git.bioconductor.org/packages/ggseqalign git_branch: RELEASE_3_20 git_last_commit: 6ecf37d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ggseqalign_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ggseqalign_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ggseqalign_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ggseqalign_1.0.0.tgz vignettes: vignettes/ggseqalign/inst/doc/ggseqalign.html vignetteTitles: Quickstart Guide to ggseqalign hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ggseqalign/inst/doc/ggseqalign.R dependencyCount: 58 Package: ggspavis Version: 1.12.0 Depends: ggplot2 Imports: SpatialExperiment, SingleCellExperiment, SummarizedExperiment, ggside, grid, ggrepel, RColorBrewer, scales, grDevices, methods, stats Suggests: BiocStyle, rmarkdown, knitr, STexampleData, BumpyMatrix, scater, scran, uwot, testthat, patchwork License: MIT + file LICENSE Archs: x64 MD5sum: 625803fb55152e66fda4a8491a6edcbe NeedsCompilation: no Title: Visualization functions for spatial transcriptomics data Description: Visualization functions for spatial transcriptomics data. Includes functions to generate several types of plots, including spot plots, feature (molecule) plots, reduced dimension plots, spot-level quality control (QC) plots, and feature-level QC plots, for datasets from the 10x Genomics Visium and other technological platforms. Datasets are assumed to be in either SpatialExperiment or SingleCellExperiment format. biocViews: Spatial, SingleCell, Transcriptomics, GeneExpression, QualityControl, DimensionReduction Author: Lukas M. Weber [aut, cre] (), Helena L. Crowell [aut] (), Yixing E. Dong [aut] () Maintainer: Lukas M. Weber URL: https://github.com/lmweber/ggspavis VignetteBuilder: knitr BugReports: https://github.com/lmweber/ggspavis/issues git_url: https://git.bioconductor.org/packages/ggspavis git_branch: RELEASE_3_20 git_last_commit: cf9a5c6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ggspavis_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ggspavis_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ggspavis_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ggspavis_1.12.0.tgz vignettes: vignettes/ggspavis/inst/doc/ggspavis_overview.html vignetteTitles: ggspavis overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ggspavis/inst/doc/ggspavis_overview.R suggestsMe: smoothclust, HCATonsilData dependencyCount: 89 Package: ggtree Version: 3.14.0 Depends: R (>= 3.5.0) Imports: ape, aplot, dplyr, ggplot2 (> 3.3.6), grid, magrittr, methods, purrr, rlang, ggfun (>= 0.1.7), yulab.utils (>= 0.1.6), tidyr, tidytree (>= 0.4.5), treeio (>= 1.8.0), utils, scales, stats, cli Suggests: emojifont, ggimage, ggplotify, shadowtext, grDevices, knitr, prettydoc, rmarkdown, testthat, tibble, glue License: Artistic-2.0 MD5sum: b11dc775fba54bfb7674c8cedffe8f5c NeedsCompilation: no Title: an R package for visualization of tree and annotation data Description: 'ggtree' extends the 'ggplot2' plotting system which implemented the grammar of graphics. 'ggtree' is designed for visualization and annotation of phylogenetic trees and other tree-like structures with their annotation data. biocViews: Alignment, Annotation, Clustering, DataImport, MultipleSequenceAlignment, Phylogenetics, ReproducibleResearch, Software, Visualization Author: Guangchuang Yu [aut, cre, cph] (), Tommy Tsan-Yuk Lam [aut, ths], Shuangbin Xu [aut] (), Lin Li [ctb], Bradley Jones [ctb], Justin Silverman [ctb], Watal M. Iwasaki [ctb], Yonghe Xia [ctb], Ruizhu Huang [ctb] Maintainer: Guangchuang Yu URL: https://www.amazon.com/Integration-Manipulation-Visualization-Phylogenetic-Computational-ebook/dp/B0B5NLZR1Z/ (book), http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12628 (paper) VignetteBuilder: knitr BugReports: https://github.com/YuLab-SMU/ggtree/issues git_url: https://git.bioconductor.org/packages/ggtree git_branch: RELEASE_3_20 git_last_commit: a309078 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ggtree_3.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ggtree_3.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ggtree_3.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ggtree_3.14.0.tgz vignettes: vignettes/ggtree/inst/doc/ggtree.html vignetteTitles: ggtree hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ggtree/inst/doc/ggtree.R dependsOnMe: ggtreeDendro, tanggle importsMe: cardelino, cogeqc, enrichplot, ggmsa, ggtreeExtra, ggtreeSpace, gINTomics, lefser, LinTInd, LymphoSeq, miaViz, MicrobiotaProcess, orthogene, philr, scBubbletree, scDotPlot, singleCellTK, sitePath, systemPipeTools, treeclimbR, treekoR, BioVizSeq, DAISIEprep, ddtlcm, dowser, EvoPhylo, FossilSim, genBaRcode, harrietr, numbat, Platypus, RevGadgets, scistreer, shinyTempSignal, STraTUS, Sysrecon, TransProR suggestsMe: compcodeR, syntenet, TreeAndLeaf, treeio, TreeSummarizedExperiment, universalmotif, aplot, aplotExtra, CoOL, DAISIE, deeptime, gggenomes, ggimage, ggtangle, idiogramFISH, MetaNet, nosoi, oppr, PCMBase, pctax, RAINBOWR, rhierbaps, rphylopic dependencyCount: 59 Package: ggtreeDendro Version: 1.8.0 Depends: ggtree (>= 3.5.3) Imports: ggplot2, stats, tidytree, utils Suggests: aplot, cluster, knitr, MASS, mdendro, prettydoc, pvclust, rmarkdown, testthat (>= 3.0.0), treeio, yulab.utils License: Artistic-2.0 MD5sum: defc1f45bc699d6ef9d433146de0c62d NeedsCompilation: no Title: Drawing 'dendrogram' using 'ggtree' Description: Offers a set of 'autoplot' methods to visualize tree-like structures (e.g., hierarchical clustering and classification/regression trees) using 'ggtree'. You can adjust graphical parameters using grammar of graphic syntax and integrate external data to the tree. biocViews: Clustering, Classification, DecisionTree, Phylogenetics, Visualization Author: Guangchuang Yu [aut, cre, cph] (), Shuangbin Xu [ctb] (), Chuanjie Zhang [ctb] Maintainer: Guangchuang Yu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ggtreeDendro git_branch: RELEASE_3_20 git_last_commit: b00e4b5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ggtreeDendro_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ggtreeDendro_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ggtreeDendro_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ggtreeDendro_1.8.0.tgz vignettes: vignettes/ggtreeDendro/inst/doc/ggtreeDendro.html vignetteTitles: Visualizing Dendrogram using ggtree hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ggtreeDendro/inst/doc/ggtreeDendro.R dependencyCount: 60 Package: ggtreeExtra Version: 1.16.0 Imports: ggplot2, utils, rlang, ggnewscale, stats, ggtree, tidytree (>= 0.3.9), cli, magrittr Suggests: treeio, ggstar, patchwork, knitr, rmarkdown, prettydoc, markdown, testthat (>= 3.0.0), pillar License: GPL (>= 3) MD5sum: 986a039ba11b2062a7b4fdb4945d308e NeedsCompilation: no Title: An R Package To Add Geometric Layers On Circular Or Other Layout Tree Of "ggtree" Description: 'ggtreeExtra' extends the method for mapping and visualizing associated data on phylogenetic tree using 'ggtree'. These associated data can be presented on the external panels to circular layout, fan layout, or other rectangular layout tree built by 'ggtree' with the grammar of 'ggplot2'. biocViews: Software, Visualization, Phylogenetics, Annotation Author: Shuangbin Xu [aut, cre] (), Guangchuang Yu [aut, ctb] () Maintainer: Shuangbin Xu URL: https://github.com/YuLab-SMU/ggtreeExtra/ VignetteBuilder: knitr BugReports: https://github.com/YuLab-SMU/ggtreeExtra/issues git_url: https://git.bioconductor.org/packages/ggtreeExtra git_branch: RELEASE_3_20 git_last_commit: 9caa6ea git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ggtreeExtra_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ggtreeExtra_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ggtreeExtra_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ggtreeExtra_1.16.0.tgz vignettes: vignettes/ggtreeExtra/inst/doc/ggtreeExtra.html vignetteTitles: ggtreeExtra hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ggtreeExtra/inst/doc/ggtreeExtra.R importsMe: MicrobiotaProcess, TransProR suggestsMe: enrichplot, ggmsa, pctax dependencyCount: 61 Package: ggtreeSpace Version: 1.2.0 Imports: interp, ape, dplyr, GGally, ggplot2, grid, ggtree, phytools, rlang, tibble, tidyr, tidyselect, stats Suggests: knitr, prettydoc, rmarkdown, BiocStyle, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: 4a8aa1df417998f526d673861134754c NeedsCompilation: no Title: Visualizing Phylomorphospaces using 'ggtree' Description: This package is a comprehensive visualization tool specifically designed for exploring phylomorphospace. It not only simplifies the process of generating phylomorphospace, but also enhances it with the capability to add graphic layers to the plot with grammar of graphics to create fully annotated phylomorphospaces. It also provide some utilities to help interpret evolutionary patterns. biocViews: Annotation, Visualization, Phylogenetics, Software Author: Guangchuang Yu [aut, cre, ths, cph] (), Li Lin [ctb] Maintainer: Guangchuang Yu URL: https://github.com/YuLab-SMU/ggtreeSpace VignetteBuilder: knitr BugReports: https://github.com/YuLab-SMU/ggtreeSpace/issues git_url: https://git.bioconductor.org/packages/ggtreeSpace git_branch: RELEASE_3_20 git_last_commit: f1d5b20 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ggtreeSpace_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ggtreeSpace_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ggtreeSpace_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ggtreeSpace_1.2.0.tgz vignettes: vignettes/ggtreeSpace/inst/doc/ggtreeSpace.html vignetteTitles: Introduction to ggtreeSpace hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ggtreeSpace/inst/doc/ggtreeSpace.R dependencyCount: 90 Package: GIGSEA Version: 1.24.0 Depends: R (>= 3.5), Matrix, MASS, locfdr, stats, utils Suggests: knitr, rmarkdown License: LGPL-3 MD5sum: 6be6e775cb39122d45921cfdb767abe3 NeedsCompilation: no Title: Genotype Imputed Gene Set Enrichment Analysis Description: We presented the Genotype-imputed Gene Set Enrichment Analysis (GIGSEA), a novel method that uses GWAS-and-eQTL-imputed trait-associated differential gene expression to interrogate gene set enrichment for the trait-associated SNPs. By incorporating eQTL from large gene expression studies, e.g. GTEx, GIGSEA appropriately addresses such challenges for SNP enrichment as gene size, gene boundary, SNP distal regulation, and multiple-marker regulation. The weighted linear regression model, taking as weights both imputation accuracy and model completeness, was used to perform the enrichment test, properly adjusting the bias due to redundancy in different gene sets. The permutation test, furthermore, is used to evaluate the significance of enrichment, whose efficiency can be largely elevated by expressing the computational intensive part in terms of large matrix operation. We have shown the appropriate type I error rates for GIGSEA (<5%), and the preliminary results also demonstrate its good performance to uncover the real signal. biocViews: GeneSetEnrichment,SNP,VariantAnnotation,GeneExpression,GeneRegulation,Regression,DifferentialExpression Author: Shijia Zhu Maintainer: Shijia Zhu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GIGSEA git_branch: RELEASE_3_20 git_last_commit: 5e91a54 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GIGSEA_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GIGSEA_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GIGSEA_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GIGSEA_1.24.0.tgz vignettes: vignettes/GIGSEA/inst/doc/GIGSEA_tutorial.pdf vignetteTitles: GIGSEA: Genotype Imputed Gene Set Enrichment Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GIGSEA/inst/doc/GIGSEA_tutorial.R suggestsMe: GIGSEAdata dependencyCount: 11 Package: ginmappeR Version: 1.2.3 Imports: KEGGREST, UniProt.ws, XML, rentrez, httr, utils, memoise, cachem, jsonlite, rvest Suggests: RUnit, BiocGenerics, markdown, knitr License: GPL-3 + file LICENSE MD5sum: 5de8e5a56321e5b6707bae4791589444 NeedsCompilation: no Title: Gene Identifier Mapper Description: Provides functionalities to translate gene or protein identifiers between state-of-art biological databases: CARD (), NCBI Protein, Nucleotide and Gene (), UniProt () and KEGG (). Also offers complementary functionality like NCBI identical proteins or UniProt similar genes clusters retrieval. biocViews: Annotation, KEGG, Genetics, ThirdPartyClient, Software Author: Fernando Sola [aut, cre] (), Daniel Ayala [aut] (), Marina Pulido [aut] (), Rafael Ayala [aut] (), Lorena López-Cerero [aut] (), Inma Hernández [aut] (), David Ruiz [aut] () Maintainer: Fernando Sola VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ginmappeR git_branch: RELEASE_3_20 git_last_commit: 488e384 git_last_commit_date: 2024-12-02 Date/Publication: 2024-12-02 source.ver: src/contrib/ginmappeR_1.2.3.tar.gz win.binary.ver: bin/windows/contrib/4.4/ginmappeR_1.2.3.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ginmappeR_1.2.3.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ginmappeR_1.2.3.tgz vignettes: vignettes/ginmappeR/inst/doc/ginmappeR.html vignetteTitles: ginmappeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ginmappeR/inst/doc/ginmappeR.R dependencyCount: 74 Package: gINTomics Version: 1.2.0 Depends: R (>= 4.4.0) Imports: BiocParallel, biomaRt, OmnipathR, edgeR, ggplot2, ggridges, gtools, MultiAssayExperiment, plyr, stringi, stringr, SummarizedExperiment, methods, stats, reshape2, randomForest, limma, org.Hs.eg.db, org.Mm.eg.db, BiocGenerics, GenomicFeatures, ReactomePA, clusterProfiler, dplyr, AnnotationDbi, TxDb.Hsapiens.UCSC.hg38.knownGene, TxDb.Mmusculus.UCSC.mm10.knownGene, shiny, GenomicRanges, ggtree, shinydashboard, plotly, DT, MASS, InteractiveComplexHeatmap, ComplexHeatmap, visNetwork, shiny.gosling, ggvenn, RColorBrewer, utils, grDevices, callr, circlize Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0) License: AGPL-3 MD5sum: fc34c2421395dbda41dffe76e9a6f79e NeedsCompilation: no Title: Multi-Omics data integration Description: gINTomics is an R package for Multi-Omics data integration and visualization. gINTomics is designed to detect the association between the expression of a target and of its regulators, taking into account also their genomics modifications such as Copy Number Variations (CNV) and methylation. What is more, gINTomics allows integration results visualization via a Shiny-based interactive app. biocViews: GeneExpression, RNASeq, Microarray, Visualization, CopyNumberVariation, GeneTarget Author: Angelo Velle [cre, aut] (), Francesco Patane' [aut] (), Chiara Romualdi [aut] () Maintainer: Angelo Velle URL: https://github.com/angelovelle96/gINTomics VignetteBuilder: knitr BugReports: https://github.com/angelovelle96/gINTomics/issues git_url: https://git.bioconductor.org/packages/gINTomics git_branch: RELEASE_3_20 git_last_commit: eb9ddba git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gINTomics_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gINTomics_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gINTomics_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gINTomics_1.2.0.tgz vignettes: vignettes/gINTomics/inst/doc/gINTomics.html vignetteTitles: gINTomics vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gINTomics/inst/doc/gINTomics.R dependencyCount: 239 Package: girafe Version: 1.58.0 Depends: R (>= 2.10.0), methods, BiocGenerics (>= 0.13.8), S4Vectors (>= 0.17.25), Rsamtools (>= 1.31.2), intervals (>= 0.13.1), ShortRead (>= 1.37.1), genomeIntervals (>= 1.25.1), grid Imports: methods, Biobase, Biostrings (>= 2.47.6), pwalign, graphics, grDevices, stats, utils, IRanges (>= 2.13.12) Suggests: MASS, org.Mm.eg.db, RColorBrewer Enhances: genomeIntervals License: Artistic-2.0 MD5sum: 6f0e15954795e581f61d6f2ae3a04dc3 NeedsCompilation: yes Title: Genome Intervals and Read Alignments for Functional Exploration Description: The package 'girafe' deals with the genome-level representation of aligned reads from next-generation sequencing data. It contains an object class for enabling a detailed description of genome intervals with aligned reads and functions for comparing, visualising, exporting and working with such intervals and the aligned reads. As such, the package interacts with and provides a link between the packages ShortRead, IRanges and genomeIntervals. biocViews: Sequencing Author: Joern Toedling, with contributions from Constance Ciaudo, Olivier Voinnet, Edith Heard, Emmanuel Barillot, and Wolfgang Huber Maintainer: J. Toedling git_url: https://git.bioconductor.org/packages/girafe git_branch: RELEASE_3_20 git_last_commit: ff75045 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/girafe_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/girafe_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/girafe_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/girafe_1.58.0.tgz vignettes: vignettes/girafe/inst/doc/girafe.pdf vignetteTitles: Genome intervals and read alignments for functional exploration hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/girafe/inst/doc/girafe.R dependencyCount: 65 Package: GLAD Version: 2.70.0 Depends: R (>= 2.10) Imports: aws License: GPL-2 MD5sum: 913c405c4a653fa34c64f72750ed95b4 NeedsCompilation: yes Title: Gain and Loss Analysis of DNA Description: Analysis of array CGH data : detection of breakpoints in genomic profiles and assignment of a status (gain, normal or loss) to each chromosomal regions identified. biocViews: Microarray, CopyNumberVariation Author: Philippe Hupe Maintainer: Philippe Hupe URL: http://bioinfo.curie.fr SystemRequirements: gsl. Note: users should have GSL installed. Windows users: 'consult the README file available in the inst directory of the source distribution for necessary configuration instructions'. git_url: https://git.bioconductor.org/packages/GLAD git_branch: RELEASE_3_20 git_last_commit: 955d7f2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GLAD_2.70.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GLAD_2.70.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GLAD_2.70.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GLAD_2.70.0.tgz vignettes: vignettes/GLAD/inst/doc/GLAD.pdf vignetteTitles: GLAD hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GLAD/inst/doc/GLAD.R dependsOnMe: ADaCGH2, ITALICS importsMe: ITALICS, MANOR suggestsMe: aroma.cn, aroma.core dependencyCount: 4 Package: GladiaTOX Version: 1.22.0 Depends: R (>= 3.6.0), data.table (>= 1.9.4) Imports: DBI, RMariaDB, RSQLite, numDeriv, RColorBrewer, parallel, stats, methods, graphics, grDevices, xtable, tools, brew, stringr, RJSONIO, ggplot2, ggrepel, tidyr, utils, RCurl, XML Suggests: roxygen2, knitr, rmarkdown, testthat, BiocStyle License: GPL-2 Archs: x64 MD5sum: 9d9290cf476a663e129f6032813f8b94 NeedsCompilation: no Title: R Package for Processing High Content Screening data Description: GladiaTOX R package is an open-source, flexible solution to high-content screening data processing and reporting in biomedical research. GladiaTOX takes advantage of the tcpl core functionalities and provides a number of extensions: it provides a web-service solution to fetch raw data; it computes severity scores and exports ToxPi formatted files; furthermore it contains a suite of functionalities to generate pdf reports for quality control and data processing. biocViews: Software, WorkflowStep, Normalization, Preprocessing, QualityControl Author: Vincenzo Belcastro [aut, cre], Dayne L Filer [aut], Stephane Cano [aut] Maintainer: PMP S.A. R Support VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GladiaTOX git_branch: RELEASE_3_20 git_last_commit: 614494d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GladiaTOX_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GladiaTOX_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GladiaTOX_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GladiaTOX_1.22.0.tgz vignettes: vignettes/GladiaTOX/inst/doc/GladiaTOX.html vignetteTitles: GladiaTOX hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GladiaTOX/inst/doc/GladiaTOX.R dependencyCount: 68 Package: Glimma Version: 2.16.0 Depends: R (>= 4.0.0) Imports: htmlwidgets, edgeR, DESeq2, limma, SummarizedExperiment, stats, jsonlite, methods, S4Vectors Suggests: testthat, knitr, rmarkdown, BiocStyle, IRanges, GenomicRanges, pryr, AnnotationHub, scRNAseq, scater, scran License: GPL-3 Archs: x64 MD5sum: da67376f1be85c53ee7e1063972246c0 NeedsCompilation: no Title: Interactive visualizations for gene expression analysis Description: This package produces interactive visualizations for RNA-seq data analysis, utilizing output from limma, edgeR, or DESeq2. It produces interactive htmlwidgets versions of popular RNA-seq analysis plots to enhance the exploration of analysis results by overlaying interactive features. The plots can be viewed in a web browser or embedded in notebook documents. biocViews: DifferentialExpression, GeneExpression, Microarray, ReportWriting, RNASeq, Sequencing, Visualization Author: Shian Su [aut, cre], Hasaru Kariyawasam [aut], Oliver Voogd [aut], Matthew Ritchie [aut], Charity Law [aut], Stuart Lee [ctb], Isaac Virshup [ctb] Maintainer: Shian Su URL: https://github.com/hasaru-k/GlimmaV2 VignetteBuilder: knitr BugReports: https://github.com/hasaru-k/GlimmaV2/issues git_url: https://git.bioconductor.org/packages/Glimma git_branch: RELEASE_3_20 git_last_commit: 3bb4025 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Glimma_2.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Glimma_2.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Glimma_2.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Glimma_2.16.0.tgz vignettes: vignettes/Glimma/inst/doc/DESeq2.html, vignettes/Glimma/inst/doc/limma_edger.html, vignettes/Glimma/inst/doc/single_cell_edger.html vignetteTitles: DESeq2, Introduction using limma or edgeR, Single Cells with edgeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Glimma/inst/doc/DESeq2.R, vignettes/Glimma/inst/doc/limma_edger.R, vignettes/Glimma/inst/doc/single_cell_edger.R dependsOnMe: RNAseq123 importsMe: affycoretools dependencyCount: 99 Package: glmGamPoi Version: 1.18.0 Imports: Rcpp, DelayedMatrixStats, matrixStats, MatrixGenerics, SparseArray (>= 1.5.21), DelayedArray, HDF5Array, SummarizedExperiment, SingleCellExperiment, BiocGenerics, methods, stats, utils, splines, rlang, vctrs LinkingTo: Rcpp, RcppArmadillo, beachmat Suggests: testthat (>= 2.1.0), zoo, DESeq2, edgeR, limma, beachmat, MASS, statmod, ggplot2, bench, BiocParallel, knitr, rmarkdown, BiocStyle, TENxPBMCData, muscData, scran, Matrix, dplyr License: GPL-3 MD5sum: f223a16caa055e19d88568b362065c24 NeedsCompilation: yes Title: Fit a Gamma-Poisson Generalized Linear Model Description: Fit linear models to overdispersed count data. The package can estimate the overdispersion and fit repeated models for matrix input. It is designed to handle large input datasets as they typically occur in single cell RNA-seq experiments. biocViews: Regression, RNASeq, Software, SingleCell Author: Constantin Ahlmann-Eltze [aut, cre] (), Nathan Lubock [ctb] (), Michael Love [ctb] Maintainer: Constantin Ahlmann-Eltze URL: https://github.com/const-ae/glmGamPoi SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/const-ae/glmGamPoi/issues git_url: https://git.bioconductor.org/packages/glmGamPoi git_branch: RELEASE_3_20 git_last_commit: cadcedb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/glmGamPoi_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/glmGamPoi_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/glmGamPoi_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/glmGamPoi_1.18.0.tgz vignettes: vignettes/glmGamPoi/inst/doc/glmGamPoi.html, vignettes/glmGamPoi/inst/doc/pseudobulk.html vignetteTitles: glmGamPoi Quickstart, Pseudobulk and differential expression hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/glmGamPoi/inst/doc/glmGamPoi.R, vignettes/glmGamPoi/inst/doc/pseudobulk.R importsMe: BASiCStan, lemur, transformGamPoi, SCdeconR suggestsMe: DESeq2, DEXSeq, scregclust dependencyCount: 53 Package: glmSparseNet Version: 1.24.0 Depends: R (>= 4.3.0) Imports: biomaRt, checkmate, dplyr, forcats, futile.logger, ggplot2, glue, httr, lifecycle, methods, parallel, readr, rlang, glmnet, Matrix, MultiAssayExperiment, SummarizedExperiment, survminer, TCGAutils, utils Suggests: BiocStyle, curatedTCGAData, knitr, magrittr, reshape2, pROC, rmarkdown, survival, testthat, VennDiagram, withr License: GPL-3 MD5sum: d853ca6bb133d5c7f64ed46a73712a76 NeedsCompilation: no Title: Network Centrality Metrics for Elastic-Net Regularized Models Description: glmSparseNet is an R-package that generalizes sparse regression models when the features (e.g. genes) have a graph structure (e.g. protein-protein interactions), by including network-based regularizers. glmSparseNet uses the glmnet R-package, by including centrality measures of the network as penalty weights in the regularization. The current version implements regularization based on node degree, i.e. the strength and/or number of its associated edges, either by promoting hubs in the solution or orphan genes in the solution. All the glmnet distribution families are supported, namely "gaussian", "poisson", "binomial", "multinomial", "cox", and "mgaussian". biocViews: Software, StatisticalMethod, DimensionReduction, Regression, Classification, Survival, Network, GraphAndNetwork Author: André Veríssimo [aut, cre] (), Susana Vinga [aut], Eunice Carrasquinha [ctb], Marta Lopes [ctb] Maintainer: André Veríssimo URL: https://www.github.com/sysbiomed/glmSparseNet VignetteBuilder: knitr BugReports: https://www.github.com/sysbiomed/glmSparseNet/issues git_url: https://git.bioconductor.org/packages/glmSparseNet git_branch: RELEASE_3_20 git_last_commit: b034036 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/glmSparseNet_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/glmSparseNet_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/glmSparseNet_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/glmSparseNet_1.24.0.tgz vignettes: vignettes/glmSparseNet/inst/doc/example_brca_logistic.html, vignettes/glmSparseNet/inst/doc/example_brca_protein-protein-interactions_survival.html, vignettes/glmSparseNet/inst/doc/example_brca_survival.html, vignettes/glmSparseNet/inst/doc/example_prad_survival.html, vignettes/glmSparseNet/inst/doc/example_skcm_survival.html, vignettes/glmSparseNet/inst/doc/separate2GroupsCox.html vignetteTitles: Example for Classification -- Breast Invasive Carcinoma, Breast survival dataset using network from STRING DB, Example for Survival Data -- Breast Invasive Carcinoma, Example for Survival Data -- Prostate Adenocarcinoma, Example for Survival Data -- Skin Melanoma, Separate 2 groups in Cox regression hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/glmSparseNet/inst/doc/example_brca_logistic.R, vignettes/glmSparseNet/inst/doc/example_brca_protein-protein-interactions_survival.R, vignettes/glmSparseNet/inst/doc/example_brca_survival.R, vignettes/glmSparseNet/inst/doc/example_prad_survival.R, vignettes/glmSparseNet/inst/doc/example_skcm_survival.R, vignettes/glmSparseNet/inst/doc/separate2GroupsCox.R dependencyCount: 182 Package: GlobalAncova Version: 4.24.0 Depends: methods, corpcor, globaltest Imports: annotate, AnnotationDbi, Biobase, dendextend, GSEABase, VGAM Suggests: GO.db, golubEsets, hu6800.db, vsn, Rgraphviz License: GPL (>= 2) Archs: x64 MD5sum: ae770156a4d068a5e444bcf05271d78c NeedsCompilation: yes Title: Global test for groups of variables via model comparisons Description: The association between a variable of interest (e.g. two groups) and the global pattern of a group of variables (e.g. a gene set) is tested via a global F-test. We give the following arguments in support of the GlobalAncova approach: After appropriate normalisation, gene-expression-data appear rather symmetrical and outliers are no real problem, so least squares should be rather robust. ANCOVA with interaction yields saturated data modelling e.g. different means per group and gene. Covariate adjustment can help to correct for possible selection bias. Variance homogeneity and uncorrelated residuals cannot be expected. Application of ordinary least squares gives unbiased, but no longer optimal estimates (Gauss-Markov-Aitken). Therefore, using the classical F-test is inappropriate, due to correlation. The test statistic however mirrors deviations from the null hypothesis. In combination with a permutation approach, empirical significance levels can be approximated. Alternatively, an approximation yields asymptotic p-values. The framework is generalized to groups of categorical variables or even mixed data by a likelihood ratio approach. Closed and hierarchical testing procedures are supported. This work was supported by the NGFN grant 01 GR 0459, BMBF, Germany and BMBF grant 01ZX1309B, Germany. biocViews: Microarray, OneChannel, DifferentialExpression, Pathways, Regression Author: U. Mansmann, R. Meister, M. Hummel, R. Scheufele, with contributions from S. Knueppel Maintainer: Manuela Hummel git_url: https://git.bioconductor.org/packages/GlobalAncova git_branch: RELEASE_3_20 git_last_commit: 9d3e2ae git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GlobalAncova_4.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GlobalAncova_4.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GlobalAncova_4.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GlobalAncova_4.24.0.tgz vignettes: vignettes/GlobalAncova/inst/doc/GlobalAncovaDecomp.pdf, vignettes/GlobalAncova/inst/doc/GlobalAncova.pdf vignetteTitles: GlobalAncovaDecomp.pdf, GlobalAncova.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GlobalAncova/inst/doc/GlobalAncovaDecomp.R, vignettes/GlobalAncova/inst/doc/GlobalAncova.R importsMe: miRtest suggestsMe: GiANT dependencyCount: 81 Package: globalSeq Version: 1.34.0 Depends: R (>= 3.0.0) Suggests: knitr, testthat, SummarizedExperiment, S4Vectors License: GPL-3 MD5sum: 65ec70596f293b700433848c14244e81 NeedsCompilation: no Title: Global Test for Counts Description: The method may be conceptualised as a test of overall significance in regression analysis, where the response variable is overdispersed and the number of explanatory variables exceeds the sample size. Useful for testing for association between RNA-Seq and high-dimensional data. biocViews: GeneExpression, ExonArray, DifferentialExpression, GenomeWideAssociation, Transcriptomics, DimensionReduction, Regression, Sequencing, WholeGenome, RNASeq, ExomeSeq, miRNA, MultipleComparison Author: Armin Rauschenberger [aut, cre] Maintainer: Armin Rauschenberger URL: https://github.com/rauschenberger/globalSeq VignetteBuilder: knitr BugReports: https://github.com/rauschenberger/globalSeq/issues git_url: https://git.bioconductor.org/packages/globalSeq git_branch: RELEASE_3_20 git_last_commit: 422d215 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/globalSeq_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/globalSeq_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/globalSeq_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/globalSeq_1.34.0.tgz vignettes: vignettes/globalSeq/inst/doc/globalSeq.pdf, vignettes/globalSeq/inst/doc/article.html, vignettes/globalSeq/inst/doc/vignette.html vignetteTitles: vignette source, article frame, vignette frame hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/globalSeq/inst/doc/globalSeq.R dependencyCount: 0 Package: globaltest Version: 5.60.0 Depends: methods, survival Imports: Biobase, AnnotationDbi, annotate, graphics Suggests: vsn, golubEsets, KEGGREST, hu6800.db, Rgraphviz, GO.db, lungExpression, org.Hs.eg.db, GSEABase, penalized, gss, MASS, boot, rpart, mstate License: GPL (>= 2) Archs: x64 MD5sum: 99e16f9e75e03abff0577483bf09feba NeedsCompilation: no Title: Testing Groups of Covariates/Features for Association with a Response Variable, with Applications to Gene Set Testing Description: The global test tests groups of covariates (or features) for association with a response variable. This package implements the test with diagnostic plots and multiple testing utilities, along with several functions to facilitate the use of this test for gene set testing of GO and KEGG terms. biocViews: Microarray, OneChannel, Bioinformatics, DifferentialExpression, GO, Pathways Author: Jelle Goeman and Jan Oosting, with contributions by Livio Finos, Aldo Solari, Dominic Edelmann Maintainer: Jelle Goeman git_url: https://git.bioconductor.org/packages/globaltest git_branch: RELEASE_3_20 git_last_commit: b3becf8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/globaltest_5.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/globaltest_5.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/globaltest_5.60.0.tgz vignettes: vignettes/globaltest/inst/doc/GlobalTest.pdf vignetteTitles: Global Test hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/globaltest/inst/doc/GlobalTest.R dependsOnMe: GlobalAncova importsMe: BiSeq, EGSEA, SIM, miRtest, SlaPMEG suggestsMe: topGO, GiANT, penalized dependencyCount: 53 Package: GloScope Version: 1.4.0 Depends: R (>= 4.4.0) Imports: utils, stats, MASS, mclust, ggplot2, RANN, FNN, BiocParallel, mvnfast, SingleCellExperiment, rlang Suggests: BiocStyle, testthat (>= 3.0.0), knitr, rmarkdown, zellkonverter License: Artistic-2.0 MD5sum: b1936d66de98c5249f5d5b3fd02e9ec3 NeedsCompilation: no Title: Population-level Representation on scRNA-Seq data Description: This package aims at representing and summarizing the entire single-cell profile of a sample. It allows researchers to perform important bioinformatic analyses at the sample-level such as visualization and quality control. The main functions Estimate sample distribution and calculate statistical divergence among samples, and visualize the distance matrix through MDS plots. biocViews: DataRepresentation, QualityControl, RNASeq, Sequencing, Software, SingleCell Author: William Torous [aut, cre] (), Hao Wang [aut] (), Elizabeth Purdom [aut], Boying Gong [aut] Maintainer: William Torous VignetteBuilder: knitr BugReports: https://github.com/epurdom/GloScope/issues git_url: https://git.bioconductor.org/packages/GloScope git_branch: RELEASE_3_20 git_last_commit: 628d71c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GloScope_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GloScope_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GloScope_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GloScope_1.4.0.tgz vignettes: vignettes/GloScope/inst/doc/GloScopeTutorial.html vignetteTitles: GloScope hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GloScope/inst/doc/GloScopeTutorial.R dependencyCount: 79 Package: gmapR Version: 1.48.0 Depends: R (>= 2.15.0), methods, GenomeInfoDb (>= 1.1.3), GenomicRanges (>= 1.31.8), Rsamtools (>= 1.31.2) Imports: S4Vectors (>= 0.17.25), IRanges (>= 2.13.12), BiocGenerics (>= 0.25.1), rtracklayer (>= 1.39.7), GenomicFeatures (>= 1.31.3), Biostrings, VariantAnnotation (>= 1.25.11), tools, Biobase, BSgenome, GenomicAlignments (>= 1.15.6), BiocParallel Suggests: RUnit, BSgenome.Dmelanogaster.UCSC.dm3, BSgenome.Scerevisiae.UCSC.sacCer3, org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg19.knownGene, BSgenome.Hsapiens.UCSC.hg19, LungCancerLines License: Artistic-2.0 MD5sum: bd60ae0c34ef6495f66df098245e19fe NeedsCompilation: yes Title: An R interface to the GMAP/GSNAP/GSTRUCT suite Description: GSNAP and GMAP are a pair of tools to align short-read data written by Tom Wu. This package provides convenience methods to work with GMAP and GSNAP from within R. In addition, it provides methods to tally alignment results on a per-nucleotide basis using the bam_tally tool. biocViews: Alignment Author: Cory Barr, Thomas Wu, Michael Lawrence Maintainer: Michael Lawrence git_url: https://git.bioconductor.org/packages/gmapR git_branch: RELEASE_3_20 git_last_commit: cc9eee4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gmapR_1.48.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gmapR_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gmapR_1.48.0.tgz vignettes: vignettes/gmapR/inst/doc/gmapR.pdf vignetteTitles: gmapR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gmapR/inst/doc/gmapR.R suggestsMe: VariantTools, VariantToolsData dependencyCount: 79 Package: GmicR Version: 1.20.0 Imports: AnnotationDbi, ape, bnlearn, Category, DT, doParallel, foreach, gRbase, GSEABase, gRain, GOstats, org.Hs.eg.db, org.Mm.eg.db, shiny, WGCNA, data.table, grDevices, graphics, reshape2, stats, utils Suggests: knitr, rmarkdown, testthat License: GPL-2 + file LICENSE MD5sum: f655d057f072577b385fe8b265545a97 NeedsCompilation: no Title: Combines WGCNA and xCell readouts with bayesian network learrning to generate a Gene-Module Immune-Cell network (GMIC) Description: This package uses bayesian network learning to detect relationships between Gene Modules detected by WGCNA and immune cell signatures defined by xCell. It is a hypothesis generating tool. biocViews: Software, SystemsBiology, GraphAndNetwork, Network, NetworkInference, GUI, ImmunoOncology, GeneExpression, QualityControl, Bayesian, Clustering Author: Richard Virgen-Slane Maintainer: Richard Virgen-Slane VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GmicR git_branch: RELEASE_3_20 git_last_commit: 330de07 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GmicR_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GmicR_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GmicR_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GmicR_1.20.0.tgz vignettes: vignettes/GmicR/inst/doc/GmicR_vignette.html vignetteTitles: GmicR_vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GmicR/inst/doc/GmicR_vignette.R dependencyCount: 155 Package: gmoviz Version: 1.18.0 Depends: circlize, GenomicRanges, graphics, R (>= 4.0) Imports: grid, gridBase, Rsamtools, ComplexHeatmap, BiocGenerics, Biostrings, GenomeInfoDb, methods, GenomicAlignments, GenomicFeatures, IRanges, rtracklayer, pracma, colorspace, S4Vectors Suggests: testthat, knitr, rmarkdown, pasillaBamSubset, BiocStyle, BiocManager License: GPL-3 MD5sum: 4f04f72f9c7f5f66fdd7a46292cca616 NeedsCompilation: no Title: Seamless visualization of complex genomic variations in GMOs and edited cell lines Description: Genetically modified organisms (GMOs) and cell lines are widely used models in all kinds of biological research. As part of characterising these models, DNA sequencing technology and bioinformatics analyses are used systematically to study their genomes. Therefore, large volumes of data are generated and various algorithms are applied to analyse this data, which introduces a challenge on representing all findings in an informative and concise manner. `gmoviz` provides users with an easy way to visualise and facilitate the explanation of complex genomic editing events on a larger, biologically-relevant scale. biocViews: Visualization, Sequencing, GeneticVariability, GenomicVariation, Coverage Author: Kathleen Zeglinski [cre, aut], Arthur Hsu [aut], Monther Alhamdoosh [aut] (), Constantinos Koutsakis [aut] Maintainer: Kathleen Zeglinski VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/gmoviz git_branch: RELEASE_3_20 git_last_commit: 94ff6df git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gmoviz_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gmoviz_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gmoviz_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gmoviz_1.18.0.tgz vignettes: vignettes/gmoviz/inst/doc/gmoviz_advanced.html, vignettes/gmoviz/inst/doc/gmoviz_overview.html vignetteTitles: Advanced usage of gmoviz, Introduction to gmoviz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gmoviz/inst/doc/gmoviz_advanced.R, vignettes/gmoviz/inst/doc/gmoviz_overview.R dependencyCount: 92 Package: GMRP Version: 1.34.0 Depends: R(>= 3.3.0),stats,utils,graphics, grDevices, diagram, plotrix, base,GenomicRanges Suggests: BiocStyle, BiocGenerics License: GPL (>= 2) MD5sum: 8357cef5fe7f17944b506228929f96c0 NeedsCompilation: no Title: GWAS-based Mendelian Randomization and Path Analyses Description: Perform Mendelian randomization analysis of multiple SNPs to determine risk factors causing disease of study and to exclude confounding variabels and perform path analysis to construct path of risk factors to the disease. biocViews: Sequencing, Regression, SNP Author: Yuan-De Tan Maintainer: Yuan-De Tan git_url: https://git.bioconductor.org/packages/GMRP git_branch: RELEASE_3_20 git_last_commit: 3e5a7ab git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GMRP_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GMRP_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GMRP_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GMRP_1.34.0.tgz vignettes: vignettes/GMRP/inst/doc/GMRP-manual.pdf, vignettes/GMRP/inst/doc/GMRP.pdf vignetteTitles: GMRP-manual.pdf, Causal Effect Analysis of Risk Factors for Disease with the "GMRP" package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GMRP/inst/doc/GMRP.R dependencyCount: 28 Package: GNET2 Version: 1.22.0 Depends: R (>= 3.6) Imports: ggplot2,xgboost,Rcpp,reshape2,grid,DiagrammeR,methods,stats,matrixStats,graphics,SummarizedExperiment,dplyr,igraph, grDevices, utils LinkingTo: Rcpp Suggests: knitr, rmarkdown License: Apache License 2.0 MD5sum: b9256f15935ad47d9827488af55187bc NeedsCompilation: yes Title: Constructing gene regulatory networks from expression data through functional module inference Description: Cluster genes to functional groups with E-M process. Iteratively perform TF assigning and Gene assigning, until the assignment of genes did not change, or max number of iterations is reached. biocViews: GeneExpression, Regression, Network, NetworkInference, Software Author: Chen Chen, Jie Hou and Jianlin Cheng Maintainer: Chen Chen URL: https://github.com/chrischen1/GNET2 VignetteBuilder: knitr BugReports: https://github.com/chrischen1/GNET2/issues git_url: https://git.bioconductor.org/packages/GNET2 git_branch: RELEASE_3_20 git_last_commit: 0009f98 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GNET2_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GNET2_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GNET2_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GNET2_1.22.0.tgz vignettes: vignettes/GNET2/inst/doc/run_gnet2.html vignetteTitles: Build functional gene modules with GNET2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GNET2/inst/doc/run_gnet2.R dependencyCount: 108 Package: GNOSIS Version: 1.4.0 Depends: R (>= 4.3.0), shiny, shinydashboard, shinydashboardPlus, dashboardthemes, shinyWidgets, shinymeta, tidyverse, operator.tools, maftools Imports: DT, fontawesome, shinycssloaders, cBioPortalData, shinyjs, reshape2, RColorBrewer, survival, survminer, stats, compareGroups, rpart, partykit, DescTools, car, rstatix, fabricatr, shinylogs, magrittr Suggests: BiocStyle, knitr, rmarkdown License: MIT + file LICENSE MD5sum: bc1d8518e1973a5b898f25970a194879 NeedsCompilation: no Title: Genomics explorer using statistical and survival analysis in R Description: GNOSIS incorporates a range of R packages enabling users to efficiently explore and visualise clinical and genomic data obtained from cBioPortal. GNOSIS uses an intuitive GUI and multiple tab panels supporting a range of functionalities. These include data upload and initial exploration, data recoding and subsetting, multiple visualisations, survival analysis, statistical analysis and mutation analysis, in addition to facilitating reproducible research. biocViews: Software, ShinyApps, Survival, GUI Author: Lydia King [aut, cre] (), Marcel Ramos [ctb] Maintainer: Lydia King URL: https://github.com/Lydia-King/GNOSIS/ VignetteBuilder: knitr Video: https://doi.org/10.5281/zenodo.5788544 BugReports: https://github.com/Lydia-King/GNOSIS/issues git_url: https://git.bioconductor.org/packages/GNOSIS git_branch: RELEASE_3_20 git_last_commit: 61f751e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GNOSIS_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GNOSIS_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GNOSIS_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GNOSIS_1.4.0.tgz vignettes: vignettes/GNOSIS/inst/doc/GNOSIS.html vignetteTitles: GNOSIS Overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GNOSIS/inst/doc/GNOSIS.R dependencyCount: 298 Package: GOexpress Version: 1.40.0 Depends: R (>= 3.4), grid, stats, graphics, Biobase (>= 2.22.0) Imports: biomaRt (>= 2.18.0), stringr (>= 0.6.2), ggplot2 (>= 0.9.0), RColorBrewer (>= 1.0), gplots (>= 2.13.0), randomForest (>= 4.6), RCurl (>= 1.95) Suggests: BiocStyle License: GPL (>= 3) Archs: x64 MD5sum: 20975c857147c270e93591d4b3b0fe4c NeedsCompilation: no Title: Visualise microarray and RNAseq data using gene ontology annotations Description: The package contains methods to visualise the expression profile of genes from a microarray or RNA-seq experiment, and offers a supervised clustering approach to identify GO terms containing genes with expression levels that best classify two or more predefined groups of samples. Annotations for the genes present in the expression dataset may be obtained from Ensembl through the biomaRt package, if not provided by the user. The default random forest framework is used to evaluate the capacity of each gene to cluster samples according to the factor of interest. Finally, GO terms are scored by averaging the rank (alternatively, score) of their respective gene sets to cluster the samples. P-values may be computed to assess the significance of GO term ranking. Visualisation function include gene expression profile, gene ontology-based heatmaps, and hierarchical clustering of experimental samples using gene expression data. biocViews: Software, GeneExpression, Transcription, DifferentialExpression, GeneSetEnrichment, DataRepresentation, Clustering, TimeCourse, Microarray, Sequencing, RNASeq, Annotation, MultipleComparison, Pathways, GO, Visualization, ImmunoOncology Author: Kevin Rue-Albrecht [aut, cre], Tharvesh M.L. Ali [ctb], Paul A. McGettigan [ctb], Belinda Hernandez [ctb], David A. Magee [ctb], Nicolas C. Nalpas [ctb], Andrew Parnell [ctb], Stephen V. Gordon [ths], David E. MacHugh [ths] Maintainer: Kevin Rue-Albrecht URL: https://github.com/kevinrue/GOexpress git_url: https://git.bioconductor.org/packages/GOexpress git_branch: RELEASE_3_20 git_last_commit: 2ad1e3e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GOexpress_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GOexpress_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GOexpress_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GOexpress_1.40.0.tgz vignettes: vignettes/GOexpress/inst/doc/GOexpress-UsersGuide.pdf vignetteTitles: UsersGuide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GOexpress/inst/doc/GOexpress-UsersGuide.R suggestsMe: InteractiveComplexHeatmap dependencyCount: 93 Package: GOfuncR Version: 1.26.0 Depends: R (>= 3.4), vioplot (>= 0.2), Imports: Rcpp (>= 0.11.5), mapplots (>= 1.5), gtools (>= 3.5.0), GenomicRanges (>= 1.28.4), IRanges, AnnotationDbi, utils, grDevices, graphics, stats, LinkingTo: Rcpp Suggests: Homo.sapiens, BiocStyle, knitr, markdown, rmarkdown, testthat License: GPL (>= 2) MD5sum: c255f3412faded1dfadfc216992eca39 NeedsCompilation: yes Title: Gene ontology enrichment using FUNC Description: GOfuncR performs a gene ontology enrichment analysis based on the ontology enrichment software FUNC. GO-annotations are obtained from OrganismDb or OrgDb packages ('Homo.sapiens' by default); the GO-graph is included in the package and updated regularly (01-May-2021). GOfuncR provides the standard candidate vs. background enrichment analysis using the hypergeometric test, as well as three additional tests: (i) the Wilcoxon rank-sum test that is used when genes are ranked, (ii) a binomial test that is used when genes are associated with two counts and (iii) a Chi-square or Fisher's exact test that is used in cases when genes are associated with four counts. To correct for multiple testing and interdependency of the tests, family-wise error rates are computed based on random permutations of the gene-associated variables. GOfuncR also provides tools for exploring the ontology graph and the annotations, and options to take gene-length or spatial clustering of genes into account. It is also possible to provide custom gene coordinates, annotations and ontologies. biocViews: GeneSetEnrichment, GO Author: Steffi Grote Maintainer: Steffi Grote VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GOfuncR git_branch: RELEASE_3_20 git_last_commit: 6c07c88 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GOfuncR_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GOfuncR_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GOfuncR_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GOfuncR_1.26.0.tgz vignettes: vignettes/GOfuncR/inst/doc/GOfuncR.html vignetteTitles: Introduction to GOfuncR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GOfuncR/inst/doc/GOfuncR.R dependencyCount: 54 Package: GOpro Version: 1.32.0 Depends: R (>= 3.5.0) Imports: AnnotationDbi, dendextend, doParallel, foreach, parallel, org.Hs.eg.db, GO.db, Rcpp, stats, graphics, MultiAssayExperiment, IRanges, S4Vectors LinkingTo: Rcpp, BH Suggests: knitr, rmarkdown, RTCGA.PANCAN12, BiocStyle, testthat License: GPL-3 MD5sum: 322bf28520208bfae9cbd508ebebd7e2 NeedsCompilation: yes Title: Find the most characteristic gene ontology terms for groups of human genes Description: Find the most characteristic gene ontology terms for groups of human genes. This package was created as a part of the thesis which was developed under the auspices of MI^2 Group (http://mi2.mini.pw.edu.pl/, https://github.com/geneticsMiNIng). biocViews: Annotation, Clustering, GO, GeneExpression, GeneSetEnrichment, MultipleComparison Author: Lidia Chrabaszcz Maintainer: Lidia Chrabaszcz URL: https://github.com/mi2-warsaw/GOpro VignetteBuilder: knitr BugReports: https://github.com/mi2-warsaw/GOpro/issues git_url: https://git.bioconductor.org/packages/GOpro git_branch: RELEASE_3_20 git_last_commit: 6cd5409 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GOpro_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GOpro_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GOpro_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GOpro_1.32.0.tgz vignettes: vignettes/GOpro/inst/doc/GOpro_vignette.html vignetteTitles: GOpro: Determine groups of genes and find their characteristic GO term hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GOpro/inst/doc/GOpro_vignette.R dependencyCount: 98 Package: goProfiles Version: 1.68.0 Depends: Biobase, AnnotationDbi, GO.db, CompQuadForm, stringr Suggests: org.Hs.eg.db License: GPL-2 Archs: x64 MD5sum: 27de9f94bca2c176f1e40558b8a513d3 NeedsCompilation: no Title: goProfiles: an R package for the statistical analysis of functional profiles Description: The package implements methods to compare lists of genes based on comparing the corresponding 'functional profiles'. biocViews: Annotation, GO, GeneExpression, GeneSetEnrichment, GraphAndNetwork, Microarray, MultipleComparison, Pathways, Software Author: Alex Sanchez, Jordi Ocana and Miquel Salicru Maintainer: Alex Sanchez git_url: https://git.bioconductor.org/packages/goProfiles git_branch: RELEASE_3_20 git_last_commit: 7846bb5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/goProfiles_1.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/goProfiles_1.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/goProfiles_1.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/goProfiles_1.68.0.tgz vignettes: vignettes/goProfiles/inst/doc/goProfiles-comparevisual.pdf, vignettes/goProfiles/inst/doc/goProfiles.pdf, vignettes/goProfiles/inst/doc/goProfiles-plotProfileMF.pdf vignetteTitles: goProfiles-comparevisual.pdf, goProfiles Vignette, goProfiles-plotProfileMF.pdf hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/goProfiles/inst/doc/goProfiles.R importsMe: goSorensen dependencyCount: 50 Package: GOSemSim Version: 2.32.0 Depends: R (>= 3.5.0) Imports: AnnotationDbi, DBI, digest, GO.db, methods, rlang, R.utils, stats, utils, yulab.utils (>= 0.1.6) LinkingTo: Rcpp Suggests: AnnotationHub, BiocManager, clusterProfiler, DOSE, knitr, org.Hs.eg.db, prettydoc, rappdirs, readr, rmarkdown, testthat, tidyr, tidyselect, ROCR License: Artistic-2.0 Archs: x64 MD5sum: 91ac358b6d115c6f33062c7e57ca4484 NeedsCompilation: yes Title: GO-terms Semantic Similarity Measures Description: The semantic comparisons of Gene Ontology (GO) annotations provide quantitative ways to compute similarities between genes and gene groups, and have became important basis for many bioinformatics analysis approaches. GOSemSim is an R package for semantic similarity computation among GO terms, sets of GO terms, gene products and gene clusters. GOSemSim implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively. biocViews: Annotation, GO, Clustering, Pathways, Network, Software Author: Guangchuang Yu [aut, cre], Alexey Stukalov [ctb], Pingfan Guo [ctb], Chuanle Xiao [ctb], Lluís Revilla Sancho [ctb] Maintainer: Guangchuang Yu URL: https://yulab-smu.top/biomedical-knowledge-mining-book/ VignetteBuilder: knitr BugReports: https://github.com/YuLab-SMU/GOSemSim/issues git_url: https://git.bioconductor.org/packages/GOSemSim git_branch: RELEASE_3_20 git_last_commit: 1b53196 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GOSemSim_2.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GOSemSim_2.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GOSemSim_2.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GOSemSim_2.32.0.tgz vignettes: vignettes/GOSemSim/inst/doc/GOSemSim.html vignetteTitles: GOSemSim hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GOSemSim/inst/doc/GOSemSim.R dependsOnMe: tRanslatome importsMe: clusterProfiler, DOSE, enrichplot, GeDi, meshes, Rcpi, rrvgo, BiSEp suggestsMe: BioCor, epiNEM, FELLA, SemDist, genekitr, protr, scDiffCom dependencyCount: 53 Package: goseq Version: 1.58.0 Depends: R (>= 2.11.0), BiasedUrn, geneLenDataBase (>= 1.9.2) Imports: mgcv, graphics, stats, utils, AnnotationDbi, GO.db, BiocGenerics, methods, rtracklayer, GenomicFeatures, GenomeInfoDb Suggests: edgeR, org.Hs.eg.db License: LGPL (>= 2) MD5sum: 2f8e14aea3c76338ad18c7a1bfe8c502 NeedsCompilation: no Title: Gene Ontology analyser for RNA-seq and other length biased data Description: Detects Gene Ontology and/or other user defined categories which are over/under represented in RNA-seq data. biocViews: ImmunoOncology, Sequencing, GO, GeneExpression, Transcription, RNASeq, DifferentialExpression, Annotation, GeneSetEnrichment, KEGG, Pathways, Software Author: Matthew Young [aut], Nadia Davidson [aut], Federico Marini [ctb, cre] () Maintainer: Federico Marini URL: https://github.com/federicomarini/goseq BugReports: https://github.com/federicomarini/goseq/issues git_url: https://git.bioconductor.org/packages/goseq git_branch: RELEASE_3_20 git_last_commit: 3ed9d9a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/goseq_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/goseq_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/goseq_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/goseq_1.58.0.tgz vignettes: vignettes/goseq/inst/doc/goseq.pdf vignetteTitles: goseq User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/goseq/inst/doc/goseq.R dependsOnMe: rgsepd importsMe: Damsel, ideal, mosdef, SMITE suggestsMe: sparrow dependencyCount: 108 Package: goSorensen Version: 1.8.0 Depends: R (>= 4.3) Imports: clusterProfiler, goProfiles, org.Hs.eg.db, parallel, stats, stringr Suggests: BiocManager, BiocStyle, knitr, rmarkdown, org.At.tair.db, org.Ag.eg.db, org.Bt.eg.db, org.Ce.eg.db, org.Cf.eg.db, org.Dm.eg.db, org.Dr.eg.db, org.EcSakai.eg.db, org.EcK12.eg.db, org.Gg.eg.db, org.Mm.eg.db, org.Mmu.eg.db, org.Rn.eg.db, org.Sc.sgd.db, org.Ss.eg.db, org.Pt.eg.db, org.Xl.eg.db License: GPL-3 Archs: x64 MD5sum: aba6bdd63cc6e5ee46dac40d3297caca NeedsCompilation: no Title: Statistical inference based on the Sorensen-Dice dissimilarity and the Gene Ontology (GO) Description: This package implements inferential methods to compare gene lists in terms of their biological meaning as expressed in the GO. The compared gene lists are characterized by cross-tabulation frequency tables of enriched GO items. Dissimilarity between gene lists is evaluated using the Sorensen-Dice index. The fundamental guiding principle is that two gene lists are taken as similar if they share a great proportion of common enriched GO items. biocViews: Annotation, GO, GeneSetEnrichment, Software, Microarray, Pathways, GeneExpression, MultipleComparison, GraphAndNetwork, Reactome, Clustering, KEGG Author: Pablo Flores [aut, cre] (), Jordi Ocana [aut, ctb] (0000-0002-4736-699), Alexandre Sanchez-Pla [ctb] (), Miquel Salicru [ctb] () Maintainer: Pablo Flores VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/goSorensen git_branch: RELEASE_3_20 git_last_commit: 3db7a6f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/goSorensen_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/goSorensen_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/goSorensen_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/goSorensen_1.8.0.tgz vignettes: vignettes/goSorensen/inst/doc/goSorensen_Introduction.html, vignettes/goSorensen/inst/doc/irrelevance-threshold_Matrix_Dissimilarities.html, vignettes/goSorensen/inst/doc/README.html vignetteTitles: An introduction to equivalence test between feature lists using goSorensen., An Irrelevance Threshold Matrix of Dissimilarities., README hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/goSorensen/inst/doc/goSorensen_Introduction.R, vignettes/goSorensen/inst/doc/irrelevance-threshold_Matrix_Dissimilarities.R, vignettes/goSorensen/inst/doc/README.R dependencyCount: 127 Package: goSTAG Version: 1.30.0 Depends: R (>= 3.4) Imports: AnnotationDbi, biomaRt, GO.db, graphics, memoise, stats, utils Suggests: BiocStyle, knitr, rmarkdown, testthat License: GPL-3 MD5sum: 3f60375f304188998dba89a635f4a6e2 NeedsCompilation: no Title: A tool to use GO Subtrees to Tag and Annotate Genes within a set Description: Gene lists derived from the results of genomic analyses are rich in biological information. For instance, differentially expressed genes (DEGs) from a microarray or RNA-Seq analysis are related functionally in terms of their response to a treatment or condition. Gene lists can vary in size, up to several thousand genes, depending on the robustness of the perturbations or how widely different the conditions are biologically. Having a way to associate biological relatedness between hundreds and thousands of genes systematically is impractical by manually curating the annotation and function of each gene. Over-representation analysis (ORA) of genes was developed to identify biological themes. Given a Gene Ontology (GO) and an annotation of genes that indicate the categories each one fits into, significance of the over-representation of the genes within the ontological categories is determined by a Fisher's exact test or modeling according to a hypergeometric distribution. Comparing a small number of enriched biological categories for a few samples is manageable using Venn diagrams or other means for assessing overlaps. However, with hundreds of enriched categories and many samples, the comparisons are laborious. Furthermore, if there are enriched categories that are shared between samples, trying to represent a common theme across them is highly subjective. goSTAG uses GO subtrees to tag and annotate genes within a set. goSTAG visualizes the similarities between the over-representation of DEGs by clustering the p-values from the enrichment statistical tests and labels clusters with the GO term that has the most paths to the root within the subtree generated from all the GO terms in the cluster. biocViews: GeneExpression, DifferentialExpression, GeneSetEnrichment, Clustering, Microarray, mRNAMicroarray, RNASeq, Visualization, GO, ImmunoOncology Author: Brian D. Bennett and Pierre R. Bushel Maintainer: Brian D. Bennett VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/goSTAG git_branch: RELEASE_3_20 git_last_commit: e905d13 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/goSTAG_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/goSTAG_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/goSTAG_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/goSTAG_1.30.0.tgz vignettes: vignettes/goSTAG/inst/doc/goSTAG.html vignetteTitles: The goSTAG User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/goSTAG/inst/doc/goSTAG.R dependencyCount: 70 Package: GOstats Version: 2.72.0 Depends: R (>= 2.10), Biobase (>= 1.15.29), Category (>= 2.43.2), graph Imports: methods, stats, stats4, AnnotationDbi (>= 0.0.89), GO.db (>= 1.13.0), RBGL, annotate (>= 1.13.2), AnnotationForge, Rgraphviz Suggests: hgu95av2.db (>= 1.13.0), ALL, multtest, genefilter, RColorBrewer, xtable, SparseM, GSEABase, geneplotter, org.Hs.eg.db, RUnit, BiocGenerics, BiocStyle, knitr License: Artistic-2.0 MD5sum: 17647610e9758110420e9b7498978d54 NeedsCompilation: no Title: Tools for manipulating GO and microarrays Description: A set of tools for interacting with GO and microarray data. A variety of basic manipulation tools for graphs, hypothesis testing and other simple calculations. biocViews: Annotation, GO, MultipleComparison, GeneExpression, Microarray, Pathways, GeneSetEnrichment, GraphAndNetwork Author: Robert Gentleman [aut], Seth Falcon [ctb], Robert Castelo [ctb], Sonali Kumari [ctb] (Converted vignettes from Sweave to R Markdown / HTML.), Dennis Ndubi [ctb] (Converted GOstatsHyperG vignette from Sweave to R Markdown / HTML.), Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GOstats git_branch: RELEASE_3_20 git_last_commit: 7306a7f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GOstats_2.72.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GOstats_2.72.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GOstats_2.72.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GOstats_2.72.0.tgz vignettes: vignettes/GOstats/inst/doc/GOstatsForUnsupportedOrganisms.html, vignettes/GOstats/inst/doc/GOstatsHyperG.html, vignettes/GOstats/inst/doc/GOvis.html vignetteTitles: How To Use GOstats and Category to do Hypergeometric testing with unsupported model organisms, Hypergeometric Tests Using GOstats, Visualizing and Distances Using GO hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GOstats/inst/doc/GOstatsForUnsupportedOrganisms.R, vignettes/GOstats/inst/doc/GOstatsHyperG.R, vignettes/GOstats/inst/doc/GOvis.R dependsOnMe: MineICA importsMe: affycoretools, attract, categoryCompare, GmicR, ideal, miRLAB, netZooR, pcaExplorer, scTensor, SGCP, DNLC suggestsMe: a4, Category, fastLiquidAssociation, fgga, GSEAlm, interactiveDisplay, MineICA, MLP, qpgraph, RnBeads, safe, maGUI, sand dependencyCount: 66 Package: GOTHiC Version: 1.42.0 Depends: R (>= 3.5.0), methods, GenomicRanges, Biostrings, BSgenome, data.table Imports: BiocGenerics, S4Vectors (>= 0.9.38), IRanges, Rsamtools, ShortRead, rtracklayer, ggplot2, BiocManager, grDevices, utils, stats, GenomeInfoDb Suggests: HiCDataLymphoblast Enhances: parallel License: GPL-3 MD5sum: 4307142707add23652db5f3e9abef9f4 NeedsCompilation: no Title: Binomial test for Hi-C data analysis Description: This is a Hi-C analysis package using a cumulative binomial test to detect interactions between distal genomic loci that have significantly more reads than expected by chance in Hi-C experiments. It takes mapped paired NGS reads as input and gives back the list of significant interactions for a given bin size in the genome. biocViews: ImmunoOncology, Sequencing, Preprocessing, Epigenetics, HiC Author: Borbala Mifsud and Robert Sugar Maintainer: Borbala Mifsud git_url: https://git.bioconductor.org/packages/GOTHiC git_branch: RELEASE_3_20 git_last_commit: 66ddb69 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GOTHiC_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GOTHiC_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GOTHiC_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GOTHiC_1.42.0.tgz vignettes: vignettes/GOTHiC/inst/doc/package_vignettes.pdf vignetteTitles: package_vignettes.pdf hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GOTHiC/inst/doc/package_vignettes.R importsMe: OHCA dependencyCount: 97 Package: goTools Version: 1.80.0 Depends: GO.db Imports: AnnotationDbi, GO.db, graphics, grDevices Suggests: hgu133a.db License: GPL-2 MD5sum: 64aabdeff248a4131615200e0d83a673 NeedsCompilation: no Title: Functions for Gene Ontology database Description: Wraper functions for description/comparison of oligo ID list using Gene Ontology database biocViews: Microarray,GO,Visualization Author: Yee Hwa (Jean) Yang , Agnes Paquet Maintainer: Agnes Paquet git_url: https://git.bioconductor.org/packages/goTools git_branch: RELEASE_3_20 git_last_commit: 75a2270 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/goTools_1.80.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/goTools_1.80.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/goTools_1.80.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/goTools_1.80.0.tgz vignettes: vignettes/goTools/inst/doc/goTools.pdf vignetteTitles: goTools overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/goTools/inst/doc/goTools.R dependencyCount: 46 Package: GPA Version: 1.18.0 Depends: R (>= 4.0.0), methods, graphics, Rcpp Imports: parallel, ggplot2, ggrepel, plyr, vegan, DT, shiny, shinyBS, stats, utils, grDevices LinkingTo: Rcpp Suggests: gpaExample License: GPL (>= 2) MD5sum: 86ef048b32f842667b4f198e85533e3a NeedsCompilation: yes Title: GPA (Genetic analysis incorporating Pleiotropy and Annotation) Description: This package provides functions for fitting GPA, a statistical framework to prioritize GWAS results by integrating pleiotropy information and annotation data. In addition, it also includes ShinyGPA, an interactive visualization toolkit to investigate pleiotropic architecture. biocViews: Software, StatisticalMethod, Classification, GenomeWideAssociation, SNP, Genetics, Clustering, MultipleComparison, Preprocessing, GeneExpression, DifferentialExpression Author: Dongjun Chung, Emma Kortemeier, Carter Allen Maintainer: Dongjun Chung URL: http://dongjunchung.github.io/GPA/ SystemRequirements: GNU make BugReports: https://github.com/dongjunchung/GPA/issues git_url: https://git.bioconductor.org/packages/GPA git_branch: RELEASE_3_20 git_last_commit: 61d3b65 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GPA_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GPA_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GPA_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GPA_1.18.0.tgz vignettes: vignettes/GPA/inst/doc/GPA-example.pdf vignetteTitles: GPA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GPA/inst/doc/GPA-example.R dependencyCount: 77 Package: gpls Version: 1.78.0 Imports: stats Suggests: MASS License: Artistic-2.0 MD5sum: 00ede3e4a045b572128e573d7fbbf945 NeedsCompilation: no Title: Classification using generalized partial least squares Description: Classification using generalized partial least squares for two-group and multi-group (more than 2 group) classification. biocViews: Classification, Microarray, Regression Author: Beiying Ding Maintainer: Bioconductor Package Maintainer git_url: https://git.bioconductor.org/packages/gpls git_branch: RELEASE_3_20 git_last_commit: 72cdcc6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gpls_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gpls_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gpls_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gpls_1.78.0.tgz vignettes: vignettes/gpls/inst/doc/gpls.pdf vignetteTitles: gpls Tutorial hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gpls/inst/doc/gpls.R suggestsMe: MLInterfaces dependencyCount: 1 Package: gpuMagic Version: 1.22.0 Depends: R (>= 3.6.0), methods, utils Imports: Deriv, DescTools, digest, pryr, stringr, BiocGenerics LinkingTo: Rcpp Suggests: testthat, knitr, rmarkdown, BiocStyle License: GPL-3 Archs: x64 MD5sum: cc537f655d58c0a240bb6905612a2ac3 NeedsCompilation: yes Title: An openCL compiler with the capacity to compile R functions and run the code on GPU Description: The package aims to help users write openCL code with little or no effort. It is able to compile an user-defined R function and run it on a device such as a CPU or a GPU. The user can also write and run their openCL code directly by calling .kernel function. biocViews: Infrastructure Author: Jiefei Wang [aut, cre], Martin Morgan [aut] Maintainer: Jiefei Wang SystemRequirements: 1. C++11, 2. a graphic driver or a CPU SDK. 3. ICD loader For Windows user, an ICD loader is required at C:/windows/system32/OpenCL.dll (Usually it is installed by the graphic driver). For Linux user (Except mac): ocl-icd-opencl-dev package is required. For Mac user, no action is needed for the system has installed the dependency. 4. GNU make VignetteBuilder: knitr BugReports: https://github.com/Jiefei-Wang/gpuMagic/issues git_url: https://git.bioconductor.org/packages/gpuMagic git_branch: RELEASE_3_20 git_last_commit: cc5ec08 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gpuMagic_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gpuMagic_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gpuMagic_1.22.0.tgz vignettes: vignettes/gpuMagic/inst/doc/Customized-openCL-code.html, vignettes/gpuMagic/inst/doc/Quick_start_guide.html vignetteTitles: Customized_opencl_code, quickStart hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gpuMagic/inst/doc/Customized-openCL-code.R, vignettes/gpuMagic/inst/doc/Quick_start_guide.R dependencyCount: 70 Package: GrafGen Version: 1.2.0 Depends: R (>= 4.3.0) Imports: stats, utils, graphics, ggplot2, plotly, zlibbioc, scales, RColorBrewer, dplyr, grDevices, GenomicRanges, shiny, cowplot, ggpubr, stringr, rlang Suggests: knitr, rmarkdown, RUnit, BiocManager, BiocGenerics, BiocStyle, devtools License: GPL-2 MD5sum: 171df480a0d067cbf2986074ba9949dc NeedsCompilation: yes Title: Classification of Helicobacter Pylori Genomes Description: To classify Helicobacter pylori genomes according to genetic distance from nine reference populations. The nine reference populations are hpgpAfrica, hpgpAfrica-distant, hpgpAfroamerica, hpgpEuroamerica, hpgpMediterranea, hpgpEurope, hpgpEurasia, hpgpAsia, and hpgpAklavik86-like. The vertex populations are Africa, Europe and Asia. biocViews: Genetics, Software, GenomeAnnotation, Classification Author: William Wheeler [aut, cre], Difei Wang [aut], Isaac Zhao [aut], Yumi Jin [aut], Charles Rabkin [aut] Maintainer: William Wheeler VignetteBuilder: knitr BugReports: https://github.com/wheelerb/GrafGen/issues git_url: https://git.bioconductor.org/packages/GrafGen git_branch: RELEASE_3_20 git_last_commit: e560188 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GrafGen_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GrafGen_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GrafGen_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GrafGen_1.2.0.tgz vignettes: vignettes/GrafGen/inst/doc/vignette.html vignetteTitles: GrafGen: Classifying H. pylori genomes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GrafGen/inst/doc/vignette.R dependencyCount: 126 Package: GRaNIE Version: 1.10.0 Depends: R (>= 4.2.0) Imports: futile.logger, checkmate, patchwork (>= 1.2.0), reshape2, data.table, matrixStats, Matrix, GenomicRanges, RColorBrewer, ComplexHeatmap, DESeq2, circlize, progress, utils, methods, stringr, tools, scales, igraph, S4Vectors, ggplot2, rlang, Biostrings, GenomeInfoDb (>= 1.34.8), SummarizedExperiment, forcats, gridExtra, limma, tidyselect, readr, grid, tidyr (>= 1.3.0), dplyr, stats, grDevices, graphics, magrittr, tibble, viridis, colorspace, biomaRt, topGO, AnnotationHub, ensembldb Suggests: knitr, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm39, BSgenome.Mmusculus.UCSC.mm10, BSgenome.Mmusculus.UCSC.mm9, BSgenome.Rnorvegicus.UCSC.rn6, BSgenome.Rnorvegicus.UCSC.rn7, BSgenome.Dmelanogaster.UCSC.dm6, BSgenome.Mmulatta.UCSC.rheMac10, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg38.knownGene, TxDb.Mmusculus.UCSC.mm39.knownGene, TxDb.Mmusculus.UCSC.mm10.knownGene, TxDb.Mmusculus.UCSC.mm9.knownGene, TxDb.Rnorvegicus.UCSC.rn6.refGene, TxDb.Rnorvegicus.UCSC.rn7.refGene, TxDb.Dmelanogaster.UCSC.dm6.ensGene, TxDb.Mmulatta.UCSC.rheMac10.refGene, org.Hs.eg.db, org.Mm.eg.db, org.Rn.eg.db, org.Dm.eg.db, org.Mmu.eg.db, IHW, clusterProfiler, ReactomePA, DOSE, BiocFileCache, ChIPseeker, testthat (>= 3.0.0), BiocStyle, csaw, BiocParallel, WGCNA, variancePartition, purrr, EDASeq, JASPAR2022, JASPAR2024, RSQLite, TFBSTools, motifmatchr, rbioapi, LDlinkR License: Artistic-2.0 Archs: x64 MD5sum: b414946644b0a626067a257b8f00626b NeedsCompilation: no Title: GRaNIE: Reconstruction cell type specific gene regulatory networks including enhancers using single-cell or bulk chromatin accessibility and RNA-seq data Description: Genetic variants associated with diseases often affect non-coding regions, thus likely having a regulatory role. To understand the effects of genetic variants in these regulatory regions, identifying genes that are modulated by specific regulatory elements (REs) is crucial. The effect of gene regulatory elements, such as enhancers, is often cell-type specific, likely because the combinations of transcription factors (TFs) that are regulating a given enhancer have cell-type specific activity. This TF activity can be quantified with existing tools such as diffTF and captures differences in binding of a TF in open chromatin regions. Collectively, this forms a gene regulatory network (GRN) with cell-type and data-specific TF-RE and RE-gene links. Here, we reconstruct such a GRN using single-cell or bulk RNAseq and open chromatin (e.g., using ATACseq or ChIPseq for open chromatin marks) and optionally (Capture) Hi-C data. Our network contains different types of links, connecting TFs to regulatory elements, the latter of which is connected to genes in the vicinity or within the same chromatin domain (TAD). We use a statistical framework to assign empirical FDRs and weights to all links using a permutation-based approach. biocViews: Software, GeneExpression, GeneRegulation, NetworkInference, GeneSetEnrichment, BiomedicalInformatics, Genetics, Transcriptomics, ATACSeq, RNASeq, GraphAndNetwork, Regression, Transcription, ChIPSeq Author: Christian Arnold [cre, aut], Judith Zaugg [aut], Rim Moussa [aut], Armando Reyes-Palomares [ctb], Giovanni Palla [ctb], Maksim Kholmatov [ctb] Maintainer: Christian Arnold URL: https://grp-zaugg.embl-community.io/GRaNIE VignetteBuilder: knitr BugReports: https://git.embl.de/grp-zaugg/GRaNIE/issues git_url: https://git.bioconductor.org/packages/GRaNIE git_branch: RELEASE_3_20 git_last_commit: 22b61ee git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GRaNIE_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GRaNIE_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GRaNIE_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GRaNIE_1.10.0.tgz vignettes: vignettes/GRaNIE/inst/doc/GRaNIE_packageDetails.html, vignettes/GRaNIE/inst/doc/GRaNIE_singleCell_eGRNs.html, vignettes/GRaNIE/inst/doc/GRaNIE_workflow.html vignetteTitles: Package Details, Single-cell eGRN inference, Workflow example hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GRaNIE/inst/doc/GRaNIE_packageDetails.R, vignettes/GRaNIE/inst/doc/GRaNIE_singleCell_eGRNs.R, vignettes/GRaNIE/inst/doc/GRaNIE_workflow.R dependencyCount: 156 Package: granulator Version: 1.14.0 Depends: R (>= 4.1) Imports: cowplot, e1071, epiR, dplyr, dtangle, ggplot2, ggplotify, grDevices, limSolve, magrittr, MASS, nnls, parallel, pheatmap, purrr, rlang, stats, tibble, tidyr, utils Suggests: BiocStyle, knitr, rmarkdown, testthat License: GPL-3 Archs: x64 MD5sum: 24b4d506d8a9dbd7c3d6db64d8aa3257 NeedsCompilation: no Title: Rapid benchmarking of methods for *in silico* deconvolution of bulk RNA-seq data Description: granulator is an R package for the cell type deconvolution of heterogeneous tissues based on bulk RNA-seq data or single cell RNA-seq expression profiles. The package provides a unified testing interface to rapidly run and benchmark multiple state-of-the-art deconvolution methods. Data for the deconvolution of peripheral blood mononuclear cells (PBMCs) into individual immune cell types is provided as well. biocViews: RNASeq, GeneExpression, DifferentialExpression, Transcriptomics, SingleCell, StatisticalMethod, Regression Author: Sabina Pfister [aut, cre], Vincent Kuettel [aut], Enrico Ferrero [aut] Maintainer: Sabina Pfister URL: https://github.com/xanibas/granulator VignetteBuilder: knitr BugReports: https://github.com/xanibas/granulator/issues git_url: https://git.bioconductor.org/packages/granulator git_branch: RELEASE_3_20 git_last_commit: 7a2ddc6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/granulator_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/granulator_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/granulator_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/granulator_1.14.0.tgz vignettes: vignettes/granulator/inst/doc/granulator.html vignetteTitles: Deconvoluting bulk RNA-seq data with granulator hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/granulator/inst/doc/granulator.R suggestsMe: deconvR dependencyCount: 111 Package: graper Version: 1.22.0 Depends: R (>= 3.6) Imports: Matrix, Rcpp, stats, ggplot2, methods, cowplot, matrixStats LinkingTo: Rcpp, RcppArmadillo, BH Suggests: knitr, rmarkdown, BiocStyle, testthat License: GPL (>= 2) MD5sum: 9359b64d5e98409d31c081cb4a93a086 NeedsCompilation: yes Title: Adaptive penalization in high-dimensional regression and classification with external covariates using variational Bayes Description: This package enables regression and classification on high-dimensional data with different relative strengths of penalization for different feature groups, such as different assays or omic types. The optimal relative strengths are chosen adaptively. Optimisation is performed using a variational Bayes approach. biocViews: Regression, Bayesian, Classification Author: Britta Velten [aut, cre], Wolfgang Huber [aut] Maintainer: Britta Velten VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/graper git_branch: RELEASE_3_20 git_last_commit: 04d5a90 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/graper_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/graper_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/graper_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/graper_1.22.0.tgz vignettes: vignettes/graper/inst/doc/example_linear.html, vignettes/graper/inst/doc/example_logistic.html vignetteTitles: example_linear, example_logistic hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/graper/inst/doc/example_linear.R, vignettes/graper/inst/doc/example_logistic.R dependencyCount: 40 Package: graph Version: 1.84.1 Depends: R (>= 2.10), methods, BiocGenerics (>= 0.13.11) Imports: stats, stats4, utils Suggests: SparseM (>= 0.36), XML, RBGL, RUnit, cluster, BiocStyle, knitr Enhances: Rgraphviz License: Artistic-2.0 MD5sum: 7bc1f44620e332c21594a946d8990062 NeedsCompilation: yes Title: graph: A package to handle graph data structures Description: A package that implements some simple graph handling capabilities. biocViews: GraphAndNetwork Author: R Gentleman [aut], Elizabeth Whalen [aut], W Huber [aut], S Falcon [aut], Jeff Gentry [aut], Paul Shannon [aut], Halimat C. Atanda [ctb] (Converted 'MultiGraphClass' and 'GraphClass' vignettes from Sweave to RMarkdown / HTML.), Paul Villafuerte [ctb] (Converted vignettes from Sweave to RMarkdown / HTML.), Aliyu Atiku Mustapha [ctb] (Converted 'Graph' vignette from Sweave to RMarkdown / HTML.), Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/graph git_branch: RELEASE_3_20 git_last_commit: 41ac6e9 git_last_commit_date: 2024-12-30 Date/Publication: 2025-01-02 source.ver: src/contrib/graph_1.84.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/graph_1.84.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/graph_1.84.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/graph_1.84.1.tgz vignettes: vignettes/graph/inst/doc/clusterGraph.html, vignettes/graph/inst/doc/graphAttributes.html, vignettes/graph/inst/doc/GraphClass.html, vignettes/graph/inst/doc/graph.html, vignettes/graph/inst/doc/MultiGraphClass.html vignetteTitles: clusterGraph and distGraph, Attributes for Graph Objects, Graph Design, How to use the graph package, graphBAM and MultiGraph Classes hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/graph/inst/doc/clusterGraph.R, vignettes/graph/inst/doc/graphAttributes.R, vignettes/graph/inst/doc/GraphClass.R, vignettes/graph/inst/doc/graph.R, vignettes/graph/inst/doc/MultiGraphClass.R dependsOnMe: apComplex, biocGraph, BioMVCClass, BioNet, BLMA, CellNOptR, clipper, CNORfeeder, EnrichmentBrowser, GOstats, GraphAT, GSEABase, hypergraph, keggorthology, MineICA, pathRender, Pigengene, RbcBook1, RBGL, RBioinf, RCyjs, Rgraphviz, ROntoTools, SRAdb, topGO, vtpnet, DLBCL, SNAData, yeastExpData, cyjShiny, dlsem, gridGraphviz, GUIProfiler, hasseDiagram, PairViz, PerfMeas, SubpathwayLNCE importsMe: AnnotationHubData, BgeeDB, BiocCheck, BiocFHIR, biocGraph, BiocPkgTools, biocViews, bnem, CAMERA, Category, categoryCompare, chimeraviz, ChIPpeakAnno, CHRONOS, consICA, CytoML, dce, DEGraph, DEsubs, EnrichDO, epiNEM, EventPointer, fgga, flowClust, flowWorkspace, gage, GeneNetworkBuilder, GenomicInteractionNodes, GraphAT, graphite, hyperdraw, KEGGgraph, MIRit, mnem, MOSClip, NCIgraph, netresponse, OncoSimulR, ontoProc, oposSOM, OrganismDbi, pathview, PhenStat, qpgraph, RCy3, RGraph2js, rsbml, Rtreemix, SGCP, SplicingGraphs, Streamer, VariantFiltering, BioPlex, abn, BayesNetBP, BCDAG, BiDAG, BNrich, ceg, CePa, classGraph, clustNet, CodeDepends, cogmapr, eulerian, ggm, gridDebug, HEMDAG, kpcalg, net4pg, netgsa, NetPreProc, pcalg, pcgen, rags2ridges, RANKS, RCPA, rsolr, rSpectral, SEMgraph, stablespec, topologyGSA, tpc, unifDAG, zenplots suggestsMe: AnnotationDbi, DAPAR, DEGraph, EBcoexpress, ecolitk, gwascat, KEGGlincs, MLP, NetPathMiner, omXplore, rBiopaxParser, RCX, rTRM, S4Vectors, SPIA, VariantTools, arulesViz, bnlearn, bnstruct, bsub, ChoR, gbutils, GeneNet, gMCP, lava, loon, maGUI, psych, rEMM, rPref, sisal, textplot, tidygraph dependencyCount: 6 Package: GraphAlignment Version: 1.70.0 License: file LICENSE License_restricts_use: yes Archs: x64 MD5sum: 810f6b4520c38556ae64726d1873620d NeedsCompilation: yes Title: GraphAlignment Description: Graph alignment is an extension package for the R programming environment which provides functions for finding an alignment between two networks based on link and node similarity scores. (J. Berg and M. Laessig, "Cross-species analysis of biological networks by Bayesian alignment", PNAS 103 (29), 10967-10972 (2006)) biocViews: GraphAndNetwork, Network Author: Joern P. Meier , Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg. Maintainer: Joern P. Meier URL: http://www.thp.uni-koeln.de/~berg/GraphAlignment/ git_url: https://git.bioconductor.org/packages/GraphAlignment git_branch: RELEASE_3_20 git_last_commit: b835778 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GraphAlignment_1.70.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GraphAlignment_1.70.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GraphAlignment_1.70.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GraphAlignment_1.70.0.tgz vignettes: vignettes/GraphAlignment/inst/doc/GraphAlignment.pdf vignetteTitles: GraphAlignment hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GraphAlignment/inst/doc/GraphAlignment.R dependencyCount: 0 Package: GraphAT Version: 1.78.0 Depends: R (>= 2.10), graph, methods Imports: graph, MCMCpack, methods, stats License: LGPL Archs: x64 MD5sum: 5509da5e60b7666f716c5363318e670a NeedsCompilation: no Title: Graph Theoretic Association Tests Description: Functions and data used in Balasubramanian, et al. (2004) biocViews: Network, GraphAndNetwork Author: R. Balasubramanian, T. LaFramboise, D. Scholtens Maintainer: Thomas LaFramboise git_url: https://git.bioconductor.org/packages/GraphAT git_branch: RELEASE_3_20 git_last_commit: 8a99ba4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GraphAT_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GraphAT_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GraphAT_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GraphAT_1.78.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 20 Package: graphite Version: 1.52.0 Depends: R (>= 4.2), methods Imports: AnnotationDbi, graph (>= 1.67.1), httr, rappdirs, stats, utils, graphics, rlang, purrr Suggests: checkmate, a4Preproc, ALL, BiocStyle, codetools, hgu133plus2.db, hgu95av2.db, impute, knitr, org.Hs.eg.db, parallel, R.rsp, RCy3, rmarkdown, SPIA (>= 2.2), testthat, topologyGSA (>= 1.4.0) License: AGPL-3 Archs: x64 MD5sum: c18e901f2f944c9d1115237ad417ee35 NeedsCompilation: no Title: GRAPH Interaction from pathway Topological Environment Description: Graph objects from pathway topology derived from KEGG, Panther, PathBank, PharmGKB, Reactome SMPDB and WikiPathways databases. biocViews: Pathways, ThirdPartyClient, GraphAndNetwork, Network, Reactome, KEGG, Metabolomics Author: Gabriele Sales [cre], Enrica Calura [aut], Chiara Romualdi [aut] Maintainer: Gabriele Sales URL: https://github.com/sales-lab/graphite VignetteBuilder: R.rsp BugReports: https://github.com/sales-lab/graphite/issues git_url: https://git.bioconductor.org/packages/graphite git_branch: RELEASE_3_20 git_last_commit: 7bda9e0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/graphite_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/graphite_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/graphite_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/graphite_1.52.0.tgz vignettes: vignettes/graphite/inst/doc/graphite.pdf, vignettes/graphite/inst/doc/metabolites.pdf vignetteTitles: GRAPH Interaction from pathway Topological Environment, metabolites.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/graphite/inst/doc/graphite.R importsMe: CBNplot, dce, EnrichmentBrowser, MIRit, mogsa, MOSClip, multiGSEA, ReactomePA, sSNAPPY, ICDS, netgsa suggestsMe: clipper, InterCellar, metaboliteIDmapping dependencyCount: 49 Package: GRENITS Version: 1.58.0 Depends: R (>= 2.12.0), Rcpp (>= 0.8.6), RcppArmadillo (>= 0.2.8), ggplot2 (>= 0.9.0) Imports: graphics, grDevices, reshape2, stats, utils LinkingTo: Rcpp, RcppArmadillo Suggests: network License: GPL (>= 2) MD5sum: c7cb716ed0a16b2af28309de7dac9a38 NeedsCompilation: yes Title: Gene Regulatory Network Inference Using Time Series Description: The package offers four network inference statistical models using Dynamic Bayesian Networks and Gibbs Variable Selection: a linear interaction model, two linear interaction models with added experimental noise (Gaussian and Student distributed) for the case where replicates are available and a non-linear interaction model. biocViews: NetworkInference, GeneRegulation, TimeCourse, GraphAndNetwork, GeneExpression, Network, Bayesian Author: Edward Morrissey Maintainer: Edward Morrissey git_url: https://git.bioconductor.org/packages/GRENITS git_branch: RELEASE_3_20 git_last_commit: 731395d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GRENITS_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GRENITS_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GRENITS_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GRENITS_1.58.0.tgz vignettes: vignettes/GRENITS/inst/doc/GRENITS_package.pdf vignetteTitles: GRENITS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GRENITS/inst/doc/GRENITS_package.R dependencyCount: 42 Package: GreyListChIP Version: 1.38.0 Depends: R (>= 4.0), methods, GenomicRanges Imports: GenomicAlignments, BSgenome, Rsamtools, rtracklayer, MASS, parallel, GenomeInfoDb, SummarizedExperiment, stats, utils Suggests: BiocStyle, BiocGenerics, RUnit, BSgenome.Hsapiens.UCSC.hg19 License: Artistic-2.0 MD5sum: f5a1217e86a8866af3bc6b2fd034418b NeedsCompilation: no Title: Grey Lists -- Mask Artefact Regions Based on ChIP Inputs Description: Identify regions of ChIP experiments with high signal in the input, that lead to spurious peaks during peak calling. Remove reads aligning to these regions prior to peak calling, for cleaner ChIP analysis. biocViews: ChIPSeq, Alignment, Preprocessing, DifferentialPeakCalling, Sequencing, GenomeAnnotation, Coverage Author: Matt Eldridge [cre], Gord Brown [aut] Maintainer: Matt Eldridge git_url: https://git.bioconductor.org/packages/GreyListChIP git_branch: RELEASE_3_20 git_last_commit: e147efc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GreyListChIP_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GreyListChIP_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GreyListChIP_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GreyListChIP_1.38.0.tgz vignettes: vignettes/GreyListChIP/inst/doc/GreyList-demo.pdf vignetteTitles: Generating Grey Lists from Input Libraries hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GreyListChIP/inst/doc/GreyList-demo.R importsMe: DiffBind, epigraHMM dependencyCount: 60 Package: GRmetrics Version: 1.32.0 Depends: R (>= 4.0), SummarizedExperiment Imports: drc, plotly, ggplot2, S4Vectors, stats Suggests: knitr, rmarkdown, BiocStyle, tinytex License: GPL-3 MD5sum: eeda95aa1c3d989869038bc56556bc03 NeedsCompilation: no Title: Calculate growth-rate inhibition (GR) metrics Description: Functions for calculating and visualizing growth-rate inhibition (GR) metrics. biocViews: ImmunoOncology, CellBasedAssays, CellBiology, Software, TimeCourse, Visualization Author: Nicholas Clark Maintainer: Nicholas Clark , Mario Medvedovic URL: https://github.com/uc-bd2k/GRmetrics VignetteBuilder: knitr BugReports: https://github.com/uc-bd2k/GRmetrics/issues git_url: https://git.bioconductor.org/packages/GRmetrics git_branch: RELEASE_3_20 git_last_commit: 46aad2e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GRmetrics_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GRmetrics_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GRmetrics_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GRmetrics_1.32.0.tgz vignettes: vignettes/GRmetrics/inst/doc/GRmetrics-vignette.html vignetteTitles: GRmetrics: an R package for calculation and visualization of dose-response metrics based on growth rate inhibition hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GRmetrics/inst/doc/GRmetrics-vignette.R dependencyCount: 129 Package: groHMM Version: 1.40.3 Depends: R (>= 3.0.2), MASS, parallel, S4Vectors (>= 0.17.25), IRanges (>= 2.13.12), GenomeInfoDb, GenomicRanges (>= 1.31.8), GenomicAlignments (>= 1.15.6), rtracklayer (>= 1.39.7) Suggests: BiocStyle, GenomicFeatures, edgeR, org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg19.knownGene License: GPL-3 Archs: x64 MD5sum: 9ded3cf3ec2c81b23ee1d65a4fe69422 NeedsCompilation: yes Title: GRO-seq Analysis Pipeline Description: A pipeline for the analysis of GRO-seq data. biocViews: Sequencing, Software Author: Charles G. Danko, Minho Chae, Andre Martins, W. Lee Kraus Maintainer: Tulip Nandu , W. Lee Kraus URL: https://github.com/Kraus-Lab/groHMM BugReports: https://github.com/Kraus-Lab/groHMM/issues git_url: https://git.bioconductor.org/packages/groHMM git_branch: RELEASE_3_20 git_last_commit: 65aef09 git_last_commit_date: 2024-12-09 Date/Publication: 2024-12-12 source.ver: src/contrib/groHMM_1.40.3.tar.gz win.binary.ver: bin/windows/contrib/4.4/groHMM_1.40.3.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/groHMM_1.40.3.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/groHMM_1.40.3.tgz vignettes: vignettes/groHMM/inst/doc/groHMM.pdf vignetteTitles: groHMM tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/groHMM/inst/doc/groHMM.R dependencyCount: 59 Package: GSALightning Version: 1.34.0 Depends: R (>= 3.3.0) Imports: Matrix, data.table, stats Suggests: knitr, rmarkdown License: GPL (>=2) MD5sum: f3f437dfffed696cc81cc9093210823e NeedsCompilation: no Title: Fast Permutation-based Gene Set Analysis Description: GSALightning provides a fast implementation of permutation-based gene set analysis for two-sample problem. This package is particularly useful when testing simultaneously a large number of gene sets, or when a large number of permutations is necessary for more accurate p-values estimation. biocViews: Software, BiologicalQuestion, GeneSetEnrichment, DifferentialExpression, GeneExpression, Transcription Author: Billy Heung Wing Chang Maintainer: Billy Heung Wing Chang URL: https://github.com/billyhw/GSALightning VignetteBuilder: knitr BugReports: https://github.com/billyhw/GSALightning/issues git_url: https://git.bioconductor.org/packages/GSALightning git_branch: RELEASE_3_20 git_last_commit: ef83c92 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GSALightning_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GSALightning_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GSALightning_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GSALightning_1.34.0.tgz vignettes: vignettes/GSALightning/inst/doc/vignette.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GSALightning/inst/doc/vignette.R dependencyCount: 9 Package: GSAR Version: 1.40.0 Depends: R (>= 3.0.1), igraph (>= 0.7.1) Imports: stats, graphics Suggests: MASS, GSVAdata, ALL, tweeDEseqCountData, GSEABase, annotate, org.Hs.eg.db, Biobase, genefilter, hgu95av2.db, edgeR, BiocStyle License: GPL (>=2) MD5sum: 1f1a274ccebaff6a0a2ee6ffbb01c8ea NeedsCompilation: no Title: Gene Set Analysis in R Description: Gene set analysis using specific alternative hypotheses. Tests for differential expression, scale and net correlation structure. biocViews: Software, StatisticalMethod, DifferentialExpression Author: Yasir Rahmatallah , Galina Glazko Maintainer: Yasir Rahmatallah , Galina Glazko git_url: https://git.bioconductor.org/packages/GSAR git_branch: RELEASE_3_20 git_last_commit: 381ec24 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GSAR_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GSAR_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GSAR_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GSAR_1.40.0.tgz vignettes: vignettes/GSAR/inst/doc/GSAR.pdf vignetteTitles: Gene Set Analysis in R -- the GSAR Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GSAR/inst/doc/GSAR.R dependencyCount: 17 Package: GSCA Version: 2.36.0 Depends: shiny, sp, gplots, ggplot2, reshape2, RColorBrewer, rhdf5, R(>= 2.10.0) Imports: graphics Suggests: Affyhgu133aExpr, Affymoe4302Expr, Affyhgu133A2Expr, Affyhgu133Plus2Expr License: GPL(>=2) Archs: x64 MD5sum: ae96234baeb055b3cbf1f2995f7692cc NeedsCompilation: no Title: GSCA: Gene Set Context Analysis Description: GSCA takes as input several lists of activated and repressed genes. GSCA then searches through a compendium of publicly available gene expression profiles for biological contexts that are enriched with a specified pattern of gene expression. GSCA provides both traditional R functions and interactive, user-friendly user interface. biocViews: GeneExpression, Visualization, GUI Author: Zhicheng Ji, Hongkai Ji Maintainer: Zhicheng Ji git_url: https://git.bioconductor.org/packages/GSCA git_branch: RELEASE_3_20 git_last_commit: 47910c6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GSCA_2.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GSCA_2.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GSCA_2.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GSCA_2.36.0.tgz vignettes: vignettes/GSCA/inst/doc/GSCA.pdf vignetteTitles: GSCA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GSCA/inst/doc/GSCA.R dependencyCount: 72 Package: gscreend Version: 1.20.0 Depends: R (>= 3.6) Imports: SummarizedExperiment, nloptr, fGarch, methods, BiocParallel, graphics Suggests: knitr, testthat, rmarkdown, BiocStyle License: GPL-3 MD5sum: d1ac4dce80355323745f3a10cd12d7ad NeedsCompilation: no Title: Analysis of pooled genetic screens Description: Package for the analysis of pooled genetic screens (e.g. CRISPR-KO). The analysis of such screens is based on the comparison of gRNA abundances before and after a cell proliferation phase. The gscreend packages takes gRNA counts as input and allows detection of genes whose knockout decreases or increases cell proliferation. biocViews: Software, StatisticalMethod, PooledScreens, CRISPR Author: Katharina Imkeller [cre, aut], Wolfgang Huber [aut] Maintainer: Katharina Imkeller URL: https://github.com/imkeller/gscreend VignetteBuilder: knitr BugReports: https://github.com/imkeller/gscreend/issues git_url: https://git.bioconductor.org/packages/gscreend git_branch: RELEASE_3_20 git_last_commit: 24e76f0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gscreend_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gscreend_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gscreend_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gscreend_1.20.0.tgz vignettes: vignettes/gscreend/inst/doc/gscreend_simulated_data.html vignetteTitles: Example_simulated hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gscreend/inst/doc/gscreend_simulated_data.R dependencyCount: 60 Package: GSEABase Version: 1.68.0 Depends: R (>= 2.6.0), BiocGenerics (>= 0.13.8), Biobase (>= 2.17.8), annotate (>= 1.45.3), methods, graph (>= 1.37.2) Imports: AnnotationDbi, XML Suggests: hgu95av2.db, GO.db, org.Hs.eg.db, Rgraphviz, ReportingTools, testthat, BiocStyle, knitr, RUnit License: Artistic-2.0 MD5sum: 161a7472eefd9f19ed422d52396e646c NeedsCompilation: no Title: Gene set enrichment data structures and methods Description: This package provides classes and methods to support Gene Set Enrichment Analysis (GSEA). biocViews: GeneExpression, GeneSetEnrichment, GraphAndNetwork, GO, KEGG Author: Martin Morgan [aut], Seth Falcon [aut], Robert Gentleman [aut], Paul Villafuerte [ctb] ('GSEABase' vignette translation from Sweave to Rmarkdown / HTML), Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GSEABase git_branch: RELEASE_3_20 git_last_commit: 3766175 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GSEABase_1.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GSEABase_1.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GSEABase_1.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GSEABase_1.68.0.tgz vignettes: vignettes/GSEABase/inst/doc/GSEABase.html vignetteTitles: An introduction to GSEABase hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GSEABase/inst/doc/GSEABase.R dependsOnMe: AGDEX, BicARE, CCPROMISE, Cepo, cpvSNP, npGSEA, PROMISE, splineTimeR, TissueEnrich, GSVAdata, OSCA.basic importsMe: AUCell, BioCor, canceR, Category, categoryCompare, cosmosR, dreamlet, EnrichmentBrowser, escape, gep2pep, GlobalAncova, GmicR, GSRI, GSVA, mastR, miRSM, mogsa, oppar, PanomiR, phenoTest, PROMISE, RcisTarget, ReportingTools, scTGIF, signatureSearch, singleCellTK, singscore, slalom, sparrow, TFutils, TMSig, vissE, zenith, msigdb, SingscoreAMLMutations, clustermole, RVA suggestsMe: BiocSet, gage, globaltest, GOstats, GSAR, MAST, phenoTest, BaseSet dependencyCount: 49 Package: GSEABenchmarkeR Version: 1.26.0 Depends: R (>= 3.5.0), Biobase, SummarizedExperiment Imports: AnnotationDbi, AnnotationHub, BiocFileCache, BiocParallel, edgeR, EnrichmentBrowser, ExperimentHub, grDevices, graphics, KEGGandMetacoreDzPathwaysGEO, KEGGdzPathwaysGEO, methods, S4Vectors, stats, utils Suggests: BiocStyle, GSE62944, knitr, rappdirs, rmarkdown License: Artistic-2.0 MD5sum: f42af8cd3a0b50828a91a5c8b99d4be7 NeedsCompilation: no Title: Reproducible GSEA Benchmarking Description: The GSEABenchmarkeR package implements an extendable framework for reproducible evaluation of set- and network-based methods for enrichment analysis of gene expression data. This includes support for the efficient execution of these methods on comprehensive real data compendia (microarray and RNA-seq) using parallel computation on standard workstations and institutional computer grids. Methods can then be assessed with respect to runtime, statistical significance, and relevance of the results for the phenotypes investigated. biocViews: ImmunoOncology, Microarray, RNASeq, GeneExpression, DifferentialExpression, Pathways, GraphAndNetwork, Network, GeneSetEnrichment, NetworkEnrichment, Visualization, ReportWriting Author: Ludwig Geistlinger [aut, cre], Gergely Csaba [aut], Mara Santarelli [ctb], Lucas Schiffer [ctb], Marcel Ramos [ctb], Ralf Zimmer [aut], Levi Waldron [aut] Maintainer: Ludwig Geistlinger URL: https://github.com/waldronlab/GSEABenchmarkeR VignetteBuilder: knitr BugReports: https://github.com/waldronlab/GSEABenchmarkeR/issues git_url: https://git.bioconductor.org/packages/GSEABenchmarkeR git_branch: RELEASE_3_20 git_last_commit: c4ad823 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GSEABenchmarkeR_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GSEABenchmarkeR_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GSEABenchmarkeR_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GSEABenchmarkeR_1.26.0.tgz vignettes: vignettes/GSEABenchmarkeR/inst/doc/GSEABenchmarkeR.html vignetteTitles: Reproducible GSEA Benchmarking hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GSEABenchmarkeR/inst/doc/GSEABenchmarkeR.R suggestsMe: roastgsa dependencyCount: 111 Package: GSEAlm Version: 1.66.0 Depends: Biobase Suggests: GSEABase,Category, multtest, ALL, annotate, hgu95av2.db, genefilter, GOstats, RColorBrewer License: Artistic-2.0 MD5sum: 2c7b3b95a50d2fcc962e5693be5142cb NeedsCompilation: no Title: Linear Model Toolset for Gene Set Enrichment Analysis Description: Models and methods for fitting linear models to gene expression data, together with tools for computing and using various regression diagnostics. biocViews: Microarray Author: Assaf Oron, Robert Gentleman (with contributions from S. Falcon and Z. Jiang) Maintainer: Assaf Oron git_url: https://git.bioconductor.org/packages/GSEAlm git_branch: RELEASE_3_20 git_last_commit: 9b22fcf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GSEAlm_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GSEAlm_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GSEAlm_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GSEAlm_1.66.0.tgz vignettes: vignettes/GSEAlm/inst/doc/GSEAlm.pdf vignetteTitles: Linear models in GSEA hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GSEAlm/inst/doc/GSEAlm.R dependencyCount: 6 Package: GSEAmining Version: 1.16.0 Depends: R (>= 4.0) Imports: dplyr, tidytext, dendextend, tibble, ggplot2, ggwordcloud, stringr, gridExtra, rlang, grDevices, graphics, stats, methods Suggests: knitr, rmarkdown, BiocStyle, clusterProfiler, testthat, tm License: GPL-3 | file LICENSE MD5sum: 425b74e84fb163671dbc3e8dc28a4064 NeedsCompilation: no Title: Make Biological Sense of Gene Set Enrichment Analysis Outputs Description: Gene Set Enrichment Analysis is a very powerful and interesting computational method that allows an easy correlation between differential expressed genes and biological processes. Unfortunately, although it was designed to help researchers to interpret gene expression data it can generate huge amounts of results whose biological meaning can be difficult to interpret. Many available tools rely on the hierarchically structured Gene Ontology (GO) classification to reduce reundandcy in the results. However, due to the popularity of GSEA many more gene set collections, such as those in the Molecular Signatures Database are emerging. Since these collections are not organized as those in GO, their usage for GSEA do not always give a straightforward answer or, in other words, getting all the meaninful information can be challenging with the currently available tools. For these reasons, GSEAmining was born to be an easy tool to create reproducible reports to help researchers make biological sense of GSEA outputs. Given the results of GSEA, GSEAmining clusters the different gene sets collections based on the presence of the same genes in the leadind edge (core) subset. Leading edge subsets are those genes that contribute most to the enrichment score of each collection of genes or gene sets. For this reason, gene sets that participate in similar biological processes should share genes in common and in turn cluster together. After that, GSEAmining is able to identify and represent for each cluster: - The most enriched terms in the names of gene sets (as wordclouds) - The most enriched genes in the leading edge subsets (as bar plots). In each case, positive and negative enrichments are shown in different colors so it is easy to distinguish biological processes or genes that may be of interest in that particular study. biocViews: GeneSetEnrichment, Clustering, Visualization Author: Oriol Arqués [aut, cre] Maintainer: Oriol Arqués VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GSEAmining git_branch: RELEASE_3_20 git_last_commit: b8f5f6a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GSEAmining_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GSEAmining_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GSEAmining_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GSEAmining_1.16.0.tgz vignettes: vignettes/GSEAmining/inst/doc/GSEAmining.html vignetteTitles: GSEAmining hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GSEAmining/inst/doc/GSEAmining.R dependencyCount: 60 Package: gsean Version: 1.26.0 Depends: R (>= 3.5), fgsea, PPInfer Suggests: SummarizedExperiment, pasilla, org.Dm.eg.db, AnnotationDbi, knitr, plotly, WGCNA, rmarkdown License: Artistic-2.0 MD5sum: a8d81fcf1bcae07319491d83059e6eb3 NeedsCompilation: yes Title: Gene Set Enrichment Analysis with Networks Description: Biological molecules in a living organism seldom work individually. They usually interact each other in a cooperative way. Biological process is too complicated to understand without considering such interactions. Thus, network-based procedures can be seen as powerful methods for studying complex process. However, many methods are devised for analyzing individual genes. It is said that techniques based on biological networks such as gene co-expression are more precise ways to represent information than those using lists of genes only. This package is aimed to integrate the gene expression and biological network. A biological network is constructed from gene expression data and it is used for Gene Set Enrichment Analysis. biocViews: Software, StatisticalMethod, Network, GraphAndNetwork, GeneSetEnrichment, GeneExpression, NetworkEnrichment, Pathways, DifferentialExpression Author: Dongmin Jung Maintainer: Dongmin Jung VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/gsean git_branch: RELEASE_3_20 git_last_commit: b47f1ee git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gsean_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gsean_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gsean_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gsean_1.26.0.tgz vignettes: vignettes/gsean/inst/doc/gsean.html vignetteTitles: gsean hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gsean/inst/doc/gsean.R dependencyCount: 118 Package: GSgalgoR Version: 1.16.0 Imports: cluster, doParallel, foreach, matchingR, nsga2R, survival, proxy, stats, methods, Suggests: knitr, rmarkdown, ggplot2, BiocStyle, genefu, survcomp, Biobase, survminer, breastCancerTRANSBIG, breastCancerUPP, iC10TrainingData, pamr, testthat License: MIT + file LICENSE MD5sum: e8e7811793c9610d8981316c7043c129 NeedsCompilation: no Title: An Evolutionary Framework for the Identification and Study of Prognostic Gene Expression Signatures in Cancer Description: A multi-objective optimization algorithm for disease sub-type discovery based on a non-dominated sorting genetic algorithm. The 'Galgo' framework combines the advantages of clustering algorithms for grouping heterogeneous 'omics' data and the searching properties of genetic algorithms for feature selection. The algorithm search for the optimal number of clusters determination considering the features that maximize the survival difference between sub-types while keeping cluster consistency high. biocViews: GeneExpression, Transcription, Clustering, Classification, Survival Author: Martin Guerrero [aut], Carlos Catania [cre] Maintainer: Carlos Catania URL: https://github.com/harpomaxx/GSgalgoR VignetteBuilder: knitr BugReports: https://github.com/harpomaxx/GSgalgoR/issues git_url: https://git.bioconductor.org/packages/GSgalgoR git_branch: RELEASE_3_20 git_last_commit: 0588dad git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/GSgalgoR_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GSgalgoR_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GSgalgoR_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GSgalgoR_1.16.0.tgz vignettes: vignettes/GSgalgoR/inst/doc/GSgalgoR_callbacks.html, vignettes/GSgalgoR/inst/doc/GSgalgoR.html vignetteTitles: GSgalgoR_callbacks.html, GSgalgoR.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GSgalgoR/inst/doc/GSgalgoR_callbacks.R, vignettes/GSgalgoR/inst/doc/GSgalgoR.R dependencyCount: 22 Package: GSReg Version: 1.40.0 Depends: R (>= 2.13.1), Homo.sapiens, org.Hs.eg.db, GenomicFeatures, AnnotationDbi Suggests: GenomicRanges, GSBenchMark License: GPL-2 MD5sum: 66bab6fa85136de1d62091d22cc9e7ea NeedsCompilation: yes Title: Gene Set Regulation (GS-Reg) Description: A package for gene set analysis based on the variability of expressions as well as a method to detect Alternative Splicing Events . It implements DIfferential RAnk Conservation (DIRAC) and gene set Expression Variation Analysis (EVA) methods. For detecting Differentially Spliced genes, it provides an implementation of the Spliced-EVA (SEVA). biocViews: GeneRegulation, Pathways, GeneExpression, GeneticVariability, GeneSetEnrichment, AlternativeSplicing Author: Bahman Afsari , Elana J. Fertig Maintainer: Bahman Afsari , Elana J. Fertig git_url: https://git.bioconductor.org/packages/GSReg git_branch: RELEASE_3_20 git_last_commit: 7fb6447 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GSReg_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GSReg_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GSReg_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GSReg_1.40.0.tgz vignettes: vignettes/GSReg/inst/doc/GSReg.pdf vignetteTitles: Working with the GSReg package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GSReg/inst/doc/GSReg.R dependencyCount: 110 Package: GSRI Version: 2.54.0 Depends: R (>= 2.14.2), fdrtool Imports: methods, graphics, stats, utils, genefilter, Biobase, GSEABase, les (>= 1.1.6) Suggests: limma, hgu95av2.db Enhances: parallel License: GPL-3 Archs: x64 MD5sum: c49ff95b7bfa48c298c85425dc2ed22e NeedsCompilation: no Title: Gene Set Regulation Index Description: The GSRI package estimates the number of differentially expressed genes in gene sets, utilizing the concept of the Gene Set Regulation Index (GSRI). biocViews: Microarray, Transcription, DifferentialExpression, GeneSetEnrichment, GeneRegulation Author: Julian Gehring, Kilian Bartholome, Clemens Kreutz, Jens Timmer Maintainer: Julian Gehring git_url: https://git.bioconductor.org/packages/GSRI git_branch: RELEASE_3_20 git_last_commit: a400fee git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GSRI_2.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GSRI_2.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GSRI_2.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GSRI_2.54.0.tgz vignettes: vignettes/GSRI/inst/doc/gsri.pdf vignetteTitles: Introduction to the GSRI package: Estimating Regulatory Effects utilizing the Gene Set Regulation Index hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GSRI/inst/doc/gsri.R dependencyCount: 67 Package: GSVA Version: 2.0.4 Depends: R (>= 3.5.0) Imports: methods, stats, utils, graphics, S4Vectors, IRanges, Biobase, SummarizedExperiment, GSEABase, Matrix (>= 1.5-0), parallel, BiocParallel, SingleCellExperiment, SpatialExperiment, sparseMatrixStats, DelayedArray, DelayedMatrixStats, HDF5Array, BiocSingular, cli LinkingTo: cli Suggests: BiocGenerics, RUnit, BiocStyle, knitr, rmarkdown, limma, RColorBrewer, org.Hs.eg.db, genefilter, edgeR, GSVAdata, shiny, shinydashboard, ggplot2, data.table, plotly, future, promises, shinybusy, shinyjs License: GPL (>= 2) MD5sum: 21cec49eb30108412c8dc2238d08bd03 NeedsCompilation: yes Title: Gene Set Variation Analysis for Microarray and RNA-Seq Data Description: Gene Set Variation Analysis (GSVA) is a non-parametric, unsupervised method for estimating variation of gene set enrichment through the samples of a expression data set. GSVA performs a change in coordinate systems, transforming the data from a gene by sample matrix to a gene-set by sample matrix, thereby allowing the evaluation of pathway enrichment for each sample. This new matrix of GSVA enrichment scores facilitates applying standard analytical methods like functional enrichment, survival analysis, clustering, CNV-pathway analysis or cross-tissue pathway analysis, in a pathway-centric manner. biocViews: FunctionalGenomics, Microarray, RNASeq, Pathways, GeneSetEnrichment Author: Robert Castelo [aut, cre], Justin Guinney [aut], Alexey Sergushichev [ctb], Pablo Sebastian Rodriguez [ctb], Axel Klenk [ctb] Maintainer: Robert Castelo URL: https://github.com/rcastelo/GSVA VignetteBuilder: knitr BugReports: https://github.com/rcastelo/GSVA/issues git_url: https://git.bioconductor.org/packages/GSVA git_branch: RELEASE_3_20 git_last_commit: c34771b git_last_commit_date: 2024-12-17 Date/Publication: 2024-12-19 source.ver: src/contrib/GSVA_2.0.4.tar.gz win.binary.ver: bin/windows/contrib/4.4/GSVA_2.0.4.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GSVA_2.0.4.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GSVA_2.0.4.tgz vignettes: vignettes/GSVA/inst/doc/GSVA.html vignetteTitles: Gene set variation analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GSVA/inst/doc/GSVA.R dependsOnMe: SMDIC importsMe: EGSEA, escape, octad, oppar, scFeatures, singleCellTK, clustermole, DRviaSPCN, GSEMA, psSubpathway, scMappR, SIGN, sigQC, ssdGSA suggestsMe: decoupleR, MCbiclust, sparrow, SPONGE, ReporterScore dependencyCount: 103 Package: gtrellis Version: 1.38.0 Depends: R (>= 3.1.2), grid, IRanges, GenomicRanges Imports: circlize (>= 0.4.8), GetoptLong, grDevices, utils Suggests: testthat (>= 1.0.0), knitr, RColorBrewer, markdown, rmarkdown, ComplexHeatmap (>= 1.99.0), Cairo, png, jpeg, tiff License: MIT + file LICENSE Archs: x64 MD5sum: 6d86179be5d84e09062f5870ea6ce797 NeedsCompilation: no Title: Genome Level Trellis Layout Description: Genome level Trellis graph visualizes genomic data conditioned by genomic categories (e.g. chromosomes). For each genomic category, multiple dimensional data which are represented as tracks describe different features from different aspects. This package provides high flexibility to arrange genomic categories and to add self-defined graphics in the plot. biocViews: Software, Visualization, Sequencing Author: Zuguang Gu [aut, cre] () Maintainer: Zuguang Gu URL: https://github.com/jokergoo/gtrellis VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/gtrellis git_branch: RELEASE_3_20 git_last_commit: 8754065 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gtrellis_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gtrellis_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gtrellis_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gtrellis_1.38.0.tgz vignettes: vignettes/gtrellis/inst/doc/gtrellis.html vignetteTitles: Make Genome-level Trellis Graph hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/gtrellis/inst/doc/gtrellis.R importsMe: YAPSA dependencyCount: 32 Package: GUIDEseq Version: 1.36.0 Depends: R (>= 3.5.0), GenomicRanges, BiocGenerics Imports: Biostrings, pwalign, CRISPRseek, ChIPpeakAnno, data.table, matrixStats, BSgenome, parallel, IRanges (>= 2.5.5), S4Vectors (>= 0.9.6), stringr, multtest, GenomicAlignments (>= 1.7.3), GenomeInfoDb, Rsamtools, hash, limma,dplyr, GenomicFeatures, rio, tidyr, tools, methods, purrr, ggplot2, openxlsx, patchwork, rlang Suggests: knitr, RUnit, BiocStyle, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, testthat (>= 3.0.0) License: GPL (>= 2) MD5sum: c3904595d1e820e765cbd00e3fb6b9ae NeedsCompilation: no Title: GUIDE-seq and PEtag-seq analysis pipeline Description: The package implements GUIDE-seq and PEtag-seq analysis workflow including functions for filtering UMI and reads with low coverage, obtaining unique insertion sites (proxy of cleavage sites), estimating the locations of the insertion sites, aka, peaks, merging estimated insertion sites from plus and minus strand, and performing off target search of the extended regions around insertion sites with mismatches and indels. biocViews: ImmunoOncology, GeneRegulation, Sequencing, WorkflowStep, CRISPR Author: Lihua Julie Zhu, Michael Lawrence, Ankit Gupta, Hervé Pagès , Alper Kucukural, Manuel Garber, Scot A. Wolfe Maintainer: Lihua Julie Zhu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GUIDEseq git_branch: RELEASE_3_20 git_last_commit: fcc97ca git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GUIDEseq_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GUIDEseq_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GUIDEseq_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GUIDEseq_1.36.0.tgz vignettes: vignettes/GUIDEseq/inst/doc/GUIDEseq.pdf vignetteTitles: GUIDEseq Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GUIDEseq/inst/doc/GUIDEseq.R dependencyCount: 181 Package: Guitar Version: 2.22.0 Depends: GenomicFeatures, rtracklayer,AnnotationDbi, GenomicRanges, magrittr, ggplot2, methods, stats,utils ,knitr,dplyr License: GPL-2 Archs: x64 MD5sum: 1427674b03dd7a763df3aeaf2ec12ab1 NeedsCompilation: no Title: Guitar Description: The package is designed for visualization of RNA-related genomic features with respect to the landmarks of RNA transcripts, i.e., transcription starting site, start codon, stop codon and transcription ending site. biocViews: Sequencing, SplicedAlignment, Alignment, DataImport, RNASeq, MethylSeq, QualityControl, Transcription Author: Xiao Du, Hui Liu, Lin Zhang, Jia Meng Maintainer: Jia Meng VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Guitar git_branch: RELEASE_3_20 git_last_commit: 9fa5a5f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Guitar_2.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Guitar_2.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Guitar_2.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Guitar_2.22.0.tgz vignettes: vignettes/Guitar/inst/doc/Guitar-Overview.pdf vignetteTitles: Guitar hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Guitar/inst/doc/Guitar-Overview.R dependencyCount: 104 Package: Gviz Version: 1.50.0 Depends: R (>= 4.3), methods, S4Vectors (>= 0.9.25), IRanges (>= 1.99.18), GenomicRanges (>= 1.17.20), grid Imports: XVector (>= 0.5.7), rtracklayer (>= 1.25.13), lattice, RColorBrewer, biomaRt (>= 2.11.0), AnnotationDbi (>= 1.27.5), Biobase (>= 2.15.3), GenomicFeatures (>= 1.17.22), ensembldb (>= 2.11.3), BSgenome (>= 1.33.1), Biostrings (>= 2.33.11), biovizBase (>= 1.13.8), Rsamtools (>= 1.17.28), latticeExtra (>= 0.6-26), matrixStats (>= 0.8.14), GenomicAlignments (>= 1.1.16), GenomeInfoDb (>= 1.1.3), BiocGenerics (>= 0.11.3), digest(>= 0.6.8), graphics, grDevices, stats, utils Suggests: BSgenome.Hsapiens.UCSC.hg19, xml2, BiocStyle, knitr, rmarkdown, testthat License: Artistic-2.0 MD5sum: 2f391f9a0a775012b4135996633d1412 NeedsCompilation: no Title: Plotting data and annotation information along genomic coordinates Description: Genomic data analyses requires integrated visualization of known genomic information and new experimental data. Gviz uses the biomaRt and the rtracklayer packages to perform live annotation queries to Ensembl and UCSC and translates this to e.g. gene/transcript structures in viewports of the grid graphics package. This results in genomic information plotted together with your data. biocViews: Visualization, Microarray, Sequencing Author: Florian Hahne [aut], Steffen Durinck [aut], Robert Ivanek [aut, cre] (), Arne Mueller [aut], Steve Lianoglou [aut], Ge Tan [aut], Lance Parsons [aut], Shraddha Pai [aut], Thomas McCarthy [ctb], Felix Ernst [ctb], Mike Smith [ctb] Maintainer: Robert Ivanek URL: https://github.com/ivanek/Gviz VignetteBuilder: knitr BugReports: https://github.com/ivanek/Gviz/issues git_url: https://git.bioconductor.org/packages/Gviz git_branch: RELEASE_3_20 git_last_commit: 631b4a1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Gviz_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Gviz_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Gviz_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Gviz_1.50.0.tgz vignettes: vignettes/Gviz/inst/doc/Gviz.html vignetteTitles: The Gviz User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Gviz/inst/doc/Gviz.R dependsOnMe: biomvRCNS, chimeraviz, cicero, cummeRbund, Pviz, methylationArrayAnalysis, rnaseqGene, csawBook importsMe: AllelicImbalance, ASpli, CAGEfightR, comapr, crisprViz, DMRcate, DuplexDiscovereR, ELMER, epimutacions, GenomicInteractions, maser, mCSEA, MEAL, methylPipe, motifbreakR, OGRE, PING, primirTSS, regutools, RNAmodR, RNAmodR.AlkAnilineSeq, RNAmodR.RiboMethSeq, SPLINTER, tadar, trackViewer, TVTB, uncoverappLib, VariantFiltering, DMRcatedata, GRIN2 suggestsMe: annmap, BindingSiteFinder, cellbaseR, CNEr, CNVRanger, ensembldb, extraChIPs, fishpond, GenomicRanges, gwascat, interactiveDisplay, MIRit, pqsfinder, QuasR, RnBeads, segmenter, SplicingGraphs, TFutils, Single.mTEC.Transcriptomes, CAGEWorkflow, chipseqDB, chicane, RTIGER dependencyCount: 156 Package: GWAS.BAYES Version: 1.16.0 Depends: R (>= 4.3.0) Imports: GA (>= 3.2), caret (>= 6.0-86), memoise (>= 1.1.0), Matrix (>= 1.2-18), limma (>= 3.54.0), stats (>= 4.2.2), MASS (>= 7.3-58.1) Suggests: BiocStyle, knitr, rmarkdown, formatR, rrBLUP License: GPL-3 + file LICENSE MD5sum: 4f113111d05801f70ffed9e580023f5f NeedsCompilation: no Title: Bayesian analysis of Gaussian GWAS data Description: This package is built to perform GWAS analysis using Bayesian techniques. Currently, GWAS.BAYES has functionality for the implementation of BICOSS (Williams, J., Ferreira, M. A., and Ji, T. (2022). BICOSS: Bayesian iterative conditional stochastic search for GWAS. BMC Bioinformatics), BGWAS (Williams, J., Xu, S., Ferreira, M. A.. (2023) "BGWAS: Bayesian variable selection in linear mixed models with nonlocal priors for genome-wide association studies." BMC Bioinformatics), and GINA. All methods currently are for the analysis of Gaussian phenotypes The research related to this package was supported in part by National Science Foundation awards DMS 1853549, DMS 1853556, and DMS 2054173. biocViews: Bayesian, AssayDomain, SNP, GenomeWideAssociation Author: Jacob Williams [aut, cre] (), Marco Ferreira [aut] (), Tieming Ji [aut] Maintainer: Jacob Williams VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GWAS.BAYES git_branch: RELEASE_3_20 git_last_commit: 839b9a7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GWAS.BAYES_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GWAS.BAYES_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GWAS.BAYES_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GWAS.BAYES_1.16.0.tgz vignettes: vignettes/GWAS.BAYES/inst/doc/Vignette_BICOSS.html, vignettes/GWAS.BAYES/inst/doc/Vignette_GINA.html vignetteTitles: BICOSS, GINA hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/GWAS.BAYES/inst/doc/Vignette_BICOSS.R, vignettes/GWAS.BAYES/inst/doc/Vignette_GINA.R dependencyCount: 93 Package: gwascat Version: 2.38.0 Depends: R (>= 3.5.0), methods Imports: S4Vectors (>= 0.9.25), IRanges, GenomeInfoDb, GenomicRanges (>= 1.29.6), GenomicFeatures, readr, Biostrings, AnnotationDbi, BiocFileCache, snpStats, VariantAnnotation, AnnotationHub Suggests: DO.db, DT, knitr, RBGL, testthat, rmarkdown, dplyr, Gviz, Rsamtools, rtracklayer, graph, ggbio, DelayedArray, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, BiocStyle Enhances: SNPlocs.Hsapiens.dbSNP144.GRCh37 License: Artistic-2.0 MD5sum: 778367e9bf0f9f655dcb42a122ffcafe NeedsCompilation: no Title: representing and modeling data in the EMBL-EBI GWAS catalog Description: Represent and model data in the EMBL-EBI GWAS catalog. biocViews: Genetics Author: VJ Carey Maintainer: VJ Carey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/gwascat git_branch: RELEASE_3_20 git_last_commit: 65d03e3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gwascat_2.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gwascat_2.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gwascat_2.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gwascat_2.38.0.tgz vignettes: vignettes/gwascat/inst/doc/gwascat.html, vignettes/gwascat/inst/doc/gwascatOnt.html vignetteTitles: gwascat: structuring and querying the NHGRI GWAS catalog, gwascat -- GRanges for GWAS hits in EBI catalog hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gwascat/inst/doc/gwascatOnt.R, vignettes/gwascat/inst/doc/gwascat.R dependsOnMe: vtpnet, liftOver importsMe: circRNAprofiler suggestsMe: GenomicScores, hmdbQuery, ldblock, parglms, TFutils, grasp2db dependencyCount: 109 Package: GWASTools Version: 1.52.0 Depends: Biobase Imports: graphics, stats, utils, methods, gdsfmt, DBI, RSQLite, GWASExactHW, DNAcopy, survival, sandwich, lmtest, logistf, quantsmooth, data.table Suggests: ncdf4, GWASdata, BiocGenerics, RUnit, Biostrings, GenomicRanges, IRanges, SNPRelate, snpStats, S4Vectors, VariantAnnotation, parallel, BiocStyle, knitr License: Artistic-2.0 MD5sum: 9f03101b34ca747d379e633beed25cf0 NeedsCompilation: no Title: Tools for Genome Wide Association Studies Description: Classes for storing very large GWAS data sets and annotation, and functions for GWAS data cleaning and analysis. biocViews: SNP, GeneticVariability, QualityControl, Microarray Author: Stephanie M. Gogarten [aut], Cathy Laurie [aut], Tushar Bhangale [aut], Matthew P. Conomos [aut], Cecelia Laurie [aut], Michael Lawrence [aut], Caitlin McHugh [aut], Ian Painter [aut], Xiuwen Zheng [aut], Jess Shen [aut], Rohit Swarnkar [aut], Adrienne Stilp [aut], Sarah Nelson [aut], David Levine [aut], Sonali Kumari [ctb] (Converted vignettes from Sweave to RMarkdown / HTML.), Stephanie M. Gogarten [cre] Maintainer: Stephanie M. Gogarten URL: https://github.com/smgogarten/GWASTools VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/GWASTools git_branch: RELEASE_3_20 git_last_commit: ec67ca1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GWASTools_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GWASTools_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GWASTools_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GWASTools_1.52.0.tgz vignettes: vignettes/GWASTools/inst/doc/DataCleaning.pdf, vignettes/GWASTools/inst/doc/Formats.pdf, vignettes/GWASTools/inst/doc/Affymetrix.html vignetteTitles: GWAS Data Cleaning, Data formats in GWASTools, Preparing Affymetrix Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GWASTools/inst/doc/Affymetrix.R, vignettes/GWASTools/inst/doc/DataCleaning.R, vignettes/GWASTools/inst/doc/Formats.R dependsOnMe: mBPCR, GWASdata, snplinkage importsMe: GENESIS, gwasurvivr suggestsMe: podkat dependencyCount: 93 Package: gwasurvivr Version: 1.24.0 Depends: R (>= 3.4.0) Imports: GWASTools, survival, VariantAnnotation, parallel, matrixStats, SummarizedExperiment, stats, utils, SNPRelate Suggests: BiocStyle, knitr, rmarkdown License: Artistic-2.0 MD5sum: 63649a8022aff721b2010c4cc9e0f641 NeedsCompilation: no Title: gwasurvivr: an R package for genome wide survival analysis Description: gwasurvivr is a package to perform survival analysis using Cox proportional hazard models on imputed genetic data. biocViews: GenomeWideAssociation, Survival, Regression, Genetics, SNP, GeneticVariability, Pharmacogenomics, BiomedicalInformatics Author: Abbas Rizvi, Ezgi Karaesmen, Martin Morgan, Lara Sucheston-Campbell Maintainer: Abbas Rizvi URL: https://github.com/suchestoncampbelllab/gwasurvivr VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/gwasurvivr git_branch: RELEASE_3_20 git_last_commit: e634cba git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gwasurvivr_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gwasurvivr_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gwasurvivr_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gwasurvivr_1.24.0.tgz vignettes: vignettes/gwasurvivr/inst/doc/gwasurvivr_Introduction.html vignetteTitles: gwasurvivr Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/gwasurvivr/inst/doc/gwasurvivr_Introduction.R dependencyCount: 143 Package: GWENA Version: 1.16.0 Depends: R (>= 4.1) Imports: WGCNA (>= 1.67), dplyr (>= 0.8.3), dynamicTreeCut (>= 1.63-1), ggplot2 (>= 3.1.1), gprofiler2 (>= 0.1.6), magrittr (>= 1.5), tibble (>= 2.1.1), tidyr (>= 1.0.0), NetRep (>= 1.2.1), igraph (>= 1.2.4.1), RColorBrewer (>= 1.1-2), purrr (>= 0.3.3), rlist (>= 0.4.6.1), matrixStats (>= 0.55.0), SummarizedExperiment (>= 1.14.1), stringr (>= 1.4.0), cluster (>= 2.1.0), grDevices (>= 4.0.4), methods, graphics, stats, utils Suggests: testthat (>= 2.1.0), knitr (>= 1.25), rmarkdown (>= 1.16), prettydoc (>= 0.3.0), httr (>= 1.4.1), S4Vectors (>= 0.22.1), BiocStyle (>= 2.15.8) License: GPL-3 MD5sum: 1106c3d4f7d9b88505555faad509aa1b NeedsCompilation: no Title: Pipeline for augmented co-expression analysis Description: The development of high-throughput sequencing led to increased use of co-expression analysis to go beyong single feature (i.e. gene) focus. We propose GWENA (Gene Whole co-Expression Network Analysis) , a tool designed to perform gene co-expression network analysis and explore the results in a single pipeline. It includes functional enrichment of modules of co-expressed genes, phenotypcal association, topological analysis and comparison of networks configuration between conditions. biocViews: Software, GeneExpression, Network, Clustering, GraphAndNetwork, GeneSetEnrichment, Pathways, Visualization, RNASeq, Transcriptomics, mRNAMicroarray, Microarray, NetworkEnrichment, Sequencing, GO Author: Gwenaëlle Lemoine [aut, cre] (), Marie-Pier Scott-Boyer [ths], Arnaud Droit [fnd] Maintainer: Gwenaëlle Lemoine VignetteBuilder: knitr BugReports: https://github.com/Kumquatum/GWENA/issues git_url: https://git.bioconductor.org/packages/GWENA git_branch: RELEASE_3_20 git_last_commit: 14b3a9d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/GWENA_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/GWENA_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GWENA_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GWENA_1.16.0.tgz vignettes: vignettes/GWENA/inst/doc/GWENA_guide.html vignetteTitles: GWENA-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/GWENA/inst/doc/GWENA_guide.R dependencyCount: 142 Package: gypsum Version: 1.2.0 Imports: utils, httr2, jsonlite, parallel, filelock, rappdirs Suggests: knitr, rmarkdown, testthat, BiocStyle, digest, jsonvalidate, DBI, RSQLite, S4Vectors, methods License: MIT + file LICENSE MD5sum: 9d2f3c483225865a0bf4639fee72cd03 NeedsCompilation: no Title: Interface to the gypsum REST API Description: Client for the gypsum REST API (https://gypsum.artifactdb.com), a cloud-based file store in the ArtifactDB ecosystem. This package provides functions for uploads, downloads, and various adminstrative and management tasks. Check out the documentation at https://github.com/ArtifactDB/gypsum-worker for more details. biocViews: DataImport Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun URL: https://github.com/ArtifactDB/gypsum-R VignetteBuilder: knitr BugReports: https://github.com/ArtifactDB/gypsum-R/issues git_url: https://git.bioconductor.org/packages/gypsum git_branch: RELEASE_3_20 git_last_commit: 7fb25e1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/gypsum_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/gypsum_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/gypsum_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/gypsum_1.2.0.tgz vignettes: vignettes/gypsum/inst/doc/userguide.html vignetteTitles: Hitting the gypsum API hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/gypsum/inst/doc/userguide.R importsMe: celldex, scRNAseq dependencyCount: 21 Package: h5vc Version: 2.40.0 Depends: grid, gridExtra, ggplot2 Imports: rhdf5, reshape, S4Vectors, IRanges, Biostrings, Rsamtools (>= 2.13.1), methods, GenomicRanges, abind, BiocParallel, BatchJobs, h5vcData, GenomeInfoDb LinkingTo: Rhtslib (>= 1.99.1) Suggests: knitr, locfit, BSgenome.Hsapiens.UCSC.hg19, biomaRt, BSgenome.Hsapiens.NCBI.GRCh38, RUnit, BiocGenerics, rmarkdown License: GPL (>= 3) MD5sum: 45544d9a82d2658418bcc6d376aa64e1 NeedsCompilation: yes Title: Managing alignment tallies using a hdf5 backend Description: This package contains functions to interact with tally data from NGS experiments that is stored in HDF5 files. Author: Paul Theodor Pyl Maintainer: Paul Theodor Pyl SystemRequirements: GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/h5vc git_branch: RELEASE_3_20 git_last_commit: 6e56c15 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/h5vc_2.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/h5vc_2.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/h5vc_2.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/h5vc_2.40.0.tgz vignettes: vignettes/h5vc/inst/doc/h5vc.simple.genome.browser.html, vignettes/h5vc/inst/doc/h5vc.tour.html vignetteTitles: Building a minimal genome browser with h5vc and shiny, h5vc -- Tour hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/h5vc/inst/doc/h5vc.simple.genome.browser.R, vignettes/h5vc/inst/doc/h5vc.tour.R suggestsMe: h5vcData dependencyCount: 96 Package: hapFabia Version: 1.48.0 Depends: R (>= 3.6.0), Biobase, fabia (>= 2.3.1) Imports: methods, graphics, grDevices, stats, utils License: LGPL (>= 2.1) MD5sum: e09b54d156c25cb911d247c29fb3c622 NeedsCompilation: yes Title: hapFabia: Identification of very short segments of identity by descent (IBD) characterized by rare variants in large sequencing data Description: A package to identify very short IBD segments in large sequencing data by FABIA biclustering. Two haplotypes are identical by descent (IBD) if they share a segment that both inherited from a common ancestor. Current IBD methods reliably detect long IBD segments because many minor alleles in the segment are concordant between the two haplotypes. However, many cohort studies contain unrelated individuals which share only short IBD segments. This package provides software to identify short IBD segments in sequencing data. Knowledge of short IBD segments are relevant for phasing of genotyping data, association studies, and for population genetics, where they shed light on the evolutionary history of humans. The package supports VCF formats, is based on sparse matrix operations, and provides visualization of haplotype clusters in different formats. biocViews: Genetics, GeneticVariability, SNP, Sequencing, Sequencing, Visualization, Clustering, SequenceMatching, Software Author: Sepp Hochreiter Maintainer: Andreas Mitterecker URL: http://www.bioinf.jku.at/software/hapFabia/hapFabia.html git_url: https://git.bioconductor.org/packages/hapFabia git_branch: RELEASE_3_20 git_last_commit: 47dfa0f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hapFabia_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hapFabia_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hapFabia_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hapFabia_1.48.0.tgz vignettes: vignettes/hapFabia/inst/doc/hapfabia.pdf vignetteTitles: hapFabia: Manual for the R package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/hapFabia/inst/doc/hapfabia.R dependencyCount: 8 Package: Harman Version: 1.34.0 Depends: R (>= 3.6) Imports: Rcpp (>= 0.11.2), graphics, stats, Ckmeans.1d.dp, parallel, methods, matrixStats LinkingTo: Rcpp Suggests: HarmanData, BiocGenerics, BiocStyle, knitr, rmarkdown, RUnit, RColorBrewer, bladderbatch, limma, minfi, lumi, msmsEDA, affydata, minfiData, sva License: GPL-3 + file LICENCE MD5sum: b0a5390448e4021a5337f1d8145c414b NeedsCompilation: yes Title: The removal of batch effects from datasets using a PCA and constrained optimisation based technique Description: Harman is a PCA and constrained optimisation based technique that maximises the removal of batch effects from datasets, with the constraint that the probability of overcorrection (i.e. removing genuine biological signal along with batch noise) is kept to a fraction which is set by the end-user. biocViews: BatchEffect, Microarray, MultipleComparison, PrincipalComponent, Normalization, Preprocessing, DNAMethylation, Transcription, Software, StatisticalMethod Author: Yalchin Oytam [aut], Josh Bowden [aut], Jason Ross [aut, cre] Maintainer: Jason Ross URL: http://www.bioinformatics.csiro.au/harman/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Harman git_branch: RELEASE_3_20 git_last_commit: 6eb0c11 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Harman_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Harman_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Harman_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Harman_1.34.0.tgz vignettes: vignettes/Harman/inst/doc/IntroductionToHarman.html vignetteTitles: IntroductionToHarman hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Harman/inst/doc/IntroductionToHarman.R importsMe: debrowser suggestsMe: HarmanData dependencyCount: 11 Package: HarmonizR Version: 1.4.0 Depends: R (>= 4.2.0) Imports: doParallel (>= 1.0.16), foreach (>= 1.5.1), janitor (>= 2.1.0), plyr (>= 1.8.6), sva (>= 3.36.0), seriation (>= 1.3.5), limma (>= 3.46.0), SummarizedExperiment Suggests: knitr, rmarkdown, testthat (>= 3.0.0) License: GPL-3 Archs: x64 MD5sum: c9b05bca57f63d6620a24fd199ab5425 NeedsCompilation: no Title: Handles missing values and makes more data available Description: An implementation, which takes input data and makes it available for proper batch effect removal by ComBat or Limma. The implementation appropriately handles missing values by dissecting the input matrix into smaller matrices with sufficient data to feed the ComBat or limma algorithm. The adjusted data is returned to the user as a rebuild matrix. The implementation is meant to make as much data available as possible with minimal data loss. biocViews: BatchEffect Author: Simon Schlumbohm [aut, cre], Julia Neumann [aut], Philipp Neumann [aut] Maintainer: Simon Schlumbohm VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/HarmonizR git_branch: RELEASE_3_20 git_last_commit: bcbe740 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HarmonizR_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HarmonizR_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HarmonizR_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HarmonizR_1.4.0.tgz vignettes: vignettes/HarmonizR/inst/doc/HarmonizR_Vignette.html vignetteTitles: HarmonizR_Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HarmonizR/inst/doc/HarmonizR_Vignette.R dependencyCount: 112 Package: Harshlight Version: 1.78.0 Depends: R (>= 2.10) Imports: affy, altcdfenvs, Biobase, stats, utils License: GPL (>= 2) Archs: x64 MD5sum: 5162b3281dbfd34f228cb45996aab222 NeedsCompilation: yes Title: A "corrective make-up" program for microarray chips Description: The package is used to detect extended, diffuse and compact blemishes on microarray chips. Harshlight automatically marks the areas in a collection of chips (affybatch objects) and a corrected AffyBatch object is returned, in which the defected areas are substituted with NAs or the median of the values of the same probe in the other chips in the collection. The new version handle the substitute value as whole matrix to solve the memory problem. biocViews: Microarray, QualityControl, Preprocessing, OneChannel, ReportWriting Author: Mayte Suarez-Farinas, Maurizio Pellegrino, Knut M. Wittkowski, Marcelo O. Magnasco Maintainer: Maurizio Pellegrino URL: http://asterion.rockefeller.edu/Harshlight/ git_url: https://git.bioconductor.org/packages/Harshlight git_branch: RELEASE_3_20 git_last_commit: fce773a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Harshlight_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Harshlight_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Harshlight_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Harshlight_1.78.0.tgz vignettes: vignettes/Harshlight/inst/doc/Harshlight.pdf vignetteTitles: Harshlight hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Harshlight/inst/doc/Harshlight.R dependencyCount: 34 Package: hca Version: 1.14.0 Depends: R (>= 4.1) Imports: httr, jsonlite, dplyr, tibble, tidyr, readr, BiocFileCache, tools, utils, digest, shiny, miniUI, DT Suggests: LoomExperiment, SummarizedExperiment, SingleCellExperiment, S4Vectors, methods, testthat (>= 3.0.0), knitr, rmarkdown, BiocStyle License: MIT + file LICENSE Archs: x64 MD5sum: 0992e3bac4384a3c334382f2d43623df NeedsCompilation: no Title: Exploring the Human Cell Atlas Data Coordinating Platform Description: This package provides users with the ability to query the Human Cell Atlas data repository for single-cell experiment data. The `projects()`, `files()`, `samples()` and `bundles()` functions retrieve summary information on each of these indexes; corresponding `*_details()` are available for individual entries of each index. File-based resources can be downloaded using `files_download()`. Advanced use of the package allows the user to page through large result sets, and to flexibly query the 'list-of-lists' structure representing query responses. biocViews: Software, SingleCell Author: Maya McDaniel [aut], Martin Morgan [aut, cre] (), Kayla Interdonato [ctb] Maintainer: Martin Morgan VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/hca git_branch: RELEASE_3_20 git_last_commit: 7c778f1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hca_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hca_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hca_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hca_1.14.0.tgz vignettes: vignettes/hca/inst/doc/hca_manifest_vignette.html, vignettes/hca/inst/doc/hca_vignette.html vignetteTitles: Working With Human Cell Atlas Manifests, Accessing Human Cell Atlas Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/hca/inst/doc/hca_manifest_vignette.R, vignettes/hca/inst/doc/hca_vignette.R dependencyCount: 83 Package: HDF5Array Version: 1.34.0 Depends: R (>= 3.4), methods, SparseArray (>= 1.5.42), DelayedArray (>= 0.31.8), rhdf5 (>= 2.31.6) Imports: utils, stats, tools, Matrix, rhdf5filters, BiocGenerics (>= 0.51.2), S4Vectors, IRanges, S4Arrays (>= 1.1.1) LinkingTo: S4Vectors (>= 0.27.13), Rhdf5lib Suggests: BiocParallel, GenomicRanges, SummarizedExperiment (>= 1.15.1), h5vcData, ExperimentHub, TENxBrainData, zellkonverter, GenomicFeatures, RUnit, SingleCellExperiment, DelayedMatrixStats, genefilter License: Artistic-2.0 MD5sum: 82321c8a1bad0392f898462a6d8a1d60 NeedsCompilation: yes Title: HDF5 datasets as array-like objects in R Description: The HDF5Array package is an HDF5 backend for DelayedArray objects. It implements the HDF5Array, H5SparseMatrix, H5ADMatrix, and TENxMatrix classes, 4 convenient and memory-efficient array-like containers for representing and manipulating either: (1) a conventional (a.k.a. dense) HDF5 dataset, (2) an HDF5 sparse matrix (stored in CSR/CSC/Yale format), (3) the central matrix of an h5ad file (or any matrix in the /layers group), or (4) a 10x Genomics sparse matrix. All these containers are DelayedArray extensions and thus support all operations (delayed or block-processed) supported by DelayedArray objects. biocViews: Infrastructure, DataRepresentation, DataImport, Sequencing, RNASeq, Coverage, Annotation, GenomeAnnotation, SingleCell, ImmunoOncology Author: Hervé Pagès Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/HDF5Array SystemRequirements: GNU make BugReports: https://github.com/Bioconductor/HDF5Array/issues git_url: https://git.bioconductor.org/packages/HDF5Array git_branch: RELEASE_3_20 git_last_commit: dab3921 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HDF5Array_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HDF5Array_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HDF5Array_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HDF5Array_1.34.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: MAGAR, TENxBrainData, TENxPBMCData importsMe: alabaster.matrix, beachmat.hdf5, BgeeDB, biscuiteer, bsseq, Cepo, chihaya, clusterExperiment, CuratedAtlasQueryR, cytomapper, DelayedTensor, DropletUtils, FRASER, GenomicScores, glmGamPoi, GSVA, lemur, LoomExperiment, mariner, methodical, methrix, minfi, MOFA2, netSmooth, orthos, recountmethylation, scmeth, signatureSearch, SpliceWiz, TENxIO, transformGamPoi, xenLite, MafH5.gnomAD.v4.0.GRCh38, curatedTCGAData, HCAData, HCATonsilData, imcdatasets, MerfishData, MethylSeqData, orthosData, scMultiome, SingleCellMultiModal, TabulaMurisSenisData, TumourMethData, ebvcube suggestsMe: beachmat, BiocGenerics, BiocSklearn, cellxgenedp, DelayedArray, DelayedMatrixStats, iSEE, MAST, mbkmeans, metabolomicsWorkbenchR, MuData, MultiAssayExperiment, QFeatures, SCArray, scMerge, scran, scry, SparseArray, spatialHeatmap, SummarizedExperiment, zellkonverter, STexampleData, spicyWorkflow, SeuratObject, SpatialDDLS dependencyCount: 25 Package: HDTD Version: 1.40.0 Depends: R (>= 4.1) Imports: stats, Rcpp (>= 1.0.1) LinkingTo: Rcpp, RcppArmadillo Suggests: knitr, rmarkdown License: GPL-3 Archs: x64 MD5sum: 9eba270a4a162092391b4436491d053b NeedsCompilation: yes Title: Statistical Inference about the Mean Matrix and the Covariance Matrices in High-Dimensional Transposable Data (HDTD) Description: Characterization of intra-individual variability using physiologically relevant measurements provides important insights into fundamental biological questions ranging from cell type identity to tumor development. For each individual, the data measurements can be written as a matrix with the different subsamples of the individual recorded in the columns and the different phenotypic units recorded in the rows. Datasets of this type are called high-dimensional transposable data. The HDTD package provides functions for conducting statistical inference for the mean relationship between the row and column variables and for the covariance structure within and between the row and column variables. biocViews: DifferentialExpression, Genetics, GeneExpression, Microarray, Sequencing, StatisticalMethod, Software Author: Anestis Touloumis [cre, aut] (), John C. Marioni [aut] (), Simon Tavar\'{e} [aut] () Maintainer: Anestis Touloumis URL: http://github.com/AnestisTouloumis/HDTD VignetteBuilder: knitr BugReports: http://github.com/AnestisTouloumis/HDTD/issues git_url: https://git.bioconductor.org/packages/HDTD git_branch: RELEASE_3_20 git_last_commit: e9faf8e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HDTD_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HDTD_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HDTD_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HDTD_1.40.0.tgz vignettes: vignettes/HDTD/inst/doc/HDTD.html vignetteTitles: HDTD to Analyze High-Dimensional Transposable Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HDTD/inst/doc/HDTD.R dependencyCount: 5 Package: hdxmsqc Version: 1.2.0 Depends: R(>= 4.3), QFeatures, S4Vectors, Spectra Imports: dplyr, tidyr, ggplot2, BiocStyle, knitr, methods, grDevices, stats, MsCoreUtils Suggests: RColorBrewer, pheatmap, MASS, patchwork, testthat License: file LICENSE MD5sum: 28a0051a468b7ca0db28cccde9eede14 NeedsCompilation: no Title: An R package for quality Control for hydrogen deuterium exchange mass spectrometry experiments Description: The hdxmsqc package enables us to analyse and visualise the quality of HDX-MS experiments. Either as a final quality check before downstream analysis and publication or as part of a interative procedure to determine the quality of the data. The package builds on the QFeatures and Spectra packages to integrate with other mass-spectrometry data. biocViews: QualityControl,DataImport, Proteomics, MassSpectrometry, Metabolomics Author: Oliver M. Crook [aut, cre] () Maintainer: Oliver M. Crook URL: http://github.com/ococrook/hdxmsqc VignetteBuilder: knitr BugReports: https://github.com/ococrook/hdxmsqc/issues git_url: https://git.bioconductor.org/packages/hdxmsqc git_branch: RELEASE_3_20 git_last_commit: 509ddf6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hdxmsqc_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hdxmsqc_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hdxmsqc_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hdxmsqc_1.2.0.tgz vignettes: vignettes/hdxmsqc/inst/doc/qc-streamlined.html vignetteTitles: Qualityt control for differential hydrogen deuterium exchange mass spectrometry data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/hdxmsqc/inst/doc/qc-streamlined.R dependencyCount: 122 Package: heatmaps Version: 1.30.0 Depends: R (>= 3.5.0) Imports: methods, grDevices, graphics, stats, Biostrings, GenomicRanges, IRanges, KernSmooth, plotrix, Matrix, EBImage, RColorBrewer, BiocGenerics, GenomeInfoDb Suggests: BSgenome.Drerio.UCSC.danRer7, knitr, rmarkdown, testthat License: Artistic-2.0 Archs: x64 MD5sum: 13b9183ebc899d46076243552753b16b NeedsCompilation: no Title: Flexible Heatmaps for Functional Genomics and Sequence Features Description: This package provides functions for plotting heatmaps of genome-wide data across genomic intervals, such as ChIP-seq signals at peaks or across promoters. Many functions are also provided for investigating sequence features. biocViews: Visualization, SequenceMatching, FunctionalGenomics Author: Malcolm Perry Maintainer: Malcolm Perry VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/heatmaps git_branch: RELEASE_3_20 git_last_commit: de290b9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/heatmaps_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/heatmaps_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/heatmaps_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/heatmaps_1.30.0.tgz vignettes: vignettes/heatmaps/inst/doc/heatmaps.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/heatmaps/inst/doc/heatmaps.R importsMe: seqArchRplus dependencyCount: 65 Package: Heatplus Version: 3.14.0 Imports: graphics, grDevices, stats, RColorBrewer Suggests: Biobase, hgu95av2.db, limma License: GPL (>= 2) Archs: x64 MD5sum: 3794d207cd8b71b7b02a93ee56e7a07b NeedsCompilation: no Title: Heatmaps with row and/or column covariates and colored clusters Description: Display a rectangular heatmap (intensity plot) of a data matrix. By default, both samples (columns) and features (row) of the matrix are sorted according to a hierarchical clustering, and the corresponding dendrogram is plotted. Optionally, panels with additional information about samples and features can be added to the plot. biocViews: Microarray, Visualization Author: Alexander Ploner Maintainer: Alexander Ploner URL: https://github.com/alexploner/Heatplus BugReports: https://github.com/alexploner/Heatplus/issues git_url: https://git.bioconductor.org/packages/Heatplus git_branch: RELEASE_3_20 git_last_commit: 0a7a325 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Heatplus_3.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Heatplus_3.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Heatplus_3.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Heatplus_3.14.0.tgz vignettes: vignettes/Heatplus/inst/doc/annHeatmapCommentedSource.pdf, vignettes/Heatplus/inst/doc/annHeatmap.pdf, vignettes/Heatplus/inst/doc/oldHeatplus.pdf vignetteTitles: Commented package source, Annotated and regular heatmaps, Old functions (deprecated) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Heatplus/inst/doc/annHeatmapCommentedSource.R, vignettes/Heatplus/inst/doc/annHeatmap.R, vignettes/Heatplus/inst/doc/oldHeatplus.R dependsOnMe: phenoTest, tRanslatome, heatmapFlex suggestsMe: mtbls2, RforProteomics dependencyCount: 4 Package: HelloRanges Version: 1.32.0 Depends: methods, BiocGenerics, S4Vectors (>= 0.17.39), IRanges (>= 2.13.12), GenomicRanges (>= 1.31.10), Biostrings (>= 2.41.3), BSgenome, GenomicFeatures (>= 1.31.5), VariantAnnotation (>= 1.19.3), Rsamtools, GenomicAlignments (>= 1.15.7), rtracklayer (>= 1.33.8), GenomeInfoDb, SummarizedExperiment, BiocIO Imports: docopt, stats, tools, utils Suggests: HelloRangesData, BiocStyle, RUnit, TxDb.Hsapiens.UCSC.hg19.knownGene License: GPL (>= 2) MD5sum: ee369883249c5424d123a30d6f80a112 NeedsCompilation: no Title: Introduce *Ranges to bedtools users Description: Translates bedtools command-line invocations to R code calling functions from the Bioconductor *Ranges infrastructure. This is intended to educate novice Bioconductor users and to compare the syntax and semantics of the two frameworks. biocViews: Sequencing, Annotation, Coverage, GenomeAnnotation, DataImport, SequenceMatching, VariantAnnotation Author: Michael Lawrence Maintainer: Michael Lawrence git_url: https://git.bioconductor.org/packages/HelloRanges git_branch: RELEASE_3_20 git_last_commit: 3c1c8c8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HelloRanges_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HelloRanges_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HelloRanges_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HelloRanges_1.32.0.tgz vignettes: vignettes/HelloRanges/inst/doc/tutorial.pdf vignetteTitles: HelloRanges Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HelloRanges/inst/doc/tutorial.R importsMe: OMICsPCA suggestsMe: plyranges dependencyCount: 80 Package: HELP Version: 1.64.0 Depends: R (>= 2.8.0), stats, graphics, grDevices, Biobase, methods License: GPL (>= 2) MD5sum: 9163051930de1ef9ce1b2a57a1558c1e NeedsCompilation: no Title: Tools for HELP data analysis Description: The package contains a modular pipeline for analysis of HELP microarray data, and includes graphical and mathematical tools with more general applications. biocViews: CpGIsland, DNAMethylation, Microarray, TwoChannel, DataImport, QualityControl, Preprocessing, Visualization Author: Reid F. Thompson , John M. Greally , with contributions from Mark Reimers Maintainer: Reid F. Thompson git_url: https://git.bioconductor.org/packages/HELP git_branch: RELEASE_3_20 git_last_commit: f9fc390 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HELP_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HELP_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HELP_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HELP_1.64.0.tgz vignettes: vignettes/HELP/inst/doc/HELP.pdf vignetteTitles: 1. Primer hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HELP/inst/doc/HELP.R dependencyCount: 7 Package: HEM Version: 1.78.0 Depends: R (>= 2.1.0) Imports: Biobase, grDevices, stats, utils License: GPL (>= 2) MD5sum: e0e9b1d77b9f1ecc095735724aa68ffe NeedsCompilation: yes Title: Heterogeneous error model for identification of differentially expressed genes under multiple conditions Description: This package fits heterogeneous error models for analysis of microarray data biocViews: Microarray, DifferentialExpression Author: HyungJun Cho and Jae K. Lee Maintainer: HyungJun Cho URL: http://www.healthsystem.virginia.edu/internet/hes/biostat/bioinformatics/ git_url: https://git.bioconductor.org/packages/HEM git_branch: RELEASE_3_20 git_last_commit: 5ec914c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HEM_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HEM_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HEM_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HEM_1.78.0.tgz vignettes: vignettes/HEM/inst/doc/HEM.pdf vignetteTitles: HEM Overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 7 Package: hermes Version: 1.10.0 Depends: ggfortify, R (>= 4.1), SummarizedExperiment (>= 1.16) Imports: assertthat, Biobase, BiocGenerics, biomaRt, checkmate (>= 2.1), circlize, ComplexHeatmap, DESeq2, dplyr, edgeR, EnvStats, forcats (>= 1.0.0), GenomicRanges, ggplot2, ggrepel (>= 0.9), IRanges, lifecycle, limma, magrittr, matrixStats, methods, MultiAssayExperiment, purrr, R6, Rdpack, rlang, S4Vectors, stats, tidyr, utils Suggests: BiocStyle, DelayedArray, DT, grid, httr, knitr, rmarkdown, statmod, testthat (>= 2.0), vdiffr License: Apache License 2.0 MD5sum: 66f15d90a3af1663393f1904bbdd74f0 NeedsCompilation: no Title: Preprocessing, analyzing, and reporting of RNA-seq data Description: Provides classes and functions for quality control, filtering, normalization and differential expression analysis of pre-processed `RNA-seq` data. Data can be imported from `SummarizedExperiment` as well as `matrix` objects and can be annotated from `BioMart`. Filtering for genes without too low expression or containing required annotations, as well as filtering for samples with sufficient correlation to other samples or total number of reads is supported. The standard normalization methods including cpm, rpkm and tpm can be used, and 'DESeq2` as well as voom differential expression analyses are available. biocViews: RNASeq, DifferentialExpression, Normalization, Preprocessing, QualityControl Author: Daniel Sabanés Bové [aut, cre], Namrata Bhatia [aut], Stefanie Bienert [aut], Benoit Falquet [aut], Haocheng Li [aut], Jeff Luong [aut], Lyndsee Midori Zhang [aut], Alex Richardson [aut], Simona Rossomanno [aut], Tim Treis [aut], Mark Yan [aut], Naomi Chang [aut], Chendi Liao [aut], Carolyn Zhang [aut], Joseph N. Paulson [aut], F. Hoffmann-La Roche AG [cph, fnd] Maintainer: Daniel Sabanés Bové URL: https://github.com/insightsengineering/hermes/ VignetteBuilder: knitr BugReports: https://github.com/insightsengineering/hermes/issues git_url: https://git.bioconductor.org/packages/hermes git_branch: RELEASE_3_20 git_last_commit: a415923 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hermes_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hermes_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hermes_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hermes_1.10.0.tgz vignettes: vignettes/hermes/inst/doc/hermes.html vignetteTitles: Introduction to `hermes` hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/hermes/inst/doc/hermes.R dependencyCount: 134 Package: HERON Version: 1.4.0 Depends: R (>= 4.4.0), SummarizedExperiment (>= 1.1.6), GenomicRanges, IRanges, S4Vectors Imports: matrixStats, stats, data.table, harmonicmeanp, metap, cluster, spdep, Matrix, limma, methods Suggests: knitr, rmarkdown, testthat (>= 3.0.0) License: GPL (>= 3) MD5sum: d41b40db5c26c69733c46f4396dfcf4c NeedsCompilation: no Title: Hierarchical Epitope pROtein biNding Description: HERON is a software package for analyzing peptide binding array data. In addition to identifying significant binding probes, HERON also provides functions for finding epitopes (string of consecutive peptides within a protein). HERON also calculates significance on the probe, epitope, and protein level by employing meta p-value methods. HERON is designed for obtaining calls on the sample level and calculates fractions of hits for different conditions. biocViews: Microarray, Software Author: Sean McIlwain [aut, cre] (), Irene Ong [aut] () Maintainer: Sean McIlwain URL: https://github.com/Ong-Research/HERON VignetteBuilder: knitr BugReports: https://github.com/Ong-Research/HERON/issues git_url: https://git.bioconductor.org/packages/HERON git_branch: RELEASE_3_20 git_last_commit: b7187fa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HERON_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HERON_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HERON_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HERON_1.4.0.tgz vignettes: vignettes/HERON/inst/doc/full_analysis.html vignetteTitles: Analyzing High Density Peptide Array Data using HERON hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HERON/inst/doc/full_analysis.R dependencyCount: 85 Package: Herper Version: 1.16.0 Depends: R (>= 4.0), reticulate Imports: utils, rjson, withr, stats Suggests: BiocStyle, testthat, knitr, rmarkdown License: GPL-3 MD5sum: 9f9111e2307d05fa4c12eca84ca524f5 NeedsCompilation: no Title: The Herper package is a simple toolset to install and manage conda packages and environments from R Description: Many tools for data analysis are not available in R, but are present in public repositories like conda. The Herper package provides a comprehensive set of functions to interact with the conda package managament system. With Herper users can install, manage and run conda packages from the comfort of their R session. Herper also provides an ad-hoc approach to handling external system requirements for R packages. For people developing packages with python conda dependencies we recommend using basilisk (https://bioconductor.org/packages/release/bioc/html/basilisk.html) to internally support these system requirments pre-hoc. biocViews: Infrastructure, Software Author: Matt Paul [aut] (), Thomas Carroll [aut, cre] (), Doug Barrows [aut], Kathryn Rozen-Gagnon [ctb] Maintainer: Thomas Carroll URL: https://github.com/RockefellerUniversity/Herper VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Herper git_branch: RELEASE_3_20 git_last_commit: 82200c4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Herper_1.16.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Herper_1.16.0.tgz vignettes: vignettes/Herper/inst/doc/QuickStart.html vignetteTitles: Quick Start hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Herper/inst/doc/QuickStart.R dependencyCount: 19 Package: HGC Version: 1.14.0 Depends: R (>= 4.1.0) Imports: Rcpp (>= 1.0.0), RcppEigen(>= 0.3.2.0), Matrix, RANN, ape, dendextend, ggplot2, mclust, patchwork, dplyr, grDevices, methods, stats LinkingTo: Rcpp, RcppEigen Suggests: BiocStyle, rmarkdown, knitr, testthat (>= 3.0.0) License: GPL-3 Archs: x64 MD5sum: 237909a41003377a1abf5bbd65de72ba NeedsCompilation: yes Title: A fast hierarchical graph-based clustering method Description: HGC (short for Hierarchical Graph-based Clustering) is an R package for conducting hierarchical clustering on large-scale single-cell RNA-seq (scRNA-seq) data. The key idea is to construct a dendrogram of cells on their shared nearest neighbor (SNN) graph. HGC provides functions for building graphs and for conducting hierarchical clustering on the graph. The users with old R version could visit https://github.com/XuegongLab/HGC/tree/HGC4oldRVersion to get HGC package built for R 3.6. biocViews: SingleCell, Software, Clustering, RNASeq, GraphAndNetwork, DNASeq Author: Zou Ziheng [aut], Hua Kui [aut], XGlab [cre, cph] Maintainer: XGlab SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/HGC git_branch: RELEASE_3_20 git_last_commit: 790dc2b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HGC_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HGC_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HGC_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HGC_1.14.0.tgz vignettes: vignettes/HGC/inst/doc/HGC.html vignetteTitles: HGC package manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HGC/inst/doc/HGC.R dependencyCount: 50 Package: hiAnnotator Version: 1.40.0 Depends: GenomicRanges, R (>= 2.10) Imports: foreach, iterators, rtracklayer, dplyr, BSgenome, ggplot2, scales, methods Suggests: knitr, doParallel, testthat, BiocGenerics, markdown License: GPL (>= 2) MD5sum: c2e1132d926b5ec2006fe37609b1ca16 NeedsCompilation: no Title: Functions for annotating GRanges objects Description: hiAnnotator contains set of functions which allow users to annotate a GRanges object with custom set of annotations. The basic philosophy of this package is to take two GRanges objects (query & subject) with common set of seqnames (i.e. chromosomes) and return associated annotation per seqnames and rows from the query matching seqnames and rows from the subject (i.e. genes or cpg islands). The package comes with three types of annotation functions which calculates if a position from query is: within a feature, near a feature, or count features in defined window sizes. Moreover, each function is equipped with parallel backend to utilize the foreach package. In addition, the package is equipped with wrapper functions, which finds appropriate columns needed to make a GRanges object from a common data frame. biocViews: Software, Annotation Author: Nirav V Malani Maintainer: Nirav V Malani VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/hiAnnotator git_branch: RELEASE_3_20 git_last_commit: 3572a71 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hiAnnotator_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hiAnnotator_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hiAnnotator_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hiAnnotator_1.40.0.tgz vignettes: vignettes/hiAnnotator/inst/doc/Intro.html vignetteTitles: Using hiAnnotator hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/hiAnnotator/inst/doc/Intro.R dependsOnMe: hiReadsProcessor dependencyCount: 90 Package: HIBAG Version: 1.42.0 Depends: R (>= 3.2.0) Imports: methods, RcppParallel LinkingTo: RcppParallel (>= 5.0.0) Suggests: parallel, ggplot2, reshape2, gdsfmt, SNPRelate, SeqArray, knitr, markdown, rmarkdown, Rsamtools License: GPL-3 MD5sum: aa87ab9f1d702618bef7f7fc52ea180b NeedsCompilation: yes Title: HLA Genotype Imputation with Attribute Bagging Description: Imputes HLA classical alleles using GWAS SNP data, and it relies on a training set of HLA and SNP genotypes. HIBAG can be used by researchers with published parameter estimates instead of requiring access to large training sample datasets. It combines the concepts of attribute bagging, an ensemble classifier method, with haplotype inference for SNPs and HLA types. Attribute bagging is a technique which improves the accuracy and stability of classifier ensembles using bootstrap aggregating and random variable selection. biocViews: Genetics, StatisticalMethod Author: Xiuwen Zheng [aut, cre, cph] (), Bruce Weir [ctb, ths] () Maintainer: Xiuwen Zheng URL: https://github.com/zhengxwen/HIBAG, https://hibag.s3.amazonaws.com/index.html SystemRequirements: C++11, GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/HIBAG git_branch: RELEASE_3_20 git_last_commit: 6aaa259 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HIBAG_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HIBAG_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HIBAG_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HIBAG_1.42.0.tgz vignettes: vignettes/HIBAG/inst/doc/HIBAG.html, vignettes/HIBAG/inst/doc/HLA_Association.html, vignettes/HIBAG/inst/doc/Implementation.html vignetteTitles: HIBAG vignette html, HLA association vignette html, HIBAG algorithm implementation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HIBAG/inst/doc/HIBAG.R, vignettes/HIBAG/inst/doc/HLA_Association.R, vignettes/HIBAG/inst/doc/Implementation.R dependencyCount: 2 Package: HicAggR Version: 1.2.0 Depends: R (>= 4.2.0) Imports: InteractionSet, BiocGenerics, BiocParallel, dplyr, GenomeInfoDb, GenomicRanges, ggplot2, grDevices, IRanges, Matrix, methods, rhdf5, rlang, rtracklayer, S4Vectors, stats, utils, strawr, tibble, stringr, tidyr, gridExtra, data.table, reshape, checkmate, purrr, withr Suggests: covr, tools, kableExtra (>= 1.3.4), knitr (>= 1.45), rmarkdown, testthat (>= 3.0.0), BiocFileCache (>= 2.6.1) License: MIT + file LICENSE Archs: x64 MD5sum: 0f8ad2187b6596e9b8cc747ed3dbddb6 NeedsCompilation: no Title: Set of 3D genomic interaction analysis tools Description: This package provides a set of functions useful in the analysis of 3D genomic interactions. It includes the import of standard HiC data formats into R and HiC normalisation procedures. The main objective of this package is to improve the visualization and quantification of the analysis of HiC contacts through aggregation. The package allows to import 1D genomics data, such as peaks from ATACSeq, ChIPSeq, to create potential couples between features of interest under user-defined parameters such as distance between pairs of features of interest. It allows then the extraction of contact values from the HiC data for these couples and to perform Aggregated Peak Analysis (APA) for visualization, but also to compare normalized contact values between conditions. Overall the package allows to integrate 1D genomics data with 3D genomics data, providing an easy access to HiC contact values. biocViews: Software, HiC, DataImport, DataRepresentation, Normalization, Visualization, DNA3DStructure, ATACSeq, ChIPSeq, DNaseSeq, RNASeq Author: Robel Tesfaye [aut, ctb] (), David Depierre [aut], Naomi Schickele [ctb], Nicolas Chanard [aut], Refka Askri [ctb], Stéphane Schaak [aut, ctb], Pascal Martin [ctb], Olivier Cuvier [cre, ctb] () Maintainer: Olivier Cuvier URL: https://bioconductor.org/packages/HicAggR, https://cuvierlab.github.io/HicAggR/, https://github.com/CuvierLab/HicAggR VignetteBuilder: knitr BugReports: https://github.com/CuvierLab/HicAggR/issues git_url: https://git.bioconductor.org/packages/HicAggR git_branch: RELEASE_3_20 git_last_commit: bf7aff9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HicAggR_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HicAggR_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HicAggR_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HicAggR_1.2.0.tgz vignettes: vignettes/HicAggR/inst/doc/HicAggR.html vignetteTitles: HicAggR - In depth tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/HicAggR/inst/doc/HicAggR.R dependencyCount: 103 Package: HiCBricks Version: 1.24.0 Depends: R (>= 3.6), utils, curl, rhdf5, R6, grid Imports: ggplot2, viridis, RColorBrewer, scales, reshape2, stringr, data.table, GenomeInfoDb, GenomicRanges, stats, IRanges, grDevices, S4Vectors, digest, tibble, jsonlite, BiocParallel, R.utils, readr, methods Suggests: BiocStyle, knitr, rmarkdown License: MIT + file LICENSE MD5sum: 1b5c3f39d3a0b30bf78439e1cdc26eb6 NeedsCompilation: no Title: Framework for Storing and Accessing Hi-C Data Through HDF Files Description: HiCBricks is a library designed for handling large high-resolution Hi-C datasets. Over the years, the Hi-C field has experienced a rapid increase in the size and complexity of datasets. HiCBricks is meant to overcome the challenges related to the analysis of such large datasets within the R environment. HiCBricks offers user-friendly and efficient solutions for handling large high-resolution Hi-C datasets. The package provides an R/Bioconductor framework with the bricks to build more complex data analysis pipelines and algorithms. HiCBricks already incorporates example algorithms for calling domain boundaries and functions for high quality data visualization. biocViews: DataImport, Infrastructure, Software, Technology, Sequencing, HiC Author: Koustav Pal [aut, cre], Carmen Livi [ctb], Ilario Tagliaferri [ctb] Maintainer: Koustav Pal VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/HiCBricks git_branch: RELEASE_3_20 git_last_commit: 989054d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HiCBricks_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HiCBricks_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HiCBricks_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HiCBricks_1.24.0.tgz vignettes: vignettes/HiCBricks/inst/doc/IntroductionToHiCBricks.html vignetteTitles: IntroductionToHiCBricks.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/HiCBricks/inst/doc/IntroductionToHiCBricks.R importsMe: bnbc dependencyCount: 89 Package: HiCcompare Version: 1.28.0 Depends: R (>= 3.5.0), dplyr Imports: data.table, ggplot2, gridExtra, mgcv, stats, InteractionSet, GenomicRanges, IRanges, S4Vectors, BiocParallel, KernSmooth, methods, utils, graphics, pheatmap, gtools, rhdf5 Suggests: knitr, rmarkdown, testthat, multiHiCcompare License: MIT + file LICENSE Archs: x64 MD5sum: e9eaa0683ae4dc4c726fbb16e343d15d NeedsCompilation: no Title: HiCcompare: Joint normalization and comparative analysis of multiple Hi-C datasets Description: HiCcompare provides functions for joint normalization and difference detection in multiple Hi-C datasets. HiCcompare operates on processed Hi-C data in the form of chromosome-specific chromatin interaction matrices. It accepts three-column tab-separated text files storing chromatin interaction matrices in a sparse matrix format which are available from several sources. HiCcompare is designed to give the user the ability to perform a comparative analysis on the 3-Dimensional structure of the genomes of cells in different biological states.`HiCcompare` differs from other packages that attempt to compare Hi-C data in that it works on processed data in chromatin interaction matrix format instead of pre-processed sequencing data. In addition, `HiCcompare` provides a non-parametric method for the joint normalization and removal of biases between two Hi-C datasets for the purpose of comparative analysis. `HiCcompare` also provides a simple yet robust method for detecting differences between Hi-C datasets. biocViews: Software, HiC, Sequencing, Normalization Author: Mikhail Dozmorov [aut, cre] (), Kellen Cresswell [aut], John Stansfield [aut] Maintainer: Mikhail Dozmorov URL: https://github.com/dozmorovlab/HiCcompare VignetteBuilder: knitr BugReports: https://github.com/dozmorovlab/HiCcompare/issues git_url: https://git.bioconductor.org/packages/HiCcompare git_branch: RELEASE_3_20 git_last_commit: 4f2f6c3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HiCcompare_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HiCcompare_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HiCcompare_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HiCcompare_1.28.0.tgz vignettes: vignettes/HiCcompare/inst/doc/HiCcompare-vignette.html vignetteTitles: HiCcompare Usage Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/HiCcompare/inst/doc/HiCcompare-vignette.R importsMe: multiHiCcompare, SpectralTAD, TADCompare dependencyCount: 85 Package: HiCDCPlus Version: 1.14.0 Imports: Rcpp,InteractionSet,GenomicInteractions,bbmle,pscl,BSgenome,data.table,dplyr,tidyr,GenomeInfoDb,rlang,splines,MASS,GenomicRanges,IRanges,tibble,R.utils,Biostrings,rtracklayer,methods,S4Vectors LinkingTo: Rcpp Suggests: BSgenome.Mmusculus.UCSC.mm9, BSgenome.Mmusculus.UCSC.mm10, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38, RUnit, BiocGenerics, knitr, rmarkdown, HiTC, DESeq2, Matrix, BiocFileCache, rappdirs Enhances: parallel License: GPL-3 MD5sum: e874749d4720ab9a0963a98ab1fdcc19 NeedsCompilation: yes Title: Hi-C Direct Caller Plus Description: Systematic 3D interaction calls and differential analysis for Hi-C and HiChIP. The HiC-DC+ (Hi-C/HiChIP direct caller plus) package enables principled statistical analysis of Hi-C and HiChIP data sets – including calling significant interactions within a single experiment and performing differential analysis between conditions given replicate experiments – to facilitate global integrative studies. HiC-DC+ estimates significant interactions in a Hi-C or HiChIP experiment directly from the raw contact matrix for each chromosome up to a specified genomic distance, binned by uniform genomic intervals or restriction enzyme fragments, by training a background model to account for random polymer ligation and systematic sources of read count variation. biocViews: HiC, DNA3DStructure, Software, Normalization Author: Merve Sahin [cre, aut] () Maintainer: Merve Sahin SystemRequirements: JRE 8+ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/HiCDCPlus git_branch: RELEASE_3_20 git_last_commit: 1133b86 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HiCDCPlus_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HiCDCPlus_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HiCDCPlus_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HiCDCPlus_1.14.0.tgz vignettes: vignettes/HiCDCPlus/inst/doc/HiCDCPlus.html vignetteTitles: Analyzing Hi-C and HiChIP data with HiCDCPlus hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HiCDCPlus/inst/doc/HiCDCPlus.R dependencyCount: 169 Package: HiCDOC Version: 1.8.0 Depends: InteractionSet, GenomicRanges, SummarizedExperiment, R (>= 4.1.0) Imports: methods, zlibbioc, ggplot2, Rcpp (>= 0.12.8), stats, S4Vectors, gtools, pbapply, BiocParallel, BiocGenerics, grid, cowplot, gridExtra, data.table, multiHiCcompare, GenomeInfoDb LinkingTo: Rcpp Suggests: knitr, rmarkdown, testthat, BiocStyle, BiocManager, rhdf5 License: LGPL-3 MD5sum: d6f9e9565f7fd00b7cc8bc1689c2111d NeedsCompilation: yes Title: A/B compartment detection and differential analysis Description: HiCDOC normalizes intrachromosomal Hi-C matrices, uses unsupervised learning to predict A/B compartments from multiple replicates, and detects significant compartment changes between experiment conditions. It provides a collection of functions assembled into a pipeline to filter and normalize the data, predict the compartments and visualize the results. It accepts several type of data: tabular `.tsv` files, Cooler `.cool` or `.mcool` files, Juicer `.hic` files or HiC-Pro `.matrix` and `.bed` files. biocViews: HiC, DNA3DStructure, Normalization, Sequencing, Software, Clustering Author: Kurylo Cyril [aut], Zytnicki Matthias [aut], Foissac Sylvain [aut], Maigné Élise [aut, cre] Maintainer: Maigné Élise URL: https://github.com/mzytnicki/HiCDOC SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/mzytnicki/HiCDOC/issues git_url: https://git.bioconductor.org/packages/HiCDOC git_branch: RELEASE_3_20 git_last_commit: 3496af8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HiCDOC_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HiCDOC_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HiCDOC_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HiCDOC_1.8.0.tgz vignettes: vignettes/HiCDOC/inst/doc/HiCDOC.html vignetteTitles: HiCDOC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HiCDOC/inst/doc/HiCDOC.R importsMe: treediff dependencyCount: 96 Package: HiCExperiment Version: 1.6.0 Depends: R (>= 4.2) Imports: InteractionSet, strawr, GenomeInfoDb, GenomicRanges, IRanges, S4Vectors, BiocGenerics, BiocIO, BiocParallel, methods, rhdf5, Matrix, vroom, dplyr, stats Suggests: HiContacts, HiContactsData, BiocFileCache, rtracklayer, testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown License: MIT + file LICENSE MD5sum: 78ff18f540ccf6d3459097f2575c3ef0 NeedsCompilation: no Title: Bioconductor class for interacting with Hi-C files in R Description: R generic interface to Hi-C contact matrices in `.(m)cool`, `.hic` or HiC-Pro derived formats, as well as other Hi-C processed file formats. Contact matrices can be partially parsed using a random access method, allowing a memory-efficient representation of Hi-C data in R. The `HiCExperiment` class stores the Hi-C contacts parsed from local contact matrix files. `HiCExperiment` instances can be further investigated in R using the `HiContacts` analysis package. biocViews: HiC, DNA3DStructure, DataImport Author: Jacques Serizay [aut, cre] () Maintainer: Jacques Serizay URL: https://github.com/js2264/HiCExperiment VignetteBuilder: knitr BugReports: https://github.com/js2264/HiCExperiment/issues git_url: https://git.bioconductor.org/packages/HiCExperiment git_branch: RELEASE_3_20 git_last_commit: 5466a94 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HiCExperiment_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HiCExperiment_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HiCExperiment_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HiCExperiment_1.6.0.tgz vignettes: vignettes/HiCExperiment/inst/doc/HiCExperiment.html vignetteTitles: Introduction to HiCExperiment hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/HiCExperiment/inst/doc/HiCExperiment.R dependsOnMe: HiContacts, HiCool, DNAZooData importsMe: fourDNData, OHCA dependencyCount: 75 Package: HiContacts Version: 1.8.0 Depends: R (>= 4.2), HiCExperiment Imports: InteractionSet, SummarizedExperiment, GenomicRanges, IRanges, GenomeInfoDb, S4Vectors, methods, BiocGenerics, BiocIO, BiocParallel, RSpectra, Matrix, tibble, tidyr, dplyr, readr, stringr, ggplot2, ggrastr, scales, stats, utils Suggests: HiContactsData, rtracklayer, GenomicFeatures, Biostrings, BSgenome.Scerevisiae.UCSC.sacCer3, WGCNA, Rfast, terra, patchwork, testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown License: MIT + file LICENSE Archs: x64 MD5sum: 04024808b535cef83529e36f47032b54 NeedsCompilation: no Title: Analysing cool files in R with HiContacts Description: HiContacts provides a collection of tools to analyse and visualize Hi-C datasets imported in R by HiCExperiment. biocViews: HiC, DNA3DStructure Author: Jacques Serizay [aut, cre] () Maintainer: Jacques Serizay URL: https://github.com/js2264/HiContacts VignetteBuilder: knitr BugReports: https://github.com/js2264/HiContacts/issues git_url: https://git.bioconductor.org/packages/HiContacts git_branch: RELEASE_3_20 git_last_commit: c4ca14f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HiContacts_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HiContacts_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HiContacts_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HiContacts_1.8.0.tgz vignettes: vignettes/HiContacts/inst/doc/HiContacts.html vignetteTitles: Introduction to HiContacts hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/HiContacts/inst/doc/HiContacts.R importsMe: OHCA suggestsMe: HiCExperiment, HiCool dependencyCount: 107 Package: HiCool Version: 1.6.0 Depends: R (>= 4.2), HiCExperiment Imports: BiocIO, S4Vectors, GenomicRanges, IRanges, InteractionSet, vroom, basilisk, reticulate, rmarkdown, rmdformats, plotly, dplyr, stringr, sessioninfo, utils Suggests: HiContacts, HiContactsData, AnnotationHub, BiocFileCache, BiocStyle, testthat, knitr, rmarkdown License: MIT + file LICENSE MD5sum: e17b49313cd3d6d77cfb5c858a4e90fb NeedsCompilation: no Title: HiCool Description: HiCool provides an R interface to process and normalize Hi-C paired-end fastq reads into .(m)cool files. .(m)cool is a compact, indexed HDF5 file format specifically tailored for efficiently storing HiC-based data. On top of processing fastq reads, HiCool provides a convenient reporting function to generate shareable reports summarizing Hi-C experiments and including quality controls. biocViews: HiC, DNA3DStructure, DataImport Author: Jacques Serizay [aut, cre] Maintainer: Jacques Serizay URL: https://github.com/js2264/HiCool VignetteBuilder: knitr BugReports: https://github.com/js2264/HiCool/issues git_url: https://git.bioconductor.org/packages/HiCool git_branch: RELEASE_3_20 git_last_commit: 10f284a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HiCool_1.6.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HiCool_1.6.0.tgz vignettes: vignettes/HiCool/inst/doc/HiCool.html vignetteTitles: HiCool hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/HiCool/inst/doc/HiCool.R importsMe: OHCA dependencyCount: 132 Package: hicVennDiagram Version: 1.4.0 Depends: R (>= 4.3.0) Imports: GenomeInfoDb, GenomicRanges, IRanges, InteractionSet, rtracklayer, ggplot2, ComplexUpset, reshape2, eulerr, S4Vectors, methods, utils, htmlwidgets, svglite Suggests: BiocStyle, knitr, rmarkdown, testthat, ChIPpeakAnno, grid, TxDb.Hsapiens.UCSC.hg38.knownGene License: GPL-3 Archs: x64 MD5sum: 0a2b9d864d34d269d6dd47b00ac6e46a NeedsCompilation: no Title: Venn Diagram for genomic interaction data Description: A package to generate high-resolution Venn and Upset plots for genomic interaction data from HiC, ChIA-PET, HiChIP, PLAC-Seq, Hi-TrAC, HiCAR and etc. The package generates plots specifically crafted to eliminate the deceptive visual representation caused by the counts method. biocViews: DNA3DStructure, HiC, Visualization Author: Jianhong Ou [aut, cre] () Maintainer: Jianhong Ou URL: https://github.com/jianhong/hicVennDiagram VignetteBuilder: knitr BugReports: https://github.com/jianhong/hicVennDiagram/issues git_url: https://git.bioconductor.org/packages/hicVennDiagram git_branch: RELEASE_3_20 git_last_commit: 1959a42 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hicVennDiagram_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hicVennDiagram_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hicVennDiagram_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hicVennDiagram_1.4.0.tgz vignettes: vignettes/hicVennDiagram/inst/doc/hicVennDiagram.html vignetteTitles: hicVennDiagram Vignette: overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/hicVennDiagram/inst/doc/hicVennDiagram.R dependencyCount: 118 Package: hierGWAS Version: 1.36.0 Depends: R (>= 3.2.0) Imports: fastcluster,glmnet, fmsb Suggests: BiocGenerics, RUnit, MASS License: GPL-3 MD5sum: bd862a09a6e77c3694ad2a58210610e7 NeedsCompilation: no Title: Asessing statistical significance in predictive GWA studies Description: Testing individual SNPs, as well as arbitrarily large groups of SNPs in GWA studies, using a joint model of all SNPs. The method controls the FWER, and provides an automatic, data-driven refinement of the SNP clusters to smaller groups or single markers. biocViews: SNP, LinkageDisequilibrium, Clustering Author: Laura Buzdugan Maintainer: Laura Buzdugan git_url: https://git.bioconductor.org/packages/hierGWAS git_branch: RELEASE_3_20 git_last_commit: 6cbad56 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hierGWAS_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hierGWAS_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hierGWAS_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hierGWAS_1.36.0.tgz vignettes: vignettes/hierGWAS/inst/doc/hierGWAS.pdf vignetteTitles: User manual for R-Package hierGWAS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/hierGWAS/inst/doc/hierGWAS.R dependencyCount: 19 Package: hierinf Version: 1.24.0 Depends: R (>= 3.6.0) Imports: fmsb, glmnet, methods, parallel, stats Suggests: knitr, MASS, testthat License: GPL-3 | file LICENSE MD5sum: ed51fa55cd6f4de5fe24920ce844f547 NeedsCompilation: no Title: Hierarchical Inference Description: Tools to perform hierarchical inference for one or multiple studies / data sets based on high-dimensional multivariate (generalised) linear models. A possible application is to perform hierarchical inference for GWA studies to find significant groups or single SNPs (if the signal is strong) in a data-driven and automated procedure. The method is based on an efficient hierarchical multiple testing correction and controls the FWER. The functions can easily be run in parallel. biocViews: Clustering, GenomeWideAssociation, LinkageDisequilibrium, Regression, SNP Author: Claude Renaux [aut, cre], Laura Buzdugan [aut], Markus Kalisch [aut], Peter Bühlmann [aut] Maintainer: Claude Renaux VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/hierinf git_branch: RELEASE_3_20 git_last_commit: 42f2bbb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hierinf_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hierinf_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hierinf_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hierinf_1.24.0.tgz vignettes: vignettes/hierinf/inst/doc/vignette-hierinf.pdf vignetteTitles: vignette-hierinf.Rnw hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/hierinf/inst/doc/vignette-hierinf.R dependencyCount: 19 Package: HilbertCurve Version: 2.0.0 Depends: R (>= 4.0.0), grid Imports: methods, utils, png, grDevices, circlize (>= 0.3.3), IRanges, GenomicRanges, polylabelr, Rcpp LinkingTo: Rcpp Suggests: knitr, testthat (>= 1.0.0), ComplexHeatmap (>= 1.99.0), markdown, RColorBrewer, RCurl, GetoptLong, rmarkdown License: MIT + file LICENSE MD5sum: b4aea3a4cfa4d8d022dc17a0d18311ac NeedsCompilation: yes Title: Making 2D Hilbert Curve Description: Hilbert curve is a type of space-filling curves that fold one dimensional axis into a two dimensional space, but with still preserves the locality. This package aims to provide an easy and flexible way to visualize data through Hilbert curve. biocViews: Software, Visualization, Sequencing, Coverage, GenomeAnnotation Author: Zuguang Gu [aut, cre] () Maintainer: Zuguang Gu URL: https://github.com/jokergoo/HilbertCurve, https://jokergoo.github.io/HilbertCurve/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/HilbertCurve git_branch: RELEASE_3_20 git_last_commit: 072be7d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HilbertCurve_2.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HilbertCurve_2.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HilbertCurve_2.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HilbertCurve_2.0.0.tgz vignettes: vignettes/HilbertCurve/inst/doc/HilbertCurve.html vignetteTitles: The HilbertCurve package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE suggestsMe: InteractiveComplexHeatmap dependencyCount: 32 Package: HilbertVis Version: 1.64.0 Depends: R (>= 2.6.0), grid, lattice Suggests: IRanges, EBImage License: GPL (>= 3) MD5sum: 627ad4e5725a9044727aa1ef90e3da09 NeedsCompilation: yes Title: Hilbert curve visualization Description: Functions to visualize long vectors of integer data by means of Hilbert curves biocViews: Visualization Author: Simon Anders Maintainer: Simon Anders URL: http://www.ebi.ac.uk/~anders/hilbert git_url: https://git.bioconductor.org/packages/HilbertVis git_branch: RELEASE_3_20 git_last_commit: 5a3defe git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HilbertVis_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HilbertVis_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HilbertVis_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HilbertVis_1.64.0.tgz vignettes: vignettes/HilbertVis/inst/doc/HilbertVis.pdf vignetteTitles: Visualising very long data vectors with the Hilbert curve hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HilbertVis/inst/doc/HilbertVis.R dependsOnMe: HilbertVisGUI importsMe: ChIPseqR dependencyCount: 6 Package: HilbertVisGUI Version: 1.64.0 Depends: R (>= 2.6.0), HilbertVis (>= 1.1.6) Suggests: lattice, IRanges License: GPL (>= 3) MD5sum: dc316bebd3431b7778ab5c7acc27c52e NeedsCompilation: yes Title: HilbertVisGUI Description: An interactive tool to visualize long vectors of integer data by means of Hilbert curves biocViews: Visualization Author: Simon Anders Maintainer: Simon Anders URL: http://www.ebi.ac.uk/~anders/hilbert SystemRequirements: gtkmm-2.4, GNU make git_url: https://git.bioconductor.org/packages/HilbertVisGUI git_branch: RELEASE_3_20 git_last_commit: c5ebbd3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HilbertVisGUI_1.64.0.tar.gz vignettes: vignettes/HilbertVisGUI/inst/doc/HilbertVisGUI.pdf vignetteTitles: See vignette in package HilbertVis hasREADME: FALSE hasNEWS: FALSE hasINSTALL: TRUE hasLICENSE: FALSE dependencyCount: 7 Package: HiLDA Version: 1.20.0 Depends: R(>= 4.1), ggplot2 Imports: R2jags, abind, cowplot, grid, forcats, stringr, GenomicRanges, S4Vectors, XVector, Biostrings, GenomicFeatures, BSgenome.Hsapiens.UCSC.hg19, BiocGenerics, tidyr, grDevices, stats, TxDb.Hsapiens.UCSC.hg19.knownGene, utils, methods, Rcpp LinkingTo: Rcpp Suggests: knitr, rmarkdown, testthat, BiocStyle License: GPL-3 MD5sum: fe37f0a9870a06f8c16ff8530e7fabfb NeedsCompilation: yes Title: Conducting statistical inference on comparing the mutational exposures of mutational signatures by using hierarchical latent Dirichlet allocation Description: A package built under the Bayesian framework of applying hierarchical latent Dirichlet allocation. It statistically tests whether the mutational exposures of mutational signatures (Shiraishi-model signatures) are different between two groups. The package also provides inference and visualization. biocViews: Software, SomaticMutation, Sequencing, StatisticalMethod, Bayesian Author: Zhi Yang [aut, cre], Yuichi Shiraishi [ctb] Maintainer: Zhi Yang URL: https://github.com/USCbiostats/HiLDA, https://doi.org/10.1101/577452 SystemRequirements: JAGS 4.0.0 VignetteBuilder: knitr BugReports: https://github.com/USCbiostats/HiLDA/issues git_url: https://git.bioconductor.org/packages/HiLDA git_branch: RELEASE_3_20 git_last_commit: c59cf69 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HiLDA_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HiLDA_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HiLDA_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HiLDA_1.20.0.tgz vignettes: vignettes/HiLDA/inst/doc/HiLDA.html vignetteTitles: An introduction to HiLDA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: FALSE Rfiles: vignettes/HiLDA/inst/doc/HiLDA.R importsMe: selectKSigs dependencyCount: 115 Package: hipathia Version: 3.6.0 Depends: R (>= 4.1), igraph (>= 1.0.1), AnnotationHub(>= 2.6.5), MultiAssayExperiment(>= 1.4.9), SummarizedExperiment(>= 1.8.1) Imports: coin, stats, limma, grDevices, utils, graphics, preprocessCore, servr, DelayedArray, matrixStats, methods, S4Vectors, ggplot2, ggpubr, dplyr, tibble, visNetwork, reshape2, MetBrewer Suggests: BiocStyle, knitr, rmarkdown, testthat License: GPL-2 Archs: x64 MD5sum: 73997b57da0ca2a2759adeb5aca55b26 NeedsCompilation: no Title: HiPathia: High-throughput Pathway Analysis Description: Hipathia is a method for the computation of signal transduction along signaling pathways from transcriptomic data. The method is based on an iterative algorithm which is able to compute the signal intensity passing through the nodes of a network by taking into account the level of expression of each gene and the intensity of the signal arriving to it. It also provides a new approach to functional analysis allowing to compute the signal arriving to the functions annotated to each pathway. biocViews: Pathways, GraphAndNetwork, GeneExpression, GeneSignaling, GO Author: Marta R. Hidalgo [aut, cre], José Carbonell-Caballero [ctb], Francisco Salavert [ctb], Alicia Amadoz [ctb], Çankut Cubuk [ctb], Joaquin Dopazo [ctb] Maintainer: Marta R. Hidalgo VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/hipathia git_branch: RELEASE_3_20 git_last_commit: 9021789 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hipathia_3.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hipathia_3.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hipathia_3.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hipathia_3.6.0.tgz vignettes: vignettes/hipathia/inst/doc/hipathia-vignette.pdf vignetteTitles: Hipathia Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/hipathia/inst/doc/hipathia-vignette.R dependencyCount: 161 Package: HIPPO Version: 1.18.0 Depends: R (>= 3.6.0) Imports: ggplot2, graphics, stats, reshape2, gridExtra, Rtsne, umap, dplyr, rlang, magrittr, irlba, Matrix, SingleCellExperiment, ggrepel Suggests: knitr, rmarkdown License: GPL (>=2) Archs: x64 MD5sum: 4c0625a3e2ca57bc7910711f3fa80931 NeedsCompilation: no Title: Heterogeneity-Induced Pre-Processing tOol Description: For scRNA-seq data, it selects features and clusters the cells simultaneously for single-cell UMI data. It has a novel feature selection method using the zero inflation instead of gene variance, and computationally faster than other existing methods since it only relies on PCA+Kmeans rather than graph-clustering or consensus clustering. biocViews: Sequencing, SingleCell, GeneExpression, DifferentialExpression, Clustering Author: Tae Kim [aut, cre], Mengjie Chen [aut] Maintainer: Tae Kim URL: https://github.com/tk382/HIPPO VignetteBuilder: knitr BugReports: https://github.com/tk382/HIPPO/issues git_url: https://git.bioconductor.org/packages/HIPPO git_branch: RELEASE_3_20 git_last_commit: 126e595 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HIPPO_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HIPPO_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HIPPO_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HIPPO_1.18.0.tgz vignettes: vignettes/HIPPO/inst/doc/example.html vignetteTitles: Example analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HIPPO/inst/doc/example.R dependencyCount: 84 Package: hiReadsProcessor Version: 1.42.0 Depends: R (>= 3.5.0), Biostrings, pwalign, GenomicAlignments, BiocParallel, hiAnnotator Imports: sonicLength, dplyr, BiocGenerics, GenomicRanges, readxl, methods Suggests: knitr, testthat, markdown License: GPL-3 MD5sum: 209c5291932b6ef2978cb534f008d458 NeedsCompilation: no Title: Functions to process LM-PCR reads from 454/Illumina data Description: hiReadsProcessor contains set of functions which allow users to process LM-PCR products sequenced using any platform. Given an excel/txt file containing parameters for demultiplexing and sample metadata, the functions automate trimming of adaptors and identification of the genomic product. Genomic products are further processed for QC and abundance quantification. biocViews: Sequencing, Preprocessing Author: Nirav V Malani Maintainer: Nirav V Malani SystemRequirements: BLAT, UCSC hg18 in 2bit format for BLAT VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/hiReadsProcessor git_branch: RELEASE_3_20 git_last_commit: 2f341e3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hiReadsProcessor_1.42.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hiReadsProcessor_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hiReadsProcessor_1.42.0.tgz vignettes: vignettes/hiReadsProcessor/inst/doc/Tutorial.html vignetteTitles: Using hiReadsProcessor hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/hiReadsProcessor/inst/doc/Tutorial.R dependencyCount: 99 Package: HIREewas Version: 1.24.0 Depends: R (>= 3.5.0) Imports: quadprog, gplots, grDevices, stats Suggests: BiocStyle, knitr, BiocGenerics License: GPL (>= 2) Archs: x64 MD5sum: d3dbaa6596c88295115e17190d76ca06 NeedsCompilation: yes Title: Detection of cell-type-specific risk-CpG sites in epigenome-wide association studies Description: In epigenome-wide association studies, the measured signals for each sample are a mixture of methylation profiles from different cell types. The current approaches to the association detection only claim whether a cytosine-phosphate-guanine (CpG) site is associated with the phenotype or not, but they cannot determine the cell type in which the risk-CpG site is affected by the phenotype. We propose a solid statistical method, HIgh REsolution (HIRE), which not only substantially improves the power of association detection at the aggregated level as compared to the existing methods but also enables the detection of risk-CpG sites for individual cell types. The "HIREewas" R package is to implement HIRE model in R. biocViews: DNAMethylation, DifferentialMethylation, FeatureExtraction Author: Xiangyu Luo , Can Yang , Yingying Wei Maintainer: Xiangyu Luo VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/HIREewas git_branch: RELEASE_3_20 git_last_commit: 95d5a94 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HIREewas_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HIREewas_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HIREewas_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HIREewas_1.24.0.tgz vignettes: vignettes/HIREewas/inst/doc/HIREewas.pdf vignetteTitles: HIREewas hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HIREewas/inst/doc/HIREewas.R dependencyCount: 10 Package: HiTC Version: 1.50.0 Depends: R (>= 2.15.0), methods, IRanges, GenomicRanges Imports: Biostrings, graphics, grDevices, rtracklayer, RColorBrewer, Matrix, parallel, GenomeInfoDb Suggests: BiocStyle, HiCDataHumanIMR90, BSgenome.Hsapiens.UCSC.hg18 License: Artistic-2.0 MD5sum: ca7c15fd99bd6921a1317abd8591a363 NeedsCompilation: no Title: High Throughput Chromosome Conformation Capture analysis Description: The HiTC package was developed to explore high-throughput 'C' data such as 5C or Hi-C. Dedicated R classes as well as standard methods for quality controls, normalization, visualization, and further analysis are also provided. biocViews: Sequencing, HighThroughputSequencing, HiC Author: Nicolas Servant Maintainer: Nicolas Servant git_url: https://git.bioconductor.org/packages/HiTC git_branch: RELEASE_3_20 git_last_commit: ae10a0b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HiTC_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HiTC_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HiTC_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HiTC_1.50.0.tgz vignettes: vignettes/HiTC/inst/doc/HiC_analysis.pdf, vignettes/HiTC/inst/doc/HiTC.pdf vignetteTitles: Hi-C data analysis using HiTC, Introduction to HiTC package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HiTC/inst/doc/HiC_analysis.R, vignettes/HiTC/inst/doc/HiTC.R suggestsMe: HiCDCPlus, HiCDataHumanIMR90, adjclust dependencyCount: 59 Package: hmdbQuery Version: 1.26.0 Depends: R (>= 3.5), XML Imports: S4Vectors, methods, utils Suggests: knitr, annotate, gwascat, testthat, rmarkdown License: Artistic-2.0 MD5sum: e26ff837a92d941a46413c8028b228d9 NeedsCompilation: no Title: utilities for exploration of human metabolome database Description: Define utilities for exploration of human metabolome database, including functions to retrieve specific metabolite entries and data snapshots with pairwise associations (metabolite-gene,-protein,-disease). biocViews: Metabolomics, Infrastructure Author: Vince Carey Maintainer: VJ Carey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/hmdbQuery git_branch: RELEASE_3_20 git_last_commit: 6b23dc7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hmdbQuery_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hmdbQuery_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hmdbQuery_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hmdbQuery_1.26.0.tgz vignettes: vignettes/hmdbQuery/inst/doc/hmdbQuery.html vignetteTitles: hmdbQuery: working with Human Metabolome Database (hmdb.ca) hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/hmdbQuery/inst/doc/hmdbQuery.R dependencyCount: 8 Package: HMMcopy Version: 1.48.0 Depends: R (>= 2.10.0), data.table (>= 1.11.8) License: GPL-3 Archs: x64 MD5sum: b0b3054c45fe88b26718969395126799 NeedsCompilation: yes Title: Copy number prediction with correction for GC and mappability bias for HTS data Description: Corrects GC and mappability biases for readcounts (i.e. coverage) in non-overlapping windows of fixed length for single whole genome samples, yielding a rough estimate of copy number for furthur analysis. Designed for rapid correction of high coverage whole genome tumour and normal samples. biocViews: Sequencing, Preprocessing, Visualization, CopyNumberVariation, Microarray Author: Daniel Lai, Gavin Ha, Sohrab Shah Maintainer: Daniel Lai git_url: https://git.bioconductor.org/packages/HMMcopy git_branch: RELEASE_3_20 git_last_commit: fde7ccb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HMMcopy_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HMMcopy_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HMMcopy_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HMMcopy_1.48.0.tgz vignettes: vignettes/HMMcopy/inst/doc/HMMcopy.pdf vignetteTitles: HMMcopy hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HMMcopy/inst/doc/HMMcopy.R importsMe: qsea dependencyCount: 2 Package: HoloFoodR Version: 1.0.0 Depends: R(>= 4.4.0), TreeSummarizedExperiment, MultiAssayExperiment Imports: dplyr, httr2, jsonlite, S4Vectors, stats, utils Suggests: testthat, knitr, rmarkdown, BiocStyle License: Artistic-2.0 | file LICENSE MD5sum: c8dd93af0578c15fd5a7df1b5c8a997f NeedsCompilation: no Title: R interface to EBI HoloFood resource Description: Utility package to facilitate integration and analysis of EBI HoloFood data in R. This package streamlines access to the resource, allowing for direct loading of data into formats optimized for downstream analytics. biocViews: Software, Infrastructure, DataImport Author: Tuomas Borman [aut, cre] (), Leo Lahti [aut] () Maintainer: Tuomas Borman URL: https://github.com/EBI-Metagenomics/HoloFoodR VignetteBuilder: knitr BugReports: https://github.com/EBI-Metagenomics/HoloFoodR/issues git_url: https://git.bioconductor.org/packages/HoloFoodR git_branch: RELEASE_3_20 git_last_commit: e1fab0f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HoloFoodR_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HoloFoodR_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HoloFoodR_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HoloFoodR_1.0.0.tgz vignettes: vignettes/HoloFoodR/inst/doc/HoloFoodR.html vignetteTitles: HoloFoodR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/HoloFoodR/inst/doc/HoloFoodR.R dependencyCount: 81 Package: hoodscanR Version: 1.4.0 Depends: R (>= 4.3) Imports: knitr, rmarkdown, SpatialExperiment, SummarizedExperiment, circlize, ComplexHeatmap, scico, rlang, utils, ggplot2, grid, methods, stats, RANN, Rcpp (>= 1.0.9) LinkingTo: Rcpp Suggests: testthat (>= 3.0.0), BiocStyle License: GPL-3 + file LICENSE MD5sum: c61ed5273654b20c204142213c309391 NeedsCompilation: yes Title: Spatial cellular neighbourhood scanning in R Description: hoodscanR is an user-friendly R package providing functions to assist cellular neighborhood analysis of any spatial transcriptomics data with single-cell resolution. All functions in the package are built based on the SpatialExperiment object, allowing integration into various spatial transcriptomics-related packages from Bioconductor. The package can result in cell-level neighborhood annotation output, along with funtions to perform neighborhood colocalization analysis and neighborhood-based cell clustering. biocViews: Spatial, Transcriptomics, SingleCell, Clustering Author: Ning Liu [aut, cre] (), Jarryd Martin [aut] Maintainer: Ning Liu URL: https://github.com/DavisLaboratory/hoodscanR, https://davislaboratory.github.io/hoodscanR/ VignetteBuilder: knitr BugReports: https://github.com/DavisLaboratory/hoodscanR/issues git_url: https://git.bioconductor.org/packages/hoodscanR git_branch: RELEASE_3_20 git_last_commit: e0a17ea git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hoodscanR_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hoodscanR_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hoodscanR_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hoodscanR_1.4.0.tgz vignettes: vignettes/hoodscanR/inst/doc/Quick_start.html vignetteTitles: hoodscanR_introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/hoodscanR/inst/doc/Quick_start.R dependencyCount: 118 Package: hopach Version: 2.66.0 Depends: R (>= 2.11.0), cluster, Biobase, methods Imports: graphics, grDevices, stats, utils, BiocGenerics License: GPL (>= 2) Archs: x64 MD5sum: 2307d00e135d616ac702514600985980 NeedsCompilation: yes Title: Hierarchical Ordered Partitioning and Collapsing Hybrid (HOPACH) Description: The HOPACH clustering algorithm builds a hierarchical tree of clusters by recursively partitioning a data set, while ordering and possibly collapsing clusters at each level. The algorithm uses the Mean/Median Split Silhouette (MSS) criteria to identify the level of the tree with maximally homogeneous clusters. It also runs the tree down to produce a final ordered list of the elements. The non-parametric bootstrap allows one to estimate the probability that each element belongs to each cluster (fuzzy clustering). biocViews: Clustering Author: Katherine S. Pollard, with Mark J. van der Laan and Greg Wall Maintainer: Katherine S. Pollard URL: http://www.stat.berkeley.edu/~laan/, http://docpollard.org/ git_url: https://git.bioconductor.org/packages/hopach git_branch: RELEASE_3_20 git_last_commit: 54b6756 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hopach_2.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hopach_2.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hopach_2.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hopach_2.66.0.tgz vignettes: vignettes/hopach/inst/doc/hopach.pdf vignetteTitles: hopach hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/hopach/inst/doc/hopach.R importsMe: phenoTest, scClassify, treekoR suggestsMe: MicrobiotaProcess, seqArchR dependencyCount: 8 Package: HPAanalyze Version: 1.24.0 Depends: R (>= 3.5.0) Imports: dplyr, openxlsx, ggplot2, tibble, xml2, stats, utils, gridExtra Suggests: knitr, rmarkdown, markdown, devtools, BiocStyle License: GPL-3 + file LICENSE MD5sum: f1857dcb95235213758524c18cb642b7 NeedsCompilation: no Title: Retrieve and analyze data from the Human Protein Atlas Description: Provide functions for retrieving, exploratory analyzing and visualizing the Human Protein Atlas data. biocViews: Proteomics, CellBiology, Visualization, Software Author: Anh Nhat Tran [aut, cre] Maintainer: Anh Nhat Tran URL: https://github.com/anhtr/HPAanalyze VignetteBuilder: knitr BugReports: https://github.com/anhtr/HPAanalyze/issues git_url: https://git.bioconductor.org/packages/HPAanalyze git_branch: RELEASE_3_20 git_last_commit: 6f95d18 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HPAanalyze_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HPAanalyze_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HPAanalyze_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HPAanalyze_1.24.0.tgz vignettes: vignettes/HPAanalyze/inst/doc/a_HPAanalyze_quick_start.html, vignettes/HPAanalyze/inst/doc/b_HPAanalyze_indepth.html, vignettes/HPAanalyze/inst/doc/c_HPAanalyze_case_query.html, vignettes/HPAanalyze/inst/doc/d_HPAanalyze_case_offline_xml.html, vignettes/HPAanalyze/inst/doc/e_HPAanalyze_case_json.html, vignettes/HPAanalyze/inst/doc/f_HPAanalyze_case_images.html, vignettes/HPAanalyze/inst/doc/z_HPAanalyze_paper_figures.html vignetteTitles: "1. Quick-start guide: Acquire and visualize the Human Protein Atlas (HPA) data in one function with HPAanalyze", "2. In-depth: Working with Human Protein Atlas (HPA) data in R with HPAanalyze", "3. Tutorial: Combine HPAanalyze with your Human Protein Atlas (HPA) queries", "4. Tutorial: Working with Human Protein Atlas (HPA) xml files offline", "5. Tutorial: Export Human Protein Atlas (HPA) data as JSON", "6. Tutorial: Download histology images from the Human Protein Atlas", "99. Code for figures from HPAanalyze paper" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/HPAanalyze/inst/doc/a_HPAanalyze_quick_start.R, vignettes/HPAanalyze/inst/doc/b_HPAanalyze_indepth.R, vignettes/HPAanalyze/inst/doc/c_HPAanalyze_case_query.R, vignettes/HPAanalyze/inst/doc/d_HPAanalyze_case_offline_xml.R, vignettes/HPAanalyze/inst/doc/e_HPAanalyze_case_json.R, vignettes/HPAanalyze/inst/doc/f_HPAanalyze_case_images.R, vignettes/HPAanalyze/inst/doc/z_HPAanalyze_paper_figures.R dependencyCount: 45 Package: hpar Version: 1.48.0 Depends: R (>= 3.5.0) Imports: utils, ExperimentHub Suggests: org.Hs.eg.db, GO.db, AnnotationDbi, knitr, BiocStyle, testthat, rmarkdown, dplyr, DT License: Artistic-2.0 Archs: x64 MD5sum: 6677e6756e4f9ba4131f8bf1e7dfbf73 NeedsCompilation: no Title: Human Protein Atlas in R Description: The hpar package provides a simple R interface to and data from the Human Protein Atlas project. biocViews: Proteomics, CellBiology, DataImport, FunctionalGenomics, SystemsBiology, ExperimentHubSoftware Author: Laurent Gatto [cre, aut] (), Manon Martin [aut] Maintainer: Laurent Gatto VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/hpar git_branch: RELEASE_3_20 git_last_commit: db7ea4a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hpar_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hpar_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hpar_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hpar_1.48.0.tgz vignettes: vignettes/hpar/inst/doc/hpar.html vignetteTitles: Human Protein Atlas in R hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/hpar/inst/doc/hpar.R importsMe: MetaboSignal suggestsMe: pRoloc, RforProteomics dependencyCount: 67 Package: HPiP Version: 1.12.0 Depends: R (>= 4.1) Imports: dplyr (>= 1.0.6), httr (>= 1.4.2), readr, tidyr, tibble, utils, stringr, magrittr, caret, corrplot, ggplot2, pROC, PRROC, igraph, graphics, stats, purrr, grDevices, protr, MCL Suggests: rmarkdown, colorspace, e1071, kernlab, ranger, SummarizedExperiment, Biostrings, randomForest, gprofiler2, gridExtra, ggthemes, BiocStyle, BiocGenerics, RUnit, tools, knitr License: MIT + file LICENSE Archs: x64 MD5sum: 2704b380252bc6db2d60f9354a2e7f47 NeedsCompilation: no Title: Host-Pathogen Interaction Prediction Description: HPiP (Host-Pathogen Interaction Prediction) uses an ensemble learning algorithm for prediction of host-pathogen protein-protein interactions (HP-PPIs) using structural and physicochemical descriptors computed from amino acid-composition of host and pathogen proteins.The proposed package can effectively address data shortages and data unavailability for HP-PPI network reconstructions. Moreover, establishing computational frameworks in that regard will reveal mechanistic insights into infectious diseases and suggest potential HP-PPI targets, thus narrowing down the range of possible candidates for subsequent wet-lab experimental validations. biocViews: Proteomics, SystemsBiology, NetworkInference, StructuralPrediction, GenePrediction, Network Author: Matineh Rahmatbakhsh [aut, trl, cre], Mohan Babu [led] Maintainer: Matineh Rahmatbakhsh URL: https://github.com/mrbakhsh/HPiP VignetteBuilder: knitr BugReports: https://github.com/mrbakhsh/HPiP/issues git_url: https://git.bioconductor.org/packages/HPiP git_branch: RELEASE_3_20 git_last_commit: ce9e305 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HPiP_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HPiP_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HPiP_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HPiP_1.12.0.tgz vignettes: vignettes/HPiP/inst/doc/HPiP_tutorial.html vignetteTitles: Introduction to HPiP hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/HPiP/inst/doc/HPiP_tutorial.R dependencyCount: 107 Package: HTSFilter Version: 1.46.0 Depends: R (>= 4.0.0) Imports: edgeR, DESeq2, BiocParallel, Biobase, utils, stats, grDevices, graphics, methods Suggests: EDASeq, testthat, knitr, rmarkdown, BiocStyle License: Artistic-2.0 MD5sum: 54a2338151f8950f9557785c3a02fc98 NeedsCompilation: no Title: Filter replicated high-throughput transcriptome sequencing data Description: This package implements a filtering procedure for replicated transcriptome sequencing data based on a global Jaccard similarity index in order to identify genes with low, constant levels of expression across one or more experimental conditions. biocViews: Sequencing, RNASeq, Preprocessing, DifferentialExpression, GeneExpression, Normalization, ImmunoOncology Author: Andrea Rau [cre, aut] (), Melina Gallopin [ctb], Gilles Celeux [ctb], Florence Jaffrézic [ctb] Maintainer: Andrea Rau VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/HTSFilter git_branch: RELEASE_3_20 git_last_commit: 80979c3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HTSFilter_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HTSFilter_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HTSFilter_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HTSFilter_1.46.0.tgz vignettes: vignettes/HTSFilter/inst/doc/HTSFilter.html vignetteTitles: HTSFilter hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HTSFilter/inst/doc/HTSFilter.R importsMe: coseq suggestsMe: HTSCluster dependencyCount: 79 Package: HuBMAPR Version: 1.0.4 Depends: R (>= 4.4.0) Imports: httr2, dplyr, tidyr, tibble, rjsoncons, rlang, utils, stringr, whisker, purrr Suggests: testthat (>= 3.0.0), knitr, ggplot2, rmarkdown, BiocStyle License: Artistic-2.0 MD5sum: ec42b183c78008931333369a51f6e778 NeedsCompilation: no Title: Interface to 'HuBMAP' Description: 'HuBMAP' provides an open, global bio-molecular atlas of the human body at the cellular level. The `datasets()`, `samples()`, `donors()`, `publications()`, and `collections()` functions retrieves the information for each of these entity types. `*_details()` are available for individual entries of each entity type. `*_derived()` are available for retrieving derived datasets or samples for individual entries of each entity type. Data files can be accessed using `files_globus_url()`. biocViews: Software, SingleCell, DataImport, ThirdPartyClient, Spatial, Infrastructure Author: Christine Hou [aut, cre] (), Martin Morgan [aut] (), Federico Marini [aut] () Maintainer: Christine Hou URL: https://christinehou11.github.io/HuBMAPR/, https://github.com/christinehou11/HuBMAPR VignetteBuilder: knitr BugReports: https://github.com/christinehou11/HuBMAPR/issues git_url: https://git.bioconductor.org/packages/HuBMAPR git_branch: RELEASE_3_20 git_last_commit: 80d9c43 git_last_commit_date: 2024-11-21 Date/Publication: 2024-11-25 source.ver: src/contrib/HuBMAPR_1.0.4.tar.gz win.binary.ver: bin/windows/contrib/4.4/HuBMAPR_1.0.4.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HuBMAPR_1.0.4.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HuBMAPR_1.0.4.tgz vignettes: vignettes/HuBMAPR/inst/doc/hubmapr_vignettes.html vignetteTitles: Accessing Human Cell Atlas Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HuBMAPR/inst/doc/hubmapr_vignettes.R dependencyCount: 35 Package: HubPub Version: 1.14.0 Imports: available, usethis, biocthis, dplyr, aws.s3, fs, BiocManager, utils Suggests: AnnotationHubData, ExperimentHubData, testthat, knitr, rmarkdown, BiocStyle, License: Artistic-2.0 MD5sum: 3a9913ba3d2dffa26ecb52faa33ee89c NeedsCompilation: no Title: Utilities to create and use Bioconductor Hubs Description: HubPub provides users with functionality to help with the Bioconductor Hub structures. The package provides the ability to create a skeleton of a Hub style package that the user can then populate with the necessary information. There are also functions to help add resources to the Hub package metadata files as well as publish data to the Bioconductor S3 bucket. biocViews: DataImport, Infrastructure, Software, ThirdPartyClient Author: Kayla Interdonato [aut, cre], Martin Morgan [aut] Maintainer: Kayla Interdonato VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/HubPub/issues git_url: https://git.bioconductor.org/packages/HubPub git_branch: RELEASE_3_20 git_last_commit: 6596b87 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HubPub_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HubPub_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HubPub_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HubPub_1.14.0.tgz vignettes: vignettes/HubPub/inst/doc/CreateAHubPackage.html, vignettes/HubPub/inst/doc/HubPub.html vignetteTitles: Creating A Hub Package: ExperimentHub or AnnotationHub, HubPub: Help with publication of Hub packages hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HubPub/inst/doc/CreateAHubPackage.R, vignettes/HubPub/inst/doc/HubPub.R suggestsMe: AnnotationHub, AnnotationHubData, ExperimentHub, ExperimentHubData dependencyCount: 77 Package: hummingbird Version: 1.16.0 Depends: R (>= 4.0) Imports: Rcpp, graphics, GenomicRanges, SummarizedExperiment, IRanges LinkingTo: Rcpp Suggests: knitr, rmarkdown, BiocStyle License: GPL (>=2) MD5sum: bf02b3569b0ee7a436ad13d0489dde96 NeedsCompilation: yes Title: Bayesian Hidden Markov Model for the detection of differentially methylated regions Description: A package for detecting differential methylation. It exploits a Bayesian hidden Markov model that incorporates location dependence among genomic loci, unlike most existing methods that assume independence among observations. Bayesian priors are applied to permit information sharing across an entire chromosome for improved power of detection. The direct output of our software package is the best sequence of methylation states, eliminating the use of a subjective, and most of the time an arbitrary, threshold of p-value for determining significance. At last, our methodology does not require replication in either or both of the two comparison groups. biocViews: HiddenMarkovModel, Bayesian, DNAMethylation, BiomedicalInformatics, Sequencing, GeneExpression, DifferentialExpression, DifferentialMethylation Author: Eleni Adam [aut, cre], Tieming Ji [aut], Desh Ranjan [aut] Maintainer: Eleni Adam VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/hummingbird git_branch: RELEASE_3_20 git_last_commit: 34e9765 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hummingbird_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hummingbird_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hummingbird_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hummingbird_1.16.0.tgz vignettes: vignettes/hummingbird/inst/doc/hummingbird.html vignetteTitles: hummingbird hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/hummingbird/inst/doc/hummingbird.R dependencyCount: 37 Package: HybridExpress Version: 1.2.0 Depends: R (>= 4.3.0) Imports: ggplot2, patchwork, rlang, DESeq2, SummarizedExperiment, stats, methods, RColorBrewer, ComplexHeatmap, grDevices, BiocParallel Suggests: BiocStyle, knitr, sessioninfo, testthat (>= 3.0.0) License: GPL-3 MD5sum: 358b7186b8e1d4ba19006e34bfa81a2e NeedsCompilation: no Title: Comparative analysis of RNA-seq data for hybrids and their progenitors Description: HybridExpress can be used to perform comparative transcriptomics analysis of hybrids (or allopolyploids) relative to their progenitor species. The package features functions to perform exploratory analyses of sample grouping, identify differentially expressed genes in hybrids relative to their progenitors, classify genes in expression categories (N = 12) and classes (N = 5), and perform functional analyses. We also provide users with graphical functions for the seamless creation of publication-ready figures that are commonly used in the literature. biocViews: Software, FunctionalGenomics, GeneExpression, Transcriptomics, RNASeq, Classification, DifferentialExpression Author: Fabricio Almeida-Silva [aut, cre] (), Lucas Prost-Boxoen [aut] (), Yves Van de Peer [aut] () Maintainer: Fabricio Almeida-Silva URL: https://github.com/almeidasilvaf/HybridExpress VignetteBuilder: knitr BugReports: https://support.bioconductor.org/tag/HybridExpress git_url: https://git.bioconductor.org/packages/HybridExpress git_branch: RELEASE_3_20 git_last_commit: 311fdc5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HybridExpress_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HybridExpress_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HybridExpress_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HybridExpress_1.2.0.tgz vignettes: vignettes/HybridExpress/inst/doc/HybridExpress.html vignetteTitles: Comparative transcriptomic analysis of hybrids and their progenitors hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HybridExpress/inst/doc/HybridExpress.R dependencyCount: 90 Package: HybridMTest Version: 1.50.0 Depends: R (>= 2.9.0), Biobase, fdrtool, MASS, survival Imports: stats License: GPL Version 2 or later MD5sum: 489ba94cda0e85739b28525b73ef2520 NeedsCompilation: no Title: Hybrid Multiple Testing Description: Performs hybrid multiple testing that incorporates method selection and assumption evaluations into the analysis using empirical Bayes probability (EBP) estimates obtained by Grenander density estimation. For instance, for 3-group comparison analysis, Hybrid Multiple testing considers EBPs as weighted EBPs between F-test and H-test with EBPs from Shapiro Wilk test of normality as weigth. Instead of just using EBPs from F-test only or using H-test only, this methodology combines both types of EBPs through EBPs from Shapiro Wilk test of normality. This methodology uses then the law of total EBPs. biocViews: GeneExpression, Genetics, Microarray Author: Stan Pounds , Demba Fofana Maintainer: Demba Fofana git_url: https://git.bioconductor.org/packages/HybridMTest git_branch: RELEASE_3_20 git_last_commit: b166b81 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/HybridMTest_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/HybridMTest_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/HybridMTest_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/HybridMTest_1.50.0.tgz vignettes: vignettes/HybridMTest/inst/doc/HybridMTest.pdf vignetteTitles: Hybrid Multiple Testing hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/HybridMTest/inst/doc/HybridMTest.R importsMe: APAlyzer dependencyCount: 14 Package: hypeR Version: 2.4.0 Depends: R (>= 3.6.0) Imports: ggplot2, ggforce, R6, magrittr, dplyr, purrr, stats, stringr, scales, rlang, httr, openxlsx, htmltools, reshape2, reactable, msigdbr, kableExtra, rmarkdown, igraph, visNetwork, shiny, BiocStyle Suggests: tidyverse, devtools, testthat, knitr License: GPL-3 + file LICENSE Archs: x64 MD5sum: 1f821fa3ca250670831f6b5cab2a07ca NeedsCompilation: no Title: An R Package For Geneset Enrichment Workflows Description: An R Package for Geneset Enrichment Workflows. biocViews: GeneSetEnrichment, Annotation, Pathways Author: Anthony Federico [aut, cre], Andrew Chen [aut], Stefano Monti [aut] Maintainer: Anthony Federico URL: https://github.com/montilab/hypeR VignetteBuilder: knitr BugReports: https://github.com/montilab/hypeR/issues git_url: https://git.bioconductor.org/packages/hypeR git_branch: RELEASE_3_20 git_last_commit: bb550b1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hypeR_2.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hypeR_2.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hypeR_2.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hypeR_2.4.0.tgz vignettes: vignettes/hypeR/inst/doc/hypeR.html vignetteTitles: hypeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/hypeR/inst/doc/hypeR.R dependencyCount: 101 Package: hyperdraw Version: 1.58.0 Depends: R (>= 2.9.0) Imports: methods, grid, graph, hypergraph, Rgraphviz, stats4 License: GPL (>= 2) MD5sum: abab7727a13aa50695376ac33b4ae504 NeedsCompilation: no Title: Visualizing Hypergaphs Description: Functions for visualizing hypergraphs. biocViews: Visualization, GraphAndNetwork Author: Paul Murrell Maintainer: Paul Murrell SystemRequirements: graphviz git_url: https://git.bioconductor.org/packages/hyperdraw git_branch: RELEASE_3_20 git_last_commit: 327d9d0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hyperdraw_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hyperdraw_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hyperdraw_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hyperdraw_1.58.0.tgz vignettes: vignettes/hyperdraw/inst/doc/hyperdraw.pdf vignetteTitles: Hyperdraw hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/hyperdraw/inst/doc/hyperdraw.R dependsOnMe: BiGGR dependencyCount: 11 Package: hypergraph Version: 1.78.0 Depends: R (>= 2.1.0), methods, utils, graph Suggests: BiocGenerics, RUnit License: Artistic-2.0 MD5sum: 664ea291a51db1bed4d8433759c6a43a NeedsCompilation: no Title: A package providing hypergraph data structures Description: A package that implements some simple capabilities for representing and manipulating hypergraphs. biocViews: GraphAndNetwork Author: Seth Falcon, Robert Gentleman Maintainer: Bioconductor Package Maintainer git_url: https://git.bioconductor.org/packages/hypergraph git_branch: RELEASE_3_20 git_last_commit: b4abc3c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/hypergraph_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/hypergraph_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/hypergraph_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/hypergraph_1.78.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: altcdfenvs importsMe: BiGGR, hyperdraw dependencyCount: 7 Package: iASeq Version: 1.50.0 Depends: R (>= 2.14.1) Imports: graphics, grDevices License: GPL-2 MD5sum: d34b9d842ac1e44587242916ab97db12 NeedsCompilation: no Title: iASeq: integrating multiple sequencing datasets for detecting allele-specific events Description: It fits correlation motif model to multiple RNAseq or ChIPseq studies to improve detection of allele-specific events and describe correlation patterns across studies. biocViews: ImmunoOncology, SNP, RNASeq, ChIPSeq Author: Yingying Wei, Hongkai Ji Maintainer: Yingying Wei git_url: https://git.bioconductor.org/packages/iASeq git_branch: RELEASE_3_20 git_last_commit: 4551289 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iASeq_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iASeq_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iASeq_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iASeq_1.50.0.tgz vignettes: vignettes/iASeq/inst/doc/iASeqVignette.pdf vignetteTitles: iASeq Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iASeq/inst/doc/iASeqVignette.R dependencyCount: 2 Package: iasva Version: 1.24.0 Depends: R (>= 3.5), Imports: irlba, stats, cluster, graphics, SummarizedExperiment, BiocParallel Suggests: knitr, testthat, rmarkdown, sva, Rtsne, pheatmap, corrplot, DescTools, RColorBrewer License: GPL-2 MD5sum: da507e8b7a5bcc1915ecfd09fd77161b NeedsCompilation: no Title: Iteratively Adjusted Surrogate Variable Analysis Description: Iteratively Adjusted Surrogate Variable Analysis (IA-SVA) is a statistical framework to uncover hidden sources of variation even when these sources are correlated. IA-SVA provides a flexible methodology to i) identify a hidden factor for unwanted heterogeneity while adjusting for all known factors; ii) test the significance of the putative hidden factor for explaining the unmodeled variation in the data; and iii), if significant, use the estimated factor as an additional known factor in the next iteration to uncover further hidden factors. biocViews: Preprocessing, QualityControl, BatchEffect, RNASeq, Software, StatisticalMethod, FeatureExtraction, ImmunoOncology Author: Donghyung Lee [aut, cre], Anthony Cheng [aut], Nathan Lawlor [aut], Duygu Ucar [aut] Maintainer: Donghyung Lee , Anthony Cheng VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/iasva git_branch: RELEASE_3_20 git_last_commit: 1698721 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iasva_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iasva_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iasva_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iasva_1.24.0.tgz vignettes: vignettes/iasva/inst/doc/detecting_hidden_heterogeneity_iasvaV0.95.html vignetteTitles: "Detecting hidden heterogeneity in single cell RNA-Seq data" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iasva/inst/doc/detecting_hidden_heterogeneity_iasvaV0.95.R dependencyCount: 48 Package: iBBiG Version: 1.50.0 Depends: biclust Imports: stats4,xtable,ade4 Suggests: methods License: Artistic-2.0 MD5sum: fabeab25598836dca5bfba9401c1aa32 NeedsCompilation: yes Title: Iterative Binary Biclustering of Genesets Description: iBBiG is a bi-clustering algorithm which is optimizes for binary data analysis. We apply it to meta-gene set analysis of large numbers of gene expression datasets. The iterative algorithm extracts groups of phenotypes from multiple studies that are associated with similar gene sets. iBBiG does not require prior knowledge of the number or scale of clusters and allows discovery of clusters with diverse sizes biocViews: Clustering, Annotation, GeneSetEnrichment Author: Daniel Gusenleitner, Aedin Culhane Maintainer: Aedin Culhane URL: http://bcb.dfci.harvard.edu/~aedin/publications/ git_url: https://git.bioconductor.org/packages/iBBiG git_branch: RELEASE_3_20 git_last_commit: 3ed13a6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iBBiG_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iBBiG_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iBBiG_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iBBiG_1.50.0.tgz vignettes: vignettes/iBBiG/inst/doc/tutorial.pdf vignetteTitles: iBBiG User Manual hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iBBiG/inst/doc/tutorial.R importsMe: miRSM dependencyCount: 57 Package: ibh Version: 1.54.0 Depends: simpIntLists Suggests: yeastCC, stats License: GPL (>= 2) MD5sum: c028c9f17de8180f8724f8e3b252911d NeedsCompilation: no Title: Interaction Based Homogeneity for Evaluating Gene Lists Description: This package contains methods for calculating Interaction Based Homogeneity to evaluate fitness of gene lists to an interaction network which is useful for evaluation of clustering results and gene list analysis. BioGRID interactions are used in the calculation. The user can also provide their own interactions. biocViews: QualityControl, DataImport, GraphAndNetwork, NetworkEnrichment Author: Kircicegi Korkmaz, Volkan Atalay, Rengul Cetin Atalay. Maintainer: Kircicegi Korkmaz git_url: https://git.bioconductor.org/packages/ibh git_branch: RELEASE_3_20 git_last_commit: c951d6c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ibh_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ibh_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ibh_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ibh_1.54.0.tgz vignettes: vignettes/ibh/inst/doc/ibh.pdf vignetteTitles: ibh hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ibh/inst/doc/ibh.R dependencyCount: 1 Package: iBMQ Version: 1.46.0 Depends: R(>= 2.15.0),Biobase (>= 2.16.0), ggplot2 (>= 0.9.2) License: Artistic-2.0 MD5sum: 5c74bb448bbe373bb37798c411de7037 NeedsCompilation: yes Title: integrated Bayesian Modeling of eQTL data Description: integrated Bayesian Modeling of eQTL data biocViews: Microarray, Preprocessing, GeneExpression, SNP Author: Marie-Pier Scott-Boyer and Greg Imholte Maintainer: Greg Imholte URL: http://www.rglab.org SystemRequirements: GSL and OpenMP git_url: https://git.bioconductor.org/packages/iBMQ git_branch: RELEASE_3_20 git_last_commit: d338148 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iBMQ_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iBMQ_1.46.0.zip vignettes: vignettes/iBMQ/inst/doc/iBMQ.pdf vignetteTitles: iBMQ: An Integrated Hierarchical Bayesian Model for Multivariate eQTL Mapping hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iBMQ/inst/doc/iBMQ.R dependencyCount: 37 Package: iCARE Version: 1.34.0 Depends: R (>= 3.3.0), plotrix, gtools, Hmisc Suggests: RUnit, BiocGenerics License: GPL-3 + file LICENSE Archs: x64 MD5sum: 9d8145140886876660aeaa921fd14a47 NeedsCompilation: yes Title: Individualized Coherent Absolute Risk Estimation (iCARE) Description: An R package to build, validate and apply absolute risk models biocViews: Software, StatisticalMethod, GenomeWideAssociation Author: Parichoy Pal Choudhury, Paige Maas, William Wheeler, Nilanjan Chatterjee Maintainer: Parichoy Pal Choudhury git_url: https://git.bioconductor.org/packages/iCARE git_branch: RELEASE_3_20 git_last_commit: 9ad6063 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iCARE_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iCARE_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iCARE_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iCARE_1.34.0.tgz vignettes: vignettes/iCARE/inst/doc/vignette_model_validation.pdf, vignettes/iCARE/inst/doc/vignette.pdf vignetteTitles: iCARE Vignette Model Validation, iCARE Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/iCARE/inst/doc/vignette_model_validation.R, vignettes/iCARE/inst/doc/vignette.R dependencyCount: 75 Package: Icens Version: 1.78.0 Depends: survival Imports: graphics License: Artistic-2.0 MD5sum: a9c2a7c2a240d00ef9baa1100daabf5c NeedsCompilation: no Title: NPMLE for Censored and Truncated Data Description: Many functions for computing the NPMLE for censored and truncated data. biocViews: Infrastructure Author: R. Gentleman and Alain Vandal Maintainer: Bioconductor Package Maintainer git_url: https://git.bioconductor.org/packages/Icens git_branch: RELEASE_3_20 git_last_commit: d6022c1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Icens_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Icens_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Icens_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Icens_1.78.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: PROcess, icensBKL, interval importsMe: PROcess, LTRCtrees suggestsMe: ReIns dependencyCount: 10 Package: icetea Version: 1.24.0 Depends: R (>= 4.0) Imports: stats, utils, methods, graphics, grDevices, ggplot2, GenomicFeatures, ShortRead, BiocParallel, Biostrings, S4Vectors, Rsamtools, BiocGenerics, IRanges, GenomicAlignments, GenomicRanges, rtracklayer, SummarizedExperiment, VariantAnnotation, limma, edgeR, csaw, DESeq2, TxDb.Dmelanogaster.UCSC.dm6.ensGene Suggests: knitr, rmarkdown, Rsubread (>= 1.29.0), testthat License: GPL-3 + file LICENSE Archs: x64 MD5sum: ddac69b3713d80d69e4a1966c8e64410 NeedsCompilation: no Title: Integrating Cap Enrichment with Transcript Expression Analysis Description: icetea (Integrating Cap Enrichment with Transcript Expression Analysis) provides functions for end-to-end analysis of multiple 5'-profiling methods such as CAGE, RAMPAGE and MAPCap, beginning from raw reads to detection of transcription start sites using replicates. It also allows performing differential TSS detection between group of samples, therefore, integrating the mRNA cap enrichment information with transcript expression analysis. biocViews: ImmunoOncology, Transcription, GeneExpression, Sequencing, RNASeq, Transcriptomics, DifferentialExpression Author: Vivek Bhardwaj [aut, cre] Maintainer: Vivek Bhardwaj URL: https://github.com/vivekbhr/icetea VignetteBuilder: knitr BugReports: https://github.com/vivekbhr/icetea/issues git_url: https://git.bioconductor.org/packages/icetea git_branch: RELEASE_3_20 git_last_commit: 65dfe81 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/icetea_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/icetea_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/icetea_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/icetea_1.24.0.tgz vignettes: vignettes/icetea/inst/doc/mapcap_analysis.html vignetteTitles: Analysing transcript 5'-profiling data using icetea hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/icetea/inst/doc/mapcap_analysis.R dependencyCount: 117 Package: iCheck Version: 1.36.0 Depends: R (>= 3.2.0), Biobase, lumi, gplots Imports: stats, graphics, preprocessCore, grDevices, randomForest, affy, limma, parallel, GeneSelectMMD, rgl, MASS, lmtest, scatterplot3d, utils License: GPL (>= 2) Archs: x64 MD5sum: bff5b73dc24f3a509cac0c6d18c1fc46 NeedsCompilation: no Title: QC Pipeline and Data Analysis Tools for High-Dimensional Illumina mRNA Expression Data Description: QC pipeline and data analysis tools for high-dimensional Illumina mRNA expression data. biocViews: GeneExpression, DifferentialExpression, Microarray, Preprocessing, DNAMethylation, OneChannel, TwoChannel, QualityControl Author: Weiliang Qiu [aut, cre], Brandon Guo [aut, ctb], Christopher Anderson [aut, ctb], Barbara Klanderman [aut, ctb], Vincent Carey [aut, ctb], Benjamin Raby [aut, ctb] Maintainer: Weiliang Qiu git_url: https://git.bioconductor.org/packages/iCheck git_branch: RELEASE_3_20 git_last_commit: 764040f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iCheck_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iCheck_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iCheck_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iCheck_1.36.0.tgz vignettes: vignettes/iCheck/inst/doc/iCheck.pdf vignetteTitles: iCheck hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iCheck/inst/doc/iCheck.R dependencyCount: 189 Package: iChip Version: 1.60.0 Depends: R (>= 2.10.0) Imports: limma License: GPL (>= 2) MD5sum: e2f8c25bb34a748e937e8d4c85f2d1db NeedsCompilation: yes Title: Bayesian Modeling of ChIP-chip Data Through Hidden Ising Models Description: Hidden Ising models are implemented to identify enriched genomic regions in ChIP-chip data. They can be used to analyze the data from multiple platforms (e.g., Affymetrix, Agilent, and NimbleGen), and the data with single to multiple replicates. biocViews: ChIPchip, OneChannel, AgilentChip, Microarray Author: Qianxing Mo Maintainer: Qianxing Mo git_url: https://git.bioconductor.org/packages/iChip git_branch: RELEASE_3_20 git_last_commit: f418fb8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iChip_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iChip_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iChip_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iChip_1.60.0.tgz vignettes: vignettes/iChip/inst/doc/iChip.pdf vignetteTitles: iChip hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iChip/inst/doc/iChip.R dependencyCount: 7 Package: iClusterPlus Version: 1.42.0 Depends: R (>= 4.1.0), parallel Suggests: RUnit, BiocGenerics License: GPL (>= 2) MD5sum: 65bf4787b2705f9d30c243e2abbb068b NeedsCompilation: yes Title: Integrative clustering of multi-type genomic data Description: Integrative clustering of multiple genomic data using a joint latent variable model. biocViews: Microarray, Clustering Author: Qianxing Mo, Ronglai Shen Maintainer: Qianxing Mo , Ronglai Shen git_url: https://git.bioconductor.org/packages/iClusterPlus git_branch: RELEASE_3_20 git_last_commit: 4070647 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iClusterPlus_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iClusterPlus_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iClusterPlus_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iClusterPlus_1.42.0.tgz vignettes: vignettes/iClusterPlus/inst/doc/iClusterPlus.pdf, vignettes/iClusterPlus/inst/doc/iManual.pdf vignetteTitles: iClusterPlus, iManual.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE suggestsMe: MultiDataSet dependencyCount: 1 Package: iCNV Version: 1.26.0 Depends: R (>= 3.3.1), CODEX Imports: fields, ggplot2, truncnorm, tidyr, data.table, dplyr, grDevices, graphics, stats, utils, rlang Suggests: knitr, rmarkdown, WES.1KG.WUGSC License: GPL-2 MD5sum: 06031b0e2f77cbcb9e48635b698084b8 NeedsCompilation: no Title: Integrated Copy Number Variation detection Description: Integrative copy number variation (CNV) detection from multiple platform and experimental design. biocViews: ImmunoOncology, ExomeSeq, WholeGenome, SNP, CopyNumberVariation, HiddenMarkovModel Author: Zilu Zhou, Nancy Zhang Maintainer: Zilu Zhou VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/iCNV git_branch: RELEASE_3_20 git_last_commit: 2d0023e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iCNV_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iCNV_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iCNV_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iCNV_1.26.0.tgz vignettes: vignettes/iCNV/inst/doc/iCNV-vignette.html vignetteTitles: iCNV Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iCNV/inst/doc/iCNV-vignette.R dependencyCount: 101 Package: iCOBRA Version: 1.34.0 Depends: R (>= 4.4.0) Imports: shiny (>= 0.9.1.9008), shinydashboard, shinyBS, reshape2, ggplot2 (>= 3.4.0), scales, ROCR, dplyr, DT, limma, methods, UpSetR, markdown, utils, rlang Suggests: knitr, rmarkdown, testthat License: GPL (>=2) Archs: x64 MD5sum: 01d6f84334605ccc0d8247572e9c9695 NeedsCompilation: no Title: Comparison and Visualization of Ranking and Assignment Methods Description: This package provides functions for calculation and visualization of performance metrics for evaluation of ranking and binary classification (assignment) methods. Various types of performance plots can be generated programmatically. The package also contains a shiny application for interactive exploration of results. biocViews: Classification, Visualization Author: Charlotte Soneson [aut, cre] () Maintainer: Charlotte Soneson URL: https://github.com/csoneson/iCOBRA VignetteBuilder: knitr BugReports: https://github.com/csoneson/iCOBRA/issues git_url: https://git.bioconductor.org/packages/iCOBRA git_branch: RELEASE_3_20 git_last_commit: a5ff075 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iCOBRA_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iCOBRA_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iCOBRA_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iCOBRA_1.34.0.tgz vignettes: vignettes/iCOBRA/inst/doc/iCOBRA.html vignetteTitles: iCOBRA User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iCOBRA/inst/doc/iCOBRA.R suggestsMe: muscat dependencyCount: 90 Package: ideal Version: 2.0.0 Depends: topGO Imports: DESeq2, SummarizedExperiment, mosdef (>= 1.1.0), GenomicRanges, IRanges, S4Vectors, ggplot2 (>= 2.0.0), heatmaply, plotly, pheatmap, IHW, gplots, UpSetR, goseq, stringr, dplyr, limma, GOstats, GO.db, AnnotationDbi, shiny (>= 0.12.0), shinydashboard, shinyBS, DT, rentrez, rintrojs, rlang, ggrepel, knitr, rmarkdown, shinyAce, BiocParallel, grDevices, graphics, base64enc, methods, utils, stats Suggests: testthat, BiocStyle, markdown, airway, org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg38.knownGene, DEFormats, htmltools, edgeR License: MIT + file LICENSE Archs: x64 MD5sum: cf4dfd814f77ebd496c3de75eb7b7b3f NeedsCompilation: no Title: Interactive Differential Expression AnaLysis Description: This package provides functions for an Interactive Differential Expression AnaLysis of RNA-sequencing datasets, to extract quickly and effectively information downstream the step of differential expression. A Shiny application encapsulates the whole package. Support for reproducibility of the whole analysis is provided by means of a template report which gets automatically compiled and can be stored/shared. biocViews: ImmunoOncology, GeneExpression, DifferentialExpression, RNASeq, Sequencing, Visualization, QualityControl, GUI, GeneSetEnrichment, ReportWriting, ShinyApps Author: Federico Marini [aut, cre] () Maintainer: Federico Marini URL: https://github.com/federicomarini/ideal, https://federicomarini.github.io/ideal/ VignetteBuilder: knitr BugReports: https://github.com/federicomarini/ideal/issues git_url: https://git.bioconductor.org/packages/ideal git_branch: RELEASE_3_20 git_last_commit: cf70c4b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ideal_2.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ideal_2.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ideal_2.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ideal_2.0.0.tgz vignettes: vignettes/ideal/inst/doc/ideal-usersguide.html vignetteTitles: ideal User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ideal/inst/doc/ideal-usersguide.R dependencyCount: 236 Package: IdeoViz Version: 1.42.0 Depends: R (>= 3.5.0), Biobase, IRanges, GenomicRanges, RColorBrewer, rtracklayer, graphics, GenomeInfoDb License: GPL-2 MD5sum: ee20eec11c0b72dcf1edac17b6a1f507 NeedsCompilation: no Title: Plots data (continuous/discrete) along chromosomal ideogram Description: Plots data associated with arbitrary genomic intervals along chromosomal ideogram. biocViews: Visualization,Microarray Author: Shraddha Pai , Jingliang Ren Maintainer: Shraddha Pai git_url: https://git.bioconductor.org/packages/IdeoViz git_branch: RELEASE_3_20 git_last_commit: 4bed8f3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IdeoViz_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IdeoViz_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IdeoViz_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IdeoViz_1.42.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE dependencyCount: 59 Package: idiogram Version: 1.82.0 Depends: R (>= 2.10), methods, Biobase, annotate, plotrix Suggests: hu6800.db, hgu95av2.db, golubEsets License: GPL-2 MD5sum: 12e658f262aa8be1e682a1e1d5ab3dfa NeedsCompilation: no Title: idiogram Description: A package for plotting genomic data by chromosomal location biocViews: Visualization Author: Karl J. Dykema Maintainer: Karl J. Dykema git_url: https://git.bioconductor.org/packages/idiogram git_branch: RELEASE_3_20 git_last_commit: d454316 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/idiogram_1.82.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/idiogram_1.82.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/idiogram_1.82.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/idiogram_1.82.0.tgz vignettes: vignettes/idiogram/inst/doc/idiogram.pdf vignetteTitles: HOWTO: idiogram hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/idiogram/inst/doc/idiogram.R dependencyCount: 49 Package: idpr Version: 1.16.0 Depends: R (>= 4.1.0) Imports: ggplot2 (>= 3.3.0), magrittr (>= 1.5), dplyr (>= 0.8.5), plyr (>= 1.8.6), jsonlite (>= 1.6.1), rlang (>= 0.4.6), Biostrings (>= 2.56.0), methods (>= 4.0.0) Suggests: knitr, rmarkdown, pwalign, msa, ape, testthat, seqinr License: LGPL (>= 3) MD5sum: 737a8df73b7fe876f517a85936d4cb6d NeedsCompilation: no Title: Profiling and Analyzing Intrinsically Disordered Proteins in R Description: ‘idpr’ aims to integrate tools for the computational analysis of intrinsically disordered proteins (IDPs) within R. This package is used to identify known characteristics of IDPs for a sequence of interest with easily reported and dynamic results. Additionally, this package includes tools for IDP-based sequence analysis to be used in conjunction with other R packages. Described in McFadden WM & Yanowitz JL (2022). "idpr: A package for profiling and analyzing Intrinsically Disordered Proteins in R." PloS one, 17(4), e0266929. . biocViews: StructuralPrediction, Proteomics, CellBiology Author: William M. McFadden [cre, aut], Judith L. Yanowitz [aut, fnd], Michael Buszczak [ctb, fnd] Maintainer: William M. McFadden VignetteBuilder: knitr BugReports: https://github.com/wmm27/idpr/issues git_url: https://git.bioconductor.org/packages/idpr git_branch: RELEASE_3_20 git_last_commit: 8cf01dc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/idpr_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/idpr_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/idpr_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/idpr_1.16.0.tgz vignettes: vignettes/idpr/inst/doc/chargeHydropathy-vignette.html, vignettes/idpr/inst/doc/disorderedMatrices-vignette.html, vignettes/idpr/inst/doc/idpr-vignette.html, vignettes/idpr/inst/doc/iupred-vignette.html, vignettes/idpr/inst/doc/sequenceMAP-vignette.html, vignettes/idpr/inst/doc/structuralTendency-vignette.html vignetteTitles: Charge and Hydropathy Vignette, Disordered Matrices Vignette, idpr Package Overview Vignette, IUPred Vignette, Sequence Map Vignette, Structural Tendency Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/idpr/inst/doc/chargeHydropathy-vignette.R, vignettes/idpr/inst/doc/disorderedMatrices-vignette.R, vignettes/idpr/inst/doc/idpr-vignette.R, vignettes/idpr/inst/doc/iupred-vignette.R, vignettes/idpr/inst/doc/sequenceMAP-vignette.R, vignettes/idpr/inst/doc/structuralTendency-vignette.R dependencyCount: 59 Package: idr2d Version: 1.20.0 Depends: R (>= 3.6) Imports: dplyr (>= 0.7.6), futile.logger (>= 1.4.3), GenomeInfoDb (>= 1.14.0), GenomicRanges (>= 1.30), ggplot2 (>= 3.1.1), grDevices, grid, idr (>= 1.2), IRanges (>= 2.18.0), magrittr (>= 1.5), methods, reticulate (>= 1.13), scales (>= 1.0.0), stats, stringr (>= 1.3.1), utils Suggests: DT (>= 0.4), htmltools (>= 0.3.6), knitr (>= 1.20), rmarkdown (>= 1.10), roxygen2 (>= 6.1.0), testthat (>= 2.1.0) License: MIT + file LICENSE MD5sum: 1338e503482c45b1a05bb0dcda720276 NeedsCompilation: no Title: Irreproducible Discovery Rate for Genomic Interactions Data Description: A tool to measure reproducibility between genomic experiments that produce two-dimensional peaks (interactions between peaks), such as ChIA-PET, HiChIP, and HiC. idr2d is an extension of the original idr package, which is intended for (one-dimensional) ChIP-seq peaks. biocViews: DNA3DStructure, GeneRegulation, PeakDetection, Epigenetics, FunctionalGenomics, Classification, HiC Author: Konstantin Krismer [aut, cre, cph] (), David Gifford [ths, cph] () Maintainer: Konstantin Krismer URL: https://idr2d.mit.edu SystemRequirements: Python (>= 3.5.0), hic-straw VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/idr2d git_branch: RELEASE_3_20 git_last_commit: 61ab710 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/idr2d_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/idr2d_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/idr2d_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/idr2d_1.20.0.tgz vignettes: vignettes/idr2d/inst/doc/idr1d.html, vignettes/idr2d/inst/doc/idr2d.html vignetteTitles: Identify reproducible genomic peaks from replicate ChIP-seq experiments, Identify reproducible genomic interactions from replicate ChIA-PET experiments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/idr2d/inst/doc/idr1d.R, vignettes/idr2d/inst/doc/idr2d.R dependencyCount: 70 Package: IFAA Version: 1.8.0 Depends: R (>= 4.2.0), Imports: mathjaxr, doRNG, foreach (>= 1.4.3), Matrix (>= 1.4-0), HDCI (>= 1.0-2), parallel (>= 3.3.0), doParallel (>= 1.0.11), parallelly , glmnet, stats, utils, SummarizedExperiment, stringr, S4Vectors, DescTools, MatrixExtra, methods Suggests: knitr, rmarkdown, RUnit, BiocGenerics, BiocStyle License: GPL-2 MD5sum: 8fb0287945a2dc4a4d6ff969d6e2b1c0 NeedsCompilation: no Title: Robust Inference for Absolute Abundance in Microbiome Analysis Description: This package offers a robust approach to make inference on the association of covariates with the absolute abundance (AA) of microbiome in an ecosystem. It can be also directly applied to relative abundance (RA) data to make inference on AA because the ratio of two RA is equal to the ratio of their AA. This algorithm can estimate and test the associations of interest while adjusting for potential confounders. The estimates of this method have easy interpretation like a typical regression analysis. High-dimensional covariates are handled with regularization and it is implemented by parallel computing. False discovery rate is automatically controlled by this approach. Zeros do not need to be imputed by a positive value for the analysis. The IFAA package also offers the 'MZILN' function for estimating and testing associations of abundance ratios with covariates. biocViews: Software, Technology, Sequencing, Microbiome, Regression Author: Quran Wu [aut], Zhigang Li [aut, cre] Maintainer: Zhigang Li URL: https://pubmed.ncbi.nlm.nih.gov/35241863/, https://pubmed.ncbi.nlm.nih.gov/30923584/, https://github.com/quranwu/IFAA VignetteBuilder: knitr BugReports: https://github.com/quranwu/IFAA/issues git_url: https://git.bioconductor.org/packages/IFAA git_branch: RELEASE_3_20 git_last_commit: cd3a0f1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IFAA_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IFAA_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IFAA_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IFAA_1.8.0.tgz vignettes: vignettes/IFAA/inst/doc/IFAA.pdf vignetteTitles: IFAA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/IFAA/inst/doc/IFAA.R dependencyCount: 102 Package: iGC Version: 1.36.0 Depends: R (>= 3.2.0) Imports: plyr, data.table Suggests: BiocStyle, knitr, rmarkdown Enhances: doMC License: GPL-2 MD5sum: 460d9cb7d0e9f62b5ffde15215adc7b8 NeedsCompilation: no Title: An integrated analysis package of Gene expression and Copy number alteration Description: This package is intended to identify differentially expressed genes driven by Copy Number Alterations from samples with both gene expression and CNA data. biocViews: Software, Biological Question, DifferentialExpression, GenomicVariation, AssayDomain, CopyNumberVariation, GeneExpression, ResearchField, Genetics, Technology, Microarray, Sequencing, WorkflowStep, MultipleComparison Author: Yi-Pin Lai [aut], Liang-Bo Wang [aut, cre], Tzu-Pin Lu [aut], Eric Y. Chuang [aut] Maintainer: Liang-Bo Wang URL: http://github.com/ccwang002/iGC VignetteBuilder: knitr BugReports: http://github.com/ccwang002/iGC/issues git_url: https://git.bioconductor.org/packages/iGC git_branch: RELEASE_3_20 git_last_commit: d08e687 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iGC_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iGC_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iGC_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iGC_1.36.0.tgz vignettes: vignettes/iGC/inst/doc/Introduction.html vignetteTitles: Introduction to iGC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iGC/inst/doc/Introduction.R dependencyCount: 5 Package: IgGeneUsage Version: 1.20.0 Depends: R (>= 4.2.0) Imports: methods, reshape2 (>= 1.4.3), Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), rstantools (>= 2.2.0), SummarizedExperiment, tidyr LinkingTo: BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0) Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 2.1.0), ggplot2, ggforce, ggrepel, patchwork License: MIT + file LICENSE MD5sum: 0432bed8882294ef0ac0747430bbd02a NeedsCompilation: yes Title: Differential gene usage in immune repertoires Description: Detection of biases in the usage of immunoglobulin (Ig) genes is an important task in immune repertoire profiling. IgGeneUsage detects aberrant Ig gene usage between biological conditions using a probabilistic model which is analyzed computationally by Bayes inference. With this IgGeneUsage also avoids some common problems related to the current practice of null-hypothesis significance testing. biocViews: DifferentialExpression, Regression, Genetics, Bayesian, BiomedicalInformatics, ImmunoOncology, MathematicalBiology Author: Simo Kitanovski [aut, cre] Maintainer: Simo Kitanovski URL: https://github.com/snaketron/IgGeneUsage SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/snaketron/IgGeneUsage/issues git_url: https://git.bioconductor.org/packages/IgGeneUsage git_branch: RELEASE_3_20 git_last_commit: d590842 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IgGeneUsage_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IgGeneUsage_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IgGeneUsage_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IgGeneUsage_1.20.0.tgz vignettes: vignettes/IgGeneUsage/inst/doc/User_Manual.html vignetteTitles: User Manual: IgGeneUsage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/IgGeneUsage/inst/doc/User_Manual.R dependencyCount: 95 Package: igvR Version: 1.26.0 Depends: R (>= 3.5.0), GenomicRanges, GenomicAlignments, BrowserViz (>= 2.17.1) Imports: methods, BiocGenerics, httpuv, utils, rtracklayer, VariantAnnotation, RColorBrewer, httr Suggests: RUnit, BiocStyle, knitr, rmarkdown, MotifDb, seqLogo License: MIT + file LICENSE MD5sum: 63f7141145b7b23100a155e1f85c0916 NeedsCompilation: no Title: igvR: integrative genomics viewer Description: Access to igv.js, the Integrative Genomics Viewer running in a web browser. biocViews: Visualization, ThirdPartyClient, GenomeBrowsers Author: Paul Shannon Maintainer: Arkadiusz Gladki URL: https://gladkia.github.io/igvR/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/igvR git_branch: RELEASE_3_20 git_last_commit: 26b7eba git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/igvR_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/igvR_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/igvR_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/igvR_1.26.0.tgz vignettes: vignettes/igvR/inst/doc/v00.basicIntro.html, vignettes/igvR/inst/doc/v01.stockGenome.html, vignettes/igvR/inst/doc/v02.customGenome.html, vignettes/igvR/inst/doc/v03.ctcfChIP.html, vignettes/igvR/inst/doc/v04.pairedEnd.html, vignettes/igvR/inst/doc/v05.ucscTableBrowser.html, vignettes/igvR/inst/doc/v06.annotationHub.html, vignettes/igvR/inst/doc/v07.gwas.html vignetteTitles: "Introduction: a simple demo", "Use a Stock Genome", "Use a Custom Genome", "Explore CTCF ChIP-seq alignments,, MACS2 narrowPeaks,, Motif Matching and H3K4me3 methylation", "Paired-end Interaction Tracks", "Obtain and Display H3K4Me3 K562 track from UCSC table browser", "Obtain and Display H3K27ac K562 track from the AnnotationHub", "GWAS Tracks" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/igvR/inst/doc/v00.basicIntro.R, vignettes/igvR/inst/doc/v01.stockGenome.R, vignettes/igvR/inst/doc/v02.customGenome.R, vignettes/igvR/inst/doc/v03.ctcfChIP.R, vignettes/igvR/inst/doc/v04.pairedEnd.R, vignettes/igvR/inst/doc/v05.ucscTableBrowser.R, vignettes/igvR/inst/doc/v06.annotationHub.R, vignettes/igvR/inst/doc/v07.gwas.R dependencyCount: 86 Package: igvShiny Version: 1.2.0 Depends: R (>= 3.5.0), GenomicRanges, methods, shiny Imports: BiocGenerics, checkmate, futile.logger, GenomeInfoDbData, htmlwidgets, httr, jsonlite, randomcoloR, utils Suggests: BiocStyle, GenomicAlignments, knitr, Rsamtools, rtracklayer, RUnit, shinytest2, VariantAnnotation License: MIT + file LICENSE MD5sum: 750c230be88375e437f990d04e6d44fc NeedsCompilation: no Title: igvShiny: a wrapper of Integrative Genomics Viewer (IGV - an interactive tool for visualization and exploration integrated genomic data) Description: This package is a wrapper of Integrative Genomics Viewer (IGV). It comprises an htmlwidget version of IGV. It can be used as a module in Shiny apps. biocViews: Software, ShinyApps, Sequencing, Coverage Author: Paul Shannon [aut], Arkadiusz Gladki [aut, cre] (), Karolina Scigocka [aut] Maintainer: Arkadiusz Gladki URL: https://github.com/gladkia/igvShiny, https://gladkia.github.io/igvShiny/ VignetteBuilder: knitr BugReports: https://github.com/gladkia/igvShiny/issues git_url: https://git.bioconductor.org/packages/igvShiny git_branch: RELEASE_3_20 git_last_commit: 6cda74d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/igvShiny_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/igvShiny_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/igvShiny_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/igvShiny_1.2.0.tgz vignettes: vignettes/igvShiny/inst/doc/igvShiny.html vignetteTitles: igvShiny Overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/igvShiny/inst/doc/igvShiny.R dependencyCount: 79 Package: IHW Version: 1.34.0 Depends: R (>= 3.3.0) Imports: methods, slam, lpsymphony, fdrtool, BiocGenerics Suggests: ggplot2, dplyr, gridExtra, scales, DESeq2, airway, testthat, Matrix, BiocStyle, knitr, rmarkdown, devtools License: Artistic-2.0 Archs: x64 MD5sum: d128f674729c18419d57cecbadb0c789 NeedsCompilation: no Title: Independent Hypothesis Weighting Description: Independent hypothesis weighting (IHW) is a multiple testing procedure that increases power compared to the method of Benjamini and Hochberg by assigning data-driven weights to each hypothesis. The input to IHW is a two-column table of p-values and covariates. The covariate can be any continuous-valued or categorical variable that is thought to be informative on the statistical properties of each hypothesis test, while it is independent of the p-value under the null hypothesis. biocViews: ImmunoOncology, MultipleComparison, RNASeq Author: Nikos Ignatiadis [aut, cre], Wolfgang Huber [aut] Maintainer: Nikos Ignatiadis VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/IHW git_branch: RELEASE_3_20 git_last_commit: 12ebabb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IHW_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IHW_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IHW_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IHW_1.34.0.tgz vignettes: vignettes/IHW/inst/doc/introduction_to_ihw.html vignetteTitles: "Introduction to IHW" hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/IHW/inst/doc/introduction_to_ihw.R dependsOnMe: IHWpaper importsMe: ideal, scp suggestsMe: DEWSeq, GRaNIE, BloodCancerMultiOmics2017, BisRNA, DGEobj.utils dependencyCount: 9 Package: illuminaio Version: 0.48.0 Imports: base64 Suggests: RUnit, BiocGenerics, IlluminaDataTestFiles (>= 1.0.2), BiocStyle License: GPL-2 MD5sum: 96c3a34369cebbffbd6e13da17d4344a NeedsCompilation: yes Title: Parsing Illumina Microarray Output Files Description: Tools for parsing Illumina's microarray output files, including IDAT. biocViews: Infrastructure, DataImport, Microarray, ProprietaryPlatforms Author: Keith Baggerly [aut], Henrik Bengtsson [aut], Kasper Daniel Hansen [aut, cre], Matt Ritchie [aut], Mike L. Smith [aut], Tim Triche Jr. [ctb] Maintainer: Kasper Daniel Hansen URL: https://github.com/HenrikBengtsson/illuminaio BugReports: https://github.com/HenrikBengtsson/illuminaio/issues git_url: https://git.bioconductor.org/packages/illuminaio git_branch: RELEASE_3_20 git_last_commit: 966a6b1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/illuminaio_0.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/illuminaio_0.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/illuminaio_0.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/illuminaio_0.48.0.tgz vignettes: vignettes/illuminaio/inst/doc/EncryptedFormat.pdf, vignettes/illuminaio/inst/doc/illuminaio.pdf vignetteTitles: Description of Encrypted IDAT Format, Introduction to illuminaio hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/illuminaio/inst/doc/illuminaio.R dependsOnMe: normalize450K, RnBeads, wateRmelon, EGSEA123 importsMe: beadarray, bigmelon, crlmm, methylumi, minfi suggestsMe: limma dependencyCount: 4 Package: ILoReg Version: 1.16.0 Depends: R (>= 4.0.0) Imports: Matrix, parallel, foreach, aricode, LiblineaR, SparseM, ggplot2, cowplot, RSpectra, umap, Rtsne, fastcluster, parallelDist, cluster, dendextend, DescTools, plyr, scales, pheatmap, reshape2, dplyr, doRNG, SingleCellExperiment, SummarizedExperiment, S4Vectors, methods, stats, doSNOW, utils Suggests: knitr, rmarkdown, BiocStyle License: GPL-3 MD5sum: 61adff20a5da2b5904280b6fca673407 NeedsCompilation: no Title: ILoReg: a tool for high-resolution cell population identification from scRNA-Seq data Description: ILoReg is a tool for identification of cell populations from scRNA-seq data. In particular, ILoReg is useful for finding cell populations with subtle transcriptomic differences. The method utilizes a self-supervised learning method, called Iteratitive Clustering Projection (ICP), to find cluster probabilities, which are used in noise reduction prior to PCA and the subsequent hierarchical clustering and t-SNE steps. Additionally, functions for differential expression analysis to find gene markers for the populations and gene expression visualization are provided. biocViews: SingleCell, Software, Clustering, DimensionReduction, RNASeq, Visualization, Transcriptomics, DataRepresentation, DifferentialExpression, Transcription, GeneExpression Author: Johannes Smolander [cre, aut], Sini Junttila [aut], Mikko S Venäläinen [aut], Laura L Elo [aut] Maintainer: Johannes Smolander URL: https://github.com/elolab/ILoReg VignetteBuilder: knitr BugReports: https://github.com/elolab/ILoReg/issues git_url: https://git.bioconductor.org/packages/ILoReg git_branch: RELEASE_3_20 git_last_commit: 0694b79 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ILoReg_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ILoReg_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ILoReg_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ILoReg_1.16.0.tgz vignettes: vignettes/ILoReg/inst/doc/ILoReg.html vignetteTitles: ILoReg package manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ILoReg/inst/doc/ILoReg.R dependencyCount: 133 Package: IMAS Version: 1.30.0 Depends: R (> 3.0.0),GenomicFeatures, ggplot2, IVAS Imports: doParallel, lme4, BiocGenerics, GenomicRanges, IRanges, foreach, AnnotationDbi, S4Vectors, GenomeInfoDb, stats, ggfortify, grDevices, methods, Matrix, utils, graphics, gridExtra, grid, lattice, Rsamtools, survival, BiocParallel, GenomicAlignments, parallel Suggests: BiocStyle, RUnit License: GPL-2 MD5sum: 45a412d3daeabfefbdc1ef933977fcfe NeedsCompilation: no Title: Integrative analysis of Multi-omics data for Alternative Splicing Description: Integrative analysis of Multi-omics data for Alternative splicing. biocViews: ImmunoOncology, AlternativeSplicing, DifferentialExpression, DifferentialSplicing, GeneExpression, GeneRegulation, Regression, RNASeq, Sequencing, SNP, Software, Transcription Author: Seonggyun Han, Younghee Lee Maintainer: Seonggyun Han git_url: https://git.bioconductor.org/packages/IMAS git_branch: RELEASE_3_20 git_last_commit: 19add53 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IMAS_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IMAS_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IMAS_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IMAS_1.30.0.tgz vignettes: vignettes/IMAS/inst/doc/IMAS.pdf vignetteTitles: IMAS : Integrative analysis of Multi-omics data for Alternative Splicing hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/IMAS/inst/doc/IMAS.R dependencyCount: 117 Package: imcRtools Version: 1.12.0 Depends: R (>= 4.1), SpatialExperiment Imports: S4Vectors, stats, utils, SummarizedExperiment, methods, pheatmap, scuttle, stringr, readr, EBImage, cytomapper, abind, BiocParallel, viridis, dplyr, magrittr, DT, igraph, SingleCellExperiment, vroom, BiocNeighbors, RTriangle, ggraph, tidygraph, ggplot2, data.table, sf, concaveman, tidyselect, distances, MatrixGenerics, rlang, grDevices Suggests: CATALYST, grid, tidyr, BiocStyle, knitr, rmarkdown, markdown, testthat License: GPL-3 Archs: x64 MD5sum: 05b80d9fcab29c6827e7a67cc17ab353 NeedsCompilation: no Title: Methods for imaging mass cytometry data analysis Description: This R package supports the handling and analysis of imaging mass cytometry and other highly multiplexed imaging data. The main functionality includes reading in single-cell data after image segmentation and measurement, data formatting to perform channel spillover correction and a number of spatial analysis approaches. First, cell-cell interactions are detected via spatial graph construction; these graphs can be visualized with cells representing nodes and interactions representing edges. Furthermore, per cell, its direct neighbours are summarized to allow spatial clustering. Per image/grouping level, interactions between types of cells are counted, averaged and compared against random permutations. In that way, types of cells that interact more (attraction) or less (avoidance) frequently than expected by chance are detected. biocViews: ImmunoOncology, SingleCell, Spatial, DataImport, Clustering Author: Nils Eling [aut], Tobias Hoch [ctb], Vito Zanotelli [ctb], Jana Fischer [ctb], Daniel Schulz [ctb, cre] (), Lasse Meyer [ctb] Maintainer: Daniel Schulz URL: https://github.com/BodenmillerGroup/imcRtools VignetteBuilder: knitr BugReports: https://github.com/BodenmillerGroup/imcRtools/issues git_url: https://git.bioconductor.org/packages/imcRtools git_branch: RELEASE_3_20 git_last_commit: eb4125d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/imcRtools_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/imcRtools_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/imcRtools_1.12.0.tgz vignettes: vignettes/imcRtools/inst/doc/imcRtools.html vignetteTitles: "Tools for IMC data analysis" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/imcRtools/inst/doc/imcRtools.R suggestsMe: spicyR dependencyCount: 185 Package: IMMAN Version: 1.26.0 Imports: STRINGdb, pwalign, igraph, graphics, utils, seqinr Suggests: knitr, rmarkdown, testthat License: Artistic-2.0 MD5sum: d24a18ee9927aa1357ea998c764711a9 NeedsCompilation: no Title: Interlog protein network reconstruction by Mapping and Mining ANalysis Description: Reconstructing Interlog Protein Network (IPN) integrated from several Protein protein Interaction Networks (PPINs). Using this package, overlaying different PPINs to mine conserved common networks between diverse species will be applicable. biocViews: SequenceMatching, Alignment, SystemsBiology, GraphAndNetwork, Network, Proteomics Author: Minoo Ashtiani, Payman Nickchi, Abdollah Safari, Mehdi Mirzaie, Mohieddin Jafari Maintainer: Minoo Ashtiani VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/IMMAN git_branch: RELEASE_3_20 git_last_commit: 2776380 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IMMAN_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IMMAN_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IMMAN_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IMMAN_1.26.0.tgz vignettes: vignettes/IMMAN/inst/doc/IMMAN.html vignetteTitles: IMMAN hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/IMMAN/inst/doc/IMMAN.R dependencyCount: 71 Package: immApex Version: 1.0.4 Depends: R (>= 4.3.0) Imports: hash, httr, keras3, magrittr, matrixStats, methods, reticulate, rvest, SingleCellExperiment, stats, stringi, stringr, tensorflow, utils Suggests: BiocStyle, ggplot2, knitr, markdown, rmarkdown, scRepertoire, spelling, testthat, viridis License: MIT + file LICENSE MD5sum: bb7db730153fff888d1cd06cf13aa3be NeedsCompilation: no Title: Tools for Adaptive Immune Receptor Sequence-Based Keras3 Modeling Description: A set of tools to build tensorflow/keras3-based models in R from amino acid and nucleotide sequences focusing on adaptive immune receptors. The package includes pre-processing of sequences, unifying gene nomenclature usage, encoding sequences, and combining models. This package will serve as the basis of future immune receptor sequence functions/packages/models compatible with the scRepertoire ecosystem. biocViews: Software, ImmunoOncology, SingleCell, Classification, Annotation, Sequencing, MotifAnnotation Author: Nick Borcherding [aut, cre] Maintainer: Nick Borcherding URL: https://github.com/ncborcherding/immApex/ VignetteBuilder: knitr BugReports: https://github.com/ncborcherding/immApex/issues git_url: https://git.bioconductor.org/packages/immApex git_branch: RELEASE_3_20 git_last_commit: 0577f3b git_last_commit_date: 2024-11-06 Date/Publication: 2024-11-06 source.ver: src/contrib/immApex_1.0.4.tar.gz win.binary.ver: bin/windows/contrib/4.4/immApex_1.0.4.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/immApex_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/immApex_1.0.4.tgz vignettes: vignettes/immApex/inst/doc/immApex.html vignetteTitles: Making Deep Learning Models with immApex hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/immApex/inst/doc/immApex.R dependencyCount: 78 Package: immunoClust Version: 1.38.0 Depends: R(>= 3.6), flowCore Imports: methods, stats, graphics, grid, lattice, grDevices Suggests: BiocStyle, utils, testthat License: Artistic-2.0 MD5sum: 5b3098131f1d50cb13fa632992dbfddb NeedsCompilation: yes Title: immunoClust - Automated Pipeline for Population Detection in Flow Cytometry Description: immunoClust is a model based clustering approach for Flow Cytometry samples. The cell-events of single Flow Cytometry samples are modelled by a mixture of multinominal normal- or t-distributions. The cell-event clusters of several samples are modelled by a mixture of multinominal normal-distributions aiming stable co-clusters across these samples. biocViews: Clustering, FlowCytometry, SingleCell, CellBasedAssays, ImmunoOncology Author: Till Soerensen [aut, cre] Maintainer: Till Soerensen git_url: https://git.bioconductor.org/packages/immunoClust git_branch: RELEASE_3_20 git_last_commit: c4a056b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/immunoClust_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/immunoClust_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/immunoClust_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/immunoClust_1.38.0.tgz vignettes: vignettes/immunoClust/inst/doc/immunoClust.pdf vignetteTitles: immunoClust package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/immunoClust/inst/doc/immunoClust.R dependencyCount: 19 Package: immunogenViewer Version: 1.0.0 Depends: R (>= 4.0) Imports: ggplot2, httr, jsonlite, patchwork, UniProt.ws Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0), DT License: Apache License (>= 2) MD5sum: e8e74b422151cbe6d35e17e4f91ddbc3 NeedsCompilation: no Title: Visualization and evaluation of protein immunogens Description: Plots protein properties and visualizes position of peptide immunogens within protein sequence. Allows evaluation of immunogens based on structural and functional annotations to infer suitability for antibody-based methods aiming to detect native proteins. biocViews: FeatureExtraction, Proteomics, Software, Visualization Author: Katharina Waury [aut, cre] () Maintainer: Katharina Waury URL: https://github.com/kathiwaury/immunogenViewer VignetteBuilder: knitr BugReports: https://github.com/kathiwaury/immunogenViewer/issues git_url: https://git.bioconductor.org/packages/immunogenViewer git_branch: RELEASE_3_20 git_last_commit: 255dbd9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/immunogenViewer_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/immunogenViewer_1.0.0.zip mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/immunogenViewer_1.0.0.tgz vignettes: vignettes/immunogenViewer/inst/doc/immunogenViewer_vignette.html vignetteTitles: Using immunogenViewer to evaluate and choose antibodies hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/immunogenViewer/inst/doc/immunogenViewer_vignette.R dependencyCount: 87 Package: immunotation Version: 1.14.0 Depends: R (>= 4.1) Imports: stringr, ontologyIndex, curl, ggplot2, readr, rvest, tidyr, xml2, maps, rlang Suggests: BiocGenerics, rmarkdown, BiocStyle, knitr, testthat, DT License: GPL-3 MD5sum: 3b496af731dee7e84ff52048d5116937 NeedsCompilation: no Title: Tools for working with diverse immune genes Description: MHC (major histocompatibility complex) molecules are cell surface complexes that present antigens to T cells. The repertoire of antigens presented in a given genetic background largely depends on the sequence of the encoded MHC molecules, and thus, in humans, on the highly variable HLA (human leukocyte antigen) genes of the hyperpolymorphic HLA locus. More than 28,000 different HLA alleles have been reported, with significant differences in allele frequencies between human populations worldwide. Reproducible and consistent annotation of HLA alleles in large-scale bioinformatics workflows remains challenging, because the available reference databases and software tools often use different HLA naming schemes. The package immunotation provides tools for consistent annotation of HLA genes in typical immunoinformatics workflows such as for example the prediction of MHC-presented peptides in different human donors. Converter functions that provide mappings between different HLA naming schemes are based on the MHC restriction ontology (MRO). The package also provides automated access to HLA alleles frequencies in worldwide human reference populations stored in the Allele Frequency Net Database. biocViews: Software, ImmunoOncology, BiomedicalInformatics, Genetics, Annotation Author: Katharina Imkeller [cre, aut] Maintainer: Katharina Imkeller VignetteBuilder: knitr BugReports: https://github.com/imkeller/immunotation/issues git_url: https://git.bioconductor.org/packages/immunotation git_branch: RELEASE_3_20 git_last_commit: 219f88d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/immunotation_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/immunotation_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/immunotation_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/immunotation_1.14.0.tgz vignettes: vignettes/immunotation/inst/doc/immunotation_vignette.html vignetteTitles: User guide immunotation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/immunotation/inst/doc/immunotation_vignette.R dependencyCount: 66 Package: IMPCdata Version: 1.42.0 Depends: R (>= 2.3.0) Imports: rjson License: file LICENSE Archs: x64 MD5sum: 40f6bfe3b3597ca0716dc08c8d2d86d2 NeedsCompilation: no Title: Retrieves data from IMPC database Description: Package contains methods for data retrieval from IMPC Database. biocViews: ExperimentData Author: Natalja Kurbatova, Jeremy Mason Maintainer: Jeremy Mason git_url: https://git.bioconductor.org/packages/IMPCdata git_branch: RELEASE_3_20 git_last_commit: 077e50f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IMPCdata_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IMPCdata_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IMPCdata_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IMPCdata_1.42.0.tgz vignettes: vignettes/IMPCdata/inst/doc/IMPCdata.pdf vignetteTitles: IMPCdata Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/IMPCdata/inst/doc/IMPCdata.R dependencyCount: 1 Package: impute Version: 1.80.0 Depends: R (>= 2.10) License: GPL-2 MD5sum: 8d8453b24e87eec606c28c8d6181db8a NeedsCompilation: yes Title: impute: Imputation for microarray data Description: Imputation for microarray data (currently KNN only) biocViews: Microarray Author: Trevor Hastie, Robert Tibshirani, Balasubramanian Narasimhan, Gilbert Chu Maintainer: Balasubramanian Narasimhan git_url: https://git.bioconductor.org/packages/impute git_branch: RELEASE_3_20 git_last_commit: 6dd5ed4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/impute_1.80.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/impute_1.80.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/impute_1.80.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/impute_1.80.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: AMARETTO, CGHcall, TIN, curatedBreastData, imputeLCMD, moduleColor, snpReady, swamp importsMe: biscuiteer, cola, DExMA, doppelgangR, EGAD, EpiMix, fastLiquidAssociation, genomation, GEOexplorer, MAGAR, MatrixQCvis, MEAT, methylclock, MethylMix, miRLAB, MSnbase, netboost, Pigengene, pmp, POMA, REMP, RNAAgeCalc, Rnits, MetaGxBreast, MetaGxOvarian, MetaGxPancreas, DIscBIO, ePCR, FAMT, GSEMA, iC10, lilikoi, mi4p, PCAPAM50, PINSPlus, Rnmr1D, samr, speaq, WGCNA suggestsMe: BioNet, DAPAR, GeoTcgaData, graphite, MethPed, MsCoreUtils, QFeatures, qmtools, RnBeads, scp, TCGAutils, DDPNA, GSA, maGUI, MetChem, romic dependencyCount: 0 Package: INDEED Version: 2.20.0 Depends: glasso (>= 1.8), R (>= 3.5) Imports: devtools (>= 1.13.0), graphics (>= 3.3.1), stats (>= 3.3.1), utils (>= 3.3.1), igraph (>= 1.2.4), visNetwork(>= 2.0.6) Suggests: knitr (>= 1.19), rmarkdown (>= 1.8), testthat (>= 2.0.0) License: Artistic-2.0 MD5sum: bead8a561e0225c4447fd94c49cdb2c5 NeedsCompilation: no Title: Interactive Visualization of Integrated Differential Expression and Differential Network Analysis for Biomarker Candidate Selection Package Description: An R package for integrated differential expression and differential network analysis based on omic data for cancer biomarker discovery. Both correlation and partial correlation can be used to generate differential network to aid the traditional differential expression analysis to identify changes between biomolecules on both their expression and pairwise association levels. A detailed description of the methodology has been published in Methods journal (PMID: 27592383). An interactive visualization feature allows for the exploration and selection of candidate biomarkers. biocViews: ImmunoOncology, Software, ResearchField, BiologicalQuestion, StatisticalMethod, DifferentialExpression, MassSpectrometry, Metabolomics Author: Yiming Zuo , Kian Ghaffari , Zhenzhi Li Maintainer: Ressom group , Yiming Zuo URL: http://github.com/ressomlab/INDEED VignetteBuilder: knitr BugReports: http://github.com/ressomlab/INDEED/issues git_url: https://git.bioconductor.org/packages/INDEED git_branch: RELEASE_3_20 git_last_commit: cdb3efe git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/INDEED_2.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/INDEED_2.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/INDEED_2.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/INDEED_2.20.0.tgz vignettes: vignettes/INDEED/inst/doc/Introduction_to_INDEED.pdf vignetteTitles: INDEED R package for cancer biomarker discovery hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/INDEED/inst/doc/Introduction_to_INDEED.R dependencyCount: 106 Package: iNETgrate Version: 1.4.0 Depends: R (>= 4.3.0), BiocStyle (>= 2.18.1) Imports: SummarizedExperiment, GenomicRanges (>= 1.24.1), stats, WGCNA, grDevices, graphics, survival, igraph, Pigengene (>= 1.19.26), Homo.sapiens, glmnet, caret, gplots, minfi, matrixStats, Rfast, tidyr, tidyselect, utils Suggests: knitr, org.Hs.eg.db, org.Mm.eg.db, IlluminaHumanMethylation450kanno.ilmn12.hg19, AnnotationDbi, sesameData, TCGAbiolinks (>= 2.29.4) License: GPL-3 MD5sum: cb056d979ec3c5bea91f047f40cdd502 NeedsCompilation: no Title: Integrates DNA methylation data with gene expression in a single gene network Description: The iNETgrate package provides functions to build a correlation network in which nodes are genes. DNA methylation and gene expression data are integrated to define the connections between genes. This network is used to identify modules (clusters) of genes. The biological information in each of the resulting modules is represented by an eigengene. These biological signatures can be used as features e.g., for classification of patients into risk categories. The resulting biological signatures are very robust and give a holistic view of the underlying molecular changes. biocViews: GeneExpression, RNASeq, DNAMethylation, NetworkInference, Network, GraphAndNetwork, BiomedicalInformatics, SystemsBiology, Transcriptomics, Classification, Clustering, DimensionReduction, PrincipalComponent, mRNAMicroarray, Normalization, GenePrediction, KEGG, Survival Author: Isha Mehta [aut] (), Ghazal Ebrahimi [aut], Hanie Samimi [aut], Habil Zare [aut, cre] () Maintainer: Habil Zare VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/BiocManager/issues git_url: https://git.bioconductor.org/packages/iNETgrate git_branch: RELEASE_3_20 git_last_commit: 83bb9a4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iNETgrate_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iNETgrate_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iNETgrate_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iNETgrate_1.4.0.tgz vignettes: vignettes/iNETgrate/inst/doc/iNETgrate_inference.pdf vignetteTitles: iNETgrate: Integrating gene expression and DNA methylation data in a gene network hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iNETgrate/inst/doc/iNETgrate_inference.R dependencyCount: 287 Package: infercnv Version: 1.22.0 Depends: R(>= 4.0) Imports: graphics, grDevices, RColorBrewer, gplots, futile.logger, stats, utils, methods, ape, phyclust, Matrix, fastcluster, parallelDist, dplyr, HiddenMarkov, ggplot2, edgeR, coin, caTools, digest, RANN, igraph, reshape2, rjags, fitdistrplus, future, foreach, doParallel, Seurat, BiocGenerics, SummarizedExperiment, SingleCellExperiment, tidyr, parallel, coda, gridExtra, argparse Suggests: BiocStyle, knitr, rmarkdown, testthat License: BSD_3_clause + file LICENSE Archs: x64 MD5sum: f7c2ce4a64fbb3d68f38375f8a96f03e NeedsCompilation: no Title: Infer Copy Number Variation from Single-Cell RNA-Seq Data Description: Using single-cell RNA-Seq expression to visualize CNV in cells. biocViews: Software, CopyNumberVariation, VariantDetection, StructuralVariation, GenomicVariation, Genetics, Transcriptomics, StatisticalMethod, Bayesian, HiddenMarkovModel, SingleCell Author: Timothy Tickle [aut], Itay Tirosh [aut], Christophe Georgescu [aut, cre], Maxwell Brown [aut], Brian Haas [aut] Maintainer: Christophe Georgescu URL: https://github.com/broadinstitute/inferCNV/wiki SystemRequirements: JAGS 4.x.y VignetteBuilder: knitr BugReports: https://github.com/broadinstitute/inferCNV/issues git_url: https://git.bioconductor.org/packages/infercnv git_branch: RELEASE_3_20 git_last_commit: 0d36fe0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/infercnv_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/infercnv_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/infercnv_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/infercnv_1.22.0.tgz vignettes: vignettes/infercnv/inst/doc/inferCNV.html vignetteTitles: Visualizing Large-scale Copy Number Variation in Single-Cell RNA-Seq Expression Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/infercnv/inst/doc/inferCNV.R suggestsMe: SCpubr dependencyCount: 200 Package: infinityFlow Version: 1.16.0 Depends: R (>= 4.0.0), flowCore Imports: stats, grDevices, utils, graphics, pbapply, matlab, png, raster, grid, uwot, gtools, Biobase, generics, parallel, methods, xgboost Suggests: knitr, rmarkdown, keras, tensorflow, glmnetUtils, e1071 License: GPL-3 MD5sum: 401db5ce8ade415fa555be18af55eae2 NeedsCompilation: no Title: Augmenting Massively Parallel Cytometry Experiments Using Multivariate Non-Linear Regressions Description: Pipeline to analyze and merge data files produced by BioLegend's LEGENDScreen or BD Human Cell Surface Marker Screening Panel (BD Lyoplates). biocViews: Software, FlowCytometry, CellBasedAssays, SingleCell, Proteomics Author: Etienne Becht [cre, aut] Maintainer: Etienne Becht VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/infinityFlow git_branch: RELEASE_3_20 git_last_commit: ba3bf4d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/infinityFlow_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/infinityFlow_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/infinityFlow_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/infinityFlow_1.16.0.tgz vignettes: vignettes/infinityFlow/inst/doc/basic_usage.html, vignettes/infinityFlow/inst/doc/training_non_default_regression_models.html vignetteTitles: Basic usage of the infinityFlow package, Training non default regression models hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/infinityFlow/inst/doc/basic_usage.R, vignettes/infinityFlow/inst/doc/training_non_default_regression_models.R dependencyCount: 41 Package: Informeasure Version: 1.16.0 Depends: R (>= 4.0) Imports: entropy Suggests: knitr, BiocStyle, rmarkdown, testthat (>= 3.0.0), SummarizedExperiment License: Artistic-2.0 MD5sum: b52fbbdf221f0437533a025776f59940 NeedsCompilation: no Title: R implementation of information measures Description: This package consolidates a comprehensive set of information measurements, encompassing mutual information, conditional mutual information, interaction information, partial information decomposition, and part mutual information. biocViews: GeneExpression, NetworkInference, Network, Software Author: Chu Pan [aut, cre] Maintainer: Chu Pan URL: https://github.com/chupan1218/Informeasure VignetteBuilder: knitr BugReports: https://github.com/chupan1218/Informeasure/issues git_url: https://git.bioconductor.org/packages/Informeasure git_branch: RELEASE_3_20 git_last_commit: 5ed8364 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Informeasure_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Informeasure_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Informeasure_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Informeasure_1.16.0.tgz vignettes: vignettes/Informeasure/inst/doc/Informeasure.html vignetteTitles: Informeasure: a tool to quantify nonlinear dependence between variables in biological regulatory networks from an information theory perspective hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Informeasure/inst/doc/Informeasure.R dependencyCount: 1 Package: InPAS Version: 2.14.1 Depends: R (>= 3.5.0) Imports: AnnotationDbi,batchtools,Biobase,Biostrings,BSgenome,cleanUpdTSeq, depmixS4,dplyr,flock,future,future.apply,GenomeInfoDb,GenomicRanges, GenomicFeatures, ggplot2, IRanges, limma, magrittr,methods,parallelly, plyranges, preprocessCore, readr,reshape2, RSQLite, stats,S4Vectors, utils Suggests: BiocGenerics,BiocManager, BiocStyle, BSgenome.Mmusculus.UCSC.mm10, BSgenome.Hsapiens.UCSC.hg19, EnsDb.Hsapiens.v86, EnsDb.Mmusculus.v79, knitr, markdown, rmarkdown, rtracklayer, RUnit, grDevices, TxDb.Hsapiens.UCSC.hg19.knownGene,TxDb.Mmusculus.UCSC.mm10.knownGene License: GPL (>= 2) MD5sum: c7ef737254a56f4cdbde6db008eee796 NeedsCompilation: no Title: Identify Novel Alternative PolyAdenylation Sites (PAS) from RNA-seq data Description: Alternative polyadenylation (APA) is one of the important post- transcriptional regulation mechanisms which occurs in most human genes. InPAS facilitates the discovery of novel APA sites and the differential usage of APA sites from RNA-Seq data. It leverages cleanUpdTSeq to fine tune identified APA sites by removing false sites. biocViews: Alternative Polyadenylation, Differential Polyadenylation Site Usage, RNA-seq, Gene Regulation, Transcription Author: Jianhong Ou [aut, cre], Haibo Liu [aut], Lihua Julie Zhu [aut], Sungmi M. Park [aut], Michael R. Green [aut] Maintainer: Jianhong Ou VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/InPAS git_branch: RELEASE_3_20 git_last_commit: 448b02b git_last_commit_date: 2024-12-19 Date/Publication: 2024-12-23 source.ver: src/contrib/InPAS_2.14.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/InPAS_2.14.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/InPAS_2.14.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/InPAS_2.14.1.tgz vignettes: vignettes/InPAS/inst/doc/InPAS.html vignetteTitles: InPAS Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/InPAS/inst/doc/InPAS.R dependencyCount: 147 Package: INPower Version: 1.42.0 Depends: R (>= 3.1.0), mvtnorm Suggests: RUnit, BiocGenerics License: GPL-2 + file LICENSE MD5sum: 3970fbee033347e77144646d9e60c4cb NeedsCompilation: no Title: An R package for computing the number of susceptibility SNPs Description: An R package for computing the number of susceptibility SNPs and power of future studies biocViews: SNP Author: Ju-Hyun Park Maintainer: Bill Wheeler git_url: https://git.bioconductor.org/packages/INPower git_branch: RELEASE_3_20 git_last_commit: 45f17cb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/INPower_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/INPower_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/INPower_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/INPower_1.42.0.tgz vignettes: vignettes/INPower/inst/doc/vignette.pdf vignetteTitles: INPower Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/INPower/inst/doc/vignette.R dependencyCount: 2 Package: INSPEcT Version: 1.36.0 Depends: R (>= 3.6), methods, Biobase, BiocParallel Imports: pROC, deSolve, rootSolve, KernSmooth, readxl, GenomicFeatures, GenomicRanges, IRanges, BiocGenerics, GenomicAlignments, Rsamtools, S4Vectors, GenomeInfoDb, DESeq2, plgem, rtracklayer, SummarizedExperiment, TxDb.Mmusculus.UCSC.mm9.knownGene, shiny Suggests: BiocStyle, knitr, rmarkdown License: GPL-2 MD5sum: e0f1db4ffc949c4b4ed6d6b141d77f5e NeedsCompilation: no Title: Modeling RNA synthesis, processing and degradation with RNA-seq data Description: INSPEcT (INference of Synthesis, Processing and dEgradation rates from Transcriptomic data) RNA-seq data in time-course experiments or steady-state conditions, with or without the support of nascent RNA data. biocViews: Sequencing, RNASeq, GeneRegulation, TimeCourse, SystemsBiology Author: Stefano de Pretis Maintainer: Stefano de Pretis , Mattia Furlan VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/INSPEcT git_branch: RELEASE_3_20 git_last_commit: ce54116 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/INSPEcT_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/INSPEcT_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/INSPEcT_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/INSPEcT_1.36.0.tgz vignettes: vignettes/INSPEcT/inst/doc/INSPEcT_GUI.html, vignettes/INSPEcT/inst/doc/INSPEcT.html vignetteTitles: INSPEcT_GUI.html, INSPEcT - INference of Synthesis,, Processing and dEgradation rates from Transcriptomic data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/INSPEcT/inst/doc/INSPEcT_GUI.R, vignettes/INSPEcT/inst/doc/INSPEcT.R dependencyCount: 130 Package: INTACT Version: 1.6.0 Depends: R (>= 4.3.0) Imports: SQUAREM, bdsmatrix, numDeriv, stats, tidyr, ggplot2 Suggests: BiocStyle, knitr, rmarkdown, testthat License: GPL-3 + file LICENSE MD5sum: 38788d2ac09f0322ffb9ddc03478cd46 NeedsCompilation: no Title: Integrate TWAS and Colocalization Analysis for Gene Set Enrichment Analysis Description: This package integrates colocalization probabilities from colocalization analysis with transcriptome-wide association study (TWAS) scan summary statistics to implicate genes that may be biologically relevant to a complex trait. The probabilistic framework implemented in this package constrains the TWAS scan z-score-based likelihood using a gene-level colocalization probability. Given gene set annotations, this package can estimate gene set enrichment using posterior probabilities from the TWAS-colocalization integration step. biocViews: Bayesian, GeneSetEnrichment Author: Jeffrey Okamoto [aut, cre] (), Xiaoquan Wen [aut] () Maintainer: Jeffrey Okamoto URL: https://github.com/jokamoto97/INTACT VignetteBuilder: knitr BugReports: https://github.com/jokamoto97/INTACT/issues git_url: https://git.bioconductor.org/packages/INTACT git_branch: RELEASE_3_20 git_last_commit: 3a2f7ea git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/INTACT_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/INTACT_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/INTACT_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/INTACT_1.6.0.tgz vignettes: vignettes/INTACT/inst/doc/INTACT.html vignetteTitles: INTACT: Integrate TWAS and Colocalization Analysis for Gene Set Enrichment hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/INTACT/inst/doc/INTACT.R dependencyCount: 47 Package: InTAD Version: 1.26.0 Depends: R (>= 3.5), methods, S4Vectors, IRanges, GenomicRanges, MultiAssayExperiment, SummarizedExperiment,stats Imports: BiocGenerics,Biobase,rtracklayer,parallel,graphics,mclust,qvalue, ggplot2,utils,ggpubr Suggests: testthat, BiocStyle, knitr, rmarkdown License: GPL (>=2) MD5sum: 16b624bc4b4796b628fc54d92facf54d NeedsCompilation: no Title: Search for correlation between epigenetic signals and gene expression in TADs Description: The package is focused on the detection of correlation between expressed genes and selected epigenomic signals (i.e. enhancers obtained from ChIP-seq data) either within topologically associated domains (TADs) or between chromatin contact loop anchors. Various parameters can be controlled to investigate the influence of external factors and visualization plots are available for each analysis step. biocViews: Epigenetics, Sequencing, ChIPSeq, RNASeq, HiC, GeneExpression,ImmunoOncology Author: Konstantin Okonechnikov, Serap Erkek, Lukas Chavez Maintainer: Konstantin Okonechnikov VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/InTAD git_branch: RELEASE_3_20 git_last_commit: 977180d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/InTAD_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/InTAD_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/InTAD_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/InTAD_1.26.0.tgz vignettes: vignettes/InTAD/inst/doc/InTAD.html vignetteTitles: Correlation of epigenetic signals and genes in TADs hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/InTAD/inst/doc/InTAD.R dependencyCount: 128 Package: intansv Version: 1.46.0 Depends: R (>= 2.14.0), plyr, ggbio, GenomicRanges Imports: BiocGenerics, IRanges License: MIT + file LICENSE MD5sum: 42e93dfa30ac57e5bc3b2aeee8036ec2 NeedsCompilation: no Title: Integrative analysis of structural variations Description: This package provides efficient tools to read and integrate structural variations predicted by popular softwares. Annotation and visulation of structural variations are also implemented in the package. biocViews: Genetics, Annotation, Sequencing, Software Author: Wen Yao Maintainer: Wen Yao git_url: https://git.bioconductor.org/packages/intansv git_branch: RELEASE_3_20 git_last_commit: 2935743 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/intansv_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/intansv_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/intansv_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/intansv_1.46.0.tgz vignettes: vignettes/intansv/inst/doc/intansvOverview.pdf vignetteTitles: An Introduction to intansv hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/intansv/inst/doc/intansvOverview.R dependencyCount: 163 Package: interacCircos Version: 1.16.0 Depends: R (>= 4.1) Imports: RColorBrewer, htmlwidgets, plyr, methods Suggests: knitr, rmarkdown License: GPL-3 MD5sum: a6899ee320ae109f491acb9a0aec156b NeedsCompilation: no Title: The Generation of Interactive Circos Plot Description: Implement in an efficient approach to display the genomic data, relationship, information in an interactive circular genome(Circos) plot. 'interacCircos' are inspired by 'circosJS', 'BioCircos.js' and 'NG-Circos' and we integrate the modules of 'circosJS', 'BioCircos.js' and 'NG-Circos' into this R package, based on 'htmlwidgets' framework. biocViews: Visualization Author: Zhe Cui [aut, cre] Maintainer: Zhe Cui VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/interacCircos git_branch: RELEASE_3_20 git_last_commit: c6e30f2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/interacCircos_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/interacCircos_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/interacCircos_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/interacCircos_1.16.0.tgz vignettes: vignettes/interacCircos/inst/doc/interacCircos.html vignetteTitles: interacCircos hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/interacCircos/inst/doc/interacCircos.R dependencyCount: 35 Package: InteractionSet Version: 1.34.0 Depends: GenomicRanges, SummarizedExperiment Imports: methods, Matrix, Rcpp, BiocGenerics, S4Vectors (>= 0.27.12), IRanges, GenomeInfoDb LinkingTo: Rcpp Suggests: testthat, knitr, rmarkdown, BiocStyle License: GPL-3 MD5sum: 485a335d5aaa206938b323f6c8a4c18b NeedsCompilation: yes Title: Base Classes for Storing Genomic Interaction Data Description: Provides the GInteractions, InteractionSet and ContactMatrix objects and associated methods for storing and manipulating genomic interaction data from Hi-C and ChIA-PET experiments. biocViews: Infrastructure, DataRepresentation, Software, HiC Author: Aaron Lun [aut, cre], Malcolm Perry [aut], Elizabeth Ing-Simmons [aut] Maintainer: Aaron Lun SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/InteractionSet git_branch: RELEASE_3_20 git_last_commit: a440bce git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/InteractionSet_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/InteractionSet_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/InteractionSet_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/InteractionSet_1.34.0.tgz vignettes: vignettes/InteractionSet/inst/doc/interactions.html vignetteTitles: Genomic interaction classes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/InteractionSet/inst/doc/interactions.R dependsOnMe: diffHic, DuplexDiscovereR, GenomicInteractions, HiCDOC, sevenC, nullrangesData importsMe: CAGEfightR, ChIPpeakAnno, DegCre, EDIRquery, extraChIPs, geomeTriD, HicAggR, HiCcompare, HiCExperiment, HiContacts, HiCool, hicVennDiagram, mariner, nullranges, plyinteractions, trackViewer, treediff suggestsMe: plotgardener, transmogR, updateObject, CAGEWorkflow dependencyCount: 37 Package: InteractiveComplexHeatmap Version: 1.14.0 Depends: R (>= 4.0.0), ComplexHeatmap (>= 2.11.0) Imports: grDevices, stats, shiny, grid, GetoptLong, S4Vectors (>= 0.26.1), digest, IRanges, kableExtra (>= 1.3.1), utils, svglite, htmltools, clisymbols, jsonlite, RColorBrewer, fontawesome Suggests: knitr, rmarkdown, testthat, EnrichedHeatmap, GenomicRanges, data.table, circlize, GenomicFeatures, tidyverse, tidyHeatmap, cluster, org.Hs.eg.db, simplifyEnrichment, GO.db, SC3, GOexpress, SingleCellExperiment, scater, gplots, pheatmap, airway, DESeq2, DT, cola, BiocManager, gridtext, HilbertCurve (>= 1.21.1), shinydashboard, SummarizedExperiment, pkgndep, ks License: MIT + file LICENSE MD5sum: 871186361b95d5712999615af449b969 NeedsCompilation: no Title: Make Interactive Complex Heatmaps Description: This package can easily make heatmaps which are produced by the ComplexHeatmap package into interactive applications. It provides two types of interactivities: 1. on the interactive graphics device, and 2. on a Shiny app. It also provides functions for integrating the interactive heatmap widgets for more complex Shiny app development. biocViews: Software, Visualization, Sequencing Author: Zuguang Gu [aut, cre] () Maintainer: Zuguang Gu URL: https://github.com/jokergoo/InteractiveComplexHeatmap VignetteBuilder: knitr BugReports: https://github.com/jokergoo/InteractiveComplexHeatmap/issues git_url: https://git.bioconductor.org/packages/InteractiveComplexHeatmap git_branch: RELEASE_3_20 git_last_commit: 69018c0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/InteractiveComplexHeatmap_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/InteractiveComplexHeatmap_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/InteractiveComplexHeatmap_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/InteractiveComplexHeatmap_1.14.0.tgz vignettes: vignettes/InteractiveComplexHeatmap/inst/doc/decoration.html, vignettes/InteractiveComplexHeatmap/inst/doc/deseq2_app.html, vignettes/InteractiveComplexHeatmap/inst/doc/from_scratch.html, vignettes/InteractiveComplexHeatmap/inst/doc/implementation.html, vignettes/InteractiveComplexHeatmap/inst/doc/interactivate_indirect.html, vignettes/InteractiveComplexHeatmap/inst/doc/InteractiveComplexHeatmap.html, vignettes/InteractiveComplexHeatmap/inst/doc/share.html, vignettes/InteractiveComplexHeatmap/inst/doc/shiny_dev.html vignetteTitles: 4. Decorations on heatmaps, 6. A Shiny app for visualizing DESeq2 results, 7. Implement interactive heatmap from scratch, 2. How interactive complex heatmap is implemented, 5. Interactivate heatmaps indirectly generated by pheatmap(),, heatmap.2() and heatmap(), 1. How to visualize heatmaps interactively, 8. Share interactive heatmaps to collaborators, 3. Functions for Shiny app development hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/InteractiveComplexHeatmap/inst/doc/decoration.R, vignettes/InteractiveComplexHeatmap/inst/doc/deseq2_app.R, vignettes/InteractiveComplexHeatmap/inst/doc/from_scratch.R, vignettes/InteractiveComplexHeatmap/inst/doc/implementation.R, vignettes/InteractiveComplexHeatmap/inst/doc/interactivate_indirect.R, vignettes/InteractiveComplexHeatmap/inst/doc/InteractiveComplexHeatmap.R, vignettes/InteractiveComplexHeatmap/inst/doc/share.R, vignettes/InteractiveComplexHeatmap/inst/doc/shiny_dev.R importsMe: CRISPRball, gINTomics, mineSweepR suggestsMe: CTexploreR, simona, simplifyEnrichment, metasnf dependencyCount: 80 Package: interactiveDisplay Version: 1.44.0 Depends: R (>= 3.5.0), methods, BiocGenerics, grid Imports: interactiveDisplayBase (>= 1.7.3), shiny, RColorBrewer, ggplot2, reshape2, plyr, gridSVG, XML, Category, AnnotationDbi Suggests: RUnit, hgu95av2.db, knitr, GenomicRanges, SummarizedExperiment, GOstats, ggbio, GO.db, Gviz, rtracklayer, metagenomeSeq, gplots, vegan, Biobase Enhances: rstudio License: Artistic-2.0 MD5sum: 1632e8f269ab0ca57340fa46eb5ce2bd NeedsCompilation: no Title: Package for enabling powerful shiny web displays of Bioconductor objects Description: The interactiveDisplay package contains the methods needed to generate interactive Shiny based display methods for Bioconductor objects. biocViews: GO, GeneExpression, Microarray, Sequencing, Classification, Network, QualityControl, Visualization, Visualization, Genetics, DataRepresentation, GUI, AnnotationData, ShinyApps Author: Bioconductor Package Maintainer [cre], Shawn Balcome [aut], Marc Carlson [ctb] Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/interactiveDisplay git_branch: RELEASE_3_20 git_last_commit: e73aa0b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/interactiveDisplay_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/interactiveDisplay_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/interactiveDisplay_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/interactiveDisplay_1.44.0.tgz vignettes: vignettes/interactiveDisplay/inst/doc/interactiveDisplay.pdf vignetteTitles: interactiveDisplay: A package for enabling interactive visualization of Bioconductor objects hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/interactiveDisplay/inst/doc/interactiveDisplay.R dependencyCount: 113 Package: interactiveDisplayBase Version: 1.44.0 Depends: R (>= 2.10), methods, BiocGenerics Imports: shiny, DT Suggests: knitr, markdown Enhances: rstudioapi License: Artistic-2.0 Archs: x64 MD5sum: d112e51307461b9955062ac0f67de40c NeedsCompilation: no Title: Base package for enabling powerful shiny web displays of Bioconductor objects Description: The interactiveDisplayBase package contains the the basic methods needed to generate interactive Shiny based display methods for Bioconductor objects. biocViews: GO, GeneExpression, Microarray, Sequencing, Classification, Network, QualityControl, Visualization, Visualization, Genetics, DataRepresentation, GUI, AnnotationData, ShinyApps Author: Bioconductor Package Maintainer [cre], Shawn Balcome [aut], Marc Carlson [ctb], Marcel Ramos [ctb] Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/interactiveDisplayBase git_branch: RELEASE_3_20 git_last_commit: 2262e91 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/interactiveDisplayBase_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/interactiveDisplayBase_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/interactiveDisplayBase_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/interactiveDisplayBase_1.44.0.tgz vignettes: vignettes/interactiveDisplayBase/inst/doc/interactiveDisplayBase.html vignetteTitles: Using interactiveDisplayBase for Bioconductor object visualization and modification hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/interactiveDisplayBase/inst/doc/interactiveDisplayBase.R importsMe: interactiveDisplay suggestsMe: recount3 dependencyCount: 48 Package: InterCellar Version: 2.12.0 Depends: R (>= 4.1) Imports: config, golem, shiny, DT, shinydashboard, shinyFiles, shinycssloaders, data.table, fs, dplyr, tidyr, circlize, colourpicker, dendextend, factoextra, ggplot2, plotly, plyr, shinyFeedback, shinyalert, tibble, umap, visNetwork, wordcloud2, readxl, htmlwidgets, colorspace, signal, scales, htmltools, ComplexHeatmap, grDevices, stats, tools, utils, biomaRt, rlang, fmsb, igraph Suggests: testthat (>= 3.0.0), knitr, rmarkdown, glue, graphite, processx, attempt, BiocStyle, httr License: MIT + file LICENSE MD5sum: 864c8fa51ec2091440caf5853f659865 NeedsCompilation: no Title: InterCellar: an R-Shiny app for interactive analysis and exploration of cell-cell communication in single-cell transcriptomics Description: InterCellar is implemented as an R/Bioconductor Package containing a Shiny app that allows users to interactively analyze cell-cell communication from scRNA-seq data. Starting from precomputed ligand-receptor interactions, InterCellar provides filtering options, annotations and multiple visualizations to explore clusters, genes and functions. Finally, based on functional annotation from Gene Ontology and pathway databases, InterCellar implements data-driven analyses to investigate cell-cell communication in one or multiple conditions. biocViews: Software, SingleCell, Visualization, GO, Transcriptomics Author: Marta Interlandi [cre, aut] () Maintainer: Marta Interlandi URL: https://github.com/martaint/InterCellar VignetteBuilder: knitr BugReports: https://github.com/martaint/InterCellar/issues git_url: https://git.bioconductor.org/packages/InterCellar git_branch: RELEASE_3_20 git_last_commit: 76068eb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/InterCellar_2.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/InterCellar_2.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/InterCellar_2.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/InterCellar_2.12.0.tgz vignettes: vignettes/InterCellar/inst/doc/user_guide.html vignetteTitles: InterCellar User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/InterCellar/inst/doc/user_guide.R dependencyCount: 200 Package: IntEREst Version: 1.30.0 Depends: R (>= 3.5.0), GenomicRanges, Rsamtools, SummarizedExperiment, edgeR, S4Vectors, GenomicFiles Imports: seqLogo, Biostrings, GenomicFeatures (>= 1.39.4), txdbmaker, IRanges, seqinr, graphics, grDevices, stats, utils, grid, methods, DBI, RMariaDB, GenomicAlignments, BiocParallel, BiocGenerics, DEXSeq, DESeq2 Suggests: clinfun, knitr, rmarkdown, BSgenome.Hsapiens.UCSC.hg19 License: GPL-2 MD5sum: dc9e7878b6baed74e9b8fd3bedaf4f9c NeedsCompilation: no Title: Intron-Exon Retention Estimator Description: This package performs Intron-Exon Retention analysis on RNA-seq data (.bam files). biocViews: Software, AlternativeSplicing, Coverage, DifferentialSplicing, Sequencing, RNASeq, Alignment, Normalization, DifferentialExpression, ImmunoOncology Author: Ali Oghabian , Dario Greco , Mikko Frilander Maintainer: Ali Oghabian VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/IntEREst git_branch: RELEASE_3_20 git_last_commit: 806b1f1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IntEREst_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IntEREst_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IntEREst_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IntEREst_1.30.0.tgz vignettes: vignettes/IntEREst/inst/doc/IntEREst.html vignetteTitles: IntEREst,, Intron Exon Retention Estimator hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/IntEREst/inst/doc/IntEREst.R dependencyCount: 142 Package: IntramiRExploreR Version: 1.28.0 Depends: R (>= 3.4) Imports: igraph (>= 1.0.1), FGNet (>= 3.0.7), knitr (>= 1.12.3), stats, utils, grDevices, graphics Suggests: gProfileR, topGO, org.Dm.eg.db, rmarkdown, testthat License: GPL-2 MD5sum: d3e26768e1a3f263a05a1af5a0bbd81f NeedsCompilation: no Title: Predicting Targets for Drosophila Intragenic miRNAs Description: Intra-miR-ExploreR, an integrative miRNA target prediction bioinformatics tool, identifies targets combining expression and biophysical interactions of a given microRNA (miR). Using the tool, we have identified targets for 92 intragenic miRs in D. melanogaster, using available microarray expression data, from Affymetrix 1 and Affymetrix2 microarray array platforms, providing a global perspective of intragenic miR targets in Drosophila. Predicted targets are grouped according to biological functions using the DAVID Gene Ontology tool and are ranked based on a biologically relevant scoring system, enabling the user to identify functionally relevant targets for a given miR. biocViews: Software, Microarray, GeneTarget, StatisticalMethod, GeneExpression, GenePrediction Author: Surajit Bhattacharya and Daniel Cox Maintainer: Surajit Bhattacharya URL: https://github.com/VilainLab/IntramiRExploreR VignetteBuilder: knitr BugReports: https://github.com/VilainLab/IntramiRExploreR git_url: https://git.bioconductor.org/packages/IntramiRExploreR git_branch: RELEASE_3_20 git_last_commit: 4e5f417 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IntramiRExploreR_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IntramiRExploreR_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IntramiRExploreR_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IntramiRExploreR_1.28.0.tgz vignettes: vignettes/IntramiRExploreR/inst/doc/IntramiRExploreR.pdf, vignettes/IntramiRExploreR/inst/doc/IntramiRExploreR_vignettes.html vignetteTitles: IntramiRExploreR.pdf, IntramiRExploreR hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/IntramiRExploreR/inst/doc/IntramiRExploreR_vignettes.R dependencyCount: 37 Package: IONiseR Version: 2.30.0 Depends: R (>= 3.4) Imports: rhdf5, dplyr, magrittr, tidyr, ShortRead, Biostrings, ggplot2, methods, BiocGenerics, XVector, tibble, stats, BiocParallel, bit64, stringr, utils Suggests: BiocStyle, knitr, rmarkdown, gridExtra, testthat, minionSummaryData License: MIT + file LICENSE MD5sum: 0ddc0fc53a430d8a6468ee55cfb05d93 NeedsCompilation: no Title: Quality Assessment Tools for Oxford Nanopore MinION data Description: IONiseR provides tools for the quality assessment of Oxford Nanopore MinION data. It extracts summary statistics from a set of fast5 files and can be used either before or after base calling. In addition to standard summaries of the read-types produced, it provides a number of plots for visualising metrics relative to experiment run time or spatially over the surface of a flowcell. biocViews: QualityControl, DataImport, Sequencing Author: Mike Smith [aut, cre] Maintainer: Mike Smith VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/IONiseR git_branch: RELEASE_3_20 git_last_commit: 7cd9446 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IONiseR_2.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IONiseR_2.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IONiseR_2.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IONiseR_2.30.0.tgz vignettes: vignettes/IONiseR/inst/doc/IONiseR.html vignetteTitles: Quality assessment tools for nanopore data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/IONiseR/inst/doc/IONiseR.R dependencyCount: 99 Package: iPath Version: 1.12.0 Depends: R (>= 4.1), mclust, BiocParallel, survival Imports: Rcpp (>= 1.0.5), matrixStats, ggpubr, ggplot2, survminer, stats LinkingTo: Rcpp, RcppArmadillo Suggests: rmarkdown, BiocStyle, knitr License: GPL-2 MD5sum: 0b959d8ba286bddf6b334ff5c64fa825 NeedsCompilation: yes Title: iPath pipeline for detecting perturbed pathways at individual level Description: iPath is the Bioconductor package used for calculating personalized pathway score and test the association with survival outcomes. Abundant single-gene biomarkers have been identified and used in the clinics. However, hundreds of oncogenes or tumor-suppressor genes are involved during the process of tumorigenesis. We believe individual-level expression patterns of pre-defined pathways or gene sets are better biomarkers than single genes. In this study, we devised a computational method named iPath to identify prognostic biomarker pathways, one sample at a time. To test its utility, we conducted a pan-cancer analysis across 14 cancer types from The Cancer Genome Atlas and demonstrated that iPath is capable of identifying highly predictive biomarkers for clinical outcomes, including overall survival, tumor subtypes, and tumor stage classifications. We found that pathway-based biomarkers are more robust and effective than single genes. biocViews: Pathways, Software, GeneExpression, Survival Author: Kenong Su [aut, cre], Zhaohui Qin [aut] Maintainer: Kenong Su SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/suke18/iPath/issues git_url: https://git.bioconductor.org/packages/iPath git_branch: RELEASE_3_20 git_last_commit: 1e67be4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iPath_1.12.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iPath_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iPath_1.12.0.tgz vignettes: vignettes/iPath/inst/doc/iPath.html vignetteTitles: The iPath User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iPath/inst/doc/iPath.R dependencyCount: 111 Package: ipdDb Version: 1.24.0 Depends: R (>= 3.5.0), methods, AnnotationDbi (>= 1.43.1), AnnotationHub Imports: Biostrings, GenomicRanges, RSQLite, DBI, IRanges, stats, assertthat Suggests: knitr, rmarkdown, testthat License: Artistic-2.0 MD5sum: 7554c2d3c695d50f78e28847ec7c06a5 NeedsCompilation: no Title: IPD IMGT/HLA and IPD KIR database for Homo sapiens Description: All alleles from the IPD IMGT/HLA and IPD KIR database for Homo sapiens. Reference: Robinson J, Maccari G, Marsh SGE, Walter L, Blokhuis J, Bimber B, Parham P, De Groot NG, Bontrop RE, Guethlein LA, and Hammond JA KIR Nomenclature in non-human species Immunogenetics (2018), in preparation. biocViews: GenomicVariation, SequenceMatching, VariantAnnotation, DataRepresentation,AnnotationHubSoftware Author: Steffen Klasberg Maintainer: Steffen Klasberg URL: https://github.com/DKMS-LSL/ipdDb organism: Homo sapiens VignetteBuilder: knitr BugReports: https://github.com/DKMS-LSL/ipdDb/issues/new git_url: https://git.bioconductor.org/packages/ipdDb git_branch: RELEASE_3_20 git_last_commit: c8b575a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ipdDb_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ipdDb_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ipdDb_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ipdDb_1.24.0.tgz vignettes: vignettes/ipdDb/inst/doc/Readme.html vignetteTitles: ipdDb hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ipdDb/inst/doc/Readme.R dependencyCount: 68 Package: IPO Version: 1.32.0 Depends: xcms (>= 1.50.0), rsm, CAMERA, grDevices, graphics, stats, utils Imports: BiocParallel Suggests: RUnit, BiocGenerics, msdata, mtbls2, faahKO, knitr Enhances: parallel License: GPL (>= 2) + file LICENSE MD5sum: a28289f80eb8b8ee01ac00c4f9f03876 NeedsCompilation: no Title: Automated Optimization of XCMS Data Processing parameters Description: The outcome of XCMS data processing strongly depends on the parameter settings. IPO (`Isotopologue Parameter Optimization`) is a parameter optimization tool that is applicable for different kinds of samples and liquid chromatography coupled to high resolution mass spectrometry devices, fast and free of labeling steps. IPO uses natural, stable 13C isotopes to calculate a peak picking score. Retention time correction is optimized by minimizing the relative retention time differences within features and grouping parameters are optimized by maximizing the number of features showing exactly one peak from each injection of a pooled sample. The different parameter settings are achieved by design of experiment. The resulting scores are evaluated using response surface models. biocViews: ImmunoOncology, Metabolomics, MassSpectrometry Author: Gunnar Libiseller , Christoph Magnes , Thomas Lieb Maintainer: Thomas Lieb URL: https://github.com/rietho/IPO VignetteBuilder: knitr BugReports: https://github.com/rietho/IPO/issues/new git_url: https://git.bioconductor.org/packages/IPO git_branch: RELEASE_3_20 git_last_commit: a73e03b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IPO_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IPO_1.32.0.zip vignettes: vignettes/IPO/inst/doc/IPO.html vignetteTitles: XCMS Parameter Optimization with IPO hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/IPO/inst/doc/IPO.R dependencyCount: 163 Package: IRanges Version: 2.40.1 Depends: R (>= 4.0.0), methods, utils, stats, BiocGenerics (>= 0.39.2), S4Vectors (>= 0.43.2) Imports: stats4 LinkingTo: S4Vectors Suggests: XVector, GenomicRanges, Rsamtools, GenomicAlignments, GenomicFeatures, BSgenome.Celegans.UCSC.ce2, pasillaBamSubset, RUnit, BiocStyle License: Artistic-2.0 MD5sum: d8ecdaacbdba0f2c8a65c9146e64a324 NeedsCompilation: yes Title: Foundation of integer range manipulation in Bioconductor Description: Provides efficient low-level and highly reusable S4 classes for storing, manipulating and aggregating over annotated ranges of integers. Implements an algebra of range operations, including efficient algorithms for finding overlaps and nearest neighbors. Defines efficient list-like classes for storing, transforming and aggregating large grouped data, i.e., collections of atomic vectors and DataFrames. biocViews: Infrastructure, DataRepresentation Author: Hervé Pagès [aut, cre], Patrick Aboyoun [aut], Michael Lawrence [aut] Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/IRanges BugReports: https://github.com/Bioconductor/IRanges/issues git_url: https://git.bioconductor.org/packages/IRanges git_branch: RELEASE_3_20 git_last_commit: 535f07e git_last_commit_date: 2024-12-02 Date/Publication: 2024-12-05 source.ver: src/contrib/IRanges_2.40.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/IRanges_2.40.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IRanges_2.40.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IRanges_2.40.1.tgz vignettes: vignettes/IRanges/inst/doc/IRangesOverview.pdf vignetteTitles: An Overview of the IRanges package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/IRanges/inst/doc/IRangesOverview.R dependsOnMe: AnnotationDbi, AnnotationHubData, BaalChIP, bambu, biomvRCNS, Biostrings, BiSeq, BSgenome, BSgenomeForge, BubbleTree, bumphunter, CAFE, casper, CexoR, chimeraviz, ChIPpeakAnno, chipseq, CODEX, consensusSeekeR, CSAR, CSSQ, customProDB, deepSNV, DelayedArray, DESeq2, DEXSeq, DirichletMultinomial, DMCFB, DMCHMM, DMRcaller, epigenomix, ExCluster, fCCAC, GenomeInfoDb, GenomicAlignments, GenomicDistributions, GenomicFeatures, GenomicRanges, groHMM, gtrellis, Gviz, HelloRanges, HERON, HiTC, IdeoViz, InTAD, MotifDb, MultimodalExperiment, NADfinder, oncoscanR, ORFik, OTUbase, pepStat, periodicDNA, plyranges, proBAMr, pwalign, RepViz, rGADEM, rGREAT, RJMCMCNucleosomes, RNAmodR, S4Arrays, Scale4C, SCOPE, seqArchRplus, SGSeq, SICtools, Structstrings, TEQC, traseR, triplex, VariantTools, VplotR, XVector, pd.ag, pd.aragene.1.0.st, pd.aragene.1.1.st, pd.ath1.121501, pd.barley1, pd.bovgene.1.0.st, pd.bovgene.1.1.st, pd.bovine, pd.bsubtilis, pd.cangene.1.0.st, pd.cangene.1.1.st, pd.canine, pd.canine.2, pd.celegans, pd.chicken, pd.chigene.1.0.st, pd.chigene.1.1.st, pd.chogene.2.0.st, pd.chogene.2.1.st, pd.citrus, pd.clariom.d.human, pd.clariom.s.human, pd.clariom.s.human.ht, pd.clariom.s.mouse, pd.clariom.s.mouse.ht, pd.clariom.s.rat, pd.clariom.s.rat.ht, pd.cotton, pd.cyngene.1.0.st, pd.cyngene.1.1.st, pd.cyrgene.1.0.st, pd.cyrgene.1.1.st, pd.cytogenetics.array, pd.drogene.1.0.st, pd.drogene.1.1.st, pd.drosgenome1, pd.drosophila.2, pd.e.coli.2, pd.ecoli, pd.ecoli.asv2, pd.elegene.1.0.st, pd.elegene.1.1.st, pd.equgene.1.0.st, pd.equgene.1.1.st, pd.felgene.1.0.st, pd.felgene.1.1.st, pd.fingene.1.0.st, pd.fingene.1.1.st, pd.genomewidesnp.5, pd.genomewidesnp.6, pd.guigene.1.0.st, pd.guigene.1.1.st, pd.hc.g110, pd.hg.focus, pd.hg.u133.plus.2, pd.hg.u133a, pd.hg.u133a.2, pd.hg.u133a.tag, pd.hg.u133b, pd.hg.u219, pd.hg.u95a, pd.hg.u95av2, pd.hg.u95b, pd.hg.u95c, pd.hg.u95d, pd.hg.u95e, pd.hg18.60mer.expr, pd.ht.hg.u133.plus.pm, pd.ht.hg.u133a, pd.ht.mg.430a, pd.hta.2.0, pd.hu6800, pd.huex.1.0.st.v2, pd.hugene.1.0.st.v1, pd.hugene.1.1.st.v1, pd.hugene.2.0.st, pd.hugene.2.1.st, pd.maize, pd.mapping250k.nsp, pd.mapping250k.sty, pd.mapping50k.hind240, pd.mapping50k.xba240, pd.margene.1.0.st, pd.margene.1.1.st, pd.medgene.1.0.st, pd.medgene.1.1.st, pd.medicago, pd.mg.u74a, pd.mg.u74av2, pd.mg.u74b, pd.mg.u74bv2, pd.mg.u74c, pd.mg.u74cv2, pd.mirna.1.0, pd.mirna.2.0, pd.mirna.3.0, pd.mirna.4.0, pd.moe430a, pd.moe430b, pd.moex.1.0.st.v1, pd.mogene.1.0.st.v1, pd.mogene.1.1.st.v1, pd.mogene.2.0.st, pd.mogene.2.1.st, pd.mouse430.2, pd.mouse430a.2, pd.mta.1.0, pd.mu11ksuba, pd.mu11ksubb, pd.nugo.hs1a520180, pd.nugo.mm1a520177, pd.ovigene.1.0.st, pd.ovigene.1.1.st, pd.pae.g1a, pd.plasmodium.anopheles, pd.poplar, pd.porcine, pd.porgene.1.0.st, pd.porgene.1.1.st, pd.rabgene.1.0.st, pd.rabgene.1.1.st, pd.rae230a, pd.rae230b, pd.raex.1.0.st.v1, pd.ragene.1.0.st.v1, pd.ragene.1.1.st.v1, pd.ragene.2.0.st, pd.ragene.2.1.st, pd.rat230.2, pd.rcngene.1.0.st, pd.rcngene.1.1.st, pd.rg.u34a, pd.rg.u34b, pd.rg.u34c, pd.rhegene.1.0.st, pd.rhegene.1.1.st, pd.rhesus, pd.rice, pd.rjpgene.1.0.st, pd.rjpgene.1.1.st, pd.rn.u34, pd.rta.1.0, pd.rusgene.1.0.st, pd.rusgene.1.1.st, pd.s.aureus, pd.soybean, pd.soygene.1.0.st, pd.soygene.1.1.st, pd.sugar.cane, pd.tomato, pd.u133.x3p, pd.vitis.vinifera, pd.wheat, pd.x.laevis.2, pd.x.tropicalis, pd.xenopus.laevis, pd.yeast.2, pd.yg.s98, pd.zebgene.1.0.st, pd.zebgene.1.1.st, pd.zebrafish, harbChIP, LiebermanAidenHiC2009 importsMe: alabaster.bumpy, alabaster.ranges, alabaster.se, ALDEx2, AllelicImbalance, amplican, AneuFinder, annmap, annotatr, appreci8R, ASpli, AssessORF, ATACseqQC, ATACseqTFEA, atena, ballgown, bamsignals, BBCAnalyzer, beadarray, BindingSiteFinder, biovizBase, biscuiteer, BiSeq, bnbc, BPRMeth, branchpointer, breakpointR, bsseq, BUMHMM, BumpyMatrix, BUSpaRse, CAGEfightR, cageminer, CAGEr, cBioPortalData, cfdnakit, cfDNAPro, ChIPanalyser, chipenrich, ChIPexoQual, ChIPQC, ChIPseeker, chipseq, ChIPseqR, ChIPsim, ChromHeatMap, ChromSCape, chromstaR, chromVAR, cicero, CINdex, circRNAprofiler, CircSeqAlignTk, cleanUpdTSeq, cleaver, CNEr, cn.mops, CNVfilteR, CNVMetrics, CNVPanelizer, CNVRanger, CNVrd2, COCOA, comapr, coMethDMR, compEpiTools, ComplexHeatmap, CompoundDb, conumee, CopyNumberPlots, CoverageView, crisprBase, crisprBowtie, crisprDesign, crisprScore, CRISPRseek, CrispRVariants, crisprViz, csaw, CTexploreR, dada2, DAMEfinder, debrowser, DECIPHER, deconvR, DegCre, DegNorm, DelayedMatrixStats, deltaCaptureC, demuxSNP, derfinder, derfinderHelper, derfinderPlot, DEScan2, DiffBind, diffHic, diffUTR, DMRcate, DMRScan, dmrseq, DNAfusion, DominoEffect, dreamlet, DRIMSeq, DropletUtils, dStruct, easyRNASeq, EDASeq, eisaR, ELMER, enhancerHomologSearch, EnrichedHeatmap, ensembldb, EpiCompare, epidecodeR, epigraHMM, EpiMix, epimutacions, epiregulon, epistack, EpiTxDb, epivizr, epivizrData, erma, esATAC, EventPointer, extraChIPs, factR, FastqCleaner, fastseg, fcScan, FilterFFPE, FindIT2, fishpond, FLAMES, FRASER, GA4GHclient, gcapc, gDNAx, geneAttribution, GeneGeneInteR, GENESIS, genomation, GenomAutomorphism, genomeIntervals, GenomicAlignments, GenomicDataCommons, GenomicFiles, GenomicInteractionNodes, GenomicInteractions, GenomicOZone, GenomicPlot, GenomicScores, GenomicTuples, GenVisR, geomeTriD, ggbio, girafe, gmapR, gmoviz, GOfuncR, GOpro, GOTHiC, GSVA, GUIDEseq, gwascat, h5vc, HDF5Array, heatmaps, hermes, HicAggR, HiCBricks, HiCcompare, HiCExperiment, HiContacts, HiCool, hicVennDiagram, HilbertCurve, hummingbird, icetea, ideal, idr2d, IMAS, InPAS, INSPEcT, intansv, InteractionSet, InteractiveComplexHeatmap, IntEREst, ipdDb, iSEEu, IsoformSwitchAnalyzeR, isomiRs, IVAS, karyoploteR, katdetectr, knowYourCG, LinTInd, LOLA, m6Aboost, MADSEQ, magpie, mariner, maser, MatrixRider, mCSEA, MDTS, MEAL, MEDIPS, MesKit, metagene2, metaseqR2, methimpute, methInheritSim, methodical, methrix, methylCC, methylInheritance, methylKit, methylPipe, MethylSeekR, methylSig, methylumi, mia, minfi, MinimumDistance, MIRA, missMethyl, mobileRNA, Modstrings, monaLisa, mosaics, MOSim, Motif2Site, motifbreakR, motifmatchr, motifTestR, MouseFM, msa, MSA2dist, MsBackendMassbank, MsBackendMgf, MsBackendMsp, MsBackendRawFileReader, MsBackendSql, MsExperiment, msgbsR, MSnbase, MultiAssayExperiment, MultiDataSet, mumosa, MungeSumstats, musicatk, MutationalPatterns, NanoMethViz, NanoStringNCTools, ncRNAtools, normr, nucleoSim, nucleR, nullranges, OGRE, oligoClasses, OmaDB, OMICsPCA, openPrimeR, OrganismDbi, Organism.dplyr, OUTRIDER, OutSplice, packFinder, panelcn.mops, pcaExplorer, pdInfoBuilder, PhIPData, PICS, PING, plotgardener, plyinteractions, podkat, pqsfinder, pram, prebs, preciseTAD, primirTSS, proActiv, profileplyr, ProteoDisco, PureCN, Pviz, QDNAseq, QFeatures, qpgraph, qPLEXanalyzer, qsea, QuasR, R3CPET, r3Cseq, R453Plus1Toolbox, raer, RaggedExperiment, RAIDS, ramr, RareVariantVis, RCAS, recount, recoup, REDseq, regioneR, regutools, REMP, Repitools, ReportingTools, RESOLVE, rfaRm, rfPred, RgnTX, RiboCrypt, RiboDiPA, RiboProfiling, riboSeqR, ribosomeProfilingQC, rnaEditr, RNAmodR.AlkAnilineSeq, RNAmodR.ML, RNAmodR.RiboMethSeq, RnBeads, roar, rprimer, Rqc, Rsamtools, RSVSim, RTN, rtracklayer, SARC, sarks, saseR, scanMiR, scanMiRApp, SCAN.UPC, scDblFinder, scHOT, scPipe, scRNAseqApp, segmenter, segmentSeq, SeqArray, seqCAT, seqPattern, seqsetvis, SeqSQC, SeqVarTools, sesame, sevenC, ShortRead, signeR, SimFFPE, sitadela, SMITE, snapcount, SNPhood, soGGi, SomaticSignatures, SOMNiBUS, SparseArray, SparseSignatures, spatzie, Spectra, spiky, SpliceWiz, SplicingGraphs, SPLINTER, strandCheckR, StructuralVariantAnnotation, SummarizedExperiment, SynExtend, tadar, TAPseq, target, TCGAbiolinks, TCGAutils, TCseq, TFBSTools, TFEA.ChIP, TFHAZ, tidyCoverage, TitanCNA, TnT, tracktables, trackViewer, transcriptR, transmogR, TreeSummarizedExperiment, TRESS, tricycle, tRNA, tRNAdbImport, tRNAscanImport, TVTB, txcutr, txdbmaker, tximeta, UMI4Cats, Uniquorn, universalmotif, UPDhmm, VanillaICE, VarCon, VariantAnnotation, VariantExperiment, VariantFiltering, VaSP, VDJdive, wavClusteR, wiggleplotr, xcms, xcore, XNAString, XVector, yamss, ZygosityPredictor, fitCons.UCSC.hg19, GenomicState, MafDb.1Kgenomes.phase1.GRCh38, MafDb.1Kgenomes.phase1.hs37d5, MafDb.1Kgenomes.phase3.GRCh38, MafDb.1Kgenomes.phase3.hs37d5, MafDb.ExAC.r1.0.GRCh38, MafDb.ExAC.r1.0.hs37d5, MafDb.ExAC.r1.0.nonTCGA.GRCh38, MafDb.ExAC.r1.0.nonTCGA.hs37d5, MafDb.gnomAD.r2.1.GRCh38, MafDb.gnomAD.r2.1.hs37d5, MafDb.gnomADex.r2.1.GRCh38, MafDb.gnomADex.r2.1.hs37d5, MafDb.TOPMed.freeze5.hg19, MafDb.TOPMed.freeze5.hg38, MafH5.gnomAD.v4.0.GRCh38, pd.081229.hg18.promoter.medip.hx1, pd.2006.07.18.hg18.refseq.promoter, pd.2006.07.18.mm8.refseq.promoter, pd.2006.10.31.rn34.refseq.promoter, pd.charm.hg18.example, pd.feinberg.hg18.me.hx1, pd.feinberg.mm8.me.hx1, pd.mirna.3.1, phastCons100way.UCSC.hg19, phastCons100way.UCSC.hg38, phastCons7way.UCSC.hg38, SNPlocs.Hsapiens.dbSNP144.GRCh37, SNPlocs.Hsapiens.dbSNP144.GRCh38, SNPlocs.Hsapiens.dbSNP149.GRCh38, SNPlocs.Hsapiens.dbSNP150.GRCh38, SNPlocs.Hsapiens.dbSNP155.GRCh37, SNPlocs.Hsapiens.dbSNP155.GRCh38, XtraSNPlocs.Hsapiens.dbSNP144.GRCh37, XtraSNPlocs.Hsapiens.dbSNP144.GRCh38, chipenrich.data, fourDNData, leeBamViews, MethylSeqData, pd.atdschip.tiling, sesameData, SomaticCancerAlterations, spatialLIBD, seqpac, alakazam, cpp11bigwig, crispRdesignR, cubar, geneHapR, geno2proteo, GenoPop, hahmmr, hoardeR, ICAMS, iimi, karyotapR, locuszoomr, lolliplot, longreadvqs, LoopRig, MAAPER, MitoHEAR, MOCHA, noisyr, numbat, oncoPredict, PACVr, RapidoPGS, refseqR, revert, rnaCrosslinkOO, RTIGER, Signac, simMP, STRMPS, tidygenomics, VALERIE suggestsMe: annotate, AnnotationHub, BaseSpaceR, BiocGenerics, BREW3R.r, Chicago, ClassifyR, DFplyr, easylift, epivizrChart, gDRcore, gDRutils, Glimma, GWASTools, HilbertVis, HilbertVisGUI, maftools, martini, MiRaGE, multicrispr, partCNV, plyxp, regionalpcs, regionReport, RTCGA, S4Vectors, SigsPack, splatter, svaNUMT, svaRetro, systemPipeR, TFutils, tidybulk, MetaScope, scMultiome, systemPipeRdata, xcoredata, yeastRNASeq, fuzzyjoin, gkmSVM, MARVEL, polyRAD, rliger, scPloidy, seqmagick, Seurat, sigminer, SNPassoc, updog, valr linksToMe: Biostrings, CNEr, DECIPHER, GenomicAlignments, GenomicRanges, kebabs, MatrixRider, pwalign, Rsamtools, rtracklayer, ShortRead, SparseArray, Structstrings, triplex, VariantAnnotation, VariantFiltering, XVector dependencyCount: 7 Package: ISAnalytics Version: 1.16.1 Depends: R (>= 4.4.0) Imports: utils, dplyr, readr, tidyr, purrr, rlang, tibble, stringr, fs, lubridate, lifecycle, ggplot2, ggrepel, stats, readxl, tools, grDevices, forcats, glue, shiny, shinyWidgets, datamods, bslib, DT Suggests: testthat, covr, knitr, BiocStyle, sessioninfo, rmarkdown, roxygen2, vegan, withr, extraDistr, ggalluvial, scales, gridExtra, R.utils, RefManageR, flexdashboard, circlize, plotly, gtools, eulerr, openxlsx, jsonlite, pheatmap, BiocParallel, progressr, future, doFuture, foreach, psych, data.table, Rcapture License: CC BY 4.0 MD5sum: 8f6e89a978610a3dae4847e28e495b40 NeedsCompilation: no Title: Analyze gene therapy vector insertion sites data identified from genomics next generation sequencing reads for clonal tracking studies Description: In gene therapy, stem cells are modified using viral vectors to deliver the therapeutic transgene and replace functional properties since the genetic modification is stable and inherited in all cell progeny. The retrieval and mapping of the sequences flanking the virus-host DNA junctions allows the identification of insertion sites (IS), essential for monitoring the evolution of genetically modified cells in vivo. A comprehensive toolkit for the analysis of IS is required to foster clonal trackign studies and supporting the assessment of safety and long term efficacy in vivo. This package is aimed at (1) supporting automation of IS workflow, (2) performing base and advance analysis for IS tracking (clonal abundance, clonal expansions and statistics for insertional mutagenesis, etc.), (3) providing basic biology insights of transduced stem cells in vivo. biocViews: BiomedicalInformatics, Sequencing, SingleCell Author: Francesco Gazzo [cre], Giulia Pais [aut] (), Andrea Calabria [aut], Giulio Spinozzi [aut] Maintainer: Francesco Gazzo URL: https://calabrialab.github.io/ISAnalytics, https://github.com//calabrialab/isanalytics, https://calabrialab.github.io/ISAnalytics/ VignetteBuilder: knitr BugReports: https://github.com/calabrialab/ISAnalytics/issues git_url: https://git.bioconductor.org/packages/ISAnalytics git_branch: RELEASE_3_20 git_last_commit: 38a25cb git_last_commit_date: 2024-12-05 Date/Publication: 2024-12-05 source.ver: src/contrib/ISAnalytics_1.16.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/ISAnalytics_1.16.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ISAnalytics_1.16.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ISAnalytics_1.16.1.tgz vignettes: vignettes/ISAnalytics/inst/doc/ISAnalytics.html, vignettes/ISAnalytics/inst/doc/workflow_start.html vignetteTitles: ISAnalytics, workflow_start hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ISAnalytics/inst/doc/ISAnalytics.R, vignettes/ISAnalytics/inst/doc/workflow_start.R dependencyCount: 115 Package: iSEE Version: 2.18.0 Depends: SummarizedExperiment, SingleCellExperiment Imports: methods, BiocGenerics, S4Vectors, utils, stats, shiny, shinydashboard, shinyAce, shinyjs, DT, rintrojs, ggplot2, ggrepel, colourpicker, igraph, vipor, mgcv, graphics, grDevices, viridisLite, shinyWidgets, listviewer, ComplexHeatmap, circlize, grid Suggests: testthat, covr, BiocStyle, knitr, rmarkdown, scRNAseq, TENxPBMCData, scater, DelayedArray, HDF5Array, RColorBrewer, viridis, htmltools, GenomicRanges License: MIT + file LICENSE MD5sum: 610054ed8c9baa845d8ac58576cad743 NeedsCompilation: no Title: Interactive SummarizedExperiment Explorer Description: Create an interactive Shiny-based graphical user interface for exploring data stored in SummarizedExperiment objects, including row- and column-level metadata. The interface supports transmission of selections between plots and tables, code tracking, interactive tours, interactive or programmatic initialization, preservation of app state, and extensibility to new panel types via S4 classes. Special attention is given to single-cell data in a SingleCellExperiment object with visualization of dimensionality reduction results. biocViews: CellBasedAssays, Clustering, DimensionReduction, FeatureExtraction, GeneExpression, GUI, ImmunoOncology, ShinyApps, SingleCell, Transcription, Transcriptomics, Visualization Author: Kevin Rue-Albrecht [aut, cre] (), Federico Marini [aut] (), Charlotte Soneson [aut] (), Aaron Lun [aut] () Maintainer: Kevin Rue-Albrecht URL: https://isee.github.io/iSEE/ VignetteBuilder: knitr BugReports: https://github.com/iSEE/iSEE/issues git_url: https://git.bioconductor.org/packages/iSEE git_branch: RELEASE_3_20 git_last_commit: 28d19ac git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iSEE_2.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iSEE_2.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iSEE_2.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iSEE_2.18.0.tgz vignettes: vignettes/iSEE/inst/doc/basic.html, vignettes/iSEE/inst/doc/bigdata.html, vignettes/iSEE/inst/doc/configure.html, vignettes/iSEE/inst/doc/custom.html, vignettes/iSEE/inst/doc/ecm.html, vignettes/iSEE/inst/doc/links.html, vignettes/iSEE/inst/doc/voice.html vignetteTitles: 1. The iSEE User's Guide, 6. Using iSEE with big data, 3. Configuring iSEE apps, 5. Deploying custom panels, 4. The ExperimentColorMap Class, 2. Sharing information across panels, 7. Speech recognition hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/iSEE/inst/doc/basic.R, vignettes/iSEE/inst/doc/bigdata.R, vignettes/iSEE/inst/doc/configure.R, vignettes/iSEE/inst/doc/custom.R, vignettes/iSEE/inst/doc/ecm.R, vignettes/iSEE/inst/doc/links.R, vignettes/iSEE/inst/doc/voice.R dependsOnMe: iSEEde, iSEEhex, iSEEpathways, iSEEtree, iSEEu importsMe: iSEEfier, iSEEhub, iSEEindex suggestsMe: schex, DuoClustering2018, HCAData, HCATonsilData, TabulaMurisData, TabulaMurisSenisData dependencyCount: 120 Package: iSEEde Version: 1.4.0 Depends: iSEE Imports: DESeq2, edgeR, methods, S4Vectors, shiny, SummarizedExperiment Suggests: airway, BiocStyle, covr, knitr, limma, org.Hs.eg.db, RefManageR, rmarkdown, scuttle, sessioninfo, statmod, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: ef63989cd800352207ea9004c2579544 NeedsCompilation: no Title: iSEE extension for panels related to differential expression analysis Description: This package contains diverse functionality to extend the usage of the iSEE package, including additional classes for the panels or modes facilitating the analysis of differential expression results. This package does not perform differential expression. Instead, it provides methods to embed precomputed differential expression results in a SummarizedExperiment object, in a manner that is compatible with interactive visualisation in iSEE applications. biocViews: Software, Infrastructure, DifferentialExpression Author: Kevin Rue-Albrecht [aut, cre] (), Thomas Sandmann [ctb] (), Denali Therapeutics [fnd] Maintainer: Kevin Rue-Albrecht URL: https://github.com/iSEE/iSEEde VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/iSEEde git_url: https://git.bioconductor.org/packages/iSEEde git_branch: RELEASE_3_20 git_last_commit: 6bfae5b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iSEEde_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iSEEde_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iSEEde_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iSEEde_1.4.0.tgz vignettes: vignettes/iSEEde/inst/doc/annotations.html, vignettes/iSEEde/inst/doc/iSEEde.html, vignettes/iSEEde/inst/doc/methods.html, vignettes/iSEEde/inst/doc/rounding.html vignetteTitles: Using annotations to facilitate interactive exploration, Introduction to iSEEde, Supported differential expression methods, Rounding numeric values hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iSEEde/inst/doc/annotations.R, vignettes/iSEEde/inst/doc/iSEEde.R, vignettes/iSEEde/inst/doc/methods.R, vignettes/iSEEde/inst/doc/rounding.R suggestsMe: iSEEpathways dependencyCount: 134 Package: iSEEfier Version: 1.2.0 Imports: iSEE, iSEEu, methods, ggplot2, igraph, rlang, stats, SummarizedExperiment, SingleCellExperiment, visNetwork, BiocBaseUtils Suggests: knitr, rmarkdown, scater, scRNAseq, org.Mm.eg.db, scuttle, BiocStyle, testthat (>= 3.0.0) License: MIT + file LICENSE Archs: x64 MD5sum: b11503c5591e64502cae064f7ac5f708 NeedsCompilation: no Title: Streamlining the creation of initial states for starting an iSEE instance Description: iSEEfier provides a set of functionality to quickly and intuitively create, inspect, and combine initial configuration objects. These can be conveniently passed in a straightforward manner to the function call to launch iSEE() with the specified configuration. This package currently works seamlessly with the sets of panels provided by the iSEE and iSEEu packages, but can be extended to accommodate the usage of any custom panel (e.g. from iSEEde, iSEEpathways, or any panel developed independently by the user). biocViews: CellBasedAssays, Clustering, DimensionReduction, FeatureExtraction, GUI, GeneExpression, ImmunoOncology, ShinyApps, SingleCell, Software, Transcription, Transcriptomics, Visualization Author: Najla Abassi [aut, cre] (), Federico Marini [aut] () Maintainer: Najla Abassi URL: https://github.com/NajlaAbassi/iSEEfier VignetteBuilder: knitr BugReports: https://github.com/NajlaAbassi/iSEEfier/issues git_url: https://git.bioconductor.org/packages/iSEEfier git_branch: RELEASE_3_20 git_last_commit: 4e54ca7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iSEEfier_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iSEEfier_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iSEEfier_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iSEEfier_1.2.0.tgz vignettes: vignettes/iSEEfier/inst/doc/iSEEfier_userguide.html vignetteTitles: iSEEfier_userguide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/iSEEfier/inst/doc/iSEEfier_userguide.R dependencyCount: 126 Package: iSEEhex Version: 1.8.0 Depends: SummarizedExperiment, iSEE Imports: ggplot2, hexbin, methods, shiny Suggests: BiocStyle, covr, knitr, RefManageR, rmarkdown, sessioninfo, testthat (>= 3.0.0), scRNAseq, scater License: Artistic-2.0 MD5sum: 5436e4d62fe8747281aec6402f6544d4 NeedsCompilation: no Title: iSEE extension for summarising data points in hexagonal bins Description: This package provides panels summarising data points in hexagonal bins for `iSEE`. It is part of `iSEEu`, the iSEE universe of panels that extend the `iSEE` package. biocViews: Software, Infrastructure Author: Kevin Rue-Albrecht [aut, cre] (), Charlotte Soneson [aut] (), Federico Marini [aut] (), Aaron Lun [aut] () Maintainer: Kevin Rue-Albrecht URL: https://github.com/iSEE/iSEEhex VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/iSEEhex git_url: https://git.bioconductor.org/packages/iSEEhex git_branch: RELEASE_3_20 git_last_commit: 75e64d0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iSEEhex_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iSEEhex_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iSEEhex_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iSEEhex_1.8.0.tgz vignettes: vignettes/iSEEhex/inst/doc/iSEEhex.html vignetteTitles: The iSEEhex package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iSEEhex/inst/doc/iSEEhex.R dependsOnMe: iSEEu dependencyCount: 122 Package: iSEEhub Version: 1.8.0 Depends: SummarizedExperiment, SingleCellExperiment, ExperimentHub Imports: AnnotationHub, BiocManager, DT, iSEE, methods, rintrojs, S4Vectors, shiny, shinydashboard, shinyjs, utils Suggests: BiocStyle, covr, knitr, RefManageR, rmarkdown, sessioninfo, testthat (>= 3.0.0), nullrangesData Enhances: BioPlex, biscuiteerData, bodymapRat, CLLmethylation, CopyNeutralIMA, curatedAdipoArray, curatedAdipoChIP, curatedMetagenomicData, curatedTCGAData, DMRcatedata, DuoClustering2018, easierData, emtdata, epimutacionsData, FieldEffectCrc, GenomicDistributionsData, GSE103322, GSE13015, GSE62944, HDCytoData, HMP16SData, HumanAffyData, imcdatasets, mcsurvdata, MetaGxBreast, MetaGxOvarian, MetaGxPancreas, MethylSeqData, muscData, NxtIRFdata, ObMiTi, quantiseqr, restfulSEData, RLHub, sesameData, SimBenchData, SingleCellMultiModal, SingleMoleculeFootprintingData, spatialDmelxsim, STexampleData, TabulaMurisData, TabulaMurisSenisData, TENxVisiumData, tissueTreg, VectraPolarisData, xcoredata License: Artistic-2.0 MD5sum: 523b657b491c77e31636c78ea5d50db0 NeedsCompilation: no Title: iSEE for the Bioconductor ExperimentHub Description: This package defines a custom landing page for an iSEE app interfacing with the Bioconductor ExperimentHub. The landing page allows users to browse the ExperimentHub, select a data set, download and cache it, and import it directly into a Bioconductor iSEE app. biocViews: DataImport, ImmunoOncology Infrastructure, ShinyApps, SingleCell, Software Author: Kevin Rue-Albrecht [aut, cre] () Maintainer: Kevin Rue-Albrecht URL: https://github.com/iSEE/iSEEhub VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/iSEEhub git_url: https://git.bioconductor.org/packages/iSEEhub git_branch: RELEASE_3_20 git_last_commit: e7cae1a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iSEEhub_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iSEEhub_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iSEEhub_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iSEEhub_1.8.0.tgz vignettes: vignettes/iSEEhub/inst/doc/contributing.html, vignettes/iSEEhub/inst/doc/iSEEhub.html vignetteTitles: Contributing to iSEEhub, Introduction to iSEEhub hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iSEEhub/inst/doc/contributing.R, vignettes/iSEEhub/inst/doc/iSEEhub.R dependencyCount: 144 Package: iSEEindex Version: 1.4.0 Depends: SummarizedExperiment, SingleCellExperiment Imports: BiocFileCache, DT, iSEE, methods, paws.storage, rintrojs, shiny, shinydashboard, shinyjs, stringr, urltools, utils Suggests: BiocStyle, covr, knitr, RefManageR, rmarkdown, markdown, scRNAseq, sessioninfo, testthat (>= 3.0.0), yaml License: Artistic-2.0 MD5sum: 89858c285959d94b41f065c9973efa52 NeedsCompilation: no Title: iSEE extension for a landing page to a custom collection of data sets Description: This package provides an interface to any collection of data sets within a single iSEE web-application. The main functionality of this package is to define a custom landing page allowing app maintainers to list a custom collection of data sets that users can selected from and directly load objects into an iSEE web-application. biocViews: Software, Infrastructure Author: Kevin Rue-Albrecht [aut, cre] (), Thomas Sandmann [ctb] (), Federico Marini [aut] (), Denali Therapeutics [fnd] Maintainer: Kevin Rue-Albrecht URL: https://github.com/iSEE/iSEEindex VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/iSEEindex git_url: https://git.bioconductor.org/packages/iSEEindex git_branch: RELEASE_3_20 git_last_commit: 52cec33 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iSEEindex_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iSEEindex_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iSEEindex_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iSEEindex_1.4.0.tgz vignettes: vignettes/iSEEindex/inst/doc/header.html, vignettes/iSEEindex/inst/doc/iSEEindex.html, vignettes/iSEEindex/inst/doc/resources.html vignetteTitles: Adding custom header and footer to the landing page, Introduction to iSEEindex, Implementing custom iSEEindex resources hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iSEEindex/inst/doc/header.R, vignettes/iSEEindex/inst/doc/iSEEindex.R, vignettes/iSEEindex/inst/doc/resources.R dependencyCount: 142 Package: iSEEpathways Version: 1.4.0 Depends: iSEE Imports: ggplot2, methods, S4Vectors, shiny, shinyWidgets, stats, SummarizedExperiment Suggests: airway, BiocStyle, covr, edgeR, fgsea, GO.db, iSEEde, knitr, org.Hs.eg.db, RefManageR, rmarkdown, scater, scuttle, sessioninfo, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: c92fd9a45f30200db5072ec7a61b0e05 NeedsCompilation: no Title: iSEE extension for panels related to pathway analysis Description: This package contains diverse functionality to extend the usage of the iSEE package, including additional classes for the panels or modes facilitating the analysis of pathway analysis results. This package does not perform pathway analysis. Instead, it provides methods to embed precomputed pathway analysis results in a SummarizedExperiment object, in a manner that is compatible with interactive visualisation in iSEE applications. biocViews: Software, Infrastructure, DifferentialExpression, GeneExpression, GUI, Visualization, Pathways, GeneSetEnrichment, GO, ShinyApps Author: Kevin Rue-Albrecht [aut, cre] (), Thomas Sandmann [ctb] (), Charlotte Soneson [aut] (), Federico Marini [ctb] (), Denali Therapeutics [fnd] Maintainer: Kevin Rue-Albrecht URL: https://github.com/iSEE/iSEEpathways VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/iSEEpathways git_url: https://git.bioconductor.org/packages/iSEEpathways git_branch: RELEASE_3_20 git_last_commit: ae67792 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iSEEpathways_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iSEEpathways_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iSEEpathways_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iSEEpathways_1.4.0.tgz vignettes: vignettes/iSEEpathways/inst/doc/gene-ontology.html, vignettes/iSEEpathways/inst/doc/integration.html, vignettes/iSEEpathways/inst/doc/iSEEpathways.html vignetteTitles: Working with the Gene Ontology, Integration with other panels, Introduction to iSEEpathways hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iSEEpathways/inst/doc/gene-ontology.R, vignettes/iSEEpathways/inst/doc/integration.R, vignettes/iSEEpathways/inst/doc/iSEEpathways.R dependencyCount: 121 Package: iSEEtree Version: 1.0.0 Depends: R (>= 4.4.0), iSEE Imports: grDevices, methods, miaViz, S4Vectors, shiny, mia, shinyWidgets, SingleCellExperiment, SummarizedExperiment, TreeSummarizedExperiment, utils Suggests: biomformat, BiocStyle, knitr, MGnifyR, RefManageR, remotes, rmarkdown, scater, testthat (>= 3.0.0), vegan License: Artistic-2.0 MD5sum: 745ee6b1394c38405f4b3660159ac465 NeedsCompilation: no Title: Interactive visualisation for microbiome data Description: iSEEtree is an extension of iSEE for the TreeSummarizedExperiment. It leverages the functionality from the miaViz package for microbiome data visualisation to create panels that are specific for TreeSummarizedExperiment objects. Not surprisingly, it also depends on the generic panels from iSEE. biocViews: Microbiome, Software, Visualization, GUI, ShinyApps, DataImport Author: Giulio Benedetti [aut, cre] (), Ely Seraidarian [ctb] (), Leo Lahti [aut] () Maintainer: Giulio Benedetti URL: https://github.com/microbiome/iSEEtree VignetteBuilder: knitr BugReports: https://github.com/microbiome/iSEEtree/issues git_url: https://git.bioconductor.org/packages/iSEEtree git_branch: RELEASE_3_20 git_last_commit: 38de048 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iSEEtree_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iSEEtree_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iSEEtree_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iSEEtree_1.0.0.tgz vignettes: vignettes/iSEEtree/inst/doc/iSEEtree.html vignetteTitles: iSEEtree hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iSEEtree/inst/doc/iSEEtree.R dependencyCount: 230 Package: iSEEu Version: 1.18.0 Depends: iSEE, iSEEhex Imports: methods, S4Vectors, IRanges, shiny, SummarizedExperiment, SingleCellExperiment, ggplot2 (>= 3.4.0), DT, stats, colourpicker, shinyAce Suggests: scRNAseq, scater, scran, airway, edgeR, AnnotationDbi, org.Hs.eg.db, GO.db, KEGGREST, knitr, igraph, rmarkdown, BiocStyle, htmltools, Rtsne, uwot, testthat (>= 2.1.0), covr License: MIT + file LICENSE MD5sum: afafd1e9ccb493a2a6fd86ed07ef6b42 NeedsCompilation: no Title: iSEE Universe Description: iSEEu (the iSEE universe) contains diverse functionality to extend the usage of the iSEE package, including additional classes for the panels, or modes allowing easy configuration of iSEE applications. biocViews: ImmunoOncology, Visualization, GUI, DimensionReduction, FeatureExtraction, Clustering, Transcription, GeneExpression, Transcriptomics, SingleCell, CellBasedAssays Author: Kevin Rue-Albrecht [aut, cre] (), Charlotte Soneson [aut] (), Federico Marini [aut] (), Aaron Lun [aut] (), Michael Stadler [ctb] Maintainer: Kevin Rue-Albrecht URL: https://github.com/iSEE/iSEEu VignetteBuilder: knitr BugReports: https://github.com/iSEE/iSEEu/issues git_url: https://git.bioconductor.org/packages/iSEEu git_branch: RELEASE_3_20 git_last_commit: ec618e5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iSEEu_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iSEEu_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iSEEu_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iSEEu_1.18.0.tgz vignettes: vignettes/iSEEu/inst/doc/iSEEu.html vignetteTitles: Panel universe hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/iSEEu/inst/doc/iSEEu.R importsMe: iSEEfier dependencyCount: 123 Package: iSeq Version: 1.58.0 Depends: R (>= 2.10.0) License: GPL (>= 2) MD5sum: 2bc4f21bcd55e452770d0be195985880 NeedsCompilation: yes Title: Bayesian Hierarchical Modeling of ChIP-seq Data Through Hidden Ising Models Description: Bayesian hidden Ising models are implemented to identify IP-enriched genomic regions from ChIP-seq data. They can be used to analyze ChIP-seq data with and without controls and replicates. biocViews: ChIPSeq, Sequencing Author: Qianxing Mo Maintainer: Qianxing Mo git_url: https://git.bioconductor.org/packages/iSeq git_branch: RELEASE_3_20 git_last_commit: 9d68dca git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iSeq_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iSeq_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iSeq_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iSeq_1.58.0.tgz vignettes: vignettes/iSeq/inst/doc/iSeq.pdf vignetteTitles: iSeq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iSeq/inst/doc/iSeq.R dependencyCount: 0 Package: ISLET Version: 1.8.0 Depends: R(>= 4.2.0), Matrix, parallel, BiocParallel, SummarizedExperiment, BiocGenerics, lme4, nnls Imports: stats, methods, purrr, abind Suggests: BiocStyle, knitr, rmarkdown, htmltools, RUnit, dplyr License: GPL-2 MD5sum: dee7246f762794b535f67abf34b9a2d9 NeedsCompilation: no Title: Individual-Specific ceLl typE referencing Tool Description: ISLET is a method to conduct signal deconvolution for general -omics data. It can estimate the individual-specific and cell-type-specific reference panels, when there are multiple samples observed from each subject. It takes the input of the observed mixture data (feature by sample matrix), and the cell type mixture proportions (sample by cell type matrix), and the sample-to-subject information. It can solve for the reference panel on the individual-basis and conduct test to identify cell-type-specific differential expression (csDE) genes. It also improves estimated cell type mixture proportions by integrating personalized reference panels. biocViews: Software, RNASeq, Transcriptomics, Transcription, Sequencing, GeneExpression, DifferentialExpression, DifferentialMethylation Author: Hao Feng [aut, cre] (), Qian Li [aut], Guanqun Meng [aut] Maintainer: Hao Feng VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ISLET git_branch: RELEASE_3_20 git_last_commit: 670b8a9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ISLET_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ISLET_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ISLET_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ISLET_1.8.0.tgz vignettes: vignettes/ISLET/inst/doc/ISLET.html vignetteTitles: Individual-specific and cell-type-specific deconvolution using ISLET hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ISLET/inst/doc/ISLET.R dependencyCount: 63 Package: isobar Version: 1.52.0 Depends: R (>= 2.10.0), Biobase, stats, methods Imports: distr, plyr, biomaRt, ggplot2 Suggests: MSnbase, OrgMassSpecR, XML, RJSONIO, Hmisc, gplots, RColorBrewer, gridExtra, limma, boot, DBI, MASS License: LGPL-2 MD5sum: 1d5e059f717cae9a8989a9b7a7f7b96d NeedsCompilation: no Title: Analysis and quantitation of isobarically tagged MSMS proteomics data Description: isobar provides methods for preprocessing, normalization, and report generation for the analysis of quantitative mass spectrometry proteomics data labeled with isobaric tags, such as iTRAQ and TMT. Features modules for integrating and validating PTM-centric datasets (isobar-PTM). More information on http://www.ms-isobar.org. biocViews: ImmunoOncology, Proteomics, MassSpectrometry, Bioinformatics, MultipleComparisons, QualityControl Author: Florian P Breitwieser and Jacques Colinge , with contributions from Alexey Stukalov , Xavier Robin and Florent Gluck Maintainer: Florian P Breitwieser URL: https://github.com/fbreitwieser/isobar BugReports: https://github.com/fbreitwieser/isobar/issues git_url: https://git.bioconductor.org/packages/isobar git_branch: RELEASE_3_20 git_last_commit: e4ca7a7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/isobar_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/isobar_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/isobar_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/isobar_1.52.0.tgz vignettes: vignettes/isobar/inst/doc/isobar-devel.pdf, vignettes/isobar/inst/doc/isobar.pdf, vignettes/isobar/inst/doc/isobar-ptm.pdf, vignettes/isobar/inst/doc/isobar-usecases.pdf vignetteTitles: isobar for developers, isobar package for iTRAQ and TMT protein quantification, isobar for quantification of PTM datasets, Usecases for isobar package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/isobar/inst/doc/isobar-devel.R, vignettes/isobar/inst/doc/isobar-ptm.R, vignettes/isobar/inst/doc/isobar.R, vignettes/isobar/inst/doc/isobar-usecases.R dependencyCount: 91 Package: IsoBayes Version: 1.4.0 Depends: R (>= 4.3.0) Imports: methods, Rcpp, data.table, glue, stats, doParallel, parallel, doRNG, foreach, iterators, ggplot2, HDInterval, SummarizedExperiment, S4Vectors LinkingTo: Rcpp, RcppArmadillo Suggests: knitr, rmarkdown, testthat, BiocStyle License: GPL-3 MD5sum: 8441343e4f5d5e49720a871d5a103b54 NeedsCompilation: yes Title: IsoBayes: Single Isoform protein inference Method via Bayesian Analyses Description: IsoBayes is a Bayesian method to perform inference on single protein isoforms. Our approach infers the presence/absence of protein isoforms, and also estimates their abundance; additionally, it provides a measure of the uncertainty of these estimates, via: i) the posterior probability that a protein isoform is present in the sample; ii) a posterior credible interval of its abundance. IsoBayes inputs liquid cromatography mass spectrometry (MS) data, and can work with both PSM counts, and intensities. When available, trascript isoform abundances (i.e., TPMs) are also incorporated: TPMs are used to formulate an informative prior for the respective protein isoform relative abundance. We further identify isoforms where the relative abundance of proteins and transcripts significantly differ. We use a two-layer latent variable approach to model two sources of uncertainty typical of MS data: i) peptides may be erroneously detected (even when absent); ii) many peptides are compatible with multiple protein isoforms. In the first layer, we sample the presence/absence of each peptide based on its estimated probability of being mistakenly detected, also known as PEP (i.e., posterior error probability). In the second layer, for peptides that were estimated as being present, we allocate their abundance across the protein isoforms they map to. These two steps allow us to recover the presence and abundance of each protein isoform. biocViews: StatisticalMethod, Bayesian, Proteomics, MassSpectrometry, AlternativeSplicing, Sequencing, RNASeq, GeneExpression, Genetics, Visualization, Software Author: Jordy Bollon [aut], Simone Tiberi [aut, cre] () Maintainer: Simone Tiberi URL: https://github.com/SimoneTiberi/IsoBayes SystemRequirements: C++17 VignetteBuilder: knitr BugReports: https://github.com/SimoneTiberi/IsoBayes/issues git_url: https://git.bioconductor.org/packages/IsoBayes git_branch: RELEASE_3_20 git_last_commit: 8e3242d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IsoBayes_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IsoBayes_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IsoBayes_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IsoBayes_1.4.0.tgz vignettes: vignettes/IsoBayes/inst/doc/IsoBayes.html vignetteTitles: IsoBayes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/IsoBayes/inst/doc/IsoBayes.R dependencyCount: 74 Package: IsoCorrectoR Version: 1.24.0 Depends: R (>= 3.5) Imports: dplyr, magrittr, methods, quadprog, readr, readxl, stringr, tibble, tools, utils, pracma, WriteXLS Suggests: IsoCorrectoRGUI, knitr, rmarkdown, testthat, BiocStyle License: GPL-3 Archs: x64 MD5sum: b2d0f007cc55788211373f20740d79a5 NeedsCompilation: no Title: Correction for natural isotope abundance and tracer purity in MS and MS/MS data from stable isotope labeling experiments Description: IsoCorrectoR performs the correction of mass spectrometry data from stable isotope labeling/tracing metabolomics experiments with regard to natural isotope abundance and tracer impurity. Data from both MS and MS/MS measurements can be corrected (with any tracer isotope: 13C, 15N, 18O...), as well as ultra-high resolution MS data from multiple-tracer experiments (e.g. 13C and 15N used simultaneously). See the Bioconductor package IsoCorrectoRGUI for a graphical user interface to IsoCorrectoR. NOTE: With R version 4.0.0, writing correction results to Excel files may currently not work on Windows. However, writing results to csv works as before. biocViews: Software, Metabolomics, MassSpectrometry, Preprocessing, ImmunoOncology Author: Christian Kohler [cre, aut], Paul Heinrich [aut] Maintainer: Christian Kohler URL: https://genomics.ur.de/files/IsoCorrectoR/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/IsoCorrectoR git_branch: RELEASE_3_20 git_last_commit: c8017d8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IsoCorrectoR_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IsoCorrectoR_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IsoCorrectoR_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IsoCorrectoR_1.24.0.tgz vignettes: vignettes/IsoCorrectoR/inst/doc/IsoCorrectoR.html vignetteTitles: IsoCorrectoR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/IsoCorrectoR/inst/doc/IsoCorrectoR.R importsMe: IsoCorrectoRGUI dependencyCount: 41 Package: IsoCorrectoRGUI Version: 1.22.0 Depends: R (>= 3.6) Imports: IsoCorrectoR, readxl, tcltk2, tcltk, utils Suggests: knitr, rmarkdown, testthat, BiocStyle License: GPL-3 MD5sum: 1ba9ee16b27e3490b42099c37357da17 NeedsCompilation: no Title: Graphical User Interface for IsoCorrectoR Description: IsoCorrectoRGUI is a Graphical User Interface for the IsoCorrectoR package. IsoCorrectoR performs the correction of mass spectrometry data from stable isotope labeling/tracing metabolomics experiments with regard to natural isotope abundance and tracer impurity. Data from both MS and MS/MS measurements can be corrected (with any tracer isotope: 13C, 15N, 18O...), as well as high resolution MS data from multiple-tracer experiments (e.g. 13C and 15N used simultaneously). biocViews: Software, Metabolomics, MassSpectrometry, Preprocessing, GUI, ImmunoOncology Author: Christian Kohler [cre, aut], Paul Kuerner [aut], Paul Heinrich [aut] Maintainer: Christian Kohler URL: https://genomics.ur.de/files/IsoCorrectoRGUI VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/IsoCorrectoRGUI git_branch: RELEASE_3_20 git_last_commit: 5aeae50 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/IsoCorrectoRGUI_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IsoCorrectoRGUI_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IsoCorrectoRGUI_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IsoCorrectoRGUI_1.22.0.tgz vignettes: vignettes/IsoCorrectoRGUI/inst/doc/IsoCorrectoRGUI.html vignetteTitles: IsoCorrectoR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/IsoCorrectoRGUI/inst/doc/IsoCorrectoRGUI.R suggestsMe: IsoCorrectoR dependencyCount: 44 Package: IsoformSwitchAnalyzeR Version: 2.6.0 Depends: R (>= 4.2), limma, DEXSeq, satuRn (>= 1.7.0), sva, ggplot2 (>= 3.3.5), pfamAnalyzeR Imports: methods, BSgenome, plyr, reshape2, gridExtra, Biostrings (>= 2.50.0), IRanges, GenomicRanges, RColorBrewer, rtracklayer, VennDiagram, DBI, grDevices, graphics, stats, utils, GenomeInfoDb, grid, tximport (>= 1.7.1), tximeta (>= 1.7.12), edgeR, futile.logger, stringr, dplyr, magrittr, readr, tibble, XVector, BiocGenerics, RCurl, Biobase, SummarizedExperiment, tidyr, S4Vectors, BiocParallel, pwalign Suggests: knitr, BSgenome.Hsapiens.UCSC.hg19, rmarkdown License: GPL (>= 2) MD5sum: 7818e5233168673220445e38a823ce51 NeedsCompilation: yes Title: Identify, Annotate and Visualize Isoform Switches with Functional Consequences from both short- and long-read RNA-seq data Description: Analysis of alternative splicing and isoform switches with predicted functional consequences (e.g. gain/loss of protein domains etc.) from quantification of all types of RNASeq by tools such as Kallisto, Salmon, StringTie, Cufflinks/Cuffdiff etc. biocViews: GeneExpression, Transcription, AlternativeSplicing, DifferentialExpression, DifferentialSplicing, Visualization, StatisticalMethod, TranscriptomeVariant, BiomedicalInformatics, FunctionalGenomics, SystemsBiology, Transcriptomics, RNASeq, Annotation, FunctionalPrediction, GenePrediction, DataImport, MultipleComparison, BatchEffect, ImmunoOncology Author: Kristoffer Vitting-Seerup [cre, aut] (), Jeroen Gilis [ctb] () Maintainer: Kristoffer Vitting-Seerup URL: http://bioconductor.org/packages/IsoformSwitchAnalyzeR/ VignetteBuilder: knitr BugReports: https://github.com/kvittingseerup/IsoformSwitchAnalyzeR/issues git_url: https://git.bioconductor.org/packages/IsoformSwitchAnalyzeR git_branch: RELEASE_3_20 git_last_commit: f466631 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IsoformSwitchAnalyzeR_2.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IsoformSwitchAnalyzeR_2.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IsoformSwitchAnalyzeR_2.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IsoformSwitchAnalyzeR_2.6.0.tgz vignettes: vignettes/IsoformSwitchAnalyzeR/inst/doc/IsoformSwitchAnalyzeR.html vignetteTitles: IsoformSwitchAnalyzeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/IsoformSwitchAnalyzeR/inst/doc/IsoformSwitchAnalyzeR.R dependencyCount: 155 Package: ISoLDE Version: 1.34.0 Depends: R (>= 3.3.0),graphics,grDevices,stats,utils License: GPL (>= 2.0) Archs: x64 MD5sum: 191e6a6d928c52508fb3f8be15ba9a34 NeedsCompilation: yes Title: Integrative Statistics of alleLe Dependent Expression Description: This package provides ISoLDE a new method for identifying imprinted genes. This method is dedicated to data arising from RNA sequencing technologies. The ISoLDE package implements original statistical methodology described in the publication below. biocViews: ImmunoOncology, GeneExpression, Transcription, GeneSetEnrichment, Genetics, Sequencing, RNASeq, MultipleComparison, SNP, GeneticVariability, Epigenetics, MathematicalBiology, GeneRegulation Author: Christelle Reynès [aut, cre], Marine Rohmer [aut], Guilhem Kister [aut] Maintainer: Christelle Reynès URL: www.r-project.org git_url: https://git.bioconductor.org/packages/ISoLDE git_branch: RELEASE_3_20 git_last_commit: 1b2b030 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ISoLDE_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ISoLDE_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ISoLDE_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ISoLDE_1.34.0.tgz hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 4 Package: isomiRs Version: 1.34.0 Depends: R (>= 4.4), SummarizedExperiment Imports: AnnotationDbi, BiocGenerics, Biobase, broom, cluster, cowplot, DEGreport, DESeq2, IRanges, dplyr, GenomicRanges, gplots, ggplot2, gtools, gridExtra, grid, grDevices, graphics, GGally, limma, methods, RColorBrewer, readr, reshape, rlang, stats, stringr, S4Vectors, tidyr, tibble Suggests: knitr, rmarkdown, org.Mm.eg.db, targetscan.Hs.eg.db, pheatmap, BiocStyle, testthat License: MIT + file LICENSE MD5sum: 5664da8911aadc6a0c16a81710f3b9dc NeedsCompilation: no Title: Analyze isomiRs and miRNAs from small RNA-seq Description: Characterization of miRNAs and isomiRs, clustering and differential expression. biocViews: miRNA, RNASeq, DifferentialExpression, Clustering, ImmunoOncology Author: Lorena Pantano [aut, cre], Georgia Escaramis [aut] (CIBERESP - CIBER Epidemiologia y Salud Publica) Maintainer: Lorena Pantano VignetteBuilder: knitr BugReports: https://github.com/lpantano/isomiRs/issues git_url: https://git.bioconductor.org/packages/isomiRs git_branch: RELEASE_3_20 git_last_commit: 9f10f97 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/isomiRs_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/isomiRs_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/isomiRs_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/isomiRs_1.34.0.tgz vignettes: vignettes/isomiRs/inst/doc/isomiRs.html vignetteTitles: miRNA and isomiR analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/isomiRs/inst/doc/isomiRs.R dependencyCount: 150 Package: ITALICS Version: 2.66.0 Depends: R (>= 2.0.0), GLAD, ITALICSData, oligo, affxparser, pd.mapping50k.xba240 Imports: affxparser, DBI, GLAD, oligo, oligoClasses, stats Suggests: pd.mapping50k.hind240, pd.mapping250k.sty, pd.mapping250k.nsp License: GPL-2 MD5sum: f7b1507617f9c1b4db24aab8499045e4 NeedsCompilation: no Title: ITALICS Description: A Method to normalize of Affymetrix GeneChip Human Mapping 100K and 500K set biocViews: Microarray, CopyNumberVariation Author: Guillem Rigaill, Philippe Hupe Maintainer: Guillem Rigaill URL: http://bioinfo.curie.fr git_url: https://git.bioconductor.org/packages/ITALICS git_branch: RELEASE_3_20 git_last_commit: b0be984 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ITALICS_2.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ITALICS_2.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ITALICS_2.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ITALICS_2.66.0.tgz vignettes: vignettes/ITALICS/inst/doc/ITALICS.pdf vignetteTitles: ITALICS hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ITALICS/inst/doc/ITALICS.R dependencyCount: 70 Package: iterativeBMA Version: 1.64.0 Depends: BMA, leaps, Biobase (>= 2.5.5) License: GPL (>= 2) Archs: x64 MD5sum: 9c2fa4813ea36fed167414bdaa0bcb4a NeedsCompilation: no Title: The Iterative Bayesian Model Averaging (BMA) algorithm Description: The iterative Bayesian Model Averaging (BMA) algorithm is a variable selection and classification algorithm with an application of classifying 2-class microarray samples, as described in Yeung, Bumgarner and Raftery (Bioinformatics 2005, 21: 2394-2402). biocViews: Microarray, Classification Author: Ka Yee Yeung, University of Washington, Seattle, WA, with contributions from Adrian Raftery and Ian Painter Maintainer: Ka Yee Yeung URL: http://faculty.washington.edu/kayee/research.html git_url: https://git.bioconductor.org/packages/iterativeBMA git_branch: RELEASE_3_20 git_last_commit: a40c015 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iterativeBMA_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iterativeBMA_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iterativeBMA_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iterativeBMA_1.64.0.tgz vignettes: vignettes/iterativeBMA/inst/doc/iterativeBMA.pdf vignetteTitles: The Iterative Bayesian Model Averaging Algorithm hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iterativeBMA/inst/doc/iterativeBMA.R dependencyCount: 21 Package: iterativeBMAsurv Version: 1.64.0 Depends: BMA, leaps, survival, splines Imports: graphics, grDevices, stats, survival, utils License: GPL (>= 2) Archs: x64 MD5sum: 734ab3dcd679f88158ce0cbbfa247072 NeedsCompilation: no Title: The Iterative Bayesian Model Averaging (BMA) Algorithm For Survival Analysis Description: The iterative Bayesian Model Averaging (BMA) algorithm for survival analysis is a variable selection method for applying survival analysis to microarray data. biocViews: Microarray Author: Amalia Annest, University of Washington, Tacoma, WA Ka Yee Yeung, University of Washington, Seattle, WA Maintainer: Ka Yee Yeung URL: http://expression.washington.edu/ibmasurv/protected git_url: https://git.bioconductor.org/packages/iterativeBMAsurv git_branch: RELEASE_3_20 git_last_commit: d4e8c3c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/iterativeBMAsurv_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/iterativeBMAsurv_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iterativeBMAsurv_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iterativeBMAsurv_1.64.0.tgz vignettes: vignettes/iterativeBMAsurv/inst/doc/iterativeBMAsurv.pdf vignetteTitles: The Iterative Bayesian Model Averaging Algorithm For Survival Analysis hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/iterativeBMAsurv/inst/doc/iterativeBMAsurv.R dependencyCount: 19 Package: IVAS Version: 2.26.0 Depends: R (> 3.0.0),GenomicFeatures, ggplot2, Biobase Imports: doParallel, lme4, BiocGenerics, GenomicRanges, IRanges, foreach, AnnotationDbi, S4Vectors, GenomeInfoDb, ggfortify, grDevices, methods, Matrix, BiocParallel,utils, stats Suggests: BiocStyle License: GPL-2 MD5sum: 96350bba9881a0ee12ef3576e44372c6 NeedsCompilation: no Title: Identification of genetic Variants affecting Alternative Splicing Description: Identification of genetic variants affecting alternative splicing. biocViews: ImmunoOncology, AlternativeSplicing, DifferentialExpression, DifferentialSplicing, GeneExpression, GeneRegulation, Regression, RNASeq, Sequencing, SNP, Software, Transcription Author: Seonggyun Han, Sangsoo Kim Maintainer: Seonggyun Han git_url: https://git.bioconductor.org/packages/IVAS git_branch: RELEASE_3_20 git_last_commit: 022c426 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IVAS_2.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IVAS_2.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IVAS_2.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IVAS_2.26.0.tgz vignettes: vignettes/IVAS/inst/doc/IVAS.pdf vignetteTitles: IVAS : Identification of genetic Variants affecting Alternative Splicing hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/IVAS/inst/doc/IVAS.R dependsOnMe: IMAS dependencyCount: 115 Package: ivygapSE Version: 1.28.0 Depends: R (>= 3.5.0), SummarizedExperiment Imports: shiny, survival, survminer, hwriter, plotly, ggplot2, S4Vectors, graphics, stats, utils, UpSetR Suggests: knitr, png, limma, grid, DT, randomForest, digest, testthat, rmarkdown, BiocStyle, magick, statmod, codetools License: Artistic-2.0 MD5sum: fad5a7d0a0eca3adce4fe6f88093d7a6 NeedsCompilation: no Title: A SummarizedExperiment for Ivy-GAP data Description: Define a SummarizedExperiment and exploratory app for Ivy-GAP glioblastoma image, expression, and clinical data. biocViews: Transcription, Software, Visualization, Survival, GeneExpression, Sequencing Author: Vince Carey Maintainer: VJ Carey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ivygapSE git_branch: RELEASE_3_20 git_last_commit: 15ca03f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ivygapSE_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ivygapSE_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ivygapSE_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ivygapSE_1.28.0.tgz vignettes: vignettes/ivygapSE/inst/doc/ivygapSE.html vignetteTitles: ivygapSE -- SummarizedExperiment for Ivy-GAP hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ivygapSE/inst/doc/ivygapSE.R dependencyCount: 150 Package: IWTomics Version: 1.30.0 Depends: R (>= 3.5.0), GenomicRanges Imports: parallel,gtable,grid,graphics,methods,IRanges,KernSmooth,fda,S4Vectors,grDevices,stats,utils,tools Suggests: knitr License: GPL (>=2) MD5sum: b027438ed02d8cf992321a4e3adc423c NeedsCompilation: no Title: Interval-Wise Testing for Omics Data Description: Implementation of the Interval-Wise Testing (IWT) for omics data. This inferential procedure tests for differences in "Omics" data between two groups of genomic regions (or between a group of genomic regions and a reference center of symmetry), and does not require fixing location and scale at the outset. biocViews: StatisticalMethod, MultipleComparison, DifferentialExpression, DifferentialMethylation, DifferentialPeakCalling, GenomeAnnotation, DataImport Author: Marzia A Cremona, Alessia Pini, Francesca Chiaromonte, Simone Vantini Maintainer: Marzia A Cremona VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/IWTomics git_branch: RELEASE_3_20 git_last_commit: 82f259f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/IWTomics_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/IWTomics_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/IWTomics_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/IWTomics_1.30.0.tgz vignettes: vignettes/IWTomics/inst/doc/IWTomics.pdf vignetteTitles: Introduction to IWTomics hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/IWTomics/inst/doc/IWTomics.R dependencyCount: 74 Package: karyoploteR Version: 1.32.0 Depends: R (>= 3.4), regioneR, GenomicRanges, methods Imports: regioneR, GenomicRanges, IRanges, Rsamtools, stats, graphics, memoise, rtracklayer, GenomeInfoDb, S4Vectors, biovizBase, digest, bezier, GenomicFeatures, bamsignals, AnnotationDbi, grDevices, VariantAnnotation Suggests: BiocStyle, knitr, rmarkdown, markdown, testthat, magrittr, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg19.masked, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Mmusculus.UCSC.mm10.knownGene, org.Hs.eg.db, org.Mm.eg.db, pasillaBamSubset License: Artistic-2.0 MD5sum: 3f215f2621d0dffa766884ea05b2737f NeedsCompilation: no Title: Plot customizable linear genomes displaying arbitrary data Description: karyoploteR creates karyotype plots of arbitrary genomes and offers a complete set of functions to plot arbitrary data on them. It mimicks many R base graphics functions coupling them with a coordinate change function automatically mapping the chromosome and data coordinates into the plot coordinates. In addition to the provided data plotting functions, it is easy to add new ones. biocViews: Visualization, CopyNumberVariation, Sequencing, Coverage, DNASeq, ChIPSeq, MethylSeq, DataImport, OneChannel Author: Bernat Gel [aut, cre] () Maintainer: Bernat Gel URL: https://github.com/bernatgel/karyoploteR VignetteBuilder: knitr BugReports: https://github.com/bernatgel/karyoploteR/issues git_url: https://git.bioconductor.org/packages/karyoploteR git_branch: RELEASE_3_20 git_last_commit: 62ce025 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/karyoploteR_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/karyoploteR_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/karyoploteR_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/karyoploteR_1.32.0.tgz vignettes: vignettes/karyoploteR/inst/doc/karyoploteR.html vignetteTitles: karyoploteR vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/karyoploteR/inst/doc/karyoploteR.R dependsOnMe: CopyNumberPlots importsMe: CNVfilteR, CNViz, multicrispr suggestsMe: Category, EpiMix, UPDhmm, MitoHEAR dependencyCount: 140 Package: katdetectr Version: 1.8.0 Depends: R (>= 4.2) Imports: Biobase (>= 2.54.0), BiocParallel (>= 1.26.2), BSgenome (>= 1.62.0), BSgenome.Hsapiens.UCSC.hg19 (>= 1.4.3), BSgenome.Hsapiens.UCSC.hg38 (>= 1.4.4), changepoint (>= 2.2.3), changepoint.np (>= 1.0.3), checkmate (>= 2.0.0), dplyr (>= 1.0.8), GenomeInfoDb (>= 1.28.4), GenomicRanges (>= 1.44.0), ggplot2 (>= 3.3.5), ggtext (>= 0.1.1), IRanges (>= 2.26.0), maftools (>= 2.10.5), methods (>= 4.1.3), plyranges (>= 1.17.0), Rdpack (>= 2.3.1), rlang (>= 1.0.2), S4Vectors (>= 0.30.2), scales (>= 1.2.0), tibble (>= 3.1.6), tidyr (>= 1.2.0), tools, utils, VariantAnnotation (>= 1.38.0) Suggests: BiocStyle (>= 2.26.0), knitr (>= 1.37), rmarkdown (>= 2.13), stats, testthat (>= 3.0.0) License: GPL-3 + file LICENSE MD5sum: b82e34bb3c3d447ca1899d32dd214f1d NeedsCompilation: no Title: Detection, Characterization and Visualization of Kataegis in Sequencing Data Description: Kataegis refers to the occurrence of regional hypermutation and is a phenomenon observed in a wide range of malignancies. Using changepoint detection katdetectr aims to identify putative kataegis foci from common data-formats housing genomic variants. Katdetectr has shown to be a robust package for the detection, characterization and visualization of kataegis. biocViews: WholeGenome, Software, SNP, Sequencing, Classification, VariantAnnotation Author: Daan Hazelaar [aut, cre] (), Job van Riet [aut] (), Harmen van de Werken [ths] () Maintainer: Daan Hazelaar URL: https://doi.org/doi:10.18129/B9.bioc.katdetectr VignetteBuilder: knitr BugReports: https://github.com/ErasmusMC-CCBC/katdetectr/issues git_url: https://git.bioconductor.org/packages/katdetectr git_branch: RELEASE_3_20 git_last_commit: 96f37da git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/katdetectr_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/katdetectr_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/katdetectr_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/katdetectr_1.8.0.tgz vignettes: vignettes/katdetectr/inst/doc/General_overview.html vignetteTitles: Overview_katdetectr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/katdetectr/inst/doc/General_overview.R dependencyCount: 129 Package: KBoost Version: 1.14.0 Depends: R (>= 4.1), stats, utils Suggests: knitr, rmarkdown, testthat License: GPL-2 | GPL-3 MD5sum: 4a2b4d297e7f50f34be5bae46abe46eb NeedsCompilation: no Title: Inference of gene regulatory networks from gene expression data Description: Reconstructing gene regulatory networks and transcription factor activity is crucial to understand biological processes and holds potential for developing personalized treatment. Yet, it is still an open problem as state-of-art algorithm are often not able to handle large amounts of data. Furthermore, many of the present methods predict numerous false positives and are unable to integrate other sources of information such as previously known interactions. Here we introduce KBoost, an algorithm that uses kernel PCA regression, boosting and Bayesian model averaging for fast and accurate reconstruction of gene regulatory networks. KBoost can also use a prior network built on previously known transcription factor targets. We have benchmarked KBoost using three different datasets against other high performing algorithms. The results show that our method compares favourably to other methods across datasets. biocViews: Network, GraphAndNetwork, Bayesian, NetworkInference, GeneRegulation, Transcriptomics, SystemsBiology, Transcription, GeneExpression, Regression, PrincipalComponent Author: Luis F. Iglesias-Martinez [aut, cre] (), Barbara de Kegel [aut], Walter Kolch [aut] Maintainer: Luis F. Iglesias-Martinez URL: https://github.com/Luisiglm/KBoost VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/KBoost git_branch: RELEASE_3_20 git_last_commit: 6bba4b5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/KBoost_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/KBoost_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/KBoost_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/KBoost_1.14.0.tgz vignettes: vignettes/KBoost/inst/doc/KBoost.html vignetteTitles: KBoost hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/KBoost/inst/doc/KBoost.R dependencyCount: 2 Package: KCsmart Version: 2.64.0 Depends: siggenes, multtest, KernSmooth Imports: methods, BiocGenerics Enhances: Biobase, CGHbase License: GPL-3 MD5sum: a5f8500e44005b573292f1f49ffd6253 NeedsCompilation: no Title: Multi sample aCGH analysis package using kernel convolution Description: Multi sample aCGH analysis package using kernel convolution biocViews: CopyNumberVariation, Visualization, aCGH, Microarray Author: Jorma de Ronde, Christiaan Klijn, Arno Velds Maintainer: Jorma de Ronde git_url: https://git.bioconductor.org/packages/KCsmart git_branch: RELEASE_3_20 git_last_commit: 9620b79 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/KCsmart_2.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/KCsmart_2.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/KCsmart_2.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/KCsmart_2.64.0.tgz vignettes: vignettes/KCsmart/inst/doc/KCS.pdf vignetteTitles: KCsmart example session hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/KCsmart/inst/doc/KCS.R dependencyCount: 18 Package: kebabs Version: 1.40.0 Depends: R (>= 3.3.0), Biostrings (>= 2.35.5), kernlab Imports: methods, stats, Rcpp (>= 0.11.2), Matrix (>= 1.5-0), XVector (>= 0.7.3), S4Vectors (>= 0.27.3), e1071, LiblineaR, graphics, grDevices, utils, apcluster LinkingTo: IRanges, XVector, Biostrings, Rcpp, S4Vectors Suggests: SparseM, Biobase, BiocGenerics, knitr License: GPL (>= 2.1) MD5sum: 81dc80097c4cba89240342b0ab426728 NeedsCompilation: yes Title: Kernel-Based Analysis of Biological Sequences Description: The package provides functionality for kernel-based analysis of DNA, RNA, and amino acid sequences via SVM-based methods. As core functionality, kebabs implements following sequence kernels: spectrum kernel, mismatch kernel, gappy pair kernel, and motif kernel. Apart from an efficient implementation of standard position-independent functionality, the kernels are extended in a novel way to take the position of patterns into account for the similarity measure. Because of the flexibility of the kernel formulation, other kernels like the weighted degree kernel or the shifted weighted degree kernel with constant weighting of positions are included as special cases. An annotation-specific variant of the kernels uses annotation information placed along the sequence together with the patterns in the sequence. The package allows for the generation of a kernel matrix or an explicit feature representation in dense or sparse format for all available kernels which can be used with methods implemented in other R packages. With focus on SVM-based methods, kebabs provides a framework which simplifies the usage of existing SVM implementations in kernlab, e1071, and LiblineaR. Binary and multi-class classification as well as regression tasks can be used in a unified way without having to deal with the different functions, parameters, and formats of the selected SVM. As support for choosing hyperparameters, the package provides cross validation - including grouped cross validation, grid search and model selection functions. For easier biological interpretation of the results, the package computes feature weights for all SVMs and prediction profiles which show the contribution of individual sequence positions to the prediction result and indicate the relevance of sequence sections for the learning result and the underlying biological functions. biocViews: SupportVectorMachine, Classification, Clustering, Regression Author: Johannes Palme [aut], Ulrich Bodenhofer [aut,cre] Maintainer: Ulrich Bodenhofer URL: https://github.com/UBod/kebabs VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/kebabs git_branch: RELEASE_3_20 git_last_commit: 43a1703 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/kebabs_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/kebabs_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/kebabs_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/kebabs_1.40.0.tgz vignettes: vignettes/kebabs/inst/doc/kebabs.pdf vignetteTitles: KeBABS - An R Package for Kernel Based Analysis of Biological Sequences hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/kebabs/inst/doc/kebabs.R dependsOnMe: procoil importsMe: odseq dependencyCount: 36 Package: KEGGgraph Version: 1.66.0 Depends: R (>= 3.5.0) Imports: methods, XML (>= 2.3-0), graph, utils, RCurl, Rgraphviz Suggests: RBGL, testthat, RColorBrewer, org.Hs.eg.db, hgu133plus2.db, SPIA License: GPL (>= 2) MD5sum: 81b027ccaf08ba3c8665bfa057d2be60 NeedsCompilation: no Title: KEGGgraph: A graph approach to KEGG PATHWAY in R and Bioconductor Description: KEGGGraph is an interface between KEGG pathway and graph object as well as a collection of tools to analyze, dissect and visualize these graphs. It parses the regularly updated KGML (KEGG XML) files into graph models maintaining all essential pathway attributes. The package offers functionalities including parsing, graph operation, visualization and etc. biocViews: Pathways, GraphAndNetwork, Visualization, KEGG Author: Jitao David Zhang, with inputs from Paul Shannon and Hervé Pagès Maintainer: Jitao David Zhang URL: http://www.nextbiomotif.com git_url: https://git.bioconductor.org/packages/KEGGgraph git_branch: RELEASE_3_20 git_last_commit: af0cece git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/KEGGgraph_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/KEGGgraph_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/KEGGgraph_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/KEGGgraph_1.66.0.tgz vignettes: vignettes/KEGGgraph/inst/doc/KEGGgraphApp.pdf, vignettes/KEGGgraph/inst/doc/KEGGgraph.pdf vignetteTitles: KEGGgraph: Application Examples, KEGGgraph: graph approach to KEGG PATHWAY hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/KEGGgraph/inst/doc/KEGGgraphApp.R, vignettes/KEGGgraph/inst/doc/KEGGgraph.R dependsOnMe: lpNet, ROntoTools, SPIA importsMe: clipper, DEGraph, EnrichmentBrowser, MetaboSignal, MWASTools, NCIgraph, pathview, iCARH suggestsMe: DEGraph, GenomicRanges, kangar00, maGUI, rags2ridges dependencyCount: 13 Package: KEGGlincs Version: 1.32.0 Depends: R (>= 3.3), KOdata, hgu133a.db, org.Hs.eg.db (>= 3.3.0) Imports: AnnotationDbi,KEGGgraph,igraph,plyr,gtools,httr,RJSONIO,KEGGREST, methods,graphics,stats,utils, XML, grDevices Suggests: BiocManager (>= 1.20.3), knitr, graph License: GPL-3 MD5sum: b18b0cbbe1a545bba3ff3930e345c9df NeedsCompilation: no Title: Visualize all edges within a KEGG pathway and overlay LINCS data Description: See what is going on 'under the hood' of KEGG pathways by explicitly re-creating the pathway maps from information obtained from KGML files. biocViews: NetworkInference, GeneExpression, DataRepresentation, ThirdPartyClient,CellBiology,GraphAndNetwork,Pathways,KEGG,Network Author: Shana White Maintainer: Shana White , Mario Medvedovic SystemRequirements: Cytoscape (>= 3.3.0), Java (>= 8) VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/KEGGlincs git_branch: RELEASE_3_20 git_last_commit: 73da76c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/KEGGlincs_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/KEGGlincs_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/KEGGlincs_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/KEGGlincs_1.32.0.tgz vignettes: vignettes/KEGGlincs/inst/doc/Example-workflow.html vignetteTitles: KEGGlincs Workflows hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/KEGGlincs/inst/doc/Example-workflow.R dependencyCount: 63 Package: keggorthology Version: 2.58.0 Depends: R (>= 2.5.0), hgu95av2.db, graph Imports: AnnotationDbi, DBI, grDevices, methods, tools, utils Suggests: RBGL,ALL License: Artistic-2.0 MD5sum: 5cd740f7ce22655579c8ae79d2ddbeab NeedsCompilation: no Title: graph support for KO, KEGG Orthology Description: graphical representation of the Feb 2010 KEGG Orthology. The KEGG orthology is a set of pathway IDs that are not to be confused with the KEGG ortholog IDs. biocViews: Pathways, GraphAndNetwork, Visualization, KEGG Author: VJ Carey Maintainer: VJ Carey git_url: https://git.bioconductor.org/packages/keggorthology git_branch: RELEASE_3_20 git_last_commit: 71c2361 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/keggorthology_2.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/keggorthology_2.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/keggorthology_2.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/keggorthology_2.58.0.tgz vignettes: vignettes/keggorthology/inst/doc/keggorth.pdf vignetteTitles: keggorthology overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/keggorthology/inst/doc/keggorth.R suggestsMe: MLInterfaces dependencyCount: 48 Package: KEGGREST Version: 1.46.0 Depends: R (>= 3.5.0) Imports: methods, httr, png, Biostrings Suggests: RUnit, BiocGenerics, BiocStyle, knitr, markdown License: Artistic-2.0 Archs: x64 MD5sum: 700871ac08e548038a9986884d153360 NeedsCompilation: no Title: Client-side REST access to the Kyoto Encyclopedia of Genes and Genomes (KEGG) Description: A package that provides a client interface to the Kyoto Encyclopedia of Genes and Genomes (KEGG) REST API. Only for academic use by academic users belonging to academic institutions (see ). Note that KEGGREST is based on KEGGSOAP by J. Zhang, R. Gentleman, and Marc Carlson, and KEGG (python package) by Aurelien Mazurie. biocViews: Annotation, Pathways, ThirdPartyClient, KEGG Author: Dan Tenenbaum [aut], Bioconductor Package Maintainer [aut, cre], Martin Morgan [ctb], Kozo Nishida [ctb], Marcel Ramos [ctb], Kristina Riemer [ctb], Lori Shepherd [ctb], Jeremy Volkening [ctb] Maintainer: Bioconductor Package Maintainer URL: https://bioconductor.org/packages/KEGGREST VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/KEGGREST/issues git_url: https://git.bioconductor.org/packages/KEGGREST git_branch: RELEASE_3_20 git_last_commit: b34820c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/KEGGREST_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/KEGGREST_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/KEGGREST_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/KEGGREST_1.46.0.tgz vignettes: vignettes/KEGGREST/inst/doc/KEGGREST-vignette.html vignetteTitles: Accessing the KEGG REST API hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/KEGGREST/inst/doc/KEGGREST-vignette.R dependsOnMe: ROntoTools, Hiiragi2013 importsMe: ADAM, adSplit, AnnotationDbi, attract, BiocSet, ChIPpeakAnno, CNEr, EnrichmentBrowser, famat, FELLA, funOmics, gage, ginmappeR, MetaboSignal, MWASTools, PADOG, pairkat, pathview, SBGNview, SMITE, transomics2cytoscape, YAPSA suggestsMe: Category, categoryCompare, gatom, GenomicRanges, globaltest, iSEEu, MetMashR, MLP, padma, rGREAT, RTopper, SomaScan.db, CALANGO, maGUI, phoenics, ReporterScore, scDiffCom dependencyCount: 26 Package: KinSwingR Version: 1.24.0 Depends: R (>= 3.5) Imports: data.table, BiocParallel, sqldf, stats, grid, grDevices Suggests: knitr, rmarkdown License: GPL-3 MD5sum: d2840bfa72275821b0a97376de449a57 NeedsCompilation: no Title: KinSwingR: network-based kinase activity prediction Description: KinSwingR integrates phosphosite data derived from mass-spectrometry data and kinase-substrate predictions to predict kinase activity. Several functions allow the user to build PWM models of kinase-subtrates, statistically infer PWM:substrate matches, and integrate these data to infer kinase activity. biocViews: Proteomics, SequenceMatching, Network Author: Ashley J. Waardenberg [aut, cre] Maintainer: Ashley J. Waardenberg VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/KinSwingR git_branch: RELEASE_3_20 git_last_commit: 9011343 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/KinSwingR_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/KinSwingR_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/KinSwingR_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/KinSwingR_1.24.0.tgz vignettes: vignettes/KinSwingR/inst/doc/KinSwingR.html vignetteTitles: KinSwingR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/KinSwingR/inst/doc/KinSwingR.R dependencyCount: 36 Package: kissDE Version: 1.26.0 Imports: aods3, Biobase, DESeq2, DSS, ggplot2, gplots, graphics, grDevices, matrixStats, stats, utils, foreach, doParallel, parallel, shiny, shinycssloaders, ade4, factoextra, DT Suggests: BiocStyle, testthat License: GPL (>= 2) MD5sum: c66b8fe9127c00d2a944b16792ba441f NeedsCompilation: no Title: Retrieves Condition-Specific Variants in RNA-Seq Data Description: Retrieves condition-specific variants in RNA-seq data (SNVs, alternative-splicings, indels). It has been developed as a post-treatment of 'KisSplice' but can also be used with user's own data. biocViews: AlternativeSplicing, DifferentialSplicing, ExperimentalDesign, GenomicVariation, RNASeq, Transcriptomics Author: Clara Benoit-Pilven [aut], Camille Marchet [aut], Janice Kielbassa [aut], Lilia Brinza [aut], Audric Cologne [aut], Aurélie Siberchicot [aut, cre], Vincent Lacroix [aut], Frank Picard [ctb], Laurent Jacob [ctb], Vincent Miele [ctb] Maintainer: Aurélie Siberchicot URL: https://github.com/lbbe-software/kissDE git_url: https://git.bioconductor.org/packages/kissDE git_branch: RELEASE_3_20 git_last_commit: 83bc79e git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-06 source.ver: src/contrib/kissDE_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/kissDE_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/kissDE_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/kissDE_1.26.0.tgz vignettes: vignettes/kissDE/inst/doc/kissDE.pdf vignetteTitles: kissDE.pdf hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/kissDE/inst/doc/kissDE.R dependencyCount: 200 Package: kmcut Version: 1.0.0 Imports: survival, tools, methods, pracma, doParallel, foreach, parallel, SummarizedExperiment, S4Vectors Suggests: BiocStyle, knitr, rmarkdown, License: Artistic-2.0 MD5sum: 505c5a27bd7430ae58156933038d3f38 NeedsCompilation: no Title: Optimized Kaplan Meier analysis and identification and validation of prognostic biomarkers Description: The purpose of the package is to identify prognostic biomarkers and an optimal numeric cutoff for each biomarker that can be used to stratify a group of test subjects (samples) into two sub-groups with significantly different survival (better vs. worse). The package was developed for the analysis of gene expression data, such as RNA-seq. However, it can be used with any quantitative variable that has a sufficiently large proportion of unique values. biocViews: Software, StatisticalMethod, GeneExpression, Survival Author: Igor Kuznetsov [aut, cre], Javed Khan [aut] Maintainer: Igor Kuznetsov VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/kmcut git_branch: RELEASE_3_20 git_last_commit: 65a5651 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/kmcut_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/kmcut_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/kmcut_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/kmcut_1.0.0.tgz vignettes: vignettes/kmcut/inst/doc/kmcut_intro.html vignetteTitles: kmcut_intro hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/kmcut/inst/doc/kmcut_intro.R dependencyCount: 44 Package: KnowSeq Version: 1.20.0 Depends: R (>= 4.0), cqn (>= 1.28.1) Imports: stringr, methods, ggplot2 (>= 3.3.0), jsonlite, kernlab, rlist, rmarkdown, reshape2, e1071, randomForest, caret, XML, praznik, R.utils, httr, sva (>= 3.30.1), edgeR (>= 3.24.3), limma (>= 3.38.3), grDevices, graphics, stats, utils, Hmisc (>= 4.4.0), gridExtra Suggests: knitr License: GPL (>=2) MD5sum: eee927957a3a83938ee054b3b6664eda NeedsCompilation: no Title: KnowSeq R/Bioc package: The Smart Transcriptomic Pipeline Description: KnowSeq proposes a novel methodology that comprises the most relevant steps in the Transcriptomic gene expression analysis. KnowSeq expects to serve as an integrative tool that allows to process and extract relevant biomarkers, as well as to assess them through a Machine Learning approaches. Finally, the last objective of KnowSeq is the biological knowledge extraction from the biomarkers (Gene Ontology enrichment, Pathway listing and Visualization and Evidences related to the addressed disease). Although the package allows analyzing all the data manually, the main strenght of KnowSeq is the possibilty of carrying out an automatic and intelligent HTML report that collect all the involved steps in one document. It is important to highligh that the pipeline is totally modular and flexible, hence it can be started from whichever of the different steps. KnowSeq expects to serve as a novel tool to help to the experts in the field to acquire robust knowledge and conclusions for the data and diseases to study. biocViews: GeneExpression, DifferentialExpression, GeneSetEnrichment, DataImport, Classification, FeatureExtraction, Sequencing, RNASeq, BatchEffect, Normalization, Preprocessing, QualityControl, Genetics, Transcriptomics, Microarray, Alignment, Pathways, SystemsBiology, GO, ImmunoOncology Author: Daniel Castillo-Secilla [aut, cre], Juan Manuel Galvez [ctb], Francisco Carrillo-Perez [ctb], Marta Verona-Almeida [ctb], Daniel Redondo-Sanchez [ctb], Francisco Manuel Ortuno [ctb], Luis Javier Herrera [ctb], Ignacio Rojas [ctb] Maintainer: Daniel Castillo-Secilla VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/KnowSeq git_branch: RELEASE_3_20 git_last_commit: b1e9897 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/KnowSeq_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/KnowSeq_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/KnowSeq_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/KnowSeq_1.20.0.tgz vignettes: vignettes/KnowSeq/inst/doc/KnowSeq.html vignetteTitles: The KnowSeq users guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/KnowSeq/inst/doc/KnowSeq.R dependencyCount: 172 Package: knowYourCG Version: 1.2.5 Depends: R (>= 4.4.0) Imports: sesameData, dplyr, methods, rlang, GenomicRanges, IRanges, reshape2, S4Vectors, stats, stringr, utils, ggplot2, ggrepel, tibble, wheatmap, magrittr Suggests: testthat (>= 3.0.0), SummarizedExperiment, rmarkdown, knitr, sesame, gprofiler2 License: MIT + file LICENSE MD5sum: 2f3c6aaf26394516f4299875253d3b69 NeedsCompilation: no Title: Functional analysis of DNA methylome datasets Description: knowYourCG automates the functional analysis of DNA methylation data. The package tests the enrichment of discrete CpG probes across thousands of curated biological and technical features. GSEA-like analysis can be performed on continuous methylation data query sets. knowYourCG can also take beta matrices as input to perform feature aggregation over the curated database sets. biocViews: Epigenetics, DNAMethylation, MethylationArray Author: Zhou Wanding [aut], Goldberg David [aut, cre] (), Fu Hongxiang [ctb], Moyer Ethan [ctb] Maintainer: Goldberg David URL: https://github.com/zhou-lab/knowYourCG VignetteBuilder: knitr BugReports: https://github.com/zhou-lab/knowYourCG/issues git_url: https://git.bioconductor.org/packages/knowYourCG git_branch: RELEASE_3_20 git_last_commit: 200fa49 git_last_commit_date: 2024-12-30 Date/Publication: 2024-12-30 source.ver: src/contrib/knowYourCG_1.2.5.tar.gz win.binary.ver: bin/windows/contrib/4.4/knowYourCG_1.2.5.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/knowYourCG_1.2.5.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/knowYourCG_1.2.5.tgz vignettes: vignettes/knowYourCG/inst/doc/Array.html, vignettes/knowYourCG/inst/doc/Continuous.html, vignettes/knowYourCG/inst/doc/Sequencing.html vignetteTitles: "2. Array Data Analysis", "3. Continuous Variable Enrichment Analysis", "1. Sequencing Data Analysis" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/knowYourCG/inst/doc/Array.R, vignettes/knowYourCG/inst/doc/Continuous.R, vignettes/knowYourCG/inst/doc/Sequencing.R dependencyCount: 98 Package: koinar Version: 1.0.0 Depends: R (>= 4.3) Imports: httr, jsonlite, methods, utils Suggests: BiocManager, BiocStyle (>= 2.26), httptest, knitr, lattice, msdata, OrgMassSpecR, protViz, S4Vectors, Spectra, testthat, mzR License: Apache License 2.0 MD5sum: fdede8485780d12b73b9bfa663c34023 NeedsCompilation: no Title: KoinaR - Remote machine learning inference using Koina Description: A client to simplify fetching predictions from the Koina web service. Koina is a model repository enabling the remote execution of models. Predictions are generated as a response to HTTP/S requests, the standard protocol used for nearly all web traffic. biocViews: MassSpectrometry, Proteomics, Infrastructure, Software Author: Ludwig Lautenbacher [aut, cre] (), Christian Panse [aut] () Maintainer: Ludwig Lautenbacher URL: https://github.com/wilhelm-lab/koina VignetteBuilder: knitr BugReports: https://github.com/wilhelm-lab/koina/issues git_url: https://git.bioconductor.org/packages/koinar git_branch: RELEASE_3_20 git_last_commit: 30e2970 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/koinar_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/koinar_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/koinar_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/koinar_1.0.0.tgz vignettes: vignettes/koinar/inst/doc/koina.html vignetteTitles: On using the R lang client for koina hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/koinar/inst/doc/koina.R dependencyCount: 11 Package: LACE Version: 2.10.0 Depends: R (>= 4.2.0) Imports: curl, igraph, foreach, doParallel, sortable, dplyr, forcats, data.tree, graphics, grDevices, parallel, RColorBrewer, Rfast, stats, SummarizedExperiment, utils, purrr, stringi, stringr, Matrix, tidyr, jsonlite, readr, configr, DT, tools, fs, data.table, htmltools, htmlwidgets, bsplus, shinyvalidate, shiny, shinythemes, shinyFiles, shinyjs, shinyBS, shinydashboard, biomaRt, callr, logr, ggplot2, svglite Suggests: BiocGenerics, BiocStyle, testthat, knitr, rmarkdown License: file LICENSE MD5sum: 2462e9b4d29170580cbb756e8c281a2f NeedsCompilation: no Title: Longitudinal Analysis of Cancer Evolution (LACE) Description: LACE is an algorithmic framework that processes single-cell somatic mutation profiles from cancer samples collected at different time points and in distinct experimental settings, to produce longitudinal models of cancer evolution. The approach solves a Boolean Matrix Factorization problem with phylogenetic constraints, by maximizing a weighed likelihood function computed on multiple time points. biocViews: BiomedicalInformatics, SingleCell, SomaticMutation Author: Daniele Ramazzotti [aut] (), Fabrizio Angaroni [aut], Davide Maspero [cre, aut], Alex Graudenzi [aut], Luca De Sano [aut] (), Gianluca Ascolani [aut] Maintainer: Davide Maspero URL: https://github.com/BIMIB-DISCo/LACE VignetteBuilder: knitr BugReports: https://github.com/BIMIB-DISCo/LACE git_url: https://git.bioconductor.org/packages/LACE git_branch: RELEASE_3_20 git_last_commit: 93714e7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LACE_2.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LACE_2.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/LACE_2.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/LACE_2.10.0.tgz vignettes: vignettes/LACE/inst/doc/v1_introduction.html, vignettes/LACE/inst/doc/v2_running_LACE.html, vignettes/LACE/inst/doc/v3_LACE_interface.html vignetteTitles: Introduction, Running LACE, LACE-interface hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/LACE/inst/doc/v1_introduction.R, vignettes/LACE/inst/doc/v2_running_LACE.R, vignettes/LACE/inst/doc/v3_LACE_interface.R dependencyCount: 166 Package: lapmix Version: 1.72.0 Depends: R (>= 2.6.0),stats Imports: Biobase, graphics, grDevices, methods, stats, tools, utils License: GPL (>= 2) MD5sum: c7c5fb52d888b23a23ba4049137cab60 NeedsCompilation: no Title: Laplace Mixture Model in Microarray Experiments Description: Laplace mixture modelling of microarray experiments. A hierarchical Bayesian approach is used, and the hyperparameters are estimated using empirical Bayes. The main purpose is to identify differentially expressed genes. biocViews: Microarray, OneChannel, DifferentialExpression Author: Yann Ruffieux, contributions from Debjani Bhowmick, Anthony C. Davison, and Darlene R. Goldstein Maintainer: Yann Ruffieux URL: http://www.r-project.org, http://www.bioconductor.org, http://stat.epfl.ch git_url: https://git.bioconductor.org/packages/lapmix git_branch: RELEASE_3_20 git_last_commit: 47b3250 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/lapmix_1.72.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/lapmix_1.72.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/lapmix_1.72.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/lapmix_1.72.0.tgz vignettes: vignettes/lapmix/inst/doc/lapmix-example.pdf vignetteTitles: lapmix example hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/lapmix/inst/doc/lapmix-example.R dependencyCount: 8 Package: LBE Version: 1.74.0 Depends: stats Imports: graphics, stats, utils Suggests: qvalue License: GPL-2 MD5sum: 407869685d2147e5aba11fb883f1e7a9 NeedsCompilation: no Title: Estimation of the false discovery rate Description: LBE is an efficient procedure for estimating the proportion of true null hypotheses, the false discovery rate (and so the q-values) in the framework of estimating procedures based on the marginal distribution of the p-values without assumption for the alternative hypothesis. biocViews: MultipleComparison Author: Cyril Dalmasso Maintainer: Cyril Dalmasso git_url: https://git.bioconductor.org/packages/LBE git_branch: RELEASE_3_20 git_last_commit: 59db3cd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LBE_1.74.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LBE_1.74.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/LBE_1.74.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/LBE_1.74.0.tgz vignettes: vignettes/LBE/inst/doc/LBE.pdf vignetteTitles: LBE Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/LBE/inst/doc/LBE.R dependencyCount: 3 Package: ldblock Version: 1.36.0 Depends: R (>= 3.5), methods, rlang Imports: BiocGenerics (>= 0.25.1), httr, Matrix Suggests: RUnit, knitr, BiocStyle, gwascat, rmarkdown, snpStats, VariantAnnotation, GenomeInfoDb, ensembldb, EnsDb.Hsapiens.v75, Rsamtools, GenomicFiles (>= 1.13.6) License: Artistic-2.0 MD5sum: 3f84d33f77d6672958a7ba420ec1ac8a NeedsCompilation: no Title: data structures for linkage disequilibrium measures in populations Description: Define data structures for linkage disequilibrium measures in populations. Author: VJ Carey Maintainer: VJ Carey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ldblock git_branch: RELEASE_3_20 git_last_commit: 6d20400 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ldblock_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ldblock_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ldblock_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ldblock_1.36.0.tgz vignettes: vignettes/ldblock/inst/doc/ldblock.html vignetteTitles: ldblock package: linkage disequilibrium data structures hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ldblock/inst/doc/ldblock.R dependencyCount: 19 Package: LEA Version: 3.18.0 Depends: R (>= 3.3.0), methods, stats, utils, graphics Suggests: knitr License: GPL-3 MD5sum: dc3a581a78477d4910e29a0f94d81c31 NeedsCompilation: yes Title: LEA: an R package for Landscape and Ecological Association Studies Description: LEA is an R package dedicated to population genomics, landscape genomics and genotype-environment association tests. LEA can run analyses of population structure and genome-wide tests for local adaptation, and also performs imputation of missing genotypes. The package includes statistical methods for estimating ancestry coefficients from large genotypic matrices and for evaluating the number of ancestral populations (snmf). It performs statistical tests using latent factor mixed models for identifying genetic polymorphisms that exhibit association with environmental gradients or phenotypic traits (lfmm2). In addition, LEA computes values of genetic offset statistics based on new or predicted environments (genetic.gap, genetic.offset). LEA is mainly based on optimized programs that can scale with the dimensions of large data sets. biocViews: Software, Statistical Method, Clustering, Regression Author: Eric Frichot , Olivier Francois , Clement Gain Maintainer: Olivier Francois , Eric Frichot URL: http://membres-timc.imag.fr/Olivier.Francois/lea.html VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/LEA git_branch: RELEASE_3_20 git_last_commit: 54d047e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LEA_3.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LEA_3.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/LEA_3.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/LEA_3.18.0.tgz vignettes: vignettes/LEA/inst/doc/LEA.pdf vignetteTitles: LEA: An R Package for Landscape and Ecological Association Studies hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/LEA/inst/doc/LEA.R dependencyCount: 4 Package: LedPred Version: 1.40.0 Depends: R (>= 3.2.0), e1071 (>= 1.6) Imports: akima, ggplot2, irr, jsonlite, parallel, plot3D, plyr, RCurl, ROCR, testthat License: MIT | file LICENSE MD5sum: 1cedd94401e0419dae5a6e8b22ae8a92 NeedsCompilation: no Title: Learning from DNA to Predict Enhancers Description: This package aims at creating a predictive model of regulatory sequences used to score unknown sequences based on the content of DNA motifs, next-generation sequencing (NGS) peaks and signals and other numerical scores of the sequences using supervised classification. The package contains a workflow based on the support vector machine (SVM) algorithm that maps features to sequences, optimize SVM parameters and feature number and creates a model that can be stored and used to score the regulatory potential of unknown sequences. biocViews: SupportVectorMachine, Software, MotifAnnotation, ChIPSeq, Sequencing, Classification Author: Elodie Darbo, Denis Seyres, Aitor Gonzalez Maintainer: Aitor Gonzalez BugReports: https://github.com/aitgon/LedPred/issues git_url: https://git.bioconductor.org/packages/LedPred git_branch: RELEASE_3_20 git_last_commit: ee0237e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LedPred_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LedPred_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/LedPred_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/LedPred_1.40.0.tgz vignettes: vignettes/LedPred/inst/doc/LedPred.pdf vignetteTitles: LedPred Example hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/LedPred/inst/doc/LedPred.R dependencyCount: 73 Package: lefser Version: 1.16.0 Depends: SummarizedExperiment, R (>= 4.0.0) Imports: coin, MASS, ggplot2, S4Vectors, stats, methods, utils, dplyr, testthat, tibble, tidyr, forcats, stringr, ggtree Suggests: knitr, rmarkdown, curatedMetagenomicData, BiocStyle, phyloseq, pkgdown, covr, withr License: Artistic-2.0 MD5sum: 3e2b3ab61f31fe370694da47cfa6b4f8 NeedsCompilation: no Title: R implementation of the LEfSE method for microbiome biomarker discovery Description: lefser is the R implementation of the popular microbiome biomarker discovery too, LEfSe. It uses the Kruskal-Wallis test, Wilcoxon-Rank Sum test, and Linear Discriminant Analysis to find biomarkers from two-level classes (and optional sub-classes). biocViews: Software, Sequencing, DifferentialExpression, Microbiome, StatisticalMethod, Classification Author: Sehyun Oh [cre, ctb] (), Asya Khleborodova [aut], Samuel Gamboa-Tuz [ctb], Marcel Ramos [ctb] (), Ludwig Geistlinger [ctb] (), Levi Waldron [ctb] () Maintainer: Sehyun Oh URL: https://github.com/waldronlab/lefser VignetteBuilder: knitr BugReports: https://github.com/waldronlab/lefser/issues git_url: https://git.bioconductor.org/packages/lefser git_branch: RELEASE_3_20 git_last_commit: 14d1564 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/lefser_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/lefser_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/lefser_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/lefser_1.16.0.tgz vignettes: vignettes/lefser/inst/doc/lefser.html vignetteTitles: Quickstart hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/lefser/inst/doc/lefser.R suggestsMe: dar dependencyCount: 109 Package: lemur Version: 1.4.0 Depends: R (>= 4.1) Imports: stats, utils, irlba, methods, SingleCellExperiment, SummarizedExperiment, rlang (>= 1.1.0), vctrs (>= 0.6.0), glmGamPoi (>= 1.12.0), BiocGenerics, S4Vectors, Matrix, DelayedMatrixStats, HDF5Array, MatrixGenerics, matrixStats, Rcpp, harmony (>= 1.2.0), limma, BiocNeighbors LinkingTo: Rcpp, RcppArmadillo Suggests: testthat (>= 3.0.0), tidyverse, uwot, dplyr, edgeR, knitr, rmarkdown, BiocStyle License: MIT + file LICENSE MD5sum: 96ec610bec9c5bd78d7c19c8f7e657d0 NeedsCompilation: yes Title: Latent Embedding Multivariate Regression Description: Fit a latent embedding multivariate regression (LEMUR) model to multi-condition single-cell data. The model provides a parametric description of single-cell data measured with treatment vs. control or more complex experimental designs. The parametric model is used to (1) align conditions, (2) predict log fold changes between conditions for all cells, and (3) identify cell neighborhoods with consistent log fold changes. For those neighborhoods, a pseudobulked differential expression test is conducted to assess which genes are significantly changed. biocViews: Transcriptomics, DifferentialExpression, SingleCell, DimensionReduction, Regression Author: Constantin Ahlmann-Eltze [aut, cre] () Maintainer: Constantin Ahlmann-Eltze URL: https://github.com/const-ae/lemur VignetteBuilder: knitr BugReports: https://github.com/const-ae/lemur/issues git_url: https://git.bioconductor.org/packages/lemur git_branch: RELEASE_3_20 git_last_commit: 40e5f26 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/lemur_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/lemur_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/lemur_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/lemur_1.4.0.tgz vignettes: vignettes/lemur/inst/doc/Introduction.html vignetteTitles: Introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/lemur/inst/doc/Introduction.R dependencyCount: 85 Package: les Version: 1.56.0 Depends: R (>= 2.13.2), methods, graphics, fdrtool Imports: boot, gplots, RColorBrewer Suggests: Biobase, limma Enhances: parallel License: GPL-3 Archs: x64 MD5sum: 4fdbde5acca03c52bc247e2c073fb4a2 NeedsCompilation: no Title: Identifying Differential Effects in Tiling Microarray Data Description: The 'les' package estimates Loci of Enhanced Significance (LES) in tiling microarray data. These are regions of regulation such as found in differential transcription, CHiP-chip, or DNA modification analysis. The package provides a universal framework suitable for identifying differential effects in tiling microarray data sets, and is independent of the underlying statistics at the level of single probes. biocViews: Microarray, DifferentialExpression, ChIPchip, DNAMethylation, Transcription Author: Julian Gehring, Clemens Kreutz, Jens Timmer Maintainer: Julian Gehring git_url: https://git.bioconductor.org/packages/les git_branch: RELEASE_3_20 git_last_commit: 65cf5f9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/les_1.56.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/les_1.56.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/les_1.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/les_1.56.0.tgz vignettes: vignettes/les/inst/doc/les.pdf vignetteTitles: Introduction to the les package: Identifying Differential Effects in Tiling Microarray Data with the Loci of Enhanced Significance Framework hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/les/inst/doc/les.R importsMe: GSRI dependencyCount: 13 Package: levi Version: 1.24.0 Imports: DT(>= 0.4), RColorBrewer(>= 1.1-2), colorspace(>= 1.3-2), dplyr(>= 0.7.4), ggplot2(>= 2.2.1), httr(>= 1.3.1), igraph(>= 1.2.1), reshape2(>= 1.4.3), shiny(>= 1.0.5), shinydashboard(>= 0.7.0), shinyjs(>= 1.0), xml2(>= 1.2.0), knitr, Rcpp (>= 0.12.18), grid, grDevices, stats, utils, testthat, methods, rmarkdown LinkingTo: Rcpp Suggests: rmarkdown, BiocStyle License: GPL (>= 2) MD5sum: dd3e6a48e7e67f09ed134357f00fd6d4 NeedsCompilation: yes Title: Landscape Expression Visualization Interface Description: The tool integrates data from biological networks with transcriptomes, displaying a heatmap with surface curves to evidence the altered regions. biocViews: GeneExpression, Sequencing, Network, Software Author: Rafael Pilan [aut], Isabelle Silva [ctb], Agnes Takeda [ctb], Jose Rybarczyk Filho [ctb, cre, ths] Maintainer: Jose Luiz Rybarczyk Filho VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/levi git_branch: RELEASE_3_20 git_last_commit: 54d3310 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/levi_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/levi_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/levi_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/levi_1.24.0.tgz vignettes: vignettes/levi/inst/doc/levi.html vignetteTitles: "Using levi" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/levi/inst/doc/levi.R dependencyCount: 99 Package: lfa Version: 2.6.0 Depends: R (>= 4.0) Imports: utils, methods, corpcor, RSpectra Suggests: knitr, ggplot2, testthat, BEDMatrix, genio License: GPL (>= 3) MD5sum: 8cc986c57b3ea73343d7dba9e2e687ab NeedsCompilation: yes Title: Logistic Factor Analysis for Categorical Data Description: Logistic Factor Analysis is a method for a PCA analogue on Binomial data via estimation of latent structure in the natural parameter. The main method estimates genetic population structure from genotype data. There are also methods for estimating individual-specific allele frequencies using the population structure. Lastly, a structured Hardy-Weinberg equilibrium (HWE) test is developed, which quantifies the goodness of fit of the genotype data to the estimated population structure, via the estimated individual-specific allele frequencies (all of which generalizes traditional HWE tests). biocViews: SNP, DimensionReduction, PrincipalComponent, Regression Author: Wei Hao [aut], Minsun Song [aut], Alejandro Ochoa [aut, cre] (), John D. Storey [aut] () Maintainer: Alejandro Ochoa URL: https://github.com/StoreyLab/lfa VignetteBuilder: knitr BugReports: https://github.com/StoreyLab/lfa/issues git_url: https://git.bioconductor.org/packages/lfa git_branch: RELEASE_3_20 git_last_commit: 6ae85e7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/lfa_2.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/lfa_2.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/lfa_2.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/lfa_2.6.0.tgz vignettes: vignettes/lfa/inst/doc/lfa.pdf vignetteTitles: lfa Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/lfa/inst/doc/lfa.R importsMe: gcatest suggestsMe: jackstraw dependencyCount: 12 Package: limma Version: 3.62.1 Depends: R (>= 3.6.0) Imports: grDevices, graphics, stats, utils, methods, statmod Suggests: BiasedUrn, ellipse, gplots, knitr, locfit, MASS, splines, affy, AnnotationDbi, Biobase, BiocStyle, GO.db, illuminaio, org.Hs.eg.db, vsn License: GPL (>=2) Archs: x64 MD5sum: 60f71c513c6724401b8d114b8d669e08 NeedsCompilation: yes Title: Linear Models for Microarray and Omics Data Description: Data analysis, linear models and differential expression for omics data. biocViews: ExonArray, GeneExpression, Transcription, AlternativeSplicing, DifferentialExpression, DifferentialSplicing, GeneSetEnrichment, DataImport, Bayesian, Clustering, Regression, TimeCourse, Microarray, MicroRNAArray, mRNAMicroarray, OneChannel, ProprietaryPlatforms, TwoChannel, Sequencing, RNASeq, BatchEffect, MultipleComparison, Normalization, Preprocessing, QualityControl, BiomedicalInformatics, CellBiology, Cheminformatics, Epigenetics, FunctionalGenomics, Genetics, ImmunoOncology, Metabolomics, Proteomics, SystemsBiology, Transcriptomics Author: Gordon Smyth [cre,aut], Yifang Hu [ctb], Matthew Ritchie [ctb], Jeremy Silver [ctb], James Wettenhall [ctb], Davis McCarthy [ctb], Di Wu [ctb], Wei Shi [ctb], Belinda Phipson [ctb], Aaron Lun [ctb], Natalie Thorne [ctb], Alicia Oshlack [ctb], Carolyn de Graaf [ctb], Yunshun Chen [ctb], Goknur Giner [ctb], Mette Langaas [ctb], Egil Ferkingstad [ctb], Marcus Davy [ctb], Francois Pepin [ctb], Dongseok Choi [ctb], Charity Law [ctb], Mengbo Li [ctb], Lizhong Chen [ctb] Maintainer: Gordon Smyth URL: https://bioinf.wehi.edu.au/limma/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/limma git_branch: RELEASE_3_20 git_last_commit: bb03966 git_last_commit_date: 2024-11-02 Date/Publication: 2024-11-03 source.ver: src/contrib/limma_3.62.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/limma_3.62.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/limma_3.62.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/limma_3.62.1.tgz vignettes: vignettes/limma/inst/doc/usersguide.pdf, vignettes/limma/inst/doc/intro.html vignetteTitles: limma User's Guide, A brief introduction to limma hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/limma/inst/doc/intro.R dependsOnMe: ASpli, BLMA, cghMCR, codelink, convert, Cormotif, DrugVsDisease, edgeR, ExiMiR, ExpressionAtlas, GEOexplorer, IsoformSwitchAnalyzeR, marray, metaseqR2, mpra, NanoTube, octad, protGear, qpcrNorm, qusage, RBM, RnBeads, Rnits, splineTimeR, TMSig, TOAST, tRanslatome, TurboNorm, variancePartition, wateRmelon, zenith, CCl4, Fletcher2013a, HD2013SGI, ReactomeGSA.data, EGSEA123, maEndToEnd, methylationArrayAnalysis, RNAseq123, OSCA.basic, OSCA.workflows, BALLI, BioInsight, CEDA, countTransformers, cp4p, DAAGbio, DRomics, fmt, PerfMeas importsMe: a4Base, ABSSeq, affycoretools, affylmGUI, AMARETTO, animalcules, ArrayExpress, arrayQuality, arrayQualityMetrics, artMS, ATACseqQC, ATACseqTFEA, attract, autonomics, AWFisher, ballgown, BatchQC, beadarray, BERT, biotmle, BloodGen3Module, bnem, bsseq, BubbleTree, bumphunter, casper, ChAMP, CleanUpRNAseq, clusterExperiment, CNVRanger, combi, compcodeR, consensusDE, crlmm, csaw, cTRAP, ctsGE, DAMEfinder, DaMiRseq, debrowser, DELocal, DEP, derfinderPlot, DESpace, DEsubs, DExMA, DiffBind, diffcyt, diffHic, diffUTR, distinct, DMRcate, Doscheda, dreamlet, DRIMSeq, EGAD, EGSEA, eisaR, EnrichmentBrowser, epigraHMM, EpiMix, erccdashboard, EventPointer, EWCE, ExploreModelMatrix, flowBin, gCrisprTools, GDCRNATools, GeneSelectMMD, GEOquery, gg4way, gINTomics, Glimma, GRaNIE, GWAS.BAYES, HarmonizR, hermes, HERON, hipathia, icetea, iCheck, iChip, iCOBRA, ideal, InPAS, isomiRs, KnowSeq, lemur, limmaGUI, Linnorm, lipidr, lmdme, mastR, MatrixQCvis, MBECS, MBQN, mCSEA, MEAL, methylKit, MethylMix, miloR, minfi, MIRit, miRLAB, missMethyl, MLSeq, moanin, monocle, MoonlightR, msImpute, msqrob2, MSstats, MSstatsTMT, MultiDataSet, muscat, NADfinder, NanoMethViz, nethet, NormalyzerDE, OLIN, omicRexposome, oppti, OVESEG, PAA, PADOG, pairedGSEA, PanomiR, PathoStat, pcaExplorer, PECA, PepSetTest, pepStat, phantasus, phenomis, phenoTest, PhosR, PolySTest, POMA, POWSC, projectR, PRONE, psichomics, qmtools, qPLEXanalyzer, qsea, RegEnrich, regsplice, RNAseqCovarImpute, roastgsa, ROSeq, RTN, RTopper, saseR, satuRn, scClassify, scone, scran, ScreenR, scviR, seqsetvis, shinyepico, SingleCellSignalR, singleCellTK, sparrow, speckle, SPsimSeq, standR, STATegRa, Statial, sva, timecourse, TOP, ToxicoGx, TPP2D, TPP, transcriptogramer, TVTB, tweeDEseq, unifiedWMWqPCR, vsclust, vsn, weitrix, Wrench, yamss, yarn, BeadArrayUseCases, DmelSGI, signatureSearchData, spatialLIBD, ExpHunterSuite, ExpressionNormalizationWorkflow, recountWorkflow, aliases2entrez, batchtma, BPM, Cascade, cinaR, DiPALM, dsb, easybio, easyDifferentialGeneCoexpression, eLNNpairedCov, Grouphmap, GSEMA, GWASbyCluster, INCATome, lfproQC, lilikoi, limorhyde2, lipidomeR, MetAlyzer, metaMA, mi4p, MiDA, miRtest, MKmisc, MKomics, MSclassifR, newIMVC, nlcv, OncoSubtype, Patterns, plfMA, promor, RANKS, RCPA, RPPanalyzer, scBio, scGOclust, scRNAtools, scROSHI, ssizeRNA, statVisual, tinyarray, TransProR, treediff, wrProteo suggestsMe: ABarray, ADaCGH2, Biobase, biobroom, BiocSet, BioNet, BioQC, broadSeq, Category, categoryCompare, celaref, CellBench, CellMixS, ChIPpeakAnno, ClassifyR, CMA, coGPS, CONSTANd, cydar, Damsel, DAPAR, dar, dearseq, DEGreport, derfinder, DEScan2, dyebias, easyreporting, EnMCB, extraChIPs, fgsea, fishpond, gage, GeoTcgaData, geva, glmGamPoi, GSRI, GSVA, Harman, Heatplus, iSEEde, isobar, ivygapSE, les, lumi, lute, MAST, methylumi, MLP, npGSEA, oligo, oppar, piano, PREDA, proDA, puma, QFeatures, qsvaR, raer, randRotation, recountmethylation, ribosomeProfilingQC, rtracklayer, Rvisdiff, spatialHeatmap, SpliceWiz, stageR, subSeq, systemPipeR, tadar, TCGAbiolinks, tidybulk, topconfects, tximeta, tximport, zFPKM, BloodCancerMultiOmics2017, bugphyzz, GeuvadisTranscriptExpr, mammaPrintData, msigdb, seventyGeneData, arrays, CAGEWorkflow, fluentGenomics, simpleSingleCell, AnnoProbe, aroma.affymetrix, canvasXpress, COCONUT, corncob, DGEobj.utils, GiANT, hexbin, limorhyde, LPS, maGUI, NACHO, pctax, Platypus, pmartR, protti, RepeatedHighDim, SCdeconR, seqgendiff, Seurat, simphony, st, volcano3D, wrGraph, wrMisc, wrTopDownFrag dependencyCount: 6 Package: limmaGUI Version: 1.82.0 Imports: methods, grDevices, graphics, limma, R2HTML, tcltk, tkrplot, xtable, utils License: GPL (>=2) MD5sum: 72b40d4ee4d5828a47764c76dfc63358 NeedsCompilation: no Title: GUI for limma Package With Two Color Microarrays Description: A Graphical User Interface for differential expression analysis of two-color microarray data using the limma package. biocViews: GUI, GeneExpression, DifferentialExpression, DataImport, Bayesian, Regression, TimeCourse, Microarray, mRNAMicroarray, TwoChannel, BatchEffect, MultipleComparison, Normalization, Preprocessing, QualityControl Author: James Wettenhall [aut], Gordon Smyth [aut], Keith Satterley [ctb] Maintainer: Gordon Smyth URL: http://bioinf.wehi.edu.au/limmaGUI/ git_url: https://git.bioconductor.org/packages/limmaGUI git_branch: RELEASE_3_20 git_last_commit: b4e0212 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/limmaGUI_1.82.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/limmaGUI_1.82.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/limmaGUI_1.82.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/limmaGUI_1.82.0.tgz vignettes: vignettes/limmaGUI/inst/doc/extract.pdf, vignettes/limmaGUI/inst/doc/limmaGUI.pdf, vignettes/limmaGUI/inst/doc/LinModIntro.pdf, vignettes/limmaGUI/inst/doc/about.html, vignettes/limmaGUI/inst/doc/CustMenu.html, vignettes/limmaGUI/inst/doc/import.html, vignettes/limmaGUI/inst/doc/index.html, vignettes/limmaGUI/inst/doc/InputFiles.html, vignettes/limmaGUI/inst/doc/lgDevel.html, vignettes/limmaGUI/inst/doc/windowsFocus.html vignetteTitles: Extracting limma objects from limmaGUI files, limmaGUI Vignette, LinModIntro.pdf, about.html, CustMenu.html, import.html, index.html, InputFiles.html, lgDevel.html, windowsFocus.html hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/limmaGUI/inst/doc/limmaGUI.R dependencyCount: 11 Package: limpca Version: 1.2.0 Depends: R (>= 3.5.0) Imports: ggplot2, stringr, plyr, ggrepel, reshape2, grDevices, graphics, doParallel, parallel, dplyr, tibble, tidyr, ggsci, tidyverse, methods, stats, SummarizedExperiment, S4Vectors Suggests: BiocStyle, pander, rmarkdown, car, gridExtra, knitr, testthat (>= 3.0.0) License: Artistic-2.0 Archs: x64 MD5sum: 66755349b1e192c28860ffaa149308ef NeedsCompilation: no Title: An R package for the linear modeling of high-dimensional designed data based on ASCA/APCA family of methods Description: This package has for objectives to provide a method to make Linear Models for high-dimensional designed data. limpca applies a GLM (General Linear Model) version of ASCA and APCA to analyse multivariate sample profiles generated by an experimental design. ASCA/APCA provide powerful visualization tools for multivariate structures in the space of each effect of the statistical model linked to the experimental design and contrarily to MANOVA, it can deal with mutlivariate datasets having more variables than observations. This method can handle unbalanced design. biocViews: StatisticalMethod, PrincipalComponent, Regression, Visualization, ExperimentalDesign, MultipleComparison, GeneExpression, Metabolomics Author: Bernadette Govaerts [aut, ths], Sebastien Franceschini [ctb], Robin van Oirbeek [ctb], Michel Thiel [aut], Pascal de Tullio [dtc], Manon Martin [aut, cre] (), Nadia Benaiche [ctb] Maintainer: Manon Martin URL: https://github.com/ManonMartin/limpca, https://manonmartin.github.io/limpca/ VignetteBuilder: knitr BugReports: https://github.com/ManonMartin/limpca/issues git_url: https://git.bioconductor.org/packages/limpca git_branch: RELEASE_3_20 git_last_commit: 32706c3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/limpca_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/limpca_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/limpca_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/limpca_1.2.0.tgz vignettes: vignettes/limpca/inst/doc/limpca.html, vignettes/limpca/inst/doc/Trout.html, vignettes/limpca/inst/doc/UCH.html vignetteTitles: Get started with limpca, Analysis of the Trout dataset with limpca, Analysis of the UCH dataset with limpca hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/limpca/inst/doc/limpca.R, vignettes/limpca/inst/doc/Trout.R, vignettes/limpca/inst/doc/UCH.R dependencyCount: 142 Package: lineagespot Version: 1.10.0 Imports: VariantAnnotation, MatrixGenerics, SummarizedExperiment, data.table, stringr, httr, utils Suggests: BiocStyle, RefManageR, rmarkdown, knitr, testthat (>= 3.0.0) License: MIT + file LICENSE Archs: x64 MD5sum: 16869e44569c6f2e5fa2780ccbb0dfc2 NeedsCompilation: no Title: Detection of SARS-CoV-2 lineages in wastewater samples using next-generation sequencing Description: Lineagespot is a framework written in R, and aims to identify SARS-CoV-2 related mutations based on a single (or a list) of variant(s) file(s) (i.e., variant calling format). The method can facilitate the detection of SARS-CoV-2 lineages in wastewater samples using next generation sequencing, and attempts to infer the potential distribution of the SARS-CoV-2 lineages. biocViews: VariantDetection, VariantAnnotation, Sequencing Author: Nikolaos Pechlivanis [aut, cre] (), Maria Tsagiopoulou [aut], Maria Christina Maniou [aut], Anastasis Togkousidis [aut], Evangelia Mouchtaropoulou [aut], Taxiarchis Chassalevris [aut], Serafeim Chaintoutis [aut], Chrysostomos Dovas [aut], Maria Petala [aut], Margaritis Kostoglou [aut], Thodoris Karapantsios [aut], Stamatia Laidou [aut], Elisavet Vlachonikola [aut], Aspasia Orfanou [aut], Styliani-Christina Fragkouli [aut], Sofoklis Keisaris [aut], Anastasia Chatzidimitriou [aut], Agis Papadopoulos [aut], Nikolaos Papaioannou [aut], Anagnostis Argiriou [aut], Fotis E. Psomopoulos [aut] Maintainer: Nikolaos Pechlivanis URL: https://github.com/BiodataAnalysisGroup/lineagespot VignetteBuilder: knitr BugReports: https://github.com/BiodataAnalysisGroup/lineagespot/issues git_url: https://git.bioconductor.org/packages/lineagespot git_branch: RELEASE_3_20 git_last_commit: 26240b0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/lineagespot_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/lineagespot_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/lineagespot_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/lineagespot_1.10.0.tgz vignettes: vignettes/lineagespot/inst/doc/lineagespot.html vignetteTitles: lineagespot User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/lineagespot/inst/doc/lineagespot.R dependencyCount: 83 Package: LinkHD Version: 1.20.0 Depends: R(>= 3.6.0), methods, ggplot2, stats Imports: scales, cluster, graphics, ggpubr, gridExtra, vegan, rio, MultiAssayExperiment, emmeans, reshape2, data.table Suggests: MASS (>= 7.3.0), knitr, rmarkdown, BiocStyle License: GPL-3 Archs: x64 MD5sum: 0ef4c9b91cad4f53b3f4442e413c6bd7 NeedsCompilation: no Title: LinkHD: a versatile framework to explore and integrate heterogeneous data Description: Here we present Link-HD, an approach to integrate heterogeneous datasets, as a generalization of STATIS-ACT (“Structuration des Tableaux A Trois Indices de la Statistique–Analyse Conjointe de Tableaux”), a family of methods to join and compare information from multiple subspaces. However, STATIS-ACT has some drawbacks since it only allows continuous data and it is unable to establish relationships between samples and features. In order to tackle these constraints, we incorporate multiple distance options and a linear regression based Biplot model in order to stablish relationships between observations and variable and perform variable selection. biocViews: Classification,MultipleComparison,Regression,Software Author: Laura M. Zingaretti [aut, cre] Maintainer: "Laura M Zingaretti" VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/LinkHD git_branch: RELEASE_3_20 git_last_commit: 807e4f1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LinkHD_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LinkHD_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/LinkHD_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/LinkHD_1.20.0.tgz vignettes: vignettes/LinkHD/inst/doc/LinkHD.html vignetteTitles: Annotating Genomic Variants hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/LinkHD/inst/doc/LinkHD.R dependencyCount: 133 Package: Linnorm Version: 2.30.0 Depends: R(>= 4.1.0) Imports: Rcpp (>= 0.12.2), RcppArmadillo (>= 0.8.100.1.0), fpc, vegan, mclust, apcluster, ggplot2, ellipse, limma, utils, statmod, MASS, igraph, grDevices, graphics, fastcluster, ggdendro, zoo, stats, amap, Rtsne, gmodels LinkingTo: Rcpp, RcppArmadillo Suggests: BiocStyle, knitr, rmarkdown, markdown, gplots, RColorBrewer, moments, testthat, matrixStats License: MIT + file LICENSE MD5sum: 4adfc36d01bac9e486e4384f7e0f9976 NeedsCompilation: yes Title: Linear model and normality based normalization and transformation method (Linnorm) Description: Linnorm is an algorithm for normalizing and transforming RNA-seq, single cell RNA-seq, ChIP-seq count data or any large scale count data. It has been independently reviewed by Tian et al. on Nature Methods (https://doi.org/10.1038/s41592-019-0425-8). Linnorm can work with raw count, CPM, RPKM, FPKM and TPM. biocViews: ImmunoOncology, Sequencing, ChIPSeq, RNASeq, DifferentialExpression, GeneExpression, Genetics, Normalization, Software, Transcription, BatchEffect, PeakDetection, Clustering, Network, SingleCell Author: Shun Hang Yip Maintainer: Shun Hang Yip URL: https://doi.org/10.1093/nar/gkx828 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Linnorm git_branch: RELEASE_3_20 git_last_commit: 0f514e8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Linnorm_2.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Linnorm_2.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Linnorm_2.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Linnorm_2.30.0.tgz vignettes: vignettes/Linnorm/inst/doc/Linnorm_User_Manual.pdf vignetteTitles: Linnorm User Manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Linnorm/inst/doc/Linnorm_User_Manual.R importsMe: mnem suggestsMe: SCdeconR dependencyCount: 67 Package: LinTInd Version: 1.10.0 Depends: R (>= 4.0), ggplot2, parallel, stats, S4Vectors Imports: data.tree, reshape2, networkD3, stringdist, purrr, ape, cowplot, ggnewscale, stringr, dplyr, rlist, pheatmap, Biostrings, pwalign, IRanges, BiocGenerics(>= 0.36.1), ggtree Suggests: knitr, rmarkdown License: MIT + file LICENSE MD5sum: 92c6b3c5b5aa628fbc0e66ebe3bee94e NeedsCompilation: no Title: Lineage tracing by indels Description: When we combine gene-editing technology and sequencing technology, we need to reconstruct a lineage tree from alleles generated and calculate the similarity between each pair of groups. FindIndel() and IndelForm() function will help you align each read to reference sequence and generate scar form strings respectively. IndelIdents() function will help you to define a scar form for each cell or read. IndelPlot() function will help you to visualize the distribution of deletion and insertion. TagProcess() function will help you to extract indels for each cell or read. TagDist() function will help you to calculate the similarity between each pair of groups across the indwells they contain. BuildTree() function will help you to reconstruct a tree. PlotTree() function will help you to visualize the tree. biocViews: SingleCell, CRISPR, Alignment Author: Luyue Wang [aut, cre], Bin Xiang [ctb], Hengxin Liu [ctb], Wu Wei [ths] Maintainer: Luyue Wang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/LinTInd git_branch: RELEASE_3_20 git_last_commit: d272cfb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LinTInd_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LinTInd_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/LinTInd_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/LinTInd_1.10.0.tgz vignettes: vignettes/LinTInd/inst/doc/tutorial.html vignetteTitles: LinTInd - tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/LinTInd/inst/doc/tutorial.R dependencyCount: 108 Package: lionessR Version: 1.20.0 Depends: R (>= 3.6.0) Imports: stats, SummarizedExperiment, S4Vectors Suggests: knitr, rmarkdown, igraph, reshape2, limma, License: MIT + file LICENSE MD5sum: cad6b9096224be2ad92b9abb98329a8e NeedsCompilation: no Title: Modeling networks for individual samples using LIONESS Description: LIONESS, or Linear Interpolation to Obtain Network Estimates for Single Samples, can be used to reconstruct single-sample networks (https://arxiv.org/abs/1505.06440). This code implements the LIONESS equation in the lioness function in R to reconstruct single-sample networks. The default network reconstruction method we use is based on Pearson correlation. However, lionessR can run on any network reconstruction algorithms that returns a complete, weighted adjacency matrix. lionessR works for both unipartite and bipartite networks. biocViews: Network, NetworkInference, GeneExpression Author: Marieke Lydia Kuijjer [aut] (), Ping-Han Hsieh [cre] () Maintainer: Ping-Han Hsieh URL: https://github.com/mararie/lionessR VignetteBuilder: knitr BugReports: https://github.com/mararie/lionessR/issues git_url: https://git.bioconductor.org/packages/lionessR git_branch: RELEASE_3_20 git_last_commit: 2842f62 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/lionessR_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/lionessR_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/lionessR_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/lionessR_1.20.0.tgz vignettes: vignettes/lionessR/inst/doc/lionessR.html vignetteTitles: lionessR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/lionessR/inst/doc/lionessR.R dependencyCount: 36 Package: lipidr Version: 2.20.0 Depends: R (>= 3.6.0), SummarizedExperiment Imports: methods, stats, utils, data.table, S4Vectors, rlang, dplyr, tidyr, forcats, ggplot2, limma, fgsea, ropls, imputeLCMD, magrittr Suggests: knitr, rmarkdown, BiocStyle, ggrepel, plotly, spelling, testthat License: MIT + file LICENSE MD5sum: 3bba856da2703ced5be1ceb7323bc1ac NeedsCompilation: no Title: Data Mining and Analysis of Lipidomics Datasets Description: lipidr an easy-to-use R package implementing a complete workflow for downstream analysis of targeted and untargeted lipidomics data. lipidomics results can be imported into lipidr as a numerical matrix or a Skyline export, allowing integration into current analysis frameworks. Data mining of lipidomics datasets is enabled through integration with Metabolomics Workbench API. lipidr allows data inspection, normalization, univariate and multivariate analysis, displaying informative visualizations. lipidr also implements a novel Lipid Set Enrichment Analysis (LSEA), harnessing molecular information such as lipid class, total chain length and unsaturation. biocViews: Lipidomics, MassSpectrometry, Normalization, QualityControl, Visualization Author: Ahmed Mohamed [cre] (), Ahmed Mohamed [aut], Jeffrey Molendijk [aut] Maintainer: Ahmed Mohamed URL: https://github.com/ahmohamed/lipidr VignetteBuilder: knitr BugReports: https://github.com/ahmohamed/lipidr/issues/ git_url: https://git.bioconductor.org/packages/lipidr git_branch: RELEASE_3_20 git_last_commit: 813c5f1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/lipidr_2.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/lipidr_2.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/lipidr_2.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/lipidr_2.20.0.tgz vignettes: vignettes/lipidr/inst/doc/workflow.html vignetteTitles: lipidr_workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/lipidr/inst/doc/workflow.R suggestsMe: rgoslin dependencyCount: 128 Package: LiquidAssociation Version: 1.60.0 Depends: geepack, methods, yeastCC, org.Sc.sgd.db Imports: Biobase, graphics, grDevices, methods, stats License: GPL (>=3) Archs: x64 MD5sum: 121e25a4ac666df1847a58c6830aa4b2 NeedsCompilation: no Title: LiquidAssociation Description: The package contains functions for calculate direct and model-based estimators for liquid association. It also provides functions for testing the existence of liquid association given a gene triplet data. biocViews: Pathways, GeneExpression, CellBiology, Genetics, Network, TimeCourse Author: Yen-Yi Ho Maintainer: Yen-Yi Ho git_url: https://git.bioconductor.org/packages/LiquidAssociation git_branch: RELEASE_3_20 git_last_commit: a0215dc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LiquidAssociation_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LiquidAssociation_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/LiquidAssociation_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/LiquidAssociation_1.60.0.tgz vignettes: vignettes/LiquidAssociation/inst/doc/LiquidAssociation.pdf vignetteTitles: LiquidAssociation Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/LiquidAssociation/inst/doc/LiquidAssociation.R dependsOnMe: fastLiquidAssociation dependencyCount: 64 Package: lisaClust Version: 1.14.4 Depends: R (>= 4.0) Imports: ggplot2, class, concaveman, grid, BiocParallel, spatstat.explore, spatstat.geom, BiocGenerics, S4Vectors, methods, spicyR, purrr, stats, data.table, dplyr, tidyr, SingleCellExperiment, SpatialExperiment, SummarizedExperiment, pheatmap, spatstat.random, testthat Suggests: BiocStyle, knitr, rmarkdown, SpatialDatasets, testthat (>= 3.0.0) License: GPL (>=2) MD5sum: 614711eb2c12d079c45d52a8c1b240bc NeedsCompilation: no Title: lisaClust: Clustering of Local Indicators of Spatial Association Description: lisaClust provides a series of functions to identify and visualise regions of tissue where spatial associations between cell-types is similar. This package can be used to provide a high-level summary of cell-type colocalization in multiplexed imaging data that has been segmented at a single-cell resolution. biocViews: SingleCell, CellBasedAssays, Spatial Author: Ellis Patrick [aut, cre], Nicolas Canete [aut], Nicholas Robertson [ctb] Maintainer: Ellis Patrick URL: https://ellispatrick.github.io/lisaClust/, https://github.com/ellispatrick/lisaClust VignetteBuilder: knitr BugReports: https://github.com/ellispatrick/lisaClust/issues git_url: https://git.bioconductor.org/packages/lisaClust git_branch: RELEASE_3_20 git_last_commit: 18d3476 git_last_commit_date: 2024-11-05 Date/Publication: 2024-11-06 source.ver: src/contrib/lisaClust_1.14.4.tar.gz win.binary.ver: bin/windows/contrib/4.4/lisaClust_1.14.4.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/lisaClust_1.14.4.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/lisaClust_1.14.4.tgz vignettes: vignettes/lisaClust/inst/doc/lisaClust.html vignetteTitles: "Inroduction to lisaClust" hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/lisaClust/inst/doc/lisaClust.R suggestsMe: Statial, spicyWorkflow dependencyCount: 200 Package: lmdme Version: 1.48.0 Depends: R (>= 2.14.1), pls, stemHypoxia Imports: stats, methods, limma Enhances: parallel License: GPL (>=2) MD5sum: 68ca2b61743abd8fa7b70156cbb34009 NeedsCompilation: no Title: Linear Model decomposition for Designed Multivariate Experiments Description: linear ANOVA decomposition of Multivariate Designed Experiments implementation based on limma lmFit. Features: i)Flexible formula type interface, ii) Fast limma based implementation, iii) p-values for each estimated coefficient levels in each factor, iv) F values for factor effects and v) plotting functions for PCA and PLS. biocViews: Microarray, OneChannel, TwoChannel, Visualization, DifferentialExpression, ExperimentData, Cancer Author: Cristobal Fresno and Elmer A. Fernandez Maintainer: Cristobal Fresno URL: http://www.bdmg.com.ar/?page_id=38 git_url: https://git.bioconductor.org/packages/lmdme git_branch: RELEASE_3_20 git_last_commit: f894dd0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/lmdme_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/lmdme_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/lmdme_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/lmdme_1.48.0.tgz vignettes: vignettes/lmdme/inst/doc/lmdme-vignette.pdf vignetteTitles: lmdme: linear model framework for PCA/PLS analysis of ANOVA decomposition on Designed Multivariate Experiments in R hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/lmdme/inst/doc/lmdme-vignette.R dependencyCount: 9 Package: LOBSTAHS Version: 1.32.0 Depends: R (>= 3.4), xcms, CAMERA, methods Imports: utils Suggests: PtH2O2lipids, knitr, rmarkdown License: GPL (>= 3) + file LICENSE MD5sum: b475990b09baab38979a76a91b25537f NeedsCompilation: no Title: Lipid and Oxylipin Biomarker Screening through Adduct Hierarchy Sequences Description: LOBSTAHS is a multifunction package for screening, annotation, and putative identification of mass spectral features in large, HPLC-MS lipid datasets. In silico data for a wide range of lipids, oxidized lipids, and oxylipins can be generated from user-supplied structural criteria with a database generation function. LOBSTAHS then applies these databases to assign putative compound identities to features in any high-mass accuracy dataset that has been processed using xcms and CAMERA. Users can then apply a series of orthogonal screening criteria based on adduct ion formation patterns, chromatographic retention time, and other properties, to evaluate and assign confidence scores to this list of preliminary assignments. During the screening routine, LOBSTAHS rejects assignments that do not meet the specified criteria, identifies potential isomers and isobars, and assigns a variety of annotation codes to assist the user in evaluating the accuracy of each assignment. biocViews: ImmunoOncology, MassSpectrometry, Metabolomics, Lipidomics, DataImport Author: James Collins [aut, cre], Helen Fredricks [aut], Bethanie Edwards [aut], Henry Holm [aut], Benjamin Van Mooy [aut], Daniel Lowenstein [aut] Maintainer: Henry Holm , Daniel Lowenstein , James Collins URL: http://bioconductor.org/packages/LOBSTAHS VignetteBuilder: knitr BugReports: https://github.com/vanmooylipidomics/LOBSTAHS/issues/new git_url: https://git.bioconductor.org/packages/LOBSTAHS git_branch: RELEASE_3_20 git_last_commit: 4ce6035 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LOBSTAHS_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LOBSTAHS_1.32.0.zip vignettes: vignettes/LOBSTAHS/inst/doc/LOBSTAHS.html vignetteTitles: Discovery,, Identification,, and Screening of Lipids and Oxylipins in HPLC-MS Datasets Using LOBSTAHS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/LOBSTAHS/inst/doc/LOBSTAHS.R dependsOnMe: PtH2O2lipids dependencyCount: 161 Package: loci2path Version: 1.26.0 Depends: R (>= 3.5.0) Imports: pheatmap, wordcloud, RColorBrewer, data.table, methods, grDevices, stats, graphics, GenomicRanges, BiocParallel, S4Vectors Suggests: BiocStyle, knitr, rmarkdown License: Artistic-2.0 MD5sum: 7dad3e48f75d195a5ba147857d09c3c6 NeedsCompilation: no Title: Loci2path: regulatory annotation of genomic intervals based on tissue-specific expression QTLs Description: loci2path performs statistics-rigorous enrichment analysis of eQTLs in genomic regions of interest. Using eQTL collections provided by the Genotype-Tissue Expression (GTEx) project and pathway collections from MSigDB. biocViews: FunctionalGenomics, Genetics, GeneSetEnrichment, Software, GeneExpression, Sequencing, Coverage, BioCarta Author: Tianlei Xu Maintainer: Tianlei Xu URL: https://github.com/StanleyXu/loci2path VignetteBuilder: knitr BugReports: https://github.com/StanleyXu/loci2path/issues git_url: https://git.bioconductor.org/packages/loci2path git_branch: RELEASE_3_20 git_last_commit: 1ac4359 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/loci2path_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/loci2path_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/loci2path_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/loci2path_1.26.0.tgz vignettes: vignettes/loci2path/inst/doc/loci2path-vignette.html vignetteTitles: loci2path hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/loci2path/inst/doc/loci2path-vignette.R dependencyCount: 51 Package: logicFS Version: 2.26.0 Depends: LogicReg, mcbiopi, survival Imports: graphics, methods, stats Suggests: genefilter, siggenes License: LGPL (>= 2) MD5sum: 1da216467b438745e9929edf5a695237 NeedsCompilation: no Title: Identification of SNP Interactions Description: Identification of interactions between binary variables using Logic Regression. Can, e.g., be used to find interesting SNP interactions. Contains also a bagging version of logic regression for classification. biocViews: SNP, Classification, Genetics Author: Holger Schwender, Tobias Tietz Maintainer: Holger Schwender git_url: https://git.bioconductor.org/packages/logicFS git_branch: RELEASE_3_20 git_last_commit: ba8356f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/logicFS_2.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/logicFS_2.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/logicFS_2.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/logicFS_2.26.0.tgz vignettes: vignettes/logicFS/inst/doc/logicFS.pdf vignetteTitles: logicFS Manual hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/logicFS/inst/doc/logicFS.R suggestsMe: trio dependencyCount: 12 Package: LOLA Version: 1.36.0 Depends: R (>= 3.5.0) Imports: BiocGenerics, S4Vectors, IRanges, GenomicRanges, data.table, reshape2, utils, stats, methods Suggests: parallel, testthat, knitr, BiocStyle, rmarkdown Enhances: simpleCache, qvalue, ggplot2 License: GPL-3 MD5sum: 0cfd669bec6dba4c4fe07b868bbb7df3 NeedsCompilation: no Title: Locus overlap analysis for enrichment of genomic ranges Description: Provides functions for testing overlap of sets of genomic regions with public and custom region set (genomic ranges) databases. This makes it possible to do automated enrichment analysis for genomic region sets, thus facilitating interpretation of functional genomics and epigenomics data. biocViews: GeneSetEnrichment, GeneRegulation, GenomeAnnotation, SystemsBiology, FunctionalGenomics, ChIPSeq, MethylSeq, Sequencing Author: Nathan Sheffield [aut, cre], Christoph Bock [ctb] Maintainer: Nathan Sheffield URL: http://code.databio.org/LOLA VignetteBuilder: knitr BugReports: http://github.com/nsheff/LOLA git_url: https://git.bioconductor.org/packages/LOLA git_branch: RELEASE_3_20 git_last_commit: ad5d531 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LOLA_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LOLA_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/LOLA_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/LOLA_1.36.0.tgz vignettes: vignettes/LOLA/inst/doc/choosingUniverse.html, vignettes/LOLA/inst/doc/gettingStarted.html, vignettes/LOLA/inst/doc/usingLOLACore.html vignetteTitles: 3. Choosing a Universe, 1. Getting Started with LOLA, 2. Using LOLA Core hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/LOLA/inst/doc/choosingUniverse.R, vignettes/LOLA/inst/doc/gettingStarted.R, vignettes/LOLA/inst/doc/usingLOLACore.R suggestsMe: COCOA, MAGAR, MIRA, ramr dependencyCount: 35 Package: LoomExperiment Version: 1.24.0 Depends: R (>= 3.5.0), S4Vectors, SingleCellExperiment, SummarizedExperiment, methods, rhdf5, BiocIO Imports: DelayedArray, GenomicRanges, HDF5Array, Matrix, stats, stringr, utils Suggests: testthat, BiocStyle, knitr, rmarkdown, reticulate License: Artistic-2.0 MD5sum: bf195d20618013613a8b911b800828f0 NeedsCompilation: no Title: LoomExperiment container Description: The LoomExperiment package provide a means to easily convert the Bioconductor "Experiment" classes to loom files and vice versa. biocViews: ImmunoOncology, DataRepresentation, DataImport, Infrastructure, SingleCell Author: Martin Morgan, Daniel Van Twisk Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/LoomExperiment git_branch: RELEASE_3_20 git_last_commit: 046fa8f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LoomExperiment_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LoomExperiment_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/LoomExperiment_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/LoomExperiment_1.24.0.tgz vignettes: vignettes/LoomExperiment/inst/doc/LoomExperiment.html vignetteTitles: An introduction to the LoomExperiment class hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/LoomExperiment/inst/doc/LoomExperiment.R dependsOnMe: OSCA.intro suggestsMe: adverSCarial, hca dependencyCount: 50 Package: LPE Version: 1.80.0 Depends: R (>= 2.10) Imports: stats License: LGPL MD5sum: d9b6f891378d49b442bdb39e0fa9b567 NeedsCompilation: no Title: Methods for analyzing microarray data using Local Pooled Error (LPE) method Description: This LPE library is used to do significance analysis of microarray data with small number of replicates. It uses resampling based FDR adjustment, and gives less conservative results than traditional 'BH' or 'BY' procedures. Data accepted is raw data in txt format from MAS4, MAS5 or dChip. Data can also be supplied after normalization. LPE library is primarily used for analyzing data between two conditions. To use it for paired data, see LPEP library. For using LPE in multiple conditions, use HEM library. biocViews: Microarray, DifferentialExpression Author: Nitin Jain , Michael O'Connell , Jae K. Lee . Includes R source code contributed by HyungJun Cho Maintainer: Nitin Jain URL: http://www.r-project.org, http://www.healthsystem.virginia.edu/internet/hes/biostat/bioinformatics/, http://sourceforge.net/projects/r-lpe/ git_url: https://git.bioconductor.org/packages/LPE git_branch: RELEASE_3_20 git_last_commit: 38a4b6f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LPE_1.80.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LPE_1.80.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/LPE_1.80.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/LPE_1.80.0.tgz vignettes: vignettes/LPE/inst/doc/LPE.pdf vignetteTitles: LPE test for microarray data with small number of replicates hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/LPE/inst/doc/LPE.R dependsOnMe: PLPE suggestsMe: ABarray dependencyCount: 1 Package: lpNet Version: 2.38.0 Depends: lpSolve, KEGGgraph License: Artistic License 2.0 MD5sum: 47317ca53357a4f5f86161dd4d49a342 NeedsCompilation: no Title: Linear Programming Model for Network Inference Description: lpNet aims at infering biological networks, in particular signaling and gene networks. For that it takes perturbation data, either steady-state or time-series, as input and generates an LP model which allows the inference of signaling networks. For parameter identification either leave-one-out cross-validation or stratified n-fold cross-validation can be used. biocViews: NetworkInference Author: Bettina Knapp, Marta R. A. Matos, Johanna Mazur, Lars Kaderali Maintainer: Lars Kaderali git_url: https://git.bioconductor.org/packages/lpNet git_branch: RELEASE_3_20 git_last_commit: 395cb6a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/lpNet_2.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/lpNet_2.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/lpNet_2.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/lpNet_2.38.0.tgz vignettes: vignettes/lpNet/inst/doc/vignette_lpNet.pdf vignetteTitles: lpNet,, network inference with a linear optimization program. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/lpNet/inst/doc/vignette_lpNet.R dependencyCount: 15 Package: lpsymphony Version: 1.34.0 Depends: R (>= 3.0.0) Suggests: BiocStyle, knitr, testthat Enhances: slam License: EPL MD5sum: 54ce27cefa98d444f06b137ba5ca4a70 NeedsCompilation: yes Title: Symphony integer linear programming solver in R Description: This package was derived from Rsymphony_0.1-17 from CRAN. These packages provide an R interface to SYMPHONY, an open-source linear programming solver written in C++. The main difference between this package and Rsymphony is that it includes the solver source code (SYMPHONY version 5.6), while Rsymphony expects to find header and library files on the users' system. Thus the intention of lpsymphony is to provide an easy to install interface to SYMPHONY. For Windows, precompiled DLLs are included in this package. biocViews: Infrastructure, ThirdPartyClient Author: Vladislav Kim [aut, cre], Ted Ralphs [ctb], Menal Guzelsoy [ctb], Ashutosh Mahajan [ctb], Reinhard Harter [ctb], Kurt Hornik [ctb], Cyrille Szymanski [ctb], Stefan Theussl [ctb], Mike Smith [ctb] () Maintainer: Vladislav Kim URL: http://R-Forge.R-project.org/projects/rsymphony, https://projects.coin-or.org/SYMPHONY, http://www.coin-or.org/download/source/SYMPHONY/ SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/Huber-group-EMBL/lpsymphony/issues git_url: https://git.bioconductor.org/packages/lpsymphony git_branch: RELEASE_3_20 git_last_commit: 47b75db git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/lpsymphony_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/lpsymphony_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/lpsymphony_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/lpsymphony_1.34.0.tgz vignettes: vignettes/lpsymphony/inst/doc/lpsymphony.pdf vignetteTitles: Introduction to lpsymphony hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/lpsymphony/inst/doc/lpsymphony.R importsMe: IHW suggestsMe: oppr, prioritizr dependencyCount: 0 Package: LRBaseDbi Version: 2.16.0 Depends: R (>= 3.5.0) Imports: methods, stats, utils, AnnotationDbi, RSQLite, DBI, Biobase Suggests: testthat, BiocStyle, AnnotationHub License: Artistic-2.0 MD5sum: f2b87b49059d28ca959d1acc0c02ed5a NeedsCompilation: no Title: DBI to construct LRBase-related package Description: Interface to construct LRBase package (LRBase.XXX.eg.db). biocViews: Infrastructure Author: Koki Tsuyuzaki Maintainer: Koki Tsuyuzaki VignetteBuilder: utils git_url: https://git.bioconductor.org/packages/LRBaseDbi git_branch: RELEASE_3_20 git_last_commit: 10d488c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LRBaseDbi_2.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LRBaseDbi_2.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/LRBaseDbi_2.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/LRBaseDbi_2.16.0.tgz vignettes: vignettes/LRBaseDbi/inst/doc/LRBaseDbi.pdf vignetteTitles: LRBaseDbi hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/LRBaseDbi/inst/doc/LRBaseDbi.R suggestsMe: scTensor dependencyCount: 45 Package: LRcell Version: 1.14.0 Depends: R (>= 4.1), ExperimentHub, AnnotationHub Imports: BiocParallel, dplyr, ggplot2, ggrepel, magrittr, stats, utils Suggests: LRcellTypeMarkers, BiocStyle, knitr, rmarkdown, roxygen2, testthat License: MIT + file LICENSE MD5sum: aa1d6c9b1bf3fdf273f65a932096671e NeedsCompilation: no Title: Differential cell type change analysis using Logistic/linear Regression Description: The goal of LRcell is to identify specific sub-cell types that drives the changes observed in a bulk RNA-seq differential gene expression experiment. To achieve this, LRcell utilizes sets of cell marker genes acquired from single-cell RNA-sequencing (scRNA-seq) as indicators for various cell types in the tissue of interest. Next, for each cell type, using its marker genes as indicators, we apply Logistic Regression on the complete set of genes with differential expression p-values to calculate a cell-type significance p-value. Finally, these p-values are compared to predict which one(s) are likely to be responsible for the differential gene expression pattern observed in the bulk RNA-seq experiments. LRcell is inspired by the LRpath[@sartor2009lrpath] algorithm developed by Sartor et al., originally designed for pathway/gene set enrichment analysis. LRcell contains three major components: LRcell analysis, plot generation and marker gene selection. All modules in this package are written in R. This package also provides marker genes in the Prefrontal Cortex (pFC) human brain region, human PBMC and nine mouse brain regions (Frontal Cortex, Cerebellum, Globus Pallidus, Hippocampus, Entopeduncular, Posterior Cortex, Striatum, Substantia Nigra and Thalamus). biocViews: SingleCell, GeneSetEnrichment, Sequencing, Regression, GeneExpression, DifferentialExpression Author: Wenjing Ma [cre, aut] () Maintainer: Wenjing Ma VignetteBuilder: knitr BugReports: https://github.com/marvinquiet/LRcell/issues git_url: https://git.bioconductor.org/packages/LRcell git_branch: RELEASE_3_20 git_last_commit: e64fb59 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LRcell_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LRcell_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/LRcell_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/LRcell_1.14.0.tgz vignettes: vignettes/LRcell/inst/doc/LRcell-vignette.html vignetteTitles: LRcell Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/LRcell/inst/doc/LRcell-vignette.R suggestsMe: LRcellTypeMarkers dependencyCount: 95 Package: lumi Version: 2.58.0 Depends: R (>= 2.10), Biobase (>= 2.5.5) Imports: affy (>= 1.23.4), methylumi (>= 2.3.2), GenomicFeatures, GenomicRanges, annotate, lattice, mgcv (>= 1.4-0), nleqslv, KernSmooth, preprocessCore, RSQLite, DBI, AnnotationDbi, MASS, graphics, stats, stats4, methods Suggests: beadarray, limma, vsn, lumiBarnes, lumiHumanAll.db, lumiHumanIDMapping, genefilter, RColorBrewer License: LGPL (>= 2) MD5sum: 13058207143b550e73ad6b4b0dcf9a6d NeedsCompilation: no Title: BeadArray Specific Methods for Illumina Methylation and Expression Microarrays Description: The lumi package provides an integrated solution for the Illumina microarray data analysis. It includes functions of Illumina BeadStudio (GenomeStudio) data input, quality control, BeadArray-specific variance stabilization, normalization and gene annotation at the probe level. It also includes the functions of processing Illumina methylation microarrays, especially Illumina Infinium methylation microarrays. biocViews: Microarray, OneChannel, Preprocessing, DNAMethylation, QualityControl, TwoChannel Author: Pan Du, Richard Bourgon, Gang Feng, Simon Lin Maintainer: Lei Huang git_url: https://git.bioconductor.org/packages/lumi git_branch: RELEASE_3_20 git_last_commit: d654263 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/lumi_2.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/lumi_2.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/lumi_2.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/lumi_2.58.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: iCheck, wateRmelon, lumiHumanIDMapping, lumiMouseIDMapping, lumiRatIDMapping, ffpeExampleData, lumiBarnes, MAQCsubset, mvoutData importsMe: arrayMvout, ffpe, MineICA suggestsMe: beadarray, blima, Harman, methylumi, tigre, maGUI dependencyCount: 165 Package: lute Version: 1.2.0 Depends: R (>= 4.3.0), stats, methods, utils, SummarizedExperiment, SingleCellExperiment, BiocGenerics Imports: S4Vectors, Biobase, scran, dplyr, ggplot2 Suggests: nnls, knitr, testthat, rmarkdown, BiocStyle, GenomicRanges, limma, ExperimentHub, AnnotationHub, DelayedMatrixStats, BisqueRNA, DelayedArray License: Artistic-2.0 Archs: x64 MD5sum: 475ee58dc340d0877d41ef644ea0b957 NeedsCompilation: no Title: Framework for cell size scale factor normalized bulk transcriptomics deconvolution experiments Description: Provides a framework for adjustment on cell type size when performing bulk transcripomics deconvolution. The main framework function provides a means of reference normalization using cell size scale factors. It allows for marker selection and deconvolution using non-negative least squares (NNLS) by default. The framework is extensible for other marker selection and deconvolution algorithms, and users may reuse the generics, methods, and classes for these when developing new algorithms. biocViews: RNASeq, Sequencing, SingleCell, Coverage, Transcriptomics, Normalization Author: Sean K Maden [cre, aut] (), Stephanie Hicks [aut] () Maintainer: Sean K Maden URL: https://github.com/metamaden/lute VignetteBuilder: knitr BugReports: https://github.com/metamaden/lute/issues git_url: https://git.bioconductor.org/packages/lute git_branch: RELEASE_3_20 git_last_commit: 566aeec git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/lute_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/lute_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/lute_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/lute_1.2.0.tgz vignettes: vignettes/lute/inst/doc/lute_algorithm_classes.html, vignettes/lute/inst/doc/lute_pseudobulk_example.html, vignettes/lute/inst/doc/lute_users_guide.html vignetteTitles: lute algorithm classes, Pseudobulk cell size rescaling example, The lute user's guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/lute/inst/doc/lute_algorithm_classes.R, vignettes/lute/inst/doc/lute_pseudobulk_example.R, vignettes/lute/inst/doc/lute_users_guide.R dependencyCount: 96 Package: LymphoSeq Version: 1.34.0 Depends: R (>= 3.3), LymphoSeqDB Imports: data.table, plyr, dplyr, reshape, VennDiagram, ggplot2, ineq, RColorBrewer, circlize, grid, utils, stats, ggtree, msa, Biostrings, phangorn, stringdist, UpSetR Suggests: knitr, pheatmap, wordcloud, rmarkdown License: Artistic-2.0 MD5sum: 53552e65477bcc40ea242470f988d262 NeedsCompilation: no Title: Analyze high-throughput sequencing of T and B cell receptors Description: This R package analyzes high-throughput sequencing of T and B cell receptor complementarity determining region 3 (CDR3) sequences generated by Adaptive Biotechnologies' ImmunoSEQ assay. Its input comes from tab-separated value (.tsv) files exported from the ImmunoSEQ analyzer. biocViews: Software, Technology, Sequencing, TargetedResequencing, Alignment, MultipleSequenceAlignment Author: David Coffey Maintainer: David Coffey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/LymphoSeq git_branch: RELEASE_3_20 git_last_commit: d198017 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/LymphoSeq_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/LymphoSeq_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/LymphoSeq_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/LymphoSeq_1.34.0.tgz vignettes: vignettes/LymphoSeq/inst/doc/LymphoSeq.html vignetteTitles: Analysis of high-throughput sequencing of T and B cell receptors with LymphoSeq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/LymphoSeq/inst/doc/LymphoSeq.R dependencyCount: 98 Package: M3C Version: 1.28.0 Depends: R (>= 3.5.0) Imports: ggplot2, Matrix, doSNOW, cluster, parallel, foreach, doParallel, matrixcalc, Rtsne, corpcor, umap Suggests: knitr, rmarkdown License: AGPL-3 MD5sum: c8f3dbe2542a596b4fda621e4c9a80b9 NeedsCompilation: no Title: Monte Carlo Reference-based Consensus Clustering Description: M3C is a consensus clustering algorithm that uses a Monte Carlo simulation to eliminate overestimation of K and can reject the null hypothesis K=1. biocViews: Clustering, GeneExpression, Transcription, RNASeq, Sequencing, ImmunoOncology Author: Christopher John, David Watson Maintainer: Christopher John VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/M3C git_branch: RELEASE_3_20 git_last_commit: 1764c51 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/M3C_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/M3C_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/M3C_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/M3C_1.28.0.tgz vignettes: vignettes/M3C/inst/doc/M3Cvignette.pdf vignetteTitles: M3C hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/M3C/inst/doc/M3Cvignette.R importsMe: lilikoi suggestsMe: parameters dependencyCount: 60 Package: M3Drop Version: 1.32.0 Depends: R (>= 3.4), numDeriv Imports: RColorBrewer, gplots, bbmle, statmod, grDevices, graphics, stats, matrixStats, Matrix, irlba, reldist, Hmisc, methods, scater Suggests: ROCR, knitr, M3DExampleData, SingleCellExperiment, Seurat, Biobase License: GPL (>=2) MD5sum: 65a23be10bdfae99a3245ad2f1c10ba8 NeedsCompilation: no Title: Michaelis-Menten Modelling of Dropouts in single-cell RNASeq Description: This package fits a model to the pattern of dropouts in single-cell RNASeq data. This model is used as a null to identify significantly variable (i.e. differentially expressed) genes for use in downstream analysis, such as clustering cells. Also includes an method for calculating exact Pearson residuals in UMI-tagged data using a library-size aware negative binomial model. biocViews: RNASeq, Sequencing, Transcriptomics, GeneExpression, Software, DifferentialExpression, DimensionReduction, FeatureExtraction Author: Tallulah Andrews Maintainer: Tallulah Andrews URL: https://github.com/tallulandrews/M3Drop VignetteBuilder: knitr BugReports: https://github.com/tallulandrews/M3Drop/issues git_url: https://git.bioconductor.org/packages/M3Drop git_branch: RELEASE_3_20 git_last_commit: 5080180 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/M3Drop_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/M3Drop_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/M3Drop_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/M3Drop_1.32.0.tgz vignettes: vignettes/M3Drop/inst/doc/M3Drop_Vignette.pdf vignetteTitles: Introduction to M3Drop hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/M3Drop/inst/doc/M3Drop_Vignette.R importsMe: scMerge dependencyCount: 168 Package: m6Aboost Version: 1.12.0 Depends: S4Vectors, adabag, GenomicRanges, R (>= 4.1) Imports: dplyr, rtracklayer, BSgenome, Biostrings, utils, methods, IRanges, ExperimentHub Suggests: knitr, rmarkdown, bookdown, testthat, BiocStyle, BSgenome.Mmusculus.UCSC.mm10 License: Artistic-2.0 MD5sum: d6bd9364bcdd08b8c8d34dfe4c8e521e NeedsCompilation: no Title: m6Aboost Description: This package can help user to run the m6Aboost model on their own miCLIP2 data. The package includes functions to assign the read counts and get the features to run the m6Aboost model. The miCLIP2 data should be stored in a GRanges object. More details can be found in the vignette. biocViews: Sequencing, Epigenetics, Genetics, ExperimentHubSoftware Author: You Zhou [aut, cre] (), Kathi Zarnack [aut] () Maintainer: You Zhou URL: https://github.com/ZarnackGroup/m6Aboost VignetteBuilder: knitr BugReports: https://github.com/ZarnackGroup/m6Aboost/issues git_url: https://git.bioconductor.org/packages/m6Aboost git_branch: RELEASE_3_20 git_last_commit: a90bbbf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/m6Aboost_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/m6Aboost_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/m6Aboost_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/m6Aboost_1.12.0.tgz vignettes: vignettes/m6Aboost/inst/doc/m6AboosVignettes.html vignetteTitles: m6Aboost Vignettes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/m6Aboost/inst/doc/m6AboosVignettes.R dependencyCount: 170 Package: Maaslin2 Version: 1.20.0 Depends: R (>= 3.6) Imports: robustbase, biglm, pcaPP, edgeR, metagenomeSeq, pbapply, car, dplyr, vegan, chemometrics, ggplot2, pheatmap, logging, data.table, lmerTest, hash, optparse, grDevices, stats, utils, glmmTMB, MASS, cplm, pscl, lme4, tibble Suggests: knitr, testthat (>= 2.1.0), rmarkdown, markdown License: MIT + file LICENSE MD5sum: e75e9417367116db40d10fa0c67ea8b0 NeedsCompilation: no Title: "Multivariable Association Discovery in Population-scale Meta-omics Studies" Description: MaAsLin2 is comprehensive R package for efficiently determining multivariable association between clinical metadata and microbial meta'omic features. MaAsLin2 relies on general linear models to accommodate most modern epidemiological study designs, including cross-sectional and longitudinal, and offers a variety of data exploration, normalization, and transformation methods. MaAsLin2 is the next generation of MaAsLin. biocViews: Metagenomics, Software, Microbiome, Normalization Author: Himel Mallick [aut], Ali Rahnavard [aut], Lauren McIver [aut, cre] Maintainer: Lauren McIver URL: http://huttenhower.sph.harvard.edu/maaslin2 VignetteBuilder: knitr BugReports: https://github.com/biobakery/maaslin2/issues git_url: https://git.bioconductor.org/packages/Maaslin2 git_branch: RELEASE_3_20 git_last_commit: 1cacd4c git_last_commit_date: 2024-10-29 Date/Publication: 2025-01-02 source.ver: src/contrib/Maaslin2_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Maaslin2_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Maaslin2_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Maaslin2_1.20.0.tgz vignettes: vignettes/Maaslin2/inst/doc/maaslin2.html vignetteTitles: Maaslin2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Maaslin2/inst/doc/maaslin2.R Package: Macarron Version: 1.10.0 Depends: R (>= 4.2.0), SummarizedExperiment Imports: BiocParallel, DelayedArray, WGCNA, ff, data.table, dynamicTreeCut, Maaslin2, plyr, stats, psych, xml2, httr, RJSONIO, logging, methods, utils Suggests: knitr, BiocStyle, optparse, testthat (>= 2.1.0), rmarkdown, markdown License: MIT + file LICENSE MD5sum: 42cc3dae76d9f0e4ea9e838f8dd56c35 NeedsCompilation: no Title: Prioritization of potentially bioactive metabolic features from epidemiological and environmental metabolomics datasets Description: Macarron is a workflow for the prioritization of potentially bioactive metabolites from metabolomics experiments. Prioritization integrates strengths of evidences of bioactivity such as covariation with a known metabolite, abundance relative to a known metabolite and association with an environmental or phenotypic indicator of bioactivity. Broadly, the workflow consists of stratified clustering of metabolic spectral features which co-vary in abundance in a condition, transfer of functional annotations, estimation of relative abundance and differential abundance analysis to identify associations between features and phenotype/condition. biocViews: Sequencing, Metabolomics, Coverage, FunctionalPrediction, Clustering Author: Amrisha Bhosle [aut], Ludwig Geistlinger [aut], Sagun Maharjan [aut, cre] Maintainer: Sagun Maharjan URL: http://huttenhower.sph.harvard.edu/macarron VignetteBuilder: knitr BugReports: https://forum.biobakery.org/c/microbial-community-profiling/macarron git_url: https://git.bioconductor.org/packages/Macarron git_branch: RELEASE_3_20 git_last_commit: ec697d5 git_last_commit_date: 2024-10-29 Date/Publication: 2025-01-02 source.ver: src/contrib/Macarron_1.10.0.tar.gz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Macarron_1.10.0.tgz vignettes: vignettes/Macarron/inst/doc/Macarron.html vignetteTitles: Macarron hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Macarron/inst/doc/Macarron.R Package: maCorrPlot Version: 1.76.0 Depends: lattice Imports: graphics, grDevices, lattice, stats License: GPL (>= 2) MD5sum: 131553e83d70b83c6770f29d77850e8d NeedsCompilation: no Title: Visualize artificial correlation in microarray data Description: Graphically displays correlation in microarray data that is due to insufficient normalization biocViews: Microarray, Preprocessing, Visualization Author: Alexander Ploner Maintainer: Alexander Ploner URL: http://www.pubmedcentral.gov/articlerender.fcgi?tool=pubmed&pubmedid=15799785 git_url: https://git.bioconductor.org/packages/maCorrPlot git_branch: RELEASE_3_20 git_last_commit: ba97426 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/maCorrPlot_1.76.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/maCorrPlot_1.76.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/maCorrPlot_1.76.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/maCorrPlot_1.76.0.tgz vignettes: vignettes/maCorrPlot/inst/doc/maCorrPlot.pdf vignetteTitles: maCorrPlot Introduction hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/maCorrPlot/inst/doc/maCorrPlot.R dependencyCount: 6 Package: MACSQuantifyR Version: 1.20.0 Imports: readxl, graphics, tools, utils, grDevices, ggplot2, ggrepel, methods, stats, latticeExtra, lattice, rmarkdown, png, grid, gridExtra, prettydoc, rvest, xml2 Suggests: knitr, testthat, R.utils, spelling License: Artistic-2.0 MD5sum: 64a9696488ec0270610f2c7aef146080 NeedsCompilation: no Title: Fast treatment of MACSQuantify FACS data Description: Automatically process the metadata of MACSQuantify FACS sorter. It runs multiple modules: i) imports of raw file and graphical selection of duplicates in well plate, ii) computes statistics on data and iii) can compute combination index. biocViews: DataImport, Preprocessing, Normalization, FlowCytometry, DataRepresentation, GUI Author: Raphaël Bonnet [aut, cre], Marielle Nebout [dtc],Giulia Biondani [dtc], Jean-François Peyron[aut,ths], Inserm [fnd] Maintainer: Raphaël Bonnet VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MACSQuantifyR git_branch: RELEASE_3_20 git_last_commit: 80761e4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MACSQuantifyR_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MACSQuantifyR_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MACSQuantifyR_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MACSQuantifyR_1.20.0.tgz vignettes: vignettes/MACSQuantifyR/inst/doc/MACSQuantifyR_combo.html, vignettes/MACSQuantifyR/inst/doc/MACSQuantifyR.html, vignettes/MACSQuantifyR/inst/doc/MACSQuantifyR_pipeline.html vignetteTitles: MACSQuantifyR_step_by_step_analysis, MACSQuantifyR_quick_introduction, MACSQuantifyR_simple_pipeline hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MACSQuantifyR/inst/doc/MACSQuantifyR_combo.R, vignettes/MACSQuantifyR/inst/doc/MACSQuantifyR_pipeline.R, vignettes/MACSQuantifyR/inst/doc/MACSQuantifyR.R dependencyCount: 85 Package: MACSr Version: 1.14.0 Depends: R (>= 4.1.0) Imports: utils, reticulate, S4Vectors, methods, basilisk, ExperimentHub, AnnotationHub Suggests: testthat, knitr, rmarkdown, BiocStyle, MACSdata License: BSD_3_clause + file LICENSE MD5sum: b8fc522dac1cde77a5c38c39c7228d7a NeedsCompilation: no Title: MACS: Model-based Analysis for ChIP-Seq Description: The Model-based Analysis of ChIP-Seq (MACS) is a widely used toolkit for identifying transcript factor binding sites. This package is an R wrapper of the lastest MACS3. biocViews: Software, ChIPSeq, ATACSeq, ImmunoOncology Author: Philippa Doherty [aut], Qiang Hu [aut, cre] Maintainer: Qiang Hu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MACSr git_branch: RELEASE_3_20 git_last_commit: cda323a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MACSr_1.14.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MACSr_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MACSr_1.14.0.tgz vignettes: vignettes/MACSr/inst/doc/MACSr.html vignetteTitles: MACSr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MACSr/inst/doc/MACSr.R dependencyCount: 79 Package: made4 Version: 1.80.0 Depends: RColorBrewer,gplots,scatterplot3d, Biobase, SummarizedExperiment Imports: ade4 Suggests: affy, BiocStyle, knitr, rmarkdown License: Artistic-2.0 MD5sum: 7669d7276ff623c318b6337c6776512e NeedsCompilation: no Title: Multivariate analysis of microarray data using ADE4 Description: Multivariate data analysis and graphical display of microarray data. Functions include for supervised dimension reduction (between group analysis) and joint dimension reduction of 2 datasets (coinertia analysis). It contains functions that require R package ade4. biocViews: Clustering, Classification, DimensionReduction, PrincipalComponent,Transcriptomics, MultipleComparison, GeneExpression, Sequencing, Microarray Author: Aedin Culhane Maintainer: Aedin Culhane URL: http://www.hsph.harvard.edu/aedin-culhane/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/made4 git_branch: RELEASE_3_20 git_last_commit: 3db6e0c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/made4_1.80.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/made4_1.80.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/made4_1.80.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/made4_1.80.0.tgz vignettes: vignettes/made4/inst/doc/introduction.html vignetteTitles: Authoring R Markdown vignettes hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/made4/inst/doc/introduction.R importsMe: omicade4 dependencyCount: 49 Package: MADSEQ Version: 1.32.0 Depends: R (>= 3.5.0), rjags (>= 4.6) Imports: VGAM, coda, BSgenome, BSgenome.Hsapiens.UCSC.hg19, S4Vectors, methods, preprocessCore, GenomicAlignments, Rsamtools, Biostrings, GenomicRanges, IRanges, VariantAnnotation, SummarizedExperiment, GenomeInfoDb, rtracklayer, graphics, stats, grDevices, utils, zlibbioc, vcfR Suggests: knitr License: GPL(>=2) MD5sum: dbce51bd9e630dafc96e5d542a53a6b3 NeedsCompilation: no Title: Mosaic Aneuploidy Detection and Quantification using Massive Parallel Sequencing Data Description: The MADSEQ package provides a group of hierarchical Bayeisan models for the detection of mosaic aneuploidy, the inference of the type of aneuploidy and also for the quantification of the fraction of aneuploid cells in the sample. biocViews: GenomicVariation, SomaticMutation, VariantDetection, Bayesian, CopyNumberVariation, Sequencing, Coverage Author: Yu Kong, Adam Auton, John Murray Greally Maintainer: Yu Kong URL: https://github.com/ykong2/MADSEQ VignetteBuilder: knitr BugReports: https://github.com/ykong2/MADSEQ/issues git_url: https://git.bioconductor.org/packages/MADSEQ git_branch: RELEASE_3_20 git_last_commit: 05f07c0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MADSEQ_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MADSEQ_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MADSEQ_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MADSEQ_1.32.0.tgz vignettes: vignettes/MADSEQ/inst/doc/MADSEQ-vignette.html vignetteTitles: R Package MADSEQ hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MADSEQ/inst/doc/MADSEQ-vignette.R dependencyCount: 109 Package: maftools Version: 2.22.0 Depends: R (>= 3.3) Imports: data.table, grDevices, methods, RColorBrewer, Rhtslib, survival, DNAcopy, pheatmap LinkingTo: Rhtslib, zlibbioc Suggests: berryFunctions, Biostrings, BSgenome, BSgenome.Hsapiens.UCSC.hg19, GenomicRanges, IRanges, knitr, mclust, MultiAssayExperiment, NMF, R.utils, RaggedExperiment, rmarkdown, S4Vectors, curl License: MIT + file LICENSE MD5sum: 46734cb554e493255927202f63c58b5f NeedsCompilation: yes Title: Summarize, Analyze and Visualize MAF Files Description: Analyze and visualize Mutation Annotation Format (MAF) files from large scale sequencing studies. This package provides various functions to perform most commonly used analyses in cancer genomics and to create feature rich customizable visualzations with minimal effort. biocViews: DataRepresentation, DNASeq, Visualization, DriverMutation, VariantAnnotation, FeatureExtraction, Classification, SomaticMutation, Sequencing, FunctionalGenomics, Survival Author: Anand Mayakonda [aut, cre] () Maintainer: Anand Mayakonda URL: https://github.com/PoisonAlien/maftools SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/PoisonAlien/maftools/issues git_url: https://git.bioconductor.org/packages/maftools git_branch: RELEASE_3_20 git_last_commit: faea1bb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/maftools_2.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/maftools_2.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/maftools_2.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/maftools_2.22.0.tgz vignettes: vignettes/maftools/inst/doc/cancer_hotspots.html, vignettes/maftools/inst/doc/cnv_analysis.html, vignettes/maftools/inst/doc/maftools.html, vignettes/maftools/inst/doc/oncoplots.html vignetteTitles: 03: Cancer report, 04: Copy number analysis, 01: Summarize,, Analyze,, and Visualize MAF Files, 02: Customizing oncoplots hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/maftools/inst/doc/cancer_hotspots.R, vignettes/maftools/inst/doc/cnv_analysis.R, vignettes/maftools/inst/doc/maftools.R, vignettes/maftools/inst/doc/oncoplots.R dependsOnMe: GNOSIS importsMe: CaMutQC, CIMICE, katdetectr, musicatk, TCGAWorkflow, aplotExtra, pathwayTMB, PMAPscore, ProgModule, Rediscover, sigminer, SMDIC, ssMutPA suggestsMe: GenomicDataCommons, MultiAssayExperiment, survtype, TCGAbiolinks, oncoPredict dependencyCount: 29 Package: MAGAR Version: 1.14.0 Depends: R (>= 4.1), HDF5Array, RnBeads, snpStats, crlmm Imports: doParallel, igraph, bigstatsr, rjson, plyr, data.table, UpSetR, reshape2, jsonlite, methods, ff, argparse, impute, RnBeads.hg19, RnBeads.hg38, utils, stats Suggests: gridExtra, VennDiagram, qqman, LOLA, RUnit, rmutil, rmarkdown, JASPAR2018, TFBSTools, seqLogo, knitr, devtools, BiocGenerics, BiocManager License: GPL-3 MD5sum: a54d3ada0dda135fabf355780623abe0 NeedsCompilation: no Title: MAGAR: R-package to compute methylation Quantitative Trait Loci (methQTL) from DNA methylation and genotyping data Description: "Methylation-Aware Genotype Association in R" (MAGAR) computes methQTL from DNA methylation and genotyping data from matched samples. MAGAR uses a linear modeling stragety to call CpGs/SNPs that are methQTLs. MAGAR accounts for the local correlation structure of CpGs. biocViews: Regression, Epigenetics, DNAMethylation, SNP, GeneticVariability, MethylationArray, Microarray, CpGIsland, MethylSeq, Sequencing, mRNAMicroarray, Preprocessing, CopyNumberVariation, TwoChannel, ImmunoOncology, DifferentialMethylation, BatchEffect, QualityControl, DataImport, Network, Clustering, GraphAndNetwork Author: Michael Scherer [cre, aut] () Maintainer: Michael Scherer URL: https://github.com/MPIIComputationalEpigenetics/MAGAR VignetteBuilder: knitr BugReports: https://github.com/MPIIComputationalEpigenetics/MAGAR/issues git_url: https://git.bioconductor.org/packages/MAGAR git_branch: RELEASE_3_20 git_last_commit: ddcd58d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MAGAR_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MAGAR_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MAGAR_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MAGAR_1.14.0.tgz vignettes: vignettes/MAGAR/inst/doc/MAGAR.html vignetteTitles: MAGAR: Methylation-Aware Genotype Association in R hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MAGAR/inst/doc/MAGAR.R dependencyCount: 200 Package: MAGeCKFlute Version: 2.9.0 Depends: R (>= 4.1) Imports: Biobase, gridExtra, ggplot2, ggrepel, grDevices, grid, reshape2, stats, utils, DOSE, clusterProfiler, pathview, enrichplot, msigdbr, depmap Suggests: biomaRt, BiocStyle, dendextend, graphics, knitr, pheatmap, png, scales, sva, BiocManager License: GPL (>=3) MD5sum: 09a221017ca0e42c35bdbde86aa15a00 NeedsCompilation: no Title: Integrative Analysis Pipeline for Pooled CRISPR Functional Genetic Screens Description: CRISPR (clustered regularly interspaced short palindrome repeats) coupled with nuclease Cas9 (CRISPR/Cas9) screens represent a promising technology to systematically evaluate gene functions. Data analysis for CRISPR/Cas9 screens is a critical process that includes identifying screen hits and exploring biological functions for these hits in downstream analysis. We have previously developed two algorithms, MAGeCK and MAGeCK-VISPR, to analyze CRISPR/Cas9 screen data in various scenarios. These two algorithms allow users to perform quality control, read count generation and normalization, and calculate beta score to evaluate gene selection performance. In downstream analysis, the biological functional analysis is required for understanding biological functions of these identified genes with different screening purposes. Here, We developed MAGeCKFlute for supporting downstream analysis. MAGeCKFlute provides several strategies to remove potential biases within sgRNA-level read counts and gene-level beta scores. The downstream analysis with the package includes identifying essential, non-essential, and target-associated genes, and performing biological functional category analysis, pathway enrichment analysis and protein complex enrichment analysis of these genes. The package also visualizes genes in multiple ways to benefit users exploring screening data. Collectively, MAGeCKFlute enables accurate identification of essential, non-essential, and targeted genes, as well as their related biological functions. This vignette explains the use of the package and demonstrates typical workflows. biocViews: FunctionalGenomics, CRISPR, PooledScreens, QualityControl, Normalization, GeneSetEnrichment, Pathways, Visualization, GeneTarget, KEGG Author: Binbin Wang, Wubing Zhang, Feizhen Wu, Wei Li & X. Shirley Liu Maintainer: Wubing Zhang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MAGeCKFlute git_branch: devel git_last_commit: 056f370 git_last_commit_date: 2024-04-30 Date/Publication: 2024-10-21 source.ver: src/contrib/MAGeCKFlute_2.9.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MAGeCKFlute_2.9.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MAGeCKFlute_2.9.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MAGeCKFlute_2.9.0.tgz vignettes: vignettes/MAGeCKFlute/inst/doc/MAGeCKFlute_enrichment.html, vignettes/MAGeCKFlute/inst/doc/MAGeCKFlute.html vignetteTitles: MAGeCKFlute_enrichment.Rmd, MAGeCKFlute.Rmd hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MAGeCKFlute/inst/doc/MAGeCKFlute_enrichment.R, vignettes/MAGeCKFlute/inst/doc/MAGeCKFlute.R importsMe: CRISPRball dependencyCount: 146 Package: magpie Version: 1.6.0 Depends: R (>= 4.3.0) Imports: utils, rtracklayer, Matrix, matrixStats, stats, S4Vectors, methods, graphics, GenomicRanges, GenomicFeatures, IRanges, Rsamtools, AnnotationDbi, aod, BiocParallel, DESeq2, openxlsx, RColorBrewer, reshape2, TRESS Suggests: knitr, rmarkdown, kableExtra, RUnit, TBX20BamSubset, BiocGenerics, BiocStyle License: MIT + file LICENSE MD5sum: a2d8cace71fdb5936f5e1eda05cf9989 NeedsCompilation: no Title: MeRIP-Seq data Analysis for Genomic Power Investigation and Evaluation Description: This package aims to perform power analysis for the MeRIP-seq study. It calculates FDR, FDC, power, and precision under various study design parameters, including but not limited to sample size, sequencing depth, and testing method. It can also output results into .xlsx files or produce corresponding figures of choice. biocViews: Epitranscriptomics, DifferentialMethylation, Sequencing, RNASeq, Software Author: Daoyu Duan [aut, cre], Zhenxing Guo [aut] Maintainer: Daoyu Duan URL: https://github.com/dxd429/magpie VignetteBuilder: knitr BugReports: https://github.com/dxd429/magpie/issues git_url: https://git.bioconductor.org/packages/magpie git_branch: RELEASE_3_20 git_last_commit: 8ce3583 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/magpie_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/magpie_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/magpie_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/magpie_1.6.0.tgz vignettes: vignettes/magpie/inst/doc/magpie.html vignetteTitles: magpie Package User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/magpie/inst/doc/magpie.R dependencyCount: 109 Package: magrene Version: 1.8.0 Depends: R (>= 4.2.0) Imports: utils, stats, BiocParallel Suggests: BiocStyle, covr, knitr, rmarkdown, ggplot2, sessioninfo, testthat (>= 3.0.0) License: GPL-3 Archs: x64 MD5sum: e091291ec9d04bc620b1bdde157221e2 NeedsCompilation: no Title: Motif Analysis In Gene Regulatory Networks Description: magrene allows the identification and analysis of graph motifs in (duplicated) gene regulatory networks (GRNs), including lambda, V, PPI V, delta, and bifan motifs. GRNs can be tested for motif enrichment by comparing motif frequencies to a null distribution generated from degree-preserving simulated GRNs. Motif frequencies can be analyzed in the context of gene duplications to explore the impact of small-scale and whole-genome duplications on gene regulatory networks. Finally, users can calculate interaction similarity for gene pairs based on the Sorensen-Dice similarity index. biocViews: Software, MotifDiscovery, NetworkEnrichment, SystemsBiology, GraphAndNetwork Author: Fabrício Almeida-Silva [aut, cre] (), Yves Van de Peer [aut] () Maintainer: Fabrício Almeida-Silva URL: https://github.com/almeidasilvaf/magrene VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/magrene git_url: https://git.bioconductor.org/packages/magrene git_branch: RELEASE_3_20 git_last_commit: 3e6291f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/magrene_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/magrene_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/magrene_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/magrene_1.8.0.tgz vignettes: vignettes/magrene/inst/doc/magrene.html vignetteTitles: Introduction to magrene hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/magrene/inst/doc/magrene.R dependencyCount: 13 Package: MAI Version: 1.12.0 Depends: R (>= 3.5.0) Imports: caret, parallel, doParallel, foreach, e1071, future.apply, future, missForest, pcaMethods, tidyverse, stats, utils, methods, SummarizedExperiment, S4Vectors Suggests: knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0) License: GPL-3 MD5sum: 4b3f2448e7b085778a262cd2fbeda1e0 NeedsCompilation: no Title: Mechanism-Aware Imputation Description: A two-step approach to imputing missing data in metabolomics. Step 1 uses a random forest classifier to classify missing values as either Missing Completely at Random/Missing At Random (MCAR/MAR) or Missing Not At Random (MNAR). MCAR/MAR are combined because it is often difficult to distinguish these two missing types in metabolomics data. Step 2 imputes the missing values based on the classified missing mechanisms, using the appropriate imputation algorithms. Imputation algorithms tested and available for MCAR/MAR include Bayesian Principal Component Analysis (BPCA), Multiple Imputation No-Skip K-Nearest Neighbors (Multi_nsKNN), and Random Forest. Imputation algorithms tested and available for MNAR include nsKNN and a single imputation approach for imputation of metabolites where left-censoring is present. biocViews: Software, Metabolomics, StatisticalMethod, Classification Author: Jonathan Dekermanjian [aut, cre], Elin Shaddox [aut], Debmalya Nandy [aut], Debashis Ghosh [aut], Katerina Kechris [aut] Maintainer: Jonathan Dekermanjian URL: https://github.com/KechrisLab/MAI VignetteBuilder: knitr BugReports: https://github.com/KechrisLab/MAI/issues git_url: https://git.bioconductor.org/packages/MAI git_branch: RELEASE_3_20 git_last_commit: da4c5d7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MAI_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MAI_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MAI_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MAI_1.12.0.tgz vignettes: vignettes/MAI/inst/doc/UsingMAI.html vignetteTitles: Utilizing Mechanism-Aware Imputation (MAI) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MAI/inst/doc/UsingMAI.R dependencyCount: 174 Package: MAIT Version: 1.40.0 Depends: R (>= 2.10), CAMERA, Rcpp, pls Imports: gplots,e1071,class,MASS,plsgenomics,agricolae,xcms,methods,caret Suggests: faahKO Enhances: rgl License: GPL-2 MD5sum: f16bfab6fa3d3e7fed16b9f6d186ecc2 NeedsCompilation: no Title: Statistical Analysis of Metabolomic Data Description: The MAIT package contains functions to perform end-to-end statistical analysis of LC/MS Metabolomic Data. Special emphasis is put on peak annotation and in modular function design of the functions. biocViews: ImmunoOncology, MassSpectrometry, Metabolomics, Software Author: Francesc Fernandez-Albert, Rafael Llorach, Cristina Andres-LaCueva, Alexandre Perera Maintainer: Pol Sola-Santos git_url: https://git.bioconductor.org/packages/MAIT git_branch: RELEASE_3_20 git_last_commit: 2da6bb9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MAIT_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MAIT_1.40.0.zip vignettes: vignettes/MAIT/inst/doc/MAIT_Vignette.pdf vignetteTitles: \maketitleMAIT Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MAIT/inst/doc/MAIT_Vignette.R dependencyCount: 204 Package: makecdfenv Version: 1.82.0 Depends: R (>= 2.6.0), affyio Imports: Biobase, affy, methods, stats, utils, zlibbioc License: GPL (>= 2) MD5sum: 8fea48d8169003c7436fc406fe5e3ac1 NeedsCompilation: yes Title: CDF Environment Maker Description: This package has two functions. One reads a Affymetrix chip description file (CDF) and creates a hash table environment containing the location/probe set membership mapping. The other creates a package that automatically loads that environment. biocViews: OneChannel, DataImport, Preprocessing Author: Rafael A. Irizarry , Laurent Gautier , Wolfgang Huber , Ben Bolstad Maintainer: James W. MacDonald git_url: https://git.bioconductor.org/packages/makecdfenv git_branch: RELEASE_3_20 git_last_commit: f1aa5d3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/makecdfenv_1.82.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/makecdfenv_1.82.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/makecdfenv_1.82.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/makecdfenv_1.82.0.tgz vignettes: vignettes/makecdfenv/inst/doc/makecdfenv.pdf vignetteTitles: makecdfenv primer hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/makecdfenv/inst/doc/makecdfenv.R dependsOnMe: altcdfenvs dependencyCount: 12 Package: MANOR Version: 1.78.0 Depends: R (>= 2.10) Imports: GLAD, graphics, grDevices, stats, utils Suggests: knitr, rmarkdown, bookdown License: GPL-2 MD5sum: 24220ee4180315752bbfef71dcaae920 NeedsCompilation: yes Title: CGH Micro-Array NORmalization Description: Importation, normalization, visualization, and quality control functions to correct identified sources of variability in array-CGH experiments. biocViews: Microarray, TwoChannel, DataImport, QualityControl, Preprocessing, CopyNumberVariation, Normalization Author: Pierre Neuvial , Philippe Hupé Maintainer: Pierre Neuvial URL: http://bioinfo.curie.fr/projects/manor/index.html VignetteBuilder: knitr BugReports: https://github.com/pneuvial/MANOR/issues git_url: https://git.bioconductor.org/packages/MANOR git_branch: RELEASE_3_20 git_last_commit: 67837f2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MANOR_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MANOR_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MANOR_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MANOR_1.78.0.tgz vignettes: vignettes/MANOR/inst/doc/MANOR.html vignetteTitles: Overview of the MANOR package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MANOR/inst/doc/MANOR.R dependencyCount: 9 Package: MantelCorr Version: 1.76.0 Depends: R (>= 2.10) Imports: stats License: GPL (>= 2) MD5sum: d323b5d644189314130a7481019e198e NeedsCompilation: no Title: Compute Mantel Cluster Correlations Description: Computes Mantel cluster correlations from a (p x n) numeric data matrix (e.g. microarray gene-expression data). biocViews: Clustering Author: Brian Steinmeyer and William Shannon Maintainer: Brian Steinmeyer git_url: https://git.bioconductor.org/packages/MantelCorr git_branch: RELEASE_3_20 git_last_commit: 8b48cf1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MantelCorr_1.76.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MantelCorr_1.76.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MantelCorr_1.76.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MantelCorr_1.76.0.tgz vignettes: vignettes/MantelCorr/inst/doc/MantelCorrVignette.pdf vignetteTitles: MantelCorrVignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MantelCorr/inst/doc/MantelCorrVignette.R dependencyCount: 1 Package: MAPFX Version: 1.2.0 Depends: R (>= 4.4.0) Imports: flowCore, Biobase, stringr, uwot, iCellR, igraph, ggplot2, RColorBrewer, Rfast, ComplexHeatmap, circlize, glmnetUtils, e1071, xgboost, parallel, pbapply, reshape2, gtools, utils, stats, cowplot, methods, grDevices, graphics Suggests: BiocStyle, knitr, rmarkdown, testthat License: GPL-2 MD5sum: 9d71addcff5b12f2961af7a87ba796ac NeedsCompilation: no Title: MAssively Parallel Flow cytometry Xplorer (MAPFX): A Toolbox for Analysing Data from the Massively-Parallel Cytometry Experiments Description: MAPFX is an end-to-end toolbox that pre-processes the raw data from MPC experiments (e.g., BioLegend's LEGENDScreen and BD Lyoplates assays), and further imputes the ‘missing’ infinity markers in the wells without those measurements. The pipeline starts by performing background correction on raw intensities to remove the noise from electronic baseline restoration and fluorescence compensation by adapting a normal-exponential convolution model. Unwanted technical variation, from sources such as well effects, is then removed using a log-normal model with plate, column, and row factors, after which infinity markers are imputed using the informative backbone markers as predictors. The completed dataset can then be used for clustering and other statistical analyses. Additionally, MAPFX can be used to normalise data from FFC assays as well. biocViews: Software, FlowCytometry, CellBasedAssays, SingleCell, Proteomics, Clustering Author: Hsiao-Chi Liao [aut, cre] (), Agus Salim [ctb], infinityFlow [ctb] Maintainer: Hsiao-Chi Liao URL: https://github.com/HsiaoChiLiao/MAPFX VignetteBuilder: knitr BugReports: https://github.com/HsiaoChiLiao/MAPFX/issues git_url: https://git.bioconductor.org/packages/MAPFX git_branch: RELEASE_3_20 git_last_commit: 3a93e18 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MAPFX_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MAPFX_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MAPFX_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MAPFX_1.2.0.tgz vignettes: vignettes/MAPFX/inst/doc/MAPFX_Vignette.html vignetteTitles: MAPFX: MAssively Parallel Flow cytometry Xplorer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MAPFX/inst/doc/MAPFX_Vignette.R dependencyCount: 186 Package: maPredictDSC Version: 1.44.0 Depends: R (>= 2.15.0), MASS,affy,limma,gcrma,ROC,class,e1071,caret,hgu133plus2.db,ROCR,AnnotationDbi,LungCancerACvsSCCGEO Suggests: parallel License: GPL-2 Archs: x64 MD5sum: 82667d2efe4e487d74f046e066000822 NeedsCompilation: no Title: Phenotype prediction using microarray data: approach of the best overall team in the IMPROVER Diagnostic Signature Challenge Description: This package implements the classification pipeline of the best overall team (Team221) in the IMPROVER Diagnostic Signature Challenge. Additional functionality is added to compare 27 combinations of data preprocessing, feature selection and classifier types. biocViews: Microarray, Classification Author: Adi Laurentiu Tarca Maintainer: Adi Laurentiu Tarca URL: http://bioinformaticsprb.med.wayne.edu/maPredictDSC git_url: https://git.bioconductor.org/packages/maPredictDSC git_branch: RELEASE_3_20 git_last_commit: f5aa803 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/maPredictDSC_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/maPredictDSC_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/maPredictDSC_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/maPredictDSC_1.44.0.tgz vignettes: vignettes/maPredictDSC/inst/doc/maPredictDSC.pdf vignetteTitles: maPredictDSC hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/maPredictDSC/inst/doc/maPredictDSC.R dependencyCount: 136 Package: mapscape Version: 1.30.0 Depends: R (>= 3.3) Imports: htmlwidgets (>= 0.5), jsonlite (>= 0.9.19), base64enc (>= 0.1-3), stringr (>= 1.0.0) Suggests: knitr, rmarkdown License: GPL-3 Archs: x64 MD5sum: 772729f3de7a3a1dacc272002a80bc46 NeedsCompilation: no Title: mapscape Description: MapScape integrates clonal prevalence, clonal hierarchy, anatomic and mutational information to provide interactive visualization of spatial clonal evolution. There are four inputs to MapScape: (i) the clonal phylogeny, (ii) clonal prevalences, (iii) an image reference, which may be a medical image or drawing and (iv) pixel locations for each sample on the referenced image. Optionally, MapScape can accept a data table of mutations for each clone and their variant allele frequencies in each sample. The output of MapScape consists of a cropped anatomical image surrounded by two representations of each tumour sample. The first, a cellular aggregate, visually displays the prevalence of each clone. The second shows a skeleton of the clonal phylogeny while highlighting only those clones present in the sample. Together, these representations enable the analyst to visualize the distribution of clones throughout anatomic space. biocViews: Visualization Author: Maia Smith [aut, cre] Maintainer: Maia Smith VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/mapscape git_branch: RELEASE_3_20 git_last_commit: 09526a8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mapscape_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mapscape_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mapscape_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mapscape_1.30.0.tgz vignettes: vignettes/mapscape/inst/doc/mapscape_vignette.html vignetteTitles: MapScape vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mapscape/inst/doc/mapscape_vignette.R dependencyCount: 36 Package: mariner Version: 1.6.0 Depends: R (>= 4.2.0) Imports: methods, S4Vectors, BiocGenerics, BiocManager, GenomicRanges, InteractionSet, data.table, stats, rlang, glue, assertthat, plyranges, magrittr, dbscan, purrr, progress, GenomeInfoDb, strawr (>= 0.0.91), DelayedArray, HDF5Array, abind, BiocParallel, IRanges, SummarizedExperiment, rhdf5, plotgardener, RColorBrewer, colourvalues, utils, grDevices, graphics, grid Suggests: knitr, testthat (>= 3.0.0), dplyr, rmarkdown, ExperimentHub, marinerData License: GPL-3 MD5sum: 90a36f8615cf24c1fca3a47bd87d756c NeedsCompilation: no Title: Mariner: Explore the Hi-Cs Description: Tools for manipulating paired ranges and working with Hi-C data in R. Functionality includes manipulating/merging paired regions, generating paired ranges, extracting/aggregating interactions from `.hic` files, and visualizing the results. Designed for compatibility with plotgardener for visualization. biocViews: FunctionalGenomics, Visualization, HiC Author: Eric Davis [aut, cre] () Maintainer: Eric Davis URL: http://ericscottdavis.com/mariner/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/mariner git_branch: RELEASE_3_20 git_last_commit: 1aa9d93 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mariner_1.6.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mariner_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mariner_1.6.0.tgz vignettes: vignettes/mariner/inst/doc/introduction_to_mariner.html vignetteTitles: Introduction to mariner hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mariner/inst/doc/introduction_to_mariner.R dependencyCount: 110 Package: marr Version: 1.16.0 Depends: R (>= 4.0) Imports: Rcpp, SummarizedExperiment, utils, methods, ggplot2, dplyr, magrittr, rlang, S4Vectors LinkingTo: Rcpp Suggests: knitr, rmarkdown, BiocStyle, testthat, covr License: GPL (>= 3) MD5sum: 7a46f4aa55fc69f9620700c0021981fc NeedsCompilation: yes Title: Maximum rank reproducibility Description: marr (Maximum Rank Reproducibility) is a nonparametric approach that detects reproducible signals using a maximal rank statistic for high-dimensional biological data. In this R package, we implement functions that measures the reproducibility of features per sample pair and sample pairs per feature in high-dimensional biological replicate experiments. The user-friendly plot functions in this package also plot histograms of the reproducibility of features per sample pair and sample pairs per feature. Furthermore, our approach also allows the users to select optimal filtering threshold values for the identification of reproducible features and sample pairs based on output visualization checks (histograms). This package also provides the subset of data filtered by reproducible features and/or sample pairs. biocViews: QualityControl, Metabolomics, MassSpectrometry, RNASeq, ChIPSeq Author: Tusharkanti Ghosh [aut, cre], Max McGrath [aut], Daisy Philtron [aut], Katerina Kechris [aut], Debashis Ghosh [aut, cph] Maintainer: Tusharkanti Ghosh VignetteBuilder: knitr BugReports: https://github.com/Ghoshlab/marr/issues git_url: https://git.bioconductor.org/packages/marr git_branch: RELEASE_3_20 git_last_commit: 481a3c1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/marr_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/marr_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/marr_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/marr_1.16.0.tgz vignettes: vignettes/marr/inst/doc/MarrVignette.html vignetteTitles: The marr user's guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/marr/inst/doc/MarrVignette.R dependencyCount: 66 Package: marray Version: 1.84.0 Depends: R (>= 2.10.0), limma, methods Suggests: tkWidgets License: LGPL MD5sum: 14968534582d73d85a4e171a01a5b028 NeedsCompilation: no Title: Exploratory analysis for two-color spotted microarray data Description: Class definitions for two-color spotted microarray data. Fuctions for data input, diagnostic plots, normalization and quality checking. biocViews: Microarray, TwoChannel, Preprocessing Author: Yee Hwa (Jean) Yang with contributions from Agnes Paquet and Sandrine Dudoit. Maintainer: Yee Hwa (Jean) Yang URL: http://www.maths.usyd.edu.au/u/jeany/ git_url: https://git.bioconductor.org/packages/marray git_branch: RELEASE_3_20 git_last_commit: 6b5a736 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/marray_1.84.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/marray_1.84.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/marray_1.84.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/marray_1.84.0.tgz vignettes: vignettes/marray/inst/doc/marrayClasses.pdf, vignettes/marray/inst/doc/marrayClassesShort.pdf, vignettes/marray/inst/doc/marrayInput.pdf, vignettes/marray/inst/doc/marrayNorm.pdf, vignettes/marray/inst/doc/marray.pdf, vignettes/marray/inst/doc/marrayPlots.pdf vignetteTitles: marrayClasses Overview, marrayClasses Tutorial (short), marrayInput Introduction, marray Normalization, marray Overview, marrayPlots Overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/marray/inst/doc/marrayClasses.R, vignettes/marray/inst/doc/marrayClassesShort.R, vignettes/marray/inst/doc/marrayInput.R, vignettes/marray/inst/doc/marrayNorm.R, vignettes/marray/inst/doc/marrayPlots.R, vignettes/marray/inst/doc/marray.R dependsOnMe: CGHbase, convert, dyebias, MineICA, nnNorm, OLIN, RBM, stepNorm, TurboNorm, beta7, dyebiasexamples importsMe: arrayQuality, ChAMP, methylPipe, MSstats, MSstatsShiny, nnNorm, OLIN, OLINgui, piano, stepNorm, timecourse suggestsMe: DEGraph, Mfuzz, hexbin dependencyCount: 7 Package: martini Version: 1.26.0 Depends: R (>= 4.0) Imports: igraph (>= 1.0.1), Matrix, memoise (>= 2.0.0), methods (>= 3.3.2), Rcpp (>= 0.12.8), snpStats (>= 1.20.0), stats, utils, LinkingTo: Rcpp, RcppEigen (>= 0.3.3.5.0) Suggests: biomaRt (>= 2.34.1), circlize (>= 0.4.11), STRINGdb (>= 2.2.0), httr (>= 1.2.1), IRanges (>= 2.8.2), S4Vectors (>= 0.12.2), knitr, testthat, readr, rmarkdown License: GPL-3 MD5sum: 51f7d27f462e045af0b38101d05fc03f NeedsCompilation: yes Title: GWAS Incorporating Networks Description: martini deals with the low power inherent to GWAS studies by using prior knowledge represented as a network. SNPs are the vertices of the network, and the edges represent biological relationships between them (genomic adjacency, belonging to the same gene, physical interaction between protein products). The network is scanned using SConES, which looks for groups of SNPs maximally associated with the phenotype, that form a close subnetwork. biocViews: Software, GenomeWideAssociation, SNP, GeneticVariability, Genetics, FeatureExtraction, GraphAndNetwork, Network Author: Hector Climente-Gonzalez [aut, cre] (), Chloe-Agathe Azencott [aut] () Maintainer: Hector Climente-Gonzalez URL: https://github.com/hclimente/martini VignetteBuilder: knitr BugReports: https://github.com/hclimente/martini/issues git_url: https://git.bioconductor.org/packages/martini git_branch: RELEASE_3_20 git_last_commit: 314f72f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/martini_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/martini_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/martini_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/martini_1.26.0.tgz vignettes: vignettes/martini/inst/doc/scones_usage.html, vignettes/martini/inst/doc/simulate_phenotype.html vignetteTitles: Running SConES, Simulating SConES-based phenotypes hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/martini/inst/doc/scones_usage.R, vignettes/martini/inst/doc/simulate_phenotype.R dependencyCount: 27 Package: maser Version: 1.24.0 Depends: R (>= 3.5.0), ggplot2, GenomicRanges Imports: dplyr, rtracklayer, reshape2, Gviz, DT, GenomeInfoDb, stats, utils, IRanges, methods, BiocGenerics, parallel, data.table Suggests: testthat, knitr, rmarkdown, BiocStyle, AnnotationHub License: MIT + file LICENSE MD5sum: 3d6656a6fba252ab4aec75511aa696d5 NeedsCompilation: no Title: Mapping Alternative Splicing Events to pRoteins Description: This package provides functionalities for downstream analysis, annotation and visualizaton of alternative splicing events generated by rMATS. biocViews: AlternativeSplicing, Transcriptomics, Visualization Author: Diogo F.T. Veiga [aut, cre] Maintainer: Diogo F.T. Veiga URL: https://github.com/DiogoVeiga/maser VignetteBuilder: knitr BugReports: https://github.com/DiogoVeiga/maser/issues git_url: https://git.bioconductor.org/packages/maser git_branch: RELEASE_3_20 git_last_commit: 7ae2a26 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/maser_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/maser_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/maser_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/maser_1.24.0.tgz vignettes: vignettes/maser/inst/doc/Introduction.html, vignettes/maser/inst/doc/Protein_mapping.html vignetteTitles: Introduction, Mapping protein features to splicing events hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/maser/inst/doc/Introduction.R, vignettes/maser/inst/doc/Protein_mapping.R dependencyCount: 164 Package: maSigPro Version: 1.78.0 Depends: R (>= 2.3.1) Imports: Biobase, graphics, grDevices, venn, mclust, stats, MASS License: GPL (>= 2) Archs: x64 MD5sum: 32c1a89c087b895aa37bdf79a9036f2a NeedsCompilation: no Title: Significant Gene Expression Profile Differences in Time Course Gene Expression Data Description: maSigPro is a regression based approach to find genes for which there are significant gene expression profile differences between experimental groups in time course microarray and RNA-Seq experiments. biocViews: Microarray, RNA-Seq, Differential Expression, TimeCourse Author: Ana Conesa and Maria Jose Nueda Maintainer: Maria Jose Nueda git_url: https://git.bioconductor.org/packages/maSigPro git_branch: RELEASE_3_20 git_last_commit: fe4032a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/maSigPro_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/maSigPro_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/maSigPro_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/maSigPro_1.78.0.tgz vignettes: vignettes/maSigPro/inst/doc/maSigPro.pdf, vignettes/maSigPro/inst/doc/maSigProUsersGuide.pdf vignetteTitles: maSigPro Vignette, maSigProUsersGuide.pdf hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 11 Package: maskBAD Version: 1.50.0 Depends: R (>= 2.10), gcrma (>= 2.27.1), affy Suggests: hgu95av2probe, hgu95av2cdf License: GPL (>= 2) MD5sum: ab35a6e1afaadcd2f3db4d4fcb05630f NeedsCompilation: no Title: Masking probes with binding affinity differences Description: Package includes functions to analyze and mask microarray expression data. biocViews: Microarray Author: Michael Dannemann Maintainer: Michael Dannemann git_url: https://git.bioconductor.org/packages/maskBAD git_branch: RELEASE_3_20 git_last_commit: f9c4feb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/maskBAD_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/maskBAD_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/maskBAD_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/maskBAD_1.50.0.tgz vignettes: vignettes/maskBAD/inst/doc/maskBAD.pdf vignetteTitles: Package maskBAD hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/maskBAD/inst/doc/maskBAD.R dependencyCount: 32 Package: MassArray Version: 1.58.0 Depends: R (>= 2.10.0), methods Imports: graphics, grDevices, stats, utils License: GPL (>=2) Archs: x64 MD5sum: ef8f67686045bc38410b3a22386a4993 NeedsCompilation: no Title: Analytical Tools for MassArray Data Description: This package is designed for the import, quality control, analysis, and visualization of methylation data generated using Sequenom's MassArray platform. The tools herein contain a highly detailed amplicon prediction for optimal assay design. Also included are quality control measures of data, such as primer dimer and bisulfite conversion efficiency estimation. Methylation data are calculated using the same algorithms contained in the EpiTyper software package. Additionally, automatic SNP-detection can be used to flag potentially confounded data from specific CG sites. Visualization includes barplots of methylation data as well as UCSC Genome Browser-compatible BED tracks. Multiple assays can be positionally combined for integrated analysis. biocViews: ImmunoOncology, DNAMethylation, SNP, MassSpectrometry, Genetics, DataImport, Visualization Author: Reid F. Thompson , John M. Greally Maintainer: Reid F. Thompson git_url: https://git.bioconductor.org/packages/MassArray git_branch: RELEASE_3_20 git_last_commit: 67aa460 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MassArray_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MassArray_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MassArray_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MassArray_1.58.0.tgz vignettes: vignettes/MassArray/inst/doc/MassArray.pdf vignetteTitles: 1. Primer hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MassArray/inst/doc/MassArray.R dependencyCount: 5 Package: massiR Version: 1.42.0 Depends: cluster, gplots, diptest, Biobase, R (>= 3.0.2) Suggests: biomaRt, RUnit, BiocGenerics License: GPL-3 MD5sum: 0ae4c4073d8e5c456a706d4c843193e0 NeedsCompilation: no Title: massiR: MicroArray Sample Sex Identifier Description: Predicts the sex of samples in gene expression microarray datasets biocViews: Software, Microarray, GeneExpression, Clustering, Classification, QualityControl Author: Sam Buckberry Maintainer: Sam Buckberry git_url: https://git.bioconductor.org/packages/massiR git_branch: RELEASE_3_20 git_last_commit: 210209d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/massiR_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/massiR_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/massiR_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/massiR_1.42.0.tgz vignettes: vignettes/massiR/inst/doc/massiR_Vignette.pdf vignetteTitles: massiR_Example hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/massiR/inst/doc/massiR_Vignette.R dependencyCount: 14 Package: MassSpecWavelet Version: 1.72.1 Suggests: signal, waveslim, BiocStyle, knitr, rmarkdown, RUnit, bench License: LGPL (>= 2) MD5sum: f77ab8a79c7fbf98621aacd32a2ef656 NeedsCompilation: yes Title: Peak Detection for Mass Spectrometry data using wavelet-based algorithms Description: Peak Detection in Mass Spectrometry data is one of the important preprocessing steps. The performance of peak detection affects subsequent processes, including protein identification, profile alignment and biomarker identification. Using Continuous Wavelet Transform (CWT), this package provides a reliable algorithm for peak detection that does not require any type of smoothing or previous baseline correction method, providing more consistent results for different spectra. See ) Maintainer: Sergio Oller Moreno URL: https://github.com/zeehio/MassSpecWavelet VignetteBuilder: knitr BugReports: http://github.com/zeehio/MassSpecWavelet/issues git_url: https://git.bioconductor.org/packages/MassSpecWavelet git_branch: RELEASE_3_20 git_last_commit: a88dea2 git_last_commit_date: 2024-12-18 Date/Publication: 2024-12-19 source.ver: src/contrib/MassSpecWavelet_1.72.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/MassSpecWavelet_1.72.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MassSpecWavelet_1.72.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MassSpecWavelet_1.72.1.tgz vignettes: vignettes/MassSpecWavelet/inst/doc/FindingLocalMaxima.html, vignettes/MassSpecWavelet/inst/doc/MassSpecWavelet.html vignetteTitles: Finding local maxima, Using the MassSpecWavelet package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MassSpecWavelet/inst/doc/FindingLocalMaxima.R, vignettes/MassSpecWavelet/inst/doc/MassSpecWavelet.R importsMe: cosmiq, xcms, NMRphasing, Rnmr1D, speaq suggestsMe: downlit dependencyCount: 0 Package: MAST Version: 1.32.0 Depends: SingleCellExperiment (>= 1.2.0), R(>= 3.5) Imports: Biobase, BiocGenerics, S4Vectors, data.table, ggplot2, plyr, stringr, abind, methods, parallel, reshape2, stats, stats4, graphics, utils, SummarizedExperiment(>= 1.5.3), progress, Matrix Suggests: knitr, rmarkdown, testthat, lme4(>= 1.0), blme, roxygen2(> 6.0.0), numDeriv, car, gdata, lattice, GGally, GSEABase, NMF, TxDb.Hsapiens.UCSC.hg19.knownGene, rsvd, limma, RColorBrewer, BiocStyle, scater, DelayedArray, HDF5Array, zinbwave, dplyr License: GPL(>= 2) MD5sum: 107286d9011330ac96cf5f6a1c0662a8 NeedsCompilation: no Title: Model-based Analysis of Single Cell Transcriptomics Description: Methods and models for handling zero-inflated single cell assay data. biocViews: GeneExpression, DifferentialExpression, GeneSetEnrichment, RNASeq, Transcriptomics, SingleCell Author: Andrew McDavid [aut, cre], Greg Finak [aut], Masanao Yajima [aut] Maintainer: Andrew McDavid URL: https://github.com/RGLab/MAST/ VignetteBuilder: knitr BugReports: https://github.com/RGLab/MAST/issues git_url: https://git.bioconductor.org/packages/MAST git_branch: RELEASE_3_20 git_last_commit: 48e6d86 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MAST_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MAST_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MAST_1.32.0.tgz vignettes: vignettes/MAST/inst/doc/MAITAnalysis.html, vignettes/MAST/inst/doc/MAST-interoperability.html, vignettes/MAST/inst/doc/MAST-Intro.html vignetteTitles: Using MAST for filtering,, differential expression and gene set enrichment in MAIT cells, Interoptability between MAST and SingleCellExperiment-derived packages, An Introduction to MAST hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MAST/inst/doc/MAITAnalysis.R, vignettes/MAST/inst/doc/MAST-interoperability.R, vignettes/MAST/inst/doc/MAST-Intro.R dependsOnMe: POWSC importsMe: celaref, singleCellTK, DWLS suggestsMe: clusterExperiment, EWCE, MARVEL, Seurat dependencyCount: 73 Package: mastR Version: 1.6.0 Depends: R (>= 4.3.0) Imports: AnnotationDbi, Biobase, dplyr, edgeR, ggplot2, ggpubr, graphics, grDevices, GSEABase, limma, Matrix, methods, msigdb, org.Hs.eg.db, patchwork, SeuratObject, SingleCellExperiment, stats, SummarizedExperiment, tidyr, utils Suggests: BiocManager, BiocStyle, BisqueRNA, clusterProfiler, ComplexHeatmap, depmap, enrichplot, ggrepel, ggvenn, gridExtra, jsonlite, knitr, rmarkdown, RobustRankAggreg, rvest, scuttle, singscore, splatter, testthat (>= 3.0.0), UpSetR License: MIT + file LICENSE MD5sum: ef996ab3532927e3c4f825aac2d741e1 NeedsCompilation: no Title: Markers Automated Screening Tool in R Description: mastR is an R package designed for automated screening of signatures of interest for specific research questions. The package is developed for generating refined lists of signature genes from multiple group comparisons based on the results from edgeR and limma differential expression (DE) analysis workflow. It also takes into account the background noise of tissue-specificity, which is often ignored by other marker generation tools. This package is particularly useful for the identification of group markers in various biological and medical applications, including cancer research and developmental biology. biocViews: Software, GeneExpression, Transcriptomics, DifferentialExpression, Visualization Author: Jinjin Chen [aut, cre] (), Ahmed Mohamed [aut, ctb] (), Chin Wee Tan [ctb] () Maintainer: Jinjin Chen URL: https://davislaboratory.github.io/mastR VignetteBuilder: knitr BugReports: https://github.com/DavisLaboratory/mastR/issues git_url: https://git.bioconductor.org/packages/mastR git_branch: RELEASE_3_20 git_last_commit: 168917f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mastR_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mastR_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mastR_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mastR_1.6.0.tgz vignettes: vignettes/mastR/inst/doc/mastR_Demo.html vignetteTitles: mastR_Demo hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/mastR/inst/doc/mastR_Demo.R dependencyCount: 150 Package: matchBox Version: 1.48.0 Depends: R (>= 2.8.0) License: Artistic-2.0 MD5sum: fb95c93ad0608089b8d5f3f3ad20d5d6 NeedsCompilation: no Title: Utilities to compute, compare, and plot the agreement between ordered vectors of features (ie. distinct genomic experiments). The package includes Correspondence-At-the-TOP (CAT) analysis. Description: The matchBox package enables comparing ranked vectors of features, merging multiple datasets, removing redundant features, using CAT-plots and Venn diagrams, and computing statistical significance. biocViews: Software, Annotation, Microarray, MultipleComparison, Visualization Author: Luigi Marchionni , Anuj Gupta Maintainer: Luigi Marchionni , Anuj Gupta git_url: https://git.bioconductor.org/packages/matchBox git_branch: RELEASE_3_20 git_last_commit: e8c56fd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/matchBox_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/matchBox_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/matchBox_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/matchBox_1.48.0.tgz vignettes: vignettes/matchBox/inst/doc/matchBox.pdf vignetteTitles: Working with the matchBox package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/matchBox/inst/doc/matchBox.R dependencyCount: 0 Package: MatrixGenerics Version: 1.18.0 Depends: matrixStats (>= 1.4.1) Imports: methods Suggests: Matrix, sparseMatrixStats, SparseArray, DelayedArray, DelayedMatrixStats, SummarizedExperiment, testthat (>= 2.1.0) License: Artistic-2.0 Archs: x64 MD5sum: be0b5a464be94a86963f7c1c30c8c3da NeedsCompilation: no Title: S4 Generic Summary Statistic Functions that Operate on Matrix-Like Objects Description: S4 generic functions modeled after the 'matrixStats' API for alternative matrix implementations. Packages with alternative matrix implementation can depend on this package and implement the generic functions that are defined here for a useful set of row and column summary statistics. Other package developers can import this package and handle a different matrix implementations without worrying about incompatibilities. biocViews: Infrastructure, Software Author: Constantin Ahlmann-Eltze [aut] (), Peter Hickey [aut, cre] (), Hervé Pagès [aut] Maintainer: Peter Hickey URL: https://bioconductor.org/packages/MatrixGenerics BugReports: https://github.com/Bioconductor/MatrixGenerics/issues git_url: https://git.bioconductor.org/packages/MatrixGenerics git_branch: RELEASE_3_20 git_last_commit: 77728e3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MatrixGenerics_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MatrixGenerics_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MatrixGenerics_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MatrixGenerics_1.18.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: DelayedArray, DelayedMatrixStats, GenomicFiles, SparseArray, sparseMatrixStats, SummarizedExperiment, VariantAnnotation importsMe: atena, CoreGx, crisprDesign, CTexploreR, demuxSNP, DESeq2, dreamlet, escape, FLAMES, genefilter, glmGamPoi, imcRtools, lemur, lineagespot, methodical, mia, miaSim, miloR, MinimumDistance, RaggedExperiment, RAIDS, RCSL, saseR, scater, scFeatures, scone, scPCA, scran, scuttle, scviR, shinyMethyl, spatzie, StabMap, tadar, TENxIO, tLOH, tpSVG, transformGamPoi, universalmotif, VanillaICE, zitools, homosapienDEE2CellScore, spatialLIBD, SCIntRuler suggestsMe: bnem, cypress, MungeSumstats, scrapper dependencyCount: 2 Package: MatrixQCvis Version: 1.14.0 Depends: DT (>= 0.33), SummarizedExperiment (>= 1.20.0), plotly (>= 4.9.3), shiny (>= 1.6.0) Imports: ComplexHeatmap (>= 2.7.9), dplyr (>= 1.0.5), ExperimentHub (>= 2.6.0), ggplot2 (>= 3.3.3), grDevices (>= 4.1.0), Hmisc (>= 4.5-0), htmlwidgets (>= 1.5.3), impute (>= 1.65.0), imputeLCMD (>= 2.0), limma (>= 3.47.12), MASS (>= 7.3-58.1), methods (>= 4.1.0), pcaMethods (>= 1.83.0), proDA (>= 1.5.0), rlang (>= 0.4.10), rmarkdown (>= 2.7), Rtsne (>= 0.15), shinydashboard (>= 0.7.1), shinyhelper (>= 0.3.2), shinyjs (>= 2.0.0), stats (>= 4.1.0), sva (>= 3.52.0), tibble (>= 3.1.1), tidyr (>= 1.1.3), umap (>= 0.2.7.0), UpSetR (>= 1.4.0), vsn (>= 3.59.1) Suggests: BiocGenerics (>= 0.37.4), BiocStyle (>= 2.19.2), hexbin (>= 1.28.2), httr (>= 1.4.7), jpeg (>= 0.1-10), knitr (>= 1.33), statmod (>= 1.5.0), testthat (>= 3.0.2) License: GPL-3 MD5sum: 83cc9e7b8aea4637ea87723a51ab28d3 NeedsCompilation: no Title: Shiny-based interactive data-quality exploration for omics data Description: Data quality assessment is an integral part of preparatory data analysis to ensure sound biological information retrieval. We present here the MatrixQCvis package, which provides shiny-based interactive visualization of data quality metrics at the per-sample and per-feature level. It is broadly applicable to quantitative omics data types that come in matrix-like format (features x samples). It enables the detection of low-quality samples, drifts, outliers and batch effects in data sets. Visualizations include amongst others bar- and violin plots of the (count/intensity) values, mean vs standard deviation plots, MA plots, empirical cumulative distribution function (ECDF) plots, visualizations of the distances between samples, and multiple types of dimension reduction plots. Furthermore, MatrixQCvis allows for differential expression analysis based on the limma (moderated t-tests) and proDA (Wald tests) packages. MatrixQCvis builds upon the popular Bioconductor SummarizedExperiment S4 class and enables thus the facile integration into existing workflows. The package is especially tailored towards metabolomics and proteomics mass spectrometry data, but also allows to assess the data quality of other data types that can be represented in a SummarizedExperiment object. biocViews: Visualization, ShinyApps, GUI, QualityControl, DimensionReduction, Metabolomics, Proteomics, Transcriptomics Author: Thomas Naake [aut, cre] (), Wolfgang Huber [aut] () Maintainer: Thomas Naake VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MatrixQCvis git_branch: RELEASE_3_20 git_last_commit: ca66ef6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MatrixQCvis_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MatrixQCvis_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MatrixQCvis_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MatrixQCvis_1.14.0.tgz vignettes: vignettes/MatrixQCvis/inst/doc/MatrixQCvis.html vignetteTitles: Shiny-based interactive data quality exploration of omics data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MatrixQCvis/inst/doc/MatrixQCvis.R dependencyCount: 189 Package: MatrixRider Version: 1.38.0 Depends: R (>= 3.1.2) Imports: methods, TFBSTools, IRanges, XVector, Biostrings LinkingTo: IRanges, XVector, Biostrings, S4Vectors Suggests: RUnit, BiocGenerics, BiocStyle, JASPAR2014 License: GPL-3 MD5sum: c692494f512007aa6e8508555a2f4a70 NeedsCompilation: yes Title: Obtain total affinity and occupancies for binding site matrices on a given sequence Description: Calculates a single number for a whole sequence that reflects the propensity of a DNA binding protein to interact with it. The DNA binding protein has to be described with a PFM matrix, for example gotten from Jaspar. biocViews: GeneRegulation, Genetics, MotifAnnotation Author: Elena Grassi Maintainer: Elena Grassi git_url: https://git.bioconductor.org/packages/MatrixRider git_branch: RELEASE_3_20 git_last_commit: 2afe5b0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MatrixRider_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MatrixRider_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MatrixRider_1.38.0.tgz vignettes: vignettes/MatrixRider/inst/doc/MatrixRider.pdf vignetteTitles: Total affinity and occupancies hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MatrixRider/inst/doc/MatrixRider.R dependencyCount: 126 Package: matter Version: 2.8.0 Depends: R (>= 4.4), BiocParallel, Matrix, methods Imports: BiocGenerics, ProtGenerics, digest, irlba, stats, stats4, graphics, grDevices, parallel, utils LinkingTo: BH Suggests: BiocStyle, knitr, testthat, plotly License: Artistic-2.0 | file LICENSE MD5sum: a88ddbb17b4cee347e387880d46e6658 NeedsCompilation: yes Title: Out-of-core statistical computing and signal processing Description: Toolbox for larger-than-memory scientific computing and visualization, providing efficient out-of-core data structures using files or shared memory, for dense and sparse vectors, matrices, and arrays, with applications to nonuniformly sampled signals and images. biocViews: Infrastructure, DataRepresentation, DataImport, DimensionReduction, Preprocessing Author: Kylie A. Bemis Maintainer: Kylie A. Bemis URL: https://github.com/kuwisdelu/matter VignetteBuilder: knitr BugReports: https://github.com/kuwisdelu/matter/issues git_url: https://git.bioconductor.org/packages/matter git_branch: RELEASE_3_20 git_last_commit: 09a4744 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/matter_2.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/matter_2.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/matter_2.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/matter_2.8.0.tgz vignettes: vignettes/matter/inst/doc/matter2-guide.html, vignettes/matter/inst/doc/matter2-signal.html vignetteTitles: 1. Matter 2: User guide for flexible out-of-memory data structures, 2. Matter 2: Signal and image processing hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/matter/inst/doc/matter2-guide.R, vignettes/matter/inst/doc/matter2-signal.R dependsOnMe: CardinalIO importsMe: Cardinal dependencyCount: 23 Package: MBAmethyl Version: 1.40.0 Depends: R (>= 2.15) License: Artistic-2.0 MD5sum: c2a206e48019dbb7e521593e2d2992e6 NeedsCompilation: no Title: Model-based analysis of DNA methylation data Description: This package provides a function for reconstructing DNA methylation values from raw measurements. It iteratively implements the group fused lars to smooth related-by-location methylation values and the constrained least squares to remove probe affinity effect across multiple sequences. biocViews: DNAMethylation, MethylationArray Author: Tao Wang, Mengjie Chen Maintainer: Tao Wang git_url: https://git.bioconductor.org/packages/MBAmethyl git_branch: RELEASE_3_20 git_last_commit: c6830ad git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MBAmethyl_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MBAmethyl_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MBAmethyl_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MBAmethyl_1.40.0.tgz vignettes: vignettes/MBAmethyl/inst/doc/MBAmethyl.pdf vignetteTitles: MBAmethyl Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MBAmethyl/inst/doc/MBAmethyl.R dependencyCount: 0 Package: MBASED Version: 1.40.0 Depends: RUnit, BiocGenerics, BiocParallel, GenomicRanges, SummarizedExperiment Suggests: BiocStyle License: Artistic-2.0 MD5sum: 95deb036649a95ed2a395c573c22b93c NeedsCompilation: no Title: Package containing functions for ASE analysis using Meta-analysis Based Allele-Specific Expression Detection Description: The package implements MBASED algorithm for detecting allele-specific gene expression from RNA count data, where allele counts at individual loci (SNVs) are integrated into a gene-specific measure of ASE, and utilizes simulations to appropriately assess the statistical significance of observed ASE. biocViews: Sequencing, GeneExpression, Transcription Author: Oleg Mayba, Houston Gilbert Maintainer: Oleg Mayba git_url: https://git.bioconductor.org/packages/MBASED git_branch: RELEASE_3_20 git_last_commit: d72fb91 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MBASED_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MBASED_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MBASED_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MBASED_1.40.0.tgz vignettes: vignettes/MBASED/inst/doc/MBASED.pdf vignetteTitles: MBASED hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MBASED/inst/doc/MBASED.R dependencyCount: 47 Package: MBCB Version: 1.60.0 Depends: R (>= 2.9.0), tcltk, tcltk2 Imports: preprocessCore, stats, utils License: GPL (>=2) Archs: x64 MD5sum: 083dda1a76d23a0e162baa2ed3c3da97 NeedsCompilation: no Title: MBCB (Model-based Background Correction for Beadarray) Description: This package provides a model-based background correction method, which incorporates the negative control beads to pre-process Illumina BeadArray data. biocViews: Microarray, Preprocessing Author: Yang Xie Maintainer: Bo Yao URL: https://qbrc.swmed.edu/ git_url: https://git.bioconductor.org/packages/MBCB git_branch: RELEASE_3_20 git_last_commit: b421e4a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/MBCB_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MBCB_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MBCB_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MBCB_1.60.0.tgz vignettes: vignettes/MBCB/inst/doc/MBCB.pdf vignetteTitles: MBCB hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MBCB/inst/doc/MBCB.R dependencyCount: 5 Package: MBECS Version: 1.10.0 Depends: R (>= 4.1) Imports: methods, magrittr, phyloseq, limma, lme4, lmerTest, pheatmap, rmarkdown, cluster, dplyr, ggplot2, gridExtra, ruv, sva, tibble, tidyr, vegan, stats, utils, Matrix Suggests: knitr, markdown, BiocStyle, testthat (>= 3.0.0) License: Artistic-2.0 Archs: x64 MD5sum: cbd4d415284fcb3e70279bb89899162e NeedsCompilation: no Title: Evaluation and correction of batch effects in microbiome data-sets Description: The Microbiome Batch Effect Correction Suite (MBECS) provides a set of functions to evaluate and mitigate unwated noise due to processing in batches. To that end it incorporates a host of batch correcting algorithms (BECA) from various packages. In addition it offers a correction and reporting pipeline that provides a preliminary look at the characteristics of a data-set before and after correcting for batch effects. biocViews: BatchEffect, Microbiome, ReportWriting, Visualization, Normalization, QualityControl Author: Michael Olbrich [aut, cre] () Maintainer: Michael Olbrich URL: https://github.com/rmolbrich/MBECS VignetteBuilder: knitr BugReports: https://github.com/rmolbrich/MBECS/issues/new git_url: https://git.bioconductor.org/packages/MBECS git_branch: RELEASE_3_20 git_last_commit: 8420c19 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MBECS_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MBECS_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MBECS_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MBECS_1.10.0.tgz vignettes: vignettes/MBECS/inst/doc/mbecs_vignette.html vignetteTitles: MBECS introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MBECS/inst/doc/mbecs_vignette.R dependencyCount: 143 Package: mbkmeans Version: 1.22.0 Depends: R (>= 3.6) Imports: methods, DelayedArray, Rcpp, S4Vectors, SingleCellExperiment, SummarizedExperiment, ClusterR, benchmarkme, Matrix, BiocParallel LinkingTo: Rcpp, RcppArmadillo (>= 0.7.2), Rhdf5lib, beachmat, ClusterR Suggests: beachmat, HDF5Array, Rhdf5lib, BiocStyle, TENxPBMCData, scater, DelayedMatrixStats, bluster, knitr, testthat, rmarkdown License: MIT + file LICENSE MD5sum: c27bacbb29b27caf53212c975408f116 NeedsCompilation: yes Title: Mini-batch K-means Clustering for Single-Cell RNA-seq Description: Implements the mini-batch k-means algorithm for large datasets, including support for on-disk data representation. biocViews: Clustering, GeneExpression, RNASeq, Software, Transcriptomics, Sequencing, SingleCell Author: Yuwei Ni [aut, cph], Davide Risso [aut, cre, cph], Stephanie Hicks [aut, cph], Elizabeth Purdom [aut, cph] Maintainer: Davide Risso SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/drisso/mbkmeans/issues git_url: https://git.bioconductor.org/packages/mbkmeans git_branch: RELEASE_3_20 git_last_commit: 89ebb4a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mbkmeans_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mbkmeans_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mbkmeans_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mbkmeans_1.22.0.tgz vignettes: vignettes/mbkmeans/inst/doc/Vignette.html vignetteTitles: mbkmeans vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/mbkmeans/inst/doc/Vignette.R dependsOnMe: OSCA.basic importsMe: clusterExperiment suggestsMe: bluster, concordexR, scDblFinder dependencyCount: 91 Package: mBPCR Version: 1.60.0 Depends: oligoClasses, GWASTools Imports: Biobase, graphics, methods, utils, grDevices Suggests: xtable License: GPL (>= 2) MD5sum: 98b189af08186dcf5449ace77edd37bd NeedsCompilation: no Title: Bayesian Piecewise Constant Regression for DNA copy number estimation Description: It contains functions for estimating the DNA copy number profile using mBPCR with the aim of detecting regions with copy number changes. biocViews: aCGH, SNP, Microarray, CopyNumberVariation Author: P.M.V. Rancoita , with contributions from M. Hutter Maintainer: P.M.V. Rancoita URL: http://www.idsia.ch/~paola/mBPCR git_url: https://git.bioconductor.org/packages/mBPCR git_branch: RELEASE_3_20 git_last_commit: dc703c0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mBPCR_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mBPCR_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mBPCR_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mBPCR_1.60.0.tgz vignettes: vignettes/mBPCR/inst/doc/mBPCR.pdf vignetteTitles: mBPCR hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mBPCR/inst/doc/mBPCR.R dependencyCount: 122 Package: MBQN Version: 2.18.0 Depends: R (>= 3.6) Imports: stats, graphics, utils, limma (>= 3.30.13), SummarizedExperiment (>= 1.10.0), preprocessCore (>= 1.36.0), BiocFileCache, rappdirs, xml2, RCurl, ggplot2, PairedData, rmarkdown Suggests: knitr License: GPL-3 + file LICENSE MD5sum: b29ea005e3011f3cd678d258265e5156 NeedsCompilation: no Title: Mean/Median-balanced quantile normalization Description: Modified quantile normalization for omics or other matrix-like data distorted in location and scale. biocViews: Normalization, Preprocessing, Proteomics, Software Author: Eva Brombacher [aut, cre] (), Clemens Kreutz [aut, ctb] (), Ariane Schad [aut, ctb] () Maintainer: Eva Brombacher URL: https://github.com/arianeschad/mbqn VignetteBuilder: knitr BugReports: https://github.com/arianeschad/MBQN/issues git_url: https://git.bioconductor.org/packages/MBQN git_branch: RELEASE_3_20 git_last_commit: 94f165a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MBQN_2.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MBQN_2.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MBQN_2.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MBQN_2.18.0.tgz vignettes: vignettes/MBQN/inst/doc/MBQNpackage.html vignetteTitles: MBQN Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MBQN/inst/doc/MBQNpackage.R dependencyCount: 111 Package: mbQTL Version: 1.6.0 Depends: R (>= 4.3.0) Imports: MatrixEQTL, dplyr, ggplot2, readxl, stringr, tidyr, metagenomeSeq, pheatmap, broom, graphics, stats, methods Suggests: knitr, rmarkdown, BiocStyle License: MIT + file LICENSE MD5sum: 6aeec2af56b99fd2fde4778b36fd4af7 NeedsCompilation: no Title: mbQTL: A package for SNP-Taxa mGWAS analysis Description: mbQTL is a statistical R package for simultaneous 16srRNA,16srDNA (microbial) and variant, SNP, SNV (host) relationship, correlation, regression studies. We apply linear, logistic and correlation based statistics to identify the relationships of taxa, genus, species and variant, SNP, SNV in the infected host. We produce various statistical significance measures such as P values, FDR, BC and probability estimation to show significance of these relationships. Further we provide various visualization function for ease and clarification of the results of these analysis. The package is compatible with dataframe, MRexperiment and text formats. biocViews: SNP, Microbiome, WholeGenome, Metagenomics, StatisticalMethod, Regression Author: Mercedeh Movassagh [aut, cre] (), Steven Schiff [aut], Joseph N Paulson [aut] Maintainer: Mercedeh Movassagh URL: "https://github.com/Mercedeh66/mbQTL" VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/mbQTL git_branch: RELEASE_3_20 git_last_commit: 976762c git_last_commit_date: 2024-10-29 Date/Publication: 2025-01-02 source.ver: src/contrib/mbQTL_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mbQTL_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mbQTL_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mbQTL_1.6.0.tgz vignettes: vignettes/mbQTL/inst/doc/mbQTL_Vignette.html vignetteTitles: MbQTL_Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/mbQTL/inst/doc/mbQTL_Vignette.R Package: MBttest Version: 1.34.0 Depends: R (>= 3.3.0), stats, gplots, gtools,graphics,base, utils,grDevices Suggests: BiocStyle, BiocGenerics License: GPL-3 Archs: x64 MD5sum: 7c3452a6b2d42731cc87975fa109fc80 NeedsCompilation: no Title: Multiple Beta t-Tests Description: MBttest method was developed from beta t-test method of Baggerly et al(2003). Compared to baySeq (Hard castle and Kelly 2010), DESeq (Anders and Huber 2010) and exact test (Robinson and Smyth 2007, 2008) and the GLM of McCarthy et al(2012), MBttest is of high work efficiency,that is, it has high power, high conservativeness of FDR estimation and high stability. MBttest is suit- able to transcriptomic data, tag data, SAGE data (count data) from small samples or a few replicate libraries. It can be used to identify genes, mRNA isoforms or tags differentially expressed between two conditions. biocViews: Sequencing, DifferentialExpression, MultipleComparison, SAGE, GeneExpression, Transcription, AlternativeSplicing,Coverage, DifferentialSplicing Author: Yuan-De Tan Maintainer: Yuan-De Tan git_url: https://git.bioconductor.org/packages/MBttest git_branch: RELEASE_3_20 git_last_commit: 6115f21 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MBttest_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MBttest_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MBttest_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MBttest_1.34.0.tgz vignettes: vignettes/MBttest/inst/doc/MBttest-manual.pdf, vignettes/MBttest/inst/doc/MBttest.pdf vignetteTitles: MBttest-manual.pdf, Analysing RNA-Seq count data with the "MBttest" package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MBttest/inst/doc/MBttest.R dependencyCount: 11 Package: MCbiclust Version: 1.30.0 Depends: R (>= 3.4) Imports: BiocParallel, graphics, utils, stats, AnnotationDbi, GO.db, org.Hs.eg.db, GGally, ggplot2, scales, cluster, WGCNA Suggests: gplots, knitr, rmarkdown, BiocStyle, gProfileR, MASS, dplyr, pander, devtools, testthat, GSVA License: GPL-2 MD5sum: 660766da15e1bc39c473133cf7be9edd NeedsCompilation: no Title: Massive correlating biclusters for gene expression data and associated methods Description: Custom made algorithm and associated methods for finding, visualising and analysing biclusters in large gene expression data sets. Algorithm is based on with a supplied gene set of size n, finding the maximum strength correlation matrix containing m samples from the data set. biocViews: ImmunoOncology, Clustering, Microarray, StatisticalMethod, Software, RNASeq, GeneExpression Author: Robert Bentham Maintainer: Robert Bentham VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MCbiclust git_branch: RELEASE_3_20 git_last_commit: a7a6cf5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MCbiclust_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MCbiclust_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MCbiclust_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MCbiclust_1.30.0.tgz vignettes: vignettes/MCbiclust/inst/doc/MCbiclust_vignette.html vignetteTitles: Introduction to MCbiclust hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MCbiclust/inst/doc/MCbiclust_vignette.R dependencyCount: 135 Package: mCSEA Version: 1.26.2 Depends: R (>= 3.5), mCSEAdata, Homo.sapiens Imports: biomaRt, fgsea, GenomicFeatures, GenomicRanges, ggplot2, graphics, grDevices, Gviz, IRanges, limma, methods, parallel, S4Vectors, stats, SummarizedExperiment, utils Suggests: Biobase, BiocGenerics, BiocStyle, FlowSorted.Blood.450k, knitr, leukemiasEset, minfi, minfiData, rmarkdown, RUnit License: GPL-2 MD5sum: e673af50d079129926e4884e24c7ce1d NeedsCompilation: no Title: Methylated CpGs Set Enrichment Analysis Description: Identification of diferentially methylated regions (DMRs) in predefined regions (promoters, CpG islands...) from the human genome using Illumina's 450K or EPIC microarray data. Provides methods to rank CpG probes based on linear models and includes plotting functions. biocViews: ImmunoOncology, DifferentialMethylation, DNAMethylation, Epigenetics, Genetics, GenomeAnnotation, MethylationArray, Microarray, MultipleComparison, TwoChannel Author: Jordi Martorell-Marugán and Pedro Carmona-Sáez Maintainer: Jordi Martorell-Marugán VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/mCSEA git_branch: RELEASE_3_20 git_last_commit: 45dd75d git_last_commit_date: 2024-12-03 Date/Publication: 2024-12-05 source.ver: src/contrib/mCSEA_1.26.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/mCSEA_1.26.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mCSEA_1.26.2.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mCSEA_1.26.2.tgz vignettes: vignettes/mCSEA/inst/doc/mCSEA.pdf vignetteTitles: Predefined DMRs identification with mCSEA package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mCSEA/inst/doc/mCSEA.R suggestsMe: shinyepico dependencyCount: 172 Package: mdp Version: 1.26.0 Depends: R (>= 4.0) Imports: ggplot2, gridExtra, grid, stats, utils Suggests: testthat, knitr, rmarkdown, fgsea, BiocManager License: GPL-3 MD5sum: d888e64a082aeb561e95a1a2cb79231d NeedsCompilation: no Title: Molecular Degree of Perturbation calculates scores for transcriptome data samples based on their perturbation from controls Description: The Molecular Degree of Perturbation webtool quantifies the heterogeneity of samples. It takes a data.frame of omic data that contains at least two classes (control and test) and assigns a score to all samples based on how perturbed they are compared to the controls. It is based on the Molecular Distance to Health (Pankla et al. 2009), and expands on this algorithm by adding the options to calculate the z-score using the modified z-score (using median absolute deviation), change the z-score zeroing threshold, and look at genes that are most perturbed in the test versus control classes. biocViews: BiomedicalInformatics, QualityControl, Transcriptomics, SystemsBiology, Microarray, QualityControl Author: Melissa Lever [aut], Pedro Russo [aut], Helder Nakaya [aut, cre] Maintainer: Helder Nakaya URL: https://mdp.sysbio.tools/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/mdp git_branch: RELEASE_3_20 git_last_commit: 8d99249 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mdp_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mdp_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mdp_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mdp_1.26.0.tgz vignettes: vignettes/mdp/inst/doc/my-vignette.html vignetteTitles: Running the mdp package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mdp/inst/doc/my-vignette.R dependencyCount: 36 Package: mdqc Version: 1.68.0 Depends: R (>= 2.2.1), cluster, MASS License: LGPL (>= 2) MD5sum: f277ca29f77be3efbbc0ed040ca57c5c NeedsCompilation: no Title: Mahalanobis Distance Quality Control for microarrays Description: MDQC is a multivariate quality assessment method for microarrays based on quality control (QC) reports. The Mahalanobis distance of an array's quality attributes is used to measure the similarity of the quality of that array against the quality of the other arrays. Then, arrays with unusually high distances can be flagged as potentially low-quality. biocViews: Microarray, QualityControl Author: Justin Harrington Maintainer: Gabriela Cohen-Freue git_url: https://git.bioconductor.org/packages/mdqc git_branch: RELEASE_3_20 git_last_commit: 53ca0da git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mdqc_1.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mdqc_1.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mdqc_1.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mdqc_1.68.0.tgz vignettes: vignettes/mdqc/inst/doc/mdqcvignette.pdf vignetteTitles: Introduction to MDQC hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mdqc/inst/doc/mdqcvignette.R importsMe: arrayMvout dependencyCount: 7 Package: MDTS Version: 1.26.0 Depends: R (>= 3.5.0) Imports: GenomicAlignments, GenomicRanges, IRanges, Biostrings, DNAcopy, Rsamtools, parallel, stringr Suggests: testthat, knitr License: Artistic-2.0 MD5sum: f480419541d2377398b84f7e7114a74f NeedsCompilation: no Title: Detection of de novo deletion in targeted sequencing trios Description: A package for the detection of de novo copy number deletions in targeted sequencing of trios with high sensitivity and positive predictive value. biocViews: StatisticalMethod, Technology, Sequencing, TargetedResequencing, Coverage, DataImport Author: Jack M.. Fu [aut, cre] Maintainer: Jack M.. Fu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MDTS git_branch: RELEASE_3_20 git_last_commit: f83f22a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MDTS_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MDTS_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MDTS_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MDTS_1.26.0.tgz vignettes: vignettes/MDTS/inst/doc/mdts.html vignetteTitles: Title of your vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MDTS/inst/doc/mdts.R dependencyCount: 60 Package: MEAL Version: 1.36.0 Depends: R (>= 3.6.0), Biobase, MultiDataSet Imports: GenomicRanges, limma, vegan, BiocGenerics, minfi, IRanges, S4Vectors, methods, parallel, ggplot2 (>= 2.0.0), permute, Gviz, missMethyl, isva, SummarizedExperiment, SmartSVA, graphics, stats, utils, matrixStats Suggests: testthat, IlluminaHumanMethylationEPICanno.ilm10b2.hg19, IlluminaHumanMethylation450kanno.ilmn12.hg19, knitr, minfiData, BiocStyle, rmarkdown, brgedata License: Artistic-2.0 MD5sum: d8296355d2f4244ff3f49b7afe2dc562 NeedsCompilation: no Title: Perform methylation analysis Description: Package to integrate methylation and expression data. It can also perform methylation or expression analysis alone. Several plotting functionalities are included as well as a new region analysis based on redundancy analysis. Effect of SNPs on a region can also be estimated. biocViews: DNAMethylation, Microarray, Software, WholeGenome Author: Carlos Ruiz-Arenas [aut, cre], Juan R. Gonzalez [aut] Maintainer: Xavier Escribà Montagut VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MEAL git_branch: RELEASE_3_20 git_last_commit: 39b14ca git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MEAL_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MEAL_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MEAL_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MEAL_1.36.0.tgz vignettes: vignettes/MEAL/inst/doc/caseExample.html, vignettes/MEAL/inst/doc/MEAL.html vignetteTitles: Expression and Methylation Analysis with MEAL, Methylation Analysis with MEAL hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MEAL/inst/doc/caseExample.R, vignettes/MEAL/inst/doc/MEAL.R dependencyCount: 229 Package: MeasurementError.cor Version: 1.78.0 License: LGPL MD5sum: 6f63025944c35b4663e33452890f3a01 NeedsCompilation: no Title: Measurement Error model estimate for correlation coefficient Description: Two-stage measurement error model for correlation estimation with smaller bias than the usual sample correlation biocViews: StatisticalMethod Author: Beiying Ding Maintainer: Beiying Ding git_url: https://git.bioconductor.org/packages/MeasurementError.cor git_branch: RELEASE_3_20 git_last_commit: 7473f30 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MeasurementError.cor_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MeasurementError.cor_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MeasurementError.cor_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MeasurementError.cor_1.78.0.tgz vignettes: vignettes/MeasurementError.cor/inst/doc/MeasurementError.cor.pdf vignetteTitles: MeasurementError.cor Tutorial hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MeasurementError.cor/inst/doc/MeasurementError.cor.R dependencyCount: 0 Package: MEAT Version: 1.18.0 Depends: R (>= 4.0) Imports: impute (>= 1.58), dynamicTreeCut (>= 1.63), glmnet (>= 2.0), grDevices, graphics, stats, utils, stringr, tibble, RPMM (>= 1.25), minfi (>= 1.30), dplyr, SummarizedExperiment, wateRmelon Suggests: knitr, markdown, rmarkdown, BiocStyle, testthat (>= 2.1.0) License: MIT + file LICENSE MD5sum: 627f3f2501cb213070b3a30f58429175 NeedsCompilation: no Title: Muscle Epigenetic Age Test Description: This package estimates epigenetic age in skeletal muscle, using DNA methylation data generated with the Illumina Infinium technology (HM27, HM450 and HMEPIC). biocViews: Epigenetics, DNAMethylation, Microarray, Normalization, BiomedicalInformatics, MethylationArray, Preprocessing Author: Sarah Voisin [aut, cre] (), Steve Horvath [ctb] () Maintainer: Sarah Voisin URL: https://github.com/sarah-voisin/MEAT VignetteBuilder: knitr BugReports: https://github.com/sarah-voisin/MEAT/issues git_url: https://git.bioconductor.org/packages/MEAT git_branch: RELEASE_3_20 git_last_commit: 88e582b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MEAT_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MEAT_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MEAT_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MEAT_1.18.0.tgz vignettes: vignettes/MEAT/inst/doc/MEAT.html vignetteTitles: MEAT hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MEAT/inst/doc/MEAT.R dependencyCount: 180 Package: MEB Version: 1.20.0 Depends: R (>= 3.6.0) Imports: e1071, edgeR, scater, stats, wrswoR, SummarizedExperiment, SingleCellExperiment Suggests: knitr,rmarkdown,BiocStyle License: GPL-2 MD5sum: 0176c4c63698de986c3185635a451ce3 NeedsCompilation: no Title: A normalization-invariant minimum enclosing ball method to detect differentially expressed genes for RNA-seq and scRNA-seq data Description: This package provides a method to identify differential expression genes in the same or different species. Given that non-DE genes have some similarities in features, a scaling-free minimum enclosing ball (SFMEB) model is built to cover those non-DE genes in feature space, then those DE genes, which are enormously different from non-DE genes, being regarded as outliers and rejected outside the ball. The method on this package is described in the article 'A minimum enclosing ball method to detect differential expression genes for RNA-seq data'. The SFMEB method is extended to the scMEB method that considering two or more potential types of cells or unknown labels scRNA-seq dataset DEGs identification. biocViews: DifferentialExpression, GeneExpression, Normalization, Classification, Sequencing Author: Yan Zhou, Jiadi Zhu Maintainer: Jiadi Zhu <2160090406@email.szu.edu.cn>, Yan Zhou VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MEB git_branch: RELEASE_3_20 git_last_commit: d8aa2aa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MEB_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MEB_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MEB_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MEB_1.20.0.tgz vignettes: vignettes/MEB/inst/doc/NIMEB.html vignetteTitles: MEB Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MEB/inst/doc/NIMEB.R dependencyCount: 115 Package: MEDIPS Version: 1.58.0 Depends: R (>= 3.0), BSgenome, Rsamtools Imports: GenomicRanges, Biostrings, graphics, gtools, IRanges, methods, stats, utils, edgeR, DNAcopy, biomaRt, rtracklayer, preprocessCore Suggests: BSgenome.Hsapiens.UCSC.hg19, MEDIPSData, BiocStyle License: GPL (>=2) MD5sum: f7ae115e9d7ee63573d8524bfa559829 NeedsCompilation: no Title: DNA IP-seq data analysis Description: MEDIPS was developed for analyzing data derived from methylated DNA immunoprecipitation (MeDIP) experiments followed by sequencing (MeDIP-seq). However, MEDIPS provides functionalities for the analysis of any kind of quantitative sequencing data (e.g. ChIP-seq, MBD-seq, CMS-seq and others) including calculation of differential coverage between groups of samples and saturation and correlation analysis. biocViews: DNAMethylation, CpGIsland, DifferentialExpression, Sequencing, ChIPSeq, Preprocessing, QualityControl, Visualization, Microarray, Genetics, Coverage, GenomeAnnotation, CopyNumberVariation, SequenceMatching Author: Lukas Chavez, Matthias Lienhard, Joern Dietrich, Isaac Lopez Moyado Maintainer: Lukas Chavez git_url: https://git.bioconductor.org/packages/MEDIPS git_branch: RELEASE_3_20 git_last_commit: 2de7e88 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MEDIPS_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MEDIPS_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MEDIPS_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MEDIPS_1.58.0.tgz vignettes: vignettes/MEDIPS/inst/doc/MEDIPS.pdf vignetteTitles: MEDIPS hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MEDIPS/inst/doc/MEDIPS.R dependencyCount: 108 Package: MEDME Version: 1.66.0 Depends: R (>= 2.15), grDevices, graphics, methods, stats, utils Imports: Biostrings, MASS, drc Suggests: BSgenome.Hsapiens.UCSC.hg18, BSgenome.Mmusculus.UCSC.mm9 License: GPL (>= 2) MD5sum: 83044db7ff26673430e82547931cb89e NeedsCompilation: yes Title: Modelling Experimental Data from MeDIP Enrichment Description: MEDME allows the prediction of absolute and relative methylation levels based on measures obtained by MeDIP-microarray experiments biocViews: Microarray, CpGIsland, DNAMethylation Author: Mattia Pelizzola and Annette Molinaro Maintainer: Mattia Pelizzola git_url: https://git.bioconductor.org/packages/MEDME git_branch: RELEASE_3_20 git_last_commit: f612263 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MEDME_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MEDME_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MEDME_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MEDME_1.66.0.tgz vignettes: vignettes/MEDME/inst/doc/MEDME.pdf vignetteTitles: MEDME.pdf hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MEDME/inst/doc/MEDME.R dependencyCount: 96 Package: megadepth Version: 1.16.0 Imports: xfun, utils, fs, GenomicRanges, readr, cmdfun, dplyr, magrittr Suggests: covr, knitr, BiocStyle, sessioninfo, rmarkdown, rtracklayer, derfinder, GenomeInfoDb, tools, RefManageR, testthat License: Artistic-2.0 MD5sum: afbcaad3f9b031a65f0febdfcc2b4276 NeedsCompilation: no Title: megadepth: BigWig and BAM related utilities Description: This package provides an R interface to Megadepth by Christopher Wilks available at https://github.com/ChristopherWilks/megadepth. It is particularly useful for computing the coverage of a set of genomic regions across bigWig or BAM files. With this package, you can build base-pair coverage matrices for regions or annotations of your choice from BigWig files. Megadepth was used to create the raw files provided by https://bioconductor.org/packages/recount3. biocViews: Software, Coverage, DataImport, Transcriptomics, RNASeq, Preprocessing Author: Leonardo Collado-Torres [aut] (), David Zhang [aut, cre] () Maintainer: David Zhang URL: https://github.com/LieberInstitute/megadepth SystemRequirements: megadepth () VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/megadepth git_url: https://git.bioconductor.org/packages/megadepth git_branch: RELEASE_3_20 git_last_commit: d7f5e2d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/megadepth_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/megadepth_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/megadepth_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/megadepth_1.16.0.tgz vignettes: vignettes/megadepth/inst/doc/megadepth.html vignetteTitles: megadepth quick start guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: FALSE Rfiles: vignettes/megadepth/inst/doc/megadepth.R dependencyCount: 83 Package: MEIGOR Version: 1.40.0 Depends: R (>= 4.0), Rsolnp, snowfall, deSolve, CNORode Suggests: CellNOptR, knitr, BiocStyle License: GPL-3 MD5sum: 0dbaa957e4f6f08b24ae29007b73518f NeedsCompilation: no Title: MEIGOR - MEtaheuristics for bIoinformatics Global Optimization Description: MEIGOR provides a comprehensive environment for performing global optimization tasks in bioinformatics and systems biology. It leverages advanced metaheuristic algorithms to efficiently search the solution space and is specifically tailored to handle the complexity and high-dimensionality of biological datasets. This package supports various optimization routines and is integrated with Bioconductor's infrastructure for a seamless analysis workflow. biocViews: SystemsBiology, Optimization, Software Author: Jose A. Egea [aut, cre], David Henriques [aut], Alexandre Fdez. Villaverde [aut], Thomas Cokelaer [aut] Maintainer: Jose A. Egea VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MEIGOR git_branch: RELEASE_3_20 git_last_commit: 028d6e3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MEIGOR_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MEIGOR_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MEIGOR_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MEIGOR_1.40.0.tgz vignettes: vignettes/MEIGOR/inst/doc/MEIGOR-vignette.html vignetteTitles: MEIGOR: a software suite based on metaheuristics for global optimization in systems biology and bioinformatics hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MEIGOR/inst/doc/MEIGOR-vignette.R dependencyCount: 79 Package: Melissa Version: 1.22.0 Depends: R (>= 3.5.0), BPRMeth, GenomicRanges Imports: data.table, parallel, ROCR, matrixcalc, mclust, ggplot2, doParallel, foreach, MCMCpack, cowplot, magrittr, mvtnorm, truncnorm, assertthat, BiocStyle, stats, utils Suggests: testthat, knitr, rmarkdown License: GPL-3 | file LICENSE MD5sum: b7a6bb222c251ee539e97e177faf325f NeedsCompilation: no Title: Bayesian clustering and imputationa of single cell methylomes Description: Melissa is a Baysian probabilistic model for jointly clustering and imputing single cell methylomes. This is done by taking into account local correlations via a Generalised Linear Model approach and global similarities using a mixture modelling approach. biocViews: ImmunoOncology, DNAMethylation, GeneExpression, GeneRegulation, Epigenetics, Genetics, Clustering, FeatureExtraction, Regression, RNASeq, Bayesian, KEGG, Sequencing, Coverage, SingleCell Author: C. A. Kapourani [aut, cre] Maintainer: C. A. Kapourani VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Melissa git_branch: RELEASE_3_20 git_last_commit: 69ab468 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Melissa_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Melissa_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Melissa_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Melissa_1.22.0.tgz vignettes: vignettes/Melissa/inst/doc/process_files.html, vignettes/Melissa/inst/doc/run_melissa.html vignetteTitles: 1: Process and filter scBS-seq data, 2: Cluster and impute scBS-seq data using Melissa hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Melissa/inst/doc/process_files.R, vignettes/Melissa/inst/doc/run_melissa.R dependencyCount: 112 Package: memes Version: 1.14.0 Depends: R (>= 4.1) Imports: Biostrings, dplyr, cmdfun (>= 1.0.2), GenomicRanges, ggplot2, ggseqlogo, magrittr, matrixStats, methods, patchwork, processx, purrr, rlang, readr, stats, tools, tibble, tidyr, utils, usethis, universalmotif (>= 1.9.3), xml2 Suggests: cowplot, BSgenome.Dmelanogaster.UCSC.dm3, BSgenome.Dmelanogaster.UCSC.dm6, forcats, testthat (>= 2.1.0), knitr, MotifDb, pheatmap, PMCMRplus, plyranges (>= 1.9.1), rmarkdown, covr License: MIT + file LICENSE Archs: x64 MD5sum: ca85fcf4bbc792484859320c12a8bde7 NeedsCompilation: no Title: motif matching, comparison, and de novo discovery using the MEME Suite Description: A seamless interface to the MEME Suite family of tools for motif analysis. 'memes' provides data aware utilities for using GRanges objects as entrypoints to motif analysis, data structures for examining & editing motif lists, and novel data visualizations. 'memes' functions and data structures are amenable to both base R and tidyverse workflows. biocViews: DataImport, FunctionalGenomics, GeneRegulation, MotifAnnotation, MotifDiscovery, SequenceMatching, Software Author: Spencer Nystrom [aut, cre, cph] () Maintainer: Spencer Nystrom URL: https://snystrom.github.io/memes/, https://github.com/snystrom/memes SystemRequirements: Meme Suite (v5.3.3 or above) VignetteBuilder: knitr BugReports: https://github.com/snystrom/memes/issues git_url: https://git.bioconductor.org/packages/memes git_branch: RELEASE_3_20 git_last_commit: 25c7604 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/memes_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/memes_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/memes_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/memes_1.14.0.tgz vignettes: vignettes/memes/inst/doc/core_ame.html, vignettes/memes/inst/doc/core_dreme.html, vignettes/memes/inst/doc/core_fimo.html, vignettes/memes/inst/doc/core_tomtom.html, vignettes/memes/inst/doc/install_guide.html, vignettes/memes/inst/doc/integrative_analysis.html, vignettes/memes/inst/doc/tidy_motifs.html vignetteTitles: Motif Enrichment Testing using AME, Denovo Motif Discovery Using DREME, Motif Scanning using FIMO, Motif Comparison using TomTom, Install MEME, ChIP-seq Analysis, Tidying Motif Metadata hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/memes/inst/doc/core_ame.R, vignettes/memes/inst/doc/core_dreme.R, vignettes/memes/inst/doc/core_fimo.R, vignettes/memes/inst/doc/core_tomtom.R, vignettes/memes/inst/doc/install_guide.R, vignettes/memes/inst/doc/integrative_analysis.R, vignettes/memes/inst/doc/tidy_motifs.R dependencyCount: 111 Package: Mergeomics Version: 1.34.0 Depends: R (>= 3.0.1) Suggests: RUnit, BiocGenerics License: GPL (>= 2) MD5sum: cbed7a299eb2d105e14405c156a621a9 NeedsCompilation: no Title: Integrative network analysis of omics data Description: The Mergeomics pipeline serves as a flexible framework for integrating multidimensional omics-disease associations, functional genomics, canonical pathways and gene-gene interaction networks to generate mechanistic hypotheses. It includes two main parts, 1) Marker set enrichment analysis (MSEA); 2) Weighted Key Driver Analysis (wKDA). biocViews: Software Author: Ville-Petteri Makinen, Le Shu, Yuqi Zhao, Zeyneb Kurt, Bin Zhang, Xia Yang Maintainer: Zeyneb Kurt git_url: https://git.bioconductor.org/packages/Mergeomics git_branch: RELEASE_3_20 git_last_commit: ec59426 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Mergeomics_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Mergeomics_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Mergeomics_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Mergeomics_1.34.0.tgz vignettes: vignettes/Mergeomics/inst/doc/Mergeomics.pdf vignetteTitles: Mergeomics hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Mergeomics/inst/doc/Mergeomics.R dependencyCount: 0 Package: MeSHDbi Version: 1.42.0 Depends: R (>= 3.0.1) Imports: methods, AnnotationDbi (>= 1.31.19), RSQLite, Biobase Suggests: testthat License: Artistic-2.0 MD5sum: 01ca9060868de87892da25d6822b982d NeedsCompilation: no Title: DBI to construct MeSH-related package from sqlite file Description: The package is unified implementation of MeSH.db, MeSH.AOR.db, and MeSH.PCR.db and also is interface to construct Gene-MeSH package (MeSH.XXX.eg.db). loadMeSHDbiPkg import sqlite file and generate MeSH.XXX.eg.db. biocViews: Annotation, AnnotationData, Infrastructure Author: Koki Tsuyuzaki Maintainer: Koki Tsuyuzaki git_url: https://git.bioconductor.org/packages/MeSHDbi git_branch: RELEASE_3_20 git_last_commit: 6355ff4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MeSHDbi_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MeSHDbi_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MeSHDbi_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MeSHDbi_1.42.0.tgz vignettes: vignettes/MeSHDbi/inst/doc/MeSHDbi.pdf vignetteTitles: MeSH.db hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE importsMe: meshes, meshr, scTensor dependencyCount: 45 Package: meshes Version: 1.32.0 Depends: R (>= 4.1.0) Imports: AnnotationDbi, DOSE, enrichplot, GOSemSim (>= 2.31.2), methods, utils, AnnotationHub, MeSHDbi, yulab.utils (>= 0.1.5) Suggests: knitr, rmarkdown, prettydoc License: Artistic-2.0 MD5sum: 67f774a48cecf5173121fff150972d54 NeedsCompilation: no Title: MeSH Enrichment and Semantic analyses Description: MeSH (Medical Subject Headings) is the NLM controlled vocabulary used to manually index articles for MEDLINE/PubMed. MeSH terms were associated by Entrez Gene ID by three methods, gendoo, gene2pubmed and RBBH. This association is fundamental for enrichment and semantic analyses. meshes supports enrichment analysis (over-representation and gene set enrichment analysis) of gene list or whole expression profile. The semantic comparisons of MeSH terms provide quantitative ways to compute similarities between genes and gene groups. meshes implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively and supports more than 70 species. biocViews: Annotation, Clustering, MultipleComparison, Software Author: Guangchuang Yu [aut, cre] Maintainer: Guangchuang Yu URL: https://yulab-smu.top/biomedical-knowledge-mining-book/ VignetteBuilder: knitr BugReports: https://github.com/GuangchuangYu/meshes/issues git_url: https://git.bioconductor.org/packages/meshes git_branch: RELEASE_3_20 git_last_commit: eb82828 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/meshes_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/meshes_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/meshes_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/meshes_1.32.0.tgz vignettes: vignettes/meshes/inst/doc/meshes.html vignetteTitles: meshes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/meshes/inst/doc/meshes.R dependencyCount: 131 Package: meshr Version: 2.12.0 Depends: R (>= 4.1.0) Imports: markdown, rmarkdown, BiocStyle, knitr, methods, stats, utils, fdrtool, MeSHDbi, Category, S4Vectors, BiocGenerics, RSQLite License: Artistic-2.0 MD5sum: bd7179596eddb8790f09d35bbb4dbc2f NeedsCompilation: no Title: Tools for conducting enrichment analysis of MeSH Description: A set of annotation maps describing the entire MeSH assembled using data from MeSH. biocViews: AnnotationData, FunctionalAnnotation, Bioinformatics, Statistics, Annotation, MultipleComparisons, MeSHDb Author: Koki Tsuyuzaki, Itoshi Nikaido, Gota Morota Maintainer: Koki Tsuyuzaki VignetteBuilder: knitr BugReports: https://github.com/rikenbit/meshr/issues git_url: https://git.bioconductor.org/packages/meshr git_branch: RELEASE_3_20 git_last_commit: 0ea543c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/meshr_2.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/meshr_2.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/meshr_2.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/meshr_2.12.0.tgz vignettes: vignettes/meshr/inst/doc/MeSH.html vignetteTitles: AnnotationHub-style MeSH ORA Framework from BioC 3.14 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/meshr/inst/doc/MeSH.R importsMe: scTensor dependencyCount: 84 Package: MesKit Version: 1.16.0 Depends: R (>= 4.0.0) Imports: methods, data.table, Biostrings, dplyr, tidyr (>= 1.0.0), ape (>= 5.4.1), ggrepel, pracma, ggridges, AnnotationDbi, IRanges, circlize, cowplot, mclust, phangorn, ComplexHeatmap (>= 1.9.3), ggplot2, RColorBrewer, grDevices, stats, utils, S4Vectors Suggests: shiny, knitr, rmarkdown, BSgenome.Hsapiens.UCSC.hg19 (>= 1.4.0), org.Hs.eg.db, clusterProfiler, TxDb.Hsapiens.UCSC.hg19.knownGene License: GPL-3 MD5sum: 950350f211e6021c931b25ff2df92c32 NeedsCompilation: no Title: A tool kit for dissecting cancer evolution from multi-region derived tumor biopsies via somatic alterations Description: MesKit provides commonly used analysis and visualization modules based on mutational data generated by multi-region sequencing (MRS). This package allows to depict mutational profiles, measure heterogeneity within or between tumors from the same patient, track evolutionary dynamics, as well as characterize mutational patterns on different levels. Shiny application was also developed for a need of GUI-based analysis. As a handy tool, MesKit can facilitate the interpretation of tumor heterogeneity and the understanding of evolutionary relationship between regions in MRS study. Author: Mengni Liu [aut, cre] (), Jianyu Chen [aut, ctb] (), Xin Wang [aut, ctb] () Maintainer: Mengni Liu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MesKit git_branch: RELEASE_3_20 git_last_commit: d0b7a3c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MesKit_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MesKit_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MesKit_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MesKit_1.16.0.tgz vignettes: vignettes/MesKit/inst/doc/MesKit.html vignetteTitles: Analyze and Visualize Multi-region Whole-exome Sequencing Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MesKit/inst/doc/MesKit.R importsMe: CaMutQC dependencyCount: 102 Package: messina Version: 1.42.0 Depends: R (>= 3.1.0), survival (>= 2.37-4), methods Imports: Rcpp (>= 0.11.1), plyr (>= 1.8), ggplot2 (>= 0.9.3.1), grid (>= 3.1.0), foreach (>= 1.4.1), graphics LinkingTo: Rcpp Suggests: knitr (>= 1.5), antiProfilesData (>= 0.99.2), Biobase (>= 2.22.0), BiocStyle Enhances: doMC (>= 1.3.3) License: EPL (>= 1.0) MD5sum: c9284a0cefc50cf77b2b8e8ccb7f4588 NeedsCompilation: yes Title: Single-gene classifiers and outlier-resistant detection of differential expression for two-group and survival problems Description: Messina is a collection of algorithms for constructing optimally robust single-gene classifiers, and for identifying differential expression in the presence of outliers or unknown sample subgroups. The methods have application in identifying lead features to develop into clinical tests (both diagnostic and prognostic), and in identifying differential expression when a fraction of samples show unusual patterns of expression. biocViews: GeneExpression, DifferentialExpression, BiomedicalInformatics, Classification, Survival Author: Mark Pinese [aut], Mark Pinese [cre], Mark Pinese [cph] Maintainer: Mark Pinese VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/messina git_branch: RELEASE_3_20 git_last_commit: 58de3e1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/messina_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/messina_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/messina_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/messina_1.42.0.tgz vignettes: vignettes/messina/inst/doc/messina.pdf vignetteTitles: Using Messina hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/messina/inst/doc/messina.R dependencyCount: 41 Package: metabCombiner Version: 1.16.0 Depends: R (>= 4.0) Imports: dplyr (>= 1.0), methods, mgcv, caret, S4Vectors, stats, utils, rlang, graphics, matrixStats, tidyr Suggests: knitr, rmarkdown, testthat, BiocStyle License: GPL-3 MD5sum: c252f40df99df7472acac7159df5bc96 NeedsCompilation: yes Title: Method for Combining LC-MS Metabolomics Feature Measurements Description: This package aligns LC-HRMS metabolomics datasets acquired from biologically similar specimens analyzed under similar, but not necessarily identical, conditions. Peak-picked and simply aligned metabolomics feature tables (consisting of m/z, rt, and per-sample abundance measurements, plus optional identifiers & adduct annotations) are accepted as input. The package outputs a combined table of feature pair alignments, organized into groups of similar m/z, and ranked by a similarity score. Input tables are assumed to be acquired using similar (but not necessarily identical) analytical methods. biocViews: Software, MassSpectrometry, Metabolomics Author: Hani Habra [aut, cre], Alla Karnovsky [ths] Maintainer: Hani Habra VignetteBuilder: knitr BugReports: https://www.github.com/hhabra/metabCombiner/issues git_url: https://git.bioconductor.org/packages/metabCombiner git_branch: RELEASE_3_20 git_last_commit: 5681e39 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/metabCombiner_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/metabCombiner_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/metabCombiner_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/metabCombiner_1.16.0.tgz vignettes: vignettes/metabCombiner/inst/doc/metabCombiner_vignette.html vignetteTitles: Combine LC-MS Metabolomics Datasets with metabCombiner hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/metabCombiner/inst/doc/metabCombiner_vignette.R dependencyCount: 88 Package: metabinR Version: 1.8.0 Depends: R (>= 4.3) Imports: methods, rJava Suggests: BiocStyle, cvms, data.table, dplyr, ggplot2, gridExtra, knitr, R.utils, rmarkdown, sabre, spelling, testthat (>= 3.0.0) License: GPL-3 MD5sum: 5ecee6cce174068c7c3f1eb3700327ea NeedsCompilation: no Title: Abundance and Compositional Based Binning of Metagenomes Description: Provide functions for performing abundance and compositional based binning on metagenomic samples, directly from FASTA or FASTQ files. Functions are implemented in Java and called via rJava. Parallel implementation that operates directly on input FASTA/FASTQ files for fast execution. biocViews: Classification, Clustering, Microbiome, Sequencing, Software Author: Anestis Gkanogiannis [aut, cre] () Maintainer: Anestis Gkanogiannis URL: https://github.com/gkanogiannis/metabinR SystemRequirements: Java (>= 8) VignetteBuilder: knitr BugReports: https://github.com/gkanogiannis/metabinR/issues git_url: https://git.bioconductor.org/packages/metabinR git_branch: RELEASE_3_20 git_last_commit: 64ae262 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/metabinR_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/metabinR_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/metabinR_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/metabinR_1.8.0.tgz vignettes: vignettes/metabinR/inst/doc/metabinR_vignette.html vignetteTitles: metabinR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/metabinR/inst/doc/metabinR_vignette.R dependencyCount: 2 Package: MetaboAnnotation Version: 1.10.1 Depends: R (>= 4.0.0) Imports: BiocGenerics, MsCoreUtils, MetaboCoreUtils, ProtGenerics, methods, S4Vectors, Spectra (>= 1.13.2), BiocParallel, SummarizedExperiment, QFeatures, AnnotationHub, graphics, CompoundDb Suggests: testthat, knitr, msdata, BiocStyle, rmarkdown, plotly, shiny, shinyjs, DT, microbenchmark, mzR Enhances: RMariaDB, RSQLite License: Artistic-2.0 MD5sum: c32031c66fcf2912abd0087f566e6c1d NeedsCompilation: no Title: Utilities for Annotation of Metabolomics Data Description: High level functions to assist in annotation of (metabolomics) data sets. These include functions to perform simple tentative annotations based on mass matching but also functions to consider m/z and retention times for annotation of LC-MS features given that respective reference values are available. In addition, the function provides high-level functions to simplify matching of LC-MS/MS spectra against spectral libraries and objects and functionality to represent and manage such matched data. biocViews: Infrastructure, Metabolomics, MassSpectrometry Author: Michael Witting [aut] (), Johannes Rainer [aut, cre] (), Andrea Vicini [aut] (), Carolin Huber [aut] (), Philippine Louail [aut] (), Nir Shachaf [ctb] Maintainer: Johannes Rainer URL: https://github.com/RforMassSpectrometry/MetaboAnnotation VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/MetaboAnnotation/issues git_url: https://git.bioconductor.org/packages/MetaboAnnotation git_branch: RELEASE_3_20 git_last_commit: a0fb4bb git_last_commit_date: 2024-11-21 Date/Publication: 2024-11-25 source.ver: src/contrib/MetaboAnnotation_1.10.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/MetaboAnnotation_1.10.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MetaboAnnotation_1.10.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MetaboAnnotation_1.10.1.tgz vignettes: vignettes/MetaboAnnotation/inst/doc/MetaboAnnotation.html vignetteTitles: Annotation of MS-based Metabolomics Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MetaboAnnotation/inst/doc/MetaboAnnotation.R dependencyCount: 145 Package: MetaboCoreUtils Version: 1.14.0 Depends: R (>= 4.0) Imports: utils, MsCoreUtils, BiocParallel, methods, stats Suggests: BiocStyle, testthat, knitr, rmarkdown, robustbase License: Artistic-2.0 Archs: x64 MD5sum: 76392967ed18baf8cf0eaf7d98bdcbec NeedsCompilation: no Title: Core Utils for Metabolomics Data Description: MetaboCoreUtils defines metabolomics-related core functionality provided as low-level functions to allow a data structure-independent usage across various R packages. This includes functions to calculate between ion (adduct) and compound mass-to-charge ratios and masses or functions to work with chemical formulas. The package provides also a set of adduct definitions and information on some commercially available internal standard mixes commonly used in MS experiments. biocViews: Infrastructure, Metabolomics, MassSpectrometry Author: Johannes Rainer [aut, cre] (), Michael Witting [aut] (), Andrea Vicini [aut], Liesa Salzer [ctb] (), Sebastian Gibb [aut] (), Michael Stravs [ctb] (), Roger Gine [aut] (), Philippine Louail [aut] () Maintainer: Johannes Rainer URL: https://github.com/RforMassSpectrometry/MetaboCoreUtils VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/MetaboCoreUtils/issues git_url: https://git.bioconductor.org/packages/MetaboCoreUtils git_branch: RELEASE_3_20 git_last_commit: c107153 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MetaboCoreUtils_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MetaboCoreUtils_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MetaboCoreUtils_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MetaboCoreUtils_1.14.0.tgz vignettes: vignettes/MetaboCoreUtils/inst/doc/MetaboCoreUtils.html vignetteTitles: Core Utils for Metabolomics Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MetaboCoreUtils/inst/doc/MetaboCoreUtils.R importsMe: CompoundDb, MetaboAnnotation, Spectra, xcms dependencyCount: 23 Package: metabolomicsWorkbenchR Version: 1.16.0 Depends: R (>= 4.0) Imports: data.table, httr, jsonlite, methods, MultiAssayExperiment, struct, SummarizedExperiment, utils Suggests: BiocStyle, covr, knitr, HDF5Array, httptest, rmarkdown, structToolbox, testthat, pmp, grid, png License: GPL-3 Archs: x64 MD5sum: 4370275467c24b894e5a3d9374b29bec NeedsCompilation: no Title: Metabolomics Workbench in R Description: This package provides functions for interfacing with the Metabolomics Workbench RESTful API. Study, compound, protein and gene information can be searched for using the API. Methods to obtain study data in common Bioconductor formats such as SummarizedExperiment and MultiAssayExperiment are also included. biocViews: Software, Metabolomics Author: Gavin Rhys Lloyd [aut, cre], Ralf Johannes Maria Weber [aut] Maintainer: Gavin Rhys Lloyd VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/metabolomicsWorkbenchR git_branch: RELEASE_3_20 git_last_commit: ea2d6fc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/metabolomicsWorkbenchR_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/metabolomicsWorkbenchR_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/metabolomicsWorkbenchR_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/metabolomicsWorkbenchR_1.16.0.tgz vignettes: vignettes/metabolomicsWorkbenchR/inst/doc/example_using_structToolbox.html, vignettes/metabolomicsWorkbenchR/inst/doc/Introduction_to_metabolomicsWorkbenchR.html vignetteTitles: Example using structToolbox, Introduction_to_metabolomicsWorkbenchR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/metabolomicsWorkbenchR/inst/doc/example_using_structToolbox.R, vignettes/metabolomicsWorkbenchR/inst/doc/Introduction_to_metabolomicsWorkbenchR.R suggestsMe: fobitools, MetMashR dependencyCount: 70 Package: metabomxtr Version: 1.40.0 Depends: methods,Biobase Imports: optimx, Formula, plyr, multtest, BiocParallel, ggplot2 Suggests: xtable, reshape2 License: GPL-2 MD5sum: 0708d3d272c142694abe37ae3abf7964 NeedsCompilation: no Title: A package to run mixture models for truncated metabolomics data with normal or lognormal distributions Description: The functions in this package return optimized parameter estimates and log likelihoods for mixture models of truncated data with normal or lognormal distributions. biocViews: ImmunoOncology, Metabolomics, MassSpectrometry Author: Michael Nodzenski, Anna Reisetter, Denise Scholtens Maintainer: Michael Nodzenski git_url: https://git.bioconductor.org/packages/metabomxtr git_branch: RELEASE_3_20 git_last_commit: 9f924d3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/metabomxtr_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/metabomxtr_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/metabomxtr_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/metabomxtr_1.40.0.tgz vignettes: vignettes/metabomxtr/inst/doc/Metabomxtr_Vignette.pdf, vignettes/metabomxtr/inst/doc/mixnorm_Vignette.pdf vignetteTitles: metabomxtr, mixnorm hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/metabomxtr/inst/doc/Metabomxtr_Vignette.R, vignettes/metabomxtr/inst/doc/mixnorm_Vignette.R dependencyCount: 57 Package: MetaboSignal Version: 1.36.0 Depends: R(>= 3.3) Imports: KEGGgraph, hpar, igraph, RCurl, KEGGREST, EnsDb.Hsapiens.v75, stats, graphics, utils, org.Hs.eg.db, biomaRt, AnnotationDbi, MWASTools, mygene Suggests: RUnit, BiocGenerics, knitr, BiocStyle, rmarkdown License: GPL-3 MD5sum: 1a7667ef13119d45cd58ff155f911042 NeedsCompilation: no Title: MetaboSignal: a network-based approach to overlay and explore metabolic and signaling KEGG pathways Description: MetaboSignal is an R package that allows merging, analyzing and customizing metabolic and signaling KEGG pathways. It is a network-based approach designed to explore the topological relationship between genes (signaling- or enzymatic-genes) and metabolites, representing a powerful tool to investigate the genetic landscape and regulatory networks of metabolic phenotypes. biocViews: GraphAndNetwork, GeneSignaling, GeneTarget, Network, Pathways, KEGG, Reactome, Software Author: Andrea Rodriguez-Martinez, Rafael Ayala, Joram M. Posma, Ana L. Neves, Maryam Anwar, Jeremy K. Nicholson, Marc-Emmanuel Dumas Maintainer: Andrea Rodriguez-Martinez , Rafael Ayala VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MetaboSignal git_branch: RELEASE_3_20 git_last_commit: 406f937 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MetaboSignal_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MetaboSignal_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MetaboSignal_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MetaboSignal_1.36.0.tgz vignettes: vignettes/MetaboSignal/inst/doc/MetaboSignal2.html, vignettes/MetaboSignal/inst/doc/MetaboSignal.html vignetteTitles: MetaboSignal 2: merging KEGG with additional interaction resources, MetaboSignal hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MetaboSignal/inst/doc/MetaboSignal2.R, vignettes/MetaboSignal/inst/doc/MetaboSignal.R dependencyCount: 198 Package: metaCCA Version: 1.34.0 Suggests: knitr License: MIT + file LICENSE MD5sum: 61e5e91a9b098d14828dd5a786499da1 NeedsCompilation: no Title: Summary Statistics-Based Multivariate Meta-Analysis of Genome-Wide Association Studies Using Canonical Correlation Analysis Description: metaCCA performs multivariate analysis of a single or multiple GWAS based on univariate regression coefficients. It allows multivariate representation of both phenotype and genotype. metaCCA extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. biocViews: GenomeWideAssociation, SNP, Genetics, Regression, StatisticalMethod, Software Author: Anna Cichonska Maintainer: Anna Cichonska URL: https://doi.org/10.1093/bioinformatics/btw052 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/metaCCA git_branch: RELEASE_3_20 git_last_commit: 9022e66 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/metaCCA_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/metaCCA_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/metaCCA_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/metaCCA_1.34.0.tgz vignettes: vignettes/metaCCA/inst/doc/metaCCA.pdf vignetteTitles: metaCCA hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/metaCCA/inst/doc/metaCCA.R dependencyCount: 0 Package: MetaCyto Version: 1.28.0 Depends: R (>= 3.4) Imports: flowCore (>= 1.4),tidyr (>= 0.7),fastcluster,ggplot2,metafor,cluster,FlowSOM, grDevices, graphics, stats, utils Suggests: knitr, dplyr, rmarkdown License: GPL (>= 2) MD5sum: 5f8aea732c6486f8f34586b41c0be7b5 NeedsCompilation: no Title: MetaCyto: A package for meta-analysis of cytometry data Description: This package provides functions for preprocessing, automated gating and meta-analysis of cytometry data. It also provides functions that facilitate the collection of cytometry data from the ImmPort database. biocViews: ImmunoOncology, CellBiology, FlowCytometry, Clustering, StatisticalMethod, Software, CellBasedAssays, Preprocessing Author: Zicheng Hu, Chethan Jujjavarapu, Sanchita Bhattacharya, Atul J. Butte Maintainer: Zicheng Hu VignetteBuilder: knitr, rmarkdown git_url: https://git.bioconductor.org/packages/MetaCyto git_branch: RELEASE_3_20 git_last_commit: 9c13bf5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MetaCyto_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MetaCyto_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MetaCyto_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MetaCyto_1.28.0.tgz vignettes: vignettes/MetaCyto/inst/doc/MetaCyto_Vignette.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MetaCyto/inst/doc/MetaCyto_Vignette.R dependencyCount: 105 Package: metagene2 Version: 1.22.0 Depends: R (>= 4.0), R6 (>= 2.0), GenomicRanges, BiocParallel Imports: rtracklayer, tools, GenomicAlignments, GenomeInfoDb, IRanges, ggplot2, Rsamtools, purrr, data.table, methods, dplyr, magrittr, reshape2 Suggests: BiocGenerics, RUnit, knitr, BiocStyle, rmarkdown License: Artistic-2.0 MD5sum: 3f00b08254a2d4b76e1c053953817793 NeedsCompilation: no Title: A package to produce metagene plots Description: This package produces metagene plots to compare coverages of sequencing experiments at selected groups of genomic regions. It can be used for such analyses as assessing the binding of DNA-interacting proteins at promoter regions or surveying antisense transcription over the length of a gene. The metagene2 package can manage all aspects of the analysis, from normalization of coverages to plot facetting according to experimental metadata. Bootstraping analysis is used to provide confidence intervals of per-sample mean coverages. biocViews: ChIPSeq, Genetics, MultipleComparison, Coverage, Alignment, Sequencing Author: Eric Fournier [cre, aut], Charles Joly Beauparlant [aut], Cedric Lippens [aut], Arnaud Droit [aut] Maintainer: Eric Fournier URL: https://github.com/ArnaudDroitLab/metagene2 VignetteBuilder: knitr BugReports: https://github.com/ArnaudDroitLab/metagene2/issues git_url: https://git.bioconductor.org/packages/metagene2 git_branch: RELEASE_3_20 git_last_commit: c4df766 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/metagene2_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/metagene2_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/metagene2_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/metagene2_1.22.0.tgz vignettes: vignettes/metagene2/inst/doc/metagene2.html vignetteTitles: Introduction to metagene2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/metagene2/inst/doc/metagene2.R dependencyCount: 94 Package: metagenomeSeq Version: 1.48.1 Depends: R(>= 3.0), Biobase, limma, glmnet, methods, RColorBrewer Imports: parallel, matrixStats, foreach, Matrix, gplots, graphics, grDevices, stats, utils, Wrench Suggests: annotate, BiocGenerics, biomformat, knitr, gss, testthat (>= 0.8), vegan, interactiveDisplay, IHW License: Artistic-2.0 MD5sum: f40b50e6eb7ff8b8ee9f79767fccc8b7 NeedsCompilation: no Title: Statistical analysis for sparse high-throughput sequencing Description: metagenomeSeq is designed to determine features (be it Operational Taxanomic Unit (OTU), species, etc.) that are differentially abundant between two or more groups of multiple samples. metagenomeSeq is designed to address the effects of both normalization and under-sampling of microbial communities on disease association detection and the testing of feature correlations. biocViews: ImmunoOncology, Classification, Clustering, GeneticVariability, DifferentialExpression, Microbiome, Metagenomics, Normalization, Visualization, MultipleComparison, Sequencing, Software Author: Joseph Nathaniel Paulson, Nathan D. Olson, Domenick J. Braccia, Justin Wagner, Hisham Talukder, Mihai Pop, Hector Corrada Bravo Maintainer: Joseph N. Paulson URL: https://github.com/nosson/metagenomeSeq/ VignetteBuilder: knitr BugReports: https://github.com/nosson/metagenomeSeq/issues git_url: https://git.bioconductor.org/packages/metagenomeSeq git_branch: RELEASE_3_20 git_last_commit: cb424ed git_last_commit_date: 2025-01-02 Date/Publication: 2025-01-02 source.ver: src/contrib/metagenomeSeq_1.48.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/metagenomeSeq_1.48.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/metagenomeSeq_1.48.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/metagenomeSeq_1.48.1.tgz vignettes: vignettes/metagenomeSeq/inst/doc/fitTimeSeries.pdf, vignettes/metagenomeSeq/inst/doc/metagenomeSeq.pdf vignetteTitles: fitTimeSeries: differential abundance analysis through time or location, metagenomeSeq: statistical analysis for sparse high-throughput sequencing hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/metagenomeSeq/inst/doc/fitTimeSeries.R, vignettes/metagenomeSeq/inst/doc/metagenomeSeq.R Package: metahdep Version: 1.64.0 Depends: R (>= 2.10), methods Suggests: affyPLM License: GPL-3 MD5sum: caaf064d7e18803a472e8fccfc255c58 NeedsCompilation: yes Title: Hierarchical Dependence in Meta-Analysis Description: Tools for meta-analysis in the presence of hierarchical (and/or sampling) dependence, including with gene expression studies biocViews: Microarray, DifferentialExpression Author: John R. Stevens, Gabriel Nicholas Maintainer: John R. Stevens git_url: https://git.bioconductor.org/packages/metahdep git_branch: RELEASE_3_20 git_last_commit: bc635e9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/metahdep_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/metahdep_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/metahdep_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/metahdep_1.64.0.tgz vignettes: vignettes/metahdep/inst/doc/metahdep.pdf vignetteTitles: metahdep Primer hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/metahdep/inst/doc/metahdep.R dependencyCount: 1 Package: metaMS Version: 1.42.0 Depends: R (>= 4.0), methods, CAMERA, xcms (>= 1.35) Imports: Matrix, tools, robustbase, BiocGenerics, graphics, stats, utils Suggests: metaMSdata, RUnit License: GPL (>= 2) MD5sum: f83ed753222affdaaa30a48cdd250c76 NeedsCompilation: no Title: MS-based metabolomics annotation pipeline Description: MS-based metabolomics data processing and compound annotation pipeline. biocViews: ImmunoOncology, MassSpectrometry, Metabolomics Author: Ron Wehrens [aut] (author of GC-MS part, Initial Maintainer), Pietro Franceschi [aut] (author of LC-MS part), Nir Shahaf [ctb], Matthias Scholz [ctb], Georg Weingart [ctb] (development of GC-MS approach), Elisabete Carvalho [ctb] (testing and feedback of GC-MS pipeline), Yann Guitton [ctb, cre] (), Julien Saint-Vanne [ctb] Maintainer: Yann Guitton URL: https://github.com/yguitton/metaMS git_url: https://git.bioconductor.org/packages/metaMS git_branch: RELEASE_3_20 git_last_commit: cd5932c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/metaMS_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/metaMS_1.42.0.zip vignettes: vignettes/metaMS/inst/doc/runGC.pdf, vignettes/metaMS/inst/doc/runLC.pdf vignetteTitles: runGC, runLC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/metaMS/inst/doc/runGC.R, vignettes/metaMS/inst/doc/runLC.R suggestsMe: CluMSID dependencyCount: 163 Package: MetaNeighbor Version: 1.26.0 Depends: R(>= 3.5) Imports: grDevices, graphics, methods, stats (>= 3.4), utils (>= 3.4), Matrix (>= 1.2), matrixStats (>= 0.54), beanplot (>= 1.2), gplots (>= 3.0.1), RColorBrewer (>= 1.1.2), SummarizedExperiment (>= 1.12), SingleCellExperiment, igraph, dplyr, tidyr, tibble, ggplot2 Suggests: knitr (>= 1.17), rmarkdown (>= 1.6), testthat (>= 1.0.2), UpSetR License: MIT + file LICENSE MD5sum: 52c2fb3ee0727af453d43816a2c91f13 NeedsCompilation: no Title: Single cell replicability analysis Description: MetaNeighbor allows users to quantify cell type replicability across datasets using neighbor voting. biocViews: ImmunoOncology, GeneExpression, GO, MultipleComparison, SingleCell, Transcriptomics Author: Megan Crow [aut, cre], Sara Ballouz [ctb], Manthan Shah [ctb], Stephan Fischer [ctb], Jesse Gillis [aut] Maintainer: Stephan Fischer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MetaNeighbor git_branch: RELEASE_3_20 git_last_commit: 275be6e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MetaNeighbor_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MetaNeighbor_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MetaNeighbor_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MetaNeighbor_1.26.0.tgz vignettes: vignettes/MetaNeighbor/inst/doc/MetaNeighbor.pdf vignetteTitles: MetaNeighbor user guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MetaNeighbor/inst/doc/MetaNeighbor.R dependencyCount: 78 Package: MetaPhOR Version: 1.8.0 Depends: R (>= 4.2.0) Imports: utils, ggplot2, ggrepel, stringr, pheatmap, grDevices, stats, clusterProfiler, RecordLinkage, RCy3 Suggests: BiocStyle, knitr, rmarkdown, kableExtra License: Artistic-2.0 MD5sum: 1f0bda4f5f0a9ee2b6aa60ee4cd6ffab NeedsCompilation: no Title: Metabolic Pathway Analysis of RNA Description: MetaPhOR was developed to enable users to assess metabolic dysregulation using transcriptomic-level data (RNA-sequencing and Microarray data) and produce publication-quality figures. A list of differentially expressed genes (DEGs), which includes fold change and p value, from DESeq2 or limma, can be used as input, with sample size for MetaPhOR, and will produce a data frame of scores for each KEGG pathway. These scores represent the magnitude and direction of transcriptional change within the pathway, along with estimated p-values.MetaPhOR then uses these scores to visualize metabolic profiles within and between samples through a variety of mechanisms, including: bubble plots, heatmaps, and pathway models. biocViews: Metabolomics, RNASeq, Pathways, GeneExpression, DifferentialExpression, KEGG, Sequencing, Microarray Author: Emily Isenhart [aut, cre], Spencer Rosario [aut] Maintainer: Emily Isenhart SystemRequirements: Cytoscape (>= 3.9.0) for the cytoPath() examples VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MetaPhOR git_branch: RELEASE_3_20 git_last_commit: e848998 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MetaPhOR_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MetaPhOR_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MetaPhOR_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MetaPhOR_1.8.0.tgz vignettes: vignettes/MetaPhOR/inst/doc/MetaPhOR-vignette.html vignetteTitles: MetaPhOR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MetaPhOR/inst/doc/MetaPhOR-vignette.R dependencyCount: 169 Package: metapod Version: 1.14.0 Imports: Rcpp LinkingTo: Rcpp Suggests: testthat, knitr, BiocStyle, rmarkdown License: GPL-3 Archs: x64 MD5sum: 5b2fb0fb730e8294a67c9eeb8c8a6f30 NeedsCompilation: yes Title: Meta-Analyses on P-Values of Differential Analyses Description: Implements a variety of methods for combining p-values in differential analyses of genome-scale datasets. Functions can combine p-values across different tests in the same analysis (e.g., genomic windows in ChIP-seq, exons in RNA-seq) or for corresponding tests across separate analyses (e.g., replicated comparisons, effect of different treatment conditions). Support is provided for handling log-transformed input p-values, missing values and weighting where appropriate. biocViews: MultipleComparison, DifferentialPeakCalling Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/metapod git_branch: RELEASE_3_20 git_last_commit: bf476aa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/metapod_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/metapod_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/metapod_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/metapod_1.14.0.tgz vignettes: vignettes/metapod/inst/doc/overview.html vignetteTitles: Meta-analysis strategies hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/metapod/inst/doc/overview.R importsMe: csaw, mumosa, scp, scran suggestsMe: TSCAN dependencyCount: 3 Package: metapone Version: 1.12.0 Depends: R (>= 4.1.0), BiocParallel, fields, markdown, fdrtool, fgsea, ggplot2, ggrepel Imports: methods Suggests: rmarkdown, knitr License: Artistic-2.0 MD5sum: ba431a307ba12da07cef26b969edccd5 NeedsCompilation: no Title: Conducts pathway test of metabolomics data using a weighted permutation test Description: The package conducts pathway testing from untargetted metabolomics data. It requires the user to supply feature-level test results, from case-control testing, regression, or other suitable feature-level tests for the study design. Weights are given to metabolic features based on how many metabolites they could potentially match to. The package can combine positive and negative mode results in pathway tests. biocViews: Technology, MassSpectrometry, Metabolomics, Pathways Author: Leqi Tian [aut], Tianwei Yu [aut], Tianwei Yu [cre] Maintainer: Tianwei Yu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/metapone git_branch: RELEASE_3_20 git_last_commit: abbd6db git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/metapone_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/metapone_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/metapone_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/metapone_1.12.0.tgz vignettes: vignettes/metapone/inst/doc/metapone.html vignetteTitles: metapone hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/metapone/inst/doc/metapone.R dependencyCount: 60 Package: metaSeq Version: 1.46.0 Depends: R (>= 2.13.0), NOISeq, snow, Rcpp License: Artistic-2.0 MD5sum: be93adc0d88b6db57cf47d684bdd7c68 NeedsCompilation: no Title: Meta-analysis of RNA-Seq count data in multiple studies Description: The probabilities by one-sided NOISeq are combined by Fisher's method or Stouffer's method biocViews: RNASeq, DifferentialExpression, Sequencing, ImmunoOncology Author: Koki Tsuyuzaki, Itoshi Nikaido Maintainer: Koki Tsuyuzaki git_url: https://git.bioconductor.org/packages/metaSeq git_branch: RELEASE_3_20 git_last_commit: 97dbf64 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/metaSeq_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/metaSeq_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/metaSeq_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/metaSeq_1.46.0.tgz vignettes: vignettes/metaSeq/inst/doc/metaSeq.pdf vignetteTitles: metaSeq hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/metaSeq/inst/doc/metaSeq.R dependencyCount: 14 Package: metaseqR2 Version: 1.18.0 Depends: R (>= 4.0.0), DESeq2, limma, locfit, splines Imports: ABSSeq, Biobase, BiocGenerics, BiocParallel, biomaRt, Biostrings, corrplot, DSS, DT, EDASeq, edgeR, genefilter, GenomeInfoDb, GenomicAlignments, GenomicFeatures, GenomicRanges, gplots, graphics, grDevices, harmonicmeanp, heatmaply, htmltools, httr, IRanges, jsonlite, lattice, log4r, magrittr, MASS, Matrix, methods, NBPSeq, pander, parallel, qvalue, rmarkdown, rmdformats, Rsamtools, RSQLite, rtracklayer, S4Vectors, stats, stringr, SummarizedExperiment, survcomp, txdbmaker, utils, VennDiagram, vsn, yaml, zoo Suggests: BiocStyle, BiocManager, BSgenome, knitr, RMySQL, RUnit Enhances: TCC License: GPL (>= 3) MD5sum: 63be3ca96bdfbeb4262124fe5f8fa4a2 NeedsCompilation: yes Title: An R package for the analysis and result reporting of RNA-Seq data by combining multiple statistical algorithms Description: Provides an interface to several normalization and statistical testing packages for RNA-Seq gene expression data. Additionally, it creates several diagnostic plots, performs meta-analysis by combinining the results of several statistical tests and reports the results in an interactive way. biocViews: Software, GeneExpression, DifferentialExpression, WorkflowStep, Preprocessing, QualityControl, Normalization, ReportWriting, RNASeq, Transcription, Sequencing, Transcriptomics, Bayesian, Clustering, CellBiology, BiomedicalInformatics, FunctionalGenomics, SystemsBiology, ImmunoOncology, AlternativeSplicing, DifferentialSplicing, MultipleComparison, TimeCourse, DataImport, ATACSeq, Epigenetics, Regression, ProprietaryPlatforms, GeneSetEnrichment, BatchEffect, ChIPSeq Author: Panagiotis Moulos [aut, cre] Maintainer: Panagiotis Moulos URL: http://www.fleming.gr VignetteBuilder: knitr BugReports: https://github.com/pmoulos/metaseqR2/issues git_url: https://git.bioconductor.org/packages/metaseqR2 git_branch: RELEASE_3_20 git_last_commit: 69fd758 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/metaseqR2_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/metaseqR2_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/metaseqR2_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/metaseqR2_1.18.0.tgz vignettes: vignettes/metaseqR2/inst/doc/metaseqr2-annotation.html, vignettes/metaseqR2/inst/doc/metaseqr2-statistics.html vignetteTitles: Building an annotation database for metaseqR2, RNA-Seq data analysis with metaseqR2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/metaseqR2/inst/doc/metaseqr2-annotation.R, vignettes/metaseqR2/inst/doc/metaseqr2-statistics.R dependencyCount: 239 Package: MetCirc Version: 1.36.0 Depends: R (>= 4.4), amap (>= 0.8), circlize (>= 0.4.16), scales (>= 1.3.0), shiny (>= 1.8.1.1), Spectra (>= 1.15.3) Imports: ggplot2 (>= 3.5.1), MsCoreUtils (>= 1.17.0), S4Vectors (>= 0.43.1) Suggests: BiocGenerics, graphics (>= 4.4), grDevices (>= 4.4), knitr (>= 1.48), testthat (>= 3.2.1.1) License: GPL (>= 3) Archs: x64 MD5sum: e94760cb48342a59a9e4bfece8819176 NeedsCompilation: no Title: Navigating mass spectral similarity in high-resolution MS/MS metabolomics data metabolomics data Description: MetCirc comprises a workflow to interactively explore high-resolution MS/MS metabolomics data. MetCirc uses the Spectra object infrastructure defined in the package Spectra that stores MS/MS spectra. MetCirc offers functionality to calculate similarity between precursors based on the normalised dot product, neutral losses or user-defined functions and visualise similarities in a circular layout. Within the interactive framework the user can annotate MS/MS features based on their similarity to (known) related MS/MS features. biocViews: ShinyApps, Metabolomics, MassSpectrometry, Visualization Author: Thomas Naake , Johannes Rainer and Emmanuel Gaquerel Maintainer: Thomas Naake VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MetCirc git_branch: RELEASE_3_20 git_last_commit: e590f5f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MetCirc_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MetCirc_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MetCirc_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MetCirc_1.36.0.tgz vignettes: vignettes/MetCirc/inst/doc/MetCirc.html vignetteTitles: Workflow for Metabolomics hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MetCirc/inst/doc/MetCirc.R dependencyCount: 83 Package: methimpute Version: 1.28.0 Depends: R (>= 3.5.0), GenomicRanges, ggplot2 Imports: Rcpp (>= 0.12.4.5), methods, utils, grDevices, stats, GenomeInfoDb, IRanges, Biostrings, reshape2, minpack.lm, data.table LinkingTo: Rcpp Suggests: knitr, BiocStyle License: Artistic-2.0 MD5sum: 5a7c64502af590d30eb3f937d9fb748d NeedsCompilation: yes Title: Imputation-guided re-construction of complete methylomes from WGBS data Description: This package implements functions for calling methylation for all cytosines in the genome. biocViews: ImmunoOncology, Software, DNAMethylation, Epigenetics, HiddenMarkovModel, Sequencing, Coverage Author: Aaron Taudt Maintainer: Aaron Taudt VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/methimpute git_branch: RELEASE_3_20 git_last_commit: a8dc359 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methimpute_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methimpute_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methimpute_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methimpute_1.28.0.tgz vignettes: vignettes/methimpute/inst/doc/methimpute.pdf vignetteTitles: Methylation status calling with METHimpute hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/methimpute/inst/doc/methimpute.R dependencyCount: 62 Package: methInheritSim Version: 1.28.0 Depends: R (>= 3.5.0) Imports: methylKit, GenomicRanges, GenomeInfoDb, parallel, BiocGenerics, S4Vectors, methods, stats, IRanges, msm Suggests: BiocStyle, knitr, rmarkdown, RUnit, methylInheritance License: Artistic-2.0 MD5sum: c5c9e518658133356a0375b044db6f10 NeedsCompilation: no Title: Simulating Whole-Genome Inherited Bisulphite Sequencing Data Description: Simulate a multigeneration methylation case versus control experiment with inheritance relation using a real control dataset. biocViews: BiologicalQuestion, Epigenetics, DNAMethylation, DifferentialMethylation, MethylSeq, Software, ImmunoOncology, StatisticalMethod, WholeGenome, Sequencing Author: Pascal Belleau, Astrid Deschênes and Arnaud Droit Maintainer: Pascal Belleau URL: https://github.com/belleau/methInheritSim VignetteBuilder: knitr BugReports: https://github.com/belleau/methInheritSim/issues git_url: https://git.bioconductor.org/packages/methInheritSim git_branch: RELEASE_3_20 git_last_commit: 375c46b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methInheritSim_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methInheritSim_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methInheritSim_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methInheritSim_1.28.0.tgz vignettes: vignettes/methInheritSim/inst/doc/methInheritSim.html vignetteTitles: Simulating Whole-Genome Inherited Bisulphite Sequencing Data hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/methInheritSim/inst/doc/methInheritSim.R suggestsMe: methylInheritance dependencyCount: 111 Package: methodical Version: 1.2.0 Depends: GenomicRanges, ggplot2, R (>= 4.0), SummarizedExperiment Imports: AnnotationHub, annotatr, BiocCheck, BiocManager, BiocParallel, BiocStyle, Biostrings, BSgenome, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38, cowplot, data.table, DelayedArray, devtools, dplyr, ExperimentHub, foreach, GenomeInfoDb, HDF5Array, IRanges, knitr, MatrixGenerics, R.utils, rcmdcheck, RcppRoll, remotes, rhdf5, rtracklayer, S4Vectors, scales, tibble, tidyr, tools, TumourMethData, usethis Suggests: BSgenome.Athaliana.TAIR.TAIR9, DESeq2, methrix, rmarkdown License: GPL (>= 3) MD5sum: 1f491b952e7a835569afdd813a063d72 NeedsCompilation: no Title: Discovering genomic regions where methylation is strongly associated with transcriptional activity Description: DNA methylation is generally considered to be associated with transcriptional silencing. However, comprehensive, genome-wide investigation of this relationship requires the evaluation of potentially millions of correlation values between the methylation of individual genomic loci and expression of associated transcripts in a relatively large numbers of samples. Methodical makes this process quick and easy while keeping a low memory footprint. It also provides a novel method for identifying regions where a number of methylation sites are consistently strongly associated with transcriptional expression. In addition, Methodical enables housing DNA methylation data from diverse sources (e.g. WGBS, RRBS and methylation arrays) with a common framework, lifting over DNA methylation data between different genome builds and creating base-resolution plots of the association between DNA methylation and transcriptional activity at transcriptional start sites. biocViews: DNAMethylation, MethylationArray, Transcription, GenomeWideAssociation, Software Author: Richard Heery [aut, cre] () Maintainer: Richard Heery URL: https://github.com/richardheery/methodical SystemRequirements: kallisto VignetteBuilder: knitr BugReports: https://github.com/richardheery/methodical/issues git_url: https://git.bioconductor.org/packages/methodical git_branch: RELEASE_3_20 git_last_commit: 815decd git_last_commit_date: 2024-12-26 Date/Publication: 2024-12-26 source.ver: src/contrib/methodical_1.2.0.tar.gz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methodical_1.1.0.tgz vignettes: vignettes/methodical/inst/doc/calculating_methylation_transcription_correlations.html, vignettes/methodical/inst/doc/working_with_meth_rses.html vignetteTitles: calculating_methylation_transcription_correlations, working_with_meth_rses hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: TRUE Rfiles: vignettes/methodical/inst/doc/calculating_methylation_transcription_correlations.R, vignettes/methodical/inst/doc/working_with_meth_rses.R dependencyCount: 231 Package: MethPed Version: 1.34.0 Depends: R (>= 3.0.0), Biobase Imports: randomForest, grDevices, graphics, stats Suggests: BiocStyle, knitr, markdown, impute License: GPL-2 Archs: x64 MD5sum: 181fbe7f9413884ea5adac4fe74f1f99 NeedsCompilation: no Title: A DNA methylation classifier tool for the identification of pediatric brain tumor subtypes Description: Classification of pediatric tumors into biologically defined subtypes is challenging and multifaceted approaches are needed. For this aim, we developed a diagnostic classifier based on DNA methylation profiles. We offer MethPed as an easy-to-use toolbox that allows researchers and clinical diagnosticians to test single samples as well as large cohorts for subclass prediction of pediatric brain tumors. The current version of MethPed can classify the following tumor diagnoses/subgroups: Diffuse Intrinsic Pontine Glioma (DIPG), Ependymoma, Embryonal tumors with multilayered rosettes (ETMR), Glioblastoma (GBM), Medulloblastoma (MB) - Group 3 (MB_Gr3), Group 4 (MB_Gr3), Group WNT (MB_WNT), Group SHH (MB_SHH) and Pilocytic Astrocytoma (PiloAstro). biocViews: ImmunoOncology, DNAMethylation, Classification, Epigenetics Author: Mohammad Tanvir Ahamed [aut, trl], Anna Danielsson [aut], Szilárd Nemes [aut, trl], Helena Carén [aut, cre, cph] Maintainer: Helena Carén VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MethPed git_branch: RELEASE_3_20 git_last_commit: 9c99949 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MethPed_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MethPed_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MethPed_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MethPed_1.34.0.tgz vignettes: vignettes/MethPed/inst/doc/MethPed-vignette.html vignetteTitles: MethPed User Guide hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MethPed/inst/doc/MethPed-vignette.R dependencyCount: 8 Package: methrix Version: 1.20.0 Depends: R (>= 3.6), data.table (>= 1.12.4), SummarizedExperiment Imports: rtracklayer, DelayedArray, HDF5Array, BSgenome, DelayedMatrixStats, parallel, methods, ggplot2, S4Vectors, matrixStats, graphics, stats, utils, GenomicRanges, IRanges Suggests: knitr, rmarkdown, DSS, bsseq, plotly, BSgenome.Mmusculus.UCSC.mm9, MafDb.1Kgenomes.phase3.GRCh38, MafDb.1Kgenomes.phase3.hs37d5, BSgenome.Hsapiens.UCSC.hg19, GenomicScores, Biostrings, RColorBrewer, GenomeInfoDb, testthat (>= 2.1.0) License: MIT + file LICENSE MD5sum: d5a1bcccf94805215885bf668a24a421 NeedsCompilation: no Title: Fast and efficient summarization of generic bedGraph files from Bisufite sequencing Description: Bedgraph files generated by Bisulfite pipelines often come in various flavors. Critical downstream step requires summarization of these files into methylation/coverage matrices. This step of data aggregation is done by Methrix, including many other useful downstream functions. biocViews: DNAMethylation, Sequencing, Coverage Author: Anand Mayakonda [aut, cre] (), Reka Toth [aut] (), Rajbir Batra [ctb], Clarissa Feuerstein-Akgöz [ctb], Joschka Hey [ctb], Maximilian Schönung [ctb], Pavlo Lutsik [ctb] Maintainer: Anand Mayakonda URL: https://github.com/CompEpigen/methrix VignetteBuilder: knitr BugReports: https://github.com/CompEpigen/methrix/issues git_url: https://git.bioconductor.org/packages/methrix git_branch: RELEASE_3_20 git_last_commit: f5c87a5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methrix_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methrix_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methrix_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methrix_1.20.0.tgz vignettes: vignettes/methrix/inst/doc/methrix.html vignetteTitles: Methrix tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/methrix/inst/doc/methrix.R importsMe: TumourMethData suggestsMe: methodical dependencyCount: 93 Package: MethTargetedNGS Version: 1.38.0 Depends: R (>= 3.1.2), stringr, seqinr, gplots, Biostrings, pwalign Imports: utils, graphics, stats License: Artistic-2.0 Archs: x64 MD5sum: a8d565caedbbee4c1e3028b13b58f6c6 NeedsCompilation: no Title: Perform Methylation Analysis on Next Generation Sequencing Data Description: Perform step by step methylation analysis of Next Generation Sequencing data. biocViews: ResearchField, Genetics, Sequencing, Alignment, SequenceMatching, DataImport Author: Muhammad Ahmer Jamil with Contribution of Prof. Holger Frohlich and Priv.-Doz. Dr. Osman El-Maarri Maintainer: Muhammad Ahmer Jamil SystemRequirements: HMMER3 git_url: https://git.bioconductor.org/packages/MethTargetedNGS git_branch: RELEASE_3_20 git_last_commit: 0f43bf3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MethTargetedNGS_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MethTargetedNGS_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MethTargetedNGS_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MethTargetedNGS_1.38.0.tgz vignettes: vignettes/MethTargetedNGS/inst/doc/MethTargetedNGS.pdf vignetteTitles: Introduction to MethTargetedNGS hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MethTargetedNGS/inst/doc/MethTargetedNGS.R dependencyCount: 50 Package: MethylAid Version: 1.40.0 Depends: R (>= 3.4) Imports: Biobase, BiocParallel, BiocGenerics, ggplot2, grid, gridBase, grDevices, graphics, hexbin, matrixStats, minfi (>= 1.22.0), methods, RColorBrewer, shiny, stats, SummarizedExperiment, utils Suggests: BiocStyle, knitr, MethylAidData, minfiData, minfiDataEPIC, RUnit License: GPL (>= 2) MD5sum: 9f94767e837e9b31a3fae0855698343d NeedsCompilation: no Title: Visual and interactive quality control of large Illumina DNA Methylation array data sets Description: A visual and interactive web application using RStudio's shiny package. Bad quality samples are detected using sample-dependent and sample-independent controls present on the array and user adjustable thresholds. In depth exploration of bad quality samples can be performed using several interactive diagnostic plots of the quality control probes present on the array. Furthermore, the impact of any batch effect provided by the user can be explored. biocViews: DNAMethylation, MethylationArray, Microarray, TwoChannel, QualityControl, BatchEffect, Visualization, GUI Author: Maarten van Iterson [aut, cre], Elmar Tobi[ctb], Roderick Slieker[ctb], Wouter den Hollander[ctb], Rene Luijk[ctb] and Bas Heijmans[ctb] Maintainer: L.J.Sinke VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MethylAid git_branch: RELEASE_3_20 git_last_commit: 610f027 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MethylAid_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MethylAid_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MethylAid_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MethylAid_1.40.0.tgz vignettes: vignettes/MethylAid/inst/doc/MethylAid.pdf vignetteTitles: MethylAid: Visual and Interactive quality control of Illumina Human DNA Methylation array data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MethylAid/inst/doc/MethylAid.R dependsOnMe: MethylAidData dependencyCount: 170 Package: methylCC Version: 1.20.0 Depends: R (>= 3.6), FlowSorted.Blood.450k Imports: Biobase, GenomicRanges, IRanges, S4Vectors, dplyr, magrittr, minfi, bsseq, quadprog, plyranges, stats, utils, bumphunter, genefilter, methods, IlluminaHumanMethylation450kmanifest, IlluminaHumanMethylation450kanno.ilmn12.hg19 Suggests: rmarkdown, knitr, testthat (>= 2.1.0), BiocGenerics, BiocStyle, tidyr, ggplot2 License: GPL-3 MD5sum: 0cbe8d66d84cf953afdc8c2352b9b1b4 NeedsCompilation: no Title: Estimate the cell composition of whole blood in DNA methylation samples Description: A tool to estimate the cell composition of DNA methylation whole blood sample measured on any platform technology (microarray and sequencing). biocViews: Microarray, Sequencing, DNAMethylation, MethylationArray, MethylSeq, WholeGenome Author: Stephanie C. Hicks [aut, cre] (), Rafael Irizarry [aut] () Maintainer: Stephanie C. Hicks URL: https://github.com/stephaniehicks/methylCC/ VignetteBuilder: knitr BugReports: https://github.com/stephaniehicks/methylCC/ git_url: https://git.bioconductor.org/packages/methylCC git_branch: RELEASE_3_20 git_last_commit: b83ab14 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methylCC_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methylCC_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methylCC_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methylCC_1.20.0.tgz vignettes: vignettes/methylCC/inst/doc/methylCC.html vignetteTitles: The methylCC user's guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/methylCC/inst/doc/methylCC.R dependencyCount: 161 Package: methylclock Version: 1.12.0 Depends: R (>= 4.1.0), methylclockData, devtools, quadprog Imports: Rcpp (>= 1.0.6), ExperimentHub, dplyr, impute, PerformanceAnalytics, Biobase, ggpmisc, tidyverse, ggplot2, ggpubr, minfi, tibble, RPMM, stats, graphics, tidyr, gridExtra, preprocessCore, dynamicTreeCut, planet LinkingTo: Rcpp Suggests: BiocStyle, knitr, GEOquery, rmarkdown License: MIT + file LICENSE MD5sum: 61d2f452c0d86f49888d77bf94b7afa0 NeedsCompilation: yes Title: Methylclock - DNA methylation-based clocks Description: This package allows to estimate chronological and gestational DNA methylation (DNAm) age as well as biological age using different methylation clocks. Chronological DNAm age (in years) : Horvath's clock, Hannum's clock, BNN, Horvath's skin+blood clock, PedBE clock and Wu's clock. Gestational DNAm age : Knight's clock, Bohlin's clock, Mayne's clock and Lee's clocks. Biological DNAm clocks : Levine's clock and Telomere Length's clock. biocViews: DNAMethylation, BiologicalQuestion, Preprocessing, StatisticalMethod, Normalization Author: Dolors Pelegri-Siso [aut, cre] (), Juan R. Gonzalez [aut] () Maintainer: Dolors Pelegri-Siso URL: https://github.com/isglobal-brge/methylclock VignetteBuilder: knitr BugReports: https://github.com/isglobal-brge/methylclock/issues git_url: https://git.bioconductor.org/packages/methylclock git_branch: RELEASE_3_20 git_last_commit: e626a83 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methylclock_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methylclock_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methylclock_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methylclock_1.12.0.tgz vignettes: vignettes/methylclock/inst/doc/methylclock.html vignetteTitles: DNAm age using diffrent methylation clocks hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/methylclock/inst/doc/methylclock.R dependencyCount: 298 Package: methylGSA Version: 1.24.0 Depends: R (>= 3.5) Imports: RobustRankAggreg, ggplot2, stringr, stats, clusterProfiler, missMethyl, org.Hs.eg.db, reactome.db, BiocParallel, GO.db, AnnotationDbi, shiny, IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylationEPICanno.ilm10b4.hg19 Suggests: knitr, rmarkdown, testthat, enrichplot License: GPL-2 MD5sum: 42c3e90fd0fe7b2787b15b99c5835771 NeedsCompilation: no Title: Gene Set Analysis Using the Outcome of Differential Methylation Description: The main functions for methylGSA are methylglm and methylRRA. methylGSA implements logistic regression adjusting number of probes as a covariate. methylRRA adjusts multiple p-values of each gene by Robust Rank Aggregation. For more detailed help information, please see the vignette. biocViews: DNAMethylation,DifferentialMethylation,GeneSetEnrichment,Regression, GeneRegulation,Pathways Author: Xu Ren [aut, cre], Pei Fen Kuan [aut] Maintainer: Xu Ren URL: https://github.com/reese3928/methylGSA VignetteBuilder: knitr BugReports: https://github.com/reese3928/methylGSA/issues git_url: https://git.bioconductor.org/packages/methylGSA git_branch: RELEASE_3_20 git_last_commit: 6309bcf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methylGSA_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methylGSA_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methylGSA_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methylGSA_1.24.0.tgz vignettes: vignettes/methylGSA/inst/doc/methylGSA-vignette.html vignetteTitles: methylGSA: Gene Set Analysis for DNA Methylation Datasets hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/methylGSA/inst/doc/methylGSA-vignette.R dependencyCount: 216 Package: methyLImp2 Version: 1.2.0 Depends: R (>= 4.3.0), ChAMPdata Imports: BiocParallel, parallel, stats, methods, corpcor, SummarizedExperiment, utils Suggests: BiocStyle, knitr, rmarkdown, spelling, testthat (>= 3.0.0) License: GPL-3 MD5sum: 5ccde94b54c5ca73e1765c3e3fb31169 NeedsCompilation: no Title: Missing value estimation of DNA methylation data Description: This package allows to estimate missing values in DNA methylation data. methyLImp method is based on linear regression since methylation levels show a high degree of inter-sample correlation. Implementation is parallelised over chromosomes since probes on different chromosomes are usually independent. Mini-batch approach to reduce the runtime in case of large number of samples is available. biocViews: DNAMethylation, Microarray, Software, MethylationArray, Regression Author: Pietro Di Lena [aut] (), Anna Plaksienko [aut, cre] (), Claudia Angelini [aut] (), Christine Nardini [aut] () Maintainer: Anna Plaksienko URL: https://github.com/annaplaksienko/methyLImp2 VignetteBuilder: knitr BugReports: https://github.com/annaplaksienko/methyLImp2/issues git_url: https://git.bioconductor.org/packages/methyLImp2 git_branch: RELEASE_3_20 git_last_commit: 9676a81 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methyLImp2_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methyLImp2_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methyLImp2_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methyLImp2_1.2.0.tgz vignettes: vignettes/methyLImp2/inst/doc/methyLImp2_vignette.html vignetteTitles: methyLImp2 vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/methyLImp2/inst/doc/methyLImp2_vignette.R dependencyCount: 48 Package: methylInheritance Version: 1.30.0 Depends: R (>= 3.5) Imports: methylKit, BiocParallel, GenomicRanges, IRanges, S4Vectors, methods, parallel, ggplot2, gridExtra, rebus Suggests: BiocStyle, BiocGenerics, knitr, rmarkdown, RUnit, methInheritSim License: Artistic-2.0 MD5sum: 1ee0a93516c8802eba1d5758931fe7d4 NeedsCompilation: no Title: Permutation-Based Analysis associating Conserved Differentially Methylated Elements Across Multiple Generations to a Treatment Effect Description: Permutation analysis, based on Monte Carlo sampling, for testing the hypothesis that the number of conserved differentially methylated elements, between several generations, is associated to an effect inherited from a treatment and that stochastic effect can be dismissed. biocViews: BiologicalQuestion, Epigenetics, DNAMethylation, DifferentialMethylation, MethylSeq, Software, ImmunoOncology, StatisticalMethod, WholeGenome, Sequencing Author: Astrid Deschênes [cre, aut] (), Pascal Belleau [aut] (), Arnaud Droit [aut] Maintainer: Astrid Deschênes URL: https://github.com/adeschen/methylInheritance VignetteBuilder: knitr BugReports: https://github.com/adeschen/methylInheritance/issues git_url: https://git.bioconductor.org/packages/methylInheritance git_branch: RELEASE_3_20 git_last_commit: 1d09366 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methylInheritance_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methylInheritance_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methylInheritance_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methylInheritance_1.30.0.tgz vignettes: vignettes/methylInheritance/inst/doc/methylInheritance.html vignetteTitles: Permutation-Based Analysis associating Conserved Differentially Methylated Elements Across Multiple Generations to a Treatment Effect hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/methylInheritance/inst/doc/methylInheritance.R suggestsMe: methInheritSim dependencyCount: 113 Package: methylKit Version: 1.32.0 Depends: R (>= 3.5.0), GenomicRanges (>= 1.18.1), methods Imports: IRanges, data.table (>= 1.9.6), parallel, S4Vectors (>= 0.13.13), GenomeInfoDb, KernSmooth, qvalue, emdbook, Rsamtools, gtools, fastseg, rtracklayer, mclust, mgcv, Rcpp, R.utils, limma, grDevices, graphics, stats, utils LinkingTo: Rcpp, Rhtslib (>= 1.13.1), zlibbioc Suggests: testthat (>= 2.1.0), knitr, rmarkdown, genomation, BiocManager License: Artistic-2.0 Archs: x64 MD5sum: 569d9049779250a340f2543af4bdd088 NeedsCompilation: yes Title: DNA methylation analysis from high-throughput bisulfite sequencing results Description: methylKit is an R package for DNA methylation analysis and annotation from high-throughput bisulfite sequencing. The package is designed to deal with sequencing data from RRBS and its variants, but also target-capture methods and whole genome bisulfite sequencing. It also has functions to analyze base-pair resolution 5hmC data from experimental protocols such as oxBS-Seq and TAB-Seq. Methylation calling can be performed directly from Bismark aligned BAM files. biocViews: DNAMethylation, Sequencing, MethylSeq Author: Altuna Akalin [aut, cre], Matthias Kormaksson [aut], Sheng Li [aut], Arsene Wabo [ctb], Adrian Bierling [aut], Alexander Blume [aut], Katarzyna Wreczycka [ctb] Maintainer: Altuna Akalin , Alexander Blume URL: https://github.com/al2na/methylKit SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/al2na/methylKit/issues git_url: https://git.bioconductor.org/packages/methylKit git_branch: RELEASE_3_20 git_last_commit: 2187cda git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methylKit_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methylKit_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methylKit_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methylKit_1.32.0.tgz vignettes: vignettes/methylKit/inst/doc/methylKit.html vignetteTitles: methylKit: User Guide v`r packageVersion('methylKit')` hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/methylKit/inst/doc/methylKit.R importsMe: deconvR, methInheritSim, methylInheritance dependencyCount: 106 Package: MethylMix Version: 2.36.0 Depends: R (>= 3.2.0) Imports: foreach, RPMM, RColorBrewer, ggplot2, RCurl, impute, data.table, limma, R.matlab, digest Suggests: BiocStyle, doParallel, testthat, knitr, rmarkdown License: GPL-2 MD5sum: 9b79302bb00794b653e9a28742e0449e NeedsCompilation: no Title: MethylMix: Identifying methylation driven cancer genes Description: MethylMix is an algorithm implemented to identify hyper and hypomethylated genes for a disease. MethylMix is based on a beta mixture model to identify methylation states and compares them with the normal DNA methylation state. MethylMix uses a novel statistic, the Differential Methylation value or DM-value defined as the difference of a methylation state with the normal methylation state. Finally, matched gene expression data is used to identify, besides differential, functional methylation states by focusing on methylation changes that effect gene expression. References: Gevaert 0. MethylMix: an R package for identifying DNA methylation-driven genes. Bioinformatics (Oxford, England). 2015;31(11):1839-41. doi:10.1093/bioinformatics/btv020. Gevaert O, Tibshirani R, Plevritis SK. Pancancer analysis of DNA methylation-driven genes using MethylMix. Genome Biology. 2015;16(1):17. doi:10.1186/s13059-014-0579-8. biocViews: DNAMethylation,StatisticalMethod,DifferentialMethylation,GeneRegulation,GeneExpression,MethylationArray,DifferentialExpression,Pathways,Network Author: Olivier Gevaert Maintainer: Olivier Gevaert VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MethylMix git_branch: RELEASE_3_20 git_last_commit: 79bac66 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MethylMix_2.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MethylMix_2.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MethylMix_2.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MethylMix_2.36.0.tgz vignettes: vignettes/MethylMix/inst/doc/vignettes.html vignetteTitles: MethylMix hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MethylMix/inst/doc/vignettes.R dependencyCount: 52 Package: methylMnM Version: 1.44.0 Depends: R (>= 2.12.1), edgeR, statmod License: GPL-3 MD5sum: 23ff1dc1c980c3bf3664854fcff99599 NeedsCompilation: yes Title: detect different methylation level (DMR) Description: To give the exactly p-value and q-value of MeDIP-seq and MRE-seq data for different samples comparation. biocViews: Software, DNAMethylation, Sequencing Author: Yan Zhou, Bo Zhang, Nan Lin, BaoXue Zhang and Ting Wang Maintainer: Yan Zhou git_url: https://git.bioconductor.org/packages/methylMnM git_branch: RELEASE_3_20 git_last_commit: 3c8511d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methylMnM_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methylMnM_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methylMnM_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methylMnM_1.44.0.tgz vignettes: vignettes/methylMnM/inst/doc/methylMnM.pdf vignetteTitles: methylMnM hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/methylMnM/inst/doc/methylMnM.R importsMe: SIMD dependencyCount: 11 Package: methylPipe Version: 1.40.0 Depends: R (>= 3.5.0), methods, grDevices, graphics, stats, utils, GenomicRanges, SummarizedExperiment (>= 0.2.0), Rsamtools Imports: marray, gplots, IRanges, BiocGenerics, Gviz, GenomicAlignments, Biostrings, parallel, data.table, GenomeInfoDb, S4Vectors Suggests: BSgenome.Hsapiens.UCSC.hg18, TxDb.Hsapiens.UCSC.hg18.knownGene, knitr, MethylSeekR License: GPL(>=2) MD5sum: 65ac07ced2d2d93fb7a1b81e70383189 NeedsCompilation: yes Title: Base resolution DNA methylation data analysis Description: Memory efficient analysis of base resolution DNA methylation data in both the CpG and non-CpG sequence context. Integration of DNA methylation data derived from any methodology providing base- or low-resolution data. biocViews: MethylSeq, DNAMethylation, Coverage, Sequencing Author: Mattia Pelizzola [aut], Kamal Kishore [aut], Mattia Furlan [ctb, cre] Maintainer: Mattia Furlan VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/methylPipe git_branch: RELEASE_3_20 git_last_commit: a43ffc6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methylPipe_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methylPipe_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methylPipe_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methylPipe_1.40.0.tgz vignettes: vignettes/methylPipe/inst/doc/methylPipe.pdf vignetteTitles: methylPipe.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/methylPipe/inst/doc/methylPipe.R dependsOnMe: ListerEtAlBSseq importsMe: compEpiTools dependencyCount: 164 Package: methylscaper Version: 1.14.0 Depends: R (>= 4.4.0) Imports: shiny, shinyjs, seriation, BiocParallel, seqinr, Biostrings, pwalign, Rfast, grDevices, graphics, stats, utils, tools, methods, shinyFiles, data.table, SummarizedExperiment Suggests: BiocStyle, knitr, rmarkdown, devtools, R.utils License: GPL-2 Archs: x64 MD5sum: ce8efbce696cc7f66100c0d92108cf62 NeedsCompilation: no Title: Visualization of Methylation Data Description: methylscaper is an R package for processing and visualizing data jointly profiling methylation and chromatin accessibility (MAPit, NOMe-seq, scNMT-seq, nanoNOMe, etc.). The package supports both single-cell and single-molecule data, and a common interface for jointly visualizing both data types through the generation of ordered representational methylation-state matrices. The Shiny app allows for an interactive seriation process of refinement and re-weighting that optimally orders the cells or DNA molecules to discover methylation patterns and nucleosome positioning. biocViews: DNAMethylation, Epigenetics, Sequencing, Visualization, SingleCell, NucleosomePositioning Author: Bacher Rhonda [aut, cre], Parker Knight [aut] Maintainer: Bacher Rhonda URL: https://github.com/rhondabacher/methylscaper/ VignetteBuilder: knitr BugReports: https://github.com/rhondabacher/methylscaper/issues git_url: https://git.bioconductor.org/packages/methylscaper git_branch: RELEASE_3_20 git_last_commit: 2b9b40c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methylscaper_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methylscaper_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methylscaper_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methylscaper_1.14.0.tgz vignettes: vignettes/methylscaper/inst/doc/methylScaper.html vignetteTitles: Using methylscaper to visualize joint methylation and nucleosome occupancy data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/methylscaper/inst/doc/methylScaper.R dependencyCount: 109 Package: MethylSeekR Version: 1.46.0 Depends: rtracklayer (>= 1.16.3), parallel (>= 2.15.1), mhsmm (>= 0.4.4) Imports: IRanges (>= 1.16.3), BSgenome (>= 1.26.1), GenomicRanges (>= 1.10.5), geneplotter (>= 1.34.0), graphics (>= 2.15.2), grDevices (>= 2.15.2), parallel (>= 2.15.2), stats (>= 2.15.2), utils (>= 2.15.2) Suggests: BSgenome.Hsapiens.UCSC.hg18 License: GPL (>=2) MD5sum: b57f523a0de8f9a9c810e6b84625224c NeedsCompilation: no Title: Segmentation of Bis-seq data Description: This is a package for the discovery of regulatory regions from Bis-seq data biocViews: Sequencing, MethylSeq, DNAMethylation Author: Lukas Burger, Dimos Gaidatzis, Dirk Schubeler and Michael Stadler Maintainer: Lukas Burger git_url: https://git.bioconductor.org/packages/MethylSeekR git_branch: RELEASE_3_20 git_last_commit: 6d5b906 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MethylSeekR_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MethylSeekR_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MethylSeekR_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MethylSeekR_1.46.0.tgz vignettes: vignettes/MethylSeekR/inst/doc/MethylSeekR.pdf vignetteTitles: MethylSeekR hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MethylSeekR/inst/doc/MethylSeekR.R suggestsMe: methylPipe, RnBeads dependencyCount: 83 Package: methylSig Version: 1.18.0 Depends: R (>= 3.6) Imports: bsseq, DelayedArray, DelayedMatrixStats, DSS, IRanges, GenomeInfoDb, GenomicRanges, methods, parallel, stats, S4Vectors Suggests: BiocStyle, bsseqData, knitr, rmarkdown, testthat (>= 2.1.0), covr License: GPL-3 Archs: x64 MD5sum: 778774751ccacfdc083584d3478820cf NeedsCompilation: no Title: MethylSig: Differential Methylation Testing for WGBS and RRBS Data Description: MethylSig is a package for testing for differentially methylated cytosines (DMCs) or regions (DMRs) in whole-genome bisulfite sequencing (WGBS) or reduced representation bisulfite sequencing (RRBS) experiments. MethylSig uses a beta binomial model to test for significant differences between groups of samples. Several options exist for either site-specific or sliding window tests, and variance estimation. biocViews: DNAMethylation, DifferentialMethylation, Epigenetics, Regression, MethylSeq Author: Yongseok Park [aut], Raymond G. Cavalcante [aut, cre] Maintainer: Raymond G. Cavalcante VignetteBuilder: knitr BugReports: https://github.com/sartorlab/methylSig/issues git_url: https://git.bioconductor.org/packages/methylSig git_branch: RELEASE_3_20 git_last_commit: a08044f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methylSig_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methylSig_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methylSig_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methylSig_1.18.0.tgz vignettes: vignettes/methylSig/inst/doc/updating-methylSig-code.html, vignettes/methylSig/inst/doc/using-methylSig.html vignetteTitles: Updating methylSig code, Using methylSig hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/methylSig/inst/doc/updating-methylSig-code.R, vignettes/methylSig/inst/doc/using-methylSig.R dependencyCount: 91 Package: methylumi Version: 2.52.0 Depends: Biobase, methods, R (>= 2.13), scales, reshape2, ggplot2, matrixStats, FDb.InfiniumMethylation.hg19 (>= 2.2.0), minfi Imports: BiocGenerics, S4Vectors, IRanges, GenomeInfoDb, GenomicRanges, SummarizedExperiment, Biobase, graphics, lattice, annotate, genefilter, AnnotationDbi, minfi, stats4, illuminaio, GenomicFeatures Suggests: lumi, lattice, limma, xtable, SQN, MASS, matrixStats, parallel, rtracklayer, Biostrings, TCGAMethylation450k, IlluminaHumanMethylation450kanno.ilmn12.hg19, FDb.InfiniumMethylation.hg18 (>= 2.2.0), Homo.sapiens, knitr License: GPL-2 Archs: x64 MD5sum: c0c0bf506cee589cad3dd25dbf771106 NeedsCompilation: no Title: Handle Illumina methylation data Description: This package provides classes for holding and manipulating Illumina methylation data. Based on eSet, it can contain MIAME information, sample information, feature information, and multiple matrices of data. An "intelligent" import function, methylumiR can read the Illumina text files and create a MethyLumiSet. methylumIDAT can directly read raw IDAT files from HumanMethylation27 and HumanMethylation450 microarrays. Normalization, background correction, and quality control features for GoldenGate, Infinium, and Infinium HD arrays are also included. biocViews: DNAMethylation, TwoChannel, Preprocessing, QualityControl, CpGIsland Author: Sean Davis, Pan Du, Sven Bilke, Tim Triche, Jr., Moiz Bootwalla Maintainer: Sean Davis VignetteBuilder: knitr BugReports: https://github.com/seandavi/methylumi/issues/new git_url: https://git.bioconductor.org/packages/methylumi git_branch: RELEASE_3_20 git_last_commit: c38bf97 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/methylumi_2.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/methylumi_2.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/methylumi_2.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/methylumi_2.52.0.tgz vignettes: vignettes/methylumi/inst/doc/methylumi450k.pdf, vignettes/methylumi/inst/doc/methylumi.pdf vignetteTitles: Working with Illumina 450k Arrays using methylumi, An Introduction to the methylumi package hasREADME: TRUE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/methylumi/inst/doc/methylumi450k.R, vignettes/methylumi/inst/doc/methylumi.R dependsOnMe: bigmelon, RnBeads, skewr, wateRmelon importsMe: ffpe, lumi, missMethyl dependencyCount: 159 Package: MetID Version: 1.24.0 Depends: R (>= 3.5) Imports: utils (>= 3.3.1), stats (>= 3.4.2), devtools (>= 1.13.0), stringr (>= 1.3.0), Matrix (>= 1.2-12), igraph (>= 1.2.1), ChemmineR (>= 2.30.2) Suggests: knitr (>= 1.19), rmarkdown (>= 1.8) License: Artistic-2.0 MD5sum: 8778c3a8e0f7f73850b9fbc0daf71776 NeedsCompilation: no Title: Network-based prioritization of putative metabolite IDs Description: This package uses an innovative network-based approach that will enhance our ability to determine the identities of significant ions detected by LC-MS. biocViews: AssayDomain, BiologicalQuestion, Infrastructure, ResearchField, StatisticalMethod, Technology, WorkflowStep, Network, KEGG Author: Zhenzhi Li Maintainer: Zhenzhi Li URL: https://github.com/ressomlab/MetID VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MetID git_branch: RELEASE_3_20 git_last_commit: 5809773 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MetID_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MetID_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MetID_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MetID_1.24.0.tgz vignettes: vignettes/MetID/inst/doc/Introduction_to_MetID.html vignetteTitles: Introduction to MetID hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MetID/inst/doc/Introduction_to_MetID.R dependencyCount: 131 Package: MetMashR Version: 1.0.0 Depends: R (>= 4.3.0), struct Imports: dplyr, methods, httr, scales, ggthemes, ggplot2, utils, rlang, cowplot, stats Suggests: covr, httptest, knitr, rmarkdown, testthat (>= 3.0.0), rgoslin, DT, RSQLite, CompoundDb, BiocStyle, BiocFileCache, msPurity, ChemmineOB, rsvg, metabolomicsWorkbenchR, KEGGREST, plyr, magick, structToolbox, RVenn, ggVennDiagram, patchwork, XML, GO.db, tidytext, tidyr, tidyselect, ComplexUpset, jsonlite, openxlsx License: GPL-3 MD5sum: e76782f219e073986b675cb10171f990 NeedsCompilation: no Title: Metabolite Mashing with R Description: A package to merge, filter sort, organise and otherwise mash together metabolite annotation tables. Metabolite annotations can be imported from multiple sources (software) and combined using workflow steps based on S4 class templates derived from the `struct` package. Other modular workflow steps such as filtering, merging, splitting, normalisation and rest-api queries are included. biocViews: WorkflowStep, Metabolomics, KEGG Author: Gavin Rhys Lloyd [aut, cre] (), Ralf Johannes Maria Weber [aut] Maintainer: Gavin Rhys Lloyd URL: https://computational-metabolomics.github.io/MetMashR/ VignetteBuilder: knitr BugReports: https://github.com/computational-metabolomics/MetMashR/issues git_url: https://git.bioconductor.org/packages/MetMashR git_branch: RELEASE_3_20 git_last_commit: 5ccb773 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MetMashR_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MetMashR_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MetMashR_1.0.0.tgz vignettes: vignettes/MetMashR/inst/doc/annotate_mixtures.html, vignettes/MetMashR/inst/doc/exploring_mtox.html, vignettes/MetMashR/inst/doc/Extending_MetMashR.html, vignettes/MetMashR/inst/doc/using_MetMashR.html vignetteTitles: Annotation of mixtures of standards, Exploring the MTox700+ library, Extending MetMashR, Using MetMashR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MetMashR/inst/doc/annotate_mixtures.R, vignettes/MetMashR/inst/doc/exploring_mtox.R, vignettes/MetMashR/inst/doc/Extending_MetMashR.R, vignettes/MetMashR/inst/doc/using_MetMashR.R dependencyCount: 81 Package: MetNet Version: 1.24.0 Depends: R (>= 4.0), S4Vectors (>= 0.28.1), SummarizedExperiment (>= 1.20.0) Imports: bnlearn (>= 4.3), BiocParallel (>= 1.12.0), corpcor (>= 1.6.10), dplyr (>= 1.0.3), ggplot2 (>= 3.3.3), GeneNet (>= 1.2.15), GENIE3 (>= 1.7.0), methods (>= 3.5), parmigene (>= 1.0.2), psych (>= 2.1.6), rlang (>= 0.4.10), stabs (>= 0.6), stats (>= 3.6), tibble (>= 3.0.5), tidyr (>= 1.1.2) Suggests: BiocGenerics (>= 0.24.0), BiocStyle (>= 2.6.1), glmnet (>= 4.1-1), igraph (>= 1.1.2), knitr (>= 1.11), rmarkdown (>= 1.15), testthat (>= 2.2.1), Spectra (>= 1.4.1), MsCoreUtils (>= 1.6.0) License: GPL (>= 3) MD5sum: 561bf20994efd996100121f021e95955 NeedsCompilation: no Title: Inferring metabolic networks from untargeted high-resolution mass spectrometry data Description: MetNet contains functionality to infer metabolic network topologies from quantitative data and high-resolution mass/charge information. Using statistical models (including correlation, mutual information, regression and Bayes statistics) and quantitative data (intensity values of features) adjacency matrices are inferred that can be combined to a consensus matrix. Mass differences calculated between mass/charge values of features will be matched against a data frame of supplied mass/charge differences referring to transformations of enzymatic activities. In a third step, the two levels of information are combined to form a adjacency matrix inferred from both quantitative and structure information. biocViews: ImmunoOncology, Metabolomics, MassSpectrometry, Network, Regression Author: Thomas Naake [aut, cre], Liesa Salzer [ctb] Maintainer: Thomas Naake VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MetNet git_branch: RELEASE_3_20 git_last_commit: 5b681de git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MetNet_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MetNet_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MetNet_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MetNet_1.24.0.tgz vignettes: vignettes/MetNet/inst/doc/MetNet.html vignetteTitles: Workflow for high-resolution metabolomics data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MetNet/inst/doc/MetNet.R dependencyCount: 93 Package: mfa Version: 1.28.0 Depends: R (>= 3.4.0) Imports: methods, stats, ggplot2, Rcpp, dplyr, ggmcmc, MCMCpack, MCMCglmm, coda, magrittr, tibble, Biobase LinkingTo: Rcpp Suggests: knitr, rmarkdown, BiocStyle, testthat License: GPL (>= 2) MD5sum: fdd4337cce5b79f16b1e621eebc3322b NeedsCompilation: yes Title: Bayesian hierarchical mixture of factor analyzers for modelling genomic bifurcations Description: MFA models genomic bifurcations using a Bayesian hierarchical mixture of factor analysers. biocViews: ImmunoOncology, RNASeq, GeneExpression, Bayesian, SingleCell Author: Kieran Campbell [aut, cre] Maintainer: Kieran Campbell VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/mfa git_branch: RELEASE_3_20 git_last_commit: efdf13c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mfa_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mfa_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mfa_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mfa_1.28.0.tgz vignettes: vignettes/mfa/inst/doc/introduction_to_mfa.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mfa/inst/doc/introduction_to_mfa.R suggestsMe: splatter dependencyCount: 71 Package: Mfuzz Version: 2.66.0 Depends: R (>= 2.5.0), Biobase (>= 2.5.5), e1071 Imports: tcltk, tkWidgets Suggests: marray License: GPL-2 MD5sum: 8eef6e78c19a6446ffbad684c49b65e7 NeedsCompilation: no Title: Soft clustering of omics time series data Description: The Mfuzz package implements noise-robust soft clustering of omics time-series data, including transcriptomic, proteomic or metabolomic data. It is based on the use of c-means clustering. For convenience, it includes a graphical user interface. biocViews: Microarray, Clustering, TimeCourse, Preprocessing, Visualization Author: Matthias Futschik Maintainer: Matthias Futschik URL: http://mfuzz.sysbiolab.eu/ git_url: https://git.bioconductor.org/packages/Mfuzz git_branch: RELEASE_3_20 git_last_commit: 01262f8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Mfuzz_2.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Mfuzz_2.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Mfuzz_2.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Mfuzz_2.66.0.tgz vignettes: vignettes/Mfuzz/inst/doc/Mfuzz.pdf vignetteTitles: Introduction to Mfuzz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Mfuzz/inst/doc/Mfuzz.R dependsOnMe: cycle, MultiRNAflow importsMe: Patterns suggestsMe: DAPAR, pctax dependencyCount: 16 Package: MGFM Version: 1.40.0 Depends: AnnotationDbi,annotate Suggests: hgu133a.db License: GPL-3 MD5sum: 98be25e57ca7e51f52feded3d94f4b9c NeedsCompilation: no Title: Marker Gene Finder in Microarray gene expression data Description: The package is designed to detect marker genes from Microarray gene expression data sets biocViews: Genetics, GeneExpression, Microarray Author: Khadija El Amrani Maintainer: Khadija El Amrani git_url: https://git.bioconductor.org/packages/MGFM git_branch: RELEASE_3_20 git_last_commit: 5e7ee3c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MGFM_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MGFM_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MGFM_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MGFM_1.40.0.tgz vignettes: vignettes/MGFM/inst/doc/MGFM.pdf vignetteTitles: Using MGFM hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MGFM/inst/doc/MGFM.R dependsOnMe: sampleClassifier dependencyCount: 48 Package: MGFR Version: 1.32.0 Depends: R (>= 3.5) Imports: biomaRt, annotate License: GPL-3 MD5sum: 7405099a21b45e004571720c66a10664 NeedsCompilation: no Title: Marker Gene Finder in RNA-seq data Description: The package is designed to detect marker genes from RNA-seq data. biocViews: ImmunoOncology, Genetics, GeneExpression, RNASeq Author: Khadija El Amrani Maintainer: Khadija El Amrani git_url: https://git.bioconductor.org/packages/MGFR git_branch: RELEASE_3_20 git_last_commit: 467f273 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MGFR_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MGFR_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MGFR_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MGFR_1.32.0.tgz vignettes: vignettes/MGFR/inst/doc/MGFR.pdf vignetteTitles: Using MGFR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MGFR/inst/doc/MGFR.R dependsOnMe: sampleClassifier dependencyCount: 72 Package: MGnifyR Version: 1.2.0 Depends: R(>= 4.4.0), MultiAssayExperiment, TreeSummarizedExperiment, SummarizedExperiment, BiocGenerics Imports: mia, ape, dplyr, httr, methods, plyr, reshape2, S4Vectors, urltools, utils, tidyjson Suggests: biomformat, broom, ggplot2, knitr, rmarkdown, testthat, xml2, BiocStyle, miaViz, vegan, scater, phyloseq, magick License: Artistic-2.0 | file LICENSE Archs: x64 MD5sum: 143609852e2afe5335d345320e3c29ec NeedsCompilation: no Title: R interface to EBI MGnify metagenomics resource Description: Utility package to facilitate integration and analysis of EBI MGnify data in R. The package can be used to import microbial data for instance into TreeSummarizedExperiment (TreeSE). In TreeSE format, the data is directly compatible with miaverse framework. biocViews: Infrastructure, DataImport, Metagenomics Author: Tuomas Borman [aut, cre] (), Ben Allen [aut], Leo Lahti [aut] () Maintainer: Tuomas Borman URL: https://github.com/EBI-Metagenomics/MGnifyR VignetteBuilder: knitr BugReports: https://github.com/EBI-Metagenomics/MGnifyR/issues git_url: https://git.bioconductor.org/packages/MGnifyR git_branch: RELEASE_3_20 git_last_commit: 098cf54 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MGnifyR_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MGnifyR_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MGnifyR_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MGnifyR_1.2.0.tgz vignettes: vignettes/MGnifyR/inst/doc/MGnifyR.html, vignettes/MGnifyR/inst/doc/MGnifyR_long.html vignetteTitles: MGnifyR, MGnifyR,, extended vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MGnifyR/inst/doc/MGnifyR_long.R, vignettes/MGnifyR/inst/doc/MGnifyR.R suggestsMe: iSEEtree dependencyCount: 188 Package: mgsa Version: 1.54.0 Depends: R (>= 2.14.0), methods, gplots Imports: graphics, stats, utils Suggests: DBI, RSQLite, GO.db, testthat License: Artistic-2.0 MD5sum: 697df1e213746a4582d9d684e06318b7 NeedsCompilation: yes Title: Model-based gene set analysis Description: Model-based Gene Set Analysis (MGSA) is a Bayesian modeling approach for gene set enrichment. The package mgsa implements MGSA and tools to use MGSA together with the Gene Ontology. biocViews: Pathways, GO, GeneSetEnrichment Author: Sebastian Bauer , Julien Gagneur Maintainer: Sebastian Bauer URL: https://github.com/sba1/mgsa-bioc git_url: https://git.bioconductor.org/packages/mgsa git_branch: RELEASE_3_20 git_last_commit: facc5f6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mgsa_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mgsa_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mgsa_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mgsa_1.54.0.tgz vignettes: vignettes/mgsa/inst/doc/mgsa.pdf vignetteTitles: Overview of the mgsa package. hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mgsa/inst/doc/mgsa.R dependencyCount: 9 Package: mia Version: 1.14.0 Depends: R (>= 4.0), MultiAssayExperiment, SingleCellExperiment, SummarizedExperiment, TreeSummarizedExperiment (>= 1.99.3) Imports: ape, BiocGenerics, BiocParallel, Biostrings, bluster, DECIPHER, decontam, DelayedArray, DelayedMatrixStats, DirichletMultinomial, dplyr, IRanges, MASS, MatrixGenerics, mediation, methods, rbiom, rlang, S4Vectors, scater, scuttle, stats, tibble, tidyr, utils, vegan Suggests: ade4, BiocStyle, biomformat, dada2, knitr, miaViz, microbiomeDataSets, NMF, patchwork, phyloseq, reldist, rhdf5, rmarkdown, stringr, testthat, topicdoc, topicmodels, yaml License: Artistic-2.0 | file LICENSE MD5sum: 235e96191a12bd939ddc50d8f6246925 NeedsCompilation: no Title: Microbiome analysis Description: mia implements tools for microbiome analysis based on the SummarizedExperiment, SingleCellExperiment and TreeSummarizedExperiment infrastructure. Data wrangling and analysis in the context of taxonomic data is the main scope. Additional functions for common task are implemented such as community indices calculation and summarization. biocViews: Microbiome, Software, DataImport Author: Tuomas Borman [aut, cre] (), Felix G.M. Ernst [aut] (), Sudarshan A. Shetty [aut] (), Leo Lahti [aut] (), Yang Cao [ctb], Nathan D. Olson [ctb], Levi Waldron [ctb], Marcel Ramos [ctb], Héctor Corrada Bravo [ctb], Jayaram Kancherla [ctb], Domenick Braccia [ctb], Basil Courbayre [ctb], Muluh Muluh [ctb], Giulio Benedetti [ctb], Moritz Emanuel Beber [ctb] (), Nitesh Turaga [ctb], Chouaib Benchraka [ctb], Akewak Jeba [ctb], Himmi Lindgren [ctb], Noah De Gunst [ctb], Théotime Pralas [ctb], Shadman Ishraq [ctb], Eineje Ameh [ctb], Artur Sannikov [ctb], Hervé Pagès [ctb], Rajesh Shigdel [ctb], Katariina Pärnänen [ctb], Pande Erawijantari [ctb], Danielle Callan [ctb] Maintainer: Tuomas Borman URL: https://github.com/microbiome/mia VignetteBuilder: knitr BugReports: https://github.com/microbiome/mia/issues git_url: https://git.bioconductor.org/packages/mia git_branch: RELEASE_3_20 git_last_commit: 07b2e25 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mia_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mia_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mia_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mia_1.14.0.tgz vignettes: vignettes/mia/inst/doc/mia.html vignetteTitles: mia hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/mia/inst/doc/mia.R dependsOnMe: miaViz importsMe: dar, iSEEtree, MGnifyR, curatedMetagenomicData suggestsMe: ANCOMBC, CBEA, miaSim, philr, bugphyzz, MicrobiomeBenchmarkData, MiscMetabar dependencyCount: 183 Package: miaSim Version: 1.12.0 Depends: TreeSummarizedExperiment Imports: SummarizedExperiment, deSolve, stats, poweRlaw, MatrixGenerics, S4Vectors Suggests: ape, cluster, foreach, doParallel, dplyr, GGally, ggplot2, igraph, network, reshape2, sna, vegan, rmarkdown, knitr, BiocStyle, testthat, mia, miaViz, colourvalues, philentropy License: Artistic-2.0 | file LICENSE MD5sum: 63f5e34abd70ce9d9b6e15fe645b02cd NeedsCompilation: no Title: Microbiome Data Simulation Description: Microbiome time series simulation with generalized Lotka-Volterra model, Self-Organized Instability (SOI), and other models. Hubbell's Neutral model is used to determine the abundance matrix. The resulting abundance matrix is applied to (Tree)SummarizedExperiment objects. biocViews: Microbiome, Software, Sequencing, DNASeq, ATACSeq, Coverage, Network Author: Yagmur Simsek [cre, aut], Karoline Faust [aut], Yu Gao [aut], Emma Gheysen [aut], Daniel Rios Garza [aut], Tuomas Borman [aut] (), Leo Lahti [aut] () Maintainer: Yagmur Simsek URL: https://github.com/microbiome/miaSim VignetteBuilder: knitr BugReports: https://github.com/microbiome/miaSim/issues git_url: https://git.bioconductor.org/packages/miaSim git_branch: RELEASE_3_20 git_last_commit: c60229b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/miaSim_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/miaSim_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/miaSim_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/miaSim_1.12.0.tgz vignettes: vignettes/miaSim/inst/doc/miaSim.html vignetteTitles: miaSim hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/miaSim/inst/doc/miaSim.R dependencyCount: 80 Package: miaViz Version: 1.14.0 Depends: R (>= 4.0), SummarizedExperiment, TreeSummarizedExperiment, mia (>= 1.13.0), ggplot2, ggraph (>= 2.0) Imports: methods, stats, S4Vectors, BiocGenerics, BiocParallel, DelayedArray, scater, ggtree, ggnewscale, viridis, tibble, tidytext, tidytree, tidygraph, rlang, purrr, tidyr, dplyr, ape, DirichletMultinomial, ggrepel, SingleCellExperiment Suggests: knitr, rmarkdown, BiocStyle, testthat, patchwork, vegan, bluster, ComplexHeatmap, circlize License: Artistic-2.0 | file LICENSE MD5sum: c47b4360b420f306ec1ef3c68a17c4a0 NeedsCompilation: no Title: Microbiome Analysis Plotting and Visualization Description: The miaViz package implements functions to visualize TreeSummarizedExperiment objects especially in the context of microbiome analysis. Part of the mia family of R/Bioconductor packages. biocViews: Microbiome, Software, Visualization Author: Tuomas Borman [aut, cre] (), Felix G.M. Ernst [aut] (), Leo Lahti [aut] (), Basil Courbayre [ctb], Giulio Benedetti [ctb] (), Théotime Pralas [ctb], Nitesh Turaga [ctb], Chouaib Benchraka [ctb], Sam Hillman [ctb], Muluh Muluh [ctb], Noah De Gunst [ctb], Ely Seraidarian [ctb], Himmi Lindgren [ctb], Vivian Ikeh [ctb] Maintainer: Tuomas Borman VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/miaViz git_branch: RELEASE_3_20 git_last_commit: e929002 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/miaViz_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/miaViz_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/miaViz_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/miaViz_1.14.0.tgz vignettes: vignettes/miaViz/inst/doc/miaViz.html vignetteTitles: miaViz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/miaViz/inst/doc/miaViz.R importsMe: iSEEtree suggestsMe: MGnifyR, mia, miaSim dependencyCount: 202 Package: MiChip Version: 1.60.0 Depends: R (>= 2.3.0), Biobase Imports: Biobase License: GPL (>= 2) Archs: x64 MD5sum: b41d75f030af603bb06d2f85e19d198c NeedsCompilation: no Title: MiChip Parsing and Summarizing Functions Description: This package takes the MiChip miRNA microarray .grp scanner output files and parses these out, providing summary and plotting functions to analyse MiChip hybridizations. A set of hybridizations is packaged into an ExpressionSet allowing it to be used by other BioConductor packages. biocViews: Microarray, Preprocessing Author: Jonathon Blake Maintainer: Jonathon Blake git_url: https://git.bioconductor.org/packages/MiChip git_branch: RELEASE_3_20 git_last_commit: 7f352a5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MiChip_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MiChip_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MiChip_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MiChip_1.60.0.tgz vignettes: vignettes/MiChip/inst/doc/MiChip.pdf vignetteTitles: MiChip miRNA Microarray Processing hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MiChip/inst/doc/MiChip.R dependencyCount: 6 Package: microbiome Version: 1.28.0 Depends: R (>= 3.6.0), phyloseq, ggplot2 Imports: Biostrings, compositions, dplyr, reshape2, Rtsne, scales, stats, tibble, tidyr, utils, vegan Suggests: BiocGenerics, BiocStyle, Cairo, knitr, rmarkdown, testthat License: BSD_2_clause + file LICENSE MD5sum: 25d79565e12d9b23303b8631b926497a NeedsCompilation: no Title: Microbiome Analytics Description: Utilities for microbiome analysis. biocViews: Metagenomics,Microbiome,Sequencing,SystemsBiology Author: Leo Lahti [aut, cre] (), Sudarshan Shetty [aut] () Maintainer: Leo Lahti URL: http://microbiome.github.io/microbiome VignetteBuilder: knitr BugReports: https://github.com/microbiome/microbiome/issues git_url: https://git.bioconductor.org/packages/microbiome git_branch: RELEASE_3_20 git_last_commit: 9e1bb69 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/microbiome_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/microbiome_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/microbiome_1.28.0.tgz vignettes: vignettes/microbiome/inst/doc/vignette.html vignetteTitles: microbiome R package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/microbiome/inst/doc/vignette.R importsMe: MicrobiomeSurv suggestsMe: ANCOMBC, dar, zitools dependencyCount: 94 Package: microbiomeDASim Version: 1.20.0 Depends: R (>= 3.6.0) Imports: graphics, ggplot2, MASS, tmvtnorm, Matrix, mvtnorm, pbapply, stats, phyloseq, metagenomeSeq, Biobase Suggests: testthat (>= 2.1.0), knitr, devtools License: MIT + file LICENSE MD5sum: f86d5e7f2d253be22cb58d4904ff9a86 NeedsCompilation: no Title: Microbiome Differential Abundance Simulation Description: A toolkit for simulating differential microbiome data designed for longitudinal analyses. Several functional forms may be specified for the mean trend. Observations are drawn from a multivariate normal model. The objective of this package is to be able to simulate data in order to accurately compare different longitudinal methods for differential abundance. biocViews: Microbiome, Visualization, Software Author: Justin Williams, Hector Corrada Bravo, Jennifer Tom, Joseph Nathaniel Paulson Maintainer: Justin Williams URL: https://github.com/williazo/microbiomeDASim VignetteBuilder: knitr BugReports: https://github.com/williazo/microbiomeDASim/issues git_url: https://git.bioconductor.org/packages/microbiomeDASim git_branch: RELEASE_3_20 git_last_commit: fe7d02e git_last_commit_date: 2024-10-29 Date/Publication: 2025-01-02 source.ver: src/contrib/microbiomeDASim_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/microbiomeDASim_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/microbiomeDASim_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/microbiomeDASim_1.20.0.tgz vignettes: vignettes/microbiomeDASim/inst/doc/microbiomeDASim.pdf vignetteTitles: microbiomeDASim hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/microbiomeDASim/inst/doc/microbiomeDASim.R Package: microbiomeExplorer Version: 1.16.0 Depends: shiny, magrittr, metagenomeSeq, Biobase Imports: shinyjs (>= 2.0.0), shinydashboard, shinycssloaders, shinyWidgets, rmarkdown (>= 1.9.0), DESeq2, RColorBrewer, dplyr, tidyr, purrr, rlang, knitr, readr, DT (>= 0.12.0), biomformat, tools, stringr, vegan, matrixStats, heatmaply, car, broom, limma, reshape2, tibble, forcats, lubridate, methods, plotly (>= 4.9.1) Suggests: V8, testthat (>= 2.1.0) License: MIT + file LICENSE MD5sum: 49b2c0688ff4bd9640a4cdcb845f77b1 NeedsCompilation: no Title: Microbiome Exploration App Description: The MicrobiomeExplorer R package is designed to facilitate the analysis and visualization of marker-gene survey feature data. It allows a user to perform and visualize typical microbiome analytical workflows either through the command line or an interactive Shiny application included with the package. In addition to applying common analytical workflows the application enables automated analysis report generation. biocViews: Classification, Clustering, GeneticVariability, DifferentialExpression, Microbiome, Metagenomics, Normalization, Visualization, MultipleComparison, Sequencing, Software, ImmunoOncology Author: Joseph Paulson [aut], Janina Reeder [aut, cre], Mo Huang [aut], Genentech [cph, fnd] Maintainer: Janina Reeder VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/microbiomeExplorer git_branch: RELEASE_3_20 git_last_commit: bb6950f git_last_commit_date: 2024-10-29 Date/Publication: 2025-01-02 source.ver: src/contrib/microbiomeExplorer_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/microbiomeExplorer_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/microbiomeExplorer_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/microbiomeExplorer_1.16.0.tgz vignettes: vignettes/microbiomeExplorer/inst/doc/exploreMouseData.html vignetteTitles: microbiomeExplorer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/microbiomeExplorer/inst/doc/exploreMouseData.R Package: MicrobiomeProfiler Version: 1.12.0 Depends: R (>= 4.2.0) Imports: clusterProfiler (>= 4.5.2), config, DT, enrichplot, golem, gson, methods, magrittr, shiny (>= 1.6.0), shinyWidgets, shinycustomloader, htmltools, ggplot2, graphics, stats, utils, yulab.utils Suggests: rmarkdown, knitr, testthat (>= 3.0.0), prettydoc License: GPL-2 MD5sum: 2807b5fe05f24e95d6a30e2e64182621 NeedsCompilation: no Title: An R/shiny package for microbiome functional enrichment analysis Description: This is an R/shiny package to perform functional enrichment analysis for microbiome data. This package was based on clusterProfiler. Moreover, MicrobiomeProfiler support KEGG enrichment analysis, COG enrichment analysis, Microbe-Disease association enrichment analysis, Metabo-Pathway analysis. biocViews: Microbiome, Software, Visualization,KEGG Author: Guangchuang Yu [cre, aut] (), Meijun Chen [aut] () Maintainer: Guangchuang Yu URL: https://github.com/YuLab-SMU/MicrobiomeProfiler/, https://yulab-smu.top/contribution-knowledge-mining/ VignetteBuilder: knitr BugReports: https://github.com/YuLab-SMU/MicrobiomeProfiler/issues git_url: https://git.bioconductor.org/packages/MicrobiomeProfiler git_branch: RELEASE_3_20 git_last_commit: d9d4873 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MicrobiomeProfiler_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MicrobiomeProfiler_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MicrobiomeProfiler_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MicrobiomeProfiler_1.12.0.tgz vignettes: vignettes/MicrobiomeProfiler/inst/doc/MicrobiomeProfiler.html vignetteTitles: Introduction to MicrobiotaProcess hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MicrobiomeProfiler/inst/doc/MicrobiomeProfiler.R dependencyCount: 155 Package: MicrobiotaProcess Version: 1.18.0 Depends: R (>= 4.0.0) Imports: ape, tidyr, ggplot2, magrittr, dplyr, Biostrings, ggrepel, vegan, zoo, ggtree, tidytree (>= 0.4.2), MASS, methods, rlang, tibble, grDevices, stats, utils, coin, ggsignif, patchwork, ggstar, tidyselect, SummarizedExperiment, foreach, treeio (>= 1.17.2), pillar, cli, plyr, dtplyr, ggtreeExtra, data.table, ggfun (>= 0.1.1) Suggests: rmarkdown, prettydoc, testthat, knitr, nlme, phangorn, DECIPHER, randomForest, jsonlite, biomformat, scales, yaml, withr, S4Vectors, purrr, seqmagick, glue, ggupset, ggVennDiagram, gghalves, ggalluvial (>= 0.11.1), forcats, phyloseq, aplot, ggnewscale, ggside, ggh4x, hopach, parallel, shadowtext, DirichletMultinomial, ggpp, BiocManager License: GPL (>= 3.0) MD5sum: 44b21e324ef11a355d79de51f78126fd NeedsCompilation: no Title: A comprehensive R package for managing and analyzing microbiome and other ecological data within the tidy framework Description: MicrobiotaProcess is an R package for analysis, visualization and biomarker discovery of microbial datasets. It introduces MPSE class, this make it more interoperable with the existing computing ecosystem. Moreover, it introduces a tidy microbiome data structure paradigm and analysis grammar. It provides a wide variety of microbiome data analysis procedures under the unified and common framework (tidy-like framework). biocViews: Visualization, Microbiome, Software, MultipleComparison, FeatureExtraction Author: Shuangbin Xu [aut, cre] (), Guangchuang Yu [aut, ctb] () Maintainer: Shuangbin Xu URL: https://github.com/YuLab-SMU/MicrobiotaProcess/ VignetteBuilder: knitr BugReports: https://github.com/YuLab-SMU/MicrobiotaProcess/issues git_url: https://git.bioconductor.org/packages/MicrobiotaProcess git_branch: RELEASE_3_20 git_last_commit: af61750 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MicrobiotaProcess_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MicrobiotaProcess_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MicrobiotaProcess_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MicrobiotaProcess_1.18.0.tgz vignettes: vignettes/MicrobiotaProcess/inst/doc/MicrobiotaProcess.html vignetteTitles: Introduction to MicrobiotaProcess hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MicrobiotaProcess/inst/doc/MicrobiotaProcess.R suggestsMe: parafac4microbiome dependencyCount: 110 Package: microRNA Version: 1.64.0 Depends: R (>= 2.10) Imports: Biostrings (>= 2.11.32) License: Artistic-2.0 MD5sum: ecbbe0f4a76950c5b26cfa4e5102f120 NeedsCompilation: yes Title: Data and functions for dealing with microRNAs Description: Different data resources for microRNAs and some functions for manipulating them. biocViews: Infrastructure, GenomeAnnotation, SequenceMatching Author: R. Gentleman, S. Falcon Maintainer: "James F. Reid" git_url: https://git.bioconductor.org/packages/microRNA git_branch: RELEASE_3_20 git_last_commit: 61eec3d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/microRNA_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/microRNA_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/microRNA_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/microRNA_1.64.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE suggestsMe: rtracklayer dependencyCount: 25 Package: microSTASIS Version: 1.6.0 Depends: R (>= 4.2.0) Imports: BiocParallel, ggplot2, ggside, grid, rlang, stats, stringr, TreeSummarizedExperiment Suggests: BiocStyle, gghighlight, knitr, rmarkdown, methods, RefManageR, sessioninfo, SingleCellExperiment, SummarizedExperiment, testthat (>= 3.0.0) License: GPL-3 MD5sum: aa143ed7e2e787173f15f326de7bdbb8 NeedsCompilation: no Title: Microbiota STability ASsessment via Iterative cluStering Description: The toolkit 'µSTASIS', or microSTASIS, has been developed for the stability analysis of microbiota in a temporal framework by leveraging on iterative clustering. Concretely, the core function uses Hartigan-Wong k-means algorithm as many times as possible for stressing out paired samples from the same individuals to test if they remain together for multiple numbers of clusters over a whole data set of individuals. Moreover, the package includes multiple functions to subset samples from paired times, validate the results or visualize the output. biocViews: GeneticVariability, BiomedicalInformatics, Clustering, MultipleComparison, Microbiome Author: Pedro Sánchez-Sánchez [aut, cre] (), Alfonso Benítez-Páez [aut] () Maintainer: Pedro Sánchez-Sánchez URL: https://doi.org/10.1093/bib/bbac055 VignetteBuilder: knitr BugReports: https://github.com/BiotechPedro/microSTASIS git_url: https://git.bioconductor.org/packages/microSTASIS git_branch: RELEASE_3_20 git_last_commit: 10b4659 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/microSTASIS_1.6.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/microSTASIS_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/microSTASIS_1.6.0.tgz vignettes: vignettes/microSTASIS/inst/doc/microSTASIS.html vignetteTitles: Introduction to microSTASIS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/microSTASIS/inst/doc/microSTASIS.R dependencyCount: 91 Package: MICSQTL Version: 1.4.0 Depends: R (>= 4.3.0), SummarizedExperiment, stats Imports: TCA, nnls, purrr, TOAST, magrittr, BiocParallel, ggplot2, ggpubr, ggridges, glue, S4Vectors, dirmult Suggests: testthat (>= 3.0.0), rmarkdown, knitr, BiocStyle License: GPL-3 MD5sum: 09eaf773ad8d3777ca46e06d1afcdab9 NeedsCompilation: no Title: MICSQTL (Multi-omic deconvolution, Integration and Cell-type-specific Quantitative Trait Loci) Description: Our pipeline, MICSQTL, utilizes scRNA-seq reference and bulk transcriptomes to estimate cellular composition in the matched bulk proteomes. The expression of genes and proteins at either bulk level or cell type level can be integrated by Angle-based Joint and Individual Variation Explained (AJIVE) framework. Meanwhile, MICSQTL can perform cell-type-specic quantitative trait loci (QTL) mapping to proteins or transcripts based on the input of bulk expression data and the estimated cellular composition per molecule type, without the need for single cell sequencing. We use matched transcriptome-proteome from human brain frontal cortex tissue samples to demonstrate the input and output of our tool. biocViews: GeneExpression, Genetics, Proteomics, RNASeq, Sequencing, SingleCell, Software, Visualization, CellBasedAssays, Coverage Author: Yue Pan [aut] (), Qian Li [aut, cre] (), Iain Carmichael [ctb] Maintainer: Qian Li URL: https://bioconductor.org/packages/MICSQTL, https://github.com/YuePan027/MICSQTL VignetteBuilder: knitr BugReports: https://github.com/YuePan027/MICSQTL/issues git_url: https://git.bioconductor.org/packages/MICSQTL git_branch: RELEASE_3_20 git_last_commit: bd2ea44 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MICSQTL_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MICSQTL_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MICSQTL_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MICSQTL_1.4.0.tgz vignettes: vignettes/MICSQTL/inst/doc/MICSQTL.html vignetteTitles: MICSQTL: Multi-omic deconvolution,, Integration and Cell-type-specific Quantitative Trait Loci hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MICSQTL/inst/doc/MICSQTL.R dependencyCount: 145 Package: midasHLA Version: 1.14.0 Depends: R (>= 4.1), MultiAssayExperiment (>= 1.8.3) Imports: assertthat (>= 0.2.0), broom (>= 0.5.1), dplyr (>= 0.8.0.1), formattable (>= 0.2.0.1), HardyWeinberg (>= 1.6.3), kableExtra (>= 1.1.0), knitr (>= 1.21), magrittr (>= 1.5), methods, stringi (>= 1.2.4), rlang (>= 0.3.1), S4Vectors (>= 0.20.1), stats, SummarizedExperiment (>= 1.12.0), tibble (>= 2.0.1), utils, qdapTools (>= 1.3.3) Suggests: broom.mixed (>= 0.2.4), cowplot (>= 1.0.0), devtools (>= 2.0.1), ggplot2 (>= 3.1.0), ggpubr (>= 0.2.5), rmarkdown, seqinr (>= 3.4-5), survival (>= 2.43-3), testthat (>= 2.0.1), tidyr (>= 1.1.2) License: MIT + file LICENCE MD5sum: 7def111fdc9b4877e6c530366f4d8def NeedsCompilation: no Title: R package for immunogenomics data handling and association analysis Description: MiDAS is a R package for immunogenetics data transformation and statistical analysis. MiDAS accepts input data in the form of HLA alleles and KIR types, and can transform it into biologically meaningful variables, enabling HLA amino acid fine mapping, analyses of HLA evolutionary divergence, KIR gene presence, as well as validated HLA-KIR interactions. Further, it allows comprehensive statistical association analysis workflows with phenotypes of diverse measurement scales. MiDAS closes a gap between the inference of immunogenetic variation and its efficient utilization to make relevant discoveries related to T cell, Natural Killer cell, and disease biology. biocViews: CellBiology, Genetics, StatisticalMethod Author: Christian Hammer [aut], Maciej Migdał [aut, cre] Maintainer: Maciej Migdał VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/midasHLA git_branch: RELEASE_3_20 git_last_commit: aa568de git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/midasHLA_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/midasHLA_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/midasHLA_1.14.0.tgz vignettes: vignettes/midasHLA/inst/doc/MiDAS_tutorial.html, vignettes/midasHLA/inst/doc/MiDAS_vignette.html vignetteTitles: MiDAS tutorial, MiDAS quick start hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/midasHLA/inst/doc/MiDAS_tutorial.R, vignettes/midasHLA/inst/doc/MiDAS_vignette.R dependencyCount: 139 Package: miloR Version: 2.2.0 Depends: R (>= 4.0.0), edgeR Imports: BiocNeighbors, BiocGenerics, SingleCellExperiment, Matrix (>= 1.3-0), MatrixGenerics, S4Vectors, stats, stringr, methods, igraph, irlba, utils, cowplot, BiocParallel, BiocSingular, limma, ggplot2, tibble, matrixStats, ggraph, gtools, SummarizedExperiment, patchwork, tidyr, dplyr, ggrepel, ggbeeswarm, RColorBrewer, grDevices, Rcpp, pracma, numDeriv LinkingTo: Rcpp, RcppArmadillo, RcppEigen, RcppML Suggests: testthat, mvtnorm, scater, scran, covr, knitr, rmarkdown, uwot, scuttle, BiocStyle, MouseGastrulationData, MouseThymusAgeing, magick, RCurl, MASS, curl, scRNAseq, graphics, sparseMatrixStats License: GPL-3 + file LICENSE MD5sum: dd33732ab19ad0bf8206fb392e6e9c62 NeedsCompilation: yes Title: Differential neighbourhood abundance testing on a graph Description: Milo performs single-cell differential abundance testing. Cell states are modelled as representative neighbourhoods on a nearest neighbour graph. Hypothesis testing is performed using either a negative bionomial generalized linear model or negative binomial generalized linear mixed model. biocViews: SingleCell, MultipleComparison, FunctionalGenomics, Software Author: Mike Morgan [aut, cre] (), Emma Dann [aut, ctb] Maintainer: Mike Morgan URL: https://marionilab.github.io/miloR VignetteBuilder: knitr BugReports: https://github.com/MarioniLab/miloR/issues git_url: https://git.bioconductor.org/packages/miloR git_branch: RELEASE_3_20 git_last_commit: 5e1d958 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/miloR_2.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/miloR_2.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/miloR_2.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/miloR_2.2.0.tgz vignettes: vignettes/miloR/inst/doc/milo_contrasts.html, vignettes/miloR/inst/doc/milo_demo.html, vignettes/miloR/inst/doc/milo_gastrulation.html, vignettes/miloR/inst/doc/milo_glmm.html vignetteTitles: Using contrasts for differential abundance testing, Differential abundance testing with Milo, Differential abundance testing with Milo - Mouse gastrulation example, Mixed effect models for Milo DA testing hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/miloR/inst/doc/milo_contrasts.R, vignettes/miloR/inst/doc/milo_demo.R, vignettes/miloR/inst/doc/milo_gastrulation.R, vignettes/miloR/inst/doc/milo_glmm.R dependencyCount: 117 Package: mimager Version: 1.30.0 Depends: Biobase Imports: BiocGenerics, S4Vectors, preprocessCore, grDevices, methods, grid, gtable, scales, DBI, affy, affyPLM, oligo, oligoClasses Suggests: knitr, rmarkdown, BiocStyle, testthat, lintr, Matrix, abind, affydata, hgu95av2cdf, oligoData, pd.hugene.1.0.st.v1 License: MIT + file LICENSE Archs: x64 MD5sum: 9e4f6d3ac5d7a6d4c41480f2adb9f3b6 NeedsCompilation: no Title: mimager: The Microarray Imager Description: Easily visualize and inspect microarrays for spatial artifacts. biocViews: Infrastructure, Visualization, Microarray Author: Aaron Wolen [aut, cre, cph] Maintainer: Aaron Wolen URL: https://github.com/aaronwolen/mimager VignetteBuilder: knitr BugReports: https://github.com/aaronwolen/mimager/issues git_url: https://git.bioconductor.org/packages/mimager git_branch: RELEASE_3_20 git_last_commit: 0cb61f2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mimager_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mimager_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mimager_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mimager_1.30.0.tgz vignettes: vignettes/mimager/inst/doc/introduction.html vignetteTitles: mimager overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/mimager/inst/doc/introduction.R dependencyCount: 75 Package: mina Version: 1.14.0 Depends: R (>= 4.0.0) Imports: methods, stats, Rcpp, MCL, RSpectra, apcluster, bigmemory, foreach, ggplot2, parallel, parallelDist, reshape2, plyr, biganalytics, stringr, Hmisc, utils LinkingTo: Rcpp, RcppParallel, RcppArmadillo Suggests: knitr, rmarkdown Enhances: doMC License: GPL MD5sum: 7dc755ac67f493187d858b9e27f43882 NeedsCompilation: yes Title: Microbial community dIversity and Network Analysis Description: An increasing number of microbiome datasets have been generated and analyzed with the help of rapidly developing sequencing technologies. At present, analysis of taxonomic profiling data is mainly conducted using composition-based methods, which ignores interactions between community members. Besides this, a lack of efficient ways to compare microbial interaction networks limited the study of community dynamics. To better understand how community diversity is affected by complex interactions between its members, we developed a framework (Microbial community dIversity and Network Analysis, mina), a comprehensive framework for microbial community diversity analysis and network comparison. By defining and integrating network-derived community features, we greatly reduce noise-to-signal ratio for diversity analyses. A bootstrap and permutation-based method was implemented to assess community network dissimilarities and extract discriminative features in a statistically principled way. biocViews: Software, WorkflowStep Author: Rui Guan [aut, cre], Ruben Garrido-Oter [ctb] Maintainer: Rui Guan VignetteBuilder: knitr BugReports: https://github.com/Guan06/mina git_url: https://git.bioconductor.org/packages/mina git_branch: RELEASE_3_20 git_last_commit: f80a036 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mina_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mina_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mina_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mina_1.14.0.tgz vignettes: vignettes/mina/inst/doc/mina.html vignetteTitles: Microbial dIversity and Network Analysis with MINA hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mina/inst/doc/mina.R dependencyCount: 95 Package: MineICA Version: 1.46.0 Depends: R (>= 2.10), methods, BiocGenerics (>= 0.13.8), Biobase, plyr, ggplot2, scales, foreach, xtable, biomaRt, gtools, GOstats, cluster, marray, mclust, RColorBrewer, colorspace, igraph, Rgraphviz, graph, annotate, Hmisc, fastICA, JADE Imports: AnnotationDbi, lumi, fpc, lumiHumanAll.db Suggests: biomaRt, GOstats, cluster, hgu133a.db, mclust, igraph, breastCancerMAINZ, breastCancerTRANSBIG, breastCancerUPP, breastCancerVDX, future, future.apply Enhances: doMC License: GPL-2 MD5sum: 7de548fd73a9b82a26405a3b77872a53 NeedsCompilation: no Title: Analysis of an ICA decomposition obtained on genomics data Description: The goal of MineICA is to perform Independent Component Analysis (ICA) on multiple transcriptome datasets, integrating additional data (e.g molecular, clinical and pathological). This Integrative ICA helps the biological interpretation of the components by studying their association with variables (e.g sample annotations) and gene sets, and enables the comparison of components from different datasets using correlation-based graph. biocViews: Visualization, MultipleComparison Author: Anne Biton Maintainer: Anne Biton git_url: https://git.bioconductor.org/packages/MineICA git_branch: RELEASE_3_20 git_last_commit: f1be36b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MineICA_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MineICA_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MineICA_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MineICA_1.46.0.tgz vignettes: vignettes/MineICA/inst/doc/MineICA.pdf vignetteTitles: MineICA: Independent component analysis of genomic data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MineICA/inst/doc/MineICA.R dependencyCount: 220 Package: minet Version: 3.64.0 Imports: infotheo License: Artistic-2.0 Archs: x64 MD5sum: 022eb3117a32dfa1688624c98af7d5d9 NeedsCompilation: yes Title: Mutual Information NETworks Description: This package implements various algorithms for inferring mutual information networks from data. biocViews: Microarray, GraphAndNetwork, Network, NetworkInference Author: Patrick E. Meyer, Frederic Lafitte, Gianluca Bontempi Maintainer: Patrick E. Meyer URL: http://minet.meyerp.com git_url: https://git.bioconductor.org/packages/minet git_branch: RELEASE_3_20 git_last_commit: 6de44bd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/minet_3.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/minet_3.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/minet_3.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/minet_3.64.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: BUS, geNetClassifier, netresponse importsMe: BioNERO, epiNEM, RTN, TCGAWorkflow, PRANA, TGS suggestsMe: CNORfeeder, TCGAbiolinks, WGCNA dependencyCount: 1 Package: minfi Version: 1.52.1 Depends: methods, BiocGenerics (>= 0.15.3), GenomicRanges, SummarizedExperiment (>= 1.1.6), Biostrings, bumphunter (>= 1.1.9) Imports: S4Vectors, GenomeInfoDb, Biobase (>= 2.33.2), IRanges, beanplot, RColorBrewer, lattice, nor1mix, siggenes, limma, preprocessCore, illuminaio (>= 0.23.2), DelayedMatrixStats (>= 1.3.4), mclust, genefilter, nlme, reshape, MASS, quadprog, data.table, GEOquery, stats, grDevices, graphics, utils, DelayedArray (>= 0.15.16), HDF5Array, BiocParallel Suggests: IlluminaHumanMethylation450kmanifest (>= 0.2.0), IlluminaHumanMethylation450kanno.ilmn12.hg19 (>= 0.2.1), minfiData (>= 0.18.0), minfiDataEPIC, FlowSorted.Blood.450k (>= 1.0.1), RUnit, digest, BiocStyle, knitr, rmarkdown, tools License: Artistic-2.0 MD5sum: 540931514e02f59c3685a4af1b72fe90 NeedsCompilation: no Title: Analyze Illumina Infinium DNA methylation arrays Description: Tools to analyze & visualize Illumina Infinium methylation arrays. biocViews: ImmunoOncology, DNAMethylation, DifferentialMethylation, Epigenetics, Microarray, MethylationArray, MultiChannel, TwoChannel, DataImport, Normalization, Preprocessing, QualityControl Author: Kasper Daniel Hansen [cre, aut], Martin Aryee [aut], Rafael A. Irizarry [aut], Andrew E. Jaffe [ctb], Jovana Maksimovic [ctb], E. Andres Houseman [ctb], Jean-Philippe Fortin [ctb], Tim Triche [ctb], Shan V. Andrews [ctb], Peter F. Hickey [ctb] Maintainer: Kasper Daniel Hansen URL: https://github.com/hansenlab/minfi VignetteBuilder: knitr BugReports: https://github.com/hansenlab/minfi/issues git_url: https://git.bioconductor.org/packages/minfi git_branch: RELEASE_3_20 git_last_commit: c1e4c4c git_last_commit_date: 2024-11-19 Date/Publication: 2024-11-19 source.ver: src/contrib/minfi_1.52.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/minfi_1.52.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/minfi_1.52.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/minfi_1.52.1.tgz vignettes: vignettes/minfi/inst/doc/minfi.html vignetteTitles: minfi User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/minfi/inst/doc/minfi.R dependsOnMe: bigmelon, ChAMP, conumee, methylumi, REMP, IlluminaHumanMethylation27kanno.ilmn12.hg19, IlluminaHumanMethylation27kmanifest, IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylation450kmanifest, IlluminaHumanMethylationEPICanno.ilm10b2.hg19, IlluminaHumanMethylationEPICanno.ilm10b3.hg19, IlluminaHumanMethylationEPICanno.ilm10b4.hg19, IlluminaHumanMethylationEPICmanifest, IlluminaHumanMethylationEPICv2anno.20a1.hg38, IlluminaHumanMethylationEPICv2manifest, IlluminaHumanMethylationMSAanno.ilm10a1.hg38, IlluminaHumanMethylationMSAmanifest, BeadSorted.Saliva.EPIC, FlowSorted.Blood.450k, FlowSorted.Blood.EPIC, FlowSorted.CordBlood.450k, FlowSorted.CordBloodCombined.450k, FlowSorted.CordBloodNorway.450k, FlowSorted.DLPFC.450k, minfiData, minfiDataEPIC, methylationArrayAnalysis importsMe: deconvR, DMRcate, epimutacions, funtooNorm, iNETgrate, MEAL, MEAT, MethylAid, methylCC, methylclock, methylumi, missMethyl, quantro, recountmethylation, shinyepico, shinyMethyl, skewr, HiBED, EMAS suggestsMe: epivizr, epivizrChart, GeoTcgaData, Harman, mCSEA, MultiDataSet, planet, RnBeads, brgedata, epimutacionsData, GSE159526, MLML2R dependencyCount: 144 Package: MinimumDistance Version: 1.50.0 Depends: R (>= 3.5.0), VanillaICE (>= 1.47.1) Imports: methods, BiocGenerics, MatrixGenerics, Biobase, S4Vectors (>= 0.23.18), IRanges, GenomeInfoDb, GenomicRanges (>= 1.17.16), SummarizedExperiment (>= 1.15.4), oligoClasses, DNAcopy, ff, foreach, matrixStats, lattice, data.table, grid, stats, utils Suggests: human610quadv1bCrlmm (>= 1.0.3), BSgenome.Hsapiens.UCSC.hg18, BSgenome.Hsapiens.UCSC.hg19, RUnit Enhances: snow, doSNOW License: Artistic-2.0 Archs: x64 MD5sum: 06a608c74974ed1e1f297a3b84e914a9 NeedsCompilation: no Title: A Package for De Novo CNV Detection in Case-Parent Trios Description: Analysis of de novo copy number variants in trios from high-dimensional genotyping platforms. biocViews: Microarray, SNP, CopyNumberVariation Author: Robert B Scharpf and Ingo Ruczinski Maintainer: Robert Scharpf git_url: https://git.bioconductor.org/packages/MinimumDistance git_branch: RELEASE_3_20 git_last_commit: a3f6226 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MinimumDistance_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MinimumDistance_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MinimumDistance_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MinimumDistance_1.50.0.tgz vignettes: vignettes/MinimumDistance/inst/doc/MinimumDistance.pdf vignetteTitles: Detection of de novo copy number alterations in case-parent trios hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MinimumDistance/inst/doc/MinimumDistance.R dependencyCount: 97 Package: MiPP Version: 1.78.0 Depends: R (>= 2.4) Imports: Biobase, e1071, MASS, stats License: GPL (>= 2) MD5sum: aa0c3c94f8573215b719dd25561c45b3 NeedsCompilation: no Title: Misclassification Penalized Posterior Classification Description: This package finds optimal sets of genes that seperate samples into two or more classes. biocViews: Microarray, Classification Author: HyungJun Cho , Sukwoo Kim , Mat Soukup , and Jae K. Lee Maintainer: Sukwoo Kim URL: http://www.healthsystem.virginia.edu/internet/hes/biostat/bioinformatics/ git_url: https://git.bioconductor.org/packages/MiPP git_branch: RELEASE_3_20 git_last_commit: 9e42aa2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MiPP_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MiPP_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MiPP_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MiPP_1.78.0.tgz vignettes: vignettes/MiPP/inst/doc/MiPP.pdf vignetteTitles: MiPP Overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 11 Package: miQC Version: 1.14.0 Depends: R (>= 3.5.0) Imports: SingleCellExperiment, flexmix, ggplot2, splines Suggests: scRNAseq, scater, BiocStyle, knitr, rmarkdown License: BSD_3_clause + file LICENSE Archs: x64 MD5sum: 0792aac601eccb65fe462680371452b2 NeedsCompilation: no Title: Flexible, probabilistic metrics for quality control of scRNA-seq data Description: Single-cell RNA-sequencing (scRNA-seq) has made it possible to profile gene expression in tissues at high resolution. An important preprocessing step prior to performing downstream analyses is to identify and remove cells with poor or degraded sample quality using quality control (QC) metrics. Two widely used QC metrics to identify a ‘low-quality’ cell are (i) if the cell includes a high proportion of reads that map to mitochondrial DNA encoded genes (mtDNA) and (ii) if a small number of genes are detected. miQC is data-driven QC metric that jointly models both the proportion of reads mapping to mtDNA and the number of detected genes with mixture models in a probabilistic framework to predict the low-quality cells in a given dataset. biocViews: SingleCell, QualityControl, GeneExpression, Preprocessing, Sequencing Author: Ariel Hippen [aut, cre], Stephanie Hicks [aut] Maintainer: Ariel Hippen URL: https://github.com/greenelab/miQC VignetteBuilder: knitr BugReports: https://github.com/greenelab/miQC/issues git_url: https://git.bioconductor.org/packages/miQC git_branch: RELEASE_3_20 git_last_commit: 7349de4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/miQC_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/miQC_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/miQC_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/miQC_1.14.0.tgz vignettes: vignettes/miQC/inst/doc/miQC.html vignetteTitles: miQC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/miQC/inst/doc/miQC.R dependencyCount: 66 Package: MIRA Version: 1.28.0 Depends: R (>= 3.5) Imports: BiocGenerics, S4Vectors, IRanges, GenomicRanges, data.table, ggplot2, Biobase, stats, bsseq, methods Suggests: knitr, parallel, testthat, BiocStyle, rmarkdown, AnnotationHub, LOLA License: GPL-3 MD5sum: e5cc9c99f4b1b812446d3aa457e83f97 NeedsCompilation: no Title: Methylation-Based Inference of Regulatory Activity Description: DNA methylation contains information about the regulatory state of the cell. MIRA aggregates genome-scale DNA methylation data into a DNA methylation profile for a given region set with shared biological annotation. Using this profile, MIRA infers and scores the collective regulatory activity for the region set. MIRA facilitates regulatory analysis in situations where classical regulatory assays would be difficult and allows public sources of region sets to be leveraged for novel insight into the regulatory state of DNA methylation datasets. biocViews: ImmunoOncology, DNAMethylation, GeneRegulation, GenomeAnnotation, SystemsBiology, FunctionalGenomics, ChIPSeq, MethylSeq, Sequencing, Epigenetics, Coverage Author: Nathan Sheffield [aut], Christoph Bock [ctb], John Lawson [aut, cre] Maintainer: John Lawson URL: http://databio.org/mira VignetteBuilder: knitr BugReports: https://github.com/databio/MIRA git_url: https://git.bioconductor.org/packages/MIRA git_branch: RELEASE_3_20 git_last_commit: 3d7c5ad git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MIRA_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MIRA_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MIRA_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MIRA_1.28.0.tgz vignettes: vignettes/MIRA/inst/doc/BiologicalApplication.html, vignettes/MIRA/inst/doc/GettingStarted.html vignetteTitles: Applying MIRA to a Biological Question, Getting Started with Methylation-based Inference of Regulatory Activity hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MIRA/inst/doc/BiologicalApplication.R, vignettes/MIRA/inst/doc/GettingStarted.R importsMe: COCOA dependencyCount: 104 Package: MiRaGE Version: 1.48.0 Depends: R (>= 3.1.0), Biobase(>= 2.23.3) Imports: BiocGenerics, S4Vectors, AnnotationDbi, BiocManager Suggests: seqinr (>= 3.0.7), biomaRt (>= 2.19.1), GenomicFeatures (>= 1.15.4), Biostrings (>= 2.31.3), BSgenome.Hsapiens.UCSC.hg19, BSgenome.Mmusculus.UCSC.mm10, miRNATarget, humanStemCell, IRanges, GenomicRanges (>= 1.8.3), BSgenome, beadarrayExampleData License: GPL MD5sum: e13ad9fdad2deeee94e0395bfb34e182 NeedsCompilation: no Title: MiRNA Ranking by Gene Expression Description: The package contains functions for inferece of target gene regulation by miRNA, based on only target gene expression profile. biocViews: ImmunoOncology, Microarray, GeneExpression, RNASeq, Sequencing, SAGE Author: Y-h. Taguchi Maintainer: Y-h. Taguchi git_url: https://git.bioconductor.org/packages/MiRaGE git_branch: RELEASE_3_20 git_last_commit: be4f9d3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MiRaGE_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MiRaGE_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MiRaGE_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MiRaGE_1.48.0.tgz vignettes: vignettes/MiRaGE/inst/doc/MiRaGE.pdf vignetteTitles: How to use MiRaGE Package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MiRaGE/inst/doc/MiRaGE.R dependencyCount: 46 Package: miRBaseConverter Version: 1.30.0 Depends: R (>= 3.4) Imports: stats Suggests: BiocGenerics, RUnit, knitr, rtracklayer, utils, rmarkdown License: GPL (>= 2) MD5sum: 1be1455324a0b495727373e719e29026 NeedsCompilation: no Title: A comprehensive and high-efficiency tool for converting and retrieving the information of miRNAs in different miRBase versions Description: A comprehensive tool for converting and retrieving the miRNA Name, Accession, Sequence, Version, History and Family information in different miRBase versions. It can process a huge number of miRNAs in a short time without other depends. biocViews: Software, miRNA Author: Taosheng Xu Taosheng Xu [aut, cre] () Maintainer: Taosheng Xu Taosheng Xu URL: https://github.com/taoshengxu/miRBaseConverter VignetteBuilder: knitr BugReports: https://github.com/taoshengxu/miRBaseConverter/issues git_url: https://git.bioconductor.org/packages/miRBaseConverter git_branch: RELEASE_3_20 git_last_commit: e1b103a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/miRBaseConverter_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/miRBaseConverter_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/miRBaseConverter_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/miRBaseConverter_1.30.0.tgz vignettes: vignettes/miRBaseConverter/inst/doc/miRBaseConverter-vignette.html vignetteTitles: "miRBaseConverter: A comprehensive and high-efficiency tool for converting and retrieving the information of miRNAs in different miRBase versions" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/miRBaseConverter/inst/doc/miRBaseConverter-vignette.R suggestsMe: EpiMix dependencyCount: 1 Package: miRcomp Version: 1.36.0 Depends: R (>= 3.2), Biobase (>= 2.22.0), miRcompData Imports: utils, methods, graphics, KernSmooth, stats Suggests: BiocStyle, knitr, rmarkdown, RUnit, BiocGenerics, shiny License: GPL-3 | file LICENSE MD5sum: f2dc7026533a1b60c30f91180486bdf4 NeedsCompilation: no Title: Tools to assess and compare miRNA expression estimatation methods Description: Based on a large miRNA dilution study, this package provides tools to read in the raw amplification data and use these data to assess the performance of methods that estimate expression from the amplification curves. biocViews: Software, qPCR, Preprocessing, QualityControl Author: Matthew N. McCall , Lauren Kemperman Maintainer: Matthew N. McCall VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/miRcomp git_branch: RELEASE_3_20 git_last_commit: 8942391 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/miRcomp_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/miRcomp_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/miRcomp_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/miRcomp_1.36.0.tgz vignettes: vignettes/miRcomp/inst/doc/miRcomp.html vignetteTitles: Assessment and comparison of miRNA expression estimation methods (miRcomp) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/miRcomp/inst/doc/miRcomp.R dependencyCount: 8 Package: mirIntegrator Version: 1.36.0 Depends: R (>= 3.3) Imports: graph,ROntoTools, ggplot2, org.Hs.eg.db, AnnotationDbi, Rgraphviz Suggests: RUnit, BiocGenerics License: GPL (>=3) MD5sum: 489c20455b69a6f0abea9c44beb8e91c NeedsCompilation: no Title: Integrating microRNA expression into signaling pathways for pathway analysis Description: Tools for augmenting signaling pathways to perform pathway analysis of microRNA and mRNA expression levels. biocViews: Network, Microarray, GraphAndNetwork, Pathways, KEGG Author: Diana Diaz Maintainer: Diana Diaz URL: http://datad.github.io/mirIntegrator/ git_url: https://git.bioconductor.org/packages/mirIntegrator git_branch: RELEASE_3_20 git_last_commit: eee47ed git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mirIntegrator_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mirIntegrator_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mirIntegrator_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mirIntegrator_1.36.0.tgz vignettes: vignettes/mirIntegrator/inst/doc/mirIntegrator.pdf vignetteTitles: mirIntegrator Overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mirIntegrator/inst/doc/mirIntegrator.R dependencyCount: 77 Package: MIRit Version: 1.2.0 Depends: MultiAssayExperiment, R (>= 4.4.0) Imports: AnnotationDbi, BiocFileCache, BiocParallel, DESeq2, edgeR, fgsea, genekitr, geneset, ggplot2, ggpubr, graph, graphics, graphite, grDevices, httr, limma, methods, Rcpp, Rgraphviz (>= 2.44.0), rlang, stats, utils LinkingTo: Rcpp Suggests: BiocStyle, biomaRt, BSgenome.Hsapiens.UCSC.hg38, GenomicRanges, ggrepel, ggridges, Gviz, gwasrapidd, knitr, MonoPoly, org.Hs.eg.db, rmarkdown, testthat (>= 3.0.0) License: GPL (>= 3) MD5sum: 337ea67055b96bac0c5d5e20cc146cdb NeedsCompilation: yes Title: Integrate microRNA and gene expression to decipher pathway complexity Description: MIRit is an R package that provides several methods for investigating the relationships between miRNAs and genes in different biological conditions. In particular, MIRit allows to explore the functions of dysregulated miRNAs, and makes it possible to identify miRNA-gene regulatory axes that control biological pathways, thus enabling the users to unveil the complexity of miRNA biology. MIRit is an all-in-one framework that aims to help researchers in all the central aspects of an integrative miRNA-mRNA analyses, from differential expression analysis to network characterization. biocViews: Software, GeneRegulation, NetworkEnrichment, NetworkInference, Epigenetics, FunctionalGenomics, SystemsBiology, Network, Pathways, GeneExpression, DifferentialExpression Author: Jacopo Ronchi [aut, cre] (), Maria Foti [fnd] () Maintainer: Jacopo Ronchi URL: https://github.com/jacopo-ronchi/MIRit VignetteBuilder: knitr BugReports: https://github.com/jacopo-ronchi/MIRit/issues git_url: https://git.bioconductor.org/packages/MIRit git_branch: RELEASE_3_20 git_last_commit: d4af30f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MIRit_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MIRit_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MIRit_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MIRit_1.2.0.tgz vignettes: vignettes/MIRit/inst/doc/MIRit.html vignetteTitles: Integrate miRNA and gene expression data with MIRit hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MIRit/inst/doc/MIRit.R dependencyCount: 194 Package: miRLAB Version: 1.36.0 Imports: methods, stats, utils, RCurl, httr, stringr, Hmisc, energy, entropy, gplots, glmnet, impute, limma, pcalg,TCGAbiolinks,dplyr,SummarizedExperiment, ctc, InvariantCausalPrediction, Category, GOstats, org.Hs.eg.db Suggests: knitr,BiocGenerics, AnnotationDbi,RUnit,rmarkdown License: GPL (>=2) MD5sum: 1f3860b3bbf7168a19ff63930870bf1d NeedsCompilation: no Title: Dry lab for exploring miRNA-mRNA relationships Description: Provide tools exploring miRNA-mRNA relationships, including popular miRNA target prediction methods, ensemble methods that integrate individual methods, functions to get data from online resources, functions to validate the results, and functions to conduct enrichment analyses. biocViews: miRNA, GeneExpression, NetworkInference, Network Author: Thuc Duy Le, Junpeng Zhang, Mo Chen, Vu Viet Hoang Pham Maintainer: Thuc Duy Le URL: https://github.com/pvvhoang/miRLAB VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/miRLAB git_branch: RELEASE_3_20 git_last_commit: e6faa9e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/miRLAB_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/miRLAB_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/miRLAB_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/miRLAB_1.36.0.tgz vignettes: vignettes/miRLAB/inst/doc/miRLAB-vignette.html vignetteTitles: miRLAB hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/miRLAB/inst/doc/miRLAB-vignette.R dependencyCount: 197 Package: miRNAmeConverter Version: 1.34.0 Depends: miRBaseVersions.db Imports: DBI, AnnotationDbi, reshape2 Suggests: methods, testthat, knitr, rmarkdown License: Artistic-2.0 MD5sum: a86fef391cf4cc0bbe7868c65c9641b7 NeedsCompilation: no Title: Convert miRNA Names to Different miRBase Versions Description: Translating mature miRNA names to different miRBase versions, sequence retrieval, checking names for validity and detecting miRBase version of a given set of names (data from http://www.mirbase.org/). biocViews: Preprocessing, miRNA Author: Stefan Haunsberger [aut, cre] Maintainer: Stefan J. Haunsberger VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/miRNAmeConverter git_branch: RELEASE_3_20 git_last_commit: 7a058ab git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/miRNAmeConverter_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/miRNAmeConverter_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/miRNAmeConverter_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/miRNAmeConverter_1.34.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 53 Package: miRNApath Version: 1.66.0 Depends: methods, R(>= 2.7.0) License: LGPL-2.1 MD5sum: 52bfe4f43f6707c465da3e1fb4fe4ff4 NeedsCompilation: no Title: miRNApath: Pathway Enrichment for miRNA Expression Data Description: This package provides pathway enrichment techniques for miRNA expression data. Specifically, the set of methods handles the many-to-many relationship between miRNAs and the multiple genes they are predicted to target (and thus affect.) It also handles the gene-to-pathway relationships separately. Both steps are designed to preserve the additive effects of miRNAs on genes, many miRNAs affecting one gene, one miRNA affecting multiple genes, or many miRNAs affecting many genes. biocViews: Annotation, Pathways, DifferentialExpression, NetworkEnrichment, miRNA Author: James M. Ward with contributions from Yunling Shi, Cindy Richards, John P. Cogswell Maintainer: James M. Ward git_url: https://git.bioconductor.org/packages/miRNApath git_branch: RELEASE_3_20 git_last_commit: ffa9de1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/miRNApath_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/miRNApath_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/miRNApath_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/miRNApath_1.66.0.tgz vignettes: vignettes/miRNApath/inst/doc/miRNApath.pdf vignetteTitles: miRNApath: Pathway Enrichment for miRNA Expression Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/miRNApath/inst/doc/miRNApath.R dependencyCount: 1 Package: miRNAtap Version: 1.40.0 Depends: R (>= 3.3.0), AnnotationDbi Imports: DBI, RSQLite, stringr, sqldf, plyr, methods Suggests: topGO, org.Hs.eg.db, miRNAtap.db, testthat License: GPL-2 Archs: x64 MD5sum: 9b2e4fb40170fc5f9fab2dfd964a3ac0 NeedsCompilation: no Title: miRNAtap: microRNA Targets - Aggregated Predictions Description: The package facilitates implementation of workflows requiring miRNA predictions, it allows to integrate ranked miRNA target predictions from multiple sources available online and aggregate them with various methods which improves quality of predictions above any of the single sources. Currently predictions are available for Homo sapiens, Mus musculus and Rattus norvegicus (the last one through homology translation). biocViews: Software, Classification, Microarray, Sequencing, miRNA Author: Maciej Pajak, T. Ian Simpson Maintainer: T. Ian Simpson git_url: https://git.bioconductor.org/packages/miRNAtap git_branch: RELEASE_3_20 git_last_commit: a506057 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/miRNAtap_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/miRNAtap_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/miRNAtap_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/miRNAtap_1.40.0.tgz vignettes: vignettes/miRNAtap/inst/doc/miRNAtap.pdf vignetteTitles: miRNAtap hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/miRNAtap/inst/doc/miRNAtap.R dependsOnMe: miRNAtap.db importsMe: miRNAtap.db dependencyCount: 54 Package: miRSM Version: 2.2.0 Depends: R (>= 4.4.0) Imports: WGCNA, flashClust, dynamicTreeCut, GFA, igraph, linkcomm, MCL, fabia, NMF, biclust, iBBiG, BicARE, isa2, s4vd, BiBitR, rqubic, Biobase, PMA, stats, dbscan, subspace, mclust, SOMbrero, ppclust, Rcpp, utils, SummarizedExperiment, GSEABase, org.Hs.eg.db, clusterProfiler, ReactomePA, DOSE, MatrixCorrelation, energy Suggests: BiocStyle, knitr, rmarkdown, testthat License: GPL-3 MD5sum: c6816f0e2fc48787e1c66416261129b6 NeedsCompilation: yes Title: Inferring miRNA sponge modules in heterogeneous data Description: The package aims to identify miRNA sponge or ceRNA modules in heterogeneous data. It provides several functions to study miRNA sponge modules at single-sample and multi-sample levels, including popular methods for inferring gene modules (candidate miRNA sponge or ceRNA modules), and two functions to identify miRNA sponge modules at single-sample and multi-sample levels, as well as several functions to conduct modular analysis of miRNA sponge modules. biocViews: GeneExpression, BiomedicalInformatics, Clustering, GeneSetEnrichment, Microarray, Software, GeneRegulation, GeneTarget Author: Junpeng Zhang [aut, cre] Maintainer: Junpeng Zhang URL: https://github.com/zhangjunpeng411/miRSM VignetteBuilder: knitr BugReports: https://github.com/zhangjunpeng411/miRSM/issues git_url: https://git.bioconductor.org/packages/miRSM git_branch: RELEASE_3_20 git_last_commit: 91bc3ea git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/miRSM_2.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/miRSM_2.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/miRSM_2.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/miRSM_2.2.0.tgz vignettes: vignettes/miRSM/inst/doc/miRSM.html vignetteTitles: miRSM: inferring miRNA sponge modules in heterogeneous data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/miRSM/inst/doc/miRSM.R dependencyCount: 262 Package: miRspongeR Version: 2.10.0 Depends: R (>= 4.4.0) Imports: corpcor, SPONGE, parallel, igraph, MCL, clusterProfiler, ReactomePA, DOSE, survival, grDevices, graphics, stats, linkcomm, utils, Rcpp, org.Hs.eg.db, foreach, doParallel Suggests: BiocStyle, knitr, rmarkdown, testthat License: GPL-3 MD5sum: cf7c860e44629876bb7c4d6cacc6635f NeedsCompilation: yes Title: Identification and analysis of miRNA sponge regulation Description: This package provides several functions to explore miRNA sponge (also called ceRNA or miRNA decoy) regulation from putative miRNA-target interactions or/and transcriptomics data (including bulk, single-cell and spatial gene expression data). It provides eight popular methods for identifying miRNA sponge interactions, and an integrative method to integrate miRNA sponge interactions from different methods, as well as the functions to validate miRNA sponge interactions, and infer miRNA sponge modules, conduct enrichment analysis of miRNA sponge modules, and conduct survival analysis of miRNA sponge modules. By using a sample control variable strategy, it provides a function to infer sample-specific miRNA sponge interactions. In terms of sample-specific miRNA sponge interactions, it implements three similarity methods to construct sample-sample correlation network. biocViews: GeneExpression, BiomedicalInformatics, NetworkEnrichment, Survival, Microarray, Software, SingleCell, Spatial, RNASeq Author: Junpeng Zhang [aut, cre] Maintainer: Junpeng Zhang URL: VignetteBuilder: knitr BugReports: https://github.com/zhangjunpeng411/miRspongeR/issues git_url: https://git.bioconductor.org/packages/miRspongeR git_branch: RELEASE_3_20 git_last_commit: e65b850 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/miRspongeR_2.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/miRspongeR_2.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/miRspongeR_2.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/miRspongeR_2.10.0.tgz vignettes: vignettes/miRspongeR/inst/doc/miRspongeR.html vignetteTitles: Identification and analysis of miRNA sponge regulation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/miRspongeR/inst/doc/miRspongeR.R dependencyCount: 276 Package: mirTarRnaSeq Version: 1.14.0 Depends: R (>= 4.1.0), ggplot2 Imports: purrr, MASS, pscl, assertthat, caTools, dplyr, pheatmap, reshape2, corrplot, grDevices, graphics, stats, utils, data.table, R.utils, viridis Suggests: BiocStyle, knitr, rmarkdown, R.cache, SPONGE License: MIT + file LICENSE MD5sum: 95e5955842da376ae7ebb10ca1702857 NeedsCompilation: no Title: mirTarRnaSeq Description: mirTarRnaSeq R package can be used for interactive mRNA miRNA sequencing statistical analysis. This package utilizes expression or differential expression mRNA and miRNA sequencing results and performs interactive correlation and various GLMs (Regular GLM, Multivariate GLM, and Interaction GLMs ) analysis between mRNA and miRNA expriments. These experiments can be time point experiments, and or condition expriments. biocViews: miRNA, Regression, Software, Sequencing, SmallRNA, TimeCourse, DifferentialExpression Author: Mercedeh Movassagh [aut, cre] (), Sarah Morton [aut], Rafael Irizarry [aut], Jeffrey Bailey [aut], Joseph N Paulson [aut] Maintainer: Mercedeh Movassagh VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/mirTarRnaSeq git_branch: RELEASE_3_20 git_last_commit: 6a9908f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mirTarRnaSeq_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mirTarRnaSeq_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mirTarRnaSeq_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mirTarRnaSeq_1.14.0.tgz vignettes: vignettes/mirTarRnaSeq/inst/doc/mirTarRnaSeq.pdf vignetteTitles: mirTarRnaSeq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/mirTarRnaSeq/inst/doc/mirTarRnaSeq.R dependencyCount: 58 Package: missMethyl Version: 1.40.0 Depends: R (>= 3.6.0), IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylationEPICanno.ilm10b4.hg19, IlluminaHumanMethylationEPICv2anno.20a1.hg38 Imports: AnnotationDbi, BiasedUrn, Biobase, BiocGenerics, GenomicRanges, GO.db, IlluminaHumanMethylation450kmanifest, IlluminaHumanMethylationEPICmanifest, IlluminaHumanMethylationEPICv2manifest, IRanges, limma, methods, methylumi, minfi, org.Hs.eg.db, ruv, S4Vectors, statmod, stringr, SummarizedExperiment Suggests: BiocStyle, edgeR, knitr, minfiData, rmarkdown, tweeDEseqCountData, DMRcate, ExperimentHub License: GPL-2 MD5sum: 272949b145733e053fc29fe54ad7672d NeedsCompilation: no Title: Analysing Illumina HumanMethylation BeadChip Data Description: Normalisation, testing for differential variability and differential methylation and gene set testing for data from Illumina's Infinium HumanMethylation arrays. The normalisation procedure is subset-quantile within-array normalisation (SWAN), which allows Infinium I and II type probes on a single array to be normalised together. The test for differential variability is based on an empirical Bayes version of Levene's test. Differential methylation testing is performed using RUV, which can adjust for systematic errors of unknown origin in high-dimensional data by using negative control probes. Gene ontology analysis is performed by taking into account the number of probes per gene on the array, as well as taking into account multi-gene associated probes. biocViews: Normalization, DNAMethylation, MethylationArray, GenomicVariation, GeneticVariability, DifferentialMethylation, GeneSetEnrichment Author: Belinda Phipson and Jovana Maksimovic Maintainer: Belinda Phipson , Jovana Maksimovic , Andrew Lonsdale , Calandra Grima VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/missMethyl git_branch: RELEASE_3_20 git_last_commit: 8e61f08 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/missMethyl_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/missMethyl_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/missMethyl_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/missMethyl_1.40.0.tgz vignettes: vignettes/missMethyl/inst/doc/missMethyl.html vignetteTitles: missMethyl: Analysing Illumina HumanMethylation BeadChip Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/missMethyl/inst/doc/missMethyl.R dependsOnMe: methylationArrayAnalysis importsMe: DMRcate, MEAL, methylGSA suggestsMe: RnBeads dependencyCount: 170 Package: missRows Version: 1.26.0 Depends: R (>= 3.5), methods, ggplot2, grDevices, MultiAssayExperiment Imports: plyr, stats, gtools, S4Vectors Suggests: BiocStyle, knitr, testthat License: Artistic-2.0 Archs: x64 MD5sum: adaa57514a428d540e2415112524e666 NeedsCompilation: no Title: Handling Missing Individuals in Multi-Omics Data Integration Description: The missRows package implements the MI-MFA method to deal with missing individuals ('biological units') in multi-omics data integration. The MI-MFA method generates multiple imputed datasets from a Multiple Factor Analysis model, then the yield results are combined in a single consensus solution. The package provides functions for estimating coordinates of individuals and variables, imputing missing individuals, and various diagnostic plots to inspect the pattern of missingness and visualize the uncertainty due to missing values. biocViews: Software, StatisticalMethod, DimensionReduction, PrincipalComponent, MathematicalBiology, Visualization Author: Ignacio Gonzalez and Valentin Voillet Maintainer: Gonzalez Ignacio VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/missRows git_branch: RELEASE_3_20 git_last_commit: 2280700 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/missRows_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/missRows_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/missRows_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/missRows_1.26.0.tgz vignettes: vignettes/missRows/inst/doc/missRows.pdf vignetteTitles: missRows hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/missRows/inst/doc/missRows.R dependencyCount: 75 Package: mistyR Version: 1.14.0 Depends: R (>= 4.0) Imports: assertthat, caret, deldir, digest, distances, dplyr (>= 1.1.0), filelock, furrr (>= 0.2.0), ggplot2, methods, purrr, ranger, readr (>= 2.0.0), ridge, rlang, rlist, R.utils, stats, stringr, tibble, tidyr, tidyselect (>= 1.2.0), utils, withr Suggests: BiocStyle, covr, earth, future, igraph (>= 1.2.7), iml, kernlab, knitr, MASS, rmarkdown, RSNNS, testthat (>= 3.0.0), xgboost License: GPL-3 Archs: x64 MD5sum: 94b404f8a6094afe2761ba69b3c59648 NeedsCompilation: no Title: Multiview Intercellular SpaTial modeling framework Description: mistyR is an implementation of the Multiview Intercellular SpaTialmodeling framework (MISTy). MISTy is an explainable machine learning framework for knowledge extraction and analysis of single-cell, highly multiplexed, spatially resolved data. MISTy facilitates an in-depth understanding of marker interactions by profiling the intra- and intercellular relationships. MISTy is a flexible framework able to process a custom number of views. Each of these views can describe a different spatial context, i.e., define a relationship among the observed expressions of the markers, such as intracellular regulation or paracrine regulation, but also, the views can also capture cell-type specific relationships, capture relations between functional footprints or focus on relations between different anatomical regions. Each MISTy view is considered as a potential source of variability in the measured marker expressions. Each MISTy view is then analyzed for its contribution to the total expression of each marker and is explained in terms of the interactions with other measurements that led to the observed contribution. biocViews: Software, BiomedicalInformatics, CellBiology, SystemsBiology, Regression, DecisionTree, SingleCell, Spatial Author: Jovan Tanevski [cre, aut] (), Ricardo Omar Ramirez Flores [ctb] (), Philipp Schäfer [ctb] Maintainer: Jovan Tanevski URL: https://saezlab.github.io/mistyR/ VignetteBuilder: knitr BugReports: https://github.com/saezlab/mistyR/issues git_url: https://git.bioconductor.org/packages/mistyR git_branch: RELEASE_3_20 git_last_commit: b65acaa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mistyR_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mistyR_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mistyR_1.14.0.tgz vignettes: vignettes/mistyR/inst/doc/mistyR.html vignetteTitles: Getting started hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mistyR/inst/doc/mistyR.R dependencyCount: 109 Package: mitch Version: 1.18.4 Depends: R (>= 4.4) Imports: stats, grDevices, graphics, utils, MASS, plyr, reshape2, parallel, GGally, grid, gridExtra, knitr, rmarkdown, ggplot2, gplots, beeswarm, echarts4r, kableExtra Suggests: stringi, testthat (>= 2.1.0), HGNChelper, IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylationEPICanno.ilm10b4.hg19 License: CC BY-SA 4.0 + file LICENSE MD5sum: be4de04f88dfca1f6e5581d04dbc8a1e NeedsCompilation: no Title: Multi-Contrast Gene Set Enrichment Analysis Description: mitch is an R package for multi-contrast enrichment analysis. At it’s heart, it uses a rank-MANOVA based statistical approach to detect sets of genes that exhibit enrichment in the multidimensional space as compared to the background. The rank-MANOVA concept dates to work by Cox and Mann (https://doi.org/10.1186/1471-2105-13-S16-S12). mitch is useful for pathway analysis of profiling studies with one, two or more contrasts, or in studies with multiple omics profiling, for example proteomic, transcriptomic, epigenomic analysis of the same samples. mitch is perfectly suited for pathway level differential analysis of scRNA-seq data. We have an established routine for pathway enrichment of Infinium Methylation Array data (see vignette). The main strengths of mitch are that it can import datasets easily from many upstream tools and has advanced plotting features to visualise these enrichments. biocViews: GeneExpression, GeneSetEnrichment, SingleCell, Transcriptomics, Epigenetics, Proteomics, DifferentialExpression, Reactome, DNAMethylation, MethylationArray Author: Mark Ziemann [aut, cre, cph] (), Antony Kaspi [aut, cph] Maintainer: Mark Ziemann URL: https://github.com/markziemann/mitch VignetteBuilder: knitr BugReports: https://github.com/markziemann/mitch git_url: https://git.bioconductor.org/packages/mitch git_branch: RELEASE_3_20 git_last_commit: 0409188 git_last_commit_date: 2024-11-28 Date/Publication: 2024-11-28 source.ver: src/contrib/mitch_1.18.4.tar.gz win.binary.ver: bin/windows/contrib/4.4/mitch_1.18.4.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mitch_1.18.4.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mitch_1.18.4.tgz vignettes: vignettes/mitch/inst/doc/infiniumMethArrayWorkflow.html, vignettes/mitch/inst/doc/mitchWorkflow.html vignetteTitles: Applying mitch to pathway analysis of Infinium Methylation array data, mitch Workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/mitch/inst/doc/infiniumMethArrayWorkflow.R, vignettes/mitch/inst/doc/mitchWorkflow.R dependencyCount: 102 Package: mitoClone2 Version: 1.12.0 Depends: R (>= 4.1.0) Imports: reshape2, GenomicRanges, pheatmap, deepSNV, grDevices, graphics, stats, utils, S4Vectors, Rhtslib, parallel, methods, ggplot2 LinkingTo: Rhtslib (>= 1.13.1) Suggests: knitr, rmarkdown, Biostrings, testthat License: GPL-3 MD5sum: 1200b6872a85870476f9b188177175a4 NeedsCompilation: yes Title: Clonal Population Identification in Single-Cell RNA-Seq Data using Mitochondrial and Somatic Mutations Description: This package primarily identifies variants in mitochondrial genomes from BAM alignment files. It filters these variants to remove RNA editing events then estimates their evolutionary relationship (i.e. their phylogenetic tree) and groups single cells into clones. It also visualizes the mutations and providing additional genomic context. biocViews: Annotation, DataImport, Genetics, SNP, Software, SingleCell, Alignment Author: Benjamin Story [aut, cre], Lars Velten [aut], Gregor Mönke [aut] Maintainer: Benjamin Story URL: https://github.com/benstory/mitoClone2 SystemRequirements: GNU make, PhISCS (optional) VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/mitoClone2 git_branch: RELEASE_3_20 git_last_commit: b33a8ad git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mitoClone2_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mitoClone2_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mitoClone2_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mitoClone2_1.12.0.tgz vignettes: vignettes/mitoClone2/inst/doc/clustering.html, vignettes/mitoClone2/inst/doc/overview.html vignetteTitles: Computation of phylogenetic trees and clustering of mutations, Variant Calling hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mitoClone2/inst/doc/clustering.R, vignettes/mitoClone2/inst/doc/overview.R dependencyCount: 107 Package: mixOmics Version: 6.30.0 Depends: R (>= 4.4.0), MASS, lattice, ggplot2 Imports: igraph, ellipse, corpcor, RColorBrewer, parallel, dplyr, tidyr, reshape2, methods, matrixStats, rARPACK, gridExtra, grDevices, graphics, stats, ggrepel, BiocParallel, utils, gsignal, rgl Suggests: BiocStyle, knitr, rmarkdown, testthat, microbenchmark, magick License: GPL (>= 2) MD5sum: bc07fef3c1ce86dbad92753050c4742e NeedsCompilation: no Title: Omics Data Integration Project Description: Multivariate methods are well suited to large omics data sets where the number of variables (e.g. genes, proteins, metabolites) is much larger than the number of samples (patients, cells, mice). They have the appealing properties of reducing the dimension of the data by using instrumental variables (components), which are defined as combinations of all variables. Those components are then used to produce useful graphical outputs that enable better understanding of the relationships and correlation structures between the different data sets that are integrated. mixOmics offers a wide range of multivariate methods for the exploration and integration of biological datasets with a particular focus on variable selection. The package proposes several sparse multivariate models we have developed to identify the key variables that are highly correlated, and/or explain the biological outcome of interest. The data that can be analysed with mixOmics may come from high throughput sequencing technologies, such as omics data (transcriptomics, metabolomics, proteomics, metagenomics etc) but also beyond the realm of omics (e.g. spectral imaging). The methods implemented in mixOmics can also handle missing values without having to delete entire rows with missing data. A non exhaustive list of methods include variants of generalised Canonical Correlation Analysis, sparse Partial Least Squares and sparse Discriminant Analysis. Recently we implemented integrative methods to combine multiple data sets: N-integration with variants of Generalised Canonical Correlation Analysis and P-integration with variants of multi-group Partial Least Squares. biocViews: ImmunoOncology, Microarray, Sequencing, Metabolomics, Metagenomics, Proteomics, GenePrediction, MultipleComparison, Classification, Regression Author: Kim-Anh Le Cao [aut], Florian Rohart [aut], Ignacio Gonzalez [aut], Sebastien Dejean [aut], Al J Abadi [ctb], Max Bladen [ctb], Benoit Gautier [ctb], Francois Bartolo [ctb], Pierre Monget [ctb], Jeff Coquery [ctb], FangZou Yao [ctb], Benoit Liquet [ctb], Eva Hamrud [ctb, cre] Maintainer: Eva Hamrud URL: http://www.mixOmics.org VignetteBuilder: knitr BugReports: https://github.com/mixOmicsTeam/mixOmics/issues/ git_url: https://git.bioconductor.org/packages/mixOmics git_branch: RELEASE_3_20 git_last_commit: 39e7eb5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mixOmics_6.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mixOmics_6.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mixOmics_6.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mixOmics_6.30.0.tgz vignettes: vignettes/mixOmics/inst/doc/vignette.html vignetteTitles: mixOmics hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mixOmics/inst/doc/vignette.R dependsOnMe: timeOmics, mixKernel, sgPLS importsMe: AlpsNMR, DepecheR, PLSDAbatch, POMA, Coxmos, Holomics, iTensor, MSclassifR, plsmod, plsRcox, SISIR suggestsMe: autonomics, eoPredData, MetabolomicsBasics, pctax, RVAideMemoire, SelectBoost, sharp dependencyCount: 90 Package: MLInterfaces Version: 1.86.0 Depends: R (>= 3.5), Rcpp, methods, BiocGenerics (>= 0.13.11), Biobase, annotate, cluster Imports: gdata, pls, sfsmisc, MASS, rpart, genefilter, fpc, ggvis, shiny, gbm, RColorBrewer, hwriter, threejs (>= 0.2.2), mlbench, stats4, tools, grDevices, graphics, stats, magrittr, SummarizedExperiment Suggests: class, e1071, ipred, randomForest, gpls, pamr, nnet, ALL, hgu95av2.db, som, hu6800.db, lattice, caret (>= 5.07), golubEsets, ada, keggorthology, kernlab, mboost, party, klaR, BiocStyle, knitr, testthat Enhances: parallel License: LGPL MD5sum: f90df9372acaba53b404582b1fd12368 NeedsCompilation: no Title: Uniform interfaces to R machine learning procedures for data in Bioconductor containers Description: This package provides uniform interfaces to machine learning code for data in R and Bioconductor containers. biocViews: Classification, Clustering Author: Vincent Carey [cre, aut] (), Jess Mar [aut], Jason Vertrees [ctb], Laurent Gatto [ctb], Phylis Atieno [ctb] (Translated vignettes from Sweave to Rmarkdown / HTML.) Maintainer: Vincent Carey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MLInterfaces git_branch: RELEASE_3_20 git_last_commit: d3a37b2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MLInterfaces_1.86.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MLInterfaces_1.86.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MLInterfaces_1.86.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MLInterfaces_1.86.0.tgz vignettes: vignettes/MLInterfaces/inst/doc/xvalComputerClusters.pdf, vignettes/MLInterfaces/inst/doc/MLint_devel.html, vignettes/MLInterfaces/inst/doc/MLprac2_2.html vignetteTitles: MLInterfaces Computer Cluster, MLInterfaces 2.0 -- a new design, A machine learning tutorial tutorial: applications of the Bioconductor MLInterfaces package to gene expression data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MLInterfaces/inst/doc/MLint_devel.R, vignettes/MLInterfaces/inst/doc/MLprac2_2.R, vignettes/MLInterfaces/inst/doc/xvalComputerClusters.R dependsOnMe: pRoloc, SigCheck, dGAselID, nlcv dependencyCount: 124 Package: MLP Version: 1.54.0 Imports: AnnotationDbi, gplots, graphics, stats, utils Suggests: GO.db, org.Hs.eg.db, org.Mm.eg.db, org.Rn.eg.db, org.Cf.eg.db, org.Mmu.eg.db, KEGGREST, annotate, Rgraphviz, GOstats, graph, limma, mouse4302.db, reactome.db License: GPL-3 MD5sum: 6f60b1fac9054df7ae085f24f5556ce0 NeedsCompilation: no Title: Mean Log P Analysis Description: Pathway analysis based on p-values associated to genes from a genes expression analysis of interest. Utility functions enable to extract pathways from the Gene Ontology Biological Process (GOBP), Molecular Function (GOMF) and Cellular Component (GOCC), Kyoto Encyclopedia of Genes of Genomes (KEGG) and Reactome databases. Methodology, and helper functions to display the results as a table, barplot of pathway significance, Gene Ontology graph and pathway significance are available. biocViews: Genetics, GeneExpression, Pathways, Reactome, KEGG, GO Author: Nandini Raghavan [aut], Tobias Verbeke [aut], An De Bondt [aut], Javier Cabrera [ctb], Dhammika Amaratunga [ctb], Tine Casneuf [ctb], Willem Ligtenberg [ctb], Laure Cougnaud [cre], Katarzyna Gorczak [ctb] Maintainer: Tobias Verbeke git_url: https://git.bioconductor.org/packages/MLP git_branch: RELEASE_3_20 git_last_commit: 72f34e1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MLP_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MLP_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MLP_1.54.0.tgz vignettes: vignettes/MLP/inst/doc/UsingMLP.pdf vignetteTitles: UsingMLP hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MLP/inst/doc/UsingMLP.R importsMe: esetVis suggestsMe: a4 dependencyCount: 50 Package: MLSeq Version: 2.24.0 Depends: caret, ggplot2 Imports: testthat, VennDiagram, pamr, methods, DESeq2, edgeR, limma, Biobase, SummarizedExperiment, plyr, foreach, utils, sSeq, xtable Suggests: knitr, e1071, kernlab License: GPL(>=2) Archs: x64 MD5sum: 402677688472631e3a8e9d4c70b98154 NeedsCompilation: no Title: Machine Learning Interface for RNA-Seq Data Description: This package applies several machine learning methods, including SVM, bagSVM, Random Forest and CART to RNA-Seq data. biocViews: ImmunoOncology, Sequencing, RNASeq, Classification, Clustering Author: Gokmen Zararsiz [aut, cre], Dincer Goksuluk [aut], Selcuk Korkmaz [aut], Vahap Eldem [aut], Izzet Parug Duru [ctb], Ahmet Ozturk [aut], Ahmet Ergun Karaagaoglu [aut, ths] Maintainer: Gokmen Zararsiz VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MLSeq git_branch: RELEASE_3_20 git_last_commit: c5fc14f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MLSeq_2.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MLSeq_2.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MLSeq_2.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MLSeq_2.24.0.tgz vignettes: vignettes/MLSeq/inst/doc/MLSeq.pdf vignetteTitles: Beginner's guide to the "MLSeq" package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MLSeq/inst/doc/MLSeq.R importsMe: GARS dependencyCount: 144 Package: MMDiff2 Version: 1.34.0 Depends: R (>= 3.5.0), Rsamtools, Biobase Imports: GenomicRanges, locfit, BSgenome, Biostrings, shiny, ggplot2, RColorBrewer, graphics, grDevices, parallel, S4Vectors, methods Suggests: MMDiffBamSubset, MotifDb, knitr, BiocStyle, BSgenome.Mmusculus.UCSC.mm9 License: Artistic-2.0 MD5sum: 8ed419214cc72589bcb6a2ef82979593 NeedsCompilation: no Title: Statistical Testing for ChIP-Seq data sets Description: This package detects statistically significant differences between read enrichment profiles in different ChIP-Seq samples. To take advantage of shape differences it uses Kernel methods (Maximum Mean Discrepancy, MMD). biocViews: ChIPSeq, DifferentialPeakCalling, Sequencing, Software Author: Gabriele Schweikert [cre, aut], David Kuo [aut] Maintainer: Gabriele Schweikert VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MMDiff2 git_branch: RELEASE_3_20 git_last_commit: d181cca git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MMDiff2_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MMDiff2_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MMDiff2_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MMDiff2_1.34.0.tgz vignettes: vignettes/MMDiff2/inst/doc/MMDiff2.pdf vignetteTitles: An Introduction to the MMDiff2 method hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MMDiff2/inst/doc/MMDiff2.R suggestsMe: MMDiffBamSubset dependencyCount: 106 Package: MMUPHin Version: 1.20.0 Depends: R (>= 3.6) Imports: Maaslin2, metafor, fpc, igraph, ggplot2, dplyr, tidyr, stringr, cowplot, utils, stats, grDevices Suggests: testthat, BiocStyle, knitr, rmarkdown, magrittr, vegan, phyloseq, curatedMetagenomicData, genefilter License: MIT + file LICENSE MD5sum: beb0e87dac0713d546c78a27b7b954e2 NeedsCompilation: no Title: Meta-analysis Methods with Uniform Pipeline for Heterogeneity in Microbiome Studies Description: MMUPHin is an R package for meta-analysis tasks of microbiome cohorts. It has function interfaces for: a) covariate-controlled batch- and cohort effect adjustment, b) meta-analysis differential abundance testing, c) meta-analysis unsupervised discrete structure (clustering) discovery, and d) meta-analysis unsupervised continuous structure discovery. biocViews: Metagenomics, Microbiome, BatchEffect Author: Siyuan Ma Maintainer: Siyuan MA SystemRequirements: glpk (>= 4.57) VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MMUPHin git_branch: RELEASE_3_20 git_last_commit: 0f730a6 git_last_commit_date: 2024-10-29 Date/Publication: 2025-01-02 source.ver: src/contrib/MMUPHin_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MMUPHin_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MMUPHin_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MMUPHin_1.20.0.tgz vignettes: vignettes/MMUPHin/inst/doc/MMUPHin.html vignetteTitles: MMUPHin hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MMUPHin/inst/doc/MMUPHin.R Package: mnem Version: 1.22.0 Depends: R (>= 4.1) Imports: cluster, graph, Rgraphviz, flexclust, lattice, naturalsort, snowfall, stats4, tsne, methods, graphics, stats, utils, Linnorm, data.table, Rcpp, RcppEigen, matrixStats, grDevices, e1071, ggplot2, wesanderson LinkingTo: Rcpp, RcppEigen Suggests: knitr, devtools, rmarkdown, BiocGenerics, RUnit, epiNEM, BiocStyle License: GPL-3 MD5sum: 2d7b90c117bdab6211ab3f7901b1165b NeedsCompilation: yes Title: Mixture Nested Effects Models Description: Mixture Nested Effects Models (mnem) is an extension of Nested Effects Models and allows for the analysis of single cell perturbation data provided by methods like Perturb-Seq (Dixit et al., 2016) or Crop-Seq (Datlinger et al., 2017). In those experiments each of many cells is perturbed by a knock-down of a specific gene, i.e. several cells are perturbed by a knock-down of gene A, several by a knock-down of gene B, ... and so forth. The observed read-out has to be multi-trait and in the case of the Perturb-/Crop-Seq gene are expression profiles for each cell. mnem uses a mixture model to simultaneously cluster the cell population into k clusters and and infer k networks causally linking the perturbed genes for each cluster. The mixture components are inferred via an expectation maximization algorithm. biocViews: Pathways, SystemsBiology, NetworkInference, Network, RNASeq, PooledScreens, SingleCell, CRISPR, ATACSeq, DNASeq, GeneExpression Author: Martin Pirkl [aut, cre] Maintainer: Martin Pirkl URL: https://github.com/cbg-ethz/mnem/ VignetteBuilder: knitr BugReports: https://github.com/cbg-ethz/mnem/issues git_url: https://git.bioconductor.org/packages/mnem git_branch: RELEASE_3_20 git_last_commit: 47be943 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mnem_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mnem_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mnem_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mnem_1.22.0.tgz vignettes: vignettes/mnem/inst/doc/mnem.html vignetteTitles: mnem hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mnem/inst/doc/mnem.R dependsOnMe: nempi importsMe: bnem, dce, epiNEM dependencyCount: 82 Package: moanin Version: 1.14.0 Depends: R (>= 4.0), SummarizedExperiment, topGO, stats Imports: S4Vectors, MASS (>= 1.0.0), limma, viridis, edgeR, graphics, methods, grDevices, reshape2, NMI, zoo, ClusterR, splines, matrixStats Suggests: testthat (>= 1.0.0), timecoursedata, knitr, rmarkdown, markdown, covr, BiocStyle License: BSD 3-clause License + file LICENSE MD5sum: 9305678333042c7e9d0c98121bd4e3f8 NeedsCompilation: no Title: An R Package for Time Course RNASeq Data Analysis Description: Simple and efficient workflow for time-course gene expression data, built on publictly available open-source projects hosted on CRAN and bioconductor. moanin provides helper functions for all the steps required for analysing time-course data using functional data analysis: (1) functional modeling of the timecourse data; (2) differential expression analysis; (3) clustering; (4) downstream analysis. biocViews: TimeCourse, GeneExpression, RNASeq, Microarray, DifferentialExpression, Clustering Author: Elizabeth Purdom [aut] (), Nelle Varoquaux [aut, cre] () Maintainer: Nelle Varoquaux VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/moanin git_branch: RELEASE_3_20 git_last_commit: db630c8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/moanin_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/moanin_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/moanin_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/moanin_1.14.0.tgz vignettes: vignettes/moanin/inst/doc/documentation.html vignetteTitles: The Moanin Package hasREADME: TRUE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/moanin/inst/doc/documentation.R dependencyCount: 96 Package: mobileRNA Version: 1.2.0 Depends: R (>= 4.3.0) Imports: dplyr, tidyr, ggplot2, BiocGenerics, DESeq2, edgeR, ggrepel, grDevices, pheatmap, utils, tidyselect, progress, RColorBrewer, GenomicRanges, rtracklayer, data.table, SimDesign, scales, IRanges, stats, methods, Biostrings, reticulate, S4Vectors, GenomeInfoDb, SummarizedExperiment, rlang, bioseq, grid Suggests: knitr, rmarkdown, BiocStyle License: MIT + file LICENSE MD5sum: e3aecfdd0bceaef68b290500e62024dd NeedsCompilation: no Title: mobileRNA: Investigate the RNA mobilome & population-scale changes Description: Genomic analysis can be utilised to identify differences between RNA populations in two conditions, both in production and abundance. This includes the identification of RNAs produced by multiple genomes within a biological system. For example, RNA produced by pathogens within a host or mobile RNAs in plant graft systems. The mobileRNA package provides methods to pre-process, analyse and visualise the sRNA and mRNA populations based on the premise of mapping reads to all genotypes at the same time. biocViews: Visualization, RNASeq, Sequencing, SmallRNA, GenomeAssembly, Clustering, ExperimentalDesign, QualityControl, WorkflowStep, Alignment, Preprocessing Author: Katie Jeynes-Cupper [aut, cre] (), Marco Catoni [aut] () Maintainer: Katie Jeynes-Cupper SystemRequirements: GNU make, ShortStack (>= 4.0), HTSeq, HISAT2, SAMtools, Conda VignetteBuilder: knitr BugReports: https://github.com/KJeynesCupper/mobileRNA/issues git_url: https://git.bioconductor.org/packages/mobileRNA git_branch: RELEASE_3_20 git_last_commit: 1d6872e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mobileRNA_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mobileRNA_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mobileRNA_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mobileRNA_1.2.0.tgz vignettes: vignettes/mobileRNA/inst/doc/mobileRNA.html vignetteTitles: mobileRNA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/mobileRNA/inst/doc/mobileRNA.R dependencyCount: 148 Package: MODA Version: 1.32.0 Depends: R (>= 3.3) Imports: grDevices, graphics, stats, utils, WGCNA, dynamicTreeCut, igraph, cluster, AMOUNTAIN, RColorBrewer Suggests: BiocStyle, knitr, rmarkdown License: GPL (>= 2) MD5sum: 51db43cd631c9cc2a3811982ab9001df NeedsCompilation: no Title: MODA: MOdule Differential Analysis for weighted gene co-expression network Description: MODA can be used to estimate and construct condition-specific gene co-expression networks, and identify differentially expressed subnetworks as conserved or condition specific modules which are potentially associated with relevant biological processes. biocViews: GeneExpression, Microarray, DifferentialExpression, Network Author: Dong Li, James B. Brown, Luisa Orsini, Zhisong Pan, Guyu Hu and Shan He Maintainer: Dong Li git_url: https://git.bioconductor.org/packages/MODA git_branch: RELEASE_3_20 git_last_commit: 7558876 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MODA_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MODA_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MODA_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MODA_1.32.0.tgz vignettes: vignettes/MODA/inst/doc/MODA.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 116 Package: ModCon Version: 1.14.0 Depends: data.table, parallel, utils, stats, R (>= 4.1) Suggests: testthat, knitr, rmarkdown, dplyr, shinycssloaders, shiny, shinyFiles, shinydashboard, shinyjs License: GPL-3 + file LICENSE Archs: x64 MD5sum: 14c390fdeaf314a5bccb90fa0b8a13a1 NeedsCompilation: no Title: Modifying splice site usage by changing the mRNP code, while maintaining the genetic code Description: Collection of functions to calculate a nucleotide sequence surrounding for splice donors sites to either activate or repress donor usage. The proposed alternative nucleotide sequence encodes the same amino acid and could be applied e.g. in reporter systems to silence or activate cryptic splice donor sites. biocViews: FunctionalGenomics, AlternativeSplicing Author: Johannes Ptok [aut, cre] () Maintainer: Johannes Ptok URL: https://github.com/caggtaagtat/ModCon SystemRequirements: Perl VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ModCon git_branch: RELEASE_3_20 git_last_commit: 05e5b2f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ModCon_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ModCon_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ModCon_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ModCon_1.14.0.tgz vignettes: vignettes/ModCon/inst/doc/ModCon.html vignetteTitles: Designing SD context with ModCon hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ModCon/inst/doc/ModCon.R dependencyCount: 5 Package: Modstrings Version: 1.22.0 Depends: R (>= 3.6), Biostrings (>= 2.51.5) Imports: methods, BiocGenerics, GenomicRanges, S4Vectors, IRanges, XVector, stringi, stringr, crayon, grDevices Suggests: BiocStyle, knitr, rmarkdown, testthat, usethis License: Artistic-2.0 MD5sum: ceebce9c77fa42d7339085ceacec85d2 NeedsCompilation: no Title: Working with modified nucleotide sequences Description: Representing nucleotide modifications in a nucleotide sequence is usually done via special characters from a number of sources. This represents a challenge to work with in R and the Biostrings package. The Modstrings package implements this functionallity for RNA and DNA sequences containing modified nucleotides by translating the character internally in order to work with the infrastructure of the Biostrings package. For this the ModRNAString and ModDNAString classes and derivates and functions to construct and modify these objects despite the encoding issues are implemenented. In addition the conversion from sequences to list like location information (and the reverse operation) is implemented as well. biocViews: DataImport, DataRepresentation, Infrastructure, Sequencing, Software Author: Felix G.M. Ernst [aut, cre] (), Denis L.J. Lafontaine [ctb, fnd] Maintainer: Felix G.M. Ernst VignetteBuilder: knitr BugReports: https://github.com/FelixErnst/Modstrings/issues git_url: https://git.bioconductor.org/packages/Modstrings git_branch: RELEASE_3_20 git_last_commit: ea371f0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Modstrings_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Modstrings_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Modstrings_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Modstrings_1.22.0.tgz vignettes: vignettes/Modstrings/inst/doc/ModDNAString-alphabet.html, vignettes/Modstrings/inst/doc/ModRNAString-alphabet.html, vignettes/Modstrings/inst/doc/Modstrings.html vignetteTitles: Modstrings-DNA-alphabet, Modstrings-RNA-alphabet, Modstrings hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Modstrings/inst/doc/ModDNAString-alphabet.R, vignettes/Modstrings/inst/doc/ModRNAString-alphabet.R, vignettes/Modstrings/inst/doc/Modstrings.R dependsOnMe: EpiTxDb, RNAmodR, tRNAdbImport importsMe: tRNA suggestsMe: EpiTxDb.Hs.hg38, EpiTxDb.Sc.sacCer3 dependencyCount: 34 Package: MOFA2 Version: 1.16.0 Depends: R (>= 4.0) Imports: rhdf5, dplyr, tidyr, reshape2, pheatmap, ggplot2, methods, RColorBrewer, cowplot, ggrepel, reticulate, HDF5Array, grDevices, stats, magrittr, forcats, utils, corrplot, DelayedArray, Rtsne, uwot, basilisk, stringi Suggests: knitr, testthat, Seurat, SeuratObject, ggpubr, foreach, psych, MultiAssayExperiment, SummarizedExperiment, SingleCellExperiment, ggrastr, mvtnorm, GGally, rmarkdown, data.table, tidyverse, BiocStyle, Matrix, markdown License: file LICENSE MD5sum: aa84acedfadae2954706a4bdc6cf4658 NeedsCompilation: yes Title: Multi-Omics Factor Analysis v2 Description: The MOFA2 package contains a collection of tools for training and analysing multi-omic factor analysis (MOFA). MOFA is a probabilistic factor model that aims to identify principal axes of variation from data sets that can comprise multiple omic layers and/or groups of samples. Additional time or space information on the samples can be incorporated using the MEFISTO framework, which is part of MOFA2. Downstream analysis functions to inspect molecular features underlying each factor, vizualisation, imputation etc are available. biocViews: DimensionReduction, Bayesian, Visualization Author: Ricard Argelaguet [aut, cre] (), Damien Arnol [aut] (), Danila Bredikhin [aut] (), Britta Velten [aut] () Maintainer: Ricard Argelaguet URL: https://biofam.github.io/MOFA2/index.html SystemRequirements: Python (>=3), numpy, pandas, h5py, scipy, argparse, sklearn, mofapy2 VignetteBuilder: knitr BugReports: https://github.com/bioFAM/MOFA2 git_url: https://git.bioconductor.org/packages/MOFA2 git_branch: RELEASE_3_20 git_last_commit: deed7fb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MOFA2_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MOFA2_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MOFA2_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MOFA2_1.16.0.tgz vignettes: vignettes/MOFA2/inst/doc/downstream_analysis.html, vignettes/MOFA2/inst/doc/getting_started_R.html, vignettes/MOFA2/inst/doc/MEFISTO_temporal.html vignetteTitles: Downstream analysis: Overview, MOFA2: How to train a model in R, MEFISTO on simulated data (temporal) hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MOFA2/inst/doc/downstream_analysis.R, vignettes/MOFA2/inst/doc/getting_started_R.R, vignettes/MOFA2/inst/doc/MEFISTO_temporal.R dependencyCount: 92 Package: MOGAMUN Version: 1.16.0 Imports: stats, utils, RCy3, stringr, graphics, grDevices, RUnit, BiocParallel, igraph Suggests: knitr, markdown License: GPL-3 + file LICENSE MD5sum: b6dfd4f6110f13c6adb22756466025aa NeedsCompilation: no Title: MOGAMUN: A Multi-Objective Genetic Algorithm to Find Active Modules in Multiplex Biological Networks Description: MOGAMUN is a multi-objective genetic algorithm that identifies active modules in a multiplex biological network. This allows analyzing different biological networks at the same time. MOGAMUN is based on NSGA-II (Non-Dominated Sorting Genetic Algorithm, version II), which we adapted to work on networks. biocViews: SystemsBiology, GraphAndNetwork, DifferentialExpression, BiomedicalInformatics, Transcriptomics, Clustering, Network Author: Elva-María Novoa-del-Toro [aut, cre] () Maintainer: Elva-María Novoa-del-Toro URL: https://github.com/elvanov/MOGAMUN VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MOGAMUN git_branch: RELEASE_3_20 git_last_commit: ef13729 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MOGAMUN_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MOGAMUN_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MOGAMUN_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MOGAMUN_1.16.0.tgz vignettes: vignettes/MOGAMUN/inst/doc/MOGAMUN_Vignette.html vignetteTitles: Finding active modules with MOGAMUN hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MOGAMUN/inst/doc/MOGAMUN_Vignette.R dependencyCount: 67 Package: mogsa Version: 1.40.0 Depends: R (>= 3.4.0) Imports: methods, graphite, genefilter, BiocGenerics, gplots, GSEABase, Biobase, parallel, corpcor, svd, cluster, grDevices, graphics, stats, utils Suggests: BiocStyle, knitr, org.Hs.eg.db License: GPL-2 MD5sum: 42a2dd385ffc90a674b3ea1c2453b497 NeedsCompilation: no Title: Multiple omics data integrative clustering and gene set analysis Description: This package provide a method for doing gene set analysis based on multiple omics data. biocViews: GeneExpression, PrincipalComponent, StatisticalMethod, Clustering, Software Author: Chen Meng Maintainer: Chen Meng VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/mogsa git_branch: RELEASE_3_20 git_last_commit: 60a9804 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mogsa_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mogsa_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mogsa_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mogsa_1.40.0.tgz vignettes: vignettes/mogsa/inst/doc/moCluster-knitr.pdf, vignettes/mogsa/inst/doc/mogsa-knitr.pdf vignetteTitles: moCluster: Integrative clustering using multiple omics data, mogsa: gene set analysis on multiple omics data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mogsa/inst/doc/moCluster-knitr.R, vignettes/mogsa/inst/doc/mogsa-knitr.R dependencyCount: 71 Package: MoleculeExperiment Version: 1.6.0 Depends: R (>= 2.10) Imports: SpatialExperiment, Matrix, purrr, data.table, dplyr (>= 1.1.1), magrittr, rjson, utils, methods, terra, ggplot2, rlang, cli, EBImage, rhdf5, BiocParallel, S4Vectors, stats Suggests: knitr, BiocStyle, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: cfe686e0c6e5cc5d890c56b519d5642d NeedsCompilation: no Title: Prioritising a molecule-level storage of Spatial Transcriptomics Data Description: MoleculeExperiment contains functions to create and work with objects from the new MoleculeExperiment class. We introduce this class for analysing molecule-based spatial transcriptomics data (e.g., Xenium by 10X, Cosmx SMI by Nanostring, and Merscope by Vizgen). This allows researchers to analyse spatial transcriptomics data at the molecule level, and to have standardised data formats accross vendors. biocViews: DataImport, DataRepresentation, Infrastructure, Software, Spatial, Transcriptomics Author: Bárbara Zita Peters Couto [aut], Nicholas Robertson [aut], Ellis Patrick [aut], Shila Ghazanfar [aut, cre] Maintainer: Shila Ghazanfar URL: https://github.com/SydneyBioX/MoleculeExperiment VignetteBuilder: knitr BugReports: https://github.com/SydneyBioX/MoleculeExperiment/issues git_url: https://git.bioconductor.org/packages/MoleculeExperiment git_branch: RELEASE_3_20 git_last_commit: 2b38d9f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MoleculeExperiment_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MoleculeExperiment_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MoleculeExperiment_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MoleculeExperiment_1.6.0.tgz vignettes: vignettes/MoleculeExperiment/inst/doc/MoleculeExperiment.html vignetteTitles: "Introduction to MoleculeExperiment" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MoleculeExperiment/inst/doc/MoleculeExperiment.R dependencyCount: 126 Package: MOMA Version: 1.18.0 Depends: R (>= 4.0) Imports: circlize, cluster, ComplexHeatmap, dplyr, ggplot2, graphics, grid, grDevices, magrittr, methods, MKmisc, MultiAssayExperiment, parallel, qvalue, RColorBrewer, readr, reshape2, rlang, stats, stringr, tibble, tidyr, utils Suggests: BiocStyle, knitr, rmarkdown, testthat, viper License: GPL-3 MD5sum: 723ca93b14f8f8514315b94a47c6eb72 NeedsCompilation: no Title: Multi Omic Master Regulator Analysis Description: This package implements the inference of candidate master regulator proteins from multi-omics' data (MOMA) algorithm, as well as ancillary analysis and visualization functions. biocViews: Software, NetworkEnrichment, NetworkInference, Network, FeatureExtraction, Clustering, FunctionalGenomics, Transcriptomics, SystemsBiology Author: Evan Paull [aut], Sunny Jones [aut, cre], Mariano Alvarez [aut] Maintainer: Sunny Jones VignetteBuilder: knitr BugReports: https://github.com/califano-lab/MOMA/issues git_url: https://git.bioconductor.org/packages/MOMA git_branch: RELEASE_3_20 git_last_commit: a4186bc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MOMA_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MOMA_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MOMA_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MOMA_1.18.0.tgz vignettes: vignettes/MOMA/inst/doc/moma.html vignetteTitles: MOMA - Multi Omic Master Regulator Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MOMA/inst/doc/moma.R dependencyCount: 105 Package: monaLisa Version: 1.12.0 Depends: R (>= 4.1) Imports: methods, stats, utils, grDevices, graphics, BiocGenerics, GenomicRanges, TFBSTools, Biostrings, IRanges, stabs, BSgenome, glmnet, S4Vectors, SummarizedExperiment, BiocParallel, grid, circlize, ComplexHeatmap (>= 2.11.1), XVector, GenomeInfoDb, tools, vioplot, RSQLite Suggests: JASPAR2020, JASPAR2024, BSgenome.Mmusculus.UCSC.mm10, TxDb.Mmusculus.UCSC.mm10.knownGene, knitr, rmarkdown, testthat, BiocStyle, gridExtra License: GPL (>= 3) MD5sum: 6fcf806ce164367488b93818d2bd9461 NeedsCompilation: no Title: Binned Motif Enrichment Analysis and Visualization Description: Useful functions to work with sequence motifs in the analysis of genomics data. These include methods to annotate genomic regions or sequences with predicted motif hits and to identify motifs that drive observed changes in accessibility or expression. Functions to produce informative visualizations of the obtained results are also provided. biocViews: MotifAnnotation, Visualization, FeatureExtraction, Epigenetics Author: Dania Machlab [aut] (), Lukas Burger [aut] (), Charlotte Soneson [aut] (), Dany Mukesha [ctb] (), Michael Stadler [aut, cre] () Maintainer: Michael Stadler URL: https://github.com/fmicompbio/monaLisa, https://bioconductor.org/packages/monaLisa/, https://fmicompbio.github.io/monaLisa/ VignetteBuilder: knitr BugReports: https://github.com/fmicompbio/monaLisa/issues git_url: https://git.bioconductor.org/packages/monaLisa git_branch: RELEASE_3_20 git_last_commit: c7ad8a7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/monaLisa_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/monaLisa_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/monaLisa_1.12.0.tgz vignettes: vignettes/monaLisa/inst/doc/monaLisa.html, vignettes/monaLisa/inst/doc/selecting_motifs_with_randLassoStabSel.html vignetteTitles: monaLisa - MOtif aNAlysis with Lisa, selecting_motifs_with_randLassoStabSel hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/monaLisa/inst/doc/monaLisa.R, vignettes/monaLisa/inst/doc/selecting_motifs_with_randLassoStabSel.R dependencyCount: 144 Package: monocle Version: 2.34.0 Depends: R (>= 2.10.0), methods, Matrix (>= 1.2-6), Biobase, ggplot2 (>= 1.0.0), VGAM (>= 1.0-6), DDRTree (>= 0.1.4), Imports: parallel, igraph (>= 1.0.1), BiocGenerics, HSMMSingleCell (>= 0.101.5), plyr, cluster, combinat, fastICA, grid, irlba (>= 2.0.0), matrixStats, Rtsne, MASS, reshape2, leidenbase (>= 0.1.9), limma, tibble, dplyr, pheatmap, stringr, proxy, slam, viridis, stats, biocViews, RANN(>= 2.5), Rcpp (>= 0.12.0) LinkingTo: Rcpp Suggests: destiny, Hmisc, knitr, Seurat, scater, testthat License: Artistic-2.0 MD5sum: 6be2330eb42a8c8c4692d96aac05fb3d NeedsCompilation: yes Title: Clustering, differential expression, and trajectory analysis for single- cell RNA-Seq Description: Monocle performs differential expression and time-series analysis for single-cell expression experiments. It orders individual cells according to progress through a biological process, without knowing ahead of time which genes define progress through that process. Monocle also performs differential expression analysis, clustering, visualization, and other useful tasks on single cell expression data. It is designed to work with RNA-Seq and qPCR data, but could be used with other types as well. biocViews: ImmunoOncology, Sequencing, RNASeq, GeneExpression, DifferentialExpression, Infrastructure, DataImport, DataRepresentation, Visualization, Clustering, MultipleComparison, QualityControl Author: Cole Trapnell Maintainer: Cole Trapnell VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/monocle git_branch: RELEASE_3_20 git_last_commit: ecfc0d1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/monocle_2.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/monocle_2.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/monocle_2.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/monocle_2.34.0.tgz vignettes: vignettes/monocle/inst/doc/monocle-vignette.pdf vignetteTitles: Monocle: Cell counting,, differential expression,, and trajectory analysis for single-cell RNA-Seq experiments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/monocle/inst/doc/monocle-vignette.R dependsOnMe: cicero importsMe: uSORT suggestsMe: sincell, grandR, Seurat dependencyCount: 78 Package: Moonlight2R Version: 1.4.0 Depends: R (>= 4.3), doParallel, foreach Imports: parmigene, randomForest, gplots, circlize, RColorBrewer, HiveR, clusterProfiler, DOSE, Biobase, grDevices, graphics, GEOquery, stats, purrr, RISmed, grid, utils, ComplexHeatmap, GenomicRanges, dplyr, fuzzyjoin, rtracklayer, magrittr, qpdf, readr, seqminer, stringr, tibble, tidyHeatmap, tidyr, AnnotationHub, easyPubMed, org.Hs.eg.db, EpiMix, BiocGenerics, ggplot2, ExperimentHub Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0), devtools, roxygen2, png License: GPL-3 MD5sum: 96842c4ab79b82de4ee8a43d1cc10976 NeedsCompilation: no Title: Identify oncogenes and tumor suppressor genes from omics data Description: The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). We present an updated version of the R/bioconductor package called MoonlightR, namely Moonlight2R, which returns a list of candidate driver genes for specific cancer types on the basis of omics data integration. The Moonlight framework contains a primary layer where gene expression data and information about biological processes are integrated to predict genes called oncogenic mediators, divided into putative tumor suppressors and putative oncogenes. This is done through functional enrichment analyses, gene regulatory networks and upstream regulator analyses to score the importance of well-known biological processes with respect to the studied cancer type. By evaluating the effect of the oncogenic mediators on biological processes or through random forests, the primary layer predicts two putative roles for the oncogenic mediators: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As gene expression data alone is not enough to explain the deregulation of the genes, a second layer of evidence is needed. We have automated the integration of a secondary mutational layer through new functionalities in Moonlight2R. These functionalities analyze mutations in the cancer cohort and classifies these into driver and passenger mutations using the driver mutation prediction tool, CScape-somatic. Those oncogenic mediators with at least one driver mutation are retained as the driver genes. As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, Moonlight2R can be used to discover OCGs and TSGs in the same cancer type. This may for instance help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV). In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments. biocViews: DNAMethylation, DifferentialMethylation, GeneRegulation, GeneExpression, MethylationArray, DifferentialExpression, Pathways, Network, Survival, GeneSetEnrichment, NetworkEnrichment Author: Mona Nourbakhsh [aut], Astrid Saksager [aut], Nikola Tom [aut], Xi Steven Chen [aut], Antonio Colaprico [aut], Catharina Olsen [aut], Matteo Tiberti [cre, aut], Elena Papaleo [aut] Maintainer: Matteo Tiberti URL: https://github.com/ELELAB/Moonlight2R SystemRequirements: CScapeSomatic VignetteBuilder: knitr BugReports: https://github.com/ELELAB/Moonlight2R/issues git_url: https://git.bioconductor.org/packages/Moonlight2R git_branch: RELEASE_3_20 git_last_commit: 8d84724 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Moonlight2R_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Moonlight2R_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Moonlight2R_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Moonlight2R_1.4.0.tgz vignettes: vignettes/Moonlight2R/inst/doc/Moonlight2R.html vignetteTitles: A workflow to study mechanistic indicators for driver gene prediction with Moonlight hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: FALSE Rfiles: vignettes/Moonlight2R/inst/doc/Moonlight2R.R dependencyCount: 224 Package: MoonlightR Version: 1.32.0 Depends: R (>= 3.5), doParallel, foreach Imports: parmigene, randomForest, SummarizedExperiment, gplots, circlize, RColorBrewer, HiveR, clusterProfiler, DOSE, Biobase, limma, grDevices, graphics, TCGAbiolinks, GEOquery, stats, RISmed, grid, utils Suggests: BiocStyle, knitr, rmarkdown, testthat, devtools, roxygen2, png, edgeR License: GPL (>= 3) MD5sum: 2667f0a5fd689b9e47a535e8d6e623be NeedsCompilation: no Title: Identify oncogenes and tumor suppressor genes from omics data Description: Motivation: The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). Results: We present an R/bioconductor package called MoonlightR which returns a list of candidate driver genes for specific cancer types on the basis of TCGA expression data. The method first infers gene regulatory networks and then carries out a functional enrichment analysis (FEA) (implementing an upstream regulator analysis, URA) to score the importance of well-known biological processes with respect to the studied cancer type. Eventually, by means of random forests, MoonlightR predicts two specific roles for the candidate driver genes: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, MoonlightR can be used to discover OCGs and TSGs in the same cancer type. This may help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV) in breast cancer. In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments. biocViews: DNAMethylation, DifferentialMethylation, GeneRegulation, GeneExpression, MethylationArray, DifferentialExpression, Pathways, Network, Survival, GeneSetEnrichment, NetworkEnrichment Author: Antonio Colaprico [aut], Catharina Olsen [aut], Matthew H. Bailey [aut], Gabriel J. Odom [aut], Thilde Terkelsen [aut], Mona Nourbakhsh [aut], Astrid Saksager [aut], Tiago C. Silva [aut], André V. Olsen [aut], Laura Cantini [aut], Andrei Zinovyev [aut], Emmanuel Barillot [aut], Houtan Noushmehr [aut], Gloria Bertoli [aut], Isabella Castiglioni [aut], Claudia Cava [aut], Gianluca Bontempi [aut], Xi Steven Chen [aut], Elena Papaleo [aut], Matteo Tiberti [cre, aut] Maintainer: Matteo Tiberti URL: https://github.com/ELELAB/MoonlightR VignetteBuilder: knitr BugReports: https://github.com/ELELAB/MoonlightR/issues git_url: https://git.bioconductor.org/packages/MoonlightR git_branch: RELEASE_3_20 git_last_commit: 7e5c4fe git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MoonlightR_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MoonlightR_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MoonlightR_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MoonlightR_1.32.0.tgz vignettes: vignettes/MoonlightR/inst/doc/Moonlight.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MoonlightR/inst/doc/Moonlight.R dependencyCount: 189 Package: mosaics Version: 2.44.0 Depends: R (>= 3.0.0), methods, graphics, Rcpp Imports: MASS, splines, lattice, IRanges, GenomicRanges, GenomicAlignments, Rsamtools, GenomeInfoDb, S4Vectors LinkingTo: Rcpp Suggests: mosaicsExample Enhances: parallel License: GPL (>= 2) MD5sum: 0171a569a0d8f960055be2c6f9d269a0 NeedsCompilation: yes Title: MOSAiCS (MOdel-based one and two Sample Analysis and Inference for ChIP-Seq) Description: This package provides functions for fitting MOSAiCS and MOSAiCS-HMM, a statistical framework to analyze one-sample or two-sample ChIP-seq data of transcription factor binding and histone modification. biocViews: ChIPseq, Sequencing, Transcription, Genetics, Bioinformatics Author: Dongjun Chung, Pei Fen Kuan, Rene Welch, Sunduz Keles Maintainer: Dongjun Chung URL: http://groups.google.com/group/mosaics_user_group SystemRequirements: Perl git_url: https://git.bioconductor.org/packages/mosaics git_branch: RELEASE_3_20 git_last_commit: 17c0cd0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mosaics_2.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mosaics_2.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mosaics_2.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mosaics_2.44.0.tgz vignettes: vignettes/mosaics/inst/doc/mosaics-example.pdf vignetteTitles: MOSAiCS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mosaics/inst/doc/mosaics-example.R dependencyCount: 54 Package: mosbi Version: 1.12.0 Depends: R (>= 4.1) Imports: Rcpp, BH, xml2, methods, igraph, fabia, RcppParallel, biclust, isa2, QUBIC, akmbiclust, RColorBrewer LinkingTo: Rcpp, BH, RcppParallel Suggests: knitr, rmarkdown, BiocGenerics, runibic, BiocStyle, testthat (>= 3.0.0) License: AGPL-3 + file LICENSE Archs: x64 MD5sum: 1e4037cfe8ee2351fcb55e3079b8804c NeedsCompilation: yes Title: Molecular Signature identification using Biclustering Description: This package is a implementation of biclustering ensemble method MoSBi (Molecular signature Identification from Biclustering). MoSBi provides standardized interfaces for biclustering results and can combine their results with a multi-algorithm ensemble approach to compute robust ensemble biclusters on molecular omics data. This is done by computing similarity networks of biclusters and filtering for overlaps using a custom error model. After that, the louvain modularity it used to extract bicluster communities from the similarity network, which can then be converted to ensemble biclusters. Additionally, MoSBi includes several network visualization methods to give an intuitive and scalable overview of the results. MoSBi comes with several biclustering algorithms, but can be easily extended to new biclustering algorithms. biocViews: Software, StatisticalMethod, Clustering, Network Author: Tim Daniel Rose [cre, aut], Josch Konstantin Pauling [aut], Nikolai Koehler [aut] Maintainer: Tim Daniel Rose SystemRequirements: C++17, GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/mosbi git_branch: RELEASE_3_20 git_last_commit: 433acc6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mosbi_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mosbi_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mosbi_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mosbi_1.12.0.tgz vignettes: vignettes/mosbi/inst/doc/example-workflow.html, vignettes/mosbi/inst/doc/similarity-metrics-evaluation.html vignetteTitles: example-workflow, similarity-metrics-evaluation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/mosbi/inst/doc/example-workflow.R, vignettes/mosbi/inst/doc/similarity-metrics-evaluation.R dependencyCount: 63 Package: MOSClip Version: 1.0.0 Depends: R (>= 4.4.0) Imports: MultiAssayExperiment, methods, survminer, graph, graphite, AnnotationDbi, checkmate, ggplot2, gridExtra, igraph, pheatmap, survival, RColorBrewer, SuperExactTest, reshape, NbClust, S4Vectors, grDevices, graphics, stats, utils, ComplexHeatmap, FactoMineR, circlize, corpcor, coxrobust, elasticnet, gRbase, ggplotify, qpgraph, org.Hs.eg.db, Matrix Suggests: RUnit, BiocGenerics, MASS, BiocStyle, knitr, EDASeq, rmarkdown, kableExtra, testthat (>= 3.0.0) License: AGPL-3 MD5sum: b02d6a00f99b9b6932d68d84781456ee NeedsCompilation: no Title: Multi Omics Survival Clip Description: Topological pathway analysis tool able to integrate multi-omics data. It finds survival-associated modules or significant modules for two-class analysis. This tool have two main methods: pathway tests and module tests. The latter method allows the user to dig inside the pathways itself. biocViews: Software, StatisticalMethod, GraphAndNetwork, Survival, Regression, DimensionReduction, Pathways, Reactome Author: Paolo Martini [aut, cre] (), Anna Bortolato [aut] (), Anna Tanada [aut] (), Enrica Calura [aut] (), Stefania Pirrotta [aut] (), Federico Agostinis [aut] Maintainer: Paolo Martini URL: https://github.com/CaluraLab/MOSClip/ VignetteBuilder: knitr BugReports: https://github.com/CaluraLab/MOSClip/issues git_url: https://git.bioconductor.org/packages/MOSClip git_branch: RELEASE_3_20 git_last_commit: 3324c1e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MOSClip_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MOSClip_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MOSClip_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MOSClip_1.0.0.tgz vignettes: vignettes/MOSClip/inst/doc/mosclip_vignette.html vignetteTitles: MOSClip hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MOSClip/inst/doc/mosclip_vignette.R dependencyCount: 216 Package: mosdef Version: 1.2.0 Depends: R (>= 4.4.0) Imports: DT, ggplot2, ggforce, ggrepel, graphics, grDevices, htmltools, methods, AnnotationDbi, topGO, GO.db, clusterProfiler, goseq, utils, RColorBrewer, rlang, DESeq2, scales, SummarizedExperiment, S4Vectors, stats Suggests: knitr, rmarkdown, macrophage, org.Hs.eg.db, GeneTonic, testthat (>= 3.0.0), TxDb.Hsapiens.UCSC.hg38.knownGene, BiocStyle License: MIT + file LICENSE MD5sum: 23db710f63347d36f046d8c46a8d3022 NeedsCompilation: no Title: MOSt frequently used and useful Differential Expression Functions Description: This package provides functionality to run a number of tasks in the differential expression analysis workflow. This encompasses the most widely used steps, from running various enrichment analysis tools with a unified interface to creating plots and beautifying table components linking to external websites and databases. This streamlines the generation of comprehensive analysis reports. biocViews: GeneExpression, Software, Transcription, Transcriptomics, DifferentialExpression, Visualization, ReportWriting, GeneSetEnrichment, GO Author: Leon Dammer [aut] (), Federico Marini [aut, cre] () Maintainer: Federico Marini URL: https://github.com/imbeimainz/mosdef VignetteBuilder: knitr BugReports: https://github.com/imbeimainz/mosdef/issues git_url: https://git.bioconductor.org/packages/mosdef git_branch: RELEASE_3_20 git_last_commit: a68cd59 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mosdef_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mosdef_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mosdef_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mosdef_1.2.0.tgz vignettes: vignettes/mosdef/inst/doc/mosdef_userguide.html vignetteTitles: The mosdef User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/mosdef/inst/doc/mosdef_userguide.R importsMe: GeneTonic, ideal, pcaExplorer dependencyCount: 182 Package: MOSim Version: 2.2.0 Depends: R (>= 4.2.0) Imports: HiddenMarkov, zoo, IRanges, S4Vectors, dplyr, ggplot2, lazyeval, matrixStats, methods, rlang, stringi, stringr, scran, Seurat, Signac, edgeR, Rcpp LinkingTo: cpp11, Rcpp Suggests: testthat, knitr, rmarkdown, codetools, BiocStyle, stats, utils, purrr, scales, tibble, tidyr, Biobase, scater, SingleCellExperiment, decor, markdown, Rsamtools, igraph, leiden, bluster License: GPL-3 Archs: x64 MD5sum: 38533e929ac399f2bd03d8518ebe3653 NeedsCompilation: yes Title: Multi-Omics Simulation (MOSim) Description: MOSim package simulates multi-omic experiments that mimic regulatory mechanisms within the cell, allowing flexible experimental design including time course and multiple groups. biocViews: Software, TimeCourse, ExperimentalDesign, RNASeq Author: Carolina Monzó [aut], Carlos Martínez [aut], Sonia Tarazona [cre, aut] Maintainer: Sonia Tarazona URL: https://github.com/ConesaLab/MOSim VignetteBuilder: knitr BugReports: https://github.com/ConesaLab/MOSim/issues git_url: https://git.bioconductor.org/packages/MOSim git_branch: RELEASE_3_20 git_last_commit: b7b8075 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MOSim_2.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MOSim_2.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MOSim_2.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MOSim_2.2.0.tgz vignettes: vignettes/MOSim/inst/doc/MOSim.html, vignettes/MOSim/inst/doc/scMOSim.html vignetteTitles: %\VignetteEngine{knitr::knitr}Wiki of how to use mosim, Wiki of how to use sc_mosim hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MOSim/inst/doc/MOSim.R, vignettes/MOSim/inst/doc/scMOSim.R dependencyCount: 199 Package: Motif2Site Version: 1.10.0 Depends: R (>= 4.1) Imports: S4Vectors, stats, utils, methods, grDevices, graphics, BiocGenerics, BSgenome, GenomeInfoDb, MASS, IRanges, GenomicRanges, Biostrings, GenomicAlignments, edgeR, mixtools Suggests: BiocStyle, rmarkdown, knitr, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm10, BSgenome.Scerevisiae.UCSC.sacCer3, BSgenome.Ecoli.NCBI.20080805 License: GPL-2 Archs: x64 MD5sum: 8b19397baf4e352f178fcd3812800112 NeedsCompilation: no Title: Detect binding sites from motifs and ChIP-seq experiments, and compare binding sites across conditions Description: Detect binding sites using motifs IUPAC sequence or bed coordinates and ChIP-seq experiments in bed or bam format. Combine/compare binding sites across experiments, tissues, or conditions. All normalization and differential steps are done using TMM-GLM method. Signal decomposition is done by setting motifs as the centers of the mixture of normal distribution curves. biocViews: Software, Sequencing, ChIPSeq, DifferentialPeakCalling, Epigenetics, SequenceMatching Author: Peyman Zarrineh [cre, aut] () Maintainer: Peyman Zarrineh VignetteBuilder: knitr BugReports: https://github.com/ManchesterBioinference/Motif2Site/issues git_url: https://git.bioconductor.org/packages/Motif2Site git_branch: RELEASE_3_20 git_last_commit: 12ad0b4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Motif2Site_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Motif2Site_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Motif2Site_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Motif2Site_1.10.0.tgz vignettes: vignettes/Motif2Site/inst/doc/Motif2Site.html vignetteTitles: Motif2Site hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Motif2Site/inst/doc/Motif2Site.R dependencyCount: 126 Package: motifbreakR Version: 2.20.0 Depends: R (>= 4.4.0), grid, MotifDb Imports: methods, grDevices, stringr, parallel, BiocGenerics, S4Vectors (>= 0.9.25), IRanges, GenomeInfoDb, GenomicRanges, Biostrings, BSgenome, rtracklayer, VariantAnnotation, BiocParallel, motifStack, Gviz, matrixStats, TFMPvalue, SummarizedExperiment, pwalign, DT, bsicons, BiocFileCache, biomaRt, bslib, shiny, vroom Suggests: BSgenome.Hsapiens.UCSC.hg19, SNPlocs.Hsapiens.dbSNP155.GRCh37, knitr, rmarkdown, BSgenome.Drerio.UCSC.danRer7, BiocStyle, BSgenome.Hsapiens.1000genomes.hs37d5, BSgenome.Hsapiens.UCSC.hg19.masked, BSgenome.Hsapiens.NCBI.GRCh38, BSgenome.Hsapiens.UCSC.hg38.masked, BSgenome.Hsapiens.UCSC.hg38 License: GPL-2 MD5sum: 86c5acab3930ad2ef42208fea74e05ba NeedsCompilation: no Title: A Package For Predicting The Disruptiveness Of Single Nucleotide Polymorphisms On Transcription Factor Binding Sites Description: We introduce motifbreakR, which allows the biologist to judge in the first place whether the sequence surrounding the polymorphism is a good match, and in the second place how much information is gained or lost in one allele of the polymorphism relative to another. MotifbreakR is both flexible and extensible over previous offerings; giving a choice of algorithms for interrogation of genomes with motifs from public sources that users can choose from; these are 1) a weighted-sum probability matrix, 2) log-probabilities, and 3) weighted by relative entropy. MotifbreakR can predict effects for novel or previously described variants in public databases, making it suitable for tasks beyond the scope of its original design. Lastly, it can be used to interrogate any genome curated within Bioconductor (currently there are 32 species, a total of 109 versions). biocViews: ChIPSeq, Visualization, MotifAnnotation, Transcription Author: Simon Gert Coetzee [aut, cre] (), Dennis J. Hazelett [aut] Maintainer: Simon Gert Coetzee VignetteBuilder: knitr BugReports: https://github.com/Simon-Coetzee/motifbreakR/issues git_url: https://git.bioconductor.org/packages/motifbreakR git_branch: RELEASE_3_20 git_last_commit: e8d5e57 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/motifbreakR_2.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/motifbreakR_2.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/motifbreakR_2.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/motifbreakR_2.20.0.tgz vignettes: vignettes/motifbreakR/inst/doc/motifbreakR-vignette.html vignetteTitles: motifbreakR: an Introduction hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/motifbreakR/inst/doc/motifbreakR-vignette.R dependencyCount: 195 Package: motifcounter Version: 1.30.0 Depends: R(>= 3.0) Imports: Biostrings, methods Suggests: knitr, rmarkdown, testthat, MotifDb, seqLogo, prettydoc License: GPL-2 MD5sum: c4e221aed09cf31e91c28a4a7bfdbfb2 NeedsCompilation: yes Title: R package for analysing TFBSs in DNA sequences Description: 'motifcounter' provides motif matching, motif counting and motif enrichment functionality based on position frequency matrices. The main features of the packages include the utilization of higher-order background models and accounting for self-overlapping motif matches when determining motif enrichment. The background model allows to capture dinucleotide (or higher-order nucleotide) composition adequately which may reduced model biases and misleading results compared to using simple GC background models. When conducting a motif enrichment analysis based on the motif match count, the package relies on a compound Poisson distribution or alternatively a combinatorial model. These distribution account for self-overlapping motif structures as exemplified by repeat-like or palindromic motifs, and allow to determine the p-value and fold-enrichment for a set of observed motif matches. biocViews: Transcription,MotifAnnotation,SequenceMatching,Software Author: Wolfgang Kopp [aut, cre] Maintainer: Wolfgang Kopp VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/motifcounter git_branch: RELEASE_3_20 git_last_commit: b49cf20 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/motifcounter_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/motifcounter_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/motifcounter_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/motifcounter_1.30.0.tgz vignettes: vignettes/motifcounter/inst/doc/motifcounter.html vignetteTitles: Introduction to the `motifcounter` package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/motifcounter/inst/doc/motifcounter.R dependencyCount: 25 Package: MotifDb Version: 1.48.0 Depends: R (>= 3.5.0), methods, BiocGenerics, S4Vectors, IRanges, GenomicRanges, Biostrings Imports: rtracklayer, splitstackshape Suggests: RUnit, seqLogo, BiocStyle, knitr, rmarkdown, formatR, markdown License: Artistic-2.0 | file LICENSE License_is_FOSS: no License_restricts_use: yes Archs: x64 MD5sum: 58da75ad34570e7934c4eebd1bd8afa3 NeedsCompilation: no Title: An Annotated Collection of Protein-DNA Binding Sequence Motifs Description: More than 9900 annotated position frequency matrices from 14 public sources, for multiple organisms. biocViews: MotifAnnotation Author: Paul Shannon, Matt Richards Maintainer: Paul Shannon VignetteBuilder: knitr, rmarkdown, formatR, markdown git_url: https://git.bioconductor.org/packages/MotifDb git_branch: RELEASE_3_20 git_last_commit: 02ccdc9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MotifDb_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MotifDb_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MotifDb_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MotifDb_1.48.0.tgz vignettes: vignettes/MotifDb/inst/doc/MotifDb.html vignetteTitles: "A collection of PWMs" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MotifDb/inst/doc/MotifDb.R dependsOnMe: motifbreakR, generegulation importsMe: rTRMui suggestsMe: ATACseqQC, DiffLogo, enhancerHomologSearch, igvR, memes, MMDiff2, motifcounter, motifStack, motifTestR, profileScoreDist, PWMEnrich, rTRM, TFutils, universalmotif, vtpnet dependencyCount: 60 Package: motifmatchr Version: 1.28.0 Depends: R (>= 3.3) Imports: Matrix, Rcpp, methods, TFBSTools, Biostrings, BSgenome, S4Vectors, SummarizedExperiment, GenomicRanges, IRanges, Rsamtools, GenomeInfoDb LinkingTo: Rcpp, RcppArmadillo Suggests: testthat, knitr, rmarkdown, BSgenome.Hsapiens.UCSC.hg19 License: GPL-3 + file LICENSE MD5sum: 4c3cf75a0c77cc0e12170f4a9fec7dc4 NeedsCompilation: yes Title: Fast Motif Matching in R Description: Quickly find motif matches for many motifs and many sequences. Wraps C++ code from the MOODS motif calling library, which was developed by Pasi Rastas, Janne Korhonen, and Petri Martinmäki. biocViews: MotifAnnotation Author: Alicia Schep [aut, cre], Stanford University [cph] Maintainer: Alicia Schep SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/motifmatchr git_branch: RELEASE_3_20 git_last_commit: 96b6c79 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/motifmatchr_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/motifmatchr_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/motifmatchr_1.28.0.tgz vignettes: vignettes/motifmatchr/inst/doc/motifmatchr.html vignetteTitles: motifmatchr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/motifmatchr/inst/doc/motifmatchr.R importsMe: ATACseqTFEA, enhancerHomologSearch, epiregulon, esATAC, pageRank, spatzie suggestsMe: chromVAR, GRaNIE, CAGEWorkflow, MOCHA, Signac dependencyCount: 127 Package: motifStack Version: 1.50.0 Depends: R (>= 2.15.1), methods, grid Imports: ade4, Biostrings, ggplot2, grDevices, graphics, htmlwidgets, stats, stats4, utils, XML, TFBSTools Suggests: Cairo, grImport, grImport2, BiocGenerics, MotifDb, RColorBrewer, BiocStyle, knitr, RUnit, rmarkdown, JASPAR2020 License: GPL (>= 2) MD5sum: c3d5c6ef197f3ebce4eb1f95ee0e0208 NeedsCompilation: no Title: Plot stacked logos for single or multiple DNA, RNA and amino acid sequence Description: The motifStack package is designed for graphic representation of multiple motifs with different similarity scores. It works with both DNA/RNA sequence motif and amino acid sequence motif. In addition, it provides the flexibility for users to customize the graphic parameters such as the font type and symbol colors. biocViews: SequenceMatching, Visualization, Sequencing, Microarray, Alignment, ChIPchip, ChIPSeq, MotifAnnotation, DataImport Author: Jianhong Ou, Michael Brodsky, Scot Wolfe and Lihua Julie Zhu Maintainer: Jianhong Ou VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/motifStack git_branch: RELEASE_3_20 git_last_commit: c1ec2e8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/motifStack_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/motifStack_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/motifStack_1.50.0.tgz vignettes: vignettes/motifStack/inst/doc/motifStack_HTML.html vignetteTitles: motifStack Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/motifStack/inst/doc/motifStack_HTML.R dependsOnMe: generegulation importsMe: ATACseqQC, atSNP, dagLogo, motifbreakR, ribosomeProfilingQC, TCGAWorkflow suggestsMe: ChIPpeakAnno, TFutils, trackViewer, tripr, universalmotif dependencyCount: 146 Package: motifTestR Version: 1.2.1 Depends: Biostrings, GenomicRanges, ggplot2 (>= 3.5.0), R (>= 4.3.0), Imports: GenomeInfoDb, graphics, harmonicmeanp, IRanges, matrixStats, methods, parallel, patchwork, rlang, S4Vectors, stats, universalmotif Suggests: AnnotationHub, BiocStyle, BSgenome.Hsapiens.UCSC.hg19, extraChIPs, ggdendro, knitr, MotifDb, rmarkdown, rtracklayer, testthat (>= 3.0.0) License: GPL-3 Archs: x64 MD5sum: 6844bc3b6698b2187e4ce76abc672022 NeedsCompilation: no Title: Perform key tests for binding motifs in sequence data Description: Taking a set of sequence motifs as PWMs, test a set of sequences for over-representation of these motifs, as well as any positional features within the set of motifs. Enrichment analysis can be undertaken using multiple statistical approaches. The package also contains core functions to prepare data for analysis, and to visualise results. biocViews: MotifAnnotation, ChIPSeq, ChipOnChip, SequenceMatching, Software Author: Stevie Pederson [aut, cre] () Maintainer: Stevie Pederson URL: https://github.com/smped/motifTestR VignetteBuilder: knitr BugReports: https://github.com/smped/motifTestR/issues git_url: https://git.bioconductor.org/packages/motifTestR git_branch: RELEASE_3_20 git_last_commit: 1e1004b git_last_commit_date: 2024-11-01 Date/Publication: 2024-11-01 source.ver: src/contrib/motifTestR_1.2.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/motifTestR_1.2.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/motifTestR_1.2.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/motifTestR_1.2.1.tgz vignettes: vignettes/motifTestR/inst/doc/motifAnalysis.html vignetteTitles: Motif Analysis Using motifTestR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/motifTestR/inst/doc/motifAnalysis.R dependencyCount: 65 Package: MouseFM Version: 1.16.0 Depends: R (>= 4.0.0) Imports: httr, curl, GenomicRanges, dplyr, ggplot2, reshape2, scales, gtools, tidyr, data.table, jsonlite, rlist, GenomeInfoDb, methods, biomaRt, stats, IRanges Suggests: BiocStyle, testthat, knitr, rmarkdown License: GPL-3 MD5sum: c847a523a2c49aa62f263f09662a8d10 NeedsCompilation: no Title: In-silico methods for genetic finemapping in inbred mice Description: This package provides methods for genetic finemapping in inbred mice by taking advantage of their very high homozygosity rate (>95%). biocViews: Genetics, SNP, GeneTarget, VariantAnnotation, GenomicVariation, MultipleComparison, SystemsBiology, MathematicalBiology, PatternLogic, GenePrediction, BiomedicalInformatics, FunctionalGenomics Author: Matthias Munz [aut, cre] (), Inken Wohlers [aut] (), Hauke Busch [aut] () Maintainer: Matthias Munz VignetteBuilder: knitr BugReports: https://github.com/matmu/MouseFM/issues git_url: https://git.bioconductor.org/packages/MouseFM git_branch: RELEASE_3_20 git_last_commit: 6f0f81d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MouseFM_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MouseFM_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MouseFM_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MouseFM_1.16.0.tgz vignettes: vignettes/MouseFM/inst/doc/fetch.html, vignettes/MouseFM/inst/doc/finemap.html, vignettes/MouseFM/inst/doc/prio.html vignetteTitles: Fetch, Finemapping, Prioritization hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MouseFM/inst/doc/fetch.R, vignettes/MouseFM/inst/doc/finemap.R, vignettes/MouseFM/inst/doc/prio.R dependencyCount: 95 Package: MPAC Version: 1.0.0 Depends: R (>= 4.4.0) Imports: data.table (>= 1.14.2), SummarizedExperiment (>= 1.30.2), BiocParallel (>= 1.28.3), fitdistrplus (>= 1.1), igraph (>= 1.4.3), BiocSingular (>= 1.10.0), S4Vectors (>= 0.32.3), SingleCellExperiment (>= 1.16.0), bluster (>= 1.4.0), fgsea (>= 1.20.0), scran (>= 1.22.1), ComplexHeatmap (>= 2.16.0), grid, stats Suggests: rmarkdown, knitr, svglite, bookdown(>= 0.34), testthat (>= 3.0.0) License: GPL-3 Archs: x64 MD5sum: 4994c148ede020434eaecc9788f38f04 NeedsCompilation: no Title: Multi-omic Pathway Analysis of Cancer Description: Multi-omic Pathway Analysis of Cancer (MPAC), integrates multi-omic data for understanding cancer mechanisms. It predicts novel patient groups with distinct pathway profiles as well as identifying key pathway proteins with potential clinical associations. From CNA and RNA-seq data, it determines genes’ DNA and RNA states (i.e., repressed, normal, or activated), which serve as the input for PARADIGM to calculate Inferred Pathway Levels (IPLs). It also permutes DNA and RNA states to create a background distribution to filter IPLs as a way to remove events observed by chance. It provides multiple methods for downstream analysis and visualization. biocViews: Software, Technology, Sequencing, RNASeq, Survival, Clustering, ImmunoOncology Author: Peng Liu [aut, cre] (), Paul Ahlquist [aut], Irene Ong [aut], Anthony Gitter [aut] Maintainer: Peng Liu URL: https://github.com/pliu55/MPAC VignetteBuilder: knitr BugReports: https://github.com/pliu55/MPAC/issues git_url: https://git.bioconductor.org/packages/MPAC git_branch: RELEASE_3_20 git_last_commit: bc0b1ea git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MPAC_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MPAC_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MPAC_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MPAC_1.0.0.tgz vignettes: vignettes/MPAC/inst/doc/MPAC.html vignetteTitles: MPAC: Multi-omic Pathway Analysis of Cancer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MPAC/inst/doc/MPAC.R dependencyCount: 111 Package: MPFE Version: 1.42.0 License: GPL (>= 3) MD5sum: 70bd38ef543a0b93b02105297efbc151 NeedsCompilation: no Title: Estimation of the amplicon methylation pattern distribution from bisulphite sequencing data Description: Estimate distribution of methylation patterns from a table of counts from a bisulphite sequencing experiment given a non-conversion rate and read error rate. biocViews: HighThroughputSequencingData, DNAMethylation, MethylSeq Author: Peijie Lin, Sylvain Foret, Conrad Burden Maintainer: Conrad Burden git_url: https://git.bioconductor.org/packages/MPFE git_branch: RELEASE_3_20 git_last_commit: 93efdf5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MPFE_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MPFE_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MPFE_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MPFE_1.42.0.tgz vignettes: vignettes/MPFE/inst/doc/MPFE.pdf vignetteTitles: MPFE hasREADME: TRUE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MPFE/inst/doc/MPFE.R dependencyCount: 0 Package: mpra Version: 1.28.0 Depends: R (>= 3.5.0), methods, BiocGenerics, SummarizedExperiment, limma Imports: S4Vectors, scales, stats, graphics, statmod Suggests: BiocStyle, knitr, rmarkdown, RUnit License: Artistic-2.0 MD5sum: 7de08f36d1319293d1e7134bc698a546 NeedsCompilation: no Title: Analyze massively parallel reporter assays Description: Tools for data management, count preprocessing, and differential analysis in massively parallel report assays (MPRA). biocViews: Software, GeneRegulation, Sequencing, FunctionalGenomics Author: Leslie Myint [cre, aut], Kasper D. Hansen [aut] Maintainer: Leslie Myint URL: https://github.com/hansenlab/mpra VignetteBuilder: knitr BugReports: https://github.com/hansenlab/mpra/issues git_url: https://git.bioconductor.org/packages/mpra git_branch: RELEASE_3_20 git_last_commit: 3a39e18 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mpra_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mpra_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mpra_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mpra_1.28.0.tgz vignettes: vignettes/mpra/inst/doc/mpra.html vignetteTitles: mpra User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mpra/inst/doc/mpra.R dependencyCount: 49 Package: MPRAnalyze Version: 1.24.0 Imports: BiocParallel, methods, progress, stats, SummarizedExperiment Suggests: knitr License: GPL-3 MD5sum: 5ac27d7a340e6d560836e63f88576189 NeedsCompilation: no Title: Statistical Analysis of MPRA data Description: MPRAnalyze provides statistical framework for the analysis of data generated by Massively Parallel Reporter Assays (MPRAs), used to directly measure enhancer activity. MPRAnalyze can be used for quantification of enhancer activity, classification of active enhancers and comparative analyses of enhancer activity between conditions. MPRAnalyze construct a nested pair of generalized linear models (GLMs) to relate the DNA and RNA observations, easily adjustable to various experimental designs and conditions, and provides a set of rigorous statistical testig schemes. biocViews: ImmunoOncology, Software, StatisticalMethod, Sequencing, GeneExpression, CellBiology, CellBasedAssays, DifferentialExpression, ExperimentalDesign, Classification Author: Tal Ashuach [aut, cre], David S Fischer [aut], Anat Kriemer [ctb], Fabian J Theis [ctb], Nir Yosef [ctb], Maintainer: Tal Ashuach URL: https://github.com/YosefLab/MPRAnalyze VignetteBuilder: knitr BugReports: https://github.com/YosefLab/MPRAnalyze git_url: https://git.bioconductor.org/packages/MPRAnalyze git_branch: RELEASE_3_20 git_last_commit: 3c410ac git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MPRAnalyze_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MPRAnalyze_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MPRAnalyze_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MPRAnalyze_1.24.0.tgz vignettes: vignettes/MPRAnalyze/inst/doc/vignette.html vignetteTitles: Analyzing MPRA data with MPRAnalyze hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MPRAnalyze/inst/doc/vignette.R dependencyCount: 55 Package: msa Version: 1.38.0 Depends: R (>= 3.3.0), methods, Biostrings (>= 2.40.0) Imports: Rcpp (>= 0.11.1), BiocGenerics, IRanges (>= 1.20.0), S4Vectors, tools LinkingTo: Rcpp Suggests: Biobase, knitr, seqinr, ape (>= 5.1), phangorn, pwalign License: GPL (>= 2) MD5sum: b0876e877edd9fd49356b20229f9424f NeedsCompilation: yes Title: Multiple Sequence Alignment Description: The 'msa' package provides a unified R/Bioconductor interface to the multiple sequence alignment algorithms ClustalW, ClustalOmega, and Muscle. All three algorithms are integrated in the package, therefore, they do not depend on any external software tools and are available for all major platforms. The multiple sequence alignment algorithms are complemented by a function for pretty-printing multiple sequence alignments using the LaTeX package TeXshade. biocViews: MultipleSequenceAlignment, Alignment, MultipleComparison, Sequencing Author: Enrico Bonatesta [aut], Christoph Kainrath [aut], Ulrich Bodenhofer [aut,cre] Maintainer: Ulrich Bodenhofer URL: https://github.com/UBod/msa SystemRequirements: GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/msa git_branch: RELEASE_3_20 git_last_commit: 0f52653 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/msa_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/msa_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/msa_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/msa_1.38.0.tgz vignettes: vignettes/msa/inst/doc/msa.pdf vignetteTitles: msa - An R Package for Multiple Sequence Alignment hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/msa/inst/doc/msa.R importsMe: LymphoSeq, odseq, surfaltr, SeedMatchR suggestsMe: idpr, bio3d dependencyCount: 26 Package: MSA2dist Version: 1.10.1 Depends: R (>= 4.4.0) Imports: Rcpp, Biostrings, GenomicRanges, IRanges, ape, doParallel, dplyr, foreach, methods, parallel, pwalign, rlang, seqinr, stats, stringi, stringr, tibble, tidyr, utils LinkingTo: Rcpp, RcppThread Suggests: rmarkdown, knitr, devtools, testthat, ggplot2, BiocStyle License: GPL-3 + file LICENSE MD5sum: c63fc410efbb47ba6056d30a8ead7160 NeedsCompilation: yes Title: MSA2dist calculates pairwise distances between all sequences of a DNAStringSet or a AAStringSet using a custom score matrix and conducts codon based analysis Description: MSA2dist calculates pairwise distances between all sequences of a DNAStringSet or a AAStringSet using a custom score matrix and conducts codon based analysis. It uses scoring matrices to be used in these pairwise distance calcualtions which can be adapted to any scoring for DNA or AA characters. E.g. by using literal distances MSA2dist calculates pairwise IUPAC distances. biocViews: Alignment, Sequencing, Genetics, GO Author: Kristian K Ullrich [aut, cre] () Maintainer: Kristian K Ullrich URL: https://gitlab.gwdg.de/mpievolbio-it/MSA2dist, https://mpievolbio-it.pages.gwdg.de/MSA2dist/ SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://gitlab.gwdg.de/mpievolbio-it/MSA2dist/issues git_url: https://git.bioconductor.org/packages/MSA2dist git_branch: RELEASE_3_20 git_last_commit: d109e04 git_last_commit_date: 2024-11-14 Date/Publication: 2024-11-14 source.ver: src/contrib/MSA2dist_1.10.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSA2dist_1.10.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSA2dist_1.10.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MSA2dist_1.10.1.tgz vignettes: vignettes/MSA2dist/inst/doc/MSA2dist.html vignetteTitles: MSA2dist Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MSA2dist/inst/doc/MSA2dist.R importsMe: doubletrouble dependencyCount: 66 Package: MsBackendMassbank Version: 1.14.0 Depends: R (>= 4.0), Spectra (>= 1.15.10) Imports: BiocParallel, S4Vectors, IRanges, methods, ProtGenerics (>= 1.35.3), MsCoreUtils, DBI, utils Suggests: testthat, knitr (>= 1.1.0), roxygen2, BiocStyle (>= 2.5.19), RSQLite, rmarkdown License: Artistic-2.0 MD5sum: c15b437f5527f5efbe3e2fe33ece5bda NeedsCompilation: no Title: Mass Spectrometry Data Backend for MassBank record Files Description: Mass spectrometry (MS) data backend supporting import and export of MS/MS library spectra from MassBank record files. Different backends are available that allow handling of data in plain MassBank text file format or allow also to interact directly with MassBank SQL databases. Objects from this package are supposed to be used with the Spectra Bioconductor package. This package thus adds MassBank support to the Spectra package. biocViews: Infrastructure, MassSpectrometry, Metabolomics, DataImport Author: RforMassSpectrometry Package Maintainer [cre], Michael Witting [aut] (), Johannes Rainer [aut] (), Michael Stravs [ctb] Maintainer: RforMassSpectrometry Package Maintainer URL: https://github.com/RforMassSpectrometry/MsBackendMassbank VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/MsBackendMassbank/issues git_url: https://git.bioconductor.org/packages/MsBackendMassbank git_branch: RELEASE_3_20 git_last_commit: d4f495e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MsBackendMassbank_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MsBackendMassbank_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MsBackendMassbank_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MsBackendMassbank_1.14.0.tgz vignettes: vignettes/MsBackendMassbank/inst/doc/MsBackendMassbank.html vignetteTitles: Description and usage of MsBackendMassbank hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MsBackendMassbank/inst/doc/MsBackendMassbank.R dependencyCount: 30 Package: MsBackendMetaboLights Version: 1.0.0 Depends: R (>= 4.2.0), Spectra (>= 1.15.12) Imports: curl, ProtGenerics, BiocFileCache, S4Vectors, methods Suggests: testthat, rmarkdown, mzR, knitr, BiocStyle License: Artistic-2.0 MD5sum: f036a1c6240ed398087a23be6152f4c5 NeedsCompilation: no Title: Retrieve Mass Spectrometry Data from MetaboLights Description: MetaboLights is one of the main public repositories for storage of metabolomics experiments, which includes analysis results as well as raw data. The MsBackendMetaboLights package provides functionality to retrieve and represent mass spectrometry (MS) data from MetaboLights. Data files are downloaded and cached locally avoiding repetitive downloads. MS data from metabolomics experiments can thus be directly and seamlessly integrated into R-based analysis workflows with the Spectra and MsBackendMetaboLights package. biocViews: Infrastructure, MassSpectrometry, Metabolomics, DataImport, Proteomics Author: Johannes Rainer [aut, cre] (), Philippine Louail [aut] () Maintainer: Johannes Rainer URL: https://github.com/RforMassSpectrometry/MsBackendMetaboLights VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/MsBackendMetaboLights/issues git_url: https://git.bioconductor.org/packages/MsBackendMetaboLights git_branch: RELEASE_3_20 git_last_commit: 12c3e12 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MsBackendMetaboLights_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MsBackendMetaboLights_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MsBackendMetaboLights_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MsBackendMetaboLights_1.0.0.tgz vignettes: vignettes/MsBackendMetaboLights/inst/doc/MsBackendMetaboLights.html vignetteTitles: Retrieve and Use Mass Spectrometry Data from MetaboLights hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MsBackendMetaboLights/inst/doc/MsBackendMetaboLights.R dependencyCount: 68 Package: MsBackendMgf Version: 1.14.0 Depends: R (>= 4.0), Spectra (>= 1.5.14) Imports: ProtGenerics (>= 1.35.3), BiocParallel, S4Vectors, IRanges, MsCoreUtils, methods, stats Suggests: testthat, knitr (>= 1.1.0), roxygen2, BiocStyle (>= 2.5.19), rmarkdown License: Artistic-2.0 Archs: x64 MD5sum: a05648360c4648fd8ca90ec0a4856092 NeedsCompilation: no Title: Mass Spectrometry Data Backend for Mascot Generic Format (mgf) Files Description: Mass spectrometry (MS) data backend supporting import and export of MS/MS spectra data from Mascot Generic Format (mgf) files. Objects defined in this package are supposed to be used with the Spectra Bioconductor package. This package thus adds mgf file support to the Spectra package. biocViews: Infrastructure, Proteomics, MassSpectrometry, Metabolomics, DataImport Author: RforMassSpectrometry Package Maintainer [cre], Laurent Gatto [aut] (), Johannes Rainer [aut] (), Sebastian Gibb [aut] (), Michael Witting [ctb] (), Adriano Rutz [ctb] () Maintainer: RforMassSpectrometry Package Maintainer URL: https://github.com/RforMassSpectrometry/MsBackendMgf VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/MsBackendMgf/issues git_url: https://git.bioconductor.org/packages/MsBackendMgf git_branch: RELEASE_3_20 git_last_commit: a338887 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MsBackendMgf_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MsBackendMgf_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MsBackendMgf_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MsBackendMgf_1.14.0.tgz vignettes: vignettes/MsBackendMgf/inst/doc/MsBackendMgf.html vignetteTitles: Description and usage of MsBackendMgf hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MsBackendMgf/inst/doc/MsBackendMgf.R suggestsMe: CompoundDb, MsBackendRawFileReader, xcms dependencyCount: 29 Package: MsBackendMsp Version: 1.10.0 Depends: R (>= 4.1.0), Spectra (>= 1.5.14) Imports: ProtGenerics (>= 1.35.3), BiocParallel, S4Vectors, IRanges, MsCoreUtils, methods, stats Suggests: testthat, knitr (>= 1.1.0), roxygen2, BiocStyle (>= 2.5.19), rmarkdown License: Artistic-2.0 Archs: x64 MD5sum: cd1d33e6c98c6cc2900a0e3dbf857275 NeedsCompilation: no Title: Mass Spectrometry Data Backend for NIST msp Files Description: Mass spectrometry (MS) data backend supporting import and handling of MS/MS spectra from NIST MSP Format (msp) files. Import of data from files with different MSP *flavours* is supported. Objects from this package add support for MSP files to Bioconductor's Spectra package. This package is thus not supposed to be used without the Spectra package that provides a complete infrastructure for MS data handling. biocViews: Infrastructure, Proteomics, MassSpectrometry, Metabolomics, DataImport Author: Neumann Steffen [aut] (), Johannes Rainer [aut, cre] (), Michael Witting [ctb] () Maintainer: Johannes Rainer URL: https://github.com/RforMassSpectrometry/MsBackendMsp VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/MsBackendMsp/issues git_url: https://git.bioconductor.org/packages/MsBackendMsp git_branch: RELEASE_3_20 git_last_commit: 6f0f4d6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MsBackendMsp_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MsBackendMsp_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MsBackendMsp_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MsBackendMsp_1.10.0.tgz vignettes: vignettes/MsBackendMsp/inst/doc/MsBackendMsp.html vignetteTitles: MsBackendMsp hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MsBackendMsp/inst/doc/MsBackendMsp.R dependencyCount: 29 Package: MsBackendRawFileReader Version: 1.12.0 Depends: R (>= 4.1), methods, Spectra (>= 1.15.10) Imports: ProtGenerics (>= 1.35.3), MsCoreUtils, S4Vectors, IRanges, rawrr (>= 1.13.1), utils, BiocParallel Suggests: BiocStyle (>= 2.5), ExperimentHub, MsBackendMgf, knitr, lattice, mzR, protViz (>= 0.7), rmarkdown, tartare (>= 1.5), testthat License: GPL-3 MD5sum: b572fa8fcb5d29ece30da3539d5eba91 NeedsCompilation: yes Title: Mass Spectrometry Backend for Reading Thermo Fisher Scientific raw Files Description: implements a MsBackend for the Spectra package using Thermo Fisher Scientific's NewRawFileReader .Net libraries. The package is generalizing the functionality introduced by the rawrr package Methods defined in this package are supposed to extend the Spectra Bioconductor package. biocViews: MassSpectrometry, Proteomics, Metabolomics Author: Christian Panse [aut, cre] (), Tobias Kockmann [aut] (), Roger Gine Bertomeu [ctb] () Maintainer: Christian Panse URL: https://github.com/fgcz/MsBackendRawFileReader SystemRequirements: mono-runtime 4.x or higher (including System.Data library) on Linux/macOS, .Net Framework (>= 4.5.1) on Microsoft Windows. VignetteBuilder: knitr BugReports: https://github.com/fgcz/MsBackendRawFileReader/issues git_url: https://git.bioconductor.org/packages/MsBackendRawFileReader git_branch: RELEASE_3_20 git_last_commit: 9afea02 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MsBackendRawFileReader_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MsBackendRawFileReader_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MsBackendRawFileReader_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MsBackendRawFileReader_1.12.0.tgz vignettes: vignettes/MsBackendRawFileReader/inst/doc/MsBackendRawFileReader.html vignetteTitles: On Using and Extending the `MsBackendRawFileReader` Backend. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: FALSE Rfiles: vignettes/MsBackendRawFileReader/inst/doc/MsBackendRawFileReader.R dependencyCount: 30 Package: MsBackendSql Version: 1.6.0 Depends: R (>= 4.2.0), Spectra (>= 1.15.10) Imports: BiocParallel, S4Vectors, methods, ProtGenerics (>= 1.35.3), DBI, MsCoreUtils, IRanges, data.table, progress, BiocGenerics Suggests: testthat, knitr (>= 1.1.0), roxygen2, BiocStyle (>= 2.5.19), RSQLite, msdata, rmarkdown, microbenchmark, mzR License: Artistic-2.0 MD5sum: 8c744daa8fc956b4c7c99e1e4998f5db NeedsCompilation: no Title: SQL-based Mass Spectrometry Data Backend Description: SQL-based mass spectrometry (MS) data backend supporting also storange and handling of very large data sets. Objects from this package are supposed to be used with the Spectra Bioconductor package. Through the MsBackendSql with its minimal memory footprint, this package thus provides an alternative MS data representation for very large or remote MS data sets. biocViews: Infrastructure, MassSpectrometry, Metabolomics, DataImport, Proteomics Author: Johannes Rainer [aut, cre] (), Chong Tang [ctb], Laurent Gatto [ctb] () Maintainer: Johannes Rainer URL: https://github.com/RforMassSpectrometry/MsBackendSql VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/MsBackendSql/issues git_url: https://git.bioconductor.org/packages/MsBackendSql git_branch: RELEASE_3_20 git_last_commit: fdb2cd8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MsBackendSql_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MsBackendSql_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MsBackendSql_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MsBackendSql_1.6.0.tgz vignettes: vignettes/MsBackendSql/inst/doc/MsBackendSql.html vignetteTitles: Storing Mass Spectrometry Data in SQL Databases hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MsBackendSql/inst/doc/MsBackendSql.R suggestsMe: MsExperiment dependencyCount: 42 Package: MsCoreUtils Version: 1.18.0 Depends: R (>= 3.6.0) Imports: methods, S4Vectors, MASS, stats, clue LinkingTo: Rcpp Suggests: testthat, knitr, BiocStyle, rmarkdown, roxygen2, imputeLCMD, impute, norm, pcaMethods, vsn, Matrix, preprocessCore, missForest Enhances: HDF5Array License: Artistic-2.0 MD5sum: 61311736dc7f409221abbac6dad1732a NeedsCompilation: yes Title: Core Utils for Mass Spectrometry Data Description: MsCoreUtils defines low-level functions for mass spectrometry data and is independent of any high-level data structures. These functions include mass spectra processing functions (noise estimation, smoothing, binning, baseline estimation), quantitative aggregation functions (median polish, robust summarisation, ...), missing data imputation, data normalisation (quantiles, vsn, ...), misc helper functions, that are used across high-level data structure within the R for Mass Spectrometry packages. biocViews: Infrastructure, Proteomics, MassSpectrometry, Metabolomics Author: RforMassSpectrometry Package Maintainer [cre], Laurent Gatto [aut] (), Johannes Rainer [aut] (), Sebastian Gibb [aut] (), Philippine Louail [aut] (), Adriaan Sticker [ctb], Sigurdur Smarason [ctb], Thomas Naake [ctb], Josep Maria Badia Aparicio [ctb] (), Michael Witting [ctb] (), Samuel Wieczorek [ctb], Roger Gine Bertomeu [ctb] (), Mar Garcia-Aloy [ctb] () Maintainer: RforMassSpectrometry Package Maintainer URL: https://github.com/RforMassSpectrometry/MsCoreUtils VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/MsCoreUtils/issues git_url: https://git.bioconductor.org/packages/MsCoreUtils git_branch: RELEASE_3_20 git_last_commit: 2f943a6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MsCoreUtils_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MsCoreUtils_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MsCoreUtils_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MsCoreUtils_1.18.0.tgz vignettes: vignettes/MsCoreUtils/inst/doc/MsCoreUtils.html vignetteTitles: Core Utils for Mass Spectrometry Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MsCoreUtils/inst/doc/MsCoreUtils.R importsMe: CompoundDb, hdxmsqc, MetaboAnnotation, MetaboCoreUtils, MetCirc, MsBackendMassbank, MsBackendMgf, MsBackendMsp, MsBackendRawFileReader, MsBackendSql, MsFeatures, MSnbase, PSMatch, QFeatures, qmtools, scp, Spectra, SpectraQL, xcms suggestsMe: MetNet, msqrob2 dependencyCount: 12 Package: MsDataHub Version: 1.6.0 Imports: ExperimentHub, utils Suggests: ExperimentHubData, DT, BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0), Spectra, mzR, PSMatch, QFeatures (>= 1.13.3) License: Artistic-2.0 MD5sum: 315760cb18f34292e0349572be2492d3 NeedsCompilation: no Title: Mass Spectrometry Data on ExperimentHub Description: The MsDataHub package uses the ExperimentHub infrastructure to distribute raw mass spectrometry data files, peptide spectrum matches or quantitative data from proteomics and metabolomics experiments. biocViews: ExperimentHubSoftware, MassSpectrometry, Proteomics, Metabolomics Author: Laurent Gatto [aut, cre] (), Kristina Gomoryova [ctb] (), Johannes Rainer [aut] () Maintainer: Laurent Gatto URL: https://rformassspectrometry.github.io/MsDataHub VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/MsDataHub/issues git_url: https://git.bioconductor.org/packages/MsDataHub git_branch: RELEASE_3_20 git_last_commit: bceb0f3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MsDataHub_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MsDataHub_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MsDataHub_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MsDataHub_1.6.0.tgz vignettes: vignettes/MsDataHub/inst/doc/MsDataHub.html vignetteTitles: Mass Spectrometry Data on ExperimentHub hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MsDataHub/inst/doc/MsDataHub.R suggestsMe: QFeatures, scp dependencyCount: 67 Package: MsExperiment Version: 1.8.0 Depends: R (>= 4.2), ProtGenerics (>= 1.35.2), Imports: methods, S4Vectors, IRanges, Spectra, SummarizedExperiment, QFeatures, DBI, BiocGenerics Suggests: testthat, knitr (>= 1.1.0), roxygen2, BiocStyle (>= 2.5.19), rmarkdown, rpx, mzR, msdata, MsBackendSql (>= 1.3.2), RSQLite License: Artistic-2.0 MD5sum: 5b2dd4750bc74cf3ec8f7748b6f21891 NeedsCompilation: no Title: Infrastructure for Mass Spectrometry Experiments Description: Infrastructure to store and manage all aspects related to a complete proteomics or metabolomics mass spectrometry (MS) experiment. The MsExperiment package provides light-weight and flexible containers for MS experiments building on the new MS infrastructure provided by the Spectra, QFeatures and related packages. Along with raw data representations, links to original data files and sample annotations, additional metadata or annotations can also be stored within the MsExperiment container. To guarantee maximum flexibility only minimal constraints are put on the type and content of the data within the containers. biocViews: Infrastructure, Proteomics, MassSpectrometry, Metabolomics, ExperimentalDesign, DataImport Author: Laurent Gatto [aut, cre] (), Johannes Rainer [aut] (), Sebastian Gibb [aut] () Maintainer: Laurent Gatto URL: https://github.com/RforMassSpectrometry/MsExperiment VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/MsExperiment/issues git_url: https://git.bioconductor.org/packages/MsExperiment git_branch: RELEASE_3_20 git_last_commit: 34d55aa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MsExperiment_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MsExperiment_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MsExperiment_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MsExperiment_1.8.0.tgz vignettes: vignettes/MsExperiment/inst/doc/MsExperiment.html vignetteTitles: Managing Mass Spectrometry Experiments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MsExperiment/inst/doc/MsExperiment.R importsMe: MsQuality, squallms, xcms dependencyCount: 120 Package: MsFeatures Version: 1.14.0 Depends: R (>= 4.1) Imports: methods, ProtGenerics (>= 1.23.5), MsCoreUtils, SummarizedExperiment, stats Suggests: testthat, roxygen2, BiocStyle, pheatmap, knitr, rmarkdown License: Artistic-2.0 MD5sum: 5461d524e676b4fb7d8b25d892d344db NeedsCompilation: no Title: Functionality for Mass Spectrometry Features Description: The MsFeature package defines functionality for Mass Spectrometry features. This includes functions to group (LC-MS) features based on some of their properties, such as retention time (coeluting features), or correlation of signals across samples. This packge hence allows to group features, and its results can be used as an input for the `QFeatures` package which allows to aggregate abundance levels of features within each group. This package defines concepts and functions for base and common data types, implementations for more specific data types are expected to be implemented in the respective packages (such as e.g. `xcms`). All functionality of this package is implemented in a modular way which allows combination of different grouping approaches and enables its re-use in other R packages. biocViews: Infrastructure, MassSpectrometry, Metabolomics Author: Johannes Rainer [aut, cre] () Maintainer: Johannes Rainer URL: https://github.com/RforMassSpectrometry/MsFeatures VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/MsFeatures/issues git_url: https://git.bioconductor.org/packages/MsFeatures git_branch: RELEASE_3_20 git_last_commit: e88cf3f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MsFeatures_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MsFeatures_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MsFeatures_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MsFeatures_1.14.0.tgz vignettes: vignettes/MsFeatures/inst/doc/MsFeatures.html vignetteTitles: Grouping Mass Spectrometry Features hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MsFeatures/inst/doc/MsFeatures.R importsMe: xcms suggestsMe: qmtools dependencyCount: 42 Package: msgbsR Version: 1.30.0 Depends: R (>= 3.5.0), GenomicRanges, methods Imports: BSgenome, easyRNASeq, edgeR, GenomicAlignments, GenomicFeatures, GenomeInfoDb, ggbio, ggplot2, IRanges, parallel, plyr, Rsamtools, R.utils, stats, SummarizedExperiment, S4Vectors, utils Suggests: roxygen2, BSgenome.Rnorvegicus.UCSC.rn6 License: GPL-2 Archs: x64 MD5sum: ed106032ca1ecb64cef04cb06a4a49b5 NeedsCompilation: no Title: msgbsR: methylation sensitive genotyping by sequencing (MS-GBS) R functions Description: Pipeline for the anaysis of a MS-GBS experiment. biocViews: ImmunoOncology, DifferentialMethylation, DataImport, Epigenetics, MethylSeq Author: Benjamin Mayne Maintainer: Benjamin Mayne git_url: https://git.bioconductor.org/packages/msgbsR git_branch: RELEASE_3_20 git_last_commit: 02d11e5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/msgbsR_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/msgbsR_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/msgbsR_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/msgbsR_1.30.0.tgz vignettes: vignettes/msgbsR/inst/doc/msgbsR_Vignette.pdf vignetteTitles: msgbsR_Example hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/msgbsR/inst/doc/msgbsR_Vignette.R dependencyCount: 182 Package: msImpute Version: 1.16.0 Depends: R (>= 3.5.0) Imports: softImpute, methods, stats, graphics, pdist, reticulate, scran, data.table, FNN, matrixStats, limma, mvtnorm, tidyr, dplyr Suggests: BiocStyle, knitr, rmarkdown, ComplexHeatmap, imputeLCMD License: GPL (>=2) MD5sum: d61fb8e995cf111bd63651bef4ddf496 NeedsCompilation: no Title: Imputation of label-free mass spectrometry peptides Description: MsImpute is a package for imputation of peptide intensity in proteomics experiments. It additionally contains tools for MAR/MNAR diagnosis and assessment of distortions to the probability distribution of the data post imputation. The missing values are imputed by low-rank approximation of the underlying data matrix if they are MAR (method = "v2"), by Barycenter approach if missingness is MNAR ("v2-mnar"), or by Peptide Identity Propagation (PIP). biocViews: MassSpectrometry, Proteomics, Software Author: Soroor Hediyeh-zadeh [aut, cre] () Maintainer: Soroor Hediyeh-zadeh SystemRequirements: python VignetteBuilder: knitr BugReports: https://github.com/DavisLaboratory/msImpute/issues git_url: https://git.bioconductor.org/packages/msImpute git_branch: RELEASE_3_20 git_last_commit: 39a99ae git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/msImpute_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/msImpute_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/msImpute_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/msImpute_1.16.0.tgz vignettes: vignettes/msImpute/inst/doc/msImpute-vignette.html vignetteTitles: msImpute: proteomics missing values imputation and diagnosis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/msImpute/inst/doc/msImpute-vignette.R dependencyCount: 97 Package: mslp Version: 1.8.0 Depends: R (>= 4.2.0) Imports: data.table (>= 1.13.0), doRNG, fmsb, foreach, magrittr, org.Hs.eg.db, pROC, randomForest, RankProd, stats, utils Suggests: BiocStyle, doFuture, future, knitr, rmarkdown, roxygen2, tinytest License: GPL-3 MD5sum: d1daaf0f5a6170eed32cc5462d94ee47 NeedsCompilation: no Title: Predict synthetic lethal partners of tumour mutations Description: An integrated pipeline to predict the potential synthetic lethality partners (SLPs) of tumour mutations, based on gene expression, mutation profiling and cell line genetic screens data. It has builtd-in support for data from cBioPortal. The primary SLPs correlating with muations in WT and compensating for the loss of function of mutations are predicted by random forest based methods (GENIE3) and Rank Products, respectively. Genetic screens are employed to identfy consensus SLPs leads to reduced cell viability when perturbed. biocViews: Pharmacogenetics, Pharmacogenomics Author: Chunxuan Shao [aut, cre] Maintainer: Chunxuan Shao VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/mslp git_branch: RELEASE_3_20 git_last_commit: 6a00714 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mslp_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mslp_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mslp_1.8.0.tgz vignettes: vignettes/mslp/inst/doc/mslp.html vignetteTitles: mslp hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mslp/inst/doc/mslp.R dependencyCount: 63 Package: msmsEDA Version: 1.44.0 Depends: R (>= 3.0.1), MSnbase Imports: MASS, gplots, RColorBrewer License: GPL-2 MD5sum: a07c4428032e5672527fc72139d9af74 NeedsCompilation: no Title: Exploratory Data Analysis of LC-MS/MS data by spectral counts Description: Exploratory data analysis to assess the quality of a set of LC-MS/MS experiments, and visualize de influence of the involved factors. biocViews: ImmunoOncology, Software, MassSpectrometry, Proteomics Author: Josep Gregori, Alex Sanchez, and Josep Villanueva Maintainer: Josep Gregori git_url: https://git.bioconductor.org/packages/msmsEDA git_branch: RELEASE_3_20 git_last_commit: 7ad06d6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/msmsEDA_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/msmsEDA_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/msmsEDA_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/msmsEDA_1.44.0.tgz vignettes: vignettes/msmsEDA/inst/doc/msmsData-Vignette.pdf vignetteTitles: msmsEDA: Batch effects detection in LC-MSMS experiments hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/msmsEDA/inst/doc/msmsData-Vignette.R dependsOnMe: msmsTests suggestsMe: Harman, RforProteomics dependencyCount: 142 Package: msmsTests Version: 1.44.0 Depends: R (>= 3.0.1), MSnbase, msmsEDA Imports: edgeR, qvalue Suggests: xtable License: GPL-2 MD5sum: abde5f7510d8e0461e5f030124a99ed3 NeedsCompilation: no Title: LC-MS/MS Differential Expression Tests Description: Statistical tests for label-free LC-MS/MS data by spectral counts, to discover differentially expressed proteins between two biological conditions. Three tests are available: Poisson GLM regression, quasi-likelihood GLM regression, and the negative binomial of the edgeR package.The three models admit blocking factors to control for nuissance variables.To assure a good level of reproducibility a post-test filter is available, where we may set the minimum effect size considered biologicaly relevant, and the minimum expression of the most abundant condition. biocViews: ImmunoOncology, Software, MassSpectrometry, Proteomics Author: Josep Gregori, Alex Sanchez, and Josep Villanueva Maintainer: Josep Gregori i Font git_url: https://git.bioconductor.org/packages/msmsTests git_branch: RELEASE_3_20 git_last_commit: fb123e1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/msmsTests_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/msmsTests_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/msmsTests_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/msmsTests_1.44.0.tgz vignettes: vignettes/msmsTests/inst/doc/msmsTests-Vignette2.pdf, vignettes/msmsTests/inst/doc/msmsTests-Vignette.pdf vignetteTitles: msmsTests: controlling batch effects by blocking, msmsTests: post test filters to improve reproducibility hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/msmsTests/inst/doc/msmsTests-Vignette2.R, vignettes/msmsTests/inst/doc/msmsTests-Vignette.R importsMe: MSnID suggestsMe: RforProteomics dependencyCount: 146 Package: MSnbase Version: 2.32.0 Depends: R (>= 3.5), methods, BiocGenerics (>= 0.7.1), Biobase (>= 2.15.2), mzR (>= 2.29.3), S4Vectors, ProtGenerics (>= 1.29.1) Imports: MsCoreUtils, PSMatch, BiocParallel, IRanges (>= 2.13.28), plyr, vsn, grid, stats4, affy, impute, pcaMethods, MALDIquant (>= 1.16), mzID (>= 1.5.2), digest, lattice, ggplot2, scales, MASS, Rcpp LinkingTo: Rcpp Suggests: testthat, pryr, gridExtra, microbenchmark, zoo, knitr (>= 1.1.0), rols, Rdisop, pRoloc, pRolocdata (>= 1.43.3), magick, msdata (>= 0.19.3), roxygen2, rgl, rpx, AnnotationHub, BiocStyle (>= 2.5.19), rmarkdown, imputeLCMD, norm, gplots, XML, shiny, magrittr, SummarizedExperiment License: Artistic-2.0 MD5sum: c9ddc0c7d42dbfa22cff5683a41a27de NeedsCompilation: yes Title: Base Functions and Classes for Mass Spectrometry and Proteomics Description: MSnbase provides infrastructure for manipulation, processing and visualisation of mass spectrometry and proteomics data, ranging from raw to quantitative and annotated data. biocViews: ImmunoOncology, Infrastructure, Proteomics, MassSpectrometry, QualityControl, DataImport Author: Laurent Gatto, Johannes Rainer and Sebastian Gibb with contributions from Guangchuang Yu, Samuel Wieczorek, Vasile-Cosmin Lazar, Vladislav Petyuk, Thomas Naake, Richie Cotton, Arne Smits, Martina Fisher, Ludger Goeminne, Adriaan Sticker, Lieven Clement and Pascal Maas. Maintainer: Laurent Gatto URL: https://lgatto.github.io/MSnbase VignetteBuilder: knitr BugReports: https://github.com/lgatto/MSnbase/issues git_url: https://git.bioconductor.org/packages/MSnbase git_branch: RELEASE_3_20 git_last_commit: 5c32fb1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MSnbase_2.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSnbase_2.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSnbase_2.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MSnbase_2.32.0.tgz vignettes: vignettes/MSnbase/inst/doc/v01-MSnbase-demo.html, vignettes/MSnbase/inst/doc/v02-MSnbase-io.html, vignettes/MSnbase/inst/doc/v03-MSnbase-centroiding.html, vignettes/MSnbase/inst/doc/v04-benchmarking.html, vignettes/MSnbase/inst/doc/v05-MSnbase-development.html vignetteTitles: Base Functions and Classes for MS-based Proteomics, MSnbase IO capabilities, MSnbase: centroiding of profile-mode MS data, MSnbase benchmarking, A short introduction to `MSnbase` development hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MSnbase/inst/doc/v01-MSnbase-demo.R, vignettes/MSnbase/inst/doc/v02-MSnbase-io.R, vignettes/MSnbase/inst/doc/v03-MSnbase-centroiding.R, vignettes/MSnbase/inst/doc/v04-benchmarking.R, vignettes/MSnbase/inst/doc/v05-MSnbase-development.R dependsOnMe: bandle, msmsEDA, msmsTests, pRoloc, pRolocGUI, qPLEXanalyzer, synapter, DAPARdata, pRolocdata, RforProteomics importsMe: cliqueMS, CluMSID, DAPAR, DEP, MSnID, MSstatsQC, omXplore, peakPantheR, PrInCE, PRONE, ptairMS, RMassBank, squallms, topdownr, xcms, qPLEXdata suggestsMe: AnnotationHub, biobroom, BiocGenerics, isobar, msPurity, msqrob2, proDA, qcmetrics, wpm, msdata, enviGCMS, LCMSQA, pmd, RAMClustR dependencyCount: 136 Package: MSnID Version: 1.40.0 Depends: R (>= 2.10), Rcpp Imports: MSnbase (>= 1.12.1), mzID (>= 1.3.5), R.cache, foreach, doParallel, parallel, methods, iterators, data.table, Biobase, ProtGenerics, reshape2, dplyr, mzR, BiocStyle, msmsTests, ggplot2, RUnit, BiocGenerics, Biostrings, purrr, rlang, stringr, tibble, AnnotationHub, AnnotationDbi, xtable License: Artistic-2.0 MD5sum: d9352491f61b466b73346733d8e2c3f4 NeedsCompilation: no Title: Utilities for Exploration and Assessment of Confidence of LC-MSn Proteomics Identifications Description: Extracts MS/MS ID data from mzIdentML (leveraging mzID package) or text files. After collating the search results from multiple datasets it assesses their identification quality and optimize filtering criteria to achieve the maximum number of identifications while not exceeding a specified false discovery rate. Also contains a number of utilities to explore the MS/MS results and assess missed and irregular enzymatic cleavages, mass measurement accuracy, etc. biocViews: Proteomics, MassSpectrometry, ImmunoOncology Author: Vlad Petyuk with contributions from Laurent Gatto Maintainer: Vlad Petyuk git_url: https://git.bioconductor.org/packages/MSnID git_branch: RELEASE_3_20 git_last_commit: 8588a13 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MSnID_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSnID_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSnID_1.40.0.tgz vignettes: vignettes/MSnID/inst/doc/handling_mods.pdf, vignettes/MSnID/inst/doc/msnid_vignette.pdf vignetteTitles: Handling Modifications with MSnID, MSnID Package for Handling MS/MS Identifications hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MSnID/inst/doc/handling_mods.R, vignettes/MSnID/inst/doc/msnid_vignette.R suggestsMe: RforProteomics dependencyCount: 170 Package: MSPrep Version: 1.16.0 Depends: R (>= 4.1.0) Imports: SummarizedExperiment, S4Vectors, pcaMethods (>= 1.24.0), crmn, preprocessCore, dplyr (>= 0.7), tidyr, tibble (>= 1.2), magrittr, rlang, stats, stringr, methods, missForest, sva, VIM, Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 1.0.2) License: GPL-3 MD5sum: a2b1d61abb6952ece54996955b432914 NeedsCompilation: no Title: Package for Summarizing, Filtering, Imputing, and Normalizing Metabolomics Data Description: Package performs summarization of replicates, filtering by frequency, several different options for imputing missing data, and a variety of options for transforming, batch correcting, and normalizing data. biocViews: Metabolomics, MassSpectrometry, Preprocessing Author: Max McGrath [aut, cre], Matt Mulvahill [aut], Grant Hughes [aut], Sean Jacobson [aut], Harrison Pielke-lombardo [aut], Katerina Kechris [aut, cph, ths] Maintainer: Max McGrath URL: https://github.com/KechrisLab/MSPrep VignetteBuilder: knitr BugReports: https://github.com/KechrisLab/MSPrep/issues git_url: https://git.bioconductor.org/packages/MSPrep git_branch: RELEASE_3_20 git_last_commit: 66d9876 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MSPrep_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSPrep_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSPrep_1.16.0.tgz vignettes: vignettes/MSPrep/inst/doc/using_MSPrep.html vignetteTitles: Using MSPrep hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MSPrep/inst/doc/using_MSPrep.R dependencyCount: 148 Package: msPurity Version: 1.32.0 Depends: Rcpp Imports: plyr, dplyr, dbplyr, magrittr, foreach, parallel, doSNOW, stringr, mzR, reshape2, fastcluster, ggplot2, DBI, RSQLite Suggests: MSnbase, testthat, xcms, BiocStyle, knitr, rmarkdown, msPurityData, CAMERA, RPostgres, RMySQL License: GPL-3 + file LICENSE MD5sum: 9ee3a37b16cd9b35ace687b729c012f4 NeedsCompilation: no Title: Automated Evaluation of Precursor Ion Purity for Mass Spectrometry Based Fragmentation in Metabolomics Description: msPurity R package was developed to: 1) Assess the spectral quality of fragmentation spectra by evaluating the "precursor ion purity". 2) Process fragmentation spectra. 3) Perform spectral matching. What is precursor ion purity? -What we call "Precursor ion purity" is a measure of the contribution of a selected precursor peak in an isolation window used for fragmentation. The simple calculation involves dividing the intensity of the selected precursor peak by the total intensity of the isolation window. When assessing MS/MS spectra this calculation is done before and after the MS/MS scan of interest and the purity is interpolated at the recorded time of the MS/MS acquisition. Additionally, isotopic peaks can be removed, low abundance peaks are removed that are thought to have limited contribution to the resulting MS/MS spectra and the isolation efficiency of the mass spectrometer can be used to normalise the intensities used for the calculation. biocViews: MassSpectrometry, Metabolomics, Software Author: Thomas N. Lawson [aut, cre] (), Ralf Weber [ctb], Martin Jones [ctb], Julien Saint-Vanne [ctb], Andris Jankevics [ctb], Mark Viant [ths], Warwick Dunn [ths] Maintainer: Thomas N. Lawson URL: https://github.com/computational-metabolomics/msPurity/ VignetteBuilder: knitr BugReports: https://github.com/computational-metabolomics/msPurity/issues/new git_url: https://git.bioconductor.org/packages/msPurity git_branch: RELEASE_3_20 git_last_commit: c299bb7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/msPurity_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/msPurity_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/msPurity_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/msPurity_1.32.0.tgz vignettes: vignettes/msPurity/inst/doc/msPurity-lcmsms-data-processing-and-spectral-matching-vignette.html, vignettes/msPurity/inst/doc/msPurity-spectral-database-vignette.html, vignettes/msPurity/inst/doc/msPurity-vignette.html vignetteTitles: msPurity spectral matching, msPurity spectral database schema, msPurity hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/msPurity/inst/doc/msPurity-lcmsms-data-processing-and-spectral-matching-vignette.R, vignettes/msPurity/inst/doc/msPurity-spectral-database-vignette.R, vignettes/msPurity/inst/doc/msPurity-vignette.R suggestsMe: MetMashR dependencyCount: 70 Package: msqrob2 Version: 1.14.1 Depends: R (>= 4.1), QFeatures (>= 1.1.2) Imports: stats, methods, lme4, purrr, BiocParallel, Matrix, MASS, limma, SummarizedExperiment, MultiAssayExperiment, codetools Suggests: multcomp, gridExtra, knitr, BiocStyle, RefManageR, sessioninfo, rmarkdown, testthat, tidyverse, plotly, msdata, MSnbase, matrixStats, MsCoreUtils, covr License: Artistic-2.0 Archs: x64 MD5sum: 2f35efecd6be67afb6d9b39dd7603985 NeedsCompilation: no Title: Robust statistical inference for quantitative LC-MS proteomics Description: msqrob2 provides a robust linear mixed model framework for assessing differential abundance in MS-based Quantitative proteomics experiments. Our workflows can start from raw peptide intensities or summarised protein expression values. The model parameter estimates can be stabilized by ridge regression, empirical Bayes variance estimation and robust M-estimation. msqrob2's hurde workflow can handle missing data without having to rely on hard-to-verify imputation assumptions, and, outcompetes state-of-the-art methods with and without imputation for both high and low missingness. It builds on QFeature infrastructure for quantitative mass spectrometry data to store the model results together with the raw data and preprocessed data. biocViews: Proteomics, MassSpectrometry, DifferentialExpression, MultipleComparison, Regression, ExperimentalDesign, Software, ImmunoOncology, Normalization, TimeCourse, Preprocessing Author: Lieven Clement [aut, cre] (), Laurent Gatto [aut] (), Oliver M. Crook [aut] (), Adriaan Sticker [ctb], Ludger Goeminne [ctb], Milan Malfait [ctb] (), Stijn Vandenbulcke [aut] Maintainer: Lieven Clement URL: https://github.com/statOmics/msqrob2 VignetteBuilder: knitr BugReports: https://github.com/statOmics/msqrob2/issues git_url: https://git.bioconductor.org/packages/msqrob2 git_branch: RELEASE_3_20 git_last_commit: e36ae39 git_last_commit_date: 2024-12-20 Date/Publication: 2024-12-23 source.ver: src/contrib/msqrob2_1.14.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/msqrob2_1.14.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/msqrob2_1.14.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/msqrob2_1.14.1.tgz vignettes: vignettes/msqrob2/inst/doc/cptac.html vignetteTitles: A. label-free workflow with two group design hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/msqrob2/inst/doc/cptac.R dependencyCount: 124 Package: MsQuality Version: 1.6.0 Depends: R (>= 4.2.0) Imports: BiocParallel (>= 1.32.0), ggplot2 (>= 3.3.5), htmlwidgets (>= 1.5.3), methods (>= 4.2.0), msdata (>= 0.32.0), MsExperiment (>= 0.99.0), plotly (>= 4.9.4.1), ProtGenerics (>= 1.24.0), rlang (>= 1.1.1), rmzqc (>= 0.5.0), shiny (>= 1.6.0), shinydashboard (>= 0.7.1), Spectra (>= 1.13.2), stats (>= 4.2.0), stringr (>= 1.4.0), tibble (>= 3.1.4), tidyr (>= 1.1.3), utils (>= 4.2.0) Suggests: BiocGenerics (>= 0.24.0), BiocStyle (>= 2.6.1), dplyr (>= 1.0.5), knitr (>= 1.11), mzR (>= 2.32.0), rmarkdown (>= 2.7), S4Vectors (>= 0.29.17), testthat (>= 2.2.1) License: GPL-3 MD5sum: 4f5ec7a8df26bc6542bb6d3f2a7b9a6b NeedsCompilation: no Title: MsQuality - Quality metric calculation from Spectra and MsExperiment objects Description: The MsQuality provides functionality to calculate quality metrics for mass spectrometry-derived, spectral data at the per-sample level. MsQuality relies on the mzQC framework of quality metrics defined by the Human Proteom Organization-Proteomics Standards Initiative (HUPO-PSI). These metrics quantify the quality of spectral raw files using a controlled vocabulary. The package is especially addressed towards users that acquire mass spectrometry data on a large scale (e.g. data sets from clinical settings consisting of several thousands of samples). The MsQuality package allows to calculate low-level quality metrics that require minimum information on mass spectrometry data: retention time, m/z values, and associated intensities. MsQuality relies on the Spectra package, or alternatively the MsExperiment package, and its infrastructure to store spectral data. biocViews: Metabolomics, Proteomics, MassSpectrometry, QualityControl Author: Thomas Naake [aut, cre] (), Johannes Rainer [aut] () Maintainer: Thomas Naake URL: https://www.github.com/tnaake/MsQuality/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MsQuality git_branch: RELEASE_3_20 git_last_commit: 4638e53 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MsQuality_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MsQuality_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MsQuality_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MsQuality_1.6.0.tgz vignettes: vignettes/MsQuality/inst/doc/MsQuality.html vignetteTitles: QC for metabolomics and proteomics data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MsQuality/inst/doc/MsQuality.R dependencyCount: 146 Package: MSstats Version: 4.14.0 Depends: R (>= 4.0) Imports: MSstatsConvert, data.table, checkmate, MASS, htmltools, limma, lme4, preprocessCore, survival, utils, Rcpp, ggplot2, ggrepel, gplots, plotly, marray, stats, grDevices, graphics, methods, statmod, parallel LinkingTo: Rcpp, RcppArmadillo Suggests: BiocStyle, knitr, rmarkdown, tinytest, covr, markdown, mockery License: Artistic-2.0 MD5sum: abb7d32f3e6b04a3353c31f64d250ba7 NeedsCompilation: yes Title: Protein Significance Analysis in DDA, SRM and DIA for Label-free or Label-based Proteomics Experiments Description: A set of tools for statistical relative protein significance analysis in DDA, SRM and DIA experiments. biocViews: ImmunoOncology, MassSpectrometry, Proteomics, Software, Normalization, QualityControl, TimeCourse Author: Meena Choi [aut, cre], Mateusz Staniak [aut], Tsung-Heng Tsai [aut], Ting Huang [aut], Olga Vitek [aut] Maintainer: Meena Choi URL: http://msstats.org VignetteBuilder: knitr BugReports: https://groups.google.com/forum/#!forum/msstats git_url: https://git.bioconductor.org/packages/MSstats git_branch: RELEASE_3_20 git_last_commit: 3585528 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MSstats_4.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSstats_4.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSstats_4.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MSstats_4.14.0.tgz vignettes: vignettes/MSstats/inst/doc/MSstats.html, vignettes/MSstats/inst/doc/MSstatsWorkflow.html vignetteTitles: MSstats: Protein/Peptide significance analysis, MSstats: End to End Workflow hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MSstats/inst/doc/MSstats.R, vignettes/MSstats/inst/doc/MSstatsWorkflow.R importsMe: artMS, MSstatsBig, MSstatsLiP, MSstatsPTM, MSstatsShiny, MSstatsTMT dependencyCount: 100 Package: MSstatsBig Version: 1.4.0 Imports: arrow, DBI, dplyr, MSstats, MSstatsConvert, readr, sparklyr, utils Suggests: knitr, rmarkdown License: Artistic-2.0 MD5sum: f3cf3db1d4b71e96112666fabfbdb172 NeedsCompilation: no Title: MSstats Preprocessing for Larger than Memory Data Description: MSstats package provide tools for preprocessing, summarization and differential analysis of mass spectrometry (MS) proteomics data. Recently, some MS protocols enable acquisition of data sets that result in larger than memory quantitative data. MSstats functions are not able to process such data. MSstatsBig package provides additional converter functions that enable processing larger than memory data sets. biocViews: MassSpectrometry, Proteomics, Software Author: Mateusz Staniak [aut, cre], Devon Kohler [aut] Maintainer: Mateusz Staniak VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MSstatsBig git_branch: RELEASE_3_20 git_last_commit: 336b43b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MSstatsBig_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSstatsBig_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSstatsBig_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MSstatsBig_1.4.0.tgz vignettes: vignettes/MSstatsBig/inst/doc/MSstatsBig_Workflow.html vignetteTitles: MSstatsBig Workflow hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MSstatsBig/inst/doc/MSstatsBig_Workflow.R dependencyCount: 123 Package: MSstatsConvert Version: 1.16.1 Depends: R (>= 4.0) Imports: data.table, log4r, methods, checkmate, utils, stringi Suggests: tinytest, covr, knitr, rmarkdown License: Artistic-2.0 MD5sum: 33776e3a59b5b47e637229008ff4d822 NeedsCompilation: no Title: Import Data from Various Mass Spectrometry Signal Processing Tools to MSstats Format Description: MSstatsConvert provides tools for importing reports of Mass Spectrometry data processing tools into R format suitable for statistical analysis using the MSstats and MSstatsTMT packages. biocViews: MassSpectrometry, Proteomics, Software, DataImport, QualityControl Author: Mateusz Staniak [aut, cre], Devon Kohler [aut], Anthony Wu [aut], Meena Choi [aut], Ting Huang [aut], Olga Vitek [aut] Maintainer: Mateusz Staniak VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MSstatsConvert git_branch: RELEASE_3_20 git_last_commit: a7943ba git_last_commit_date: 2024-11-21 Date/Publication: 2024-11-25 source.ver: src/contrib/MSstatsConvert_1.16.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSstatsConvert_1.16.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSstatsConvert_1.16.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MSstatsConvert_1.16.1.tgz vignettes: vignettes/MSstatsConvert/inst/doc/msstats_data_format.html vignetteTitles: Working with MSstatsConvert hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MSstatsConvert/inst/doc/msstats_data_format.R importsMe: MSstats, MSstatsBig, MSstatsLiP, MSstatsPTM, MSstatsShiny, MSstatsTMT dependencyCount: 9 Package: MSstatsLiP Version: 1.12.0 Depends: R (>= 4.1) Imports: dplyr, gridExtra, stringr, ggplot2, grDevices, MSstats, MSstatsConvert, data.table, Biostrings, MSstatsPTM, Rcpp, checkmate, factoextra, ggpubr, purrr, tibble, tidyr, tidyverse, scales, stats LinkingTo: Rcpp Suggests: BiocStyle, knitr, rmarkdown, covr, tinytest, gghighlight License: Artistic-2.0 MD5sum: d79b0283daa6307b5162d89f1d9d9d5f NeedsCompilation: yes Title: LiP Significance Analysis in shotgun mass spectrometry-based proteomic experiments Description: Tools for LiP peptide and protein significance analysis. Provides functions for summarization, estimation of LiP peptide abundance, and detection of changes across conditions. Utilizes functionality across the MSstats family of packages. biocViews: ImmunoOncology, MassSpectrometry, Proteomics, Software, DifferentialExpression, OneChannel, TwoChannel, Normalization, QualityControl Author: Devon Kohler [aut, cre], Tsung-Heng Tsai [aut], Ting Huang [aut], Mateusz Staniak [aut], Meena Choi [aut], Valentina Cappelletti [aut], Liliana Malinovska [aut], Olga Vitek [aut] Maintainer: Devon Kohler VignetteBuilder: knitr BugReports: https://github.com/Vitek-Lab/MSstatsLiP/issues git_url: https://git.bioconductor.org/packages/MSstatsLiP git_branch: RELEASE_3_20 git_last_commit: cb0fdf8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-28 source.ver: src/contrib/MSstatsLiP_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSstatsLiP_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSstatsLiP_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MSstatsLiP_1.12.0.tgz vignettes: vignettes/MSstatsLiP/inst/doc/MSstatsLiP_Workflow.html, vignettes/MSstatsLiP/inst/doc/Proteolytic_resistance_notebook.html vignetteTitles: MSstatsLiP Workflow: An example workflow and analysis of the MSstatsLiP package, MSstatsLiP Proteolytic Workflow hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MSstatsLiP/inst/doc/MSstatsLiP_Workflow.R, vignettes/MSstatsLiP/inst/doc/Proteolytic_resistance_notebook.R dependencyCount: 195 Package: MSstatsLOBD Version: 1.14.0 Depends: R (>= 4.0) Imports: minpack.lm, ggplot2, utils, stats, grDevices LinkingTo: Rcpp Suggests: BiocStyle, knitr, rmarkdown, covr, tinytest, dplyr License: Artistic-2.0 Archs: x64 MD5sum: 6d7e14a6035c0e417dbb473156e4b90b NeedsCompilation: no Title: Assay characterization: estimation of limit of blanc(LoB) and limit of detection(LOD) Description: The MSstatsLOBD package allows calculation and visualization of limit of blac (LOB) and limit of detection (LOD). We define the LOB as the highest apparent concentration of a peptide expected when replicates of a blank sample containing no peptides are measured. The LOD is defined as the measured concentration value for which the probability of falsely claiming the absence of a peptide in the sample is 0.05, given a probability 0.05 of falsely claiming its presence. These functionalities were previously a part of the MSstats package. The methodology is described in Galitzine (2018) . biocViews: ImmunoOncology, MassSpectrometry, Proteomics, Software, DifferentialExpression, OneChannel, TwoChannel, Normalization, QualityControl Author: Devon Kohler [aut, cre], Mateusz Staniak [aut], Cyril Galitzine [aut], Meena Choi [aut], Olga Vitek [aut] Maintainer: Devon Kohler VignetteBuilder: knitr BugReports: https://github.com/Vitek-Lab/MSstatsLODQ/issues git_url: https://git.bioconductor.org/packages/MSstatsLOBD git_branch: RELEASE_3_20 git_last_commit: 6f23b86 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MSstatsLOBD_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSstatsLOBD_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSstatsLOBD_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MSstatsLOBD_1.14.0.tgz vignettes: vignettes/MSstatsLOBD/inst/doc/MSstatsLOBD_workflow.html vignetteTitles: LOB/LOD Estimation Workflow hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MSstatsLOBD/inst/doc/MSstatsLOBD_workflow.R dependencyCount: 37 Package: MSstatsPTM Version: 2.8.1 Depends: R (>= 4.3) Imports: dplyr, gridExtra, stringr, stats, ggplot2, stringi, grDevices, MSstatsTMT, MSstatsConvert, MSstats, data.table, Rcpp, Biostrings, checkmate, ggrepel LinkingTo: Rcpp Suggests: knitr, rmarkdown, tinytest, covr, mockery, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: a8c56d284778ec01fce951355d6de4f8 NeedsCompilation: yes Title: Statistical Characterization of Post-translational Modifications Description: MSstatsPTM provides general statistical methods for quantitative characterization of post-translational modifications (PTMs). Supports DDA, DIA, SRM, and tandem mass tag (TMT) labeling. Typically, the analysis involves the quantification of PTM sites (i.e., modified residues) and their corresponding proteins, as well as the integration of the quantification results. MSstatsPTM provides functions for summarization, estimation of PTM site abundance, and detection of changes in PTMs across experimental conditions. biocViews: ImmunoOncology, MassSpectrometry, Proteomics, Software, DifferentialExpression, OneChannel, TwoChannel, Normalization, QualityControl Author: Devon Kohler [aut, cre], Tsung-Heng Tsai [aut], Ting Huang [aut], Mateusz Staniak [aut], Meena Choi [aut], Olga Vitek [aut] Maintainer: Devon Kohler VignetteBuilder: knitr BugReports: https://github.com/Vitek-Lab/MSstatsPTM/issues git_url: https://git.bioconductor.org/packages/MSstatsPTM git_branch: RELEASE_3_20 git_last_commit: 04cd9d1 git_last_commit_date: 2024-11-25 Date/Publication: 2024-11-28 source.ver: src/contrib/MSstatsPTM_2.8.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSstatsPTM_2.8.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSstatsPTM_2.8.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MSstatsPTM_2.8.1.tgz vignettes: vignettes/MSstatsPTM/inst/doc/MSstatsPTM_LabelFree_Workflow.html, vignettes/MSstatsPTM/inst/doc/MSstatsPTM_TMT_Workflow.html vignetteTitles: MSstatsPTM LabelFree Workflow, MSstatsPTM TMT Workflow hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MSstatsPTM/inst/doc/MSstatsPTM_LabelFree_Workflow.R, vignettes/MSstatsPTM/inst/doc/MSstatsPTM_TMT_Workflow.R importsMe: MSstatsLiP, MSstatsShiny dependencyCount: 116 Package: MSstatsQC Version: 2.24.0 Depends: R (>= 3.5.0) Imports: dplyr,plotly,ggplot2,ggExtra, stats,grid, MSnbase, qcmetrics Suggests: knitr,rmarkdown, testthat, RforProteomics License: Artistic License 2.0 MD5sum: b6b4b784a37b007476612961d003097d NeedsCompilation: no Title: Longitudinal system suitability monitoring and quality control for proteomic experiments Description: MSstatsQC is an R package which provides longitudinal system suitability monitoring and quality control tools for proteomic experiments. biocViews: Software, QualityControl, Proteomics, MassSpectrometry Author: Eralp Dogu [aut, cre], Sara Taheri [aut], Olga Vitek [aut] Maintainer: Eralp Dogu URL: http://msstats.org/msstatsqc VignetteBuilder: knitr BugReports: https://groups.google.com/forum/#!forum/msstatsqc git_url: https://git.bioconductor.org/packages/MSstatsQC git_branch: RELEASE_3_20 git_last_commit: 4d62a6b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MSstatsQC_2.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSstatsQC_2.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSstatsQC_2.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MSstatsQC_2.24.0.tgz vignettes: vignettes/MSstatsQC/inst/doc/MSstatsQC.html vignetteTitles: MSstatsQC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MSstatsQC/inst/doc/MSstatsQC.R importsMe: MSstatsQCgui dependencyCount: 148 Package: MSstatsQCgui Version: 1.26.0 Imports: shiny, MSstatsQC, ggExtra, gridExtra, plotly, dplyr, grid Suggests: knitr License: Artistic License 2.0 Archs: x64 MD5sum: d788a5c9a6e00f4681e60f76b0301a39 NeedsCompilation: no Title: A graphical user interface for MSstatsQC package Description: MSstatsQCgui is a Shiny app which provides longitudinal system suitability monitoring and quality control tools for proteomic experiments. biocViews: Software, QualityControl, Proteomics, MassSpectrometry, GUI Author: Eralp Dogu [aut, cre], Sara Taheri [aut], Olga Vitek [aut] Maintainer: Eralp Dogu URL: http://msstats.org/msstatsqc VignetteBuilder: knitr BugReports: https://groups.google.com/forum/#!forum/msstatsqc git_url: https://git.bioconductor.org/packages/MSstatsQCgui git_branch: RELEASE_3_20 git_last_commit: 999046d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MSstatsQCgui_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSstatsQCgui_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSstatsQCgui_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MSstatsQCgui_1.26.0.tgz vignettes: vignettes/MSstatsQCgui/inst/doc/MSstatsQCgui.html vignetteTitles: MSstatsQCgui hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MSstatsQCgui/inst/doc/MSstatsQCgui.R dependencyCount: 150 Package: MSstatsShiny Version: 1.8.0 Depends: R (>= 4.2) Imports: shiny, shinyBS, shinyjs, shinybusy, dplyr, ggplot2,plotly, data.table, Hmisc, MSstats, MSstatsTMT, MSstatsPTM, MSstatsConvert, gplots, marray, DT, readxl, ggrepel, uuid, utils, stats, htmltools, methods, tidyr, grDevices, graphics,mockery Suggests: rmarkdown, tinytest, sessioninfo, knitr, testthat (>= 3.0.0), shinytest2, License: Artistic-2.0 MD5sum: 52472c09aef97ce67a722b513913f3f6 NeedsCompilation: no Title: MSstats GUI for Statistical Anaylsis of Proteomics Experiments Description: MSstatsShiny is an R-Shiny graphical user interface (GUI) integrated with the R packages MSstats, MSstatsTMT, and MSstatsPTM. It provides a point and click end-to-end analysis pipeline applicable to a wide variety of experimental designs. These include data-dependedent acquisitions (DDA) which are label-free or tandem mass tag (TMT)-based, as well as DIA, SRM, and PRM acquisitions and those targeting post-translational modifications (PTMs). The application automatically saves users selections and builds an R script that recreates their analysis, supporting reproducible data analysis. biocViews: ImmunoOncology, MassSpectrometry, Proteomics, Software, ShinyApps, DifferentialExpression, OneChannel, TwoChannel, Normalization, QualityControl, GUI Author: Devon Kohler [aut, cre], Deril Raju [aut], Maanasa Kaza [aut], Cristina Pasi [aut], Ting Huang [aut], Mateusz Staniak [aut], Dhaval Mohandas [aut], Eduard Sabido [aut], Meena Choi [aut], Olga Vitek [aut] Maintainer: Devon Kohler VignetteBuilder: knitr BugReports: https://github.com/Vitek-Lab/MSstatsShiny/issues git_url: https://git.bioconductor.org/packages/MSstatsShiny git_branch: RELEASE_3_20 git_last_commit: 5f27eb7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-28 source.ver: src/contrib/MSstatsShiny_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSstatsShiny_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSstatsShiny_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MSstatsShiny_1.8.0.tgz vignettes: vignettes/MSstatsShiny/inst/doc/MSstatsShiny_Launch_Instructions.html vignetteTitles: MSstatsPTM LabelFree Workflow hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MSstatsShiny/inst/doc/MSstatsShiny_Launch_Instructions.R dependencyCount: 155 Package: MSstatsTMT Version: 2.14.1 Depends: R (>= 4.2) Imports: limma, lme4, lmerTest, methods, data.table, stats, utils, ggplot2, grDevices, graphics, MSstats, MSstatsConvert, checkmate, plotly, htmltools Suggests: BiocStyle, knitr, rmarkdown, testthat License: Artistic-2.0 Archs: x64 MD5sum: d52d3e8d0feb955318dd7f29ee24c7ad NeedsCompilation: no Title: Protein Significance Analysis in shotgun mass spectrometry-based proteomic experiments with tandem mass tag (TMT) labeling Description: The package provides statistical tools for detecting differentially abundant proteins in shotgun mass spectrometry-based proteomic experiments with tandem mass tag (TMT) labeling. It provides multiple functionalities, including aata visualization, protein quantification and normalization, and statistical modeling and inference. Furthermore, it is inter-operable with other data processing tools, such as Proteome Discoverer, MaxQuant, OpenMS and SpectroMine. biocViews: ImmunoOncology, MassSpectrometry, Proteomics, Software Author: Devon Kohler [aut, cre], Ting Huang [aut], Meena Choi [aut], Mateusz Staniak [aut], Sicheng Hao [aut], Olga Vitek [aut] Maintainer: Devon Kohler URL: http://msstats.org/msstatstmt/ VignetteBuilder: knitr BugReports: https://groups.google.com/forum/#!forum/msstats git_url: https://git.bioconductor.org/packages/MSstatsTMT git_branch: RELEASE_3_20 git_last_commit: f5587c4 git_last_commit_date: 2024-11-14 Date/Publication: 2024-11-15 source.ver: src/contrib/MSstatsTMT_2.14.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/MSstatsTMT_2.14.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MSstatsTMT_2.14.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MSstatsTMT_2.14.1.tgz vignettes: vignettes/MSstatsTMT/inst/doc/MSstatsTMT.html vignetteTitles: MSstatsTMT User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MSstatsTMT/inst/doc/MSstatsTMT.R importsMe: MSstatsPTM, MSstatsShiny dependencyCount: 103 Package: MuData Version: 1.10.0 Depends: Matrix, S4Vectors, rhdf5 Imports: methods, stats, MultiAssayExperiment, SingleCellExperiment, SummarizedExperiment, DelayedArray Suggests: HDF5Array, rmarkdown, knitr, fs, testthat, BiocStyle, covr, SingleCellMultiModal, CiteFuse, scater License: GPL-3 MD5sum: 110a67684c75c4825fefd5a6e40e6983 NeedsCompilation: no Title: Serialization for MultiAssayExperiment Objects Description: Save MultiAssayExperiments to h5mu files supported by muon and mudata. Muon is a Python framework for multimodal omics data analysis. It uses an HDF5-based format for data storage. biocViews: DataImport Author: Danila Bredikhin [aut, cre] (), Ilia Kats [aut] () Maintainer: Danila Bredikhin URL: https://github.com/ilia-kats/MuData VignetteBuilder: knitr BugReports: https://github.com/ilia-kats/MuData/issues git_url: https://git.bioconductor.org/packages/MuData git_branch: RELEASE_3_20 git_last_commit: b4775d9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MuData_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MuData_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MuData_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MuData_1.10.0.tgz vignettes: vignettes/MuData/inst/doc/Blood-CITE-seq.html, vignettes/MuData/inst/doc/Cord-Blood-CITE-seq.html, vignettes/MuData/inst/doc/Getting-Started.html vignetteTitles: Blood CITE-seq with MuData, Cord Blood CITE-seq with MuData, Getting started with MuDataMae hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MuData/inst/doc/Blood-CITE-seq.R, vignettes/MuData/inst/doc/Cord-Blood-CITE-seq.R, vignettes/MuData/inst/doc/Getting-Started.R dependencyCount: 62 Package: Mulcom Version: 1.56.0 Depends: R (>= 2.10), Biobase Imports: graphics, grDevices, stats, methods, fields License: GPL-2 MD5sum: 33131944ade2295ecf3d31f83c4e8730 NeedsCompilation: yes Title: Calculates Mulcom test Description: Identification of differentially expressed genes and false discovery rate (FDR) calculation by Multiple Comparison test. biocViews: StatisticalMethod, MultipleComparison, Microarray, DifferentialExpression, GeneExpression Author: Claudio Isella Maintainer: Claudio Isella git_url: https://git.bioconductor.org/packages/Mulcom git_branch: RELEASE_3_20 git_last_commit: 251598a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Mulcom_1.56.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Mulcom_1.56.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Mulcom_1.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Mulcom_1.56.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 14 Package: MultiAssayExperiment Version: 1.32.0 Depends: SummarizedExperiment (>= 1.3.81), R (>= 3.5.0) Imports: Biobase, BiocBaseUtils, BiocGenerics, DelayedArray, GenomicRanges, IRanges, methods, S4Vectors, tidyr, utils Suggests: BiocStyle, HDF5Array, knitr, maftools, R.rsp, RaggedExperiment, reshape2, rmarkdown, survival, survminer, testthat, UpSetR License: Artistic-2.0 MD5sum: b9674137dd18833e44e30dfaea04a49f NeedsCompilation: no Title: Software for the integration of multi-omics experiments in Bioconductor Description: Harmonize data management of multiple experimental assays performed on an overlapping set of specimens. It provides a familiar Bioconductor user experience by extending concepts from SummarizedExperiment, supporting an open-ended mix of standard data classes for individual assays, and allowing subsetting by genomic ranges or rownames. Facilities are provided for reshaping data into wide and long formats for adaptability to graphing and downstream analysis. biocViews: Infrastructure, DataRepresentation Author: Marcel Ramos [aut, cre] (), Martin Morgan [aut, ctb], Lori Shepherd [ctb], Hervé Pagès [ctb], Vincent J Carey [aut, ctb], Levi Waldron [aut], MultiAssay SIG [ctb] Maintainer: Marcel Ramos URL: http://waldronlab.io/MultiAssayExperiment/ VignetteBuilder: knitr, R.rsp Video: https://youtu.be/w6HWAHaDpyk, https://youtu.be/Vh0hVVUKKFM BugReports: https://github.com/waldronlab/MultiAssayExperiment/issues git_url: https://git.bioconductor.org/packages/MultiAssayExperiment git_branch: RELEASE_3_20 git_last_commit: c13a478 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MultiAssayExperiment_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MultiAssayExperiment_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MultiAssayExperiment_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MultiAssayExperiment_1.32.0.tgz vignettes: vignettes/MultiAssayExperiment/inst/doc/MultiAssayExperiment_cheatsheet.pdf, vignettes/MultiAssayExperiment/inst/doc/MultiAssayExperiment.html, vignettes/MultiAssayExperiment/inst/doc/QuickStartMultiAssay.html, vignettes/MultiAssayExperiment/inst/doc/UsingHDF5Array.html vignetteTitles: MultiAssayExperiment_cheatsheet.pdf, Coordinating Analysis of Multi-Assay Experiments, Quick-start Guide, HDF5Array and MultiAssayExperiment hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MultiAssayExperiment/inst/doc/MultiAssayExperiment.R, vignettes/MultiAssayExperiment/inst/doc/QuickStartMultiAssay.R, vignettes/MultiAssayExperiment/inst/doc/UsingHDF5Array.R dependsOnMe: alabaster.mae, CAGEr, cBioPortalData, ClassifyR, evaluomeR, hipathia, HoloFoodR, InTAD, MGnifyR, mia, midasHLA, MIRit, missRows, QFeatures, terraTCGAdata, curatedPCaData, curatedTCGAData, microbiomeDataSets, OMICsPCAdata, scMultiome, SingleCellMultiModal importsMe: AffiXcan, AMARETTO, animalcules, autonomics, biosigner, CoreGx, corral, ELMER, FindIT2, gDRcore, gDRimport, gDRutils, gINTomics, glmSparseNet, GOpro, hermes, LinkHD, metabolomicsWorkbenchR, MOMA, MOSClip, msqrob2, MuData, MultiBaC, MultimodalExperiment, nipalsMCIA, OMICsPCA, omicsPrint, omXplore, padma, PharmacoGx, phenomis, ropls, scp, scPipe, survClust, TCGAutils, vsclust, xcore, curatedTBData, HMP2Data, LegATo, MetaScope, TCGAWorkflow, MOCHA suggestsMe: CNVRanger, funOmics, maftools, MOFA2, MultiDataSet, RaggedExperiment, updateObject, brgedata, MOFAdata, teal, teal.slice dependencyCount: 57 Package: MultiBaC Version: 1.16.0 Imports: Matrix, ggplot2, MultiAssayExperiment, ropls, graphics, methods, plotrix, grDevices, pcaMethods Suggests: knitr, rmarkdown, BiocStyle, devtools License: GPL-3 MD5sum: ed7bb1f0f8b5f8ffb720d9ac13da14f9 NeedsCompilation: no Title: Multiomic Batch effect Correction Description: MultiBaC is a strategy to correct batch effects from multiomic datasets distributed across different labs or data acquisition events. MultiBaC is the first Batch effect correction algorithm that dealing with batch effect correction in multiomics datasets. MultiBaC is able to remove batch effects across different omics generated within separate batches provided that at least one common omic data type is included in all the batches considered. biocViews: Software, StatisticalMethod, PrincipalComponent, DataRepresentation, GeneExpression, Transcription, BatchEffect Author: person("Manuel", "Ugidos", email = "manuelugidos@gmail.com"), person("Sonia", "Tarazona", email = "sotacam@gmail.com"), person("María José", "Nueda", email = "mjnueda@ua.es") Maintainer: The package maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MultiBaC git_branch: RELEASE_3_20 git_last_commit: 17df5f6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MultiBaC_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MultiBaC_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MultiBaC_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MultiBaC_1.16.0.tgz vignettes: vignettes/MultiBaC/inst/doc/MultiBaC.html vignetteTitles: MultiBaC hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MultiBaC/inst/doc/MultiBaC.R dependencyCount: 108 Package: multiClust Version: 1.36.0 Imports: mclust, ctc, survival, cluster, dendextend, amap, graphics, grDevices Suggests: knitr, rmarkdown, gplots, RUnit, BiocGenerics, preprocessCore, Biobase, GEOquery License: GPL (>= 2) MD5sum: 18e55be6961025228cbaa4694f815647 NeedsCompilation: no Title: multiClust: An R-package for Identifying Biologically Relevant Clusters in Cancer Transcriptome Profiles Description: Clustering is carried out to identify patterns in transcriptomics profiles to determine clinically relevant subgroups of patients. Feature (gene) selection is a critical and an integral part of the process. Currently, there are many feature selection and clustering methods to identify the relevant genes and perform clustering of samples. However, choosing an appropriate methodology is difficult. In addition, extensive feature selection methods have not been supported by the available packages. Hence, we developed an integrative R-package called multiClust that allows researchers to experiment with the choice of combination of methods for gene selection and clustering with ease. Using multiClust, we identified the best performing clustering methodology in the context of clinical outcome. Our observations demonstrate that simple methods such as variance-based ranking perform well on the majority of data sets, provided that the appropriate number of genes is selected. However, different gene ranking and selection methods remain relevant as no methodology works for all studies. biocViews: FeatureExtraction, Clustering, GeneExpression, Survival Author: Nathan Lawlor [aut, cre], Peiyong Guan [aut], Alec Fabbri [aut], Krish Karuturi [aut], Joshy George [aut] Maintainer: Nathan Lawlor VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/multiClust git_branch: RELEASE_3_20 git_last_commit: b43f699 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/multiClust_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/multiClust_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/multiClust_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/multiClust_1.36.0.tgz vignettes: vignettes/multiClust/inst/doc/multiClust.html vignetteTitles: "A Guide to multiClust" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/multiClust/inst/doc/multiClust.R dependencyCount: 44 Package: multicrispr Version: 1.16.1 Depends: R (>= 4.0) Imports: BiocGenerics, Biostrings, BSgenome, CRISPRseek, data.table, GenomeInfoDb, GenomicFeatures, GenomicRanges, ggplot2, grid, karyoploteR, magrittr, methods, parallel, plyranges, Rbowtie, reticulate, rtracklayer, stats, stringi, tidyr, tidyselect, utils Suggests: AnnotationHub, BiocStyle, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm10, BSgenome.Scerevisiae.UCSC.sacCer1, ensembldb, IRanges, knitr, magick, rmarkdown, testthat, TxDb.Mmusculus.UCSC.mm10.knownGene License: GPL-2 Archs: x64 MD5sum: 32207d9d3d743151d35fb252f09def93 NeedsCompilation: no Title: Multi-locus multi-purpose Crispr/Cas design Description: This package is for designing Crispr/Cas9 and Prime Editing experiments. It contains functions to (1) define and transform genomic targets, (2) find spacers (4) count offtarget (mis)matches, and (5) compute Doench2016/2014 targeting efficiency. Care has been taken for multicrispr to scale well towards large target sets, enabling the design of large Crispr/Cas9 libraries. biocViews: CRISPR, Software Author: Aditya Bhagwat [aut, cre], Richie ´Cotton [aut], Rene Wiegandt [ctb], Mette Bentsen [ctb], Jens Preussner [ctb], Michael Lawrence [ctb], Hervé Pagès [ctb], Johannes Graumann [sad], Mario Looso [sad, rth] Maintainer: Aditya Bhagwat URL: https://github.com/bhagwataditya/multicrispr VignetteBuilder: knitr BugReports: https://github.com/bhagwataditya/multicrispr/issues git_url: https://git.bioconductor.org/packages/multicrispr git_branch: RELEASE_3_20 git_last_commit: 715be50 git_last_commit_date: 2024-11-27 Date/Publication: 2024-11-28 source.ver: src/contrib/multicrispr_1.16.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/multicrispr_1.16.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/multicrispr_1.16.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/multicrispr_1.16.1.tgz vignettes: vignettes/multicrispr/inst/doc/crispr_grna_design.html, vignettes/multicrispr/inst/doc/genome_arithmetics.html, vignettes/multicrispr/inst/doc/prime_editing.html vignetteTitles: grna_design, genome_arithmetics, prime_editing hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/multicrispr/inst/doc/crispr_grna_design.R, vignettes/multicrispr/inst/doc/genome_arithmetics.R, vignettes/multicrispr/inst/doc/prime_editing.R dependencyCount: 173 Package: MultiDataSet Version: 1.34.0 Depends: R (>= 4.1), Biobase Imports: BiocGenerics, GenomicRanges, IRanges, S4Vectors, SummarizedExperiment, methods, utils, ggplot2, ggrepel, qqman, limma Suggests: brgedata, minfi, minfiData, knitr, rmarkdown, testthat, omicade4, iClusterPlus, GEOquery, MultiAssayExperiment, BiocStyle, RaggedExperiment License: file LICENSE MD5sum: 861a7a8948822c1a156cdd7b7880c7d3 NeedsCompilation: no Title: Implementation of MultiDataSet and ResultSet Description: Implementation of the BRGE's (Bioinformatic Research Group in Epidemiology from Center for Research in Environmental Epidemiology) MultiDataSet and ResultSet. MultiDataSet is designed for integrating multi omics data sets and ResultSet is a container for omics results. This package contains base classes for MEAL and rexposome packages. biocViews: Software, DataRepresentation Author: Carlos Ruiz-Arenas [aut, cre], Carles Hernandez-Ferrer [aut], Juan R. Gonzalez [aut] Maintainer: Xavier Escrib Montagut VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MultiDataSet git_branch: RELEASE_3_20 git_last_commit: a1217b2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MultiDataSet_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MultiDataSet_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MultiDataSet_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MultiDataSet_1.34.0.tgz vignettes: vignettes/MultiDataSet/inst/doc/MultiDataSet_Extending_Proteome.html, vignettes/MultiDataSet/inst/doc/MultiDataSet.html vignetteTitles: Adding a new type of data to MultiDataSet objects, Introduction to MultiDataSet hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MultiDataSet/inst/doc/MultiDataSet_Extending_Proteome.R, vignettes/MultiDataSet/inst/doc/MultiDataSet.R dependsOnMe: MEAL importsMe: biosigner, omicRexposome, phenomis, ropls dependencyCount: 68 Package: multiGSEA Version: 1.16.2 Depends: R (>= 4.0.0) Imports: magrittr, graphite, AnnotationDbi, metaboliteIDmapping, dplyr, fgsea, metap, rappdirs, rlang, methods Suggests: org.Hs.eg.db, org.Mm.eg.db, org.Rn.eg.db, org.Ss.eg.db, org.Bt.eg.db, org.Ce.eg.db, org.Dm.eg.db, org.Dr.eg.db, org.Gg.eg.db, org.Xl.eg.db, org.Cf.eg.db, knitr, rmarkdown, BiocStyle, testthat (>= 2.1.0) License: GPL-3 MD5sum: 1d553e9a716afa6c69b63d79d06af9cb NeedsCompilation: no Title: Combining GSEA-based pathway enrichment with multi omics data integration Description: Extracted features from pathways derived from 8 different databases (KEGG, Reactome, Biocarta, etc.) can be used on transcriptomic, proteomic, and/or metabolomic level to calculate a combined GSEA-based enrichment score. biocViews: GeneSetEnrichment, Pathways, Reactome, BioCarta Author: Sebastian Canzler [aut, cre] (), Jörg Hackermüller [aut] () Maintainer: Sebastian Canzler URL: https://github.com/yigbt/multiGSEA VignetteBuilder: knitr BugReports: https://github.com/yigbt/multiGSEA/issues git_url: https://git.bioconductor.org/packages/multiGSEA git_branch: RELEASE_3_20 git_last_commit: dfe6f08 git_last_commit_date: 2024-11-25 Date/Publication: 2024-11-25 source.ver: src/contrib/multiGSEA_1.16.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/multiGSEA_1.16.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/multiGSEA_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/multiGSEA_1.16.2.tgz vignettes: vignettes/multiGSEA/inst/doc/multiGSEA.html vignetteTitles: multiGSEA.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/multiGSEA/inst/doc/multiGSEA.R dependencyCount: 123 Package: multiHiCcompare Version: 1.24.0 Depends: R (>= 4.0.0) Imports: data.table, dplyr, HiCcompare, edgeR, BiocParallel, qqman, pheatmap, methods, GenomicRanges, graphics, stats, utils, pbapply, GenomeInfoDbData, GenomeInfoDb, aggregation Suggests: knitr, rmarkdown, testthat, BiocStyle License: MIT + file LICENSE MD5sum: c228019c62fe855dba77509be8019f07 NeedsCompilation: no Title: Normalize and detect differences between Hi-C datasets when replicates of each experimental condition are available Description: multiHiCcompare provides functions for joint normalization and difference detection in multiple Hi-C datasets. This extension of the original HiCcompare package now allows for Hi-C experiments with more than 2 groups and multiple samples per group. multiHiCcompare operates on processed Hi-C data in the form of sparse upper triangular matrices. It accepts four column (chromosome, region1, region2, IF) tab-separated text files storing chromatin interaction matrices. multiHiCcompare provides cyclic loess and fast loess (fastlo) methods adapted to jointly normalizing Hi-C data. Additionally, it provides a general linear model (GLM) framework adapting the edgeR package to detect differences in Hi-C data in a distance dependent manner. biocViews: Software, HiC, Sequencing, Normalization Author: Mikhail Dozmorov [aut, cre] (), John Stansfield [aut] Maintainer: Mikhail Dozmorov URL: https://github.com/dozmorovlab/multiHiCcompare VignetteBuilder: knitr BugReports: https://github.com/dozmorovlab/multiHiCcompare/issues git_url: https://git.bioconductor.org/packages/multiHiCcompare git_branch: RELEASE_3_20 git_last_commit: de79705 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/multiHiCcompare_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/multiHiCcompare_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/multiHiCcompare_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/multiHiCcompare_1.24.0.tgz vignettes: vignettes/multiHiCcompare/inst/doc/juiceboxVisualization.html, vignettes/multiHiCcompare/inst/doc/multiHiCcompare.html vignetteTitles: juiceboxVisualization, multiHiCcompare hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/multiHiCcompare/inst/doc/juiceboxVisualization.R, vignettes/multiHiCcompare/inst/doc/multiHiCcompare.R importsMe: HiCDOC, OHCA suggestsMe: HiCcompare dependencyCount: 94 Package: MultiMed Version: 2.28.0 Depends: R (>= 3.1.0) Suggests: RUnit, BiocGenerics License: GPL (>= 2) + file LICENSE MD5sum: 0b351652af73cc1dce50f98ff1bb422b NeedsCompilation: no Title: Testing multiple biological mediators simultaneously Description: Implements methods for testing multiple mediators biocViews: MultipleComparison, StatisticalMethod, Software Author: Simina M. Boca, Ruth Heller, Joshua N. Sampson Maintainer: Simina M. Boca git_url: https://git.bioconductor.org/packages/MultiMed git_branch: RELEASE_3_20 git_last_commit: 55a9ff2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MultiMed_2.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MultiMed_2.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MultiMed_2.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MultiMed_2.28.0.tgz vignettes: vignettes/MultiMed/inst/doc/MultiMed.pdf vignetteTitles: MultiMedTutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MultiMed/inst/doc/MultiMed.R dependencyCount: 0 Package: multiMiR Version: 1.28.0 Depends: R (>= 3.4) Imports: stats, XML, RCurl, purrr (>= 0.2.2), tibble (>= 2.0), methods, BiocGenerics, AnnotationDbi, dplyr, Suggests: BiocStyle, edgeR, knitr, rmarkdown, testthat (>= 1.0.2) License: MIT + file LICENSE MD5sum: b99c3f147f539b220544149f38b69f10 NeedsCompilation: no Title: Integration of multiple microRNA-target databases with their disease and drug associations Description: A collection of microRNAs/targets from external resources, including validated microRNA-target databases (miRecords, miRTarBase and TarBase), predicted microRNA-target databases (DIANA-microT, ElMMo, MicroCosm, miRanda, miRDB, PicTar, PITA and TargetScan) and microRNA-disease/drug databases (miR2Disease, Pharmaco-miR VerSe and PhenomiR). biocViews: miRNAData, Homo_sapiens_Data, Mus_musculus_Data, Rattus_norvegicus_Data, OrganismData Author: Yuanbin Ru [aut], Matt Mulvahill [aut], Spencer Mahaffey [cre, aut], Katerina Kechris [aut, cph, ths] Maintainer: Spencer Mahaffey URL: https://github.com/KechrisLab/multiMiR VignetteBuilder: knitr BugReports: https://github.com/KechrisLab/multiMiR/issues git_url: https://git.bioconductor.org/packages/multiMiR git_branch: RELEASE_3_20 git_last_commit: c1e2289 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/multiMiR_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/multiMiR_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/multiMiR_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/multiMiR_1.28.0.tgz vignettes: vignettes/multiMiR/inst/doc/multiMiR.html vignetteTitles: The multiMiR user's guide hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/multiMiR/inst/doc/multiMiR.R suggestsMe: EpiMix dependencyCount: 58 Package: MultimodalExperiment Version: 1.6.0 Depends: R (>= 4.3.0), IRanges, S4Vectors Imports: BiocGenerics, MultiAssayExperiment, methods, utils Suggests: BiocStyle, knitr, rmarkdown License: Artistic-2.0 MD5sum: 48415565bbd9cb96dd8d264d58c7d034 NeedsCompilation: no Title: Integrative Bulk and Single-Cell Experiment Container Description: MultimodalExperiment is an S4 class that integrates bulk and single-cell experiment data; it is optimally storage-efficient, and its methods are exceptionally fast. It effortlessly represents multimodal data of any nature and features normalized experiment, subject, sample, and cell annotations, which are related to underlying biological experiments through maps. Its coordination methods are opt-in and employ database-like join operations internally to deliver fast and flexible management of multimodal data. biocViews: DataRepresentation, Infrastructure, SingleCell Author: Lucas Schiffer [aut, cre] () Maintainer: Lucas Schiffer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MultimodalExperiment git_branch: RELEASE_3_20 git_last_commit: 9d09d59 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MultimodalExperiment_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MultimodalExperiment_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MultimodalExperiment_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MultimodalExperiment_1.6.0.tgz vignettes: vignettes/MultimodalExperiment/inst/doc/MultimodalExperiment.html vignetteTitles: MultimodalExperiment hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MultimodalExperiment/inst/doc/MultimodalExperiment.R dependencyCount: 58 Package: MultiRNAflow Version: 1.4.0 Depends: Mfuzz (>= 2.58.0), R (>= 4.3) Imports: Biobase (>= 2.54.0), ComplexHeatmap (>= 2.14.0), DESeq2 (>= 1.38.1), factoextra (>= 1.0.7), FactoMineR (>= 2.6), ggalluvial (>= 0.12.3), ggplot2 (>= 3.4.0), ggplotify (>= 0.1.2), ggrepel (>= 0.9.2), gprofiler2 (>= 0.2.1), graphics (>= 4.2.2), grDevices (>= 4.2.2), grid (>= 4.2.2), plot3D (>= 1.4), plot3Drgl (>= 1.0.3), reshape2 (>= 1.4.4), S4Vectors (>= 0.36.2), stats (>= 4.2.2), SummarizedExperiment (>= 1.28.0), UpSetR (>= 1.4.0), utils (>= 4.2.2) Suggests: BiocGenerics (>= 0.40.0), BiocStyle, e1071 (>= 1.7.12), knitr, rmarkdown, testthat (>= 3.0.0) License: GPL-3 | file LICENSE MD5sum: 8f256be5013d735dbf6a5d2d0a258cf9 NeedsCompilation: no Title: An R package for integrated analysis of temporal RNA-seq data with multiple biological conditions Description: Our R package MultiRNAflow provides an easy to use unified framework allowing to automatically make both unsupervised and supervised (DE) analysis for datasets with an arbitrary number of biological conditions and time points. In particular, our code makes a deep downstream analysis of DE information, e.g. identifying temporal patterns across biological conditions and DE genes which are specific to a biological condition for each time. biocViews: Sequencing, RNASeq, GeneExpression, Transcription, TimeCourse, Preprocessing, Visualization, Normalization, PrincipalComponent, Clustering, DifferentialExpression, GeneSetEnrichment, Pathways Author: Rodolphe Loubaton [aut, cre] (), Nicolas Champagnat [aut, ths] (), Laurent Vallat [aut, ths] (), Pierre Vallois [aut] (), Région Grand Est [fnd], Cancéropôle Est [fnd] Maintainer: Rodolphe Loubaton URL: https://github.com/loubator/MultiRNAflow VignetteBuilder: knitr BugReports: https://github.com/loubator/MultiRNAflow/issues git_url: https://git.bioconductor.org/packages/MultiRNAflow git_branch: RELEASE_3_20 git_last_commit: 2b38b98 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MultiRNAflow_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MultiRNAflow_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MultiRNAflow_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MultiRNAflow_1.4.0.tgz vignettes: vignettes/MultiRNAflow/inst/doc/MultiRNAflow_vignette-knitr.pdf, vignettes/MultiRNAflow/inst/doc/Running_analysis_with_MultiRNAflow.html vignetteTitles: MultiRNAflow: A R package for analysing RNA-seq raw counts with different time points and several biological conditions., Running_analysis_with_MultiRNAflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MultiRNAflow/inst/doc/MultiRNAflow_vignette-knitr.R, vignettes/MultiRNAflow/inst/doc/Running_analysis_with_MultiRNAflow.R dependencyCount: 188 Package: multiscan Version: 1.66.0 Depends: R (>= 2.3.0) Imports: Biobase, utils License: GPL (>= 2) MD5sum: 0e811fc5a4799629af8e512c5b9f0f7d NeedsCompilation: yes Title: R package for combining multiple scans Description: Estimates gene expressions from several laser scans of the same microarray biocViews: Microarray, Preprocessing Author: Mizanur Khondoker , Chris Glasbey, Bruce Worton. Maintainer: Mizanur Khondoker git_url: https://git.bioconductor.org/packages/multiscan git_branch: RELEASE_3_20 git_last_commit: 08b7c44 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/multiscan_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/multiscan_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/multiscan_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/multiscan_1.66.0.tgz vignettes: vignettes/multiscan/inst/doc/multiscan.pdf vignetteTitles: An R Package for Estimating Gene Expressions using Multiple Scans hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/multiscan/inst/doc/multiscan.R dependencyCount: 6 Package: multistateQTL Version: 1.2.0 Depends: QTLExperiment, SummarizedExperiment, ComplexHeatmap, data.table, collapse Imports: methods, S4Vectors, grid, dplyr, tidyr, matrixStats, stats, fitdistrplus, viridis, ggplot2, circlize, mashr, grDevices Suggests: testthat, BiocStyle, knitr, covr, rmarkdown License: GPL-3 MD5sum: c87735e1416b5b079b5d34e8d61e7906 NeedsCompilation: no Title: Toolkit for the analysis of multi-state QTL data Description: A collection of tools for doing various analyses of multi-state QTL data, with a focus on visualization and interpretation. The package 'multistateQTL' contains functions which can remove or impute missing data, identify significant associations, as well as categorise features into global, multi-state or unique. The analysis results are stored in a 'QTLExperiment' object, which is based on the 'SummarisedExperiment' framework. biocViews: FunctionalGenomics, GeneExpression, Sequencing, Visualization, SNP, Software Author: Christina Del Azodi [aut], Davis McCarthy [ctb], Amelia Dunstone [cre, ctb] () Maintainer: Amelia Dunstone URL: https://github.com/dunstone-a/multistateQTL VignetteBuilder: knitr BugReports: https://github.com/dunstone-a/multistateQTL/issues git_url: https://git.bioconductor.org/packages/multistateQTL git_branch: RELEASE_3_20 git_last_commit: b79ab82 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/multistateQTL_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/multistateQTL_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/multistateQTL_1.2.0.tgz vignettes: vignettes/multistateQTL/inst/doc/multiStateQTL.html vignetteTitles: multistateQTL: Orchestrating multi-state QTL analysis in R hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/multistateQTL/inst/doc/multiStateQTL.R dependencyCount: 117 Package: multiWGCNA Version: 1.4.0 Depends: R (>= 4.3.0), ggalluvial Imports: stringr, readr, WGCNA, dplyr, reshape2, data.table, patchwork, scales, igraph, flashClust, ggplot2, dcanr, cowplot, ggrepel, methods, SummarizedExperiment Suggests: BiocStyle, doParallel, ExperimentHub, knitr, markdown, rmarkdown, testthat (>= 3.0.0), vegan License: GPL-3 MD5sum: 64ba3fa001a82baae932cb76dc19a515 NeedsCompilation: no Title: multiWGCNA Description: An R package for deeping mining gene co-expression networks in multi-trait expression data. Provides functions for analyzing, comparing, and visualizing WGCNA networks across conditions. multiWGCNA was designed to handle the common case where there are multiple biologically meaningful sample traits, such as disease vs wildtype across development or anatomical region. biocViews: Sequencing, RNASeq, GeneExpression, DifferentialExpression, Regression, Clustering Author: Dario Tommasini [aut, cre] (), Brent Fogel [aut, ctb] Maintainer: Dario Tommasini VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/multiWGCNA git_branch: RELEASE_3_20 git_last_commit: 870ea52 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/multiWGCNA_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/multiWGCNA_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/multiWGCNA_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/multiWGCNA_1.4.0.tgz vignettes: vignettes/multiWGCNA/inst/doc/astrocyte_map_v2.html, vignettes/multiWGCNA/inst/doc/autism_full_workflow.html vignetteTitles: Astrocyte multiWGCNA network, General Workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/multiWGCNA/inst/doc/astrocyte_map_v2.R, vignettes/multiWGCNA/inst/doc/autism_full_workflow.R suggestsMe: multiWGCNAdata dependencyCount: 148 Package: multtest Version: 2.62.0 Depends: R (>= 2.10), methods, BiocGenerics, Biobase Imports: survival, MASS, stats4 Suggests: snow License: LGPL MD5sum: ea043ffe972fb0592853ebe0496666c9 NeedsCompilation: yes Title: Resampling-based multiple hypothesis testing Description: Non-parametric bootstrap and permutation resampling-based multiple testing procedures (including empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error rate (gFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR). Several choices of bootstrap-based null distribution are implemented (centered, centered and scaled, quantile-transformed). Single-step and step-wise methods are available. Tests based on a variety of t- and F-statistics (including t-statistics based on regression parameters from linear and survival models as well as those based on correlation parameters) are included. When probing hypotheses with t-statistics, users may also select a potentially faster null distribution which is multivariate normal with mean zero and variance covariance matrix derived from the vector influence function. Results are reported in terms of adjusted p-values, confidence regions and test statistic cutoffs. The procedures are directly applicable to identifying differentially expressed genes in DNA microarray experiments. biocViews: Microarray, DifferentialExpression, MultipleComparison Author: Katherine S. Pollard, Houston N. Gilbert, Yongchao Ge, Sandra Taylor, Sandrine Dudoit Maintainer: Katherine S. Pollard git_url: https://git.bioconductor.org/packages/multtest git_branch: RELEASE_3_20 git_last_commit: b2a4744 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/multtest_2.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/multtest_2.62.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/multtest_2.62.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/multtest_2.62.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: aCGH, BicARE, KCsmart, PREDA, rain, REDseq, siggenes, webbioc, cp4p, DiffCorr, PCS importsMe: a4Base, ABarray, adSplit, ALDEx2, anota, ChIPpeakAnno, GUIDEseq, metabomxtr, nethet, OCplus, phyloseq, RTopper, SARC, SingleCellSignalR, singleCellTK, synapter, webbioc, hddplot, INCATome, mutoss, nlcv, pRF, TcGSA suggestsMe: annaffy, CAMERA, ecolitk, factDesign, GOstats, GSEAlm, ropls, topGO, xcms, cherry, POSTm dependencyCount: 14 Package: mumosa Version: 1.14.0 Depends: SingleCellExperiment Imports: stats, utils, methods, igraph, Matrix, BiocGenerics, BiocParallel, IRanges, S4Vectors, DelayedArray, DelayedMatrixStats, SummarizedExperiment, BiocNeighbors, BiocSingular, ScaledMatrix, beachmat, scuttle, metapod, scran, batchelor, uwot Suggests: testthat, knitr, BiocStyle, rmarkdown, scater, bluster, DropletUtils, scRNAseq License: GPL-3 Archs: x64 MD5sum: f5c40b8e3382234436ada72b62b910b5 NeedsCompilation: no Title: Multi-Modal Single-Cell Analysis Methods Description: Assorted utilities for multi-modal analyses of single-cell datasets. Includes functions to combine multiple modalities for downstream analysis, perform MNN-based batch correction across multiple modalities, and to compute correlations between assay values for different modalities. biocViews: ImmunoOncology, SingleCell, RNASeq Author: Aaron Lun [aut, cre] Maintainer: Aaron Lun URL: http://bioconductor.org/packages/mumosa VignetteBuilder: knitr BugReports: https://support.bioconductor.org/ git_url: https://git.bioconductor.org/packages/mumosa git_branch: RELEASE_3_20 git_last_commit: deaae6a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mumosa_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mumosa_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mumosa_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mumosa_1.14.0.tgz vignettes: vignettes/mumosa/inst/doc/overview.html vignetteTitles: Overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mumosa/inst/doc/overview.R dependencyCount: 84 Package: MungeSumstats Version: 1.14.1 Depends: R(>= 4.1) Imports: magrittr, data.table, utils, R.utils, dplyr, stats, GenomicRanges, IRanges, GenomeInfoDb, BSgenome, Biostrings, stringr, VariantAnnotation, googleAuthR, httr, jsonlite, methods, parallel, rtracklayer(>= 1.59.1), RCurl Suggests: SNPlocs.Hsapiens.dbSNP144.GRCh37, SNPlocs.Hsapiens.dbSNP144.GRCh38, SNPlocs.Hsapiens.dbSNP155.GRCh37, SNPlocs.Hsapiens.dbSNP155.GRCh38, BSgenome.Hsapiens.1000genomes.hs37d5, BSgenome.Hsapiens.NCBI.GRCh38, BiocGenerics, S4Vectors, rmarkdown, markdown, knitr, testthat (>= 3.0.0), UpSetR, BiocStyle, covr, Rsamtools, MatrixGenerics, badger, BiocParallel, GenomicFiles License: Artistic-2.0 MD5sum: 67f1b35796c6f1a605748560bfc3997c NeedsCompilation: no Title: Standardise summary statistics from GWAS Description: The *MungeSumstats* package is designed to facilitate the standardisation of GWAS summary statistics. It reformats inputted summary statisitics to include SNP, CHR, BP and can look up these values if any are missing. It also pefrorms dozens of QC and filtering steps to ensure high data quality and minimise inter-study differences. biocViews: SNP, WholeGenome, Genetics, ComparativeGenomics, GenomeWideAssociation, GenomicVariation, Preprocessing Author: Alan Murphy [aut, cre] (), Brian Schilder [aut, ctb] (), Nathan Skene [aut] () Maintainer: Alan Murphy URL: https://github.com/neurogenomics/MungeSumstats VignetteBuilder: knitr BugReports: https://github.com/neurogenomics/MungeSumstats/issues git_url: https://git.bioconductor.org/packages/MungeSumstats git_branch: RELEASE_3_20 git_last_commit: 7c2d8c7 git_last_commit_date: 2024-10-30 Date/Publication: 2024-10-30 source.ver: src/contrib/MungeSumstats_1.14.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/MungeSumstats_1.14.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MungeSumstats_1.14.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MungeSumstats_1.14.1.tgz vignettes: vignettes/MungeSumstats/inst/doc/docker.html, vignettes/MungeSumstats/inst/doc/MungeSumstats.html, vignettes/MungeSumstats/inst/doc/OpenGWAS.html vignetteTitles: docker, MungeSumstats, OpenGWAS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MungeSumstats/inst/doc/docker.R, vignettes/MungeSumstats/inst/doc/MungeSumstats.R, vignettes/MungeSumstats/inst/doc/OpenGWAS.R dependencyCount: 100 Package: muscat Version: 1.20.0 Depends: R (>= 4.4) Imports: BiocParallel, blme, ComplexHeatmap, data.table, DESeq2, dplyr, edgeR, ggplot2, glmmTMB, grDevices, grid, limma, lmerTest, lme4, Matrix, matrixStats, methods, progress, purrr, rlang, S4Vectors, scales, scater, scuttle, sctransform, stats, SingleCellExperiment, SummarizedExperiment, variancePartition, viridis Suggests: BiocStyle, countsimQC, ExperimentHub, iCOBRA, knitr, patchwork, phylogram, RColorBrewer, reshape2, rmarkdown, statmod, stageR, testthat, UpSetR License: GPL-3 MD5sum: 2baa1ed37bd07bf9d4e5056bb19ced0b NeedsCompilation: no Title: Multi-sample multi-group scRNA-seq data analysis tools Description: `muscat` provides various methods and visualization tools for DS analysis in multi-sample, multi-group, multi-(cell-)subpopulation scRNA-seq data, including cell-level mixed models and methods based on aggregated “pseudobulk” data, as well as a flexible simulation platform that mimics both single and multi-sample scRNA-seq data. biocViews: ImmunoOncology, DifferentialExpression, Sequencing, SingleCell, Software, StatisticalMethod, Visualization Author: Helena L. Crowell [aut, cre] (), Pierre-Luc Germain [aut], Charlotte Soneson [aut], Anthony Sonrel [aut], Jeroen Gilis [aut], Davide Risso [aut], Lieven Clement [aut], Mark D. Robinson [aut, fnd] Maintainer: Helena L. Crowell URL: https://github.com/HelenaLC/muscat VignetteBuilder: knitr BugReports: https://github.com/HelenaLC/muscat/issues git_url: https://git.bioconductor.org/packages/muscat git_branch: RELEASE_3_20 git_last_commit: efa7f35 git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-06 source.ver: src/contrib/muscat_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/muscat_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/muscat_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/muscat_1.20.0.tgz vignettes: vignettes/muscat/inst/doc/analysis.html, vignettes/muscat/inst/doc/detection.html, vignettes/muscat/inst/doc/simulation.html vignetteTitles: "1. DS analysis", "3. Differential detection", "2. Data simulation" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/muscat/inst/doc/analysis.R, vignettes/muscat/inst/doc/detection.R, vignettes/muscat/inst/doc/simulation.R suggestsMe: dreamlet, muscData dependencyCount: 178 Package: muscle Version: 3.48.0 Depends: Biostrings License: Unlimited Archs: x64 MD5sum: 7ad249c5ec6b866d70ae0a0d47a62eb1 NeedsCompilation: yes Title: Multiple Sequence Alignment with MUSCLE Description: MUSCLE performs multiple sequence alignments of nucleotide or amino acid sequences. biocViews: MultipleSequenceAlignment, Alignment, Sequencing, Genetics, SequenceMatching, DataImport Author: Algorithm by Robert C. Edgar. R port by Alex T. Kalinka. Maintainer: Alex T. Kalinka URL: http://www.drive5.com/muscle/ git_url: https://git.bioconductor.org/packages/muscle git_branch: RELEASE_3_20 git_last_commit: 7978165 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/muscle_3.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/muscle_3.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/muscle_3.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/muscle_3.48.0.tgz vignettes: vignettes/muscle/inst/doc/muscle-vignette.pdf vignetteTitles: A guide to using muscle hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/muscle/inst/doc/muscle-vignette.R suggestsMe: seqmagick dependencyCount: 25 Package: musicatk Version: 2.0.0 Depends: R (>= 4.4.0), NMF Imports: SummarizedExperiment, VariantAnnotation, Biostrings, base, methods, magrittr, tibble, tidyr, gtools, gridExtra, MCMCprecision, MASS, matrixTests, data.table, dplyr, rlang, BSgenome, GenomeInfoDb, GenomicFeatures, GenomicRanges, IRanges, S4Vectors, uwot, ggplot2, stringr, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg38.knownGene, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm9, BSgenome.Mmusculus.UCSC.mm10, decompTumor2Sig, topicmodels, ggrepel, plotly, utils, factoextra, cluster, ComplexHeatmap, philentropy, maftools, shiny, stringi, tidyverse, ggpubr, Matrix (>= 1.6.1), scales, conclust Suggests: TCGAbiolinks, shinyBS, shinyalert, shinybusy, shinydashboard, shinyjs, shinyjqui, sortable, testthat, BiocStyle, knitr, rmarkdown, survival, XVector, qpdf, covr, shinyWidgets, cowplot, withr License: LGPL-3 MD5sum: cfe4828f24432a9ae59b6d7e45d58d8e NeedsCompilation: no Title: Mutational Signature Comprehensive Analysis Toolkit Description: Mutational signatures are carcinogenic exposures or aberrant cellular processes that can cause alterations to the genome. We created musicatk (MUtational SIgnature Comprehensive Analysis ToolKit) to address shortcomings in versatility and ease of use in other pre-existing computational tools. Although many different types of mutational data have been generated, current software packages do not have a flexible framework to allow users to mix and match different types of mutations in the mutational signature inference process. Musicatk enables users to count and combine multiple mutation types, including SBS, DBS, and indels. Musicatk calculates replication strand, transcription strand and combinations of these features along with discovery from unique and proprietary genomic feature associated with any mutation type. Musicatk also implements several methods for discovery of new signatures as well as methods to infer exposure given an existing set of signatures. Musicatk provides functions for visualization and downstream exploratory analysis including the ability to compare signatures between cohorts and find matching signatures in COSMIC V2 or COSMIC V3. biocViews: Software, BiologicalQuestion, SomaticMutation, VariantAnnotation Author: Aaron Chevalier [aut] (0000-0002-3968-9250), Natasha Gurevich [aut] (0000-0002-0747-6840), Tao Guo [aut] (0009-0005-8960-9203), Joshua D. Campbell [aut, cre] () Maintainer: Joshua D. Campbell VignetteBuilder: knitr BugReports: https://github.com/campbio/musicatk/issues git_url: https://git.bioconductor.org/packages/musicatk git_branch: RELEASE_3_20 git_last_commit: c0c8b45 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/musicatk_2.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/musicatk_2.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/musicatk_2.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/musicatk_2.0.0.tgz vignettes: vignettes/musicatk/inst/doc/musicatk.html vignetteTitles: Mutational Signature Comprehensive Analysis Toolkit hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/musicatk/inst/doc/musicatk.R dependencyCount: 265 Package: MutationalPatterns Version: 3.16.0 Depends: R (>= 4.2.0), GenomicRanges (>= 1.24.0), NMF (>= 0.20.6) Imports: stats, S4Vectors, BiocGenerics (>= 0.18.0), BSgenome (>= 1.40.0), VariantAnnotation (>= 1.18.1), dplyr (>= 0.8.3), tibble(>= 2.1.3), purrr (>= 0.3.2), tidyr (>= 1.0.0), stringr (>= 1.4.0), magrittr (>= 1.5), ggplot2 (>= 2.1.0), pracma (>= 1.8.8), IRanges (>= 2.6.0), GenomeInfoDb (>= 1.12.0), Biostrings (>= 2.40.0), ggdendro (>= 0.1-20), cowplot (>= 0.9.2), ggalluvial (>= 0.12.2), RColorBrewer, methods Suggests: BSgenome.Hsapiens.UCSC.hg19 (>= 1.4.0), BiocStyle (>= 2.0.3), TxDb.Hsapiens.UCSC.hg19.knownGene (>= 3.2.2), biomaRt (>= 2.28.0), gridExtra (>= 2.2.1), rtracklayer (>= 1.32.2), ccfindR (>= 1.6.0), GenomicFeatures, AnnotationDbi, testthat, knitr, rmarkdown License: MIT + file LICENSE MD5sum: bf6f909ef82ca63bbc39f0f380681f2e NeedsCompilation: no Title: Comprehensive genome-wide analysis of mutational processes Description: Mutational processes leave characteristic footprints in genomic DNA. This package provides a comprehensive set of flexible functions that allows researchers to easily evaluate and visualize a multitude of mutational patterns in base substitution catalogues of e.g. healthy samples, tumour samples, or DNA-repair deficient cells. The package covers a wide range of patterns including: mutational signatures, transcriptional and replicative strand bias, lesion segregation, genomic distribution and association with genomic features, which are collectively meaningful for studying the activity of mutational processes. The package works with single nucleotide variants (SNVs), insertions and deletions (Indels), double base substitutions (DBSs) and larger multi base substitutions (MBSs). The package provides functionalities for both extracting mutational signatures de novo and determining the contribution of previously identified mutational signatures on a single sample level. MutationalPatterns integrates with common R genomic analysis workflows and allows easy association with (publicly available) annotation data. biocViews: Genetics, SomaticMutation Author: Freek Manders [aut] (), Francis Blokzijl [aut] (), Roel Janssen [aut] (), Jurrian de Kanter [ctb] (), Rurika Oka [ctb] (), Mark van Roosmalen [cre], Ruben van Boxtel [aut, cph] (), Edwin Cuppen [aut] () Maintainer: Mark van Roosmalen URL: https://doi.org/doi:10.1186/s12864-022-08357-3 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MutationalPatterns git_branch: RELEASE_3_20 git_last_commit: 2e812c5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MutationalPatterns_3.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MutationalPatterns_3.16.0.zip vignettes: vignettes/MutationalPatterns/inst/doc/Introduction_to_MutationalPatterns.html vignetteTitles: Introduction to MutationalPatterns hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/MutationalPatterns/inst/doc/Introduction_to_MutationalPatterns.R importsMe: RESOLVE suggestsMe: SUITOR dependencyCount: 124 Package: MVCClass Version: 1.80.0 Depends: R (>= 2.1.0), methods License: LGPL MD5sum: a8ce7fca6f05d4da5d4025891e82c51c NeedsCompilation: no Title: Model-View-Controller (MVC) Classes Description: Creates classes used in model-view-controller (MVC) design biocViews: Visualization, Infrastructure, GraphAndNetwork Author: Elizabeth Whalen Maintainer: Elizabeth Whalen git_url: https://git.bioconductor.org/packages/MVCClass git_branch: RELEASE_3_20 git_last_commit: 879af97 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MVCClass_1.80.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MVCClass_1.80.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MVCClass_1.80.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MVCClass_1.80.0.tgz vignettes: vignettes/MVCClass/inst/doc/MVCClass.pdf vignetteTitles: MVCClass hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: BioMVCClass dependencyCount: 1 Package: MWASTools Version: 1.30.0 Depends: R (>= 3.5.0) Imports: glm2, ppcor, qvalue, car, boot, grid, ggplot2, gridExtra, igraph, SummarizedExperiment, KEGGgraph, RCurl, KEGGREST, ComplexHeatmap, stats, utils Suggests: RUnit, BiocGenerics, knitr, BiocStyle, rmarkdown License: CC BY-NC-ND 4.0 Archs: x64 MD5sum: 919802ea963bcf315a070eea285d5283 NeedsCompilation: no Title: MWASTools: an integrated pipeline to perform metabolome-wide association studies Description: MWASTools provides a complete pipeline to perform metabolome-wide association studies. Key functionalities of the package include: quality control analysis of metabonomic data; MWAS using different association models (partial correlations; generalized linear models); model validation using non-parametric bootstrapping; visualization of MWAS results; NMR metabolite identification using STOCSY; and biological interpretation of MWAS results. biocViews: Metabolomics, Lipidomics, Cheminformatics, SystemsBiology, QualityControl Author: Andrea Rodriguez-Martinez, Joram M. Posma, Rafael Ayala, Ana L. Neves, Maryam Anwar, Jeremy K. Nicholson, Marc-Emmanuel Dumas Maintainer: Andrea Rodriguez-Martinez , Rafael Ayala VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/MWASTools git_branch: RELEASE_3_20 git_last_commit: b342a77 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/MWASTools_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/MWASTools_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MWASTools_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/MWASTools_1.30.0.tgz vignettes: vignettes/MWASTools/inst/doc/MWASTools.html vignetteTitles: MWASTools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/MWASTools/inst/doc/MWASTools.R importsMe: MetaboSignal dependencyCount: 123 Package: mygene Version: 1.42.0 Depends: R (>= 3.2.1), GenomicFeatures, txdbmaker Imports: methods, utils, stats, httr (>= 0.3), jsonlite (>= 0.9.7), Hmisc, sqldf, plyr, S4Vectors Suggests: BiocStyle License: Artistic-2.0 MD5sum: f53f04381d0b954109c518d4d4876f96 NeedsCompilation: no Title: Access MyGene.Info_ services Description: MyGene.Info_ provides simple-to-use REST web services to query/retrieve gene annotation data. It's designed with simplicity and performance emphasized. *mygene*, is an easy-to-use R wrapper to access MyGene.Info_ services. biocViews: Annotation Author: Adam Mark, Ryan Thompson, Cyrus Afrasiabi, Chunlei Wu Maintainer: Adam Mark, Cyrus Afrasiabi, Chunlei Wu git_url: https://git.bioconductor.org/packages/mygene git_branch: RELEASE_3_20 git_last_commit: 722ac68 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mygene_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mygene_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mygene_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mygene_1.42.0.tgz vignettes: vignettes/mygene/inst/doc/mygene.pdf vignetteTitles: Using mygene.R hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mygene/inst/doc/mygene.R importsMe: MetaboSignal suggestsMe: CRISPRball dependencyCount: 149 Package: myvariant Version: 1.36.0 Depends: R (>= 3.2.1), VariantAnnotation Imports: httr, jsonlite, S4Vectors, Hmisc, plyr, magrittr, GenomeInfoDb Suggests: BiocStyle License: Artistic-2.0 MD5sum: aa962af64065d70827f09a7388869286 NeedsCompilation: no Title: Accesses MyVariant.info variant query and annotation services Description: MyVariant.info is a comprehensive aggregation of variant annotation resources. myvariant is a wrapper for querying MyVariant.info services biocViews: VariantAnnotation, Annotation, GenomicVariation Author: Adam Mark Maintainer: Adam Mark, Chunlei Wu git_url: https://git.bioconductor.org/packages/myvariant git_branch: RELEASE_3_20 git_last_commit: 9f0fe11 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/myvariant_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/myvariant_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/myvariant_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/myvariant_1.36.0.tgz vignettes: vignettes/myvariant/inst/doc/myvariant.pdf vignetteTitles: Using MyVariant.R hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/myvariant/inst/doc/myvariant.R dependencyCount: 132 Package: mzID Version: 1.44.0 Depends: methods Imports: XML, plyr, parallel, doParallel, foreach, iterators, ProtGenerics Suggests: knitr, testthat License: GPL (>= 2) MD5sum: 3df562afb53b11d4b7f38aa6716f3f99 NeedsCompilation: no Title: An mzIdentML parser for R Description: A parser for mzIdentML files implemented using the XML package. The parser tries to be general and able to handle all types of mzIdentML files with the drawback of having less 'pretty' output than a vendor specific parser. Please contact the maintainer with any problems and supply an mzIdentML file so the problems can be fixed quickly. biocViews: ImmunoOncology, DataImport, MassSpectrometry, Proteomics Author: Laurent Gatto [ctb, cre] (), Thomas Pedersen [aut] (), Vladislav Petyuk [ctb] Maintainer: Laurent Gatto VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/mzID git_branch: RELEASE_3_20 git_last_commit: 51b8ec1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mzID_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mzID_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mzID_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mzID_1.44.0.tgz vignettes: vignettes/mzID/inst/doc/HOWTO_mzID.pdf vignetteTitles: Using mzID hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mzID/inst/doc/HOWTO_mzID.R importsMe: MSnbase, MSnID, TargetDecoy suggestsMe: mzR, PSMatch, RforProteomics dependencyCount: 11 Package: mzR Version: 2.40.0 Depends: R (>= 4.0.0), Rcpp (>= 0.10.1), methods, utils Imports: Biobase, BiocGenerics (>= 0.13.6), ProtGenerics (>= 1.17.3), ncdf4 LinkingTo: Rcpp, Rhdf5lib (>= 1.1.4) Suggests: msdata (>= 0.15.1), RUnit, mzID, BiocStyle (>= 2.5.19), knitr, XML, rmarkdown License: Artistic-2.0 MD5sum: d1139d459bfd5b65bb24669ea8e1a387 NeedsCompilation: yes Title: parser for netCDF, mzXML and mzML and mzIdentML files (mass spectrometry data) Description: mzR provides a unified API to the common file formats and parsers available for mass spectrometry data. It comes with a subset of the proteowizard library for mzXML, mzML and mzIdentML. The netCDF reading code has previously been used in XCMS. biocViews: ImmunoOncology, Infrastructure, DataImport, Proteomics, Metabolomics, MassSpectrometry Author: Bernd Fischer, Steffen Neumann, Laurent Gatto, Qiang Kou, Johannes Rainer Maintainer: Steffen Neumann URL: https://github.com/sneumann/mzR/ SystemRequirements: C++11, GNU make VignetteBuilder: knitr BugReports: https://github.com/sneumann/mzR/issues/ git_url: https://git.bioconductor.org/packages/mzR git_branch: RELEASE_3_20 git_last_commit: 942e977 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/mzR_2.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/mzR_2.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/mzR_2.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/mzR_2.40.0.tgz vignettes: vignettes/mzR/inst/doc/mzR.html vignetteTitles: Accessin raw mass spectrometry and identification data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/mzR/inst/doc/mzR.R dependsOnMe: MSnbase importsMe: adductomicsR, CluMSID, MSnID, msPurity, peakPantheR, RMassBank, SIMAT, TargetDecoy, topdownr, xcms, yamss suggestsMe: AnnotationHub, koinar, MetaboAnnotation, MsBackendMetaboLights, MsBackendRawFileReader, MsBackendSql, MsDataHub, MsExperiment, MsQuality, PSMatch, qcmetrics, Spectra, SpectraQL, msdata, RforProteomics, chromConverter, erah dependencyCount: 10 Package: NADfinder Version: 1.30.0 Depends: R (>= 3.5.0), BiocGenerics, IRanges, GenomicRanges, S4Vectors, SummarizedExperiment Imports: graphics, methods, baseline, signal, GenomicAlignments, GenomeInfoDb, rtracklayer, limma, trackViewer, stats, utils, Rsamtools, metap, EmpiricalBrownsMethod,ATACseqQC, corrplot, csaw Suggests: RUnit, BiocStyle, knitr, BSgenome.Mmusculus.UCSC.mm10, testthat, BiocManager, rmarkdown License: GPL (>= 2) MD5sum: 75fcb8ce2a5bedab332b7407603b6516 NeedsCompilation: no Title: Call wide peaks for sequencing data Description: Nucleolus is an important structure inside the nucleus in eukaryotic cells. It is the site for transcribing rDNA into rRNA and for assembling ribosomes, aka ribosome biogenesis. In addition, nucleoli are dynamic hubs through which numerous proteins shuttle and contact specific non-rDNA genomic loci. Deep sequencing analyses of DNA associated with isolated nucleoli (NAD- seq) have shown that specific loci, termed nucleolus- associated domains (NADs) form frequent three- dimensional associations with nucleoli. NAD-seq has been used to study the biological functions of NAD and the dynamics of NAD distribution during embryonic stem cell (ESC) differentiation. Here, we developed a Bioconductor package NADfinder for bioinformatic analysis of the NAD-seq data, including baseline correction, smoothing, normalization, peak calling, and annotation. biocViews: Sequencing, DNASeq, GeneRegulation, PeakDetection Author: Jianhong Ou, Haibo Liu, Jun Yu, Hervé Pagès, Paul Kaufman, Lihua Julie Zhu Maintainer: Jianhong Ou , Lihua Julie Zhu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/NADfinder git_branch: RELEASE_3_20 git_last_commit: cb904d7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NADfinder_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NADfinder_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NADfinder_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NADfinder_1.30.0.tgz vignettes: vignettes/NADfinder/inst/doc/NADfinder.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NADfinder/inst/doc/NADfinder.R dependencyCount: 245 Package: NanoMethViz Version: 3.2.0 Depends: R (>= 4.0.0), methods, ggplot2 (>= 3.4.0) Imports: cpp11 (>= 0.2.5), readr, cli, S4Vectors, SummarizedExperiment, BiocSingular, bsseq, forcats, assertthat, AnnotationDbi, Rcpp, dplyr, dbscan, e1071, fs, GenomicRanges, Biostrings, ggrastr, glue, graphics, IRanges, limma (>= 3.44.0), patchwork, purrr, rlang, R.utils, Rsamtools, scales (>= 1.2.0), stats, stringr, tibble, tidyr, utils, withr, zlibbioc LinkingTo: Rcpp Suggests: BiocStyle, DSS, Mus.musculus (>= 1.3.1), Homo.sapiens (>= 1.3.1), org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg38.knownGene, org.Mm.eg.db, TxDb.Mmusculus.UCSC.mm10.knownGene, TxDb.Mmusculus.UCSC.mm39.refGene, knitr, rmarkdown, rtracklayer, testthat (>= 3.0.0), covr License: Apache License (>= 2.0) MD5sum: 37353e2801348c57a5e4e067bb7d9468 NeedsCompilation: yes Title: Visualise methylation data from Oxford Nanopore sequencing Description: NanoMethViz is a toolkit for visualising methylation data from Oxford Nanopore sequencing. It can be used to explore methylation patterns from reads derived from Oxford Nanopore direct DNA sequencing with methylation called by callers including nanopolish, f5c and megalodon. The plots in this package allow the visualisation of methylation profiles aggregated over experimental groups and across classes of genomic features. biocViews: Software, LongRead, Visualization, DifferentialMethylation, DNAMethylation, Epigenetics, DataImport Author: Shian Su [cre, aut] Maintainer: Shian Su URL: https://github.com/shians/NanoMethViz, https://shians.github.io/NanoMethViz/ SystemRequirements: C++20 VignetteBuilder: knitr BugReports: https://github.com/Shians/NanoMethViz/issues git_url: https://git.bioconductor.org/packages/NanoMethViz git_branch: RELEASE_3_20 git_last_commit: 3003b57 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NanoMethViz_3.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NanoMethViz_3.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NanoMethViz_3.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NanoMethViz_3.2.0.tgz vignettes: vignettes/NanoMethViz/inst/doc/UsersGuide.html vignetteTitles: User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NanoMethViz/inst/doc/UsersGuide.R dependencyCount: 150 Package: NanoStringDiff Version: 1.36.0 Depends: Biobase Imports: matrixStats, methods, Rcpp LinkingTo: Rcpp Suggests: testthat, BiocStyle License: GPL MD5sum: 28069ba4127a6aed423d6bf100885c6e NeedsCompilation: yes Title: Differential Expression Analysis of NanoString nCounter Data Description: This Package utilizes a generalized linear model(GLM) of the negative binomial family to characterize count data and allows for multi-factor design. NanoStrongDiff incorporate size factors, calculated from positive controls and housekeeping controls, and background level, obtained from negative controls, in the model framework so that all the normalization information provided by NanoString nCounter Analyzer is fully utilized. biocViews: DifferentialExpression, Normalization Author: hong wang , tingting zhai , chi wang Maintainer: tingting zhai ,hong wang git_url: https://git.bioconductor.org/packages/NanoStringDiff git_branch: RELEASE_3_20 git_last_commit: 5387652 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NanoStringDiff_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NanoStringDiff_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NanoStringDiff_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NanoStringDiff_1.36.0.tgz vignettes: vignettes/NanoStringDiff/inst/doc/NanoStringDiff.pdf vignetteTitles: NanoStringDiff Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NanoStringDiff/inst/doc/NanoStringDiff.R suggestsMe: NanoTube dependencyCount: 8 Package: NanoStringNCTools Version: 1.14.0 Depends: R (>= 3.6), Biobase, S4Vectors, ggplot2 Imports: BiocGenerics, Biostrings, ggbeeswarm, ggiraph, ggthemes, grDevices, IRanges, methods, pheatmap, RColorBrewer, stats, utils Suggests: biovizBase, ggbio, RUnit, rmarkdown, knitr, qpdf License: MIT Archs: x64 MD5sum: f593b22f668fc055c6220cd732864cf4 NeedsCompilation: no Title: NanoString nCounter Tools Description: Tools for NanoString Technologies nCounter Technology. Provides support for reading RCC files into an ExpressionSet derived object. Also includes methods for QC and normalizaztion of NanoString data. biocViews: GeneExpression, Transcription, CellBasedAssays, DataImport, Transcriptomics, Proteomics, mRNAMicroarray, ProprietaryPlatforms, RNASeq Author: Patrick Aboyoun [aut], Nicole Ortogero [aut], Maddy Griswold [cre], Zhi Yang [ctb] Maintainer: Maddy Griswold VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/NanoStringNCTools git_branch: RELEASE_3_20 git_last_commit: cdd61d5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NanoStringNCTools_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NanoStringNCTools_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NanoStringNCTools_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NanoStringNCTools_1.14.0.tgz vignettes: vignettes/NanoStringNCTools/inst/doc/Introduction.html vignetteTitles: Introduction to the NanoStringRCCSet Class hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/NanoStringNCTools/inst/doc/Introduction.R dependsOnMe: GeomxTools, GeoMxWorkflows importsMe: GeoDiff dependencyCount: 88 Package: NanoTube Version: 1.12.0 Depends: R (>= 4.1), Biobase, ggplot2, limma Imports: fgsea, methods, reshape, stats, utils Suggests: grid, kableExtra, knitr, NanoStringDiff, pheatmap, plotly, rlang, rmarkdown, ruv, RUVSeq, shiny, testthat, xlsx License: GPL-3 + file LICENSE MD5sum: 12888ce680c2f393f73f11a1df7f3cb3 NeedsCompilation: no Title: An Easy Pipeline for NanoString nCounter Data Analysis Description: NanoTube includes functions for the processing, quality control, analysis, and visualization of NanoString nCounter data. Analysis functions include differential analysis and gene set analysis methods, as well as postprocessing steps to help understand the results. Additional functions are included to enable interoperability with other Bioconductor NanoString data analysis packages. biocViews: Software, GeneExpression, DifferentialExpression, QualityControl Author: Caleb Class [cre, aut] (), Caiden Lukan [ctb] Maintainer: Caleb Class VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/NanoTube git_branch: RELEASE_3_20 git_last_commit: ba6a8ce git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NanoTube_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NanoTube_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NanoTube_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NanoTube_1.12.0.tgz vignettes: vignettes/NanoTube/inst/doc/NanoTube.html vignetteTitles: NanoTube Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/NanoTube/inst/doc/NanoTube.R dependencyCount: 56 Package: NBAMSeq Version: 1.22.0 Depends: R (>= 3.6), SummarizedExperiment, S4Vectors Imports: DESeq2, mgcv(>= 1.8-24), BiocParallel, genefilter, methods, stats, Suggests: knitr, rmarkdown, testthat, ggplot2 License: GPL-2 Archs: x64 MD5sum: 9ac3de6a0dece162a3e824e71207811e NeedsCompilation: no Title: Negative Binomial Additive Model for RNA-Seq Data Description: High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. biocViews: RNASeq, DifferentialExpression, GeneExpression, Sequencing, Coverage Author: Xu Ren [aut, cre], Pei Fen Kuan [aut] Maintainer: Xu Ren URL: https://github.com/reese3928/NBAMSeq VignetteBuilder: knitr BugReports: https://github.com/reese3928/NBAMSeq/issues git_url: https://git.bioconductor.org/packages/NBAMSeq git_branch: RELEASE_3_20 git_last_commit: ca1fa56 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NBAMSeq_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NBAMSeq_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NBAMSeq_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NBAMSeq_1.22.0.tgz vignettes: vignettes/NBAMSeq/inst/doc/NBAMSeq-vignette.html vignetteTitles: Negative Binomial Additive Model for RNA-Seq Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NBAMSeq/inst/doc/NBAMSeq-vignette.R dependencyCount: 94 Package: ncdfFlow Version: 2.52.0 Depends: R (>= 2.14.0), flowCore(>= 1.51.7), methods, BH Imports: Biobase,BiocGenerics,flowCore,zlibbioc LinkingTo: cpp11,BH, Rhdf5lib Suggests: testthat,parallel,flowStats,knitr License: AGPL-3.0-only Archs: x64 MD5sum: d67423b40637d81fccdf25642a6ae33b NeedsCompilation: yes Title: ncdfFlow: A package that provides HDF5 based storage for flow cytometry data. Description: Provides HDF5 storage based methods and functions for manipulation of flow cytometry data. biocViews: ImmunoOncology, FlowCytometry Author: Mike Jiang,Greg Finak,N. Gopalakrishnan Maintainer: Mike Jiang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ncdfFlow git_branch: RELEASE_3_20 git_last_commit: 40b22e1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ncdfFlow_2.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ncdfFlow_2.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ncdfFlow_2.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ncdfFlow_2.52.0.tgz vignettes: vignettes/ncdfFlow/inst/doc/ncdfFlow.pdf vignetteTitles: Basic Functions for Flow Cytometry Data hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ncdfFlow/inst/doc/ncdfFlow.R dependsOnMe: ggcyto importsMe: flowStats, flowWorkspace suggestsMe: COMPASS, cydar dependencyCount: 18 Package: ncGTW Version: 1.20.0 Depends: methods, BiocParallel, xcms Imports: Rcpp, grDevices, graphics, stats LinkingTo: Rcpp Suggests: BiocStyle, knitr, testthat, rmarkdown License: GPL-2 MD5sum: 6f38bb92656caf6a7910e3266da17355 NeedsCompilation: yes Title: Alignment of LC-MS Profiles by Neighbor-wise Compound-specific Graphical Time Warping with Misalignment Detection Description: The purpose of ncGTW is to help XCMS for LC-MS data alignment. Currently, ncGTW can detect the misaligned feature groups by XCMS, and the user can choose to realign these feature groups by ncGTW or not. biocViews: Software, MassSpectrometry, Metabolomics, Alignment Author: Chiung-Ting Wu Maintainer: Chiung-Ting Wu VignetteBuilder: knitr BugReports: https://github.com/ChiungTingWu/ncGTW/issues git_url: https://git.bioconductor.org/packages/ncGTW git_branch: RELEASE_3_20 git_last_commit: 50f49d7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ncGTW_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ncGTW_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ncGTW_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ncGTW_1.20.0.tgz vignettes: vignettes/ncGTW/inst/doc/ncGTW.html vignetteTitles: ncGTW User Manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ncGTW/inst/doc/ncGTW.R dependencyCount: 147 Package: NCIgraph Version: 1.54.0 Depends: R (>= 4.0.0) Imports: graph, KEGGgraph, methods, RBGL, RCy3, R.oo Suggests: Rgraphviz Enhances: DEGraph License: GPL-3 MD5sum: 39ef54003713b1eddd5262eee4628033 NeedsCompilation: no Title: Pathways from the NCI Pathways Database Description: Provides various methods to load the pathways from the NCI Pathways Database in R graph objects and to re-format them. biocViews: Pathways, GraphAndNetwork Author: Laurent Jacob Maintainer: Laurent Jacob git_url: https://git.bioconductor.org/packages/NCIgraph git_branch: RELEASE_3_20 git_last_commit: 6ee3bda git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NCIgraph_1.54.0.tar.gz vignettes: vignettes/NCIgraph/inst/doc/NCIgraph.pdf vignetteTitles: NCIgraph: networks from the NCI pathway integrated database as graphNEL objects. hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NCIgraph/inst/doc/NCIgraph.R importsMe: DEGraph suggestsMe: DEGraph dependencyCount: 56 Package: ncRNAtools Version: 1.16.0 Imports: httr, xml2, utils, methods, grDevices, ggplot2, IRanges, GenomicRanges, S4Vectors Suggests: knitr, BiocStyle, rmarkdown, RUnit, BiocGenerics License: GPL-3 MD5sum: 65232d5ff400589d895ca1fac017e932 NeedsCompilation: no Title: An R toolkit for non-coding RNA Description: ncRNAtools provides a set of basic tools for handling and analyzing non-coding RNAs. These include tools to access the RNAcentral database and to predict and visualize the secondary structure of non-coding RNAs. The package also provides tools to read, write and interconvert the file formats most commonly used for representing such secondary structures. biocViews: FunctionalGenomics, DataImport, ThirdPartyClient, Visualization, StructuralPrediction Author: Lara Selles Vidal [cre, aut] (), Rafael Ayala [aut] (), Guy-Bart Stan [aut] (), Rodrigo Ledesma-Amaro [aut] () Maintainer: Lara Selles Vidal VignetteBuilder: knitr BugReports: https://github.com/LaraSellesVidal/ncRNAtools/issues git_url: https://git.bioconductor.org/packages/ncRNAtools git_branch: RELEASE_3_20 git_last_commit: 2602ed4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ncRNAtools_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ncRNAtools_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ncRNAtools_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ncRNAtools_1.16.0.tgz vignettes: vignettes/ncRNAtools/inst/doc/ncRNAtools.html vignetteTitles: rfaRm hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ncRNAtools/inst/doc/ncRNAtools.R dependencyCount: 54 Package: ndexr Version: 1.28.0 Depends: RCX Imports: httr, jsonlite, plyr, tidyr Suggests: BiocStyle, testthat, knitr, rmarkdown License: BSD_3_clause + file LICENSE MD5sum: 212ecbc3605714b0c940b9ba81448b2d NeedsCompilation: no Title: NDEx R client library Description: This package offers an interface to NDEx servers, e.g. the public server at http://ndexbio.org/. It can retrieve and save networks via the API. Networks are offered as RCX object and as igraph representation. biocViews: Pathways, DataImport, Network Author: Florian Auer [cre, aut] (), Frank Kramer [ctb], Alex Ishkin [ctb], Dexter Pratt [ctb] Maintainer: Florian Auer URL: https://github.com/frankkramer-lab/ndexr VignetteBuilder: knitr BugReports: https://github.com/frankkramer-lab/ndexr/issues git_url: https://git.bioconductor.org/packages/ndexr git_branch: RELEASE_3_20 git_last_commit: 575109b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ndexr_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ndexr_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ndexr_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ndexr_1.28.0.tgz vignettes: vignettes/ndexr/inst/doc/ndexr-vignette.html vignetteTitles: NDExR Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ndexr/inst/doc/ndexr-vignette.R dependencyCount: 41 Package: nearBynding Version: 1.16.0 Depends: R (>= 4.0) Imports: R.utils, matrixStats, plyranges, transport, Rsamtools, S4Vectors, grDevices, graphics, rtracklayer, dplyr, GenomeInfoDb, methods, GenomicRanges, utils, stats, magrittr, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg38.knownGene, ggplot2, gplots, BiocGenerics, rlang Suggests: knitr, rmarkdown License: Artistic-2.0 Archs: x64 MD5sum: 8fb74f690601087b29f556c9f6a41943 NeedsCompilation: no Title: Discern RNA structure proximal to protein binding Description: Provides a pipeline to discern RNA structure at and proximal to the site of protein binding within regions of the transcriptome defined by the user. CLIP protein-binding data can be input as either aligned BAM or peak-called bedGraph files. RNA structure can either be predicted internally from sequence or users have the option to input their own RNA structure data. RNA structure binding profiles can be visually and quantitatively compared across multiple formats. biocViews: Visualization, MotifDiscovery, DataRepresentation, StructuralPrediction, Clustering, MultipleComparison Author: Veronica Busa [cre] Maintainer: Veronica Busa SystemRequirements: bedtools (>= 2.28.0), Stereogene (>= v2.22), CapR (>= 1.1.1) VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/nearBynding git_branch: RELEASE_3_20 git_last_commit: ca5a7c0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/nearBynding_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/nearBynding_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/nearBynding_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/nearBynding_1.16.0.tgz vignettes: vignettes/nearBynding/inst/doc/nearBynding.pdf vignetteTitles: nearBynding Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/nearBynding/inst/doc/nearBynding.R dependencyCount: 114 Package: Nebulosa Version: 1.16.0 Depends: R (>= 4.0), ggplot2, patchwork Imports: SingleCellExperiment, SummarizedExperiment, SeuratObject, ks, Matrix, stats, methods, ggrastr Suggests: testthat, BiocStyle, knitr, rmarkdown, covr, scater, scran, DropletUtils, igraph, BiocFileCache, Seurat License: GPL-3 Archs: x64 MD5sum: 7693058a1cf85b5d099559b2639cde2c NeedsCompilation: no Title: Single-Cell Data Visualisation Using Kernel Gene-Weighted Density Estimation Description: This package provides a enhanced visualization of single-cell data based on gene-weighted density estimation. Nebulosa recovers the signal from dropped-out features and allows the inspection of the joint expression from multiple features (e.g. genes). Seurat and SingleCellExperiment objects can be used within Nebulosa. biocViews: Software, GeneExpression, SingleCell, Visualization, DimensionReduction Author: Jose Alquicira-Hernandez [aut, cre] () Maintainer: Jose Alquicira-Hernandez URL: https://github.com/powellgenomicslab/Nebulosa VignetteBuilder: knitr BugReports: https://github.com/powellgenomicslab/Nebulosa/issues git_url: https://git.bioconductor.org/packages/Nebulosa git_branch: RELEASE_3_20 git_last_commit: dc992b2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Nebulosa_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Nebulosa_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Nebulosa_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Nebulosa_1.16.0.tgz vignettes: vignettes/Nebulosa/inst/doc/introduction.html, vignettes/Nebulosa/inst/doc/nebulosa_seurat.html vignetteTitles: Visualization of gene expression with Nebulosa, Visualization of gene expression with Nebulosa (in Seurat) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Nebulosa/inst/doc/introduction.R, vignettes/Nebulosa/inst/doc/nebulosa_seurat.R suggestsMe: scCustomize, SCpubr dependencyCount: 98 Package: nempi Version: 1.14.0 Depends: R (>= 4.1), mnem Imports: e1071, nnet, randomForest, naturalsort, graphics, stats, utils, matrixStats, epiNEM Suggests: knitr, BiocGenerics, rmarkdown, RUnit, BiocStyle License: GPL-3 MD5sum: 4ddadcdb8dda0bd40d87344ec2cd3139 NeedsCompilation: no Title: Inferring unobserved perturbations from gene expression data Description: Takes as input an incomplete perturbation profile and differential gene expression in log odds and infers unobserved perturbations and augments observed ones. The inference is done by iteratively inferring a network from the perturbations and inferring perturbations from the network. The network inference is done by Nested Effects Models. biocViews: Software, GeneExpression, DifferentialExpression, DifferentialMethylation, GeneSignaling, Pathways, Network, Classification, NeuralNetwork, NetworkInference, ATACSeq, DNASeq, RNASeq, PooledScreens, CRISPR, SingleCell, SystemsBiology Author: Martin Pirkl [aut, cre] Maintainer: Martin Pirkl URL: https://github.com/cbg-ethz/nempi/ VignetteBuilder: knitr BugReports: https://github.com/cbg-ethz/nempi/issues git_url: https://git.bioconductor.org/packages/nempi git_branch: RELEASE_3_20 git_last_commit: daecb3f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/nempi_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/nempi_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/nempi_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/nempi_1.14.0.tgz vignettes: vignettes/nempi/inst/doc/nempi.html vignetteTitles: nempi hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/nempi/inst/doc/nempi.R dependencyCount: 114 Package: NetActivity Version: 1.8.0 Depends: R (>= 4.1.0) Imports: airway, DelayedArray, DelayedMatrixStats, DESeq2, methods, methods, NetActivityData, SummarizedExperiment, utils Suggests: AnnotationDbi, BiocStyle, Fletcher2013a, knitr, org.Hs.eg.db, rmarkdown, testthat (>= 3.0.0), tidyverse License: MIT + file LICENSE MD5sum: aee224387f9df720b12309541d2953c7 NeedsCompilation: no Title: Compute gene set scores from a deep learning framework Description: #' NetActivity enables to compute gene set scores from previously trained sparsely-connected autoencoders. The package contains a function to prepare the data (`prepareSummarizedExperiment`) and a function to compute the gene set scores (`computeGeneSetScores`). The package `NetActivityData` contains different pre-trained models to be directly applied to the data. Alternatively, the users might use the package to compute gene set scores using custom models. biocViews: RNASeq, Microarray, Transcription, FunctionalGenomics, GO, GeneExpression, Pathways, Software Author: Carlos Ruiz-Arenas [aut, cre] Maintainer: Carlos Ruiz-Arenas VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/NetActivity git_branch: RELEASE_3_20 git_last_commit: 4e8202f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NetActivity_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NetActivity_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NetActivity_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NetActivity_1.8.0.tgz vignettes: vignettes/NetActivity/inst/doc/NetActivity.html vignetteTitles: "Gene set scores computation with NetActivity" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/NetActivity/inst/doc/NetActivity.R dependencyCount: 80 Package: netboost Version: 2.14.0 Depends: R (>= 4.0.0) Imports: Rcpp, RcppParallel, parallel, grDevices, graphics, stats, utils, dynamicTreeCut, WGCNA, impute, colorspace, methods, BiocStyle, R.utils LinkingTo: Rcpp, RcppParallel Suggests: knitr, rmarkdown License: GPL-3 OS_type: unix MD5sum: 24b404583b12464b5cc270a6cd1a0cd9 NeedsCompilation: yes Title: Network Analysis Supported by Boosting Description: Boosting supported network analysis for high-dimensional omics applications. This package comes bundled with the MC-UPGMA clustering package by Yaniv Loewenstein. biocViews: Software, StatisticalMethod, GraphAndNetwork, Network, Clustering, DimensionReduction, BiomedicalInformatics, Epigenetics, Metabolomics, Transcriptomics Author: Pascal Schlosser [aut, cre], Jochen Knaus [aut, ctb], Yaniv Loewenstein [aut] Maintainer: Pascal Schlosser URL: https://bioconductor.org/packages/release/bioc/html/netboost.html SystemRequirements: GNU make, Bash, Perl, Gzip VignetteBuilder: knitr BugReports: pascal.schlosser@uniklinik-freiburg.de git_url: https://git.bioconductor.org/packages/netboost git_branch: RELEASE_3_20 git_last_commit: e36cab2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/netboost_2.14.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/netboost_2.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/netboost_2.14.0.tgz vignettes: vignettes/netboost/inst/doc/netboost.html vignetteTitles: The Netboost users guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/netboost/inst/doc/netboost.R dependencyCount: 121 Package: nethet Version: 1.38.0 Imports: glasso, mvtnorm, GeneNet, huge, CompQuadForm, ggm, mclust, parallel, GSA, limma, multtest, ICSNP, glmnet, network, ggplot2, grDevices, graphics, stats, utils Suggests: knitr, xtable, BiocStyle, testthat License: GPL-2 MD5sum: 4775425acafec422168d1e53f9102d2e NeedsCompilation: yes Title: A bioconductor package for high-dimensional exploration of biological network heterogeneity Description: Package nethet is an implementation of statistical solid methodology enabling the analysis of network heterogeneity from high-dimensional data. It combines several implementations of recent statistical innovations useful for estimation and comparison of networks in a heterogeneous, high-dimensional setting. In particular, we provide code for formal two-sample testing in Gaussian graphical models (differential network and GGM-GSA; Stadler and Mukherjee, 2013, 2014) and make a novel network-based clustering algorithm available (mixed graphical lasso, Stadler and Mukherjee, 2013). biocViews: Clustering, GraphAndNetwork Author: Nicolas Staedler, Frank Dondelinger Maintainer: Nicolas Staedler , Frank Dondelinger VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/nethet git_branch: RELEASE_3_20 git_last_commit: df04fd9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/nethet_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/nethet_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/nethet_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/nethet_1.38.0.tgz vignettes: vignettes/nethet/inst/doc/nethet.pdf vignetteTitles: nethet hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/nethet/inst/doc/nethet.R dependencyCount: 77 Package: NetPathMiner Version: 1.42.0 Depends: R (>= 3.0.2), igraph (>= 1.0) Suggests: rBiopaxParser (>= 2.1), RCurl, graph, knitr, rmarkdown, BiocStyle License: GPL (>= 2) MD5sum: 029f09aab87add082c84c57fb292859d NeedsCompilation: yes Title: NetPathMiner for Biological Network Construction, Path Mining and Visualization Description: NetPathMiner is a general framework for network path mining using genome-scale networks. It constructs networks from KGML, SBML and BioPAX files, providing three network representations, metabolic, reaction and gene representations. NetPathMiner finds active paths and applies machine learning methods to summarize found paths for easy interpretation. It also provides static and interactive visualizations of networks and paths to aid manual investigation. biocViews: GraphAndNetwork, Pathways, Network, Clustering, Classification Author: Ahmed Mohamed [aut, cre] (), Tim Hancock [aut], Tim Hancock [aut] Maintainer: Ahmed Mohamed URL: https://github.com/ahmohamed/NetPathMiner SystemRequirements: libxml2, libSBML (>= 5.5) VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/NetPathMiner git_branch: RELEASE_3_20 git_last_commit: 97bf773 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NetPathMiner_1.42.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NetPathMiner_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NetPathMiner_1.42.0.tgz vignettes: vignettes/NetPathMiner/inst/doc/NPMVignette.html vignetteTitles: NetPathMiner Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NetPathMiner/inst/doc/NPMVignette.R dependencyCount: 17 Package: netprioR Version: 1.32.0 Depends: methods, graphics, R(>= 3.3) Imports: stats, Matrix, dplyr, doParallel, foreach, parallel, sparseMVN, ggplot2, gridExtra, pROC Suggests: knitr, BiocStyle, pander License: GPL-3 MD5sum: cbc8a4af4a2a607b46750d3c23c62349 NeedsCompilation: no Title: A model for network-based prioritisation of genes Description: A model for semi-supervised prioritisation of genes integrating network data, phenotypes and additional prior knowledge about TP and TN gene labels from the literature or experts. biocViews: ImmunoOncology, CellBasedAssays, Preprocessing, Network Author: Fabian Schmich Maintainer: Fabian Schmich URL: http://bioconductor.org/packages/netprioR VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/netprioR git_branch: RELEASE_3_20 git_last_commit: 960f058 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/netprioR_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/netprioR_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/netprioR_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/netprioR_1.32.0.tgz vignettes: vignettes/netprioR/inst/doc/netprioR.html vignetteTitles: netprioR Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/netprioR/inst/doc/netprioR.R dependencyCount: 48 Package: netresponse Version: 1.66.0 Depends: R (>= 2.15.1), BiocStyle, Rgraphviz, rmarkdown, methods, minet, mclust, reshape2 Imports: ggplot2, graph, igraph, parallel, plyr, qvalue, RColorBrewer Suggests: knitr License: GPL (>=2) MD5sum: e20c3007cae4033b71198709e0240d4a NeedsCompilation: yes Title: Functional Network Analysis Description: Algorithms for functional network analysis. Includes an implementation of a variational Dirichlet process Gaussian mixture model for nonparametric mixture modeling. biocViews: CellBiology, Clustering, GeneExpression, Genetics, Network, GraphAndNetwork, DifferentialExpression, Microarray, NetworkInference, Transcription Author: Leo Lahti, Olli-Pekka Huovilainen, Antonio Gusmao and Juuso Parkkinen Maintainer: Leo Lahti URL: https://github.com/antagomir/netresponse VignetteBuilder: knitr BugReports: https://github.com/antagomir/netresponse/issues git_url: https://git.bioconductor.org/packages/netresponse git_branch: RELEASE_3_20 git_last_commit: 0a27780 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/netresponse_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/netresponse_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/netresponse_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/netresponse_1.66.0.tgz vignettes: vignettes/netresponse/inst/doc/NetResponse.html vignetteTitles: microbiome R package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/netresponse/inst/doc/NetResponse.R dependencyCount: 76 Package: NetSAM Version: 1.46.0 Depends: R (>= 3.0.0), seriation (>= 1.0-6), igraph (>= 2.0.0), tools (>= 3.0.0), WGCNA (>= 1.34.0), biomaRt (>= 2.18.0) Imports: methods, AnnotationDbi (>= 1.28.0), doParallel (>= 1.0.10), foreach (>= 1.4.0), survival (>= 2.37-7), GO.db (>= 2.10.0), R2HTML (>= 2.2.0), DBI (>= 0.5-1) Suggests: RUnit, BiocGenerics, org.Sc.sgd.db, org.Hs.eg.db, org.Mm.eg.db, org.Rn.eg.db, org.Dr.eg.db, org.Ce.eg.db, org.Cf.eg.db, org.Dm.eg.db, org.At.tair.db, rmarkdown, knitr, markdown License: LGPL MD5sum: f4ef7a137f29d1af4a083e569ced22bd NeedsCompilation: no Title: Network Seriation And Modularization Description: The NetSAM (Network Seriation and Modularization) package takes an edge-list representation of a weighted or unweighted network as an input, performs network seriation and modularization analysis, and generates as files that can be used as an input for the one-dimensional network visualization tool NetGestalt (http://www.netgestalt.org) or other network analysis. The NetSAM package can also generate correlation network (e.g. co-expression network) based on the input matrix data, perform seriation and modularization analysis for the correlation network and calculate the associations between the sample features and modules or identify the associated GO terms for the modules. Author: Jing Wang Maintainer: Zhiao Shi VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/NetSAM git_branch: RELEASE_3_20 git_last_commit: f8cb924 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NetSAM_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NetSAM_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NetSAM_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NetSAM_1.46.0.tgz vignettes: vignettes/NetSAM/inst/doc/NetSAM.pdf vignetteTitles: NetSAM User Guide hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NetSAM/inst/doc/NetSAM.R dependencyCount: 138 Package: netSmooth Version: 1.26.0 Depends: R (>= 3.5), scater (>= 1.15.11), clusterExperiment (>= 2.1.6) Imports: entropy, SummarizedExperiment, SingleCellExperiment, Matrix, cluster, data.table, stats, methods, DelayedArray, HDF5Array (>= 1.15.13) Suggests: knitr, testthat, Rtsne, biomaRt, igraph, STRINGdb, NMI, pheatmap, ggplot2, BiocStyle, rmarkdown, BiocParallel, uwot License: GPL-3 Archs: x64 MD5sum: 3663bc72d4b0ec48f3c85c1b2dd0f64f NeedsCompilation: no Title: Network smoothing for scRNAseq Description: netSmooth is an R package for network smoothing of single cell RNA sequencing data. Using bio networks such as protein-protein interactions as priors for gene co-expression, netsmooth improves cell type identification from noisy, sparse scRNAseq data. biocViews: Network, GraphAndNetwork, SingleCell, RNASeq, GeneExpression, Sequencing, Transcriptomics, Normalization, Preprocessing, Clustering, DimensionReduction Author: Jonathan Ronen [aut, cre], Altuna Akalin [aut] Maintainer: Jonathan Ronen URL: https://github.com/BIMSBbioinfo/netSmooth VignetteBuilder: knitr BugReports: https://github.com/BIMSBbioinfo/netSmooth/issues git_url: https://git.bioconductor.org/packages/netSmooth git_branch: RELEASE_3_20 git_last_commit: 970945d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/netSmooth_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/netSmooth_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/netSmooth_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/netSmooth_1.26.0.tgz vignettes: vignettes/netSmooth/inst/doc/buildingPPIsFromStringDB.html, vignettes/netSmooth/inst/doc/netSmoothIntro.html vignetteTitles: Generation of PPI graph, netSmooth example hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/netSmooth/inst/doc/buildingPPIsFromStringDB.R, vignettes/netSmooth/inst/doc/netSmoothIntro.R dependencyCount: 177 Package: netZooR Version: 1.10.0 Depends: R (>= 4.2.0), igraph, reticulate, pandaR, yarn, matrixcalc Imports: RCy3, viridisLite, STRINGdb, Biobase, GOstats, AnnotationDbi, matrixStats, GO.db, org.Hs.eg.db, Matrix, gplots, nnet, data.table, vegan, stats, utils, reshape, reshape2, penalized, parallel, doParallel, foreach, ggplot2, ggdendro, grid, MASS, assertthat, tidyr, methods, dplyr, graphics Suggests: testthat (>= 2.1.0), knitr, rmarkdown, pkgdown License: GPL-3 MD5sum: dcb15929eca8b8b2db4a935e9c204f77 NeedsCompilation: no Title: Unified methods for the inference and analysis of gene regulatory networks Description: netZooR unifies the implementations of several Network Zoo methods (netzoo, netzoo.github.io) into a single package by creating interfaces between network inference and network analysis methods. Currently, the package has 3 methods for network inference including PANDA and its optimized implementation OTTER (network reconstruction using mutliple lines of biological evidence), LIONESS (single-sample network inference), and EGRET (genotype-specific networks). Network analysis methods include CONDOR (community detection), ALPACA (differential community detection), CRANE (significance estimation of differential modules), MONSTER (estimation of network transition states). In addition, YARN allows to process gene expresssion data for tissue-specific analyses and SAMBAR infers missing mutation data based on pathway information. biocViews: NetworkInference, Network, GeneRegulation, GeneExpression, Transcription, Microarray, GraphAndNetwork Author: Marouen Ben Guebila [aut, cre] (), Tian Wang [aut] (), John Platig [aut], Marieke Kuijjer [aut] (), Megha Padi [aut] (), Rebekka Burkholz [aut], Des Weighill [aut] (), Kate Shutta [aut] () Maintainer: Marouen Ben Guebila URL: https://github.com/netZoo/netZooR, https://netzoo.github.io/ VignetteBuilder: knitr BugReports: https://github.com/netZoo/netZooR/issues git_url: https://git.bioconductor.org/packages/netZooR git_branch: RELEASE_3_20 git_last_commit: 4cb3b30 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/netZooR_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/netZooR_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/netZooR_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/netZooR_1.10.0.tgz vignettes: vignettes/netZooR/inst/doc/CONDOR.html vignetteTitles: CONDOR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/netZooR/inst/doc/CONDOR.R dependencyCount: 215 Package: NewWave Version: 1.16.0 Depends: R (>= 4.0), SummarizedExperiment Imports: methods, SingleCellExperiment, parallel, irlba, Matrix, DelayedArray, BiocSingular, SharedObject, stats Suggests: testthat, rmarkdown, splatter, mclust, Rtsne, ggplot2, Rcpp, BiocStyle, knitr License: GPL-3 Archs: x64 MD5sum: 9305cd86b7d16a7a16ff447d6c1123bb NeedsCompilation: no Title: Negative binomial model for scRNA-seq Description: A model designed for dimensionality reduction and batch effect removal for scRNA-seq data. It is designed to be massively parallelizable using shared objects that prevent memory duplication, and it can be used with different mini-batch approaches in order to reduce time consumption. It assumes a negative binomial distribution for the data with a dispersion parameter that can be both commonwise across gene both genewise. biocViews: Software, GeneExpression, Transcriptomics, SingleCell, BatchEffect, Sequencing, Coverage, Regression Author: Federico Agostinis [aut, cre], Chiara Romualdi [aut], Gabriele Sales [aut], Davide Risso [aut] Maintainer: Federico Agostinis VignetteBuilder: knitr BugReports: https://github.com/fedeago/NewWave/issues git_url: https://git.bioconductor.org/packages/NewWave git_branch: RELEASE_3_20 git_last_commit: 966669e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NewWave_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NewWave_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NewWave_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NewWave_1.16.0.tgz vignettes: vignettes/NewWave/inst/doc/vignette.html vignetteTitles: vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NewWave/inst/doc/vignette.R dependencyCount: 55 Package: ngsReports Version: 2.8.0 Depends: R (>= 4.2.0), BiocGenerics, ggplot2 (>= 3.5.0), patchwork (>= 1.1.1), tibble (>= 1.3.1) Imports: Biostrings, checkmate, dplyr (>= 1.1.0), forcats, ggdendro, grDevices (>= 3.6.0), grid, jsonlite, lifecycle, lubridate, methods, plotly (>= 4.9.4), reshape2, rlang, rmarkdown, scales, stats, stringr, tidyr, tidyselect (>= 0.2.3), utils, zoo Suggests: BiocStyle, Cairo, DT, knitr, pander, readr, testthat, truncnorm License: LGPL-3 MD5sum: 3229a9d9554cc366b1095c3ba2118f84 NeedsCompilation: no Title: Load FastqQC reports and other NGS related files Description: This package provides methods and object classes for parsing FastQC reports and output summaries from other NGS tools into R. As well as parsing files, multiple plotting methods have been implemented for visualising the parsed data. Plots can be generated as static ggplot objects or interactive plotly objects. biocViews: QualityControl, ReportWriting Author: Stevie Pederson [aut, cre] (), Christopher Ward [aut], Thu-Hien To [aut] Maintainer: Stevie Pederson URL: https://github.com/smped/ngsReports VignetteBuilder: knitr BugReports: https://github.com/smped/ngsReports/issues git_url: https://git.bioconductor.org/packages/ngsReports git_branch: RELEASE_3_20 git_last_commit: 82b15b1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ngsReports_2.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ngsReports_2.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ngsReports_2.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ngsReports_2.8.0.tgz vignettes: vignettes/ngsReports/inst/doc/ngsReportsIntroduction.html vignetteTitles: An Introduction To ngsReports hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ngsReports/inst/doc/ngsReportsIntroduction.R dependencyCount: 99 Package: nipalsMCIA Version: 1.4.2 Depends: R (>= 4.3.0) Imports: ComplexHeatmap, dplyr, fgsea, ggplot2 (>= 3.0.0), graphics, grid, methods, MultiAssayExperiment, SummarizedExperiment, pracma, rlang, RSpectra, scales, stats Suggests: BiocFileCache, BiocStyle, circlize, ggpubr, KernSmooth, knitr, piggyback, reshape2, rmarkdown, rpart, Seurat (>= 4.0.0), spatstat.explore, stringr, survival, tidyverse, testthat (>= 3.0.0) License: GPL-3 MD5sum: 2ff7cac7b308498081e522c77fe1a7e2 NeedsCompilation: no Title: Multiple Co-Inertia Analysis via the NIPALS Method Description: Computes Multiple Co-Inertia Analysis (MCIA), a dimensionality reduction (jDR) algorithm, for a multi-block dataset using a modification to the Nonlinear Iterative Partial Least Squares method (NIPALS) proposed in (Hanafi et. al, 2010). Allows multiple options for row- and table-level preprocessing, and speeds up computation of variance explained. Vignettes detail application to bulk- and single cell- multi-omics studies. biocViews: Software, Clustering, Classification, MultipleComparison, Normalization, Preprocessing, SingleCell Author: Maximilian Mattessich [cre] (), Joaquin Reyna [aut] (), Edel Aron [aut] (), Ferhat Ay [aut] (), Steven Kleinstein [aut] (), Anna Konstorum [aut] () Maintainer: Maximilian Mattessich URL: https://github.com/Muunraker/nipalsMCIA VignetteBuilder: knitr BugReports: https://github.com/Muunraker/nipalsMCIA/issues git_url: https://git.bioconductor.org/packages/nipalsMCIA git_branch: RELEASE_3_20 git_last_commit: 6bee2e9 git_last_commit_date: 2024-12-18 Date/Publication: 2024-12-19 source.ver: src/contrib/nipalsMCIA_1.4.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/nipalsMCIA_1.4.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/nipalsMCIA_1.4.2.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/nipalsMCIA_1.4.2.tgz vignettes: vignettes/nipalsMCIA/inst/doc/Analysis-of-MCIA-Decomposition.html, vignettes/nipalsMCIA/inst/doc/Predicting-New-Scores.html, vignettes/nipalsMCIA/inst/doc/Single-Cell-Analysis.html vignetteTitles: Analysis of MCIA Decomposition, Predicting New MCIA scores, Single Cell Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/nipalsMCIA/inst/doc/Analysis-of-MCIA-Decomposition.R, vignettes/nipalsMCIA/inst/doc/Predicting-New-Scores.R, vignettes/nipalsMCIA/inst/doc/Single-Cell-Analysis.R dependencyCount: 102 Package: nnNorm Version: 2.70.0 Depends: R(>= 2.2.0), marray Imports: graphics, grDevices, marray, methods, nnet, stats License: LGPL MD5sum: 9b96328c86619f69f34dc5e6123049ae NeedsCompilation: no Title: Spatial and intensity based normalization of cDNA microarray data based on robust neural nets Description: This package allows to detect and correct for spatial and intensity biases with two-channel microarray data. The normalization method implemented in this package is based on robust neural networks fitting. biocViews: Microarray, TwoChannel, Preprocessing Author: Adi Laurentiu Tarca Maintainer: Adi Laurentiu Tarca URL: http://bioinformaticsprb.med.wayne.edu/tarca/ git_url: https://git.bioconductor.org/packages/nnNorm git_branch: RELEASE_3_20 git_last_commit: c00ed72 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/nnNorm_2.70.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/nnNorm_2.70.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/nnNorm_2.70.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/nnNorm_2.70.0.tgz vignettes: vignettes/nnNorm/inst/doc/nnNorm.pdf vignetteTitles: nnNorm Tutorial hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/nnNorm/inst/doc/nnNorm.R dependencyCount: 9 Package: nnSVG Version: 1.10.0 Depends: R (>= 4.2) Imports: SpatialExperiment, SingleCellExperiment, SummarizedExperiment, BRISC, BiocParallel, Matrix, matrixStats, stats, methods Suggests: BiocStyle, knitr, rmarkdown, STexampleData, WeberDivechaLCdata, scran, ggplot2, testthat License: MIT + file LICENSE MD5sum: f6f9e616f7afeacdd159320811fd1b0a NeedsCompilation: no Title: Scalable identification of spatially variable genes in spatially-resolved transcriptomics data Description: Method for scalable identification of spatially variable genes (SVGs) in spatially-resolved transcriptomics data. The method is based on nearest-neighbor Gaussian processes and uses the BRISC algorithm for model fitting and parameter estimation. Allows identification and ranking of SVGs with flexible length scales across a tissue slide or within spatial domains defined by covariates. Scales linearly with the number of spatial locations and can be applied to datasets containing thousands or more spatial locations. biocViews: Spatial, SingleCell, Transcriptomics, GeneExpression, Preprocessing Author: Lukas M. Weber [aut, cre] (), Stephanie C. Hicks [aut] () Maintainer: Lukas M. Weber URL: https://github.com/lmweber/nnSVG VignetteBuilder: knitr BugReports: https://github.com/lmweber/nnSVG/issues git_url: https://git.bioconductor.org/packages/nnSVG git_branch: RELEASE_3_20 git_last_commit: f980b29 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/nnSVG_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/nnSVG_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/nnSVG_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/nnSVG_1.10.0.tgz vignettes: vignettes/nnSVG/inst/doc/nnSVG.html vignetteTitles: nnSVG Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/nnSVG/inst/doc/nnSVG.R importsMe: spoon suggestsMe: tpSVG dependencyCount: 87 Package: NOISeq Version: 2.50.0 Depends: R (>= 2.13.0), methods, Biobase (>= 2.13.11), splines (>= 3.0.1), Matrix (>= 1.2) License: Artistic-2.0 MD5sum: 58a62af2eac8bcc4c9e76238fd2d94a2 NeedsCompilation: no Title: Exploratory analysis and differential expression for RNA-seq data Description: Analysis of RNA-seq expression data or other similar kind of data. Exploratory plots to evualuate saturation, count distribution, expression per chromosome, type of detected features, features length, etc. Differential expression between two experimental conditions with no parametric assumptions. biocViews: ImmunoOncology, RNASeq, DifferentialExpression, Visualization, Sequencing Author: Sonia Tarazona, Pedro Furio-Tari, Maria Jose Nueda, Alberto Ferrer and Ana Conesa Maintainer: Sonia Tarazona git_url: https://git.bioconductor.org/packages/NOISeq git_branch: RELEASE_3_20 git_last_commit: d0c8920 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NOISeq_2.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NOISeq_2.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NOISeq_2.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NOISeq_2.50.0.tgz vignettes: vignettes/NOISeq/inst/doc/NOISeq.pdf, vignettes/NOISeq/inst/doc/QCreport.pdf vignetteTitles: NOISeq User's Guide, QCreport.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NOISeq/inst/doc/NOISeq.R dependsOnMe: metaSeq importsMe: broadSeq, CNVPanelizer, ExpHunterSuite suggestsMe: compcodeR, GeoTcgaData dependencyCount: 11 Package: NoRCE Version: 1.18.0 Depends: R (>= 4.2.0) Imports: KEGGREST,png,dplyr,graphics,RSQLite,DBI,tidyr,grDevices,stringr,GenomeInfoDb, S4Vectors,SummarizedExperiment,reactome.db,rWikiPathways,RCurl, dbplyr,utils,ggplot2,igraph,stats,reshape2,readr, GO.db,zlibbioc, biomaRt,rtracklayer,IRanges,GenomicRanges,GenomicFeatures,AnnotationDbi Suggests: knitr, TxDb.Hsapiens.UCSC.hg38.knownGene,TxDb.Drerio.UCSC.danRer10.refGene, TxDb.Mmusculus.UCSC.mm10.knownGene,TxDb.Dmelanogaster.UCSC.dm6.ensGene, testthat,TxDb.Celegans.UCSC.ce11.refGene,rmarkdown, TxDb.Rnorvegicus.UCSC.rn6.refGene,TxDb.Hsapiens.UCSC.hg19.knownGene, org.Mm.eg.db, org.Rn.eg.db,org.Hs.eg.db,org.Dr.eg.db,BiocGenerics, org.Sc.sgd.db, org.Ce.eg.db,org.Dm.eg.db, methods,markdown License: MIT + file LICENSE MD5sum: 82b2d03cddbc73312ebcacc52b089d8d NeedsCompilation: no Title: NoRCE: Noncoding RNA Sets Cis Annotation and Enrichment Description: While some non-coding RNAs (ncRNAs) are assigned critical regulatory roles, most remain functionally uncharacterized. This presents a challenge whenever an interesting set of ncRNAs needs to be analyzed in a functional context. Transcripts located close-by on the genome are often regulated together. This genomic proximity on the sequence can hint to a functional association. We present a tool, NoRCE, that performs cis enrichment analysis for a given set of ncRNAs. Enrichment is carried out using the functional annotations of the coding genes located proximal to the input ncRNAs. Other biologically relevant information such as topologically associating domain (TAD) boundaries, co-expression patterns, and miRNA target prediction information can be incorporated to conduct a richer enrichment analysis. To this end, NoRCE includes several relevant datasets as part of its data repository, including cell-line specific TAD boundaries, functional gene sets, and expression data for coding & ncRNAs specific to cancer. Additionally, the users can utilize custom data files in their investigation. Enrichment results can be retrieved in a tabular format or visualized in several different ways. NoRCE is currently available for the following species: human, mouse, rat, zebrafish, fruit fly, worm, and yeast. biocViews: BiologicalQuestion, DifferentialExpression, GenomeAnnotation, GeneSetEnrichment, GeneTarget, GenomeAssembly, GO Author: Gulden Olgun [aut, cre] Maintainer: Gulden Olgun VignetteBuilder: knitr BugReports: https://github.com/guldenolgun/NoRCE/issues git_url: https://git.bioconductor.org/packages/NoRCE git_branch: RELEASE_3_20 git_last_commit: c9f1558 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NoRCE_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NoRCE_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NoRCE_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NoRCE_1.18.0.tgz vignettes: vignettes/NoRCE/inst/doc/NoRCE.html vignetteTitles: Noncoding RNA Set Cis Annotation and Enrichment hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/NoRCE/inst/doc/NoRCE.R dependencyCount: 129 Package: normalize450K Version: 1.34.0 Depends: R (>= 3.3), Biobase, illuminaio, quadprog Imports: utils License: BSD_2_clause + file LICENSE MD5sum: da95bdde1f294e05d1d8005f859b8a0a NeedsCompilation: no Title: Preprocessing of Illumina Infinium 450K data Description: Precise measurements are important for epigenome-wide studies investigating DNA methylation in whole blood samples, where effect sizes are expected to be small in magnitude. The 450K platform is often affected by batch effects and proper preprocessing is recommended. This package provides functions to read and normalize 450K '.idat' files. The normalization corrects for dye bias and biases related to signal intensity and methylation of probes using local regression. No adjustment for probe type bias is performed to avoid the trade-off of precision for accuracy of beta-values. biocViews: Normalization, DNAMethylation, Microarray, TwoChannel, Preprocessing, MethylationArray Author: Jonathan Alexander Heiss Maintainer: Jonathan Alexander Heiss git_url: https://git.bioconductor.org/packages/normalize450K git_branch: RELEASE_3_20 git_last_commit: 722122e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/normalize450K_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/normalize450K_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/normalize450K_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/normalize450K_1.34.0.tgz vignettes: vignettes/normalize450K/inst/doc/read_and_normalize450K.pdf vignetteTitles: Normalization of 450K data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/normalize450K/inst/doc/read_and_normalize450K.R dependencyCount: 12 Package: NormalyzerDE Version: 1.24.0 Depends: R (>= 4.1.0) Imports: vsn, preprocessCore, limma, MASS, ape, car, ggplot2, methods, utils, stats, SummarizedExperiment, matrixStats, ggforce Suggests: knitr, testthat, rmarkdown, roxygen2, hexbin, BiocStyle License: Artistic-2.0 MD5sum: db6dd9d11430295bc7625fb5b260019e NeedsCompilation: no Title: Evaluation of normalization methods and calculation of differential expression analysis statistics Description: NormalyzerDE provides screening of normalization methods for LC-MS based expression data. It calculates a range of normalized matrices using both existing approaches and a novel time-segmented approach, calculates performance measures and generates an evaluation report. Furthermore, it provides an easy utility for Limma- or ANOVA- based differential expression analysis. biocViews: Normalization, MultipleComparison, Visualization, Bayesian, Proteomics, Metabolomics, DifferentialExpression Author: Jakob Willforss Maintainer: Jakob Willforss URL: https://github.com/ComputationalProteomics/NormalyzerDE VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/NormalyzerDE git_branch: RELEASE_3_20 git_last_commit: ab83d16 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NormalyzerDE_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NormalyzerDE_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NormalyzerDE_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NormalyzerDE_1.24.0.tgz vignettes: vignettes/NormalyzerDE/inst/doc/vignette.html vignetteTitles: Differential expression and countering technical biases using NormalyzerDE hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NormalyzerDE/inst/doc/vignette.R importsMe: PRONE dependencyCount: 107 Package: NormqPCR Version: 1.52.0 Depends: R(>= 2.14.0), stats, RColorBrewer, Biobase, methods, ReadqPCR, qpcR License: LGPL-3 MD5sum: 23b072389ca09a8e54da8857c772cb46 NeedsCompilation: no Title: Functions for normalisation of RT-qPCR data Description: Functions for the selection of optimal reference genes and the normalisation of real-time quantitative PCR data. biocViews: MicrotitrePlateAssay, GeneExpression, qPCR Author: Matthias Kohl, James Perkins, Nor Izayu Abdul Rahman Maintainer: James Perkins URL: www.bioconductor.org/packages/release/bioc/html/NormqPCR.html git_url: https://git.bioconductor.org/packages/NormqPCR git_branch: RELEASE_3_20 git_last_commit: 8696ab6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NormqPCR_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NormqPCR_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NormqPCR_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NormqPCR_1.52.0.tgz vignettes: vignettes/NormqPCR/inst/doc/NormqPCR.pdf vignetteTitles: NormqPCR: Functions for normalisation of RT-qPCR data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NormqPCR/inst/doc/NormqPCR.R dependencyCount: 47 Package: normr Version: 1.32.0 Depends: R (>= 3.3.0) Imports: methods, stats, utils, grDevices, parallel, GenomeInfoDb, GenomicRanges, IRanges, Rcpp (>= 0.11), qvalue (>= 2.2), bamsignals (>= 1.4), rtracklayer (>= 1.32) LinkingTo: Rcpp Suggests: BiocStyle, testthat (>= 1.0), knitr, rmarkdown Enhances: BiocParallel License: GPL-2 MD5sum: 7dc63258eb167eda7294e40ea7ae6aa2 NeedsCompilation: yes Title: Normalization and difference calling in ChIP-seq data Description: Robust normalization and difference calling procedures for ChIP-seq and alike data. Read counts are modeled jointly as a binomial mixture model with a user-specified number of components. A fitted background estimate accounts for the effect of enrichment in certain regions and, therefore, represents an appropriate null hypothesis. This robust background is used to identify significantly enriched or depleted regions. biocViews: Bayesian, DifferentialPeakCalling, Classification, DataImport, ChIPSeq, RIPSeq, FunctionalGenomics, Genetics, MultipleComparison, Normalization, PeakDetection, Preprocessing, Alignment Author: Johannes Helmuth [aut, cre], Ho-Ryun Chung [aut] Maintainer: Johannes Helmuth URL: https://github.com/your-highness/normR SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/your-highness/normR/issues git_url: https://git.bioconductor.org/packages/normr git_branch: RELEASE_3_20 git_last_commit: 8f8d595 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/normr_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/normr_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/normr_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/normr_1.32.0.tgz vignettes: vignettes/normr/inst/doc/normr.html vignetteTitles: Introduction to the normR package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/normr/inst/doc/normr.R dependencyCount: 91 Package: NPARC Version: 1.18.0 Depends: R (>= 4.0.0) Imports: dplyr, tidyr, BiocParallel, broom, MASS, rlang, magrittr, stats, methods Suggests: testthat, devtools, knitr, rprojroot, rmarkdown, ggplot2, BiocStyle License: GPL-3 MD5sum: d72813fe5c5b69ffe12e88e548c013cc NeedsCompilation: no Title: Non-parametric analysis of response curves for thermal proteome profiling experiments Description: Perform non-parametric analysis of response curves as described by Childs, Bach, Franken et al. (2019): Non-parametric analysis of thermal proteome profiles reveals novel drug-binding proteins. biocViews: Software, Proteomics Author: Dorothee Childs, Nils Kurzawa Maintainer: Nils Kurzawa VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/NPARC git_branch: RELEASE_3_20 git_last_commit: 808a05c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NPARC_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NPARC_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NPARC_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NPARC_1.18.0.tgz vignettes: vignettes/NPARC/inst/doc/NPARC.html vignetteTitles: Analysing thermal proteome profiling data with the NPARC package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NPARC/inst/doc/NPARC.R dependencyCount: 39 Package: npGSEA Version: 1.42.0 Depends: GSEABase (>= 1.24.0) Imports: Biobase, methods, BiocGenerics, graphics, stats Suggests: ALL, genefilter, limma, hgu95av2.db, ReportingTools, BiocStyle License: Artistic-2.0 MD5sum: f6148e3dd59ae51db08a01279ae93d97 NeedsCompilation: no Title: Permutation approximation methods for gene set enrichment analysis (non-permutation GSEA) Description: Current gene set enrichment methods rely upon permutations for inference. These approaches are computationally expensive and have minimum achievable p-values based on the number of permutations, not on the actual observed statistics. We have derived three parametric approximations to the permutation distributions of two gene set enrichment test statistics. We are able to reduce the computational burden and granularity issues of permutation testing with our method, which is implemented in this package. npGSEA calculates gene set enrichment statistics and p-values without the computational cost of permutations. It is applicable in settings where one or many gene sets are of interest. There are also built-in plotting functions to help users visualize results. biocViews: GeneSetEnrichment, Microarray, StatisticalMethod, Pathways Author: Jessica Larson and Art Owen Maintainer: Jessica Larson git_url: https://git.bioconductor.org/packages/npGSEA git_branch: RELEASE_3_20 git_last_commit: f2e2b8b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/npGSEA_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/npGSEA_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/npGSEA_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/npGSEA_1.42.0.tgz vignettes: vignettes/npGSEA/inst/doc/npGSEA.pdf vignetteTitles: Running gene set enrichment analysis with the "npGSEA" package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/npGSEA/inst/doc/npGSEA.R dependencyCount: 50 Package: NTW Version: 1.56.0 Depends: R (>= 2.3.0) Imports: mvtnorm, stats, utils License: GPL-2 MD5sum: 7b43e4f87881a4c275859cc8a2865eb8 NeedsCompilation: no Title: Predict gene network using an Ordinary Differential Equation (ODE) based method Description: This package predicts the gene-gene interaction network and identifies the direct transcriptional targets of the perturbation using an ODE (Ordinary Differential Equation) based method. biocViews: Preprocessing Author: Wei Xiao, Yin Jin, Darong Lai, Xinyi Yang, Yuanhua Liu, Christine Nardini Maintainer: Yuanhua Liu git_url: https://git.bioconductor.org/packages/NTW git_branch: RELEASE_3_20 git_last_commit: 4ea885e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NTW_1.56.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NTW_1.56.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NTW_1.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NTW_1.56.0.tgz vignettes: vignettes/NTW/inst/doc/NTW.pdf vignetteTitles: NTW vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NTW/inst/doc/NTW.R dependencyCount: 3 Package: nucleoSim Version: 1.34.0 Imports: stats, IRanges, S4Vectors, graphics, methods Suggests: BiocStyle, BiocGenerics, knitr, rmarkdown, testthat License: Artistic-2.0 Archs: x64 MD5sum: d698b8ac01221cfe5b6436b343e009b9 NeedsCompilation: no Title: Generate synthetic nucleosome maps Description: This package can generate a synthetic map with reads covering the nucleosome regions as well as a synthetic map with forward and reverse reads emulating next-generation sequencing. The synthetic hybridization data of “Tiling Arrays” can also be generated. The user has choice between three different distributions for the read positioning: Normal, Student and Uniform. In addition, a visualization tool is provided to explore the synthetic nucleosome maps. biocViews: Genetics, Sequencing, Software, StatisticalMethod, Alignment Author: Rawane Samb [aut], Astrid Deschênes [cre, aut] (), Pascal Belleau [aut] (), Arnaud Droit [aut] Maintainer: Astrid Deschênes URL: https://github.com/arnauddroitlab/nucleoSim VignetteBuilder: knitr BugReports: https://github.com/arnauddroitlab/nucleoSim/issues git_url: https://git.bioconductor.org/packages/nucleoSim git_branch: RELEASE_3_20 git_last_commit: 399cbda git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/nucleoSim_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/nucleoSim_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/nucleoSim_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/nucleoSim_1.34.0.tgz vignettes: vignettes/nucleoSim/inst/doc/nucleoSim.html vignetteTitles: Generate synthetic nucleosome maps hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/nucleoSim/inst/doc/nucleoSim.R suggestsMe: RJMCMCNucleosomes dependencyCount: 8 Package: nucleR Version: 2.38.0 Depends: R (>= 3.5.0), methods Imports: Biobase, BiocGenerics, Biostrings, GenomeInfoDb, GenomicRanges, IRanges, Rsamtools, S4Vectors, ShortRead, dplyr, ggplot2, magrittr, parallel, stats, utils, grDevices Suggests: BiocStyle, knitr, rmarkdown, testthat License: LGPL (>= 3) MD5sum: c9ecea8141ff8e57601715ce4427da2f NeedsCompilation: no Title: Nucleosome positioning package for R Description: Nucleosome positioning for Tiling Arrays and NGS experiments. biocViews: NucleosomePositioning, Coverage, ChIPSeq, Microarray, Sequencing, Genetics, QualityControl, DataImport Author: Oscar Flores, Ricard Illa Maintainer: Alba Sala VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/nucleR git_branch: RELEASE_3_20 git_last_commit: 7d102b1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/nucleR_2.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/nucleR_2.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/nucleR_2.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/nucleR_2.38.0.tgz vignettes: vignettes/nucleR/inst/doc/nucleR.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/nucleR/inst/doc/nucleR.R dependencyCount: 90 Package: nuCpos Version: 1.24.0 Depends: R (>= 4.2.0) Imports: graphics, methods Suggests: NuPoP, Biostrings, testthat License: GPL-2 MD5sum: 99e983e13fa6b7e2307f04f97ea9a1e5 NeedsCompilation: yes Title: An R package for prediction of nucleosome positions Description: nuCpos, a derivative of NuPoP, is an R package for prediction of nucleosome positions. nuCpos calculates local and whole nucleosomal histone binding affinity (HBA) scores for a given 147-bp sequence. Note: This package was designed to demonstrate the use of chemical maps in prediction. As the parental package NuPoP now provides chemical-map-based prediction, the function for dHMM-based prediction was removed from this package. nuCpos continues to provide functions for HBA calculation. biocViews: Genetics, Epigenetics, NucleosomePositioning Author: Hiroaki Kato, Takeshi Urano Maintainer: Hiroaki Kato git_url: https://git.bioconductor.org/packages/nuCpos git_branch: RELEASE_3_20 git_last_commit: 7c63da6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/nuCpos_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/nuCpos_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/nuCpos_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/nuCpos_1.24.0.tgz vignettes: vignettes/nuCpos/inst/doc/nuCpos-intro.pdf vignetteTitles: An R package for prediction of nucleosome positioning hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/nuCpos/inst/doc/nuCpos-intro.R dependencyCount: 2 Package: nullranges Version: 1.12.0 Imports: stats, IRanges, GenomicRanges, GenomeInfoDb, methods, rlang, S4Vectors, scales, InteractionSet, ggplot2, grDevices, plyranges, data.table, progress, ggridges Suggests: testthat, knitr, rmarkdown, ks, DNAcopy, RcppHMM, AnnotationHub, ExperimentHub, nullrangesData, excluderanges, ensembldb, EnsDb.Hsapiens.v86, BSgenome.Hsapiens.UCSC.hg38, patchwork, plotgardener, dplyr, purrr, magrittr, tidyr, cobalt, DiagrammeR, tidySummarizedExperiment License: GPL-3 MD5sum: eac86b21c9afba0e6c976fb6073e9e8d NeedsCompilation: no Title: Generation of null ranges via bootstrapping or covariate matching Description: Modular package for generation of sets of ranges representing the null hypothesis. These can take the form of bootstrap samples of ranges (using the block bootstrap framework of Bickel et al 2010), or sets of control ranges that are matched across one or more covariates. nullranges is designed to be inter-operable with other packages for analysis of genomic overlap enrichment, including the plyranges Bioconductor package. biocViews: Visualization, GeneSetEnrichment, FunctionalGenomics, Epigenetics, GeneRegulation, GeneTarget, GenomeAnnotation, Annotation, GenomeWideAssociation, HistoneModification, ChIPSeq, ATACSeq, DNaseSeq, RNASeq, HiddenMarkovModel Author: Michael Love [aut, cre] (), Wancen Mu [aut] (), Eric Davis [aut] (), Douglas Phanstiel [aut] (), Stuart Lee [aut] (), Mikhail Dozmorov [ctb], Tim Triche [ctb], CZI [fnd] Maintainer: Michael Love URL: https://nullranges.github.io/nullranges, https://github.com/nullranges/nullranges VignetteBuilder: knitr BugReports: https://support.bioconductor.org/tag/nullranges/ git_url: https://git.bioconductor.org/packages/nullranges git_branch: RELEASE_3_20 git_last_commit: 9604c3a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/nullranges_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/nullranges_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/nullranges_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/nullranges_1.12.0.tgz vignettes: vignettes/nullranges/inst/doc/bootRanges.html, vignettes/nullranges/inst/doc/matching_ginteractions.html, vignettes/nullranges/inst/doc/matching_granges.html, vignettes/nullranges/inst/doc/matching_pool_set.html, vignettes/nullranges/inst/doc/matchRanges.html, vignettes/nullranges/inst/doc/nullranges.html vignetteTitles: 1. Introduction to bootRanges, 4. Matching case study II: CTCF orientation, 3. Matching case study I: CTCF occupancy, 5. Creating a pool set for matchRanges, 2. Introduction to matchRanges, 0. Introduction to nullranges hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/nullranges/inst/doc/bootRanges.R, vignettes/nullranges/inst/doc/matching_ginteractions.R, vignettes/nullranges/inst/doc/matching_granges.R, vignettes/nullranges/inst/doc/matching_pool_set.R, vignettes/nullranges/inst/doc/matchRanges.R, vignettes/nullranges/inst/doc/nullranges.R importsMe: tidyomics dependencyCount: 95 Package: NuPoP Version: 2.14.0 Depends: R (>= 4.0) Imports: graphics, utils Suggests: knitr, rmarkdown License: GPL-2 MD5sum: f78251e4d6e4d71b766f2b87ba2d5266 NeedsCompilation: yes Title: An R package for nucleosome positioning prediction Description: NuPoP is an R package for Nucleosome Positioning Prediction.This package is built upon a duration hidden Markov model proposed in Xi et al, 2010; Wang et al, 2008. The core of the package was written in Fotran. In addition to the R package, a stand-alone Fortran software tool is also available at https://github.com/jipingw. The Fortran codes have complete functonality as the R package. Note: NuPoP has two separate functions for prediction of nucleosome positioning, one for MNase-map trained models and the other for chemical map-trained models. The latter was implemented for four species including yeast, S.pombe, mouse and human, trained based on our recent publications. We noticed there is another package nuCpos by another group for prediction of nucleosome positioning trained with chemicals. A report to compare recent versions of NuPoP with nuCpos can be found at https://github.com/jiping/NuPoP_doc. Some more information can be found and will be posted at https://github.com/jipingw/NuPoP. biocViews: Genetics,Visualization,Classification,NucleosomePositioning, HiddenMarkovModel Author: Ji-Ping Wang ; Liqun Xi ; Oscar Zarate Maintainer: Ji-Ping Wang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/NuPoP git_branch: RELEASE_3_20 git_last_commit: ec2ba65 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/NuPoP_2.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/NuPoP_2.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NuPoP_2.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/NuPoP_2.14.0.tgz vignettes: vignettes/NuPoP/inst/doc/NuPoP.html vignetteTitles: NuPoP hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/NuPoP/inst/doc/NuPoP.R suggestsMe: nuCpos dependencyCount: 2 Package: occugene Version: 1.66.0 Depends: R (>= 2.0.0) License: GPL (>= 2) MD5sum: 8b0b5ae61b8723d7e7df5ab057874281 NeedsCompilation: no Title: Functions for Multinomial Occupancy Distribution Description: Statistical tools for building random mutagenesis libraries for prokaryotes. The package has functions for handling the occupancy distribution for a multinomial and for estimating the number of essential genes in random transposon mutagenesis libraries. biocViews: Annotation, Pathways Author: Oliver Will Maintainer: Oliver Will git_url: https://git.bioconductor.org/packages/occugene git_branch: RELEASE_3_20 git_last_commit: c714614 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/occugene_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/occugene_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/occugene_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/occugene_1.66.0.tgz vignettes: vignettes/occugene/inst/doc/occugene.pdf vignetteTitles: occugene hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/occugene/inst/doc/occugene.R dependencyCount: 0 Package: OCplus Version: 1.80.0 Depends: R (>= 2.1.0) Imports: multtest (>= 1.7.3), graphics, grDevices, stats, interp License: LGPL MD5sum: e3474563932be47dd46824f752f51a0a NeedsCompilation: no Title: Operating characteristics plus sample size and local fdr for microarray experiments Description: This package allows to characterize the operating characteristics of a microarray experiment, i.e. the trade-off between false discovery rate and the power to detect truly regulated genes. The package includes tools both for planned experiments (for sample size assessment) and for already collected data (identification of differentially expressed genes). biocViews: Microarray, DifferentialExpression, MultipleComparison Author: Yudi Pawitan and Alexander Ploner Maintainer: Alexander Ploner git_url: https://git.bioconductor.org/packages/OCplus git_branch: RELEASE_3_20 git_last_commit: 5b21dec git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OCplus_1.80.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OCplus_1.80.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OCplus_1.80.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OCplus_1.80.0.tgz vignettes: vignettes/OCplus/inst/doc/OCplus.pdf vignetteTitles: OCplus Introduction hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OCplus/inst/doc/OCplus.R dependencyCount: 19 Package: octad Version: 1.8.0 Depends: R (>= 4.2.0), magrittr, dplyr, ggplot2, edgeR, RUVSeq, DESeq2, limma, rhdf5, foreach, Rfast, octad.db, stats, httr, qpdf, ExperimentHub, AnnotationHub, Biobase, S4Vectors Imports: EDASeq, GSVA, data.table, htmlwidgets, plotly, reshape2, grDevices, utils Suggests: knitr, rmarkdown License: Artistic-2.0 MD5sum: f1bd72460f38e4ef66241fa979e2a6cc NeedsCompilation: no Title: Open Cancer TherApeutic Discovery (OCTAD) Description: OCTAD provides a platform for virtually screening compounds targeting precise cancer patient groups. The essential idea is to identify drugs that reverse the gene expression signature of disease by tamping down over-expressed genes and stimulating weakly expressed ones. The package offers deep-learning based reference tissue selection, disease gene expression signature creation, pathway enrichment analysis, drug reversal potency scoring, cancer cell line selection, drug enrichment analysis and in silico hit validation. It currently covers ~20,000 patient tissue samples covering 50 cancer types, and expression profiles for ~12,000 distinct compounds. biocViews: Classification, GeneExpression, Pharmacogenetics, Pharmacogenomics, Software, GeneSetEnrichment Author: E. Chekalin [aut, cre], S. Paithankar [aut], B. Zeng [aut], B. Glicksberg [ctb], P. Newbury [ctb], J. Xing [ctb], K. Liu [ctb], A. Wen [ctb], D. Joseph [ctb], B. Chen [aut] Maintainer: E. Chekalin VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/octad git_branch: RELEASE_3_20 git_last_commit: ca9837f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/octad_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/octad_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/octad_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/octad_1.8.0.tgz vignettes: vignettes/octad/inst/doc/octad.html vignetteTitles: octad hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/octad/inst/doc/octad.R dependencyCount: 190 Package: odseq Version: 1.34.0 Depends: R (>= 3.2.3) Imports: msa (>= 1.2.1), kebabs (>= 1.4.1), mclust (>= 5.1) Suggests: knitr(>= 1.11) License: MIT + file LICENSE Archs: x64 MD5sum: ea5e4ffe41599b6a3ecd6c801c28254a NeedsCompilation: no Title: Outlier detection in multiple sequence alignments Description: Performs outlier detection of sequences in a multiple sequence alignment using bootstrap of predefined distance metrics. Outlier sequences can make downstream analyses unreliable or make the alignments less accurate while they are being constructed. This package implements the OD-seq algorithm proposed by Jehl et al (doi 10.1186/s12859-015-0702-1) for aligned sequences and a variant using string kernels for unaligned sequences. biocViews: Alignment, MultipleSequenceAlignment Author: José Jiménez Maintainer: José Jiménez VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/odseq git_branch: RELEASE_3_20 git_last_commit: 1def550 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/odseq_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/odseq_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/odseq_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/odseq_1.34.0.tgz vignettes: vignettes/odseq/inst/doc/vignette.pdf vignetteTitles: A quick tutorial to outlier detection in MSAs hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/odseq/inst/doc/vignette.R dependencyCount: 39 Package: OGRE Version: 1.10.0 Depends: R (>= 4.2.0), S4Vectors Imports: GenomicRanges, methods, data.table, assertthat, ggplot2, Gviz, IRanges, AnnotationHub, grDevices, stats, GenomeInfoDb, shiny, shinyFiles, DT, rtracklayer, shinydashboard, shinyBS,tidyr Suggests: testthat (>= 3.0.0), knitr (>= 1.36), rmarkdown (>= 2.11) License: Artistic-2.0 MD5sum: 4bd09d598eb2be1c4fced58fc417b8fd NeedsCompilation: no Title: Calculate, visualize and analyse overlap between genomic regions Description: OGRE calculates overlap between user defined genomic region datasets. Any regions can be supplied i.e. genes, SNPs, or reads from sequencing experiments. Key numbers help analyse the extend of overlaps which can also be visualized at a genomic level. biocViews: Software, WorkflowStep, BiologicalQuestion, Annotation, Metagenomics, Visualization, Sequencing Author: Sven Berres [aut, cre], Jörg Gromoll [ctb], Marius Wöste [ctb], Sarah Sandmann [ctb], Sandra Laurentino [ctb] Maintainer: Sven Berres URL: https://github.com/svenbioinf/OGRE/ VignetteBuilder: knitr BugReports: https://github.com/svenbioinf/OGRE/issues git_url: https://git.bioconductor.org/packages/OGRE git_branch: RELEASE_3_20 git_last_commit: b457701 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OGRE_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OGRE_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OGRE_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OGRE_1.10.0.tgz vignettes: vignettes/OGRE/inst/doc/OGRE.html vignetteTitles: OGRE hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OGRE/inst/doc/OGRE.R dependencyCount: 173 Package: oligo Version: 1.70.0 Depends: R (>= 3.2.0), BiocGenerics (>= 0.13.11), oligoClasses (>= 1.29.6), Biobase (>= 2.27.3), Biostrings (>= 2.35.12) Imports: affyio (>= 1.35.0), affxparser (>= 1.39.4), DBI (>= 0.3.1), ff, graphics, methods, preprocessCore (>= 1.29.0), RSQLite (>= 1.0.0), splines, stats, stats4, utils, zlibbioc LinkingTo: preprocessCore Suggests: BSgenome.Hsapiens.UCSC.hg18, hapmap100kxba, pd.hg.u95av2, pd.mapping50k.xba240, pd.huex.1.0.st.v2, pd.hg18.60mer.expr, pd.hugene.1.0.st.v1, maqcExpression4plex, genefilter, limma, RColorBrewer, oligoData, BiocStyle, knitr, RUnit, biomaRt, AnnotationDbi, ACME, RCurl Enhances: doMC, doMPI License: LGPL (>= 2) MD5sum: 7596c63194f0bf3e58feaa2a854c2061 NeedsCompilation: yes Title: Preprocessing tools for oligonucleotide arrays Description: A package to analyze oligonucleotide arrays (expression/SNP/tiling/exon) at probe-level. It currently supports Affymetrix (CEL files) and NimbleGen arrays (XYS files). biocViews: Microarray, OneChannel, TwoChannel, Preprocessing, SNP, DifferentialExpression, ExonArray, GeneExpression, DataImport Author: Benilton Carvalho and Rafael Irizarry Maintainer: Benilton Carvalho URL: https://github.com/benilton/oligo VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/oligo git_branch: RELEASE_3_20 git_last_commit: ce78773 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/oligo_1.70.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/oligo_1.70.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/oligo_1.70.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/oligo_1.70.0.tgz vignettes: vignettes/oligo/inst/doc/oug.pdf vignetteTitles: oligo User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: ITALICS, pdInfoBuilder, puma, SCAN.UPC, oligoData, pd.081229.hg18.promoter.medip.hx1, pd.2006.07.18.hg18.refseq.promoter, pd.2006.07.18.mm8.refseq.promoter, pd.2006.10.31.rn34.refseq.promoter, pd.ag, pd.aragene.1.0.st, pd.aragene.1.1.st, pd.ath1.121501, pd.barley1, pd.bovgene.1.0.st, pd.bovgene.1.1.st, pd.bovine, pd.bsubtilis, pd.cangene.1.0.st, pd.cangene.1.1.st, pd.canine, pd.canine.2, pd.celegans, pd.charm.hg18.example, pd.chicken, pd.chigene.1.0.st, pd.chigene.1.1.st, pd.chogene.2.0.st, pd.chogene.2.1.st, pd.citrus, pd.clariom.d.human, pd.clariom.s.human, pd.clariom.s.human.ht, pd.clariom.s.mouse, pd.clariom.s.mouse.ht, pd.clariom.s.rat, pd.clariom.s.rat.ht, pd.cotton, pd.cyngene.1.0.st, pd.cyngene.1.1.st, pd.cyrgene.1.0.st, pd.cyrgene.1.1.st, pd.cytogenetics.array, pd.drogene.1.0.st, pd.drogene.1.1.st, pd.drosgenome1, pd.drosophila.2, pd.e.coli.2, pd.ecoli, pd.ecoli.asv2, pd.elegene.1.0.st, pd.elegene.1.1.st, pd.equgene.1.0.st, pd.equgene.1.1.st, pd.feinberg.hg18.me.hx1, pd.feinberg.mm8.me.hx1, pd.felgene.1.0.st, pd.felgene.1.1.st, pd.fingene.1.0.st, pd.fingene.1.1.st, pd.genomewidesnp.5, pd.genomewidesnp.6, pd.guigene.1.0.st, pd.guigene.1.1.st, pd.hc.g110, pd.hg.focus, pd.hg.u133.plus.2, pd.hg.u133a, pd.hg.u133a.2, pd.hg.u133a.tag, pd.hg.u133b, pd.hg.u219, pd.hg.u95a, pd.hg.u95av2, pd.hg.u95b, pd.hg.u95c, pd.hg.u95d, pd.hg.u95e, pd.hg18.60mer.expr, pd.ht.hg.u133.plus.pm, pd.ht.hg.u133a, pd.ht.mg.430a, pd.hta.2.0, pd.hu6800, pd.huex.1.0.st.v2, pd.hugene.1.0.st.v1, pd.hugene.1.1.st.v1, pd.hugene.2.0.st, pd.hugene.2.1.st, pd.maize, pd.mapping250k.nsp, pd.mapping250k.sty, pd.mapping50k.hind240, pd.mapping50k.xba240, pd.margene.1.0.st, pd.margene.1.1.st, pd.medgene.1.0.st, pd.medgene.1.1.st, pd.medicago, pd.mg.u74a, pd.mg.u74av2, pd.mg.u74b, pd.mg.u74bv2, pd.mg.u74c, pd.mg.u74cv2, pd.mirna.1.0, pd.mirna.2.0, pd.mirna.3.0, pd.mirna.3.1, pd.mirna.4.0, pd.moe430a, pd.moe430b, pd.moex.1.0.st.v1, pd.mogene.1.0.st.v1, pd.mogene.1.1.st.v1, pd.mogene.2.0.st, pd.mogene.2.1.st, pd.mouse430.2, pd.mouse430a.2, pd.mta.1.0, pd.mu11ksuba, pd.mu11ksubb, pd.nugo.hs1a520180, pd.nugo.mm1a520177, pd.ovigene.1.0.st, pd.ovigene.1.1.st, pd.pae.g1a, pd.plasmodium.anopheles, pd.poplar, pd.porcine, pd.porgene.1.0.st, pd.porgene.1.1.st, pd.rabgene.1.0.st, pd.rabgene.1.1.st, pd.rae230a, pd.rae230b, pd.raex.1.0.st.v1, pd.ragene.1.0.st.v1, pd.ragene.1.1.st.v1, pd.ragene.2.0.st, pd.ragene.2.1.st, pd.rat230.2, pd.rcngene.1.0.st, pd.rcngene.1.1.st, pd.rg.u34a, pd.rg.u34b, pd.rg.u34c, pd.rhegene.1.0.st, pd.rhegene.1.1.st, pd.rhesus, pd.rice, pd.rjpgene.1.0.st, pd.rjpgene.1.1.st, pd.rn.u34, pd.rta.1.0, pd.rusgene.1.0.st, pd.rusgene.1.1.st, pd.s.aureus, pd.soybean, pd.soygene.1.0.st, pd.soygene.1.1.st, pd.sugar.cane, pd.tomato, pd.u133.x3p, pd.vitis.vinifera, pd.wheat, pd.x.laevis.2, pd.x.tropicalis, pd.xenopus.laevis, pd.yeast.2, pd.yg.s98, pd.zebgene.1.0.st, pd.zebgene.1.1.st, pd.zebrafish, pd.atdschip.tiling, pumadata, maEndToEnd importsMe: ArrayExpress, cn.farms, frma, ITALICS, mimager suggestsMe: fastseg, frmaTools, hapmap100khind, hapmap100kxba, hapmap500knsp, hapmap500ksty, hapmapsnp5, hapmapsnp6, maqcExpression4plex, aroma.affymetrix, maGUI, RCPA dependencyCount: 63 Package: oligoClasses Version: 1.68.0 Depends: R (>= 2.14) Imports: BiocGenerics (>= 0.27.1), Biobase (>= 2.17.8), methods, graphics, IRanges (>= 2.5.17), GenomicRanges (>= 1.23.7), SummarizedExperiment, Biostrings (>= 2.23.6), affyio (>= 1.23.2), foreach, BiocManager, utils, S4Vectors (>= 0.9.25), RSQLite, DBI, ff Suggests: hapmapsnp5, hapmapsnp6, pd.genomewidesnp.6, pd.genomewidesnp.5, pd.mapping50k.hind240, pd.mapping50k.xba240, pd.mapping250k.sty, pd.mapping250k.nsp, genomewidesnp6Crlmm (>= 1.0.7), genomewidesnp5Crlmm (>= 1.0.6), RUnit, human370v1cCrlmm, VanillaICE, crlmm Enhances: doMC, doMPI, doSNOW, doParallel, doRedis License: GPL (>= 2) MD5sum: 229a43bcae2583337fc02593fba76b41 NeedsCompilation: no Title: Classes for high-throughput arrays supported by oligo and crlmm Description: This package contains class definitions, validity checks, and initialization methods for classes used by the oligo and crlmm packages. biocViews: Infrastructure Author: Benilton Carvalho and Robert Scharpf Maintainer: Benilton Carvalho and Robert Scharpf git_url: https://git.bioconductor.org/packages/oligoClasses git_branch: RELEASE_3_20 git_last_commit: 13ba25a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/oligoClasses_1.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/oligoClasses_1.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/oligoClasses_1.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/oligoClasses_1.68.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: cn.farms, crlmm, mBPCR, oligo, puma, pd.081229.hg18.promoter.medip.hx1, pd.2006.07.18.hg18.refseq.promoter, pd.2006.07.18.mm8.refseq.promoter, pd.2006.10.31.rn34.refseq.promoter, pd.ag, pd.aragene.1.0.st, pd.aragene.1.1.st, pd.ath1.121501, pd.barley1, pd.bovgene.1.0.st, pd.bovgene.1.1.st, pd.bovine, pd.bsubtilis, pd.cangene.1.0.st, pd.cangene.1.1.st, pd.canine, pd.canine.2, pd.celegans, pd.charm.hg18.example, pd.chicken, pd.chigene.1.0.st, pd.chigene.1.1.st, pd.chogene.2.0.st, pd.chogene.2.1.st, pd.citrus, pd.clariom.d.human, pd.clariom.s.human, pd.clariom.s.human.ht, pd.clariom.s.mouse, pd.clariom.s.mouse.ht, pd.clariom.s.rat, pd.clariom.s.rat.ht, pd.cotton, pd.cyngene.1.0.st, pd.cyngene.1.1.st, pd.cyrgene.1.0.st, pd.cyrgene.1.1.st, pd.cytogenetics.array, pd.drogene.1.0.st, pd.drogene.1.1.st, pd.drosgenome1, pd.drosophila.2, pd.e.coli.2, pd.ecoli, pd.ecoli.asv2, pd.elegene.1.0.st, pd.elegene.1.1.st, pd.equgene.1.0.st, pd.equgene.1.1.st, pd.feinberg.hg18.me.hx1, pd.feinberg.mm8.me.hx1, pd.felgene.1.0.st, pd.felgene.1.1.st, pd.fingene.1.0.st, pd.fingene.1.1.st, pd.genomewidesnp.5, pd.genomewidesnp.6, pd.guigene.1.0.st, pd.guigene.1.1.st, pd.hc.g110, pd.hg.focus, pd.hg.u133.plus.2, pd.hg.u133a, pd.hg.u133a.2, pd.hg.u133a.tag, pd.hg.u133b, pd.hg.u219, pd.hg.u95a, pd.hg.u95av2, pd.hg.u95b, pd.hg.u95c, pd.hg.u95d, pd.hg.u95e, pd.hg18.60mer.expr, pd.ht.hg.u133.plus.pm, pd.ht.hg.u133a, pd.ht.mg.430a, pd.hta.2.0, pd.hu6800, pd.huex.1.0.st.v2, pd.hugene.1.0.st.v1, pd.hugene.1.1.st.v1, pd.hugene.2.0.st, pd.hugene.2.1.st, pd.maize, pd.mapping250k.nsp, pd.mapping250k.sty, pd.mapping50k.hind240, pd.mapping50k.xba240, pd.margene.1.0.st, pd.margene.1.1.st, pd.medgene.1.0.st, pd.medgene.1.1.st, pd.medicago, pd.mg.u74a, pd.mg.u74av2, pd.mg.u74b, pd.mg.u74bv2, pd.mg.u74c, pd.mg.u74cv2, pd.mirna.1.0, pd.mirna.2.0, pd.mirna.3.0, pd.mirna.3.1, pd.mirna.4.0, pd.moe430a, pd.moe430b, pd.moex.1.0.st.v1, pd.mogene.1.0.st.v1, pd.mogene.1.1.st.v1, pd.mogene.2.0.st, pd.mogene.2.1.st, pd.mouse430.2, pd.mouse430a.2, pd.mta.1.0, pd.mu11ksuba, pd.mu11ksubb, pd.nugo.hs1a520180, pd.nugo.mm1a520177, pd.ovigene.1.0.st, pd.ovigene.1.1.st, pd.pae.g1a, pd.plasmodium.anopheles, pd.poplar, pd.porcine, pd.porgene.1.0.st, pd.porgene.1.1.st, pd.rabgene.1.0.st, pd.rabgene.1.1.st, pd.rae230a, pd.rae230b, pd.raex.1.0.st.v1, pd.ragene.1.0.st.v1, pd.ragene.1.1.st.v1, pd.ragene.2.0.st, pd.ragene.2.1.st, pd.rat230.2, pd.rcngene.1.0.st, pd.rcngene.1.1.st, pd.rg.u34a, pd.rg.u34b, pd.rg.u34c, pd.rhegene.1.0.st, pd.rhegene.1.1.st, pd.rhesus, pd.rice, pd.rjpgene.1.0.st, pd.rjpgene.1.1.st, pd.rn.u34, pd.rta.1.0, pd.rusgene.1.0.st, pd.rusgene.1.1.st, pd.s.aureus, pd.soybean, pd.soygene.1.0.st, pd.soygene.1.1.st, pd.sugar.cane, pd.tomato, pd.u133.x3p, pd.vitis.vinifera, pd.wheat, pd.x.laevis.2, pd.x.tropicalis, pd.xenopus.laevis, pd.yeast.2, pd.yg.s98, pd.zebgene.1.0.st, pd.zebgene.1.1.st, pd.zebrafish, pd.atdschip.tiling, maEndToEnd importsMe: affycoretools, frma, ITALICS, mimager, MinimumDistance, pdInfoBuilder, puma, VanillaICE suggestsMe: hapmapsnp6, aroma.affymetrix, scrime dependencyCount: 59 Package: OLIN Version: 1.84.0 Depends: R (>= 2.10), methods, locfit, marray Imports: graphics, grDevices, limma, marray, methods, stats Suggests: convert License: GPL-2 MD5sum: 6db425fd29cdbd12bce61e9be6cf7878 NeedsCompilation: no Title: Optimized local intensity-dependent normalisation of two-color microarrays Description: Functions for normalisation of two-color microarrays by optimised local regression and for detection of artefacts in microarray data biocViews: Microarray, TwoChannel, QualityControl, Preprocessing, Visualization Author: Matthias Futschik Maintainer: Matthias Futschik URL: http://olin.sysbiolab.eu git_url: https://git.bioconductor.org/packages/OLIN git_branch: RELEASE_3_20 git_last_commit: 97b9f54 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OLIN_1.84.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OLIN_1.84.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OLIN_1.84.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OLIN_1.84.0.tgz vignettes: vignettes/OLIN/inst/doc/OLIN.pdf vignetteTitles: Introduction to OLIN hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OLIN/inst/doc/OLIN.R dependsOnMe: OLINgui importsMe: OLINgui dependencyCount: 11 Package: OLINgui Version: 1.80.0 Depends: R (>= 2.0.0), OLIN (>= 1.4.0) Imports: graphics, marray, OLIN, tcltk, tkWidgets, widgetTools License: GPL-2 MD5sum: 9cabba294a5208ce6bcb4872f9d3618e NeedsCompilation: no Title: Graphical user interface for OLIN Description: Graphical user interface for the OLIN package biocViews: Microarray, TwoChannel, QualityControl, Preprocessing, Visualization Author: Matthias Futschik Maintainer: Matthias Futschik URL: http://olin.sysbiolab.eu git_url: https://git.bioconductor.org/packages/OLINgui git_branch: RELEASE_3_20 git_last_commit: 3fd8b86 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OLINgui_1.80.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OLINgui_1.80.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OLINgui_1.80.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OLINgui_1.80.0.tgz vignettes: vignettes/OLINgui/inst/doc/OLINgui.pdf vignetteTitles: Introduction to OLINgui hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OLINgui/inst/doc/OLINgui.R dependencyCount: 17 Package: omada Version: 1.8.0 Depends: pdfCluster (>= 1.0-3), kernlab (>= 0.9-29), R (>= 4.2), fpc (>= 2.2-9), Rcpp (>= 1.0.7), diceR (>= 0.6.0), ggplot2 (>= 3.3.5), reshape (>= 0.8.8), genieclust (>= 1.1.3), clValid (>= 0.7), glmnet (>= 4.1.3), dplyr(>= 1.0.7), stats (>= 4.1.2), clValid(>= 0.7) Suggests: rmarkdown, knitr, testthat License: GPL-3 Archs: x64 MD5sum: c0ddb89b287d5c6efd9788f289e5710b NeedsCompilation: no Title: Machine learning tools for automated transcriptome clustering analysis Description: Symptomatic heterogeneity in complex diseases reveals differences in molecular states that need to be investigated. However, selecting the numerous parameters of an exploratory clustering analysis in RNA profiling studies requires deep understanding of machine learning and extensive computational experimentation. Tools that assist with such decisions without prior field knowledge are nonexistent and further gene association analyses need to be performed independently. We have developed a suite of tools to automate these processes and make robust unsupervised clustering of transcriptomic data more accessible through automated machine learning based functions. The efficiency of each tool was tested with four datasets characterised by different expression signal strengths. Our toolkit’s decisions reflected the real number of stable partitions in datasets where the subgroups are discernible. Even in datasets with less clear biological distinctions, stable subgroups with different expression profiles and clinical associations were found. biocViews: Software, Clustering, RNASeq, GeneExpression Author: Sokratis Kariotis [aut, cre] () Maintainer: Sokratis Kariotis VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/omada git_branch: RELEASE_3_20 git_last_commit: 8b5b5fd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/omada_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/omada_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/omada_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/omada_1.8.0.tgz vignettes: vignettes/omada/inst/doc/omada-vignette.html vignetteTitles: my-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/omada/inst/doc/omada-vignette.R dependencyCount: 151 Package: OmaDB Version: 2.22.0 Depends: R (>= 3.5), httr (>= 1.2.1), plyr(>= 1.8.4) Imports: utils, ape, Biostrings, GenomicRanges, IRanges, methods, topGO, jsonlite Suggests: knitr, rmarkdown, testthat License: GPL-3 MD5sum: 5d4b7990636e3351fc11565b225a95cb NeedsCompilation: no Title: R wrapper for the OMA REST API Description: A package for the orthology prediction data download from OMA database. biocViews: Software, ComparativeGenomics, FunctionalGenomics, Genetics, Annotation, GO, FunctionalPrediction Author: Klara Kaleb Maintainer: Klara Kaleb , Adrian Altenhoff URL: https://github.com/DessimozLab/OmaDB VignetteBuilder: knitr BugReports: https://github.com/DessimozLab/OmaDB/issues git_url: https://git.bioconductor.org/packages/OmaDB git_branch: RELEASE_3_20 git_last_commit: e74de93 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OmaDB_2.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OmaDB_2.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OmaDB_2.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OmaDB_2.22.0.tgz vignettes: vignettes/OmaDB/inst/doc/exploring_hogs.html, vignettes/OmaDB/inst/doc/OmaDB.html, vignettes/OmaDB/inst/doc/sequence_mapping.html, vignettes/OmaDB/inst/doc/tree_visualisation.html vignetteTitles: Exploring Hierarchical orthologous groups with OmaDB, Get started with OmaDB, Sequence Mapping with OmaDB, Exploring Taxonomic trees with OmaDB hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OmaDB/inst/doc/exploring_hogs.R, vignettes/OmaDB/inst/doc/OmaDB.R, vignettes/OmaDB/inst/doc/sequence_mapping.R, vignettes/OmaDB/inst/doc/tree_visualisation.R suggestsMe: orthogene, PhyloProfile dependencyCount: 59 Package: omicade4 Version: 1.46.0 Depends: R (>= 3.0.0), ade4 Imports: made4, Biobase Suggests: BiocStyle License: GPL-2 MD5sum: d7b95beb9870ee7b4c0dc94d99473563 NeedsCompilation: no Title: Multiple co-inertia analysis of omics datasets Description: This package performes multiple co-inertia analysis of omics datasets. biocViews: Software, Clustering, Classification, MultipleComparison Author: Chen Meng, Aedin Culhane, Amin M. Gholami. Maintainer: Chen Meng git_url: https://git.bioconductor.org/packages/omicade4 git_branch: RELEASE_3_20 git_last_commit: 159bc73 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/omicade4_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/omicade4_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/omicade4_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/omicade4_1.46.0.tgz vignettes: vignettes/omicade4/inst/doc/omicade4.pdf vignetteTitles: Using omicade4 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/omicade4/inst/doc/omicade4.R importsMe: omicRexposome suggestsMe: biosigner, MultiDataSet, phenomis, ropls dependencyCount: 50 Package: OmicCircos Version: 1.44.0 Depends: R (>= 2.14.0), methods,GenomicRanges License: GPL-2 MD5sum: 7228c6cb7c274ce1f772ded22e631132 NeedsCompilation: no Title: High-quality circular visualization of omics data Description: OmicCircos is an R application and package for generating high-quality circular plots for omics data. biocViews: Visualization,Statistics,Annotation Author: Ying Hu Chunhua Yan Maintainer: Ying Hu git_url: https://git.bioconductor.org/packages/OmicCircos git_branch: RELEASE_3_20 git_last_commit: 50a7c6e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OmicCircos_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OmicCircos_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OmicCircos_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OmicCircos_1.44.0.tgz vignettes: vignettes/OmicCircos/inst/doc/OmicCircos_vignette.pdf vignetteTitles: OmicCircos vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OmicCircos/inst/doc/OmicCircos_vignette.R dependencyCount: 23 Package: omicplotR Version: 1.26.0 Depends: R (>= 3.6), ALDEx2 (>= 1.18.0) Imports: compositions, DT, grDevices, knitr, jsonlite, matrixStats, rmarkdown, shiny, stats, vegan, zCompositions License: MIT + file LICENSE MD5sum: 7b0ad7d06e38d89369d2b4b38fcd4f60 NeedsCompilation: no Title: Visual Exploration of Omic Datasets Using a Shiny App Description: A Shiny app for visual exploration of omic datasets as compositions, and differential abundance analysis using ALDEx2. Useful for exploring RNA-seq, meta-RNA-seq, 16s rRNA gene sequencing with visualizations such as principal component analysis biplots (coloured using metadata for visualizing each variable), dendrograms and stacked bar plots, and effect plots (ALDEx2). Input is a table of counts and metadata file (if metadata exists), with options to filter data by count or by metadata to remove low counts, or to visualize select samples according to selected metadata. biocViews: Software, DifferentialExpression, GeneExpression, GUI, RNASeq, DNASeq, Metagenomics, Transcriptomics, Bayesian, Microbiome, Visualization, Sequencing, ImmunoOncology Author: Daniel Giguere [aut, cre], Jean Macklaim [aut], Greg Gloor [aut] Maintainer: Daniel Giguere VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/omicplotR git_branch: RELEASE_3_20 git_last_commit: 14ddf7a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/omicplotR_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/omicplotR_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/omicplotR_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/omicplotR_1.26.0.tgz vignettes: vignettes/omicplotR/inst/doc/omicplotR.html vignetteTitles: omicplotR: A tool for visualization of omic datasets as compositions hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/omicplotR/inst/doc/omicplotR.R dependencyCount: 115 Package: omicRexposome Version: 1.28.0 Depends: R (>= 3.5.0), Biobase Imports: stats, utils, grDevices, graphics, methods, rexposome, limma, sva, ggplot2, ggrepel, PMA, omicade4, gridExtra, MultiDataSet, SmartSVA, isva, parallel, SummarizedExperiment, stringr Suggests: BiocStyle, knitr, rmarkdown, snpStats, brgedata License: MIT + file LICENSE MD5sum: d3370377256db6c688b4bfd8c411d227 NeedsCompilation: no Title: Exposome and omic data associatin and integration analysis Description: omicRexposome systematizes the association evaluation between exposures and omic data, taking advantage of MultiDataSet for coordinated data management, rexposome for exposome data definition and limma for association testing. Also to perform data integration mixing exposome and omic data using multi co-inherent analysis (omicade4) and multi-canonical correlation analysis (PMA). biocViews: ImmunoOncology, WorkflowStep, MultipleComparison, Visualization, GeneExpression, DifferentialExpression, DifferentialMethylation, GeneRegulation, Epigenetics, Proteomics, Transcriptomics, StatisticalMethod, Regression Author: Carles Hernandez-Ferrer [aut, cre], Juan R. González [aut] Maintainer: Xavier Escribà Montagut VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/omicRexposome git_branch: RELEASE_3_20 git_last_commit: 36221e2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/omicRexposome_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/omicRexposome_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/omicRexposome_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/omicRexposome_1.28.0.tgz vignettes: vignettes/omicRexposome/inst/doc/exposome_omic_integration.html vignetteTitles: Exposome Data Integration with Omic Data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/omicRexposome/inst/doc/exposome_omic_integration.R dependencyCount: 226 Package: OmicsMLRepoR Version: 1.0.0 Depends: R (>= 4.4.0) Imports: dplyr, stringr, rols, tidyr, methods, stats, tibble, data.tree, jsonlite, plyr, BiocFileCache, readr, DiagrammeR, rlang, lubridate Suggests: arrow, knitr, BiocStyle, curatedMetagenomicData, testthat (>= 3.0.0), cBioPortalData License: Artistic-2.0 MD5sum: e559bc10da4e08d10e8fe597195b2d89 NeedsCompilation: no Title: Search harmonized metadata created under the OmicsMLRepo project Description: This package provides functions to browse the harmonized metadata for large omics databases. This package also supports data navigation if the metadata incorporates ontology. biocViews: Software, Infrastructure, DataRepresentation Author: Sehyun Oh [aut, cre] (), Kaelyn Long [aut] Maintainer: Sehyun Oh URL: https://github.com/shbrief/OmicsMLRepoR VignetteBuilder: knitr BugReports: https://github.com/shbrief/OmicsMLRepoR/issues git_url: https://git.bioconductor.org/packages/OmicsMLRepoR git_branch: RELEASE_3_20 git_last_commit: 367abc7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OmicsMLRepoR_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OmicsMLRepoR_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OmicsMLRepoR_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OmicsMLRepoR_1.0.0.tgz vignettes: vignettes/OmicsMLRepoR/inst/doc/Quickstart.html vignetteTitles: Quickstart hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OmicsMLRepoR/inst/doc/Quickstart.R dependencyCount: 94 Package: OMICsPCA Version: 1.24.0 Depends: R (>= 3.5.0), OMICsPCAdata Imports: HelloRanges, fpc, stats, MultiAssayExperiment, pdftools, methods, grDevices, utils,clValid, NbClust, cowplot, rmarkdown, kableExtra, rtracklayer, IRanges, GenomeInfoDb, reshape2, ggplot2, factoextra, rgl, corrplot, MASS, graphics, FactoMineR, PerformanceAnalytics, tidyr, data.table, cluster, magick Suggests: knitr, RUnit, BiocGenerics License: GPL-3 MD5sum: b7eb63118eba26ae612b275ed8720ab2 NeedsCompilation: no Title: An R package for quantitative integration and analysis of multiple omics assays from heterogeneous samples Description: OMICsPCA is an analysis pipeline designed to integrate multi OMICs experiments done on various subjects (e.g. Cell lines, individuals), treatments (e.g. disease/control) or time points and to analyse such integrated data from various various angles and perspectives. In it's core OMICsPCA uses Principal Component Analysis (PCA) to integrate multiomics experiments from various sources and thus has ability to over data insufficiency issues by using the ingegrated data as representatives. OMICsPCA can be used in various application including analysis of overall distribution of OMICs assays across various samples /individuals /time points; grouping assays by user-defined conditions; identification of source of variation, similarity/dissimilarity between assays, variables or individuals. biocViews: ImmunoOncology, MultipleComparison, PrincipalComponent, DataRepresentation, Workflow, Visualization, DimensionReduction, Clustering, BiologicalQuestion, EpigeneticsWorkflow, Transcription, GeneticVariability, GUI, BiomedicalInformatics, Epigenetics, FunctionalGenomics, SingleCell Author: Subhadeep Das [aut, cre], Dr. Sucheta Tripathy [ctb] Maintainer: Subhadeep Das VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/OMICsPCA git_branch: RELEASE_3_20 git_last_commit: 413b54f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OMICsPCA_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OMICsPCA_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OMICsPCA_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OMICsPCA_1.24.0.tgz vignettes: vignettes/OMICsPCA/inst/doc/vignettes.html vignetteTitles: OMICsPCA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OMICsPCA/inst/doc/vignettes.R dependencyCount: 206 Package: omicsPrint Version: 1.26.0 Depends: R (>= 3.5), MASS Imports: methods, matrixStats, graphics, stats, SummarizedExperiment, MultiAssayExperiment, RaggedExperiment Suggests: BiocStyle, knitr, rmarkdown, testthat, GEOquery, VariantAnnotation, Rsamtools, BiocParallel, GenomicRanges, FDb.InfiniumMethylation.hg19, snpStats License: GPL (>= 2) MD5sum: 234532209b31f4c589480bdd498ca702 NeedsCompilation: no Title: Cross omic genetic fingerprinting Description: omicsPrint provides functionality for cross omic genetic fingerprinting, for example, to verify sample relationships between multiple omics data types, i.e. genomic, transcriptomic and epigenetic (DNA methylation). biocViews: QualityControl, Genetics, Epigenetics, Transcriptomics, DNAMethylation, Transcription, GeneticVariability, ImmunoOncology Author: Maarten van Iterson [aut], Davy Cats [cre] Maintainer: Davy Cats VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/omicsPrint git_branch: RELEASE_3_20 git_last_commit: 761bd0d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/omicsPrint_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/omicsPrint_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/omicsPrint_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/omicsPrint_1.26.0.tgz vignettes: vignettes/omicsPrint/inst/doc/omicsPrint.html vignetteTitles: omicsPrint: detection of data linkage errors in multiple omics studies hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/omicsPrint/inst/doc/omicsPrint.R dependencyCount: 60 Package: omicsViewer Version: 1.10.0 Depends: R (>= 4.2) Imports: survminer, survival, fastmatch, reshape2, stringr, beeswarm, grDevices, DT, shiny, shinythemes, shinyWidgets, plotly, networkD3, httr, matrixStats, RColorBrewer, Biobase, fgsea, openxlsx, psych, shinybusy, ggseqlogo, htmlwidgets, graphics, grid, stats, utils, methods, shinyjs, curl, flatxml, ggplot2, S4Vectors, SummarizedExperiment, RSQLite, Matrix, shinycssloaders, ROCR, drc Suggests: BiocStyle, knitr, rmarkdown, unittest License: GPL-2 MD5sum: 239148f41b6a545addcf27cf6489fe14 NeedsCompilation: no Title: Interactive and explorative visualization of SummarizedExperssionSet or ExpressionSet using omicsViewer Description: omicsViewer visualizes ExpressionSet (or SummarizedExperiment) in an interactive way. The omicsViewer has a separate back- and front-end. In the back-end, users need to prepare an ExpressionSet that contains all the necessary information for the downstream data interpretation. Some extra requirements on the headers of phenotype data or feature data are imposed so that the provided information can be clearly recognized by the front-end, at the same time, keep a minimum modification on the existing ExpressionSet object. The pure dependency on R/Bioconductor guarantees maximum flexibility in the statistical analysis in the back-end. Once the ExpressionSet is prepared, it can be visualized using the front-end, implemented by shiny and plotly. Both features and samples could be selected from (data) tables or graphs (scatter plot/heatmap). Different types of analyses, such as enrichment analysis (using Bioconductor package fgsea or fisher's exact test) and STRING network analysis, will be performed on the fly and the results are visualized simultaneously. When a subset of samples and a phenotype variable is selected, a significance test on means (t-test or ranked based test; when phenotype variable is quantitative) or test of independence (chi-square or fisher’s exact test; when phenotype data is categorical) will be performed to test the association between the phenotype of interest with the selected samples. Additionally, other analyses can be easily added as extra shiny modules. Therefore, omicsViewer will greatly facilitate data exploration, many different hypotheses can be explored in a short time without the need for knowledge of R. In addition, the resulting data could be easily shared using a shiny server. Otherwise, a standalone version of omicsViewer together with designated omics data could be easily created by integrating it with portable R, which can be shared with collaborators or submitted as supplementary data together with a manuscript. biocViews: Software, Visualization, GeneSetEnrichment, DifferentialExpression, MotifDiscovery, Network, NetworkEnrichment Author: Chen Meng [aut, cre] Maintainer: Chen Meng URL: https://github.com/mengchen18/omicsViewer VignetteBuilder: knitr Video: https://www.youtube.com/watch?v=0nirB-exquY&list=PLo2m88lJf-RRoLKMY8UEGqCpraKYrX5lk BugReports: https://github.com/mengchen18/omicsViewer git_url: https://git.bioconductor.org/packages/omicsViewer git_branch: RELEASE_3_20 git_last_commit: 1faba47 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/omicsViewer_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/omicsViewer_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/omicsViewer_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/omicsViewer_1.10.0.tgz vignettes: vignettes/omicsViewer/inst/doc/quickStart.html vignetteTitles: quickStart.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/omicsViewer/inst/doc/quickStart.R dependencyCount: 193 Package: Omixer Version: 1.16.0 Depends: R (>= 4.0.0) Imports: dplyr, ggplot2, forcats, tibble, gridExtra, magrittr, readr, tidyselect, grid, stats, stringr Suggests: knitr, rmarkdown, BiocStyle, magick, testthat License: MIT + file LICENSE MD5sum: de7855603ccf8805e895b4b1368098be NeedsCompilation: no Title: Omixer: multivariate and reproducible sample randomization to proactively counter batch effects in omics studies Description: Omixer - an Bioconductor package for multivariate and reproducible sample randomization, which ensures optimal sample distribution across batches with well-documented methods. It outputs lab-friendly sample layouts, reducing the risk of sample mixups when manually pipetting randomized samples. biocViews: DataRepresentation, ExperimentalDesign, QualityControl, Software, Visualization Author: Lucy Sinke [cre, aut] Maintainer: Lucy Sinke VignetteBuilder: knitr BugReports: https://github.com/molepi/Omixer/issues git_url: https://git.bioconductor.org/packages/Omixer git_branch: RELEASE_3_20 git_last_commit: b537672 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Omixer_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Omixer_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Omixer_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Omixer_1.16.0.tgz vignettes: vignettes/Omixer/inst/doc/omixer-vignette.html vignetteTitles: my-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Omixer/inst/doc/omixer-vignette.R dependencyCount: 54 Package: OmnipathR Version: 3.14.0 Depends: R(>= 4.0) Imports: checkmate, crayon, curl, digest, dplyr(>= 1.1.0), httr, igraph, jsonlite, later, logger, lubridate, magrittr, progress, purrr, rappdirs, readr(>= 2.0.0), readxl, rlang, rmarkdown, RSQLite, R.utils, rvest, stats, stringi, stringr, tibble, tidyr, tidyselect, tools, utils, vctrs, withr, XML, xml2, yaml, zip Suggests: BiocStyle, bookdown, ggplot2, ggraph, gprofiler2, knitr, mlrMBO, parallelMap, ParamHelpers, Rgraphviz, R.matlab, sigmajs, smoof, supraHex, testthat License: MIT + file LICENSE MD5sum: d2e2da1697eb72a8c6313883043682ca NeedsCompilation: no Title: OmniPath web service client and more Description: A client for the OmniPath web service (https://www.omnipathdb.org) and many other resources. It also includes functions to transform and pretty print some of the downloaded data, functions to access a number of other resources such as BioPlex, ConsensusPathDB, EVEX, Gene Ontology, Guide to Pharmacology (IUPHAR/BPS), Harmonizome, HTRIdb, Human Phenotype Ontology, InWeb InBioMap, KEGG Pathway, Pathway Commons, Ramilowski et al. 2015, RegNetwork, ReMap, TF census, TRRUST and Vinayagam et al. 2011. Furthermore, OmnipathR features a close integration with the NicheNet method for ligand activity prediction from transcriptomics data, and its R implementation `nichenetr` (available only on github). biocViews: GraphAndNetwork, Network, Pathways, Software, ThirdPartyClient, DataImport, DataRepresentation, GeneSignaling, GeneRegulation, SystemsBiology, Transcriptomics, SingleCell, Annotation, KEGG Author: Alberto Valdeolivas [aut] (), Denes Turei [cre, aut] (), Attila Gabor [aut] (), Diego Mananes [aut] (), Aurelien Dugourd [aut] () Maintainer: Denes Turei URL: https://r.omnipathdb.org/ VignetteBuilder: knitr BugReports: https://github.com/saezlab/OmnipathR/issues git_url: https://git.bioconductor.org/packages/OmnipathR git_branch: RELEASE_3_20 git_last_commit: 3c7d7f1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OmnipathR_3.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OmnipathR_3.14.0.zip mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OmnipathR_3.14.0.tgz vignettes: vignettes/OmnipathR/inst/doc/bioc_workshop.html, vignettes/OmnipathR/inst/doc/cosmos.html, vignettes/OmnipathR/inst/doc/db_manager.html, vignettes/OmnipathR/inst/doc/drug_targets.html, vignettes/OmnipathR/inst/doc/extra_attrs.html, vignettes/OmnipathR/inst/doc/nichenet.html, vignettes/OmnipathR/inst/doc/omnipath_intro.html, vignettes/OmnipathR/inst/doc/paths.html vignetteTitles: OmniPath Bioconductor workshop, COSMOS PKN, Database manager, Building networks around drug-targets using OmnipathR, Extra attributes, Using NicheNet with OmnipathR, OmnipathR: an R client for the OmniPath web service, Pathway construction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/OmnipathR/inst/doc/bioc_workshop.R, vignettes/OmnipathR/inst/doc/cosmos.R, vignettes/OmnipathR/inst/doc/db_manager.R, vignettes/OmnipathR/inst/doc/drug_targets.R, vignettes/OmnipathR/inst/doc/extra_attrs.R, vignettes/OmnipathR/inst/doc/nichenet.R, vignettes/OmnipathR/inst/doc/omnipath_intro.R, vignettes/OmnipathR/inst/doc/paths.R importsMe: gINTomics, wppi suggestsMe: decoupleR, dorothea dependencyCount: 89 Package: ompBAM Version: 1.10.0 Imports: utils, Rcpp Suggests: RcppProgress, knitr, rmarkdown, roxygen2, devtools, usethis, desc, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: d88dc9ccb61fdc23ad3660bffa5d78f6 NeedsCompilation: no Title: C++ Library for OpenMP-based multi-threaded sequential profiling of Binary Alignment Map (BAM) files Description: This packages provides C++ header files for developers wishing to create R packages that processes BAM files. ompBAM automates file access, memory management, and handling of multiple threads 'behind the scenes', so developers can focus on creating domain-specific functionality. The included vignette contains detailed documentation of this API, including quick-start instructions to create a new ompBAM-based package, and step-by-step explanation of the functionality behind the example packaged included within ompBAM. biocViews: Alignment, DataImport, RNASeq, Software, Sequencing, Transcriptomics, SingleCell Author: Alex Chit Hei Wong [aut, cre, cph] Maintainer: Alex Chit Hei Wong URL: https://github.com/alexchwong/ompBAM VignetteBuilder: knitr BugReports: https://support.bioconductor.org/ git_url: https://git.bioconductor.org/packages/ompBAM git_branch: RELEASE_3_20 git_last_commit: 68b5644 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ompBAM_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ompBAM_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ompBAM_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ompBAM_1.10.0.tgz vignettes: vignettes/ompBAM/inst/doc/ompBAM-API-Docs.html vignetteTitles: ompBAM API Documentation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ompBAM/inst/doc/ompBAM-API-Docs.R importsMe: SpliceWiz linksToMe: SpliceWiz dependencyCount: 3 Package: omXplore Version: 1.0.0 Depends: R (>= 4.4.0), methods Imports: shiny, MSnbase, PSMatch, SummarizedExperiment, MultiAssayExperiment, shinyBS, shinyjs, shinyjqui, DT, RColorBrewer, gplots, highcharter, visNetwork, tibble, grDevices, stats, utils, htmlwidgets, vioplot, graphics, FactoMineR, dendextend, dplyr, factoextra, tidyr Suggests: knitr, rmarkdown, BiocStyle, testthat, Matrix, graph License: Artistic-2.0 MD5sum: 6bd0ad2004166ccda4a844f210277b61 NeedsCompilation: no Title: Vizualization tools for 'omics' datasets with R Description: This package contains a collection of functions (written as shiny modules) for the visualisation and the statistical analysis of omics data. These plots can be displayed individually or embedded in a global Shiny module. Additionaly, it is possible to integrate third party modules to the main interface of the package omXplore. biocViews: Software, ShinyApps, MassSpectrometry, DataRepresentation, GUI, QualityControl Author: Samuel Wieczorek [aut, cre] (), Thomas Burger [aut], Enora Fremy [ctb] Maintainer: Samuel Wieczorek URL: https://github.com/prostarproteomics/omXplore, https://prostarproteomics.github.io/omXplore/ VignetteBuilder: knitr BugReports: https://github.com/prostarproteomics/omXplore/issues git_url: https://git.bioconductor.org/packages/omXplore git_branch: RELEASE_3_20 git_last_commit: a23afb8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/omXplore_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/omXplore_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/omXplore_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/omXplore_1.0.0.tgz vignettes: vignettes/omXplore/inst/doc/addingThirdPartyPlots.html, vignettes/omXplore/inst/doc/omXplore.html vignetteTitles: Adding third party plots, omXplore hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/omXplore/inst/doc/addingThirdPartyPlots.R, vignettes/omXplore/inst/doc/omXplore.R dependencyCount: 207 Package: oncomix Version: 1.28.0 Depends: R (>= 3.4.0) Imports: ggplot2, ggrepel, RColorBrewer, mclust, stats, SummarizedExperiment Suggests: knitr, rmarkdown, testthat, RMySQL License: GPL-3 MD5sum: 7cdd25fe248dec0a8676f980bf6f313a NeedsCompilation: no Title: Identifying Genes Overexpressed in Subsets of Tumors from Tumor-Normal mRNA Expression Data Description: This package helps identify mRNAs that are overexpressed in subsets of tumors relative to normal tissue. Ideal inputs would be paired tumor-normal data from the same tissue from many patients (>15 pairs). This unsupervised approach relies on the observation that oncogenes are characteristically overexpressed in only a subset of tumors in the population, and may help identify oncogene candidates purely based on differences in mRNA expression between previously unknown subtypes. biocViews: GeneExpression, Sequencing Author: Daniel Pique, John Greally, Jessica Mar Maintainer: Daniel Pique VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/oncomix git_branch: RELEASE_3_20 git_last_commit: 587422c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/oncomix_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/oncomix_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/oncomix_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/oncomix_1.28.0.tgz vignettes: vignettes/oncomix/inst/doc/oncomix.html vignetteTitles: OncoMix Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/oncomix/inst/doc/oncomix.R dependencyCount: 65 Package: oncoscanR Version: 1.8.0 Depends: R (>= 4.2), IRanges (>= 2.30.0), GenomicRanges (>= 1.48.0), magrittr Imports: readr, S4Vectors, methods, utils Suggests: testthat (>= 3.1.4), jsonlite, knitr, rmarkdown, BiocStyle License: MIT + file LICENSE MD5sum: 41a3ad0c018823770001a20a8a1625ac NeedsCompilation: no Title: Secondary analyses of CNV data (HRD and more) Description: The software uses the copy number segments from a text file and identifies all chromosome arms that are globally altered and computes various genome-wide scores. The following HRD scores (characteristic of BRCA-mutated cancers) are included: LST, HR-LOH, nLST and gLOH. the package is tailored for the ThermoFisher Oncoscan assay analyzed with their Chromosome Alteration Suite (ChAS) but can be adapted to any input. biocViews: CopyNumberVariation, Microarray, Software Author: Yann Christinat [aut, cre], Geneva University Hospitals [aut, cph] Maintainer: Yann Christinat URL: https://github.com/yannchristinat/oncoscanR VignetteBuilder: knitr BugReports: https://github.com/yannchristinat/oncoscanR/issues git_url: https://git.bioconductor.org/packages/oncoscanR git_branch: RELEASE_3_20 git_last_commit: 84f2154 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/oncoscanR_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/oncoscanR_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/oncoscanR_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/oncoscanR_1.8.0.tgz vignettes: vignettes/oncoscanR/inst/doc/oncoscanR.html vignetteTitles: oncoscanR vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/oncoscanR/inst/doc/oncoscanR.R dependencyCount: 48 Package: OncoScore Version: 1.34.0 Depends: R (>= 4.1.0), Imports: biomaRt, grDevices, graphics, utils, methods, Suggests: BiocGenerics, BiocStyle, knitr, testthat, License: file LICENSE MD5sum: a4e704ceb3b771c4d00acf54f7f10f61 NeedsCompilation: no Title: A tool to identify potentially oncogenic genes Description: OncoScore is a tool to measure the association of genes to cancer based on citation frequencies in biomedical literature. The score is evaluated from PubMed literature by dynamically updatable web queries. biocViews: BiomedicalInformatics Author: Luca De Sano [cre, aut] (), Carlo Gambacorti Passerini [ctb], Rocco Piazza [ctb], Daniele Ramazzotti [aut] (), Roberta Spinelli [ctb] Maintainer: Luca De Sano URL: https://github.com/danro9685/OncoScore VignetteBuilder: knitr BugReports: https://github.com/danro9685/OncoScore git_url: https://git.bioconductor.org/packages/OncoScore git_branch: RELEASE_3_20 git_last_commit: 3994272 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/OncoScore_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OncoScore_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OncoScore_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OncoScore_1.34.0.tgz vignettes: vignettes/OncoScore/inst/doc/v1_introduction.html, vignettes/OncoScore/inst/doc/v2_running_OncoScore.html vignetteTitles: Introduction, Running OncoScore hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/OncoScore/inst/doc/v1_introduction.R, vignettes/OncoScore/inst/doc/v2_running_OncoScore.R dependencyCount: 69 Package: OncoSimulR Version: 4.8.0 Depends: R (>= 3.5.0) Imports: Rcpp (>= 0.12.4), parallel, data.table, graph, Rgraphviz, gtools, igraph, methods, RColorBrewer, grDevices, car, dplyr, smatr, ggplot2, ggrepel, stringr LinkingTo: Rcpp Suggests: BiocStyle, knitr, Oncotree, testthat (>= 1.0.0), rmarkdown, bookdown, pander License: GPL (>= 3) MD5sum: 0ee28418fe4a4fff5393eb1eaf472e50 NeedsCompilation: yes Title: Forward Genetic Simulation of Cancer Progression with Epistasis Description: Functions for forward population genetic simulation in asexual populations, with special focus on cancer progression. Fitness can be an arbitrary function of genetic interactions between multiple genes or modules of genes, including epistasis, order restrictions in mutation accumulation, and order effects. Fitness (including just birth, just death, or both birth and death) can also be a function of the relative and absolute frequencies of other genotypes (i.e., frequency-dependent fitness). Mutation rates can differ between genes, and we can include mutator/antimutator genes (to model mutator phenotypes). Simulating multi-species scenarios and therapeutic interventions, including adaptive therapy, is also possible. Simulations use continuous-time models and can include driver and passenger genes and modules. Also included are functions for: simulating random DAGs of the type found in Oncogenetic Trees, Conjunctive Bayesian Networks, and other cancer progression models; plotting and sampling from single or multiple realizations of the simulations, including single-cell sampling; plotting the parent-child relationships of the clones; generating random fitness landscapes (Rough Mount Fuji, House of Cards, additive, NK, Ising, and Eggbox models) and plotting them. biocViews: BiologicalQuestion, SomaticMutation Author: Ramon Diaz-Uriarte [aut, cre], Sergio Sanchez-Carrillo [aut], Juan Antonio Miguel Gonzalez [aut], Alberto Gonzalez Klein [aut], Javier Mu\~noz Haro [aut], Javier Lopez Cano [aut], Niklas Endres [ctb], Mark Taylor [ctb], Arash Partow [ctb], Sophie Brouillet [ctb], Sebastian Matuszewski [ctb], Harry Annoni [ctb], Luca Ferretti [ctb], Guillaume Achaz [ctb], Tymoteusz Wolodzko [ctb], Guillermo Gorines Cordero [ctb], Ivan Lorca Alonso [ctb], Francisco Mu\~noz Lopez [ctb], David Roncero Moro\~no [ctb], Alvaro Quevedo [ctb], Pablo Perez [ctb], Cristina Devesa [ctb], Alejandro Herrador [ctb], Holger Froehlich [ctb], Florian Markowetz [ctb], Achim Tresch [ctb], Theresa Niederberger [ctb], Christian Bender [ctb], Matthias Maneck [ctb], Claudio Lottaz [ctb], Tim Beissbarth [ctb], Sara Dorado Alfaro [ctb], Miguel Hernandez del Valle [ctb], Alvaro Huertas Garcia [ctb], Diego Ma\~nanes Cayero [ctb], Alejandro Martin Mu\~noz [ctb], Marta Couce Iglesias [ctb], Silvia Garcia Cobos [ctb], Carlos Madariaga Aramendi [ctb], Ana Rodriguez Ronchel [ctb], Lucia Sanchez Garcia [ctb], Yolanda Benitez Quesada [ctb], Asier Fernandez Pato [ctb], Esperanza Lopez Lopez [ctb], Alberto Manuel Parra Perez [ctb], Jorge Garcia Calleja [ctb], Ana del Ramo Galian [ctb], Alejandro de los Reyes Benitez [ctb], Guillermo Garcia Hoyos [ctb], Rosalia Palomino Cabrera [ctb], Rafael Barrero Rodriguez [ctb], Silvia Talavera Marcos [ctb] Maintainer: Ramon Diaz-Uriarte URL: https://github.com/rdiaz02/OncoSimul, https://popmodels.cancercontrol.cancer.gov/gsr/packages/oncosimulr/ VignetteBuilder: knitr BugReports: https://github.com/rdiaz02/OncoSimul/issues git_url: https://git.bioconductor.org/packages/OncoSimulR git_branch: RELEASE_3_20 git_last_commit: 52cb97a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OncoSimulR_4.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OncoSimulR_4.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OncoSimulR_4.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OncoSimulR_4.7.7.tgz vignettes: vignettes/OncoSimulR/inst/doc/OncoSimulR.html vignetteTitles: OncoSimulR: forward genetic simulation in asexual populations with arbitrary epistatic interactions and a focus on modeling tumor progression. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OncoSimulR/inst/doc/OncoSimulR.R dependencyCount: 78 Package: onlineFDR Version: 2.14.0 Imports: stats, Rcpp, progress LinkingTo: Rcpp, RcppProgress Suggests: knitr, rmarkdown, testthat, covr License: GPL-3 MD5sum: f3afcfebc4b2762b11a24fe1010d5a5a NeedsCompilation: yes Title: Online error rate control Description: This package allows users to control the false discovery rate (FDR) or familywise error rate (FWER) for online multiple hypothesis testing, where hypotheses arrive in a stream. In this framework, a null hypothesis is rejected based on the evidence against it and on the previous rejection decisions. biocViews: MultipleComparison, Software, StatisticalMethod Author: David S. Robertson [aut, cre], Lathan Liou [aut], Aaditya Ramdas [aut], Adel Javanmard [ctb], Andrea Montanari [ctb], Jinjin Tian [ctb], Tijana Zrnic [ctb], Natasha A. Karp [aut] Maintainer: David S. Robertson URL: https://dsrobertson.github.io/onlineFDR/index.html VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/onlineFDR git_branch: RELEASE_3_20 git_last_commit: 0c88e7e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/onlineFDR_2.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/onlineFDR_2.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/onlineFDR_2.14.0.tgz vignettes: vignettes/onlineFDR/inst/doc/advanced-usage.html, vignettes/onlineFDR/inst/doc/onlineFDR.html, vignettes/onlineFDR/inst/doc/theory.html vignetteTitles: Advanced usage of onlineFDR, Using the onlineFDR package, The theory behind onlineFDR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/onlineFDR/inst/doc/advanced-usage.R, vignettes/onlineFDR/inst/doc/onlineFDR.R, vignettes/onlineFDR/inst/doc/theory.R dependencyCount: 17 Package: ontoProc Version: 2.0.0 Depends: R (>= 4.0), ontologyIndex Imports: Biobase, S4Vectors, methods, stats, utils, BiocFileCache, shiny, graph, Rgraphviz, ontologyPlot, dplyr, magrittr, DT, igraph, AnnotationHub, SummarizedExperiment, reticulate, R.utils, httr, basilisk Suggests: knitr, org.Hs.eg.db, org.Mm.eg.db, testthat, BiocStyle, SingleCellExperiment, celldex, rmarkdown, AnnotationDbi, magick License: Artistic-2.0 MD5sum: 0d1f9051f2943dc3ad512175573297bf NeedsCompilation: no Title: processing of ontologies of anatomy, cell lines, and so on Description: Support harvesting of diverse bioinformatic ontologies, making particular use of the ontologyIndex package on CRAN. We provide snapshots of key ontologies for terms about cells, cell lines, chemical compounds, and anatomy, to help analyze genome-scale experiments, particularly cell x compound screens. Another purpose is to strengthen development of compelling use cases for richer interfaces to emerging ontologies. biocViews: Infrastructure, GO Author: Vincent Carey [ctb, cre] (), Sara Stankiewicz [ctb] Maintainer: Vincent Carey URL: https://github.com/vjcitn/ontoProc VignetteBuilder: knitr BugReports: https://github.com/vjcitn/ontoProc/issues git_url: https://git.bioconductor.org/packages/ontoProc git_branch: RELEASE_3_20 git_last_commit: 34135d3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ontoProc_2.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ontoProc_2.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ontoProc_2.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ontoProc_2.0.0.tgz vignettes: vignettes/ontoProc/inst/doc/ontoProc.html, vignettes/ontoProc/inst/doc/owlents.html vignetteTitles: ontoProc: some ontology-oriented utilites with single-cell focus for Bioconductor, owlents: using OWL directly in ontoProc hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ontoProc/inst/doc/ontoProc.R, vignettes/ontoProc/inst/doc/owlents.R dependsOnMe: SingleRBook importsMe: pogos, tenXplore suggestsMe: scDiffCom dependencyCount: 120 Package: openCyto Version: 2.18.0 Depends: R (>= 3.5.0) Imports: methods,Biobase,BiocGenerics,flowCore(>= 1.99.17),flowViz,ncdfFlow(>= 2.11.34),flowWorkspace(>= 3.99.1),flowClust(>= 3.11.4),RBGL,graph,data.table,RColorBrewer LinkingTo: cpp11, BH Suggests: flowWorkspaceData, knitr, rmarkdown, markdown, testthat, utils, tools, parallel, ggcyto, CytoML, flowStats(>= 4.5.2), MASS License: AGPL-3.0-only MD5sum: 5d9c6a6851d56037f75a9369838768d4 NeedsCompilation: yes Title: Hierarchical Gating Pipeline for flow cytometry data Description: This package is designed to facilitate the automated gating methods in sequential way to mimic the manual gating strategy. biocViews: ImmunoOncology, FlowCytometry, DataImport, Preprocessing, DataRepresentation Author: Mike Jiang, John Ramey, Greg Finak, Raphael Gottardo Maintainer: Mike Jiang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/openCyto git_branch: RELEASE_3_20 git_last_commit: dc6d560 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/openCyto_2.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/openCyto_2.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/openCyto_2.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/openCyto_2.18.0.tgz vignettes: vignettes/openCyto/inst/doc/HowToAutoGating.html, vignettes/openCyto/inst/doc/HowToWriteCSVTemplate.html, vignettes/openCyto/inst/doc/openCytoVignette.html vignetteTitles: How to use different auto gating functions, How to write a csv gating template, An Introduction to the openCyto package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/openCyto/inst/doc/HowToAutoGating.R, vignettes/openCyto/inst/doc/HowToWriteCSVTemplate.R, vignettes/openCyto/inst/doc/openCytoVignette.R importsMe: CytoML suggestsMe: CATALYST, flowClust, flowCore, flowStats, flowTime, flowWorkspace, ggcyto dependencyCount: 79 Package: openPrimeR Version: 1.28.0 Depends: R (>= 4.0.0) Imports: Biostrings (>= 2.38.4), pwalign, XML (>= 3.98-1.4), scales (>= 0.4.0), reshape2 (>= 1.4.1), seqinr (>= 3.3-3), IRanges (>= 2.4.8), GenomicRanges (>= 1.22.4), ggplot2 (>= 2.1.0), plyr (>= 1.8.4), dplyr (>= 0.5.0), stringdist (>= 0.9.4.1), stringr (>= 1.0.0), RColorBrewer (>= 1.1-2), DECIPHER (>= 1.16.1), lpSolveAPI (>= 5.5.2.0-17), digest (>= 0.6.9), Hmisc (>= 3.17-4), ape (>= 3.5), BiocGenerics (>= 0.16.1), S4Vectors (>= 0.8.11), foreach (>= 1.4.3), magrittr (>= 1.5), uniqtag (>= 1.0), openxlsx (>= 4.0.17), grid (>= 3.1.0), grDevices (>= 3.1.0), stats (>= 3.1.0), utils (>= 3.1.0), methods (>= 3.1.0) Suggests: testthat (>= 1.0.2), knitr (>= 1.13), rmarkdown (>= 1.0), devtools (>= 1.12.0), doParallel (>= 1.0.10), pander (>= 0.6.0), learnr (>= 0.9) License: GPL-2 Archs: x64 MD5sum: fb47d3362b75d0f8561bcfaa9e06b370 NeedsCompilation: no Title: Multiplex PCR Primer Design and Analysis Description: An implementation of methods for designing, evaluating, and comparing primer sets for multiplex PCR. Primers are designed by solving a set cover problem such that the number of covered template sequences is maximized with the smallest possible set of primers. To guarantee that high-quality primers are generated, only primers fulfilling constraints on their physicochemical properties are selected. A Shiny app providing a user interface for the functionalities of this package is provided by the 'openPrimeRui' package. biocViews: Software, Technology, Coverage, MultipleComparison Author: Matthias Döring [aut, cre], Nico Pfeifer [aut] Maintainer: Matthias Döring SystemRequirements: MAFFT (>= 7.305), OligoArrayAux (>= 3.8), ViennaRNA (>= 2.4.1), MELTING (>= 5.1.1), Pandoc (>= 1.12.3) VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/openPrimeR git_branch: RELEASE_3_20 git_last_commit: 0f2eec9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/openPrimeR_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/openPrimeR_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/openPrimeR_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/openPrimeR_1.28.0.tgz vignettes: vignettes/openPrimeR/inst/doc/openPrimeR_vignette.html vignetteTitles: openPrimeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/openPrimeR/inst/doc/openPrimeR_vignette.R dependencyCount: 116 Package: OpenStats Version: 1.18.0 Depends: nlme Imports: MASS, jsonlite, Hmisc, methods, knitr, AICcmodavg, car, rlist, summarytools, graphics, stats, utils Suggests: rmarkdown License: GPL (>= 2) Archs: x64 MD5sum: e33e1d076d50e2aa90f24e43e60ab884 NeedsCompilation: no Title: A Robust and Scalable Software Package for Reproducible Analysis of High-Throughput genotype-phenotype association Description: Package contains several methods for statistical analysis of genotype to phenotype association in high-throughput screening pipelines. biocViews: StatisticalMethod, BatchEffect, Bayesian Author: Hamed Haseli Mashhadi Maintainer: Marina Kan URL: https://git.io/Jv5w0 VignetteBuilder: knitr BugReports: https://git.io/Jv5wg git_url: https://git.bioconductor.org/packages/OpenStats git_branch: RELEASE_3_20 git_last_commit: 84cb955 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OpenStats_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OpenStats_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OpenStats_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OpenStats_1.18.0.tgz vignettes: vignettes/OpenStats/inst/doc/OpenStats.html vignetteTitles: OpenStats hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OpenStats/inst/doc/OpenStats.R dependencyCount: 126 Package: oposSOM Version: 2.24.0 Depends: R (>= 4.0.0), igraph (>= 1.0.0) Imports: fastICA, tsne, scatterplot3d, pixmap, fdrtool, ape, biomaRt, Biobase, RcppParallel, Rcpp, methods, graph, XML, png, RCurl LinkingTo: RcppParallel, Rcpp License: GPL (>=2) MD5sum: 205b90618691057e82de1a844fb89ce9 NeedsCompilation: yes Title: Comprehensive analysis of transcriptome data Description: This package translates microarray expression data into metadata of reduced dimension. It provides various sample-centered and group-centered visualizations, sample similarity analyses and functional enrichment analyses. The underlying SOM algorithm combines feature clustering, multidimensional scaling and dimension reduction, along with strong visualization capabilities. It enables extraction and description of functional expression modules inherent in the data. biocViews: GeneExpression, DifferentialExpression, GeneSetEnrichment, DataRepresentation, Visualization Author: Henry Loeffler-Wirth , Hoang Thanh Le and Martin Kalcher Maintainer: Henry Loeffler-Wirth URL: http://som.izbi.uni-leipzig.de git_url: https://git.bioconductor.org/packages/oposSOM git_branch: RELEASE_3_20 git_last_commit: 488c7f6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/oposSOM_2.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/oposSOM_2.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/oposSOM_2.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/oposSOM_2.24.0.tgz vignettes: vignettes/oposSOM/inst/doc/Vignette.pdf vignetteTitles: The oposSOM users guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/oposSOM/inst/doc/Vignette.R dependencyCount: 87 Package: oppar Version: 1.34.0 Depends: R (>= 3.3) Imports: Biobase, methods, GSEABase, GSVA Suggests: knitr, rmarkdown, limma, org.Hs.eg.db, GO.db, snow, parallel License: GPL-2 Archs: x64 MD5sum: e37dc8f9b0b4e20e8821273244032fbb NeedsCompilation: yes Title: Outlier profile and pathway analysis in R Description: The R implementation of mCOPA package published by Wang et al. (2012). Oppar provides methods for Cancer Outlier profile Analysis. Although initially developed to detect outlier genes in cancer studies, methods presented in oppar can be used for outlier profile analysis in general. In addition, tools are provided for gene set enrichment and pathway analysis. biocViews: Pathways, GeneSetEnrichment, SystemsBiology, GeneExpression, Software Author: Chenwei Wang [aut], Alperen Taciroglu [aut], Stefan R Maetschke [aut], Colleen C Nelson [aut], Mark Ragan [aut], Melissa Davis [aut], Soroor Hediyeh zadeh [cre], Momeneh Foroutan [ctr] Maintainer: Soroor Hediyeh zadeh VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/oppar git_branch: RELEASE_3_20 git_last_commit: 78093d4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/oppar_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/oppar_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/oppar_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/oppar_1.34.0.tgz vignettes: vignettes/oppar/inst/doc/oppar.html vignetteTitles: OPPAR: Outlier Profile and Pathway Analysis in R hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/oppar/inst/doc/oppar.R dependencyCount: 104 Package: oppti Version: 1.20.0 Depends: R (>= 3.5) Imports: limma, stats, reshape, ggplot2, grDevices, RColorBrewer, pheatmap, knitr, methods, devtools, parallelDist, Suggests: markdown License: MIT MD5sum: 45fd42bff6b3e6b28e0d95e5e9542b9b NeedsCompilation: no Title: Outlier Protein and Phosphosite Target Identifier Description: The aim of oppti is to analyze protein (and phosphosite) expressions to find outlying markers for each sample in the given cohort(s) for the discovery of personalized actionable targets. biocViews: Proteomics, Regression, DifferentialExpression, BiomedicalInformatics, GeneTarget, GeneExpression, Network Author: Abdulkadir Elmas Maintainer: Abdulkadir Elmas URL: https://github.com/Huang-lab/oppti VignetteBuilder: knitr BugReports: https://github.com/Huang-lab/oppti/issues git_url: https://git.bioconductor.org/packages/oppti git_branch: RELEASE_3_20 git_last_commit: 6eb0ad7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/oppti_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/oppti_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/oppti_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/oppti_1.20.0.tgz vignettes: vignettes/oppti/inst/doc/analysis.html vignetteTitles: Outlier Protein and Phosphosite Target Identifier hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/oppti/inst/doc/analysis.R dependencyCount: 125 Package: optimalFlow Version: 1.18.0 Depends: dplyr, optimalFlowData, rlang (>= 0.4.0) Imports: transport, parallel, Rfast, robustbase, dbscan, randomForest, foreach, graphics, doParallel, stats, flowMeans, rgl, ellipse Suggests: knitr, BiocStyle, rmarkdown, magick License: Artistic-2.0 MD5sum: 579f1d7205f12db20a358183f5de3a49 NeedsCompilation: no Title: optimalFlow Description: Optimal-transport techniques applied to supervised flow cytometry gating. biocViews: Software, FlowCytometry, Technology Author: Hristo Inouzhe Maintainer: Hristo Inouzhe VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/optimalFlow git_branch: RELEASE_3_20 git_last_commit: f7e7fb8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/optimalFlow_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/optimalFlow_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/optimalFlow_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/optimalFlow_1.18.0.tgz vignettes: vignettes/optimalFlow/inst/doc/optimalFlow_vignette.html vignetteTitles: optimalFlow: optimal-transport approach to Flow Cytometry analysis hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/optimalFlow/inst/doc/optimalFlow_vignette.R dependencyCount: 97 Package: OPWeight Version: 1.28.0 Depends: R (>= 3.4.0), Imports: graphics, qvalue, MASS, tibble, stats, Suggests: airway, BiocStyle, cowplot, DESeq2, devtools, ggplot2, gridExtra, knitr, Matrix, rmarkdown, scales, testthat License: Artistic-2.0 Archs: x64 MD5sum: 3026e8c32704c0d2e14dfc572cf6c6bf NeedsCompilation: no Title: Optimal p-value weighting with independent information Description: This package perform weighted-pvalue based multiple hypothesis test and provides corresponding information such as ranking probability, weight, significant tests, etc . To conduct this testing procedure, the testing method apply a probabilistic relationship between the test rank and the corresponding test effect size. biocViews: ImmunoOncology, BiomedicalInformatics, MultipleComparison, Regression, RNASeq, SNP Author: Mohamad Hasan [aut, cre], Paul Schliekelman [aut] Maintainer: Mohamad Hasan URL: https://github.com/mshasan/OPWeight VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/OPWeight git_branch: RELEASE_3_20 git_last_commit: 5b1ec32 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OPWeight_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OPWeight_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OPWeight_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OPWeight_1.28.0.tgz vignettes: vignettes/OPWeight/inst/doc/OPWeight.html vignetteTitles: "Introduction to OPWeight" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OPWeight/inst/doc/OPWeight.R dependencyCount: 42 Package: OrderedList Version: 1.78.0 Depends: R (>= 3.6.1), Biobase, twilight Imports: methods License: GPL (>= 2) Archs: x64 MD5sum: a2d2376888bc05bad547774c9777729b NeedsCompilation: no Title: Similarities of Ordered Gene Lists Description: Detection of similarities between ordered lists of genes. Thereby, either simple lists can be compared or gene expression data can be used to deduce the lists. Significance of similarities is evaluated by shuffling lists or by resampling in microarray data, respectively. biocViews: Microarray, DifferentialExpression, MultipleComparison Author: Xinan Yang, Stefanie Scheid, Claudio Lottaz Maintainer: Claudio Lottaz URL: http://compdiag.molgen.mpg.de/software/OrderedList.shtml git_url: https://git.bioconductor.org/packages/OrderedList git_branch: RELEASE_3_20 git_last_commit: 280f3bb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OrderedList_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OrderedList_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OrderedList_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OrderedList_1.78.0.tgz vignettes: vignettes/OrderedList/inst/doc/tr_2006_01.pdf vignetteTitles: Similarities of Ordered Gene Lists hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OrderedList/inst/doc/tr_2006_01.R dependencyCount: 9 Package: ORFhunteR Version: 1.14.0 Depends: Biostrings, rtracklayer, Peptides Imports: Rcpp (>= 1.0.3), BSgenome.Hsapiens.UCSC.hg38, data.table, stringr, randomForest, xfun, stats, utils, parallel, graphics LinkingTo: Rcpp Suggests: knitr, BiocStyle, rmarkdown License: MIT License MD5sum: df49de36ebe05483dddc8d59f998f190 NeedsCompilation: yes Title: Predict open reading frames in nucleotide sequences Description: The ORFhunteR package is a R and C++ library for an automatic determination and annotation of open reading frames (ORF) in a large set of RNA molecules. It efficiently implements the machine learning model based on vectorization of nucleotide sequences and the random forest classification algorithm. The ORFhunteR package consists of a set of functions written in the R language in conjunction with C++. The efficiency of the package was confirmed by the examples of the analysis of RNA molecules from the NCBI RefSeq and Ensembl databases. The package can be used in basic and applied biomedical research related to the study of the transcriptome of normal as well as altered (for example, cancer) human cells. biocViews: Technology, StatisticalMethod, Sequencing, RNASeq, Classification, FeatureExtraction Author: Vasily V. Grinev [aut, cre] (), Mikalai M. Yatskou [aut], Victor V. Skakun [aut], Maryna Chepeleva [aut] (), Petr V. Nazarov [aut] () Maintainer: Vasily V. Grinev VignetteBuilder: knitr BugReports: https://github.com/rfctbio-bsu/ORFhunteR/issues git_url: https://git.bioconductor.org/packages/ORFhunteR git_branch: RELEASE_3_20 git_last_commit: a2cf886 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ORFhunteR_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ORFhunteR_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ORFhunteR_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ORFhunteR_1.14.0.tgz vignettes: vignettes/ORFhunteR/inst/doc/ORFhunteR.html vignetteTitles: The ORFhunteR package: User’s manual hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ORFhunteR/inst/doc/ORFhunteR.R dependencyCount: 73 Package: ORFik Version: 1.26.1 Depends: R (>= 4.1.0), IRanges (>= 2.17.1), GenomicRanges (>= 1.35.1), GenomicAlignments (>= 1.19.0) Imports: AnnotationDbi (>= 1.45.0), Biostrings (>= 2.51.1), biomaRt, biomartr (>= 1.0.7), BiocFileCache, BiocGenerics (>= 0.29.1), BiocParallel (>= 1.19.0), BSgenome, cowplot (>= 1.0.0), data.table (>= 1.11.8), DESeq2 (>= 1.24.0), fst (>= 0.9.2), GenomeInfoDb (>= 1.15.5), GenomicFeatures (>= 1.31.10), ggplot2 (>= 2.2.1), gridExtra (>= 2.3), httr (>= 1.3.0), jsonlite, methods (>= 3.6.0), R.utils, Rcpp (>= 1.0.0), Rsamtools (>= 1.35.0), rtracklayer (>= 1.43.0), stats, SummarizedExperiment (>= 1.14.0), S4Vectors (>= 0.21.3), tools, txdbmaker, utils, XML, xml2 (>= 1.2.0), withr LinkingTo: Rcpp Suggests: testthat, rmarkdown, knitr, BiocStyle, BSgenome.Hsapiens.UCSC.hg19 License: MIT + file LICENSE MD5sum: 90745b1ee1b37390b9223313c080d387 NeedsCompilation: yes Title: Open Reading Frames in Genomics Description: R package for analysis of transcript and translation features through manipulation of sequence data and NGS data like Ribo-Seq, RNA-Seq, TCP-Seq and CAGE. It is generalized in the sense that any transcript region can be analysed, as the name hints to it was made with investigation of ribosomal patterns over Open Reading Frames (ORFs) as it's primary use case. ORFik is extremely fast through use of C++, data.table and GenomicRanges. Package allows to reassign starts of the transcripts with the use of CAGE-Seq data, automatic shifting of RiboSeq reads, finding of Open Reading Frames for whole genomes and much more. biocViews: ImmunoOncology, Software, Sequencing, RiboSeq, RNASeq, FunctionalGenomics, Coverage, Alignment, DataImport Author: Haakon Tjeldnes [aut, cre, dtc], Kornel Labun [aut, cph], Michal Swirski [ctb], Katarzyna Chyzynska [ctb, dtc], Yamila Torres Cleuren [ctb, ths], Eivind Valen [ths, fnd] Maintainer: Haakon Tjeldnes URL: https://github.com/Roleren/ORFik VignetteBuilder: knitr BugReports: https://github.com/Roleren/ORFik/issues git_url: https://git.bioconductor.org/packages/ORFik git_branch: RELEASE_3_20 git_last_commit: 92735a3 git_last_commit_date: 2024-12-13 Date/Publication: 2024-12-16 source.ver: src/contrib/ORFik_1.26.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/ORFik_1.26.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ORFik_1.26.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ORFik_1.26.1.tgz vignettes: vignettes/ORFik/inst/doc/Annotation_Alignment.html, vignettes/ORFik/inst/doc/Importing_Data.html, vignettes/ORFik/inst/doc/ORFikExperiment.html, vignettes/ORFik/inst/doc/ORFikOverview.html, vignettes/ORFik/inst/doc/Ribo-seq_pipeline.html, vignettes/ORFik/inst/doc/Working_with_transcripts.html vignetteTitles: Annotation & Alignment, Importing data, Data management, ORFik Overview, Ribo-seq pipeline, Working with transcripts hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ORFik/inst/doc/Annotation_Alignment.R, vignettes/ORFik/inst/doc/Importing_Data.R, vignettes/ORFik/inst/doc/ORFikExperiment.R, vignettes/ORFik/inst/doc/ORFikOverview.R, vignettes/ORFik/inst/doc/Ribo-seq_pipeline.R, vignettes/ORFik/inst/doc/Working_with_transcripts.R dependsOnMe: RiboCrypt importsMe: TFHAZ dependencyCount: 139 Package: OrganismDbi Version: 1.48.0 Depends: R (>= 2.14.0), BiocGenerics (>= 0.15.10), AnnotationDbi (>= 1.33.15), GenomicFeatures (>= 1.39.4) Imports: methods, utils, stats, DBI, BiocManager, Biobase, graph, RBGL, S4Vectors, IRanges, GenomicRanges (>= 1.31.13), txdbmaker Suggests: Homo.sapiens, Rattus.norvegicus, BSgenome.Hsapiens.UCSC.hg19, AnnotationHub, FDb.UCSC.tRNAs, mirbase.db, rtracklayer, biomaRt, RUnit, RMariaDB, BiocStyle, knitr License: Artistic-2.0 MD5sum: b9af4a5f4ce821aa7b62511b9c28f08f NeedsCompilation: no Title: Software to enable the smooth interfacing of different database packages Description: The package enables a simple unified interface to several annotation packages each of which has its own schema by taking advantage of the fact that each of these packages implements a select methods. biocViews: Annotation, Infrastructure Author: Marc Carlson [aut], Martin Morgan [aut], Valerie Obenchain [aut], Aliyu Atiku Mustapha [ctb] (Converted 'OrganismDbi' vignette from Sweave to RMarkdown / HTML.), Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/OrganismDbi git_branch: RELEASE_3_20 git_last_commit: 0a81568 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OrganismDbi_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OrganismDbi_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OrganismDbi_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OrganismDbi_1.48.0.tgz vignettes: vignettes/OrganismDbi/inst/doc/OrganismDbi.html vignetteTitles: OrganismDbi: A meta framework for Annotation Packages hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OrganismDbi/inst/doc/OrganismDbi.R dependsOnMe: Homo.sapiens, Mus.musculus, Rattus.norvegicus importsMe: AnnotationHubData, epivizrData, ggbio, uncoverappLib suggestsMe: ChIPpeakAnno, epivizrStandalone dependencyCount: 105 Package: Organism.dplyr Version: 1.34.0 Depends: R (>= 3.4), dplyr (>= 0.7.0), AnnotationFilter (>= 1.1.3) Imports: RSQLite, S4Vectors, GenomeInfoDb, IRanges, GenomicRanges, GenomicFeatures, AnnotationDbi, rlang, methods, tools, utils, BiocFileCache, DBI, dbplyr, tibble Suggests: org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg38.knownGene, org.Mm.eg.db, TxDb.Mmusculus.UCSC.mm10.ensGene, testthat, knitr, rmarkdown, magick, BiocStyle, ggplot2 License: Artistic-2.0 MD5sum: 8a1d2e6e78f6224a4b84509b8f660d8b NeedsCompilation: no Title: dplyr-based Access to Bioconductor Annotation Resources Description: This package provides an alternative interface to Bioconductor 'annotation' resources, in particular the gene identifier mapping functionality of the 'org' packages (e.g., org.Hs.eg.db) and the genome coordinate functionality of the 'TxDb' packages (e.g., TxDb.Hsapiens.UCSC.hg38.knownGene). biocViews: Annotation, Sequencing, GenomeAnnotation Author: Martin Morgan [aut, cre], Daniel van Twisk [ctb], Yubo Cheng [aut] Maintainer: Martin Morgan VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/Organism.dplyr/issues git_url: https://git.bioconductor.org/packages/Organism.dplyr git_branch: RELEASE_3_20 git_last_commit: ebacd19 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Organism.dplyr_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Organism.dplyr_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Organism.dplyr_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Organism.dplyr_1.34.0.tgz vignettes: vignettes/Organism.dplyr/inst/doc/Organism.dplyr.html vignetteTitles: Organism.dplyr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Organism.dplyr/inst/doc/Organism.dplyr.R dependsOnMe: annotation importsMe: Ularcirc dependencyCount: 95 Package: orthogene Version: 1.12.0 Depends: R (>= 4.1) Imports: dplyr, methods, stats, utils, Matrix, jsonlite, homologene, gprofiler2, babelgene, data.table, parallel, ggplot2, ggpubr, patchwork, DelayedArray, grr, repmis, ggtree, tools Suggests: rworkflows, remotes, knitr, BiocStyle, markdown, rmarkdown, testthat (>= 3.0.0), piggyback, magick, GenomeInfoDbData, ape, phytools, rphylopic (>= 1.0.0), TreeTools, ggimage, OmaDB License: GPL-3 Archs: x64 MD5sum: bab026b422920faf5d5263fa2dfa3c51 NeedsCompilation: no Title: Interspecies gene mapping Description: `orthogene` is an R package for easy mapping of orthologous genes across hundreds of species. It pulls up-to-date gene ortholog mappings across **700+ organisms**. It also provides various utility functions to aggregate/expand common objects (e.g. data.frames, gene expression matrices, lists) using **1:1**, **many:1**, **1:many** or **many:many** gene mappings, both within- and between-species. biocViews: Genetics, ComparativeGenomics, Preprocessing, Phylogenetics, Transcriptomics, GeneExpression Author: Brian Schilder [cre] () Maintainer: Brian Schilder URL: https://github.com/neurogenomics/orthogene VignetteBuilder: knitr BugReports: https://github.com/neurogenomics/orthogene/issues git_url: https://git.bioconductor.org/packages/orthogene git_branch: RELEASE_3_20 git_last_commit: d722f34 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/orthogene_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/orthogene_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/orthogene_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/orthogene_1.12.0.tgz vignettes: vignettes/orthogene/inst/doc/docker.html, vignettes/orthogene/inst/doc/infer_species.html, vignettes/orthogene/inst/doc/orthogene.html vignetteTitles: docker, Infer species, orthogene hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/orthogene/inst/doc/docker.R, vignettes/orthogene/inst/doc/infer_species.R, vignettes/orthogene/inst/doc/orthogene.R importsMe: EWCE dependencyCount: 153 Package: orthos Version: 1.4.0 Depends: R (>= 4.3), SummarizedExperiment Imports: AnnotationHub, basilisk, BiocParallel, colorspace, cowplot, DelayedArray, dplyr, ExperimentHub, ggplot2, ggpubr, ggrepel, ggsci, grDevices, grid, HDF5Array, keras, methods, orthosData, parallel, plyr, reticulate, rlang, S4Vectors, stats, tensorflow, tidyr Suggests: BiocManager, BiocStyle, htmltools, knitr, rmarkdown, testthat (>= 3.0.0) License: MIT + file LICENSE Archs: x64 MD5sum: c785f8e2372aaad8f3f9b418d152ddb7 NeedsCompilation: no Title: `orthos` is an R package for variance decomposition using conditional variational auto-encoders Description: `orthos` decomposes RNA-seq contrasts, for example obtained from a gene knock-out or compound treatment experiment, into unspecific and experiment-specific components. Original and decomposed contrasts can be efficiently queried against a large database of contrasts (derived from ARCHS4, https://maayanlab.cloud/archs4/) to identify similar experiments. `orthos` furthermore provides plotting functions to visualize the results of such a search for similar contrasts. biocViews: RNASeq, DifferentialExpression, GeneExpression Author: Panagiotis Papasaikas [aut, cre] (), Charlotte Soneson [aut] (), Michael Stadler [aut] (), Friedrich Miescher Institute for Biomedical Research [cph] Maintainer: Panagiotis Papasaikas VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/orthos git_branch: RELEASE_3_20 git_last_commit: 65e884d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/orthos_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/orthos_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/orthos_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/orthos_1.4.0.tgz vignettes: vignettes/orthos/inst/doc/orthosIntro.html vignetteTitles: 1. Introduction to orthos hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/orthos/inst/doc/orthosIntro.R dependencyCount: 156 Package: OSAT Version: 1.54.0 Depends: methods,stats Suggests: xtable, Biobase License: Artistic-2.0 MD5sum: a074e20f248c79235e4780281c50e59c NeedsCompilation: no Title: OSAT: Optimal Sample Assignment Tool Description: A sizable genomics study such as microarray often involves the use of multiple batches (groups) of experiment due to practical complication. To minimize batch effects, a careful experiment design should ensure the even distribution of biological groups and confounding factors across batches. OSAT (Optimal Sample Assignment Tool) is developed to facilitate the allocation of collected samples to different batches. With minimum steps, it produces setup that optimizes the even distribution of samples in groups of biological interest into different batches, reducing the confounding or correlation between batches and the biological variables of interest. It can also optimize the even distribution of confounding factors across batches. Our tool can handle challenging instances where incomplete and unbalanced sample collections are involved as well as ideal balanced RCBD. OSAT provides a number of predefined layout for some of the most commonly used genomics platform. Related paper can be find at http://www.biomedcentral.com/1471-2164/13/689 . biocViews: DataRepresentation, Visualization, ExperimentalDesign, QualityControl Author: Li Yan Maintainer: Li Yan URL: http://www.biomedcentral.com/1471-2164/13/689 git_url: https://git.bioconductor.org/packages/OSAT git_branch: RELEASE_3_20 git_last_commit: 6ac1bfd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OSAT_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OSAT_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OSAT_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OSAT_1.54.0.tgz vignettes: vignettes/OSAT/inst/doc/OSAT.pdf vignetteTitles: An introduction to OSAT hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OSAT/inst/doc/OSAT.R suggestsMe: designit dependencyCount: 2 Package: Oscope Version: 1.36.0 Depends: EBSeq, cluster, testthat, BiocParallel Suggests: BiocStyle License: Artistic-2.0 MD5sum: ee7801c0823b7ee339d43affc78c4244 NeedsCompilation: no Title: Oscope - A statistical pipeline for identifying oscillatory genes in unsynchronized single cell RNA-seq Description: Oscope is a statistical pipeline developed to identifying and recovering the base cycle profiles of oscillating genes in an unsynchronized single cell RNA-seq experiment. The Oscope pipeline includes three modules: a sine model module to search for candidate oscillator pairs; a K-medoids clustering module to cluster candidate oscillators into groups; and an extended nearest insertion module to recover the base cycle order for each oscillator group. biocViews: ImmunoOncology, StatisticalMethod,RNASeq, Sequencing, GeneExpression Author: Ning Leng Maintainer: Ning Leng git_url: https://git.bioconductor.org/packages/Oscope git_branch: RELEASE_3_20 git_last_commit: ff659ec git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Oscope_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Oscope_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Oscope_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Oscope_1.36.0.tgz vignettes: vignettes/Oscope/inst/doc/Oscope_vignette.pdf vignetteTitles: Oscope_vigette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Oscope/inst/doc/Oscope_vignette.R importsMe: scDDboost dependencyCount: 53 Package: OTUbase Version: 1.56.0 Depends: R (>= 2.9.0), methods, S4Vectors, IRanges, ShortRead (>= 1.23.15), Biobase, vegan Imports: Biostrings License: Artistic-2.0 MD5sum: c491f0ebead69ba34f79d6e24674683b NeedsCompilation: no Title: Provides structure and functions for the analysis of OTU data Description: Provides a platform for Operational Taxonomic Unit based analysis biocViews: Sequencing, DataImport Author: Daniel Beck, Matt Settles, and James A. Foster Maintainer: Daniel Beck git_url: https://git.bioconductor.org/packages/OTUbase git_branch: RELEASE_3_20 git_last_commit: 36f950e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OTUbase_1.56.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OTUbase_1.56.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OTUbase_1.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OTUbase_1.56.0.tgz vignettes: vignettes/OTUbase/inst/doc/Introduction_to_OTUbase.pdf vignetteTitles: An introduction to OTUbase hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OTUbase/inst/doc/Introduction_to_OTUbase.R dependencyCount: 69 Package: OUTRIDER Version: 1.24.0 Depends: R (>= 3.6), BiocParallel, GenomicFeatures, SummarizedExperiment, data.table, methods Imports: BBmisc, BiocGenerics, DESeq2 (>= 1.16.1), generics, GenomicRanges, ggplot2, ggrepel, grDevices, heatmaply, pheatmap, graphics, IRanges, matrixStats, plotly, plyr, pcaMethods, PRROC, RColorBrewer, reshape2, S4Vectors, scales, splines, stats, txdbmaker, utils LinkingTo: Rcpp, RcppArmadillo Suggests: testthat, knitr, rmarkdown, BiocStyle, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, RMariaDB, AnnotationDbi, beeswarm, covr, GenomeInfoDb, ggbio, biovizBase License: MIT + file LICENSE MD5sum: ecb42761f893c9a73a6a0195fa4ff84f NeedsCompilation: yes Title: OUTRIDER - OUTlier in RNA-Seq fInDER Description: Identification of aberrant gene expression in RNA-seq data. Read count expectations are modeled by an autoencoder to control for confounders in the data. Given these expectations, the RNA-seq read counts are assumed to follow a negative binomial distribution with a gene-specific dispersion. Outliers are then identified as read counts that significantly deviate from this distribution. Furthermore, OUTRIDER provides useful plotting functions to analyze and visualize the results. biocViews: ImmunoOncology, RNASeq, Transcriptomics, Alignment, Sequencing, GeneExpression, Genetics Author: Felix Brechtmann [aut], Christian Mertes [aut, cre] (), Agne Matuseviciute [aut], Michaela Fee Müller [ctb], Vicente Yepez [aut], Julien Gagneur [aut] Maintainer: Christian Mertes URL: https://github.com/gagneurlab/OUTRIDER VignetteBuilder: knitr BugReports: https://github.com/gagneurlab/OUTRIDER/issues git_url: https://git.bioconductor.org/packages/OUTRIDER git_branch: RELEASE_3_20 git_last_commit: cf28bbe git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OUTRIDER_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OUTRIDER_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OUTRIDER_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OUTRIDER_1.24.0.tgz vignettes: vignettes/OUTRIDER/inst/doc/OUTRIDER.pdf vignetteTitles: OUTRIDER: OUTlier in RNA-seq fInDER hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/OUTRIDER/inst/doc/OUTRIDER.R importsMe: FRASER dependencyCount: 171 Package: OutSplice Version: 1.6.0 Depends: R(>= 4.3) Imports: AnnotationDbi (>= 1.60.0), GenomicRanges (>= 1.49.0), GenomicFeatures (>= 1.50.2), IRanges (>= 2.32.0), org.Hs.eg.db (>= 3.16.0), TxDb.Hsapiens.UCSC.hg19.knownGene (>= 3.2.2), TxDb.Hsapiens.UCSC.hg38.knownGene (>= 3.16.0), S4Vectors (>= 0.36.0) Suggests: BiocStyle, knitr, rmarkdown, testthat License: GPL-2 MD5sum: 6a74e00206c137f0e08703cc06a114fc NeedsCompilation: no Title: Comparison of Splicing Events between Tumor and Normal Samples Description: An easy to use tool that can compare splicing events in tumor and normal tissue samples using either a user generated matrix, or data from The Cancer Genome Atlas (TCGA). This package generates a matrix of splicing outliers that are significantly over or underexpressed in tumors samples compared to normal denoted by chromosome location. The package also will calculate the splicing burden in each tumor and characterize the types of splicing events that occur. biocViews: AlternativeSplicing, DifferentialExpression, DifferentialSplicing, GeneExpression, RNASeq, Software, VariantAnnotation Author: Joseph Bendik [aut] (), Sandhya Kalavacherla [aut] (), Michael Considine [aut] (), Bahman Afsari [aut] (), Michael F. Ochs [aut], Joseph Califano [aut] (), Daria A. Gaykalova [aut] (), Elana Fertig [aut] (), Theresa Guo [cre, aut] () Maintainer: Theresa Guo URL: https://github.com/GuoLabUCSD/OutSplice VignetteBuilder: knitr BugReports: https://github.com/GuoLabUCSD/OutSplice/issues git_url: https://git.bioconductor.org/packages/OutSplice git_branch: RELEASE_3_20 git_last_commit: 623e9b7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OutSplice_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OutSplice_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OutSplice_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OutSplice_1.6.0.tgz vignettes: vignettes/OutSplice/inst/doc/OutSplice.html vignetteTitles: Find Splicing Outliers in Tumor Samples with OutSplice hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OutSplice/inst/doc/OutSplice.R dependencyCount: 80 Package: OVESEG Version: 1.22.0 Depends: R (>= 3.6) Imports: stats, utils, methods, BiocParallel, SummarizedExperiment, limma, fdrtool, Rcpp LinkingTo: Rcpp Suggests: knitr, rmarkdown, BiocStyle, testthat, ggplot2, gridExtra, grid, reshape2, scales License: GPL-2 MD5sum: b22162ecd69e07b60941994010ca08d0 NeedsCompilation: yes Title: OVESEG-test to detect tissue/cell-specific markers Description: An R package for multiple-group comparison to detect tissue/cell-specific marker genes among subtypes. It provides functions to compute OVESEG-test statistics, derive component weights in the mixture null distribution model and estimate p-values from weightedly aggregated permutations. Obtained posterior probabilities of component null hypotheses can also portrait all kinds of upregulation patterns among subtypes. biocViews: Software, MultipleComparison, CellBiology, GeneExpression Author: Lulu Chen Maintainer: Lulu Chen SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/Lululuella/OVESEG git_url: https://git.bioconductor.org/packages/OVESEG git_branch: RELEASE_3_20 git_last_commit: 29fc80f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/OVESEG_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/OVESEG_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/OVESEG_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/OVESEG_1.22.0.tgz vignettes: vignettes/OVESEG/inst/doc/OVESEG.html vignetteTitles: OVESEG User Manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/OVESEG/inst/doc/OVESEG.R dependencyCount: 50 Package: PAA Version: 1.40.0 Depends: R (>= 3.2.0), Rcpp (>= 0.11.6) Imports: e1071, gplots, gtools, limma, MASS, mRMRe, randomForest, ROCR, sva LinkingTo: Rcpp Suggests: BiocStyle, RUnit, BiocGenerics, vsn License: BSD_3_clause + file LICENSE MD5sum: 730153dfb6e7a37f522a59102b5a9f45 NeedsCompilation: yes Title: PAA (Protein Array Analyzer) Description: PAA imports single color (protein) microarray data that has been saved in gpr file format - esp. ProtoArray data. After preprocessing (background correction, batch filtering, normalization) univariate feature preselection is performed (e.g., using the "minimum M statistic" approach - hereinafter referred to as "mMs"). Subsequently, a multivariate feature selection is conducted to discover biomarker candidates. Therefore, either a frequency-based backwards elimination aproach or ensemble feature selection can be used. PAA provides a complete toolbox of analysis tools including several different plots for results examination and evaluation. biocViews: Classification, Microarray, OneChannel, Proteomics Author: Michael Turewicz [aut, cre], Martin Eisenacher [ctb, cre] Maintainer: Michael Turewicz , Martin Eisenacher URL: http://www.ruhr-uni-bochum.de/mpc/software/PAA/ SystemRequirements: C++ software package Random Jungle git_url: https://git.bioconductor.org/packages/PAA git_branch: RELEASE_3_20 git_last_commit: fe75f94 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PAA_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PAA_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PAA_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PAA_1.40.0.tgz vignettes: vignettes/PAA/inst/doc/PAA_1.7.1.pdf, vignettes/PAA/inst/doc/PAA_vignette.pdf vignetteTitles: PAA_1.7.1.pdf, PAA tutorial hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/PAA/inst/doc/PAA_vignette.R dependencyCount: 87 Package: packFinder Version: 1.18.0 Depends: R (>= 4.1.0) Imports: Biostrings, GenomicRanges, kmer, ape, methods, IRanges, S4Vectors Suggests: biomartr, knitr, rmarkdown, testthat, dendextend, biocViews, BiocCheck, BiocStyle License: GPL-2 Archs: x64 MD5sum: e15388b9f159eaf6ca8e36bd95474ce5 NeedsCompilation: no Title: de novo Annotation of Pack-TYPE Transposable Elements Description: Algorithm and tools for in silico pack-TYPE transposon discovery. Filters a given genome for properties unique to DNA transposons and provides tools for the investigation of returned matches. Sequences are input in DNAString format, and ranges are returned as a dataframe (in the format returned by as.dataframe(GRanges)). biocViews: Genetics, SequenceMatching, Annotation Author: Jack Gisby [aut, cre] (), Marco Catoni [aut] () Maintainer: Jack Gisby URL: https://github.com/jackgisby/packFinder VignetteBuilder: knitr BugReports: https://github.com/jackgisby/packFinder/issues git_url: https://git.bioconductor.org/packages/packFinder git_branch: RELEASE_3_20 git_last_commit: c9a31eb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/packFinder_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/packFinder_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/packFinder_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/packFinder_1.18.0.tgz vignettes: vignettes/packFinder/inst/doc/packFinder.html vignetteTitles: packFinder hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/packFinder/inst/doc/packFinder.R dependencyCount: 35 Package: padma Version: 1.16.0 Depends: R (>= 4.1.0), SummarizedExperiment, S4Vectors Imports: FactoMineR, MultiAssayExperiment, methods, graphics, stats, utils Suggests: testthat, BiocStyle, knitr, rmarkdown, KEGGREST, missMDA, ggplot2, ggrepel, car, cowplot, reshape2 License: GPL (>=3) MD5sum: 75e80f0887d9aa13f4c9ce5c76b034f0 NeedsCompilation: no Title: Individualized Multi-Omic Pathway Deviation Scores Using Multiple Factor Analysis Description: Use multiple factor analysis to calculate individualized pathway-centric scores of deviation with respect to the sampled population based on multi-omic assays (e.g., RNA-seq, copy number alterations, methylation, etc). Graphical and numerical outputs are provided to identify highly aberrant individuals for a particular pathway of interest, as well as the gene and omics drivers of aberrant multi-omic profiles. biocViews: Software, StatisticalMethod, PrincipalComponent, GeneExpression, Pathways, RNASeq, BioCarta, MethylSeq Author: Andrea Rau [cre, aut] (), Regina Manansala [aut], Florence Jaffrézic [ctb], Denis Laloë [aut], Paul Auer [aut] Maintainer: Andrea Rau URL: https://github.com/andreamrau/padma VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/padma git_branch: RELEASE_3_20 git_last_commit: 0871699 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/padma_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/padma_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/padma_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/padma_1.16.0.tgz vignettes: vignettes/padma/inst/doc/padma.html vignetteTitles: padma package:Quick-start guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/padma/inst/doc/padma.R dependencyCount: 133 Package: PADOG Version: 1.48.0 Depends: R (>= 3.0.0), KEGGdzPathwaysGEO, methods,Biobase Imports: limma, AnnotationDbi, GSA, foreach, doRNG, hgu133plus2.db, hgu133a.db, KEGGREST, nlme Suggests: doParallel, parallel License: GPL (>= 2) Archs: x64 MD5sum: 9ef04a05c70159caaa3f1c37db9fb786 NeedsCompilation: no Title: Pathway Analysis with Down-weighting of Overlapping Genes (PADOG) Description: This package implements a general purpose gene set analysis method called PADOG that downplays the importance of genes that apear often accross the sets of genes to be analyzed. The package provides also a benchmark for gene set analysis methods in terms of sensitivity and ranking using 24 public datasets from KEGGdzPathwaysGEO package. biocViews: Microarray, OneChannel, TwoChannel Author: Adi Laurentiu Tarca ; Zhonghui Xu Maintainer: Adi L. Tarca git_url: https://git.bioconductor.org/packages/PADOG git_branch: RELEASE_3_20 git_last_commit: 812a037 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PADOG_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PADOG_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PADOG_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PADOG_1.48.0.tgz vignettes: vignettes/PADOG/inst/doc/PADOG.pdf vignetteTitles: PADOG hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PADOG/inst/doc/PADOG.R dependsOnMe: BLMA importsMe: EGSEA suggestsMe: ReporterScore dependencyCount: 62 Package: pageRank Version: 1.16.0 Depends: R (>= 4.0) Imports: GenomicRanges, igraph, motifmatchr, stats, utils, grDevices, graphics Suggests: bcellViper, BSgenome.Hsapiens.UCSC.hg19, JASPAR2018, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, TFBSTools, GenomicFeatures, annotate License: GPL-2 Archs: x64 MD5sum: fc6281ec2506531166320bac8deaf9f4 NeedsCompilation: no Title: Temporal and Multiplex PageRank for Gene Regulatory Network Analysis Description: Implemented temporal PageRank analysis as defined by Rozenshtein and Gionis. Implemented multiplex PageRank as defined by Halu et al. Applied temporal and multiplex PageRank in gene regulatory network analysis. biocViews: StatisticalMethod, GeneTarget, Network Author: Hongxu Ding [aut, cre, ctb, cph] Maintainer: Hongxu Ding URL: https://github.com/hd2326/pageRank BugReports: https://github.com/hd2326/pageRank/issues git_url: https://git.bioconductor.org/packages/pageRank git_branch: RELEASE_3_20 git_last_commit: d0b5152 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pageRank_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pageRank_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pageRank_1.16.0.tgz vignettes: vignettes/pageRank/inst/doc/introduction.pdf vignetteTitles: introduction.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pageRank/inst/doc/introduction.R dependencyCount: 129 Package: PAIRADISE Version: 1.22.0 Depends: R (>= 3.6), nloptr Imports: SummarizedExperiment, S4Vectors, stats, methods, abind, BiocParallel Suggests: testthat, knitr, rmarkdown, BiocStyle License: MIT + file LICENSE MD5sum: 618c12ea22bbeb79dc178a7abc5d7f46 NeedsCompilation: no Title: PAIRADISE: Paired analysis of differential isoform expression Description: This package implements the PAIRADISE procedure for detecting differential isoform expression between matched replicates in paired RNA-Seq data. biocViews: RNASeq, DifferentialExpression, AlternativeSplicing, StatisticalMethod, ImmunoOncology Author: Levon Demirdjian, Ying Nian Wu, Yi Xing Maintainer: Qiang Hu , Levon Demirdjian VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/PAIRADISE git_branch: RELEASE_3_20 git_last_commit: a0de29c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PAIRADISE_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PAIRADISE_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PAIRADISE_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PAIRADISE_1.22.0.tgz vignettes: vignettes/PAIRADISE/inst/doc/pairadise.html vignetteTitles: PAIRADISE hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/PAIRADISE/inst/doc/pairadise.R dependencyCount: 47 Package: paircompviz Version: 1.44.0 Depends: R (>= 2.10), Rgraphviz Imports: Rgraphviz Suggests: multcomp, reshape, rpart, plyr, xtable License: GPL (>=3.0) MD5sum: 658cb578043ab33e3a9174aac376f469 NeedsCompilation: no Title: Multiple comparison test visualization Description: This package provides visualization of the results from the multiple (i.e. pairwise) comparison tests such as pairwise.t.test, pairwise.prop.test or pairwise.wilcox.test. The groups being compared are visualized as nodes in Hasse diagram. Such approach enables very clear and vivid depiction of which group is significantly greater than which others, especially if comparing a large number of groups. biocViews: GraphAndNetwork Author: Michal Burda Maintainer: Michal Burda git_url: https://git.bioconductor.org/packages/paircompviz git_branch: RELEASE_3_20 git_last_commit: 9ab6c41 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/paircompviz_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/paircompviz_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/paircompviz_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/paircompviz_1.44.0.tgz vignettes: vignettes/paircompviz/inst/doc/vignette.pdf vignetteTitles: Using paircompviz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/paircompviz/inst/doc/vignette.R dependencyCount: 10 Package: pairedGSEA Version: 1.6.0 Depends: R (>= 4.3.0) Imports: DESeq2, DEXSeq, limma, fgsea, sva, SummarizedExperiment, S4Vectors, BiocParallel, ggplot2, aggregation, stats, utils, methods Suggests: writexl, readxl, readr, rhdf5, msigdbr, plotly, testthat (>= 3.0.0), knitr, rmarkdown, covr, BiocStyle License: MIT + file LICENSE MD5sum: d182fc70ccc15823d971e759d93a8ad9 NeedsCompilation: no Title: Paired DGE and DGS analysis for gene set enrichment analysis Description: pairedGSEA makes it simple to run a paired Differential Gene Expression (DGE) and Differencital Gene Splicing (DGS) analysis. The package allows you to store intermediate results for further investiation, if desired. pairedGSEA comes with a wrapper function for running an Over-Representation Analysis (ORA) and functionalities for plotting the results. biocViews: DifferentialExpression, AlternativeSplicing, DifferentialSplicing, GeneExpression, ImmunoOncology, GeneSetEnrichment, Pathways, RNASeq, Software, Transcription, Author: Søren Helweg Dam [cre, aut] (), Lars Rønn Olsen [aut] (), Kristoffer Vitting-Seerup [aut] () Maintainer: Søren Helweg Dam URL: https://github.com/shdam/pairedGSEA VignetteBuilder: knitr BugReports: https://github.com/shdam/pairedGSEA/issues git_url: https://git.bioconductor.org/packages/pairedGSEA git_branch: RELEASE_3_20 git_last_commit: 978bae6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pairedGSEA_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pairedGSEA_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pairedGSEA_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pairedGSEA_1.6.0.tgz vignettes: vignettes/pairedGSEA/inst/doc/User-Guide.html vignetteTitles: User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/pairedGSEA/inst/doc/User-Guide.R dependencyCount: 127 Package: pairkat Version: 1.12.0 Depends: R (>= 4.1) Imports: SummarizedExperiment, KEGGREST, igraph, data.table, methods, stats, magrittr, CompQuadForm, tibble Suggests: rmarkdown, knitr, BiocStyle, dplyr License: GPL-3 MD5sum: 6ab8d367b12423c055cb38d1990187e9 NeedsCompilation: no Title: PaIRKAT Description: PaIRKAT is model framework for assessing statistical relationships between networks of metabolites (pathways) and an outcome of interest (phenotype). PaIRKAT queries the KEGG database to determine interactions between metabolites from which network connectivity is constructed. This model framework improves testing power on high dimensional data by including graph topography in the kernel machine regression setting. Studies on high dimensional data can struggle to include the complex relationships between variables. The semi-parametric kernel machine regression model is a powerful tool for capturing these types of relationships. They provide a framework for testing for relationships between outcomes of interest and high dimensional data such as metabolomic, genomic, or proteomic pathways. PaIRKAT uses known biological connections between high dimensional variables by representing them as edges of ‘graphs’ or ‘networks.’ It is common for nodes (e.g. metabolites) to be disconnected from all others within the graph, which leads to meaningful decreases in testing power whether or not the graph information is included. We include a graph regularization or ‘smoothing’ approach for managing this issue. biocViews: Software, Metabolomics, KEGG, Pathways, Network, GraphAndNetwork, Regression Author: Charlie Carpenter [aut], Cameron Severn [aut], Max McGrath [cre, aut] Maintainer: Max McGrath VignetteBuilder: knitr BugReports: https://github.com/Ghoshlab/pairkat/issues git_url: https://git.bioconductor.org/packages/pairkat git_branch: RELEASE_3_20 git_last_commit: 09af9bf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/pairkat_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pairkat_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pairkat_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pairkat_1.12.0.tgz vignettes: vignettes/pairkat/inst/doc/using-pairkat.html vignetteTitles: using-pairkat hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pairkat/inst/doc/using-pairkat.R dependencyCount: 54 Package: pandaR Version: 1.38.0 Depends: R (>= 3.0.0), methods, Biobase, BiocGenerics, Imports: matrixStats, igraph, ggplot2, grid, reshape, plyr, RUnit, hexbin Suggests: knitr, rmarkdown License: GPL-2 MD5sum: 40aa0b375f4120aa905b319a6197cd29 NeedsCompilation: no Title: PANDA Algorithm Description: Runs PANDA, an algorithm for discovering novel network structure by combining information from multiple complementary data sources. biocViews: StatisticalMethod, GraphAndNetwork, Microarray, GeneRegulation, NetworkInference, GeneExpression, Transcription, Network Author: Dan Schlauch, Joseph N. Paulson, Albert Young, John Quackenbush, Kimberly Glass Maintainer: Joseph N. Paulson , Dan Schlauch VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/pandaR git_branch: RELEASE_3_20 git_last_commit: 288b708 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pandaR_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pandaR_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pandaR_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pandaR_1.38.0.tgz vignettes: vignettes/pandaR/inst/doc/pandaR.html vignetteTitles: pandaR Package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pandaR/inst/doc/pandaR.R dependsOnMe: netZooR dependencyCount: 45 Package: panelcn.mops Version: 1.28.0 Depends: R (>= 3.5.0), cn.mops, methods, utils, stats, graphics Imports: GenomicRanges, Rsamtools, IRanges, S4Vectors, GenomeInfoDb, grDevices Suggests: knitr, rmarkdown, RUnit, BiocGenerics License: LGPL (>= 2.0) MD5sum: 1425ba75b76fd0a303300cf90d14e5d0 NeedsCompilation: no Title: CNV detection tool for targeted NGS panel data Description: CNV detection tool for targeted NGS panel data. Extension of the cn.mops package. biocViews: Sequencing, CopyNumberVariation, CellBiology, GenomicVariation, VariantDetection, Genetics Author: Verena Haunschmid [aut], Gundula Povysil [aut, cre] Maintainer: Gundula Povysil VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/panelcn.mops git_branch: RELEASE_3_20 git_last_commit: 55cf3e9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/panelcn.mops_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/panelcn.mops_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/panelcn.mops_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/panelcn.mops_1.28.0.tgz vignettes: vignettes/panelcn.mops/inst/doc/panelcn.mops.pdf vignetteTitles: panelcn.mops: Manual for the R package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/panelcn.mops/inst/doc/panelcn.mops.R suggestsMe: CopyNumberPlots dependencyCount: 41 Package: PanomiR Version: 1.10.0 Depends: R (>= 4.2.0) Imports: clusterProfiler, dplyr, forcats, GSEABase, igraph, limma, metap, org.Hs.eg.db, parallel, preprocessCore, RColorBrewer, rlang, tibble, withr, utils Suggests: testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown License: MIT + file LICENSE MD5sum: 96e2c9bf2bd7d1d628a360579b66a77d NeedsCompilation: no Title: Detection of miRNAs that regulate interacting groups of pathways Description: PanomiR is a package to detect miRNAs that target groups of pathways from gene expression data. This package provides functionality for generating pathway activity profiles, determining differentially activated pathways between user-specified conditions, determining clusters of pathways via the PCxN package, and generating miRNAs targeting clusters of pathways. These function can be used separately or sequentially to analyze RNA-Seq data. biocViews: GeneExpression, GeneSetEnrichment, GeneTarget, miRNA, Pathways Author: Pourya Naderi [aut, cre], Yue Yang (Alan) Teo [aut], Ilya Sytchev [aut], Winston Hide [aut] Maintainer: Pourya Naderi URL: https://github.com/pouryany/PanomiR VignetteBuilder: knitr BugReports: https://github.com/pouryany/PanomiR/issues git_url: https://git.bioconductor.org/packages/PanomiR git_branch: RELEASE_3_20 git_last_commit: 6cd7ff7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PanomiR_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PanomiR_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PanomiR_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PanomiR_1.10.0.tgz vignettes: vignettes/PanomiR/inst/doc/PanomiR.html vignetteTitles: PanomiR Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/PanomiR/inst/doc/PanomiR.R dependencyCount: 157 Package: panp Version: 1.76.0 Depends: R (>= 2.10), affy (>= 1.23.4), Biobase (>= 2.5.5) Imports: Biobase, methods, stats, utils Suggests: gcrma License: GPL (>= 2) MD5sum: f36d65252a6f9a5773a88a721a1fb976 NeedsCompilation: no Title: Presence-Absence Calls from Negative Strand Matching Probesets Description: A function to make gene presence/absence calls based on distance from negative strand matching probesets (NSMP) which are derived from Affymetrix annotation. PANP is applied after gene expression values are created, and therefore can be used after any preprocessing method such as MAS5 or GCRMA, or PM-only methods like RMA. NSMP sets have been established for the HGU133A and HGU133-Plus-2.0 chipsets to date. biocViews: Infrastructure Author: Peter Warren Maintainer: Peter Warren git_url: https://git.bioconductor.org/packages/panp git_branch: RELEASE_3_20 git_last_commit: d41ba43 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/panp_1.76.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/panp_1.76.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/panp_1.76.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/panp_1.76.0.tgz vignettes: vignettes/panp/inst/doc/panp.pdf vignetteTitles: gene presence/absence calls hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/panp/inst/doc/panp.R dependencyCount: 12 Package: PANR Version: 1.52.0 Depends: R (>= 2.14), igraph Imports: graphics, grDevices, MASS, methods, pvclust, stats, utils, RedeR Suggests: snow License: Artistic-2.0 MD5sum: 2b53dd76ced348d4cf0a191051886c42 NeedsCompilation: no Title: Posterior association networks and functional modules inferred from rich phenotypes of gene perturbations Description: This package provides S4 classes and methods for inferring functional gene networks with edges encoding posterior beliefs of gene association types and nodes encoding perturbation effects. biocViews: ImmunoOncology, NetworkInference, Visualization, GraphAndNetwork, Clustering, CellBasedAssays Author: Xin Wang Maintainer: Xin Wang git_url: https://git.bioconductor.org/packages/PANR git_branch: RELEASE_3_20 git_last_commit: 021d01d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PANR_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PANR_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PANR_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PANR_1.52.0.tgz vignettes: vignettes/PANR/inst/doc/PANR-Vignette.pdf vignetteTitles: Main vignette:Posterior association network and enriched functional gene modules inferred from rich phenotypes of gene perturbations hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PANR/inst/doc/PANR-Vignette.R dependencyCount: 28 Package: parglms Version: 1.38.0 Depends: methods Imports: BiocGenerics, BatchJobs, foreach, doParallel Suggests: RUnit, sandwich, MASS, knitr, GenomeInfoDb, GenomicRanges, gwascat, BiocStyle, rmarkdown License: Artistic-2.0 MD5sum: 3472a411a84595ceec22c75f4992caeb NeedsCompilation: no Title: support for parallelized estimation of GLMs/GEEs Description: This package provides support for parallelized estimation of GLMs/GEEs, catering for dispersed data. Author: VJ Carey Maintainer: VJ Carey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/parglms git_branch: RELEASE_3_20 git_last_commit: 559f2fa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/parglms_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/parglms_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/parglms_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/parglms_1.38.0.tgz vignettes: vignettes/parglms/inst/doc/parglms.pdf vignetteTitles: parglms: parallelized GLM hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/parglms/inst/doc/parglms.R dependencyCount: 37 Package: parody Version: 1.64.0 Depends: R (>= 3.5.0), tools, utils Suggests: knitr, BiocStyle, testthat, rmarkdown License: Artistic-2.0 MD5sum: 8f2aba829a626c88195193cba243d6de NeedsCompilation: no Title: Parametric And Resistant Outlier DYtection Description: Provide routines for univariate and multivariate outlier detection with a focus on parametric methods, but support for some methods based on resistant statistics. biocViews: MultipleComparison Author: Vince Carey [aut, cre] () Maintainer: Vince Carey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/parody git_branch: RELEASE_3_20 git_last_commit: 920aa92 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/parody_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/parody_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/parody_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/parody_1.64.0.tgz vignettes: vignettes/parody/inst/doc/parody.html vignetteTitles: parody: parametric and resistant outlier dytection hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/parody/inst/doc/parody.R dependsOnMe: arrayMvout dependencyCount: 2 Package: partCNV Version: 1.4.0 Depends: R (>= 3.5.0) Imports: stats, data.table, depmixS4, Seurat, SingleCellExperiment, AnnotationHub, magrittr, GenomicRanges, BiocStyle Suggests: rmarkdown, knitr, IRanges, testthat (>= 3.0.0) License: GPL-2 MD5sum: 38b2a9c8ba2b0072bd80170e683d94b2 NeedsCompilation: no Title: Infer locally aneuploid cells using single cell RNA-seq data Description: This package uses a statistical framework for rapid and accurate detection of aneuploid cells with local copy number deletion or amplification. Our method uses an EM algorithm with mixtures of Poisson distributions while incorporating cytogenetics information (e.g., regional deletion or amplification) to guide the classification (partCNV). When applicable, we further improve the accuracy by integrating a Hidden Markov Model for feature selection (partCNVH). biocViews: Software, CopyNumberVariation, HiddenMarkovModel, SingleCell, Classification Author: Ziyi Li [aut, cre, ctb], Ruoxing Li [ctb] Maintainer: Ziyi Li VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/partCNV git_branch: RELEASE_3_20 git_last_commit: eb5260c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/partCNV_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/partCNV_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/partCNV_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/partCNV_1.4.0.tgz vignettes: vignettes/partCNV/inst/doc/partCNV_vignette.html vignetteTitles: partCNV_vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/partCNV/inst/doc/partCNV_vignette.R dependencyCount: 193 Package: PAST Version: 1.22.0 Depends: R (>= 4.0) Imports: stats, utils, dplyr, rlang, iterators, parallel, foreach, doParallel, qvalue, rtracklayer, ggplot2, GenomicRanges, S4Vectors Suggests: knitr, rmarkdown License: GPL (>=3) + file LICENSE MD5sum: 54eaa7a9f021f23adaaf4d3fe492599a NeedsCompilation: no Title: Pathway Association Study Tool (PAST) Description: PAST takes GWAS output and assigns SNPs to genes, uses those genes to find pathways associated with the genes, and plots pathways based on significance. Implements methods for reading GWAS input data, finding genes associated with SNPs, calculating enrichment score and significance of pathways, and plotting pathways. biocViews: Pathways, GeneSetEnrichment Author: Thrash Adam [cre, aut], DeOrnellis Mason [aut] Maintainer: Thrash Adam URL: https://github.com/IGBB/past VignetteBuilder: knitr BugReports: https://github.com/IGBB/past/issues git_url: https://git.bioconductor.org/packages/PAST git_branch: RELEASE_3_20 git_last_commit: 1d1dd12 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PAST_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PAST_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PAST_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PAST_1.22.0.tgz vignettes: vignettes/PAST/inst/doc/past.html vignetteTitles: PAST hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/PAST/inst/doc/past.R dependencyCount: 96 Package: Path2PPI Version: 1.36.0 Depends: R (>= 3.2.1), igraph (>= 1.0.1), methods Suggests: knitr, rmarkdown, RUnit, BiocGenerics, BiocStyle License: GPL (>= 2) MD5sum: 3413bff2fed7639111b56a8f46469c6d NeedsCompilation: no Title: Prediction of pathway-related protein-protein interaction networks Description: Package to predict protein-protein interaction (PPI) networks in target organisms for which only a view information about PPIs is available. Path2PPI predicts PPI networks based on sets of proteins which can belong to a certain pathway from well-established model organisms. It helps to combine and transfer information of a certain pathway or biological process from several reference organisms to one target organism. Path2PPI only depends on the sequence similarity of the involved proteins. biocViews: NetworkInference, SystemsBiology, Network, Proteomics, Pathways Author: Oliver Philipp [aut, cre], Ina Koch [ctb] Maintainer: Oliver Philipp URL: http://www.bioinformatik.uni-frankfurt.de/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Path2PPI git_branch: RELEASE_3_20 git_last_commit: 993c980 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Path2PPI_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Path2PPI_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Path2PPI_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Path2PPI_1.36.0.tgz vignettes: vignettes/Path2PPI/inst/doc/Path2PPI-tutorial.html vignetteTitles: Path2PPI - A brief tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Path2PPI/inst/doc/Path2PPI-tutorial.R dependencyCount: 17 Package: pathifier Version: 1.44.0 Imports: R.oo, princurve (>= 2.0.4) License: Artistic-1.0 MD5sum: 3c0885c767a75ce4dd73eab001e2d2fe NeedsCompilation: no Title: Quantify deregulation of pathways in cancer Description: Pathifier is an algorithm that infers pathway deregulation scores for each tumor sample on the basis of expression data. This score is determined, in a context-specific manner, for every particular dataset and type of cancer that is being investigated. The algorithm transforms gene-level information into pathway-level information, generating a compact and biologically relevant representation of each sample. biocViews: Network Author: Yotam Drier Maintainer: Assif Yitzhaky git_url: https://git.bioconductor.org/packages/pathifier git_branch: RELEASE_3_20 git_last_commit: 75a3c69 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pathifier_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pathifier_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pathifier_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pathifier_1.44.0.tgz vignettes: vignettes/pathifier/inst/doc/Overview.pdf vignetteTitles: Quantify deregulation of pathways in cancer hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pathifier/inst/doc/Overview.R importsMe: funOmics dependencyCount: 9 Package: pathlinkR Version: 1.2.0 Depends: R (>= 4.4.0) Imports: circlize, clusterProfiler, ComplexHeatmap, dplyr, fgsea, ggforce, ggplot2, ggpubr, ggraph, ggrepel, grid, igraph, purrr, sigora, stringr, tibble, tidygraph, tidyr, vegan, visNetwork Suggests: AnnotationDbi, BiocStyle, biomaRt, covr, DESeq2, jsonlite, knitr, org.Hs.eg.db, rmarkdown, scales, testthat (>= 3.0.0), vdiffr License: GPL-3 + file LICENSE MD5sum: a3e081ba43d136a2ccc20e5ff8cfb9d6 NeedsCompilation: no Title: Analyze and interpret RNA-Seq results Description: pathlinkR is an R package designed to facilitate analysis of RNA-Seq results. Specifically, our aim with pathlinkR was to provide a number of tools which take a list of DE genes and perform different analyses on them, aiding with the interpretation of results. Functions are included to perform pathway enrichment, with muliplte databases supported, and tools for visualizing these results. Genes can also be used to create and plot protein-protein interaction networks, all from inside of R. biocViews: GeneSetEnrichment, Network, Pathways, Reactome, RNASeq, NetworkEnrichment Author: Travis Blimkie [cre] (), Andy An [aut] Maintainer: Travis Blimkie URL: https://github.com/hancockinformatics/pathlinkR VignetteBuilder: knitr BugReports: https://github.com/hancockinformatics/pathlinkR/issues git_url: https://git.bioconductor.org/packages/pathlinkR git_branch: RELEASE_3_20 git_last_commit: 4eb7fd1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pathlinkR_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pathlinkR_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pathlinkR_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pathlinkR_1.2.0.tgz vignettes: vignettes/pathlinkR/inst/doc/pathlinkR.html vignetteTitles: Analyze and visualize RNA-Seq data with pathlinkR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/pathlinkR/inst/doc/pathlinkR.R dependencyCount: 189 Package: PathNet Version: 1.46.0 Suggests: PathNetData, RUnit, BiocGenerics License: GPL-3 MD5sum: c0a06ae5c507dd59f904efaac6bf24f6 NeedsCompilation: no Title: An R package for pathway analysis using topological information Description: PathNet uses topological information present in pathways and differential expression levels of genes (obtained from microarray experiment) to identify pathways that are 1) significantly enriched and 2) associated with each other in the context of differential expression. The algorithm is described in: PathNet: A tool for pathway analysis using topological information. Dutta B, Wallqvist A, and Reifman J. Source Code for Biology and Medicine 2012 Sep 24;7(1):10. biocViews: Pathways, DifferentialExpression, MultipleComparison, KEGG, NetworkEnrichment, Network Author: Bhaskar Dutta , Anders Wallqvist , and Jaques Reifman Maintainer: Ludwig Geistlinger git_url: https://git.bioconductor.org/packages/PathNet git_branch: RELEASE_3_20 git_last_commit: aa8219b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PathNet_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PathNet_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PathNet_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PathNet_1.46.0.tgz vignettes: vignettes/PathNet/inst/doc/PathNet.pdf vignetteTitles: PathNet hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PathNet/inst/doc/PathNet.R dependencyCount: 0 Package: PathoStat Version: 1.32.0 Depends: R (>= 3.5) Imports: limma, corpcor,matrixStats, reshape2, scales, ggplot2, rentrez, DT, tidyr, plyr, dplyr, phyloseq, shiny, stats, methods, XML, graphics, utils, BiocStyle, edgeR, DESeq2, ComplexHeatmap, plotly, webshot, vegan, shinyjs, glmnet, gmodels, ROCR, RColorBrewer, knitr, devtools, ape Suggests: rmarkdown, testthat License: GPL (>= 2) MD5sum: 1b3b6228ce2911d30e8b1421979e4d6c NeedsCompilation: no Title: PathoStat Statistical Microbiome Analysis Package Description: The purpose of this package is to perform Statistical Microbiome Analysis on metagenomics results from sequencing data samples. In particular, it supports analyses on the PathoScope generated report files. PathoStat provides various functionalities including Relative Abundance charts, Diversity estimates and plots, tests of Differential Abundance, Time Series visualization, and Core OTU analysis. biocViews: Microbiome, Metagenomics, GraphAndNetwork, Microarray, PatternLogic, PrincipalComponent, Sequencing, Software, Visualization, RNASeq, ImmunoOncology Author: Solaiappan Manimaran , Matthew Bendall , Sandro Valenzuela Diaz , Eduardo Castro , Tyler Faits , Yue Zhao , Anthony Nicholas Federico , W. Evan Johnson Maintainer: Solaiappan Manimaran , Yue Zhao URL: https://github.com/mani2012/PathoStat VignetteBuilder: knitr BugReports: https://github.com/mani2012/PathoStat/issues git_url: https://git.bioconductor.org/packages/PathoStat git_branch: RELEASE_3_20 git_last_commit: a9bb5eb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PathoStat_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PathoStat_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PathoStat_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PathoStat_1.32.0.tgz vignettes: vignettes/PathoStat/inst/doc/PathoStat-vignette.html vignetteTitles: PathoStat intro hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PathoStat/inst/doc/PathoStat-vignette.R dependencyCount: 207 Package: pathRender Version: 1.74.0 Depends: graph, Rgraphviz, RColorBrewer, cMAP, AnnotationDbi, methods, stats4 Suggests: ALL, hgu95av2.db License: LGPL MD5sum: b51336cbfc6edb8c13706fbc52332b87 NeedsCompilation: no Title: Render molecular pathways Description: build graphs from pathway databases, render them by Rgraphviz. biocViews: GraphAndNetwork, Pathways, Visualization Author: Li Long Maintainer: Vince Carey URL: http://www.bioconductor.org git_url: https://git.bioconductor.org/packages/pathRender git_branch: RELEASE_3_20 git_last_commit: 66af16f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pathRender_1.74.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pathRender_1.74.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pathRender_1.74.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pathRender_1.74.0.tgz vignettes: vignettes/pathRender/inst/doc/pathRender.pdf, vignettes/pathRender/inst/doc/plotExG.pdf vignetteTitles: pathRender overview, pathway graphs colored by expression map hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pathRender/inst/doc/pathRender.R, vignettes/pathRender/inst/doc/plotExG.R dependencyCount: 50 Package: pathview Version: 1.46.0 Depends: R (>= 3.5.0) Imports: KEGGgraph, XML, Rgraphviz, graph, png, AnnotationDbi, org.Hs.eg.db, KEGGREST, methods, utils Suggests: gage, org.Mm.eg.db, org.EcK12.eg.db, RUnit, BiocGenerics License: GPL (>=3.0) MD5sum: 3cb3d45ea299c1d3d947cfd06b61b75e NeedsCompilation: no Title: a tool set for pathway based data integration and visualization Description: Pathview is a tool set for pathway based data integration and visualization. It maps and renders a wide variety of biological data on relevant pathway graphs. All users need is to supply their data and specify the target pathway. Pathview automatically downloads the pathway graph data, parses the data file, maps user data to the pathway, and render pathway graph with the mapped data. In addition, Pathview also seamlessly integrates with pathway and gene set (enrichment) analysis tools for large-scale and fully automated analysis. biocViews: Pathways, GraphAndNetwork, Visualization, GeneSetEnrichment, DifferentialExpression, GeneExpression, Microarray, RNASeq, Genetics, Metabolomics, Proteomics, SystemsBiology, Sequencing Author: Weijun Luo Maintainer: Weijun Luo URL: https://github.com/datapplab/pathview, https://pathview.uncc.edu/ git_url: https://git.bioconductor.org/packages/pathview git_branch: RELEASE_3_20 git_last_commit: b165b79 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pathview_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pathview_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pathview_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pathview_1.46.0.tgz vignettes: vignettes/pathview/inst/doc/pathview.pdf vignetteTitles: Pathview: pathway based data integration and visualization hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pathview/inst/doc/pathview.R dependsOnMe: EGSEA, SBGNview importsMe: debrowser, EnrichmentBrowser, GDCRNATools, MAGeCKFlute, TCGAWorkflow, lilikoi, SQMtools suggestsMe: gage, TCGAbiolinks, gageData, CAGEWorkflow, ReporterScore dependencyCount: 53 Package: pathwayPCA Version: 1.22.0 Depends: R (>= 3.1) Imports: lars, methods, parallel, stats, survival, utils Suggests: airway, circlize, grDevices, knitr, RCurl, reshape2, rmarkdown, SummarizedExperiment, survminer, testthat, tidyverse License: GPL-3 MD5sum: 0129956bd4573766d7168fcbf6d7d9a1 NeedsCompilation: no Title: Integrative Pathway Analysis with Modern PCA Methodology and Gene Selection Description: pathwayPCA is an integrative analysis tool that implements the principal component analysis (PCA) based pathway analysis approaches described in Chen et al. (2008), Chen et al. (2010), and Chen (2011). pathwayPCA allows users to: (1) Test pathway association with binary, continuous, or survival phenotypes. (2) Extract relevant genes in the pathways using the SuperPCA and AES-PCA approaches. (3) Compute principal components (PCs) based on the selected genes. These estimated latent variables represent pathway activities for individual subjects, which can then be used to perform integrative pathway analysis, such as multi-omics analysis. (4) Extract relevant genes that drive pathway significance as well as data corresponding to these relevant genes for additional in-depth analysis. (5) Perform analyses with enhanced computational efficiency with parallel computing and enhanced data safety with S4-class data objects. (6) Analyze studies with complex experimental designs, with multiple covariates, and with interaction effects, e.g., testing whether pathway association with clinical phenotype is different between male and female subjects. Citations: Chen et al. (2008) ; Chen et al. (2010) ; and Chen (2011) . biocViews: CopyNumberVariation, DNAMethylation, GeneExpression, SNP, Transcription, GenePrediction, GeneSetEnrichment, GeneSignaling, GeneTarget, GenomeWideAssociation, GenomicVariation, CellBiology, Epigenetics, FunctionalGenomics, Genetics, Lipidomics, Metabolomics, Proteomics, SystemsBiology, Transcriptomics, Classification, DimensionReduction, FeatureExtraction, PrincipalComponent, Regression, Survival, MultipleComparison, Pathways Author: Gabriel Odom [aut, cre], James Ban [aut], Lizhong Liu [aut], Lily Wang [aut], Steven Chen [aut] Maintainer: Gabriel Odom URL: VignetteBuilder: knitr BugReports: https://github.com/gabrielodom/pathwayPCA/issues git_url: https://git.bioconductor.org/packages/pathwayPCA git_branch: RELEASE_3_20 git_last_commit: 3a83e38 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pathwayPCA_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pathwayPCA_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pathwayPCA_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pathwayPCA_1.22.0.tgz vignettes: vignettes/pathwayPCA/inst/doc/Introduction_to_pathwayPCA.html, vignettes/pathwayPCA/inst/doc/Supplement1-Quickstart_Guide.html, vignettes/pathwayPCA/inst/doc/Supplement2-Importing_Data.html, vignettes/pathwayPCA/inst/doc/Supplement3-Create_Omics_Objects.html, vignettes/pathwayPCA/inst/doc/Supplement4-Methods_Walkthrough.html, vignettes/pathwayPCA/inst/doc/Supplement5-Analyse_Results.html vignetteTitles: Integrative Pathway Analysis with pathwayPCA, Suppl. 1. Quickstart Guide, Suppl. 2. Importing Data, Suppl. 3. Create Data Objects, Suppl. 4. Test Pathway Significance, Suppl. 5. Visualizing the Results hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pathwayPCA/inst/doc/Introduction_to_pathwayPCA.R, vignettes/pathwayPCA/inst/doc/Supplement1-Quickstart_Guide.R, vignettes/pathwayPCA/inst/doc/Supplement2-Importing_Data.R, vignettes/pathwayPCA/inst/doc/Supplement3-Create_Omics_Objects.R, vignettes/pathwayPCA/inst/doc/Supplement4-Methods_Walkthrough.R, vignettes/pathwayPCA/inst/doc/Supplement5-Analyse_Results.R dependencyCount: 12 Package: pcaExplorer Version: 3.0.0 Imports: DESeq2, SummarizedExperiment, mosdef (>= 1.1.0), GenomicRanges, IRanges, S4Vectors, genefilter, ggplot2 (>= 2.0.0), heatmaply, plotly, scales, NMF, plyr, topGO, limma, GOstats, GO.db, AnnotationDbi, shiny (>= 0.12.0), shinydashboard, shinyBS, ggrepel, DT, shinyAce, threejs, biomaRt, pheatmap, knitr, rmarkdown, base64enc, tidyr, grDevices, methods Suggests: testthat, BiocStyle, markdown, airway, org.Hs.eg.db, htmltools License: MIT + file LICENSE MD5sum: 64cb44bfb288c2133de1239dcd94db59 NeedsCompilation: no Title: Interactive Visualization of RNA-seq Data Using a Principal Components Approach Description: This package provides functionality for interactive visualization of RNA-seq datasets based on Principal Components Analysis. The methods provided allow for quick information extraction and effective data exploration. A Shiny application encapsulates the whole analysis. biocViews: ImmunoOncology, Visualization, RNASeq, DimensionReduction, PrincipalComponent, QualityControl, GUI, ReportWriting, ShinyApps Author: Federico Marini [aut, cre] () Maintainer: Federico Marini URL: https://github.com/federicomarini/pcaExplorer, https://federicomarini.github.io/pcaExplorer/ VignetteBuilder: knitr BugReports: https://github.com/federicomarini/pcaExplorer/issues git_url: https://git.bioconductor.org/packages/pcaExplorer git_branch: RELEASE_3_20 git_last_commit: 9b24e2a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pcaExplorer_3.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pcaExplorer_3.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pcaExplorer_3.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pcaExplorer_3.0.0.tgz vignettes: vignettes/pcaExplorer/inst/doc/pcaExplorer.html, vignettes/pcaExplorer/inst/doc/upandrunning.html vignetteTitles: pcaExplorer User Guide, Up and running with pcaExplorer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/pcaExplorer/inst/doc/pcaExplorer.R, vignettes/pcaExplorer/inst/doc/upandrunning.R suggestsMe: GeDi dependencyCount: 231 Package: pcaMethods Version: 1.98.0 Depends: Biobase, methods Imports: BiocGenerics, Rcpp (>= 0.11.3), MASS LinkingTo: Rcpp Suggests: matrixStats, lattice, ggplot2 License: GPL (>= 3) MD5sum: deabf6bd06e91898d6308319cbda0573 NeedsCompilation: yes Title: A collection of PCA methods Description: Provides Bayesian PCA, Probabilistic PCA, Nipals PCA, Inverse Non-Linear PCA and the conventional SVD PCA. A cluster based method for missing value estimation is included for comparison. BPCA, PPCA and NipalsPCA may be used to perform PCA on incomplete data as well as for accurate missing value estimation. A set of methods for printing and plotting the results is also provided. All PCA methods make use of the same data structure (pcaRes) to provide a common interface to the PCA results. Initiated at the Max-Planck Institute for Molecular Plant Physiology, Golm, Germany. biocViews: Bayesian Author: Wolfram Stacklies, Henning Redestig, Kevin Wright Maintainer: Henning Redestig URL: https://github.com/hredestig/pcamethods SystemRequirements: Rcpp BugReports: https://github.com/hredestig/pcamethods/issues git_url: https://git.bioconductor.org/packages/pcaMethods git_branch: RELEASE_3_20 git_last_commit: 19b67d5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pcaMethods_1.98.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pcaMethods_1.98.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pcaMethods_1.98.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pcaMethods_1.98.0.tgz vignettes: vignettes/pcaMethods/inst/doc/missingValues.pdf, vignettes/pcaMethods/inst/doc/outliers.pdf, vignettes/pcaMethods/inst/doc/pcaMethods.pdf vignetteTitles: Missing value imputation, Data with outliers, Introduction hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pcaMethods/inst/doc/missingValues.R, vignettes/pcaMethods/inst/doc/outliers.R, vignettes/pcaMethods/inst/doc/pcaMethods.R dependsOnMe: DeconRNASeq, crmn, DiffCorr, imputeLCMD importsMe: consensusDE, destiny, FRASER, MAI, MatrixQCvis, MSnbase, MSPrep, MultiBaC, OUTRIDER, PhosR, pmp, scde, SomaticSignatures, ADAPTS, CopSens, geneticae, lfproQC, LOST, MetabolomicsBasics, missCompare, multiDimBio, pmartR, polyRAD, promor, RAMClustR, santaR, scMappR suggestsMe: autonomics, cardelino, MsCoreUtils, QFeatures, qmtools, mtbls2, pagoda2, rsvddpd dependencyCount: 9 Package: PCAN Version: 1.34.0 Depends: R (>= 3.3), BiocParallel Imports: grDevices, stats Suggests: BiocStyle, knitr, rmarkdown, reactome.db, STRINGdb License: CC BY-NC-ND 4.0 MD5sum: aba965b2eda8d1c84e5de4c29ba06a0e NeedsCompilation: no Title: Phenotype Consensus ANalysis (PCAN) Description: Phenotypes comparison based on a pathway consensus approach. Assess the relationship between candidate genes and a set of phenotypes based on additional genes related to the candidate (e.g. Pathways or network neighbors). biocViews: Annotation, Sequencing, Genetics, FunctionalPrediction, VariantAnnotation, Pathways, Network Author: Matthew Page and Patrice Godard Maintainer: Matthew Page and Patrice Godard VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/PCAN git_branch: RELEASE_3_20 git_last_commit: da5a56b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PCAN_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PCAN_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PCAN_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PCAN_1.34.0.tgz vignettes: vignettes/PCAN/inst/doc/PCAN.html vignetteTitles: Assessing gene relevance for a set of phenotypes hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PCAN/inst/doc/PCAN.R dependencyCount: 14 Package: PCAtools Version: 2.18.0 Depends: ggplot2, ggrepel Imports: lattice, grDevices, cowplot, methods, reshape2, stats, Matrix, DelayedMatrixStats, DelayedArray, BiocSingular, BiocParallel, Rcpp, dqrng LinkingTo: Rcpp, beachmat, BH, dqrng Suggests: testthat, scran, BiocGenerics, knitr, Biobase, GEOquery, hgu133a.db, ggplotify, beachmat, RMTstat, ggalt, DESeq2, airway, org.Hs.eg.db, magrittr, rmarkdown License: GPL-3 MD5sum: 2b1d8c22e21a62e7c04162fb6a6a24b5 NeedsCompilation: yes Title: PCAtools: Everything Principal Components Analysis Description: Principal Component Analysis (PCA) is a very powerful technique that has wide applicability in data science, bioinformatics, and further afield. It was initially developed to analyse large volumes of data in order to tease out the differences/relationships between the logical entities being analysed. It extracts the fundamental structure of the data without the need to build any model to represent it. This 'summary' of the data is arrived at through a process of reduction that can transform the large number of variables into a lesser number that are uncorrelated (i.e. the 'principal components'), while at the same time being capable of easy interpretation on the original data. PCAtools provides functions for data exploration via PCA, and allows the user to generate publication-ready figures. PCA is performed via BiocSingular - users can also identify optimal number of principal components via different metrics, such as elbow method and Horn's parallel analysis, which has relevance for data reduction in single-cell RNA-seq (scRNA-seq) and high dimensional mass cytometry data. biocViews: RNASeq, ATACSeq, GeneExpression, Transcription, SingleCell, PrincipalComponent Author: Kevin Blighe [aut, cre], Anna-Leigh Brown [ctb], Vincent Carey [ctb], Guido Hooiveld [ctb], Aaron Lun [aut, ctb] Maintainer: Kevin Blighe URL: https://github.com/kevinblighe/PCAtools SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/PCAtools git_branch: RELEASE_3_20 git_last_commit: 0a8f293 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PCAtools_2.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PCAtools_2.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PCAtools_2.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PCAtools_2.18.0.tgz vignettes: vignettes/PCAtools/inst/doc/PCAtools.html vignetteTitles: PCAtools: everything Principal Component Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PCAtools/inst/doc/PCAtools.R importsMe: COTAN, CRISPRball, regionalpcs suggestsMe: RNAseqCovarImpute, scDataviz dependencyCount: 76 Package: pdInfoBuilder Version: 1.70.0 Depends: R (>= 3.2.0), methods, Biobase (>= 2.27.3), RSQLite (>= 1.0.0), affxparser (>= 1.39.4), oligo (>= 1.31.5) Imports: Biostrings (>= 2.35.12), BiocGenerics (>= 0.13.11), DBI (>= 0.3.1), IRanges (>= 2.1.43), oligoClasses (>= 1.29.6), S4Vectors (>= 0.5.22) License: Artistic-2.0 MD5sum: 82dec35ff40abd56837f90a2242da52c NeedsCompilation: yes Title: Platform Design Information Package Builder Description: Builds platform design information packages. These consist of a SQLite database containing feature-level data such as x, y position on chip and featureSet ID. The database also incorporates featureSet-level annotation data. The products of this packages are used by the oligo pkg. biocViews: Annotation, Infrastructure Author: Seth Falcon, Vince Carey, Matt Settles, Kristof de Beuf, Benilton Carvalho Maintainer: Benilton Carvalho git_url: https://git.bioconductor.org/packages/pdInfoBuilder git_branch: RELEASE_3_20 git_last_commit: 7436122 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pdInfoBuilder_1.70.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pdInfoBuilder_1.70.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pdInfoBuilder_1.70.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pdInfoBuilder_1.70.0.tgz vignettes: vignettes/pdInfoBuilder/inst/doc/BuildingPDInfoPkgs.pdf, vignettes/pdInfoBuilder/inst/doc/howto-AffymetrixMapping.pdf vignetteTitles: Building Annotation Packages with pdInfoBuilder for Use with the oligo Package, PDInfo Package Building Affymetrix Mapping Chips hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pdInfoBuilder/inst/doc/howto-AffymetrixMapping.R suggestsMe: maqcExpression4plex, aroma.affymetrix, maGUI dependencyCount: 64 Package: PeacoQC Version: 1.16.0 Depends: R (>= 4.0) Imports: circlize, ComplexHeatmap, flowCore, flowWorkspace, ggplot2, grDevices, grid, gridExtra, methods, plyr, stats, utils Suggests: knitr, rmarkdown, BiocStyle License: GPL (>=3) Archs: x64 MD5sum: decb90e9768d8e8f8a422a2b7cee0196 NeedsCompilation: no Title: Peak-based selection of high quality cytometry data Description: This is a package that includes pre-processing and quality control functions that can remove margin events, compensate and transform the data and that will use PeacoQCSignalStability for quality control. This last function will first detect peaks in each channel of the flowframe. It will remove anomalies based on the IsolationTree function and the MAD outlier detection method. This package can be used for both flow- and mass cytometry data. biocViews: FlowCytometry, QualityControl, Preprocessing, PeakDetection Author: Annelies Emmaneel [aut, cre] Maintainer: Annelies Emmaneel URL: http://github.com/saeyslab/PeacoQC VignetteBuilder: knitr BugReports: http://github.com/saeyslab/PeacoQC/issues git_url: https://git.bioconductor.org/packages/PeacoQC git_branch: RELEASE_3_20 git_last_commit: f225f54 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PeacoQC_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PeacoQC_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PeacoQC_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PeacoQC_1.16.0.tgz vignettes: vignettes/PeacoQC/inst/doc/PeacoQC_Vignette.pdf vignetteTitles: PeacoQC_Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PeacoQC/inst/doc/PeacoQC_Vignette.R importsMe: CytoPipeline dependencyCount: 84 Package: peakPantheR Version: 1.20.0 Depends: R (>= 4.2) Imports: foreach (>= 1.4.4), doParallel (>= 1.0.11), ggplot2 (>= 3.5.0), gridExtra (>= 2.3), MSnbase (>= 2.4.0), mzR (>= 2.12.0), stringr (>= 1.2.0), methods (>= 3.4.0), XML (>= 3.98.1.10), minpack.lm (>= 1.2.1), scales(>= 0.5.0), shiny (>= 1.0.5), bslib, shinycssloaders (>= 1.0.0), DT (>= 0.15), pracma (>= 2.2.3), utils, lubridate, svglite (>= 2.1.1) Suggests: testthat, devtools, faahKO, msdata, knitr, rmarkdown, pander, BiocStyle License: GPL-3 MD5sum: dd5dffdd9397ba01ab9d25d3dc075a28 NeedsCompilation: no Title: Peak Picking and Annotation of High Resolution Experiments Description: An automated pipeline for the detection, integration and reporting of predefined features across a large number of mass spectrometry data files. It enables the real time annotation of multiple compounds in a single file, or the parallel annotation of multiple compounds in multiple files. A graphical user interface as well as command line functions will assist in assessing the quality of annotation and update fitting parameters until a satisfactory result is obtained. biocViews: MassSpectrometry, Metabolomics, PeakDetection Author: Arnaud Wolfer [aut, cre] (), Goncalo Correia [aut] (), Jake Pearce [ctb], Caroline Sands [ctb] Maintainer: Arnaud Wolfer URL: https://github.com/phenomecentre/peakPantheR VignetteBuilder: knitr BugReports: https://github.com/phenomecentre/peakPantheR/issues/new git_url: https://git.bioconductor.org/packages/peakPantheR git_branch: RELEASE_3_20 git_last_commit: 89aef90 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/peakPantheR_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/peakPantheR_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/peakPantheR_1.20.0.tgz vignettes: vignettes/peakPantheR/inst/doc/getting-started.html, vignettes/peakPantheR/inst/doc/parallel-annotation.html, vignettes/peakPantheR/inst/doc/peakPantheR-GUI.html, vignettes/peakPantheR/inst/doc/real-time-annotation.html vignetteTitles: Getting Started with the peakPantheR package, Parallel Annotation, peakPantheR Graphical User Interface, Real Time Annotation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/peakPantheR/inst/doc/getting-started.R, vignettes/peakPantheR/inst/doc/parallel-annotation.R, vignettes/peakPantheR/inst/doc/peakPantheR-GUI.R, vignettes/peakPantheR/inst/doc/real-time-annotation.R dependencyCount: 151 Package: PECA Version: 1.42.0 Depends: R (>= 3.3) Imports: ROTS, limma, affy, genefilter, preprocessCore, aroma.affymetrix, aroma.core Suggests: SpikeIn License: GPL (>= 2) Archs: x64 MD5sum: b1d1585740b1854dcd7e764988d55426 NeedsCompilation: no Title: Probe-level Expression Change Averaging Description: Calculates Probe-level Expression Change Averages (PECA) to identify differential expression in Affymetrix gene expression microarray studies or in proteomic studies using peptide-level mesurements respectively. biocViews: Software, Proteomics, Microarray, DifferentialExpression, GeneExpression, ExonArray, DifferentialSplicing Author: Tomi Suomi, Jukka Hiissa, Laura L. Elo Maintainer: Tomi Suomi git_url: https://git.bioconductor.org/packages/PECA git_branch: RELEASE_3_20 git_last_commit: 9fe2557 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PECA_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PECA_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PECA_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PECA_1.42.0.tgz vignettes: vignettes/PECA/inst/doc/PECA.pdf vignetteTitles: PECA: Probe-level Expression Change Averaging hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PECA/inst/doc/PECA.R dependencyCount: 88 Package: peco Version: 1.18.0 Depends: R (>= 3.5.0) Imports: assertthat, circular, conicfit, doParallel, foreach, genlasso (>= 1.4), graphics, methods, parallel, scater, SingleCellExperiment, SummarizedExperiment, stats, utils Suggests: knitr, rmarkdown License: GPL (>= 3) Archs: x64 MD5sum: 58812570a419d72ca35b1f647ff1dd59 NeedsCompilation: no Title: A Supervised Approach for **P**r**e**dicting **c**ell Cycle Pr**o**gression using scRNA-seq data Description: Our approach provides a way to assign continuous cell cycle phase using scRNA-seq data, and consequently, allows to identify cyclic trend of gene expression levels along the cell cycle. This package provides method and training data, which includes scRNA-seq data collected from 6 individual cell lines of induced pluripotent stem cells (iPSCs), and also continuous cell cycle phase derived from FUCCI fluorescence imaging data. biocViews: Sequencing, RNASeq, GeneExpression, Transcriptomics, SingleCell, Software, StatisticalMethod, Classification, Visualization Author: Chiaowen Joyce Hsiao [aut, cre], Matthew Stephens [aut], John Blischak [ctb], Peter Carbonetto [ctb] Maintainer: Chiaowen Joyce Hsiao URL: https://github.com/jhsiao999/peco VignetteBuilder: knitr BugReports: https://github.com/jhsiao999/peco/issues git_url: https://git.bioconductor.org/packages/peco git_branch: RELEASE_3_20 git_last_commit: b047fb9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/peco_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/peco_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/peco_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/peco_1.18.0.tgz vignettes: vignettes/peco/inst/doc/vignette.html vignetteTitles: An example of predicting cell cycle phase using peco hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/peco/inst/doc/vignette.R dependencyCount: 118 Package: Pedixplorer Version: 1.2.0 Depends: R (>= 4.3.0) Imports: graphics, stats, methods, ggplot2, utils, grDevices, stringr, plyr, dplyr, tidyr, quadprog, Matrix, S4Vectors, shiny, readxl, shinyWidgets, htmlwidgets, DT, gridExtra, data.table, plotly, colourpicker, shinytoastr, scales, shinycssloaders Suggests: diffviewer, testthat (>= 3.0.0), vdiffr, rmarkdown, BiocStyle, knitr, withr, qpdf, shinytest2, covr, devtools, R.devices, usethis, magick License: Artistic-2.0 MD5sum: 2330dc5620f1299f7d2f88f890cfdd0d NeedsCompilation: no Title: Pedigree Functions Description: Routines to handle family data with a Pedigree object. The initial purpose was to create correlation structures that describe family relationships such as kinship and identity-by-descent, which can be used to model family data in mixed effects models, such as in the coxme function. Also includes a tool for Pedigree drawing which is focused on producing compact layouts without intervention. Recent additions include utilities to trim the Pedigree object with various criteria, and kinship for the X chromosome. biocViews: Software, DataRepresentation, Genetics, GraphAndNetwork, Visualization Author: Louis Le Nézet [aut, cre, ctb] (), Jason Sinnwell [aut], Terry Therneau [aut], Daniel Schaid [ctb], Elizabeth Atkinson [ctb] Maintainer: Louis Le Nézet URL: https://louislenezet.github.io/Pedixplorer/ VignetteBuilder: knitr BugReports: https://github.com/LouisLeNezet/Pedixplorer/issues git_url: https://git.bioconductor.org/packages/Pedixplorer git_branch: RELEASE_3_20 git_last_commit: 16276b4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Pedixplorer_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Pedixplorer_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Pedixplorer_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Pedixplorer_1.2.0.tgz vignettes: vignettes/Pedixplorer/inst/doc/pedigree_alignment.html, vignettes/Pedixplorer/inst/doc/pedigree_kinship.html, vignettes/Pedixplorer/inst/doc/pedigree_object.html, vignettes/Pedixplorer/inst/doc/pedigree_plot.html, vignettes/Pedixplorer/inst/doc/Pedixplorer.html vignetteTitles: Pedigree alignment details, Pedigree kinship() details, Pedigree object, Pedigree plotting details, Pedixplorer tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Pedixplorer/inst/doc/pedigree_alignment.R, vignettes/Pedixplorer/inst/doc/pedigree_kinship.R, vignettes/Pedixplorer/inst/doc/pedigree_object.R, vignettes/Pedixplorer/inst/doc/pedigree_plot.R, vignettes/Pedixplorer/inst/doc/Pedixplorer.R dependencyCount: 103 Package: pengls Version: 1.12.0 Depends: R (>= 4.2.0) Imports: glmnet, nlme, stats, BiocParallel Suggests: knitr,rmarkdown,testthat License: GPL-2 MD5sum: 04c4e31303c6eeda21cab2286a2a5f5e NeedsCompilation: no Title: Fit Penalised Generalised Least Squares models Description: Combine generalised least squares methodology from the nlme package for dealing with autocorrelation with penalised least squares methods from the glmnet package to deal with high dimensionality. This pengls packages glues them together through an iterative loop. The resulting method is applicable to high dimensional datasets that exhibit autocorrelation, such as spatial or temporal data. biocViews: Transcriptomics, Regression, TimeCourse, Spatial Author: Stijn Hawinkel [cre, aut] () Maintainer: Stijn Hawinkel VignetteBuilder: knitr BugReports: https://github.com/sthawinke/pengls git_url: https://git.bioconductor.org/packages/pengls git_branch: RELEASE_3_20 git_last_commit: d50dec2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pengls_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pengls_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pengls_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pengls_1.12.0.tgz vignettes: vignettes/pengls/inst/doc/penglsVignette.html vignetteTitles: Vignette of the pengls package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pengls/inst/doc/penglsVignette.R dependencyCount: 27 Package: PepSetTest Version: 1.0.0 Imports: dplyr, limma, lme4, MASS, matrixStats, reshape2, stats, tibble, SummarizedExperiment, methods Suggests: statmod, BiocStyle, knitr, rmarkdown, tidyr License: GPL (>= 3) MD5sum: 34543a61d708ed84e035f27ff8634055 NeedsCompilation: no Title: Peptide Set Test Description: Peptide Set Test (PepSetTest) is a peptide-centric strategy to infer differentially expressed proteins in LC-MS/MS proteomics data. This test detects coordinated changes in the expression of peptides originating from the same protein and compares these changes against the rest of the peptidome. Compared to traditional aggregation-based approaches, the peptide set test demonstrates improved statistical power, yet controlling the Type I error rate correctly in most cases. This test can be valuable for discovering novel biomarkers and prioritizing drug targets, especially when the direct application of statistical analysis to protein data fails to provide substantial insights. biocViews: DifferentialExpression, Regression, Proteomics, MassSpectrometry Author: Junmin Wang [aut, cre] Maintainer: Junmin Wang URL: https://github.com/JmWangBio/PepSetTest VignetteBuilder: knitr BugReports: https://github.com/JmWangBio/PepSetTest/issues git_url: https://git.bioconductor.org/packages/PepSetTest git_branch: RELEASE_3_20 git_last_commit: bac6b00 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PepSetTest_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PepSetTest_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PepSetTest_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PepSetTest_1.0.0.tgz vignettes: vignettes/PepSetTest/inst/doc/PepSetTest.html vignetteTitles: A Tutorial for PepSetTest hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PepSetTest/inst/doc/PepSetTest.R dependencyCount: 67 Package: PepsNMR Version: 1.24.0 Depends: R (>= 3.6) Imports: Matrix, ptw, ggplot2, gridExtra, matrixStats, reshape2, methods, graphics, stats Suggests: knitr, markdown, rmarkdown, BiocStyle, PepsNMRData License: GPL-2 | file LICENSE MD5sum: 8d1c438587788266d1a15fb4a2e2373f NeedsCompilation: no Title: Pre-process 1H-NMR FID signals Description: This package provides R functions for common pre-procssing steps that are applied on 1H-NMR data. It also provides a function to read the FID signals directly in the Bruker format. biocViews: Software, Preprocessing, Visualization, Metabolomics, DataImport Author: Manon Martin [aut, cre], Bernadette Govaerts [aut, ths], Benoît Legat [aut], Paul H.C. Eilers [aut], Pascal de Tullio [dtc], Bruno Boulanger [ctb], Julien Vanwinsberghe [ctb] Maintainer: Manon Martin URL: https://github.com/ManonMartin/PepsNMR VignetteBuilder: knitr BugReports: https://github.com/ManonMartin/PepsNMR/issues git_url: https://git.bioconductor.org/packages/PepsNMR git_branch: RELEASE_3_20 git_last_commit: 506695f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PepsNMR_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PepsNMR_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PepsNMR_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PepsNMR_1.24.0.tgz vignettes: vignettes/PepsNMR/inst/doc/PepsNMR_minimal_example.html vignetteTitles: Application of PepsNMR on the Human Serum dataset hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/PepsNMR/inst/doc/PepsNMR_minimal_example.R importsMe: ASICS dependencyCount: 46 Package: pepStat Version: 1.40.0 Depends: R (>= 3.0.0), Biobase, IRanges Imports: limma, fields, GenomicRanges, ggplot2, plyr, tools, methods, data.table Suggests: pepDat, Pviz, knitr, shiny License: Artistic-2.0 MD5sum: 1b6b83f0415ec64eaeb7c802f5c77ee3 NeedsCompilation: no Title: Statistical analysis of peptide microarrays Description: Statistical analysis of peptide microarrays biocViews: Microarray, Preprocessing Author: Raphael Gottardo, Gregory C Imholte, Renan Sauteraud, Mike Jiang Maintainer: Gregory C Imholte URL: https://github.com/RGLab/pepStat VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/pepStat git_branch: RELEASE_3_20 git_last_commit: 3df2862 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pepStat_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pepStat_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pepStat_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pepStat_1.40.0.tgz vignettes: vignettes/pepStat/inst/doc/pepStat.pdf vignetteTitles: Full peptide microarray analysis hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pepStat/inst/doc/pepStat.R dependencyCount: 63 Package: pepXMLTab Version: 1.40.0 Depends: R (>= 3.0.1) Imports: XML(>= 3.98-1.1) Suggests: RUnit, BiocGenerics License: Artistic-2.0 MD5sum: 79c519a5ba5c9e98a19b081a82dac5c7 NeedsCompilation: no Title: Parsing pepXML files and filter based on peptide FDR. Description: Parsing pepXML files based one XML package. The package tries to handle pepXML files generated from different softwares. The output will be a peptide-spectrum-matching tabular file. The package also provide function to filter the PSMs based on FDR. biocViews: ImmunoOncology, Proteomics, MassSpectrometry Author: Xiaojing Wang Maintainer: Xiaojing Wang git_url: https://git.bioconductor.org/packages/pepXMLTab git_branch: RELEASE_3_20 git_last_commit: 78a2e7a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pepXMLTab_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pepXMLTab_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pepXMLTab_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pepXMLTab_1.40.0.tgz vignettes: vignettes/pepXMLTab/inst/doc/pepXMLTab.pdf vignetteTitles: Introduction to pepXMLTab hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pepXMLTab/inst/doc/pepXMLTab.R dependencyCount: 3 Package: periodicDNA Version: 1.16.0 Depends: R (>= 4.0), Biostrings, GenomicRanges, IRanges, BSgenome, BiocParallel Imports: S4Vectors, rtracklayer, stats, GenomeInfoDb, magrittr, zoo, ggplot2, methods, parallel, cowplot Suggests: BSgenome.Scerevisiae.UCSC.sacCer3, BSgenome.Celegans.UCSC.ce11, BSgenome.Dmelanogaster.UCSC.dm6, BSgenome.Drerio.UCSC.danRer10, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm10, reticulate, testthat, covr, knitr, rmarkdown, pkgdown License: GPL-3 + file LICENSE MD5sum: 8a1bf41ba0fb05d726ed3da7d1213eab NeedsCompilation: no Title: Set of tools to identify periodic occurrences of k-mers in DNA sequences Description: This R package helps the user identify k-mers (e.g. di- or tri-nucleotides) present periodically in a set of genomic loci (typically regulatory elements). The functions of this package provide a straightforward approach to find periodic occurrences of k-mers in DNA sequences, such as regulatory elements. It is not aimed at identifying motifs separated by a conserved distance; for this type of analysis, please visit MEME website. biocViews: SequenceMatching, MotifDiscovery, MotifAnnotation, Sequencing, Coverage, Alignment, DataImport Author: Jacques Serizay [aut, cre] () Maintainer: Jacques Serizay URL: https://github.com/js2264/periodicDNA VignetteBuilder: knitr BugReports: https://github.com/js2264/periodicDNA/issues git_url: https://git.bioconductor.org/packages/periodicDNA git_branch: RELEASE_3_20 git_last_commit: a9cee7d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/periodicDNA_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/periodicDNA_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/periodicDNA_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/periodicDNA_1.16.0.tgz vignettes: vignettes/periodicDNA/inst/doc/periodicDNA.html vignetteTitles: Introduction to periodicDNA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/periodicDNA/inst/doc/periodicDNA.R dependencyCount: 87 Package: pfamAnalyzeR Version: 1.6.0 Depends: R (>= 4.3.0), readr, stringr, dplyr Imports: utils, tibble, magrittr Suggests: BiocStyle, knitr, rmarkdown License: MIT + file LICENSE MD5sum: 35528049bbe6c0fe561287bc2a39c3e4 NeedsCompilation: no Title: Identification of domain isotypes in pfam data Description: Protein domains is one of the most import annoation of proteins we have with the Pfam database/tool being (by far) the most used tool. This R package enables the user to read the pfam prediction from both webserver and stand-alone runs into R. We have recently shown most human protein domains exist as multiple distinct variants termed domain isotypes. Different domain isotypes are used in a cell, tissue, and disease-specific manner. Accordingly, we find that domain isotypes, compared to each other, modulate, or abolish the functionality of a protein domain. This R package enables the identification and classification of such domain isotypes from Pfam data. biocViews: AlternativeSplicing, TranscriptomeVariant, BiomedicalInformatics, FunctionalGenomics, SystemsBiology, Annotation, FunctionalPrediction, GenePrediction, DataImport Author: Kristoffer Vitting-Seerup [cre, aut] () Maintainer: Kristoffer Vitting-Seerup VignetteBuilder: knitr BugReports: https://github.com/kvittingseerup/pfamAnalyzeR/issues git_url: https://git.bioconductor.org/packages/pfamAnalyzeR git_branch: RELEASE_3_20 git_last_commit: f54b196 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pfamAnalyzeR_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pfamAnalyzeR_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pfamAnalyzeR_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pfamAnalyzeR_1.6.0.tgz vignettes: vignettes/pfamAnalyzeR/inst/doc/pfamAnalyzeR.html vignetteTitles: pfamAnalyzeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/pfamAnalyzeR/inst/doc/pfamAnalyzeR.R dependsOnMe: IsoformSwitchAnalyzeR dependencyCount: 35 Package: pgca Version: 1.30.0 Imports: utils, stats Suggests: knitr, testthat, rmarkdown License: GPL (>= 2) MD5sum: ec5cae8e52979d852cabb6c45123c013 NeedsCompilation: no Title: PGCA: An Algorithm to Link Protein Groups Created from MS/MS Data Description: Protein Group Code Algorithm (PGCA) is a computationally inexpensive algorithm to merge protein summaries from multiple experimental quantitative proteomics data. The algorithm connects two or more groups with overlapping accession numbers. In some cases, pairwise groups are mutually exclusive but they may still be connected by another group (or set of groups) with overlapping accession numbers. Thus, groups created by PGCA from multiple experimental runs (i.e., global groups) are called "connected" groups. These identified global protein groups enable the analysis of quantitative data available for protein groups instead of unique protein identifiers. biocViews: WorkflowStep,AssayDomain,Proteomics,MassSpectrometry,ImmunoOncology Author: Gabriela Cohen-Freue Maintainer: Gabriela Cohen-Freue VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/pgca git_branch: RELEASE_3_20 git_last_commit: fb884de git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pgca_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pgca_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pgca_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pgca_1.30.0.tgz vignettes: vignettes/pgca/inst/doc/intro.html vignetteTitles: Introduction hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pgca/inst/doc/intro.R dependencyCount: 2 Package: pgxRpi Version: 1.2.0 Depends: R (>= 4.2) Imports: utils, methods, grDevices, graphics, circlize, httr, dplyr, attempt, lubridate, survival, survminer, ggplot2, GenomicRanges, SummarizedExperiment, S4Vectors, yaml, parallel, future, future.apply Suggests: BiocStyle, rmarkdown, knitr, testthat License: Artistic-2.0 MD5sum: 620df9868488feac34c15f6bd7b45d7c NeedsCompilation: no Title: R wrapper for Progenetix Description: The package is an R wrapper for Progenetix REST API built upon the Beacon v2 protocol. Its purpose is to provide a seamless way for retrieving genomic data from Progenetix database—an open resource dedicated to curated oncogenomic profiles. Empowered by this package, users can effortlessly access and visualize data from Progenetix. biocViews: CopyNumberVariation, GenomicVariation, DataImport, Software Author: Hangjia Zhao [aut, cre] (), Michael Baudis [aut] () Maintainer: Hangjia Zhao URL: https://github.com/progenetix/pgxRpi VignetteBuilder: knitr BugReports: https://github.com/progenetix/pgxRpi/issues git_url: https://git.bioconductor.org/packages/pgxRpi git_branch: RELEASE_3_20 git_last_commit: b979290 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pgxRpi_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pgxRpi_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pgxRpi_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pgxRpi_1.2.0.tgz vignettes: vignettes/pgxRpi/inst/doc/Introduction_1_loadmetadata.html, vignettes/pgxRpi/inst/doc/Introduction_2_loadvariants.html, vignettes/pgxRpi/inst/doc/Introduction_3_loadfrequency.html, vignettes/pgxRpi/inst/doc/Introduction_4_process_pgxseg.html vignetteTitles: Introduction_1_loadmetadata, Introduction_2_loadvariants, Introduction_3_loadfrequency, Introduction_4_process_pgxseg hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pgxRpi/inst/doc/Introduction_1_loadmetadata.R, vignettes/pgxRpi/inst/doc/Introduction_2_loadvariants.R, vignettes/pgxRpi/inst/doc/Introduction_3_loadfrequency.R, vignettes/pgxRpi/inst/doc/Introduction_4_process_pgxseg.R dependencyCount: 137 Package: phantasus Version: 1.26.0 Depends: R (>= 4.3) Imports: ggplot2, protolite, Biobase, GEOquery, Rook, htmltools, httpuv, jsonlite, limma, edgeR, opencpu, assertthat, methods, httr, rhdf5, utils, parallel, stringr, fgsea (>= 1.9.4), svglite, gtable, stats, Matrix, pheatmap, scales, ccaPP, grid, grDevices, AnnotationDbi, DESeq2, data.table, curl, apeglm, tidyr, config (>= 0.3.2), rhdf5client (>= 1.25.1), yaml, fs, phantasusLite, XML Suggests: testthat, BiocStyle, knitr, rmarkdown, org.Hs.eg.db, org.Mm.eg.db License: MIT + file LICENSE MD5sum: 0afe7f193e0bf54f8f9c0a120e5b26fc NeedsCompilation: no Title: Visual and interactive gene expression analysis Description: Phantasus is a web-application for visual and interactive gene expression analysis. Phantasus is based on Morpheus – a web-based software for heatmap visualisation and analysis, which was integrated with an R environment via OpenCPU API. Aside from basic visualization and filtering methods, R-based methods such as k-means clustering, principal component analysis or differential expression analysis with limma package are supported. biocViews: GeneExpression, GUI, Visualization, DataRepresentation, Transcriptomics, RNASeq, Microarray, Normalization, Clustering, DifferentialExpression, PrincipalComponent, ImmunoOncology Author: Maxim Kleverov [aut], Daria Zenkova [aut], Vladislav Kamenev [aut], Margarita Sablina [ctb], Maxim Artyomov [aut], Alexey Sergushichev [aut, cre] Maintainer: Alexey Sergushichev URL: https://alserglab.wustl.edu/phantasus VignetteBuilder: knitr BugReports: https://github.com/ctlab/phantasus/issues git_url: https://git.bioconductor.org/packages/phantasus git_branch: RELEASE_3_20 git_last_commit: c859e5c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/phantasus_1.26.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/phantasus_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/phantasus_1.26.0.tgz vignettes: vignettes/phantasus/inst/doc/phantasus-tutorial.html vignetteTitles: Using phantasus application hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/phantasus/inst/doc/phantasus-tutorial.R dependencyCount: 165 Package: phantasusLite Version: 1.4.0 Depends: R (>= 4.2) Imports: data.table, rhdf5client(>= 1.25.1), httr, stringr, stats, utils, Biobase, methods Suggests: testthat (>= 3.0.0), knitr, rmarkdown, BiocStyle, rhdf5, GEOquery License: MIT + file LICENSE MD5sum: d91992a4871bae09abfd2ac02147be76 NeedsCompilation: no Title: Loading and annotation RNA-seq counts matrices Description: PhantasusLite – a lightweight package with helper functions of general interest extracted from phantasus package. In parituclar it simplifies working with public RNA-seq datasets from GEO by providing access to the remote HSDS repository with the precomputed gene counts from ARCHS4 and DEE2 projects. biocViews: GeneExpression, Transcriptomics, RNASeq Author: Rita Sablina [aut], Maxim Kleverov [aut], Alexey Sergushichev [aut, cre] Maintainer: Alexey Sergushichev URL: https://github.com/ctlab/phantasusLite/ VignetteBuilder: knitr BugReports: https://github.com/ctlab/phantasusLite/issues git_url: https://git.bioconductor.org/packages/phantasusLite git_branch: RELEASE_3_20 git_last_commit: 4125e17 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/phantasusLite_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/phantasusLite_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/phantasusLite_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/phantasusLite_1.4.0.tgz vignettes: vignettes/phantasusLite/inst/doc/phantasusLite-tutorial.html vignetteTitles: phantasusLite tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/phantasusLite/inst/doc/phantasusLite-tutorial.R importsMe: phantasus dependencyCount: 42 Package: PharmacoGx Version: 3.10.0 Depends: R (>= 3.6), CoreGx Imports: BiocGenerics, Biobase, S4Vectors, SummarizedExperiment, MultiAssayExperiment, BiocParallel, ggplot2, RColorBrewer, magicaxis, parallel, caTools, methods, downloader, stats, utils, graphics, grDevices, reshape2, jsonlite, data.table, checkmate, boot, coop LinkingTo: Rcpp Suggests: pander, rmarkdown, knitr, knitcitations, crayon, testthat, markdown, BiocStyle, R.utils License: GPL (>= 3) MD5sum: 7bfe9e2192f852deabc62b213d837920 NeedsCompilation: yes Title: Analysis of Large-Scale Pharmacogenomic Data Description: Contains a set of functions to perform large-scale analysis of pharmaco-genomic data. These include the PharmacoSet object for storing the results of pharmacogenomic experiments, as well as a number of functions for computing common summaries of drug-dose response and correlating them with the molecular features in a cancer cell-line. biocViews: GeneExpression, Pharmacogenetics, Pharmacogenomics, Software, Classification Author: Petr Smirnov [aut], Christopher Eeles [aut], Jermiah Joseph [aut], Zhaleh Safikhani [aut], Mark Freeman [aut], Feifei Li [aut], Benjamin Haibe-Kains [aut, cre] Maintainer: Benjamin Haibe-Kains VignetteBuilder: knitr BugReports: https://github.com/bhklab/PharmacoGx/issues git_url: https://git.bioconductor.org/packages/PharmacoGx git_branch: RELEASE_3_20 git_last_commit: db026bc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PharmacoGx_3.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PharmacoGx_3.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PharmacoGx_3.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PharmacoGx_3.10.0.tgz vignettes: vignettes/PharmacoGx/inst/doc/CreatingPharmacoSet.html, vignettes/PharmacoGx/inst/doc/DetectingDrugSynergyAndAntagonism.html, vignettes/PharmacoGx/inst/doc/PharmacoGx.html vignetteTitles: Creating a PharmacoSet Object, Detecting Drug Synergy and Antagonism with PharmacoGx 3.0+, PharmacoGx: An R Package for Analysis of Large Pharmacogenomic Datasets hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PharmacoGx/inst/doc/CreatingPharmacoSet.R, vignettes/PharmacoGx/inst/doc/DetectingDrugSynergyAndAntagonism.R, vignettes/PharmacoGx/inst/doc/PharmacoGx.R importsMe: gDRimport, Xeva suggestsMe: ToxicoGx dependencyCount: 155 Package: PhenoGeneRanker Version: 1.14.0 Imports: igraph, Matrix, foreach, doParallel, dplyr, stats, utils, parallel Suggests: knitr, rmarkdown License: Creative Commons Attribution 4.0 International License MD5sum: 683940c76832fb1787df54d93e5778c8 NeedsCompilation: no Title: PhenoGeneRanker: A gene and phenotype prioritization tool Description: This package is a gene/phenotype prioritization tool that utilizes multiplex heterogeneous gene phenotype network. PhenoGeneRanker allows multi-layer gene and phenotype networks. It also calculates empirical p-values of gene/phenotype ranking using random stratified sampling of genes/phenotypes based on their connectivity degree in the network. https://dl.acm.org/doi/10.1145/3307339.3342155. biocViews: BiomedicalInformatics, GenePrediction, GraphAndNetwork, Network, NetworkInference, Pathways, Software, SystemsBiology Author: Cagatay Dursun [aut, cre] Maintainer: Cagatay Dursun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/PhenoGeneRanker git_branch: RELEASE_3_20 git_last_commit: 6e146fc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PhenoGeneRanker_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PhenoGeneRanker_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PhenoGeneRanker_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PhenoGeneRanker_1.14.0.tgz vignettes: vignettes/PhenoGeneRanker/inst/doc/PhenoGeneRanker.html vignetteTitles: PhenoGeneRanker hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PhenoGeneRanker/inst/doc/PhenoGeneRanker.R dependencyCount: 31 Package: phenomis Version: 1.8.0 Depends: SummarizedExperiment Imports: Biobase, biodb, biodbChebi, data.table, futile.logger, ggplot2, ggrepel, graphics, grDevices, grid, htmlwidgets, igraph, limma, methods, MultiAssayExperiment, MultiDataSet, PMCMRplus, plotly, ranger, RColorBrewer, ropls, stats, tibble, tidyr, utils, VennDiagram Suggests: BiocGenerics, BiocStyle, biosigner, CLL, knitr, omicade4, rmarkdown, testthat License: CeCILL MD5sum: 73d059932bb380964ca38e2fa1a550a3 NeedsCompilation: no Title: Postprocessing and univariate analysis of omics data Description: The 'phenomis' package provides methods to perform post-processing (i.e. quality control and normalization) as well as univariate statistical analysis of single and multi-omics data sets. These methods include quality control metrics, signal drift and batch effect correction, intensity transformation, univariate hypothesis testing, but also clustering (as well as annotation of metabolomics data). The data are handled in the standard Bioconductor formats (i.e. SummarizedExperiment and MultiAssayExperiment for single and multi-omics datasets, respectively; the alternative ExpressionSet and MultiDataSet formats are also supported for convenience). As a result, all methods can be readily chained as workflows. The pipeline can be further enriched by multivariate analysis and feature selection, by using the 'ropls' and 'biosigner' packages, which support the same formats. Data can be conveniently imported from and exported to text files. Although the methods were initially targeted to metabolomics data, most of the methods can be applied to other types of omics data (e.g., transcriptomics, proteomics). biocViews: BatchEffect, Clustering, Coverage, KEGG, MassSpectrometry, Metabolomics, Normalization, Proteomics, QualityControl, Sequencing, StatisticalMethod, Transcriptomics Author: Etienne A. Thevenot [aut, cre] (), Natacha Lenuzza [ctb], Marie Tremblay-Franco [ctb], Alyssa Imbert [ctb], Pierrick Roger [ctb], Eric Venot [ctb], Sylvain Dechaumet [ctb] Maintainer: Etienne A. Thevenot URL: https://doi.org/10.1038/s41597-021-01095-3 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/phenomis git_branch: RELEASE_3_20 git_last_commit: 1942443 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/phenomis_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/phenomis_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/phenomis_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/phenomis_1.8.0.tgz vignettes: vignettes/phenomis/inst/doc/phenomis-vignette.html vignetteTitles: phenomis-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/phenomis/inst/doc/phenomis-vignette.R suggestsMe: ropls dependencyCount: 155 Package: phenopath Version: 1.30.0 Imports: Rcpp (>= 0.12.8), SummarizedExperiment, methods, stats, dplyr, tibble, ggplot2, tidyr LinkingTo: Rcpp Suggests: knitr, rmarkdown, forcats, testthat, BiocStyle, SingleCellExperiment License: Apache License (== 2.0) MD5sum: a1b664ee2d6d064f9faa43b0d38ae7d0 NeedsCompilation: yes Title: Genomic trajectories with heterogeneous genetic and environmental backgrounds Description: PhenoPath infers genomic trajectories (pseudotimes) in the presence of heterogeneous genetic and environmental backgrounds and tests for interactions between them. biocViews: ImmunoOncology, RNASeq, GeneExpression, Bayesian, SingleCell, PrincipalComponent Author: Kieran Campbell Maintainer: Kieran Campbell VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/phenopath git_branch: RELEASE_3_20 git_last_commit: 667fc5b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/phenopath_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/phenopath_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/phenopath_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/phenopath_1.30.0.tgz vignettes: vignettes/phenopath/inst/doc/introduction_to_phenopath.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/phenopath/inst/doc/introduction_to_phenopath.R suggestsMe: splatter dependencyCount: 71 Package: phenoTest Version: 1.54.0 Depends: R (>= 3.6.0), Biobase, methods, annotate, Heatplus, BMA, ggplot2, Hmisc Imports: survival, limma, gplots, Category, AnnotationDbi, hopach, biomaRt, GSEABase, genefilter, xtable, annotate, mgcv, hgu133a.db, ellipse Suggests: GSEABase, GO.db Enhances: parallel, org.Ce.eg.db, org.Mm.eg.db, org.Rn.eg.db, org.Hs.eg.db, org.Dm.eg.db License: GPL (>=2) Archs: x64 MD5sum: f50a29738bfdbc6c2dc658ffcd9b2809 NeedsCompilation: no Title: Tools to test association between gene expression and phenotype in a way that is efficient, structured, fast and scalable. We also provide tools to do GSEA (Gene set enrichment analysis) and copy number variation. Description: Tools to test correlation between gene expression and phenotype in a way that is efficient, structured, fast and scalable. GSEA is also provided. biocViews: Microarray, DifferentialExpression, MultipleComparison, Clustering, Classification Author: Evarist Planet Maintainer: Evarist Planet git_url: https://git.bioconductor.org/packages/phenoTest git_branch: RELEASE_3_20 git_last_commit: 6f88d11 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/phenoTest_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/phenoTest_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/phenoTest_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/phenoTest_1.54.0.tgz vignettes: vignettes/phenoTest/inst/doc/phenoTest.pdf vignetteTitles: Manual for the phenoTest library hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/phenoTest/inst/doc/phenoTest.R importsMe: canceR dependencyCount: 146 Package: PhenStat Version: 2.42.0 Depends: R (>= 3.5.0) Imports: SmoothWin, methods, car, nlme, nortest, MASS, msgps, logistf, knitr, tools, pingr, ggplot2, reshape, corrplot, graph, lme4, graphics, grDevices, utils, stats Suggests: RUnit, BiocGenerics License: file LICENSE MD5sum: 4010a9dad5f281a3054993c2092ced7b NeedsCompilation: no Title: Statistical analysis of phenotypic data Description: Package contains methods for statistical analysis of phenotypic data. biocViews: StatisticalMethod Author: Natalja Kurbatova, Natasha Karp, Jeremy Mason, Hamed Haselimashhadi Maintainer: Hamed Haselimashhadi git_url: https://git.bioconductor.org/packages/PhenStat git_branch: RELEASE_3_20 git_last_commit: b157f71 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PhenStat_2.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PhenStat_2.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PhenStat_2.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PhenStat_2.42.0.tgz vignettes: vignettes/PhenStat/inst/doc/PhenStat.pdf vignetteTitles: PhenStat Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/PhenStat/inst/doc/PhenStat.R dependencyCount: 118 Package: philr Version: 1.32.0 Imports: ape, phangorn, tidyr, ggplot2, ggtree, methods Suggests: testthat, knitr, ecodist, rmarkdown, BiocStyle, phyloseq, SummarizedExperiment, TreeSummarizedExperiment, glmnet, dplyr, mia License: GPL-3 MD5sum: e45ace4abfb591c0f37ab174248f6311 NeedsCompilation: no Title: Phylogenetic partitioning based ILR transform for metagenomics data Description: PhILR is short for Phylogenetic Isometric Log-Ratio Transform. This package provides functions for the analysis of compositional data (e.g., data representing proportions of different variables/parts). Specifically this package allows analysis of compositional data where the parts can be related through a phylogenetic tree (as is common in microbiota survey data) and makes available the Isometric Log Ratio transform built from the phylogenetic tree and utilizing a weighted reference measure. biocViews: ImmunoOncology, Sequencing, Microbiome, Metagenomics, Software Author: Justin Silverman [aut, cre], Leo Lahti [ctb] () Maintainer: Justin Silverman URL: https://github.com/jsilve24/philr VignetteBuilder: knitr BugReports: https://github.com/jsilve24/philr/issues git_url: https://git.bioconductor.org/packages/philr git_branch: RELEASE_3_20 git_last_commit: 5852752 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/philr_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/philr_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/philr_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/philr_1.32.0.tgz vignettes: vignettes/philr/inst/doc/philr-intro.html vignetteTitles: Introduction to PhILR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/philr/inst/doc/philr-intro.R dependencyCount: 64 Package: PhIPData Version: 1.14.0 Depends: R (>= 4.1.0), SummarizedExperiment (>= 1.3.81) Imports: BiocFileCache, BiocGenerics, methods, GenomicRanges, IRanges, S4Vectors, edgeR, cli, utils Suggests: BiocStyle, testthat, knitr, rmarkdown, covr, dplyr, readr, withr License: MIT + file LICENSE Archs: x64 MD5sum: 5d5422da85869a7cae252e397a1746b5 NeedsCompilation: no Title: Container for PhIP-Seq Experiments Description: PhIPData defines an S4 class for phage-immunoprecipitation sequencing (PhIP-seq) experiments. Buliding upon the RangedSummarizedExperiment class, PhIPData enables users to coordinate metadata with experimental data in analyses. Additionally, PhIPData provides specialized methods to subset and identify beads-only samples, subset objects using virus aliases, and use existing peptide libraries to populate object parameters. biocViews: Infrastructure, DataRepresentation, Sequencing, Coverage Author: Athena Chen [aut, cre] (), Rob Scharpf [aut], Ingo Ruczinski [aut] Maintainer: Athena Chen VignetteBuilder: knitr BugReports: https://github.com/athchen/PhIPData/issues git_url: https://git.bioconductor.org/packages/PhIPData git_branch: RELEASE_3_20 git_last_commit: b66000d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PhIPData_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PhIPData_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PhIPData_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PhIPData_1.14.0.tgz vignettes: vignettes/PhIPData/inst/doc/PhIPData.html vignetteTitles: PhIPData: A Container for PhIP-Seq Experiments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/PhIPData/inst/doc/PhIPData.R dependsOnMe: beer dependencyCount: 72 Package: phosphonormalizer Version: 1.30.0 Depends: R (>= 4.0) Imports: plyr, stats, graphics, matrixStats, methods Suggests: knitr, rmarkdown, testthat Enhances: MSnbase License: GPL (>= 2) MD5sum: 73c2916d619e81a1b3801fbbac91b8bf NeedsCompilation: no Title: Compensates for the bias introduced by median normalization in Description: It uses the overlap between enriched and non-enriched datasets to compensate for the bias introduced in global phosphorylation after applying median normalization. biocViews: Software, StatisticalMethod, WorkflowStep, Normalization, Proteomics Author: Sohrab Saraei [aut, cre], Tomi Suomi [ctb], Otto Kauko [ctb], Laura Elo [ths] Maintainer: Sohrab Saraei VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/phosphonormalizer git_branch: RELEASE_3_20 git_last_commit: 79f78b5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/phosphonormalizer_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/phosphonormalizer_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/phosphonormalizer_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/phosphonormalizer_1.30.0.tgz vignettes: vignettes/phosphonormalizer/inst/doc/phosphonormalizer.pdf, vignettes/phosphonormalizer/inst/doc/vignette.html vignetteTitles: phosphonormalizer: Phosphoproteomics Normalization, Pairwise normalization of phosphoproteomics data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/phosphonormalizer/inst/doc/phosphonormalizer.R, vignettes/phosphonormalizer/inst/doc/vignette.R dependencyCount: 7 Package: PhosR Version: 1.16.0 Depends: R (>= 4.2.0) Imports: ruv, e1071, dendextend, limma, pcaMethods, stats, RColorBrewer, circlize, dplyr, igraph, pheatmap, preprocessCore, tidyr, rlang, graphics, grDevices, utils, SummarizedExperiment, methods, S4Vectors, BiocGenerics, ggplot2, GGally, ggdendro, ggpubr, network, reshape2, ggtext, stringi Suggests: testthat, knitr, rgl, sna, ClueR, directPA, rmarkdown, org.Rn.eg.db, org.Mm.eg.db, reactome.db, annotate, BiocStyle, stringr, calibrate License: GPL-3 + file LICENSE MD5sum: 6b1504d5397d33cb69cced260b89c781 NeedsCompilation: no Title: A set of methods and tools for comprehensive analysis of phosphoproteomics data Description: PhosR is a package for the comprenhensive analysis of phosphoproteomic data. There are two major components to PhosR: processing and downstream analysis. PhosR consists of various processing tools for phosphoproteomics data including filtering, imputation, normalisation, and functional analysis for inferring active kinases and signalling pathways. biocViews: Software, ResearchField, Proteomics Author: Pengyi Yang [aut], Taiyun Kim [aut, cre], Hani Jieun Kim [aut] Maintainer: Taiyun Kim VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/PhosR git_branch: RELEASE_3_20 git_last_commit: 400b0f0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PhosR_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PhosR_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PhosR_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PhosR_1.16.0.tgz vignettes: vignettes/PhosR/inst/doc/PhosR.html vignetteTitles: An introduction to PhosR package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/PhosR/inst/doc/PhosR.R dependencyCount: 139 Package: PhyloProfile Version: 1.20.4 Depends: R (>= 4.4.0) Imports: ape, bioDist, BiocStyle, Biostrings, colourpicker, data.table, dplyr, DT, energy, ExperimentHub, extrafont, fastcluster, ggplot2, gridExtra, pbapply, plotly, RColorBrewer, RCurl, scattermore, shiny, shinyBS, shinycssloaders, shinyFiles, shinyjs, stringr, tsne, umap, xml2, zoo, yaml Suggests: knitr, rmarkdown, testthat, OmaDB License: MIT + file LICENSE MD5sum: 263595db36a5850abcd047d1d81d9a23 NeedsCompilation: no Title: PhyloProfile Description: PhyloProfile is a tool for exploring complex phylogenetic profiles. Phylogenetic profiles, presence/absence patterns of genes over a set of species, are commonly used to trace the functional and evolutionary history of genes across species and time. With PhyloProfile we can enrich regular phylogenetic profiles with further data like sequence/structure similarity, to make phylogenetic profiling more meaningful. Besides the interactive visualisation powered by R-Shiny, the package offers a set of further analysis features to gain insights like the gene age estimation or core gene identification. biocViews: Software, Visualization, DataRepresentation, MultipleComparison, FunctionalPrediction, DimensionReduction Author: Vinh Tran [aut, cre] (), Bastian Greshake Tzovaras [aut], Ingo Ebersberger [aut], Carla Mölbert [ctb] Maintainer: Vinh Tran URL: https://github.com/BIONF/PhyloProfile/ VignetteBuilder: knitr BugReports: https://github.com/BIONF/PhyloProfile/issues git_url: https://git.bioconductor.org/packages/PhyloProfile git_branch: RELEASE_3_20 git_last_commit: 44345df git_last_commit_date: 2024-12-02 Date/Publication: 2024-12-02 source.ver: src/contrib/PhyloProfile_1.20.4.tar.gz win.binary.ver: bin/windows/contrib/4.4/PhyloProfile_1.20.4.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PhyloProfile_1.20.4.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PhyloProfile_1.20.4.tgz vignettes: vignettes/PhyloProfile/inst/doc/PhyloProfile-vignette.html vignetteTitles: PhyloProfile hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/PhyloProfile/inst/doc/PhyloProfile-vignette.R dependencyCount: 146 Package: phyloseq Version: 1.50.0 Depends: R (>= 3.3.0) Imports: ade4 (>= 1.7-4), ape (>= 5.0), Biobase (>= 2.36.2), BiocGenerics (>= 0.22.0), biomformat (>= 1.0.0), Biostrings (>= 2.40.0), cluster (>= 2.0.4), data.table (>= 1.10.4), foreach (>= 1.4.3), ggplot2 (>= 2.1.0), igraph (>= 1.0.1), methods (>= 3.3.0), multtest (>= 2.28.0), plyr (>= 1.8.3), reshape2 (>= 1.4.1), scales (>= 0.4.0), vegan (>= 2.5) Suggests: BiocStyle (>= 2.4), DESeq2 (>= 1.16.1), genefilter (>= 1.58), knitr (>= 1.16), magrittr (>= 1.5), metagenomeSeq (>= 1.14), rmarkdown (>= 1.6), testthat (>= 1.0.2) Enhances: doParallel (>= 1.0.10) License: AGPL-3 MD5sum: 3477ffc96686ac43d1dc7ce0bdbb647f NeedsCompilation: no Title: Handling and analysis of high-throughput microbiome census data Description: phyloseq provides a set of classes and tools to facilitate the import, storage, analysis, and graphical display of microbiome census data. biocViews: ImmunoOncology, Sequencing, Microbiome, Metagenomics, Clustering, Classification, MultipleComparison, GeneticVariability Author: Paul J. McMurdie , Susan Holmes , with contributions from Gregory Jordan and Scott Chamberlain Maintainer: Paul J. McMurdie URL: http://dx.plos.org/10.1371/journal.pone.0061217 VignetteBuilder: knitr BugReports: https://github.com/joey711/phyloseq/issues git_url: https://git.bioconductor.org/packages/phyloseq git_branch: RELEASE_3_20 git_last_commit: 8724974 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/phyloseq_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/phyloseq_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/phyloseq_1.50.0.tgz vignettes: vignettes/phyloseq/inst/doc/phyloseq-analysis.html, vignettes/phyloseq/inst/doc/phyloseq-basics.html, vignettes/phyloseq/inst/doc/phyloseq-FAQ.html, vignettes/phyloseq/inst/doc/phyloseq-mixture-models.html vignetteTitles: analysis vignette, phyloseq basics vignette, phyloseq Frequently Asked Questions (FAQ), phyloseq and DESeq2 on Colorectal Cancer Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/phyloseq/inst/doc/phyloseq-analysis.R, vignettes/phyloseq/inst/doc/phyloseq-basics.R, vignettes/phyloseq/inst/doc/phyloseq-FAQ.R, vignettes/phyloseq/inst/doc/phyloseq-mixture-models.R dependsOnMe: microbiome, SIAMCAT, MiscMetabar, phyloseqGraphTest importsMe: ADAPT, combi, dar, MBECS, PathoStat, RCM, reconsi, RPA, SimBu, SPsimSeq, zitools, HMP2Data, adaptiveGPCA, breakaway, chem16S, holobiont, HybridMicrobiomes, microbial, mixKernel, multimedia, SigTree, speedytax, TaxaNorm, treeDA suggestsMe: ANCOMBC, CBEA, decontam, lefser, MGnifyR, mia, MicrobiotaProcess, philr, HMP16SData, corncob, FAVA, fido, file2meco, parafac4microbiome, pctax, phyloregion dependencyCount: 82 Package: piano Version: 2.22.0 Depends: R (>= 3.5) Imports: BiocGenerics, Biobase, gplots, igraph, relations, marray, fgsea, shiny, DT, htmlwidgets, shinyjs, shinydashboard, visNetwork, scales, grDevices, graphics, stats, utils, methods Suggests: yeast2.db, rsbml, plotrix, limma, affy, plier, affyPLM, gtools, biomaRt, snowfall, AnnotationDbi, knitr, rmarkdown, BiocStyle License: GPL (>=2) MD5sum: 85e52c0b48f3fe7a528f2bbb96657ca5 NeedsCompilation: no Title: Platform for integrative analysis of omics data Description: Piano performs gene set analysis using various statistical methods, from different gene level statistics and a wide range of gene-set collections. Furthermore, the Piano package contains functions for combining the results of multiple runs of gene set analyses. biocViews: Microarray, Preprocessing, QualityControl, DifferentialExpression, Visualization, GeneExpression, GeneSetEnrichment, Pathways Author: Leif Varemo Wigge and Intawat Nookaew Maintainer: Leif Varemo Wigge URL: http://www.sysbio.se/piano VignetteBuilder: knitr BugReports: https://github.com/varemo/piano/issues git_url: https://git.bioconductor.org/packages/piano git_branch: RELEASE_3_20 git_last_commit: 899745e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/piano_2.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/piano_2.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/piano_2.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/piano_2.22.0.tgz vignettes: vignettes/piano/inst/doc/piano-vignette.pdf, vignettes/piano/inst/doc/Running_gene-set_analysis_with_piano.html vignetteTitles: Piano - Platform for Integrative Analysis of Omics data, Running gene-set anaysis with piano hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/piano/inst/doc/piano-vignette.R, vignettes/piano/inst/doc/Running_gene-set_analysis_with_piano.R importsMe: CoreGx suggestsMe: cosmosR, BloodCancerMultiOmics2017 dependencyCount: 102 Package: pickgene Version: 1.78.0 Imports: graphics, grDevices, MASS, stats, utils License: GPL (>= 2) MD5sum: fbee43148f438f3eae46783d369b7aaf NeedsCompilation: no Title: Adaptive Gene Picking for Microarray Expression Data Analysis Description: Functions to Analyze Microarray (Gene Expression) Data. biocViews: Microarray, DifferentialExpression Author: Brian S. Yandell Maintainer: Brian S. Yandell URL: http://www.stat.wisc.edu/~yandell/statgen git_url: https://git.bioconductor.org/packages/pickgene git_branch: RELEASE_3_20 git_last_commit: 7f9aff9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pickgene_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pickgene_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pickgene_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pickgene_1.78.0.tgz vignettes: vignettes/pickgene/inst/doc/pickgene.pdf vignetteTitles: Adaptive Gene Picking for Microarray Expression Data Analysis hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 6 Package: PICS Version: 2.50.0 Depends: R (>= 3.0.0) Imports: utils, stats, graphics, grDevices, methods, IRanges, GenomicRanges, Rsamtools, GenomicAlignments Suggests: rtracklayer, parallel, knitr License: Artistic-2.0 MD5sum: f7ebf4a39521560959720e07325dc592 NeedsCompilation: yes Title: Probabilistic inference of ChIP-seq Description: Probabilistic inference of ChIP-Seq using an empirical Bayes mixture model approach. biocViews: Clustering, Visualization, Sequencing, ChIPseq Author: Xuekui Zhang , Raphael Gottardo Maintainer: Renan Sauteraud URL: https://github.com/SRenan/PICS VignetteBuilder: knitr BugReports: https://github.com/SRenan/PICS/issues git_url: https://git.bioconductor.org/packages/PICS git_branch: RELEASE_3_20 git_last_commit: 2ffb0c3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PICS_2.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PICS_2.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PICS_2.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PICS_2.50.0.tgz vignettes: vignettes/PICS/inst/doc/PICS.html vignetteTitles: The PICS users guide hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PICS/inst/doc/PICS.R importsMe: PING dependencyCount: 51 Package: Pigengene Version: 1.32.0 Depends: R (>= 4.0.3), graph, BiocStyle (>= 2.28.0) Imports: bnlearn (>= 4.7), C50 (>= 0.1.2), MASS, matrixStats, partykit, Rgraphviz, WGCNA, GO.db, impute, preprocessCore, grDevices, graphics, stats, utils, parallel, pheatmap (>= 1.0.8), dplyr, gdata, clusterProfiler, ReactomePA, ggplot2, openxlsx, DBI, DOSE Suggests: org.Hs.eg.db (>= 3.7.0), org.Mm.eg.db (>= 3.7.0), biomaRt (>= 2.30.0), knitr, AnnotationDbi, energy License: GPL (>=2) MD5sum: 593b50d56cfb5bc2f5f5c83aadb236e8 NeedsCompilation: no Title: Infers biological signatures from gene expression data Description: Pigengene package provides an efficient way to infer biological signatures from gene expression profiles. The signatures are independent from the underlying platform, e.g., the input can be microarray or RNA Seq data. It can even infer the signatures using data from one platform, and evaluate them on the other. Pigengene identifies the modules (clusters) of highly coexpressed genes using coexpression network analysis, summarizes the biological information of each module in an eigengene, learns a Bayesian network that models the probabilistic dependencies between modules, and builds a decision tree based on the expression of eigengenes. biocViews: GeneExpression, RNASeq, NetworkInference, Network, GraphAndNetwork, BiomedicalInformatics, SystemsBiology, Transcriptomics, Classification, Clustering, DecisionTree, DimensionReduction, PrincipalComponent, Microarray, Normalization, ImmunoOncology Author: Habil Zare, Amir Foroushani, Rupesh Agrahari, Meghan Short, Isha Mehta, Neda Emami, and Sogand Sajedi Maintainer: Habil Zare VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Pigengene git_branch: RELEASE_3_20 git_last_commit: c837431 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Pigengene_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Pigengene_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Pigengene_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Pigengene_1.32.0.tgz vignettes: vignettes/Pigengene/inst/doc/Pigengene_inference.pdf vignetteTitles: Pigengene: Computing and using eigengenes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Pigengene/inst/doc/Pigengene_inference.R importsMe: iNETgrate dependencyCount: 185 Package: PING Version: 2.50.0 Depends: R(>= 3.5.0) Imports: methods, PICS, graphics, grDevices, stats, Gviz, fda, BSgenome, stats4, BiocGenerics, IRanges, GenomicRanges, S4Vectors Suggests: parallel, ShortRead, rtracklayer License: Artistic-2.0 MD5sum: 8339c8918acb33c6c33786c409899dc8 NeedsCompilation: yes Title: Probabilistic inference for Nucleosome Positioning with MNase-based or Sonicated Short-read Data Description: Probabilistic inference of ChIP-Seq using an empirical Bayes mixture model approach. biocViews: Clustering, StatisticalMethod, Visualization, Sequencing Author: Xuekui Zhang , Raphael Gottardo , Sangsoon Woo Maintainer: Renan Sauteraud git_url: https://git.bioconductor.org/packages/PING git_branch: RELEASE_3_20 git_last_commit: 0e7d062 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PING_2.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PING_2.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PING_2.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PING_2.50.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 174 Package: pipeComp Version: 1.16.0 Depends: R (>= 4.1) Imports: BiocParallel, S4Vectors, ComplexHeatmap, SingleCellExperiment, SummarizedExperiment, Seurat, matrixStats, Matrix, cluster, aricode, methods, utils, dplyr, grid, scales, scran, viridisLite, clue, randomcoloR, ggplot2, cowplot, intrinsicDimension, scater, knitr, reshape2, stats, Rtsne, uwot, circlize, RColorBrewer Suggests: BiocStyle, rmarkdown License: GPL MD5sum: 1d4f2ff01c4ebbb799909f65d77eb0e2 NeedsCompilation: no Title: pipeComp pipeline benchmarking framework Description: A simple framework to facilitate the comparison of pipelines involving various steps and parameters. The `pipelineDefinition` class represents pipelines as, minimally, a set of functions consecutively executed on the output of the previous one, and optionally accompanied by step-wise evaluation and aggregation functions. Given such an object, a set of alternative parameters/methods, and benchmark datasets, the `runPipeline` function then proceeds through all combinations arguments, avoiding recomputing the same step twice and compiling evaluations on the fly to avoid storing potentially large intermediate data. biocViews: GeneExpression, Transcriptomics, Clustering, DataRepresentation Author: Pierre-Luc Germain [cre, aut] (), Anthony Sonrel [aut] (), Mark D. Robinson [aut, fnd] () Maintainer: Pierre-Luc Germain URL: https://doi.org/10.1186/s13059-020-02136-7 VignetteBuilder: knitr BugReports: https://github.com/plger/pipeComp git_url: https://git.bioconductor.org/packages/pipeComp git_branch: RELEASE_3_20 git_last_commit: 32e4073 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pipeComp_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pipeComp_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pipeComp_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pipeComp_1.16.0.tgz vignettes: vignettes/pipeComp/inst/doc/pipeComp_dea.html, vignettes/pipeComp/inst/doc/pipeComp.html, vignettes/pipeComp/inst/doc/pipeComp_scRNA.html vignetteTitles: pipeComp_dea, pipeComp, pipeComp_scRNA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/pipeComp/inst/doc/pipeComp_dea.R, vignettes/pipeComp/inst/doc/pipeComp.R, vignettes/pipeComp/inst/doc/pipeComp_scRNA.R dependencyCount: 219 Package: pipeFrame Version: 1.22.0 Depends: R (>= 4.0.0), Imports: BSgenome, digest, visNetwork, magrittr, methods, Biostrings, GenomeInfoDb, parallel, stats, utils, rmarkdown Suggests: BiocManager, knitr, rtracklayer, testthat, BSgenome.Hsapiens.UCSC.hg19 License: GPL-3 Archs: x64 MD5sum: 9d76948ffbd0785e16f89c0eccbb63d4 NeedsCompilation: no Title: Pipeline framework for bioinformatics in R Description: pipeFrame is an R package for building a componentized bioinformatics pipeline. Each step in this pipeline is wrapped in the framework, so the connection among steps is created seamlessly and automatically. Users could focus more on fine-tuning arguments rather than spending a lot of time on transforming file format, passing task outputs to task inputs or installing the dependencies. Componentized step elements can be customized into other new pipelines flexibly as well. This pipeline can be split into several important functional steps, so it is much easier for users to understand the complex arguments from each step rather than parameter combination from the whole pipeline. At the same time, componentized pipeline can restart at the breakpoint and avoid rerunning the whole pipeline, which may save a lot of time for users on pipeline tuning or such issues as power off or process other interrupts. biocViews: Software, Infrastructure, WorkflowStep Author: Zheng Wei, Shining Ma Maintainer: Zheng Wei URL: https://github.com/wzthu/pipeFrame VignetteBuilder: knitr BugReports: https://github.com/wzthu/pipeFrame/issues git_url: https://git.bioconductor.org/packages/pipeFrame git_branch: RELEASE_3_20 git_last_commit: 208b341 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pipeFrame_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pipeFrame_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pipeFrame_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pipeFrame_1.22.0.tgz vignettes: vignettes/pipeFrame/inst/doc/pipeFrame.html vignetteTitles: An Introduction to pipeFrame hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pipeFrame/inst/doc/pipeFrame.R dependsOnMe: esATAC dependencyCount: 84 Package: PIPETS Version: 1.2.0 Depends: R (>= 4.4.0) Imports: dplyr, utils, stats, GenomicRanges, BiocGenerics, methods Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0) License: GPL-3 MD5sum: c7f07b225d88c0172f2f4c5afb6da639 NeedsCompilation: no Title: Poisson Identification of PEaks from Term-Seq data Description: PIPETS provides statistically robust analysis for 3'-seq/term-seq data. It utilizes a sliding window approach to apply a Poisson Distribution test to identify genomic positions with termination read coverage that is significantly higher than the surrounding signal. PIPETS then condenses proximal signal and produces strand specific results that contain all significant termination peaks. biocViews: Sequencing, Transcription, GeneRegulation, PeakDetection, Genetics, Transcriptomics, Coverage Author: Quinlan Furumo [aut, cre] () Maintainer: Quinlan Furumo URL: https://github.com/qfurumo/PIPETS VignetteBuilder: knitr BugReports: https://github.com/qfurumo/PIPETS/issues git_url: https://git.bioconductor.org/packages/PIPETS git_branch: RELEASE_3_20 git_last_commit: 8fd07d0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PIPETS_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PIPETS_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PIPETS_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PIPETS_1.2.0.tgz vignettes: vignettes/PIPETS/inst/doc/PIPETS.html vignetteTitles: PIPETS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PIPETS/inst/doc/PIPETS.R dependencyCount: 39 Package: Pirat Version: 1.0.1 Depends: R (>= 4.4.0), BiocManager (>= 1.3.20) Imports: basilisk (>= 1.18.0), reticulate, progress, ggplot2, MASS, invgamma, grDevices, stats, graphics, SummarizedExperiment, S4Vectors Suggests: knitr, BiocStyle License: GPL-2 Archs: x64 MD5sum: 03ad169b008bc8a8c14d02b5efff4c51 NeedsCompilation: no Title: Precursor or Peptide Imputation under Random Truncation Description: Pirat enables the imputation of missing values (either MNARs or MCARs) in bottom-up LC-MS/MS proteomics data using a penalized maximum likelihood strategy. It does not require any parameter tuning, it models the instrument censorship from the data available. It accounts for sibling peptides correlations and it can leverage complementary transcriptomics measurements. biocViews: Proteomics, MassSpectrometry, Preprocessing, Software Author: Lucas Etourneau [aut], Laura Fancello [aut], Samuel Wieczorek [cre, aut] (), Nelle Varoquaux [aut], Thomas Burger [aut] Maintainer: Samuel Wieczorek URL: https://github.com/edyp-lab/Pirat VignetteBuilder: knitr BugReports: https://github.com/edyp-lab/Pirat/issues git_url: https://git.bioconductor.org/packages/Pirat git_branch: RELEASE_3_20 git_last_commit: a418b18 git_last_commit_date: 2024-11-20 Date/Publication: 2024-11-20 source.ver: src/contrib/Pirat_1.0.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/Pirat_1.0.1.zip mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Pirat_1.0.1.tgz vignettes: vignettes/Pirat/inst/doc/Pirat.html vignetteTitles: Pirat-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Pirat/inst/doc/Pirat.R dependencyCount: 79 Package: PIUMA Version: 1.2.0 Depends: R (>= 4.3), ggplot2 Imports: cluster, umap, tsne, kernlab, vegan, dbscan, igraph, scales, Hmisc, patchwork, grDevices, stats, methods, SummarizedExperiment Suggests: BiocStyle, knitr, testthat, rmarkdown License: GPL-3 + file LICENSE MD5sum: 235a7f290e21fb985fccc55ce67bf3ce NeedsCompilation: no Title: Phenotypes Identification Using Mapper from topological data Analysis Description: The PIUMA package offers a tidy pipeline of Topological Data Analysis frameworks to identify and characterize communities in high and heterogeneous dimensional data. biocViews: Clustering, GraphAndNetwork, DimensionReduction, Network, Classification Author: Mattia Chiesa [aut, cre] (), Arianna Dagliati [aut] (), Alessia Gerbasi [aut] (), Giuseppe Albi [aut], Laura Ballarini [aut], Luca Piacentini [aut] () Maintainer: Mattia Chiesa URL: https://github.com/BioinfoMonzino/PIUMA VignetteBuilder: knitr BugReports: https://github.com/BioinfoMonzino/PIUMA/issues git_url: https://git.bioconductor.org/packages/PIUMA git_branch: RELEASE_3_20 git_last_commit: 9561dbc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PIUMA_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PIUMA_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PIUMA_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PIUMA_1.2.0.tgz vignettes: vignettes/PIUMA/inst/doc/PIUMA_vignette.html vignetteTitles: PIUMA package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/PIUMA/inst/doc/PIUMA_vignette.R dependencyCount: 115 Package: planet Version: 1.14.0 Depends: R (>= 4.3) Imports: methods, tibble, magrittr, dplyr Suggests: ggplot2, testthat, tidyr, scales, minfi, EpiDISH, knitr, rmarkdown License: GPL-2 MD5sum: c8ee44e07f3e337f10e1cbbea40e7b53 NeedsCompilation: no Title: Placental DNA methylation analysis tools Description: This package contains R functions to predict biological variables to from placnetal DNA methylation data generated from infinium arrays. This includes inferring ethnicity/ancestry, gestational age, and cell composition from placental DNA methylation array (450k/850k) data. biocViews: Software, DifferentialMethylation, Epigenetics, Microarray, MethylationArray, DNAMethylation, CpGIsland Author: Victor Yuan [aut, cre], Wendy P. Robinson [ctb] Maintainer: Victor Yuan URL: https://victor.rbind.io/planet, http://github.com/wvictor14/planet VignetteBuilder: knitr BugReports: http://github.com/wvictor14/planet/issues git_url: https://git.bioconductor.org/packages/planet git_branch: RELEASE_3_20 git_last_commit: 2402a3c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/planet_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/planet_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/planet_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/planet_1.14.0.tgz vignettes: vignettes/planet/inst/doc/planet.html vignetteTitles: planet hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/planet/inst/doc/planet.R importsMe: methylclock suggestsMe: eoPredData dependencyCount: 20 Package: planttfhunter Version: 1.6.0 Depends: R (>= 4.2.0) Imports: Biostrings, SummarizedExperiment, utils, methods Suggests: BiocStyle, covr, sessioninfo, knitr, rmarkdown, testthat (>= 3.0.0) License: GPL-3 MD5sum: 8d2aac7dd28d9c74019070fe692019b8 NeedsCompilation: no Title: Identification and classification of plant transcription factors Description: planttfhunter is used to identify plant transcription factors (TFs) from protein sequence data and classify them into families and subfamilies using the classification scheme implemented in PlantTFDB. TFs are identified using pre-built hidden Markov model profiles for DNA-binding domains. Then, auxiliary and forbidden domains are used with DNA-binding domains to classify TFs into families and subfamilies (when applicable). Currently, TFs can be classified in 58 different TF families/subfamilies. biocViews: Software, Transcription, FunctionalPrediction, GenomeAnnotation, FunctionalGenomics, HiddenMarkovModel, Sequencing, Classification Author: Fabrício Almeida-Silva [aut, cre] (), Yves Van de Peer [aut] () Maintainer: Fabrício Almeida-Silva URL: https://github.com/almeidasilvaf/planttfhunter SystemRequirements: HMMER VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/planttfhunter git_url: https://git.bioconductor.org/packages/planttfhunter git_branch: RELEASE_3_20 git_last_commit: fb160ea git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/planttfhunter_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/planttfhunter_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/planttfhunter_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/planttfhunter_1.6.0.tgz vignettes: vignettes/planttfhunter/inst/doc/vignette_planttfhunter.html vignetteTitles: Genome-wide identification and classification of transcription factors in plant genomes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/planttfhunter/inst/doc/vignette_planttfhunter.R dependencyCount: 37 Package: plasmut Version: 1.4.0 Depends: R (>= 4.3.0) Imports: tibble, stats, dplyr Suggests: knitr, rmarkdown, tidyverse, ggrepel, magrittr, qpdf, BiocStyle, biocViews, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: 9708eb46f23bff31c138161f8d609237 NeedsCompilation: no Title: Stratifying mutations observed in cell-free DNA and white blood cells as germline, hematopoietic, or somatic Description: A Bayesian method for quantifying the liklihood that a given plasma mutation arises from clonal hematopoesis or the underlying tumor. It requires sequencing data of the mutation in plasma and white blood cells with the number of distinct and mutant reads in both tissues. We implement a Monte Carlo importance sampling method to assess the likelihood that a mutation arises from the tumor relative to non-tumor origin. biocViews: Bayesian, SomaticMutation, GermlineMutation, Sequencing Author: Adith Arun [aut, cre], Robert Scharpf [aut] Maintainer: Adith Arun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/plasmut git_branch: RELEASE_3_20 git_last_commit: 59866eb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/plasmut_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/plasmut_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/plasmut_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/plasmut_1.4.0.tgz vignettes: vignettes/plasmut/inst/doc/plasmut.html vignetteTitles: Modeling the origin of mutations in a liquid biopsy: cancer or clonal hematopoiesis? hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/plasmut/inst/doc/plasmut.R dependencyCount: 21 Package: plgem Version: 1.78.0 Depends: R (>= 2.10) Imports: utils, Biobase (>= 2.5.5), MASS, methods License: GPL-2 MD5sum: 235a48662a4348b2cf87f14e593f06da NeedsCompilation: no Title: Detect differential expression in microarray and proteomics datasets with the Power Law Global Error Model (PLGEM) Description: The Power Law Global Error Model (PLGEM) has been shown to faithfully model the variance-versus-mean dependence that exists in a variety of genome-wide datasets, including microarray and proteomics data. The use of PLGEM has been shown to improve the detection of differentially expressed genes or proteins in these datasets. biocViews: ImmunoOncology, Microarray, DifferentialExpression, Proteomics, GeneExpression, MassSpectrometry Author: Mattia Pelizzola and Norman Pavelka Maintainer: Norman Pavelka URL: http://www.genopolis.it git_url: https://git.bioconductor.org/packages/plgem git_branch: RELEASE_3_20 git_last_commit: 92140dd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/plgem_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/plgem_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/plgem_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/plgem_1.78.0.tgz vignettes: vignettes/plgem/inst/doc/plgem.pdf vignetteTitles: An introduction to PLGEM hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/plgem/inst/doc/plgem.R importsMe: INSPEcT dependencyCount: 8 Package: plier Version: 1.76.0 Depends: R (>= 2.0), methods Imports: affy, Biobase, methods License: GPL (>= 2) MD5sum: c0aaf65bd0daf8ea18d41ba2067aa100 NeedsCompilation: yes Title: Implements the Affymetrix PLIER algorithm Description: The PLIER (Probe Logarithmic Error Intensity Estimate) method produces an improved signal by accounting for experimentally observed patterns in probe behavior and handling error at the appropriately at low and high signal values. biocViews: Software Author: Affymetrix Inc., Crispin J Miller, PICR Maintainer: Crispin Miller git_url: https://git.bioconductor.org/packages/plier git_branch: RELEASE_3_20 git_last_commit: d1578f1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/plier_1.76.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/plier_1.76.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/plier_1.76.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/plier_1.76.0.tgz hasREADME: TRUE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE suggestsMe: piano dependencyCount: 12 Package: plotgardener Version: 1.12.0 Depends: R (>= 4.1.0) Imports: curl, data.table, dplyr, GenomeInfoDb, GenomicRanges, glue, grDevices, grid, ggplotify, IRanges, methods, plyranges, purrr, Rcpp, RColorBrewer, rhdf5, rlang, stats, strawr, tools, utils, withr LinkingTo: Rcpp Suggests: AnnotationDbi, AnnotationHub, BSgenome, BSgenome.Hsapiens.UCSC.hg19, ComplexHeatmap, GenomicFeatures, ggplot2, InteractionSet, knitr, org.Hs.eg.db, rtracklayer, plotgardenerData, pdftools, png, rmarkdown, scales, showtext, testthat (>= 3.0.0), TxDb.Hsapiens.UCSC.hg19.knownGene License: MIT + file LICENSE MD5sum: 736a74f491008039018f254193f46aad NeedsCompilation: yes Title: Coordinate-Based Genomic Visualization Package for R Description: Coordinate-based genomic visualization package for R. It grants users the ability to programmatically produce complex, multi-paneled figures. Tailored for genomics, plotgardener allows users to visualize large complex genomic datasets and provides exquisite control over how plots are placed and arranged on a page. biocViews: Visualization, GenomeAnnotation, FunctionalGenomics, GenomeAssembly, HiC Author: Nicole Kramer [aut, cre], Eric S. Davis [aut], Craig Wenger [aut], Sarah Parker [ctb], Erika Deoudes [art], Michael Love [ctb], Douglas H. Phanstiel [aut, cre, cph] Maintainer: Nicole Kramer , Douglas Phanstiel URL: https://phanstiellab.github.io/plotgardener, https://github.com/PhanstielLab/plotgardener VignetteBuilder: knitr BugReports: https://github.com/PhanstielLab/plotgardener/issues git_url: https://git.bioconductor.org/packages/plotgardener git_branch: RELEASE_3_20 git_last_commit: d40c62a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/plotgardener_1.12.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/plotgardener_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/plotgardener_1.12.0.tgz vignettes: vignettes/plotgardener/inst/doc/introduction_to_plotgardener.html vignetteTitles: Introduction to plotgardener hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/plotgardener/inst/doc/introduction_to_plotgardener.R importsMe: DegCre, mariner, Ularcirc suggestsMe: nullranges dependencyCount: 100 Package: plotGrouper Version: 1.24.0 Depends: R (>= 3.5) Imports: ggplot2 (>= 3.0.0), dplyr (>= 0.7.6), tidyr (>= 0.2.0), tibble (>= 1.4.2), stringr (>= 1.3.1), readr (>= 1.1.1), readxl (>= 1.1.0), scales (>= 1.0.0), stats, grid, gridExtra (>= 2.3), egg (>= 0.4.0), gtable (>= 0.2.0), ggpubr (>= 0.1.8), shiny (>= 1.1.0), shinythemes (>= 1.1.1), colourpicker (>= 1.0), magrittr (>= 1.5), Hmisc (>= 4.1.1), rlang (>= 0.2.2) Suggests: knitr, htmltools, BiocStyle, rmarkdown, testthat License: GPL-3 MD5sum: aea8b8b1c39df16b3f41c97e8eec2bd6 NeedsCompilation: no Title: Shiny app GUI wrapper for ggplot with built-in statistical analysis Description: A shiny app-based GUI wrapper for ggplot with built-in statistical analysis. Import data from file and use dropdown menus and checkboxes to specify the plotting variables, graph type, and look of your plots. Once created, plots can be saved independently or stored in a report that can be saved as a pdf. If new data are added to the file, the report can be refreshed to include new data. Statistical tests can be selected and added to the graphs. Analysis of flow cytometry data is especially integrated with plotGrouper. Count data can be transformed to return the absolute number of cells in a sample (this feature requires inclusion of the number of beads per sample and information about any dilution performed). biocViews: ImmunoOncology, FlowCytometry, GraphAndNetwork, StatisticalMethod, DataImport, GUI, MultipleComparison Author: John D. Gagnon [aut, cre] Maintainer: John D. Gagnon URL: https://jdgagnon.github.io/plotGrouper/ VignetteBuilder: knitr BugReports: https://github.com/jdgagnon/plotGrouper/issues git_url: https://git.bioconductor.org/packages/plotGrouper git_branch: RELEASE_3_20 git_last_commit: 79a21d5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/plotGrouper_1.24.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/plotGrouper_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/plotGrouper_1.24.0.tgz vignettes: vignettes/plotGrouper/inst/doc/plotGrouper-vignette.html vignetteTitles: plotGrouper hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/plotGrouper/inst/doc/plotGrouper-vignette.R dependencyCount: 133 Package: PLPE Version: 1.66.0 Depends: R (>= 2.6.2), Biobase (>= 2.5.5), LPE, MASS, methods License: GPL (>= 2) MD5sum: 9daa2dbc4eb9ee37c4c3d91c9c343754 NeedsCompilation: no Title: Local Pooled Error Test for Differential Expression with Paired High-throughput Data Description: This package performs tests for paired high-throughput data. biocViews: Proteomics, Microarray, DifferentialExpression Author: HyungJun Cho and Jae K. Lee Maintainer: Soo-heang Eo URL: http://www.korea.ac.kr/~stat2242/ git_url: https://git.bioconductor.org/packages/PLPE git_branch: RELEASE_3_20 git_last_commit: 62bff99 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PLPE_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PLPE_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PLPE_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PLPE_1.66.0.tgz vignettes: vignettes/PLPE/inst/doc/PLPE.pdf vignetteTitles: PLPE Overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PLPE/inst/doc/PLPE.R dependencyCount: 9 Package: PLSDAbatch Version: 1.2.0 Depends: R (>= 4.3.0) Imports: mixOmics, scales, Rdpack, ggplot2, gridExtra, ggpubr, lmerTest, performance, grid, stats, pheatmap, vegan, Biobase, BiocStyle, TreeSummarizedExperiment Suggests: knitr, rmarkdown, testthat, badger License: GPL-3 MD5sum: fecfcef01e7bfb9786857c0baf735fc0 NeedsCompilation: no Title: PLSDA-batch Description: A novel framework to correct for batch effects prior to any downstream analysis in microbiome data based on Projection to Latent Structures Discriminant Analysis. The main method is named “PLSDA-batch”. It first estimates treatment and batch variation with latent components, then subtracts batch-associated components from the data whilst preserving biological variation of interest. PLSDA-batch is highly suitable for microbiome data as it is non-parametric, multivariate and allows for ordination and data visualisation. Combined with centered log-ratio transformation for addressing uneven library sizes and compositional structure, PLSDA-batch addresses all characteristics of microbiome data that existing correction methods have ignored so far. Two other variants are proposed for 1/ unbalanced batch x treatment designs that are commonly encountered in studies with small sample sizes, and for 2/ selection of discriminative variables amongst treatment groups to avoid overfitting in classification problems. These two variants have widened the scope of applicability of PLSDA-batch to different data settings. biocViews: StatisticalMethod, DimensionReduction, PrincipalComponent, Classification, Microbiome, BatchEffect, Normalization, Visualization Author: Yiwen (Eva) Wang [aut, cre] (), Kim-Anh Le Cao [aut] Maintainer: Yiwen (Eva) Wang URL: https://github.com/EvaYiwenWang/PLSDAbatch VignetteBuilder: knitr BugReports: https://github.com/EvaYiwenWang/PLSDAbatch/issues/ git_url: https://git.bioconductor.org/packages/PLSDAbatch git_branch: RELEASE_3_20 git_last_commit: 50f09b3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PLSDAbatch_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PLSDAbatch_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PLSDAbatch_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PLSDAbatch_1.2.0.tgz vignettes: vignettes/PLSDAbatch/inst/doc/brief_vignette.html vignetteTitles: PLSDA-batch Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PLSDAbatch/inst/doc/brief_vignette.R dependencyCount: 163 Package: plyinteractions Version: 1.4.0 Depends: R (>= 4.3.0) Imports: InteractionSet, GenomeInfoDb, BiocGenerics, GenomicRanges, plyranges, IRanges, S4Vectors, rlang, dplyr, tibble, tidyselect, methods, utils Suggests: tidyverse, BSgenome.Mmusculus.UCSC.mm10, Biostrings, BiocParallel, scales, HiContactsData, rtracklayer, BiocStyle, covr, knitr, rmarkdown, sessioninfo, testthat (>= 3.0.0), RefManageR License: Artistic-2.0 MD5sum: 1dd6aab852245e89ebc7e2b1df6fff25 NeedsCompilation: no Title: Extending tidy verbs to genomic interactions Description: Operate on `GInteractions` objects as tabular data using `dplyr`-like verbs. The functions and methods in `plyinteractions` provide a grammatical approach to manipulate `GInteractions`, to facilitate their integration in genomic analysis workflows. biocViews: Software, Infrastructure Author: Jacques Serizay [aut, cre] Maintainer: Jacques Serizay URL: https://github.com/js2264/plyinteractions VignetteBuilder: knitr BugReports: https://github.com/js2264/plyinteractions/issues git_url: https://git.bioconductor.org/packages/plyinteractions git_branch: RELEASE_3_20 git_last_commit: f0dc217 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/plyinteractions_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/plyinteractions_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/plyinteractions_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/plyinteractions_1.4.0.tgz vignettes: vignettes/plyinteractions/inst/doc/plyinteractions.html, vignettes/plyinteractions/inst/doc/process_pairs.html vignetteTitles: plyinteractions, HiCarithmetic hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/plyinteractions/inst/doc/plyinteractions.R, vignettes/plyinteractions/inst/doc/process_pairs.R importsMe: OHCA dependencyCount: 76 Package: plyranges Version: 1.26.0 Depends: R (>= 3.5), BiocGenerics, IRanges (>= 2.12.0), GenomicRanges (>= 1.28.4) Imports: methods, dplyr, rlang (>= 0.2.0), magrittr, tidyselect (>= 1.0.0), rtracklayer, GenomicAlignments, GenomeInfoDb, Rsamtools, S4Vectors (>= 0.23.10), utils Suggests: knitr, BiocStyle, rmarkdown, testthat (>= 2.1.0), HelloRanges, HelloRangesData, BSgenome.Hsapiens.UCSC.hg19, pasillaBamSubset, covr, ggplot2 License: Artistic-2.0 Archs: x64 MD5sum: 4628fbdeada32e0241ec451f8460fe26 NeedsCompilation: no Title: A fluent interface for manipulating GenomicRanges Description: A dplyr-like interface for interacting with the common Bioconductor classes Ranges and GenomicRanges. By providing a grammatical and consistent way of manipulating these classes their accessiblity for new Bioconductor users is hopefully increased. biocViews: Infrastructure, DataRepresentation, WorkflowStep, Coverage Author: Stuart Lee [aut] (), Michael Lawrence [aut, ctb], Dianne Cook [aut, ctb], Spencer Nystrom [ctb] (), Pierre-Paul Axisa [ctb], Michael Love [ctb, cre] Maintainer: Michael Love VignetteBuilder: knitr BugReports: https://github.com/tidyomics/plyranges git_url: https://git.bioconductor.org/packages/plyranges git_branch: RELEASE_3_20 git_last_commit: e74e940 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/plyranges_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/plyranges_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/plyranges_1.26.0.tgz vignettes: vignettes/plyranges/inst/doc/an-introduction.html vignetteTitles: Introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/plyranges/inst/doc/an-introduction.R importsMe: BOBaFIT, BUSpaRse, cfDNAPro, Damsel, GenomicPlot, InPAS, katdetectr, mariner, methylCC, multicrispr, nearBynding, nullranges, plotgardener, plyinteractions, SARC, tidyomics, fluentGenomics, MOCHA suggestsMe: EpiCompare, extraChIPs, memes, svaNUMT, svaRetro, tidyCoverage, CTCF dependencyCount: 73 Package: plyxp Version: 1.0.0 Depends: R (>= 4.4.0) Imports: dplyr, purrr, rlang, SummarizedExperiment, tidyr, tidyselect, vctrs, tibble, pillar, cli, glue, S7, S4Vectors, utils, methods Suggests: devtools, knitr, rmarkdown, testthat, airway, IRanges, here License: MIT + file LICENSE MD5sum: 71d1158d4ed392f139db2dffff1f56c6 NeedsCompilation: no Title: Data masks for SummarizedExperiment enabling dplyr-like manipulation Description: The package provides `rlang` data masks for the SummarizedExperiment class. The enables the evaluation of unquoted expression in different contexts of the SummarizedExperiment object with optional access to other contexts. The goal for `plyxp` is for evaluation to feel like a data.frame object without ever needing to unwind to a rectangular data.frame. biocViews: Annotation, GenomeAnnotation, Transcriptomics Author: Justin Landis [aut, cre] (), Michael Love [aut] () Maintainer: Justin Landis URL: https://github.com/jtlandis/plyxp, https://jtlandis.github.io/plyxp VignetteBuilder: knitr BugReports: https://www.github.com/jtlandis/plyxp/issues git_url: https://git.bioconductor.org/packages/plyxp git_branch: RELEASE_3_20 git_last_commit: d8f67d5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/plyxp_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/plyxp_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/plyxp_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/plyxp_1.0.0.tgz vignettes: vignettes/plyxp/inst/doc/plyxp.html vignetteTitles: plyxp Usage Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/plyxp/inst/doc/plyxp.R dependencyCount: 57 Package: pmm Version: 1.38.0 Depends: R (>= 2.10) Imports: lme4, splines License: GPL-3 MD5sum: 5ad703726e26716dc8f63498d5c44003 NeedsCompilation: no Title: Parallel Mixed Model Description: The Parallel Mixed Model (PMM) approach is suitable for hit selection and cross-comparison of RNAi screens generated in experiments that are performed in parallel under several conditions. For example, we could think of the measurements or readouts from cells under RNAi knock-down, which are infected with several pathogens or which are grown from different cell lines. biocViews: SystemsBiology, Regression Author: Anna Drewek Maintainer: Anna Drewek git_url: https://git.bioconductor.org/packages/pmm git_branch: RELEASE_3_20 git_last_commit: d639679 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pmm_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pmm_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pmm_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pmm_1.38.0.tgz vignettes: vignettes/pmm/inst/doc/pmm-package.pdf vignetteTitles: User manual for R-Package PMM hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pmm/inst/doc/pmm-package.R dependencyCount: 18 Package: pmp Version: 1.18.0 Depends: R (>= 4.0) Imports: stats, impute, pcaMethods, missForest, ggplot2, methods, SummarizedExperiment, S4Vectors, matrixStats, grDevices, reshape2, utils Suggests: testthat, covr, knitr, rmarkdown, BiocStyle, gridExtra, magick License: GPL-3 MD5sum: 23b438cc67facbb276de2d89970e2e2a NeedsCompilation: no Title: Peak Matrix Processing and signal batch correction for metabolomics datasets Description: Methods and tools for (pre-)processing of metabolomics datasets (i.e. peak matrices), including filtering, normalisation, missing value imputation, scaling, and signal drift and batch effect correction methods. Filtering methods are based on: the fraction of missing values (across samples or features); Relative Standard Deviation (RSD) calculated from the Quality Control (QC) samples; the blank samples. Normalisation methods include Probabilistic Quotient Normalisation (PQN) and normalisation to total signal intensity. A unified user interface for several commonly used missing value imputation algorithms is also provided. Supported methods are: k-nearest neighbours (knn), random forests (rf), Bayesian PCA missing value estimator (bpca), mean or median value of the given feature and a constant small value. The generalised logarithm (glog) transformation algorithm is available to stabilise the variance across low and high intensity mass spectral features. Finally, this package provides an implementation of the Quality Control-Robust Spline Correction (QCRSC) algorithm for signal drift and batch effect correction of mass spectrometry-based datasets. biocViews: MassSpectrometry, Metabolomics, Software, QualityControl, BatchEffect Author: Andris Jankevics [aut], Gavin Rhys Lloyd [aut, cre], Ralf Johannes Maria Weber [aut] Maintainer: Gavin Rhys Lloyd VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/pmp git_branch: RELEASE_3_20 git_last_commit: 62db626 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pmp_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pmp_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pmp_1.18.0.tgz vignettes: vignettes/pmp/inst/doc/pmp_vignette_peak_matrix_processing_for_metabolomics_datasets.html, vignettes/pmp/inst/doc/pmp_vignette_sbc_spectral_quality_assessment.html, vignettes/pmp/inst/doc/pmp_vignette_signal_batch_correction_mass_spectrometry.html vignetteTitles: Peak Matrix Processing for metabolomics datasets, Signal drift and batch effect correction and mass spectral quality assessment, Signal drift and batch effect correction for mass spectrometry hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pmp/inst/doc/pmp_vignette_peak_matrix_processing_for_metabolomics_datasets.R, vignettes/pmp/inst/doc/pmp_vignette_sbc_spectral_quality_assessment.R, vignettes/pmp/inst/doc/pmp_vignette_signal_batch_correction_mass_spectrometry.R suggestsMe: metabolomicsWorkbenchR, structToolbox dependencyCount: 79 Package: PoDCall Version: 1.14.0 Depends: R (>= 4.4) Imports: ggplot2, gridExtra, mclust, diptest, rlist, shiny, DT, LaplacesDemon, purrr, shinyjs, readr, grDevices, stats, utils Suggests: knitr, rmarkdown, testthat, BiocStyle License: GPL-3 MD5sum: 1a527f296adf984ae99dd9c88002e630 NeedsCompilation: no Title: Positive Droplet Calling for DNA Methylation Droplet Digital PCR Description: Reads files exported from 'QX Manager or QuantaSoft' containing amplitude values from a run of ddPCR (96 well plate) and robustly sets thresholds to determine positive droplets for each channel of each individual well. Concentration and normalized concentration in addition to other metrics is then calculated for each well. Results are returned as a table, optionally written to file, as well as optional plots (scatterplot and histogram) for both channels per well written to file. The package includes a shiny application which provides an interactive and user-friendly interface to the full functionality of PoDCall. biocViews: Classification, Epigenetics, ddPCR, DifferentialMethylation, CpGIsland, DNAMethylation, Author: Hans Petter Brodal [aut, cre], Marine Jeanmougin [aut], Guro Elisabeth Lind [aut] Maintainer: Hans Petter Brodal VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/PoDCall git_branch: RELEASE_3_20 git_last_commit: 3a70ff5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PoDCall_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PoDCall_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PoDCall_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PoDCall_1.14.0.tgz vignettes: vignettes/PoDCall/inst/doc/PoDCall.html vignetteTitles: PoDCall: Positive Droplet Caller for DNA Methylation ddPCR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PoDCall/inst/doc/PoDCall.R dependencyCount: 91 Package: podkat Version: 1.38.0 Depends: R (>= 3.5.0), methods, Rsamtools (>= 1.99.1), GenomicRanges Imports: Rcpp (>= 0.11.1), parallel, stats (>= 4.3.0), graphics, grDevices, utils, Biobase, BiocGenerics, Matrix, GenomeInfoDb, IRanges, Biostrings, BSgenome (>= 1.32.0) LinkingTo: Rcpp, Rhtslib (>= 1.15.3) Suggests: BSgenome.Hsapiens.UCSC.hg38.masked, TxDb.Hsapiens.UCSC.hg38.knownGene, BSgenome.Mmusculus.UCSC.mm10.masked, GWASTools (>= 1.13.24), VariantAnnotation, SummarizedExperiment, knitr License: GPL (>= 2) MD5sum: 339a50e2d51e843e80516cbd528ab445 NeedsCompilation: yes Title: Position-Dependent Kernel Association Test Description: This package provides an association test that is capable of dealing with very rare and even private variants. This is accomplished by a kernel-based approach that takes the positions of the variants into account. The test can be used for pre-processed matrix data, but also directly for variant data stored in VCF files. Association testing can be performed whole-genome, whole-exome, or restricted to pre-defined regions of interest. The test is complemented by tools for analyzing and visualizing the results. biocViews: Genetics, WholeGenome, Annotation, VariantAnnotation, Sequencing, DataImport Author: Ulrich Bodenhofer [aut,cre] Maintainer: Ulrich Bodenhofer URL: https://github.com/UBod/podkat SystemRequirements: GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/podkat git_branch: RELEASE_3_20 git_last_commit: fb710d5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/podkat_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/podkat_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/podkat_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/podkat_1.38.0.tgz vignettes: vignettes/podkat/inst/doc/podkat.pdf vignetteTitles: PODKAT - An R Package for Association Testing Involving Rare and Private Variants hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/podkat/inst/doc/podkat.R dependencyCount: 60 Package: pogos Version: 1.26.0 Depends: R (>= 3.5.0), rjson (>= 0.2.15), httr (>= 1.3.1) Imports: methods, S4Vectors, utils, shiny, ontoProc, ggplot2, graphics Suggests: knitr, DT, ontologyPlot, testthat, rmarkdown, BiocStyle License: Artistic-2.0 MD5sum: 6da640662f651bd117d93365c2776952 NeedsCompilation: no Title: PharmacOGenomics Ontology Support Description: Provide simple utilities for querying bhklab PharmacoDB, modeling API outputs, and integrating to cell and compound ontologies. biocViews: Pharmacogenomics, PooledScreens, ImmunoOncology Author: Vince Carey Maintainer: VJ Carey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/pogos git_branch: RELEASE_3_20 git_last_commit: 9d8517c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pogos_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pogos_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pogos_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pogos_1.26.0.tgz vignettes: vignettes/pogos/inst/doc/pogos.html vignetteTitles: pogos -- simple interface to bhklab PharmacoDB with emphasis on ontology hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pogos/inst/doc/pogos.R dependencyCount: 136 Package: PolySTest Version: 1.0.2 Depends: R (>= 4.4.0) Imports: fdrtool (>= 1.2.15), limma (>= 3.61.3), matrixStats (>= 0.57.0), qvalue (>= 2.22.0), shiny (>= 1.5.0), SummarizedExperiment (>= 1.20.0), knitr (>= 1.33), plotly (>= 4.9.4), heatmaply (>= 1.1.1), circlize (>= 0.4.12), UpSetR (>= 1.4.0), gplots (>= 3.1.1), S4Vectors (>= 0.30.0), parallel (>= 4.1.0), grDevices (>= 4.1.0), graphics (>= 4.1.0), stats (>= 4.1.0), utils (>= 4.1.0) Suggests: testthat (>= 3.0.0), BiocStyle License: GPL-2 MD5sum: 4f2b2d86b614ea6aa52e0f3963962c89 NeedsCompilation: no Title: PolySTest: Detection of differentially regulated features. Combined statistical testing for data with few replicates and missing values Description: The complexity of high-throughput quantitative omics experiments often leads to low replicates numbers and many missing values. We implemented a new test to simultaneously consider missing values and quantitative changes, which we combined with well-performing statistical tests for high confidence detection of differentially regulated features. The package contains functions to run the test and to visualize the results. biocViews: MassSpectrometry, Proteomics, Software, DifferentialExpression Author: Veit Schwämmle [aut, cre] () Maintainer: Veit Schwämmle URL: https://github.com/computproteomics/PolySTest VignetteBuilder: knitr BugReports: https://github.com/computproteomics/PolySTest/issues git_url: https://git.bioconductor.org/packages/PolySTest git_branch: RELEASE_3_20 git_last_commit: dc89cc3 git_last_commit_date: 2024-11-26 Date/Publication: 2024-11-28 source.ver: src/contrib/PolySTest_1.0.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/PolySTest_1.0.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PolySTest_1.0.2.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PolySTest_1.0.2.tgz vignettes: vignettes/PolySTest/inst/doc/StatisticalTest.html vignetteTitles: PolySTest hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/PolySTest/inst/doc/StatisticalTest.R dependencyCount: 141 Package: POMA Version: 1.16.0 Depends: R (>= 4.0) Imports: broom, caret, ComplexHeatmap, dbscan, dplyr, DESeq2, fgsea, FSA, ggcorrplot, ggplot2, ggrepel, glmnet, impute, janitor, limma, lme4, magrittr, MASS, mixOmics, multcomp, msigdbr, purrr, randomForest, RankProd (>= 3.14), rlang, SummarizedExperiment, sva, tibble, tidyr, utils, uwot, vegan Suggests: BiocStyle, covr, ggraph, ggtext, knitr, patchwork, plotly, tidyverse, testthat (>= 2.3.2) License: GPL-3 MD5sum: d1f2cc9db15e981cab28d5dc0dbca5d8 NeedsCompilation: no Title: Tools for Omics Data Analysis Description: The POMA package offers a comprehensive toolkit designed for omics data analysis, streamlining the process from initial visualization to final statistical analysis. Its primary goal is to simplify and unify the various steps involved in omics data processing, making it more accessible and manageable within a single, intuitive R package. Emphasizing on reproducibility and user-friendliness, POMA leverages the standardized SummarizedExperiment class from Bioconductor, ensuring seamless integration and compatibility with a wide array of Bioconductor tools. This approach guarantees maximum flexibility and replicability, making POMA an essential asset for researchers handling omics datasets. See https://github.com/pcastellanoescuder/POMAShiny. Paper: Castellano-Escuder et al. (2021) for more details. biocViews: BatchEffect, Classification, Clustering, DecisionTree, DimensionReduction, MultidimensionalScaling, Normalization, Preprocessing, PrincipalComponent, Regression, RNASeq, Software, StatisticalMethod, Visualization Author: Pol Castellano-Escuder [aut, cre] () Maintainer: Pol Castellano-Escuder URL: https://github.com/pcastellanoescuder/POMA VignetteBuilder: knitr BugReports: https://github.com/pcastellanoescuder/POMA/issues git_url: https://git.bioconductor.org/packages/POMA git_branch: RELEASE_3_20 git_last_commit: 7e59089 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/POMA_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/POMA_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/POMA_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/POMA_1.16.0.tgz vignettes: vignettes/POMA/inst/doc/POMA-normalization.html, vignettes/POMA/inst/doc/POMA-workflow.html vignetteTitles: Normalization Methods, Get Started hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/POMA/inst/doc/POMA-normalization.R, vignettes/POMA/inst/doc/POMA-workflow.R importsMe: PRONE suggestsMe: fobitools dependencyCount: 228 Package: powerTCR Version: 1.26.0 Imports: cubature, doParallel, evmix, foreach, magrittr, methods, parallel, purrr, stats, truncdist, vegan, VGAM Suggests: BiocStyle, knitr, rmarkdown, RUnit, BiocGenerics License: Artistic-2.0 Archs: x64 MD5sum: 5b229108f3b909eb2515ffd7b193dfcd NeedsCompilation: no Title: Model-Based Comparative Analysis of the TCR Repertoire Description: This package provides a model for the clone size distribution of the TCR repertoire. Further, it permits comparative analysis of TCR repertoire libraries based on theoretical model fits. biocViews: Software, Clustering, BiomedicalInformatics Author: Hillary Koch Maintainer: Hillary Koch VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/powerTCR git_branch: RELEASE_3_20 git_last_commit: fb65da8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/powerTCR_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/powerTCR_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/powerTCR_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/powerTCR_1.26.0.tgz vignettes: vignettes/powerTCR/inst/doc/powerTCR.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/powerTCR/inst/doc/powerTCR.R dependencyCount: 36 Package: POWSC Version: 1.14.0 Depends: R (>= 4.1), Biobase, SingleCellExperiment, MAST Imports: pheatmap, ggplot2, RColorBrewer, grDevices, SummarizedExperiment, limma Suggests: rmarkdown, knitr, testthat (>= 3.0.0), BiocStyle License: GPL-2 MD5sum: a3392d3714360c056d5b04104ae1a41c NeedsCompilation: no Title: Simulation, power evaluation, and sample size recommendation for single cell RNA-seq Description: Determining the sample size for adequate power to detect statistical significance is a crucial step at the design stage for high-throughput experiments. Even though a number of methods and tools are available for sample size calculation for microarray and RNA-seq in the context of differential expression (DE), this topic in the field of single-cell RNA sequencing is understudied. Moreover, the unique data characteristics present in scRNA-seq such as sparsity and heterogeneity increase the challenge. We propose POWSC, a simulation-based method, to provide power evaluation and sample size recommendation for single-cell RNA sequencing DE analysis. POWSC consists of a data simulator that creates realistic expression data, and a power assessor that provides a comprehensive evaluation and visualization of the power and sample size relationship. biocViews: DifferentialExpression, ImmunoOncology, SingleCell, Software Author: Kenong Su [aut, cre], Hao Wu [aut] Maintainer: Kenong Su VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/POWSC git_branch: RELEASE_3_20 git_last_commit: c8ac901 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/POWSC_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/POWSC_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/POWSC_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/POWSC_1.14.0.tgz vignettes: vignettes/POWSC/inst/doc/POWSC.html vignetteTitles: The POWSC User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/POWSC/inst/doc/POWSC.R dependencyCount: 77 Package: ppcseq Version: 1.14.0 Depends: R (>= 4.1.0), rstan (>= 2.18.1) Imports: benchmarkme, dplyr, edgeR, foreach, ggplot2, graphics, lifecycle, magrittr, methods, parallel, purrr, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rlang, rstantools (>= 2.1.1), stats, tibble, tidybayes, tidyr (>= 0.8.3.9000), utils LinkingTo: BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0) Suggests: knitr, testthat, BiocStyle, rmarkdown License: GPL-3 MD5sum: 61ba747d87e8faa669273b348c31a957 NeedsCompilation: yes Title: Probabilistic Outlier Identification for RNA Sequencing Generalized Linear Models Description: Relative transcript abundance has proven to be a valuable tool for understanding the function of genes in biological systems. For the differential analysis of transcript abundance using RNA sequencing data, the negative binomial model is by far the most frequently adopted. However, common methods that are based on a negative binomial model are not robust to extreme outliers, which we found to be abundant in public datasets. So far, no rigorous and probabilistic methods for detection of outliers have been developed for RNA sequencing data, leaving the identification mostly to visual inspection. Recent advances in Bayesian computation allow large-scale comparison of observed data against its theoretical distribution given in a statistical model. Here we propose ppcseq, a key quality-control tool for identifying transcripts that include outlier data points in differential expression analysis, which do not follow a negative binomial distribution. Applying ppcseq to analyse several publicly available datasets using popular tools, we show that from 3 to 10 percent of differentially abundant transcripts across algorithms and datasets had statistics inflated by the presence of outliers. biocViews: RNASeq, DifferentialExpression, GeneExpression, Normalization, Clustering, QualityControl, Sequencing, Transcription, Transcriptomics Author: Stefano Mangiola [aut, cre] () Maintainer: Stefano Mangiola URL: https://github.com/stemangiola/ppcseq SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/stemangiola/ppcseq/issues git_url: https://git.bioconductor.org/packages/ppcseq git_branch: RELEASE_3_20 git_last_commit: b6df8a7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ppcseq_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ppcseq_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ppcseq_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ppcseq_1.14.0.tgz vignettes: vignettes/ppcseq/inst/doc/introduction.html vignetteTitles: Overview of the ppcseq package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ppcseq/inst/doc/introduction.R dependencyCount: 94 Package: PPInfer Version: 1.32.0 Depends: biomaRt, fgsea, kernlab, ggplot2, igraph, STRINGdb, yeastExpData Imports: httr, grDevices, graphics, stats, utils License: Artistic-2.0 MD5sum: 0e25d7cc8b0dbcb8868a394bb5e17e9f NeedsCompilation: no Title: Inferring functionally related proteins using protein interaction networks Description: Interactions between proteins occur in many, if not most, biological processes. Most proteins perform their functions in networks associated with other proteins and other biomolecules. This fact has motivated the development of a variety of experimental methods for the identification of protein interactions. This variety has in turn ushered in the development of numerous different computational approaches for modeling and predicting protein interactions. Sometimes an experiment is aimed at identifying proteins closely related to some interesting proteins. A network based statistical learning method is used to infer the putative functions of proteins from the known functions of its neighboring proteins on a PPI network. This package identifies such proteins often involved in the same or similar biological functions. biocViews: Software, StatisticalMethod, Network, GraphAndNetwork, GeneSetEnrichment, NetworkEnrichment, Pathways Author: Dongmin Jung, Xijin Ge Maintainer: Dongmin Jung git_url: https://git.bioconductor.org/packages/PPInfer git_branch: RELEASE_3_20 git_last_commit: aeedb72 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PPInfer_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PPInfer_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PPInfer_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PPInfer_1.32.0.tgz vignettes: vignettes/PPInfer/inst/doc/PPInfer.pdf vignetteTitles: User manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PPInfer/inst/doc/PPInfer.R dependsOnMe: gsean dependencyCount: 117 Package: pqsfinder Version: 2.22.0 Depends: R (>= 3.5.0), Biostrings Imports: Rcpp (>= 0.12.3), GenomicRanges, IRanges, S4Vectors, methods LinkingTo: Rcpp, BH (>= 1.78.0) Suggests: BiocStyle, knitr, rmarkdown, Gviz, rtracklayer, ggplot2, BSgenome.Hsapiens.UCSC.hg38, testthat, stringr, stringi License: BSD_2_clause + file LICENSE MD5sum: 87856f6757808a26fbb5e0b77371ff0f NeedsCompilation: yes Title: Identification of potential quadruplex forming sequences Description: Pqsfinder detects DNA and RNA sequence patterns that are likely to fold into an intramolecular G-quadruplex (G4). Unlike many other approaches, pqsfinder is able to detect G4s folded from imperfect G-runs containing bulges or mismatches or G4s having long loops. Pqsfinder also assigns an integer score to each hit that was fitted on G4 sequencing data and corresponds to expected stability of the folded G4. biocViews: MotifDiscovery, SequenceMatching, GeneRegulation Author: Jiri Hon, Dominika Labudova, Matej Lexa and Tomas Martinek Maintainer: Jiri Hon URL: https://pqsfinder.fi.muni.cz SystemRequirements: GNU make, C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/pqsfinder git_branch: RELEASE_3_20 git_last_commit: 7baec2f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pqsfinder_2.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pqsfinder_2.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pqsfinder_2.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pqsfinder_2.22.0.tgz vignettes: vignettes/pqsfinder/inst/doc/pqsfinder.html vignetteTitles: pqsfinder: User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/pqsfinder/inst/doc/pqsfinder.R dependencyCount: 28 Package: pram Version: 1.22.0 Depends: R (>= 3.6) Imports: methods, BiocParallel, tools, utils, data.table (>= 1.11.8), GenomicAlignments (>= 1.16.0), rtracklayer (>= 1.40.6), BiocGenerics (>= 0.26.0), GenomeInfoDb (>= 1.16.0), GenomicRanges (>= 1.32.0), IRanges (>= 2.14.12), Rsamtools (>= 1.32.3), S4Vectors (>= 0.18.3) Suggests: testthat, BiocStyle, knitr, rmarkdown License: GPL (>= 3) MD5sum: f82820adea535d68aaddc8555db22a73 NeedsCompilation: no Title: Pooling RNA-seq datasets for assembling transcript models Description: Publicly available RNA-seq data is routinely used for retrospective analysis to elucidate new biology. Novel transcript discovery enabled by large collections of RNA-seq datasets has emerged as one of such analysis. To increase the power of transcript discovery from large collections of RNA-seq datasets, we developed a new R package named Pooling RNA-seq and Assembling Models (PRAM), which builds transcript models in intergenic regions from pooled RNA-seq datasets. This package includes functions for defining intergenic regions, extracting and pooling related RNA-seq alignments, predicting, selected, and evaluating transcript models. biocViews: Software, Technology, Sequencing, RNASeq, BiologicalQuestion, GenePrediction, GenomeAnnotation, ResearchField, Transcriptomics Author: Peng Liu [aut, cre], Colin N. Dewey [aut], Sündüz Keleş [aut] Maintainer: Peng Liu URL: https://github.com/pliu55/pram VignetteBuilder: knitr BugReports: https://github.com/pliu55/pram/issues git_url: https://git.bioconductor.org/packages/pram git_branch: RELEASE_3_20 git_last_commit: bc7305a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pram_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pram_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pram_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pram_1.22.0.tgz vignettes: vignettes/pram/inst/doc/pram.html vignetteTitles: Pooling RNA-seq and Assembling Models hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pram/inst/doc/pram.R dependencyCount: 59 Package: prebs Version: 1.46.0 Depends: R (>= 2.14.0), GenomicAlignments, affy, RPA Imports: parallel, methods, stats, GenomicRanges (>= 1.13.3), IRanges, Biobase, GenomeInfoDb, S4Vectors Suggests: prebsdata, hgu133plus2cdf, hgu133plus2probe License: Artistic-2.0 Archs: x64 MD5sum: b96a4d47e6fcd79cc5887b2eb2268a74 NeedsCompilation: no Title: Probe region expression estimation for RNA-seq data for improved microarray comparability Description: The prebs package aims at making RNA-sequencing (RNA-seq) data more comparable to microarray data. The comparability is achieved by summarizing sequencing-based expressions of probe regions using a modified version of RMA algorithm. The pipeline takes mapped reads in BAM format as an input and produces either gene expressions or original microarray probe set expressions as an output. biocViews: ImmunoOncology, Microarray, RNASeq, Sequencing, GeneExpression, Preprocessing Author: Karolis Uziela and Antti Honkela Maintainer: Karolis Uziela git_url: https://git.bioconductor.org/packages/prebs git_branch: RELEASE_3_20 git_last_commit: a93caca git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/prebs_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/prebs_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/prebs_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/prebs_1.46.0.tgz vignettes: vignettes/prebs/inst/doc/prebs.pdf vignetteTitles: prebs User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/prebs/inst/doc/prebs.R dependencyCount: 127 Package: preciseTAD Version: 1.16.0 Depends: R (>= 4.1) Imports: S4Vectors, IRanges, GenomicRanges, randomForest, ModelMetrics, e1071, PRROC, pROC, caret, utils, cluster, dbscan, doSNOW, foreach, pbapply, stats, parallel, gtools, rCGH Suggests: knitr, rmarkdown, testthat, BiocCheck, BiocManager, BiocStyle License: MIT + file LICENSE MD5sum: 0e602de9d61c6d4364dd71c47098729e NeedsCompilation: no Title: preciseTAD: A machine learning framework for precise TAD boundary prediction Description: preciseTAD provides functions to predict the location of boundaries of topologically associated domains (TADs) and chromatin loops at base-level resolution. As an input, it takes BED-formatted genomic coordinates of domain boundaries detected from low-resolution Hi-C data, and coordinates of high-resolution genomic annotations from ENCODE or other consortia. preciseTAD employs several feature engineering strategies and resampling techniques to address class imbalance, and trains an optimized random forest model for predicting low-resolution domain boundaries. Translated on a base-level, preciseTAD predicts the probability for each base to be a boundary. Density-based clustering and scalable partitioning techniques are used to detect precise boundary regions and summit points. Compared with low-resolution boundaries, preciseTAD boundaries are highly enriched for CTCF, RAD21, SMC3, and ZNF143 signal and more conserved across cell lines. The pre-trained model can accurately predict boundaries in another cell line using CTCF, RAD21, SMC3, and ZNF143 annotation data for this cell line. biocViews: Software, HiC, Sequencing, Clustering, Classification, FunctionalGenomics, FeatureExtraction Author: Spiro Stilianoudakis [aut], Mikhail Dozmorov [aut, cre] Maintainer: Mikhail Dozmorov URL: https://github.com/dozmorovlab/preciseTAD VignetteBuilder: knitr BugReports: https://github.com/dozmorovlab/preciseTAD/issues git_url: https://git.bioconductor.org/packages/preciseTAD git_branch: RELEASE_3_20 git_last_commit: 696a9c0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/preciseTAD_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/preciseTAD_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/preciseTAD_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/preciseTAD_1.16.0.tgz vignettes: vignettes/preciseTAD/inst/doc/preciseTAD.html vignetteTitles: preciseTAD hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/preciseTAD/inst/doc/preciseTAD.R suggestsMe: preciseTADhub dependencyCount: 179 Package: PREDA Version: 1.52.0 Depends: R (>= 2.9.0), Biobase, lokern (>= 1.0.9), multtest, stats, methods, annotate Suggests: quantsmooth, qvalue, limma, caTools, affy, PREDAsampledata Enhances: Rmpi, rsprng License: GPL-2 Archs: x64 MD5sum: bcdc80537f37f8daaba13323d8f378e2 NeedsCompilation: no Title: Position Related Data Analysis Description: Package for the position related analysis of quantitative functional genomics data. biocViews: Software, CopyNumberVariation, GeneExpression, Genetics Author: Francesco Ferrari Maintainer: Francesco Ferrari git_url: https://git.bioconductor.org/packages/PREDA git_branch: RELEASE_3_20 git_last_commit: f4bf445 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PREDA_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PREDA_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PREDA_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PREDA_1.52.0.tgz vignettes: vignettes/PREDA/inst/doc/PREDAclasses.pdf, vignettes/PREDA/inst/doc/PREDAtutorial.pdf vignetteTitles: PREDA S4-classes, PREDA tutorial hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PREDA/inst/doc/PREDAtutorial.R dependsOnMe: PREDAsampledata dependencyCount: 57 Package: preprocessCore Version: 1.68.0 Imports: stats License: LGPL (>= 2) MD5sum: 61afd1d17c726fe857064bd7d1e9da07 NeedsCompilation: yes Title: A collection of pre-processing functions Description: A library of core preprocessing routines. biocViews: Infrastructure Author: Ben Bolstad Maintainer: Ben Bolstad URL: https://github.com/bmbolstad/preprocessCore git_url: https://git.bioconductor.org/packages/preprocessCore git_branch: RELEASE_3_20 git_last_commit: fa0e33e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/preprocessCore_1.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/preprocessCore_1.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/preprocessCore_1.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/preprocessCore_1.68.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: affyPLM, crlmm importsMe: affy, BloodGen3Module, bnbc, cn.farms, cypress, EMDomics, ExiMiR, fastLiquidAssociation, frma, frmaTools, hipathia, iCheck, InPAS, lumi, MADSEQ, MBCB, MBQN, MEDIPS, methylclock, mimager, minfi, MSPrep, MSstats, NormalyzerDE, oligo, PanomiR, PECA, PhosR, Pigengene, PRONE, qPLEXanalyzer, quantiseqr, sesame, soGGi, tidybulk, yarn, GSE13015, ADAPTS, bulkAnalyseR, cinaR, FARDEEP, HEMDAG, lilikoi, MiDA, noise, noisyr, oncoPredict, retriever, SMDIC, WGCNA suggestsMe: DAPAR, MsCoreUtils, multiClust, QFeatures, roastgsa, scp, splatter, tidytof, wateRmelon, aroma.affymetrix, aroma.core, glycanr, SCdeconR, wrMisc, wrTopDownFrag linksToMe: affy, affyPLM, crlmm, oligo dependencyCount: 1 Package: primirTSS Version: 1.24.0 Depends: R (>= 3.5.0) Imports: GenomicRanges (>= 1.32.2), S4Vectors (>= 0.18.2), rtracklayer (>= 1.40.3), dplyr (>= 0.7.6), stringr (>= 1.3.1), tidyr (>= 0.8.1), Biostrings (>= 2.48.0), purrr (>= 0.2.5), BSgenome.Hsapiens.UCSC.hg38 (>= 1.4.1), phastCons100way.UCSC.hg38 (>= 3.7.1), GenomicScores (>= 1.4.1), shiny (>= 1.0.5), Gviz (>= 1.24.0), BiocGenerics (>= 0.26.0), IRanges (>= 2.14.10), TFBSTools (>= 1.18.0), JASPAR2018 (>= 1.1.1), tibble (>= 1.4.2), R.utils (>= 2.6.0), stats, utils Suggests: knitr, rmarkdown License: GPL-2 MD5sum: eba06a5e0b1ed70d47bae698fcb29d34 NeedsCompilation: no Title: Prediction of pri-miRNA Transcription Start Site Description: A fast, convenient tool to identify the TSSs of miRNAs by integrating the data of H3K4me3 and Pol II as well as combining the conservation level and sequence feature, provided within both command-line and graphical interfaces, which achieves a better performance than the previous non-cell-specific methods on miRNA TSSs. biocViews: ImmunoOncology, Sequencing, RNASeq, Genetics, Preprocessing, Transcription, GeneRegulation Author: Pumin Li [aut, cre], Qi Xu [aut], Jie Li [aut], Jin Wang [aut] Maintainer: Pumin Li URL: https://github.com/ipumin/primirTSS VignetteBuilder: knitr BugReports: http://github.com/ipumin/primirTSS/issues git_url: https://git.bioconductor.org/packages/primirTSS git_branch: RELEASE_3_20 git_last_commit: 4320ad5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/primirTSS_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/primirTSS_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/primirTSS_1.24.0.tgz vignettes: vignettes/primirTSS/inst/doc/primirTSS.html vignetteTitles: primirTSS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/primirTSS/inst/doc/primirTSS.R dependencyCount: 196 Package: PrInCE Version: 1.22.0 Depends: R (>= 3.6.0) Imports: purrr (>= 0.2.4), dplyr (>= 0.7.4), tidyr (>= 0.8.99), forecast (>= 8.2), progress (>= 1.1.2), Hmisc (>= 4.0), naivebayes (>= 0.9.1), robustbase (>= 0.92-7), ranger (>= 0.8.0), LiblineaR (>= 2.10-8), speedglm (>= 0.3-2), tester (>= 0.1.7), magrittr (>= 1.5), Biobase (>= 2.40.0), MSnbase (>= 2.8.3), stats, utils, methods, Rdpack (>= 0.7) Suggests: BiocStyle, knitr, rmarkdown License: GPL-3 + file LICENSE MD5sum: 5f31284d4bccefe998ac479eb21274cc NeedsCompilation: no Title: Predicting Interactomes from Co-Elution Description: PrInCE (Predicting Interactomes from Co-Elution) uses a naive Bayes classifier trained on dataset-derived features to recover protein-protein interactions from co-elution chromatogram profiles. This package contains the R implementation of PrInCE. biocViews: Proteomics, SystemsBiology, NetworkInference Author: Michael Skinnider [aut, trl, cre], R. Greg Stacey [ctb], Nichollas Scott [ctb], Anders Kristensen [ctb], Leonard Foster [aut, led] Maintainer: Michael Skinnider VignetteBuilder: knitr BugReports: https://github.com/fosterlab/PrInCE/issues git_url: https://git.bioconductor.org/packages/PrInCE git_branch: RELEASE_3_20 git_last_commit: bd1581d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PrInCE_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PrInCE_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PrInCE_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PrInCE_1.22.0.tgz vignettes: vignettes/PrInCE/inst/doc/intro-to-prince.html vignetteTitles: Interactome reconstruction from co-elution data with PrInCE hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/PrInCE/inst/doc/intro-to-prince.R dependencyCount: 175 Package: proActiv Version: 1.16.0 Depends: R (>= 4.0.0) Imports: AnnotationDbi, BiocParallel, data.table, dplyr, DESeq2, IRanges, GenomicRanges, GenomicFeatures, GenomicAlignments, GenomeInfoDb, ggplot2, gplots, graphics, methods, rlang, scales, S4Vectors, SummarizedExperiment, stats, tibble, txdbmaker Suggests: testthat, rmarkdown, knitr, Rtsne, gridExtra License: MIT + file LICENSE MD5sum: 1985887def235d0035fc9334a804e4d6 NeedsCompilation: no Title: Estimate Promoter Activity from RNA-Seq data Description: Most human genes have multiple promoters that control the expression of different isoforms. The use of these alternative promoters enables the regulation of isoform expression pre-transcriptionally. Alternative promoters have been found to be important in a wide number of cell types and diseases. proActiv is an R package that enables the analysis of promoters from RNA-seq data. proActiv uses aligned reads as input, and generates counts and normalized promoter activity estimates for each annotated promoter. In particular, proActiv accepts junction files from TopHat2 or STAR or BAM files as inputs. These estimates can then be used to identify which promoter is active, which promoter is inactive, and which promoters change their activity across conditions. proActiv also allows visualization of promoter activity across conditions. biocViews: RNASeq, GeneExpression, Transcription, AlternativeSplicing, GeneRegulation, DifferentialSplicing, FunctionalGenomics, Epigenetics, Transcriptomics, Preprocessing Author: Deniz Demircioglu [aut] (), Jonathan Göke [aut], Joseph Lee [cre] Maintainer: Joseph Lee URL: https://github.com/GoekeLab/proActiv VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/proActiv git_branch: RELEASE_3_20 git_last_commit: 9f2c120 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/proActiv_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/proActiv_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/proActiv_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/proActiv_1.16.0.tgz vignettes: vignettes/proActiv/inst/doc/proActiv.html vignetteTitles: Identifying Active and Alternative Promoters from RNA-Seq data with proActiv hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/proActiv/inst/doc/proActiv.R dependencyCount: 125 Package: proBAMr Version: 1.40.0 Depends: R (>= 3.0.1), IRanges, AnnotationDbi Imports: GenomicRanges, Biostrings, GenomicFeatures, txdbmaker, rtracklayer Suggests: RUnit, BiocGenerics License: Artistic-2.0 Archs: x64 MD5sum: ead4c9156710d421662ce7cb1ef3db20 NeedsCompilation: no Title: Generating SAM file for PSMs in shotgun proteomics data Description: Mapping PSMs back to genome. The package builds SAM file from shotgun proteomics data The package also provides function to prepare annotation from GTF file. biocViews: ImmunoOncology, Proteomics, MassSpectrometry, Software, Visualization Author: Xiaojing Wang Maintainer: Xiaojing Wang git_url: https://git.bioconductor.org/packages/proBAMr git_branch: RELEASE_3_20 git_last_commit: 6c6e5fd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/proBAMr_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/proBAMr_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/proBAMr_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/proBAMr_1.40.0.tgz vignettes: vignettes/proBAMr/inst/doc/proBAMr.pdf vignetteTitles: Introduction to proBAMr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/proBAMr/inst/doc/proBAMr.R dependencyCount: 102 Package: PROcess Version: 1.82.0 Depends: Icens Imports: graphics, grDevices, Icens, stats, utils License: Artistic-2.0 MD5sum: 4908c255d9a7568a935d9a9a104a1543 NeedsCompilation: no Title: Ciphergen SELDI-TOF Processing Description: A package for processing protein mass spectrometry data. biocViews: ImmunoOncology, MassSpectrometry, Proteomics Author: Xiaochun Li Maintainer: Xiaochun Li git_url: https://git.bioconductor.org/packages/PROcess git_branch: RELEASE_3_20 git_last_commit: 1b35e6c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PROcess_1.82.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PROcess_1.82.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PROcess_1.82.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PROcess_1.82.0.tgz vignettes: vignettes/PROcess/inst/doc/howtoprocess.pdf vignetteTitles: HOWTO PROcess hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PROcess/inst/doc/howtoprocess.R dependencyCount: 11 Package: procoil Version: 2.34.0 Depends: R (>= 3.3.0), kebabs Imports: methods, stats, graphics, S4Vectors, Biostrings, utils Suggests: knitr License: GPL (>= 2) MD5sum: 174fa33038e5cb51178d3a96f06a2c34 NeedsCompilation: no Title: Prediction of Oligomerization of Coiled Coil Proteins Description: The package allows for predicting whether a coiled coil sequence (amino acid sequence plus heptad register) is more likely to form a dimer or more likely to form a trimer. Additionally to the prediction itself, a prediction profile is computed which allows for determining the strengths to which the individual residues are indicative for either class. Prediction profiles can also be visualized as curves or heatmaps. biocViews: Proteomics, Classification, SupportVectorMachine Author: Ulrich Bodenhofer [aut,cre] Maintainer: Ulrich Bodenhofer URL: https://github.com/UBod/procoil VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/procoil git_branch: RELEASE_3_20 git_last_commit: b697704 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/procoil_2.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/procoil_2.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/procoil_2.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/procoil_2.34.0.tgz vignettes: vignettes/procoil/inst/doc/procoil.pdf vignetteTitles: PrOCoil - A Web Service and an R Package for Predicting the Oligomerization of Coiled-Coil Proteins hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/procoil/inst/doc/procoil.R dependencyCount: 37 Package: proDA Version: 1.20.0 Imports: stats, utils, methods, BiocGenerics, SummarizedExperiment, S4Vectors, extraDistr Suggests: testthat (>= 2.1.0), MSnbase, dplyr, stringr, readr, tidyr, tibble, limma, DEP, numDeriv, pheatmap, knitr, rmarkdown, BiocStyle License: GPL-3 MD5sum: 6dc679d6860842be9745f7e3f37353a7 NeedsCompilation: no Title: Differential Abundance Analysis of Label-Free Mass Spectrometry Data Description: Account for missing values in label-free mass spectrometry data without imputation. The package implements a probabilistic dropout model that ensures that the information from observed and missing values are properly combined. It adds empirical Bayesian priors to increase power to detect differentially abundant proteins. biocViews: Proteomics, MassSpectrometry, DifferentialExpression, Bayesian, Regression, Software, Normalization, QualityControl Author: Constantin Ahlmann-Eltze [aut, cre] (), Simon Anders [ths] () Maintainer: Constantin Ahlmann-Eltze URL: https://github.com/const-ae/proDA VignetteBuilder: knitr BugReports: https://github.com/const-ae/proDA/issues git_url: https://git.bioconductor.org/packages/proDA git_branch: RELEASE_3_20 git_last_commit: 5a26168 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/proDA_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/proDA_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/proDA_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/proDA_1.20.0.tgz vignettes: vignettes/proDA/inst/doc/data-import.html, vignettes/proDA/inst/doc/Introduction.html vignetteTitles: Data Import, Introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/proDA/inst/doc/data-import.R, vignettes/proDA/inst/doc/Introduction.R importsMe: MatrixQCvis suggestsMe: protti dependencyCount: 38 Package: profileplyr Version: 1.22.0 Depends: R (>= 3.6), BiocGenerics, SummarizedExperiment Imports: GenomicRanges, stats, soGGi, methods, utils, S4Vectors, R.utils, dplyr, magrittr, tidyr, IRanges, rjson, ChIPseeker,GenomicFeatures,TxDb.Hsapiens.UCSC.hg19.knownGene,TxDb.Hsapiens.UCSC.hg38.knownGene,TxDb.Mmusculus.UCSC.mm10.knownGene, TxDb.Mmusculus.UCSC.mm9.knownGene,org.Hs.eg.db,org.Mm.eg.db,rGREAT, pheatmap, ggplot2, EnrichedHeatmap, ComplexHeatmap, grid, circlize, BiocParallel, rtracklayer, GenomeInfoDb, grDevices, rlang, tiff, Rsamtools Suggests: BiocStyle, testthat, knitr, rmarkdown, png, Cairo License: GPL (>= 3) MD5sum: 338eed59007c3609827942b0a50b4311 NeedsCompilation: no Title: Visualization and annotation of read signal over genomic ranges with profileplyr Description: Quick and straightforward visualization of read signal over genomic intervals is key for generating hypotheses from sequencing data sets (e.g. ChIP-seq, ATAC-seq, bisulfite/methyl-seq). Many tools both inside and outside of R and Bioconductor are available to explore these types of data, and they typically start with a bigWig or BAM file and end with some representation of the signal (e.g. heatmap). profileplyr leverages many Bioconductor tools to allow for both flexibility and additional functionality in workflows that end with visualization of the read signal. biocViews: ChIPSeq, DataImport, Sequencing, ChipOnChip, Coverage Author: Tom Carroll and Doug Barrows Maintainer: Tom Carroll , Doug Barrows VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/profileplyr git_branch: RELEASE_3_20 git_last_commit: efa2459 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/profileplyr_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/profileplyr_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/profileplyr_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/profileplyr_1.22.0.tgz vignettes: vignettes/profileplyr/inst/doc/profileplyr.html vignetteTitles: Visualization and annotation of read signal over genomic ranges with profileplyr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/profileplyr/inst/doc/profileplyr.R suggestsMe: DiffBind dependencyCount: 206 Package: profileScoreDist Version: 1.34.0 Depends: R(>= 3.3) Imports: Rcpp, BiocGenerics, methods, graphics LinkingTo: Rcpp Suggests: BiocStyle, knitr, MotifDb License: MIT + file LICENSE MD5sum: 760fd2987f725358003c665c7930f8ce NeedsCompilation: yes Title: Profile score distributions Description: Regularization and score distributions for position count matrices. biocViews: Software, GeneRegulation, StatisticalMethod Author: Paal O. Westermark Maintainer: Paal O. Westermark VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/profileScoreDist git_branch: RELEASE_3_20 git_last_commit: 76d11e2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/profileScoreDist_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/profileScoreDist_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/profileScoreDist_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/profileScoreDist_1.34.0.tgz vignettes: vignettes/profileScoreDist/inst/doc/profileScoreDist-vignette.pdf vignetteTitles: Using profileScoreDist hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/profileScoreDist/inst/doc/profileScoreDist-vignette.R dependencyCount: 6 Package: progeny Version: 1.28.0 Depends: R (>= 3.6.0) Imports: Biobase, stats, dplyr, tidyr, ggplot2, ggrepel, gridExtra, decoupleR, reshape2 Suggests: airway, biomaRt, BiocFileCache, broom, Seurat, SingleCellExperiment, DESeq2, BiocStyle, knitr, readr, readxl, pheatmap, tibble, rmarkdown, testthat (>= 2.1.0) License: Apache License (== 2.0) | file LICENSE MD5sum: 98f76e162cce19fd43ab13251969b117 NeedsCompilation: no Title: Pathway RespOnsive GENes for activity inference from gene expression Description: PROGENy is resource that leverages a large compendium of publicly available signaling perturbation experiments to yield a common core of pathway responsive genes for human and mouse. These, coupled with any statistical method, can be used to infer pathway activities from bulk or single-cell transcriptomics. biocViews: SystemsBiology, GeneExpression, FunctionalPrediction, GeneRegulation Author: Michael Schubert [aut], Alberto Valdeolivas [ctb] (), Christian H. Holland [ctb] (), Igor Bulanov [ctb], Aurélien Dugourd [cre, ctb] Maintainer: Aurélien Dugourd URL: https://github.com/saezlab/progeny VignetteBuilder: knitr BugReports: https://github.com/saezlab/progeny/issues git_url: https://git.bioconductor.org/packages/progeny git_branch: RELEASE_3_20 git_last_commit: cbdfaf7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/progeny_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/progeny_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/progeny_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/progeny_1.28.0.tgz vignettes: vignettes/progeny/inst/doc/progeny.html vignetteTitles: PROGENy pathway signatures hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/progeny/inst/doc/progeny.R importsMe: easier suggestsMe: autonomics dependencyCount: 64 Package: projectR Version: 1.22.0 Depends: R (>= 4.0.0) Imports: methods, cluster, stats, limma, NMF, ROCR, ggalluvial, RColorBrewer, dplyr, fgsea, reshape2, viridis, scales, Matrix, MatrixModels, msigdbr, ggplot2, cowplot, ggrepel, umap, tsne Suggests: BiocStyle, CoGAPS, gridExtra, grid, testthat, devtools, knitr, rmarkdown, ComplexHeatmap, gplots, SeuratObject License: GPL (==2) MD5sum: 31626fd24bbeeaaf849ed5487f363a39 NeedsCompilation: no Title: Functions for the projection of weights from PCA, CoGAPS, NMF, correlation, and clustering Description: Functions for the projection of data into the spaces defined by PCA, CoGAPS, NMF, correlation, and clustering. biocViews: FunctionalPrediction, GeneRegulation, BiologicalQuestion, Software Author: Gaurav Sharma, Charles Shin, Jared Slosberg, Loyal Goff, Genevieve Stein-O'Brien Maintainer: Genevieve Stein-O'Brien URL: https://github.com/genesofeve/projectR/ VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/projectR/ git_url: https://git.bioconductor.org/packages/projectR git_branch: RELEASE_3_20 git_last_commit: e5e8919 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/projectR_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/projectR_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/projectR_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/projectR_1.22.0.tgz vignettes: vignettes/projectR/inst/doc/projectR.html vignetteTitles: projectR hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/projectR/inst/doc/projectR.R dependencyCount: 102 Package: pRoloc Version: 1.46.0 Depends: R (>= 3.5), MSnbase (>= 1.19.20), MLInterfaces (>= 1.67.10), methods, Rcpp (>= 0.10.3), BiocParallel Imports: stats4, Biobase, mclust (>= 4.3), caret, e1071, sampling, class, kernlab, lattice, nnet, randomForest, proxy, FNN, hexbin, BiocGenerics, stats, dendextend, RColorBrewer, scales, MASS, knitr, mvtnorm, LaplacesDemon, coda, mixtools, gtools, plyr, ggplot2, biomaRt, utils, grDevices, graphics LinkingTo: Rcpp, RcppArmadillo Suggests: testthat, rmarkdown, pRolocdata (>= 1.43.2), roxygen2, xtable, rgl, BiocStyle (>= 2.5.19), hpar (>= 1.41.0), dplyr, akima, fields, vegan, GO.db, AnnotationDbi, Rtsne (>= 0.13), nipals, reshape, magick License: GPL-2 MD5sum: af27cefbe17786019c650bd56840013e NeedsCompilation: yes Title: A unifying bioinformatics framework for spatial proteomics Description: The pRoloc package implements machine learning and visualisation methods for the analysis and interogation of quantitiative mass spectrometry data to reliably infer protein sub-cellular localisation. biocViews: ImmunoOncology, Proteomics, MassSpectrometry, Classification, Clustering, QualityControl Author: Laurent Gatto, Oliver Crook and Lisa M. Breckels with contributions from Thomas Burger and Samuel Wieczorek Maintainer: Laurent Gatto URL: https://github.com/lgatto/pRoloc VignetteBuilder: knitr Video: https://www.youtube.com/playlist?list=PLvIXxpatSLA2loV5Srs2VBpJIYUlVJ4ow BugReports: https://github.com/lgatto/pRoloc/issues git_url: https://git.bioconductor.org/packages/pRoloc git_branch: RELEASE_3_20 git_last_commit: 964ee99 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pRoloc_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pRoloc_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pRoloc_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pRoloc_1.46.0.tgz vignettes: vignettes/pRoloc/inst/doc/v01-pRoloc-tutorial.html, vignettes/pRoloc/inst/doc/v02-pRoloc-ml.html, vignettes/pRoloc/inst/doc/v03-pRoloc-bayesian.html, vignettes/pRoloc/inst/doc/v04-pRoloc-goannotations.html, vignettes/pRoloc/inst/doc/v05-pRoloc-transfer-learning.html vignetteTitles: Using pRoloc for spatial proteomics data analysis, Machine learning techniques available in pRoloc, Bayesian spatial proteomics with pRoloc, Annotating spatial proteomics data, A transfer learning algorithm for spatial proteomics hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pRoloc/inst/doc/v01-pRoloc-tutorial.R, vignettes/pRoloc/inst/doc/v02-pRoloc-ml.R, vignettes/pRoloc/inst/doc/v03-pRoloc-bayesian.R, vignettes/pRoloc/inst/doc/v04-pRoloc-goannotations.R, vignettes/pRoloc/inst/doc/v05-pRoloc-transfer-learning.R dependsOnMe: bandle, pRolocGUI suggestsMe: MSnbase, pRolocdata, RforProteomics dependencyCount: 229 Package: pRolocGUI Version: 2.16.0 Depends: methods, R (>= 3.1.0), pRoloc (>= 1.27.6), Biobase, MSnbase (>= 2.1.11) Imports: shiny (>= 0.9.1), scales, dplyr, DT (>= 0.1.40), graphics, utils, ggplot2, shinydashboardPlus (>= 2.0.0), colourpicker, shinyhelper, shinyWidgets, shinyjs, colorspace, stats, grDevices, grid, BiocGenerics, shinydashboard Suggests: pRolocdata, knitr, BiocStyle (>= 2.5.19), rmarkdown, testthat (>= 3.0.0) License: GPL-2 Archs: x64 MD5sum: 9caa7759371934f6e3b7b7b017135960 NeedsCompilation: no Title: Interactive visualisation of spatial proteomics data Description: The package pRolocGUI comprises functions to interactively visualise spatial proteomics data on the basis of pRoloc, pRolocdata and shiny. biocViews: Proteomics, Visualization, GUI Author: Lisa Breckels [aut, cre] (), Thomas Naake [aut], Laurent Gatto [aut] () Maintainer: Lisa Breckels URL: https://github.com/lgatto/pRolocGUI VignetteBuilder: knitr Video: https://www.youtube.com/playlist?list=PLvIXxpatSLA2loV5Srs2VBpJIYUlVJ4ow BugReports: https://github.com/lgatto/pRolocGUI/issues git_url: https://git.bioconductor.org/packages/pRolocGUI git_branch: RELEASE_3_20 git_last_commit: 29ec3d0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pRolocGUI_2.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pRolocGUI_2.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pRolocGUI_2.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pRolocGUI_2.16.0.tgz vignettes: vignettes/pRolocGUI/inst/doc/pRolocGUI.html vignetteTitles: pRolocGUI - Interactive visualisation of spatial proteomics data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pRolocGUI/inst/doc/pRolocGUI.R dependencyCount: 242 Package: PROMISE Version: 1.58.0 Depends: R (>= 3.1.0), Biobase, GSEABase Imports: Biobase, GSEABase, stats License: GPL (>= 2) MD5sum: 6783c7f3744cb92cd4f4305aab04882c NeedsCompilation: no Title: PRojection Onto the Most Interesting Statistical Evidence Description: A general tool to identify genomic features with a specific biologically interesting pattern of associations with multiple endpoint variables as described in Pounds et. al. (2009) Bioinformatics 25: 2013-2019 biocViews: Microarray, OneChannel, MultipleComparison, GeneExpression Author: Stan Pounds , Xueyuan Cao Maintainer: Stan Pounds , Xueyuan Cao git_url: https://git.bioconductor.org/packages/PROMISE git_branch: RELEASE_3_20 git_last_commit: 9fb1418 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PROMISE_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PROMISE_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PROMISE_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PROMISE_1.58.0.tgz vignettes: vignettes/PROMISE/inst/doc/PROMISE.pdf vignetteTitles: An introduction to PROMISE hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PROMISE/inst/doc/PROMISE.R dependsOnMe: CCPROMISE dependencyCount: 50 Package: PRONE Version: 1.0.0 Depends: R (>= 4.4.0), SummarizedExperiment Imports: dplyr, magrittr, data.table, RColorBrewer, ggplot2, S4Vectors, ComplexHeatmap, stringr, NormalyzerDE, tibble, limma, MASS, edgeR, matrixStats, preprocessCore, stats, gtools, methods, ROTS, ComplexUpset, tidyr, purrr, circlize, gprofiler2, plotROC, MSnbase, UpSetR, dendsort, vsn, Biobase, reshape2, POMA, ggtext, scales, DEqMS Suggests: testthat (>= 3.0.0), knitr, rmarkdown, BiocStyle, DT License: GPL (>= 3) MD5sum: 424320061fdf0c594037698358512cb3 NeedsCompilation: no Title: The PROteomics Normalization Evaluator Description: High-throughput omics data are often affected by systematic biases introduced throughout all the steps of a clinical study, from sample collection to quantification. Normalization methods aim to adjust for these biases to make the actual biological signal more prominent. However, selecting an appropriate normalization method is challenging due to the wide range of available approaches. Therefore, a comparative evaluation of unnormalized and normalized data is essential in identifying an appropriate normalization strategy for a specific data set. This R package provides different functions for preprocessing, normalizing, and evaluating different normalization approaches. Furthermore, normalization methods can be evaluated on downstream steps, such as differential expression analysis and statistical enrichment analysis. Spike-in data sets with known ground truth and real-world data sets of biological experiments acquired by either tandem mass tag (TMT) or label-free quantification (LFQ) can be analyzed. biocViews: Proteomics, Preprocessing, Normalization, DifferentialExpression, Visualization Author: Lis Arend [aut, cre] () Maintainer: Lis Arend URL: https://github.com/lisiarend/PRONE VignetteBuilder: knitr BugReports: https://github.com/lisiarend/PRONE/issues git_url: https://git.bioconductor.org/packages/PRONE git_branch: RELEASE_3_20 git_last_commit: 0833b5f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PRONE_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PRONE_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PRONE_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PRONE_1.0.0.tgz vignettes: vignettes/PRONE/inst/doc/Differential_Expression.html, vignettes/PRONE/inst/doc/Imputation.html, vignettes/PRONE/inst/doc/Normalization.html, vignettes/PRONE/inst/doc/Preprocessing.html, vignettes/PRONE/inst/doc/PRONE.html, vignettes/PRONE/inst/doc/Spike_In_Data.html vignetteTitles: 5. Differential Expression Analysis, 4. Imputation, 3. Normalization, 2. Preprocessing, 1. Getting started with PRONE, 6. PRONE with Spike-In Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PRONE/inst/doc/Differential_Expression.R, vignettes/PRONE/inst/doc/Imputation.R, vignettes/PRONE/inst/doc/Normalization.R, vignettes/PRONE/inst/doc/Preprocessing.R, vignettes/PRONE/inst/doc/PRONE.R, vignettes/PRONE/inst/doc/Spike_In_Data.R dependencyCount: 280 Package: PROPER Version: 1.38.0 Depends: R (>= 3.3) Imports: edgeR Suggests: BiocStyle,DESeq2,DSS,knitr License: GPL Archs: x64 MD5sum: 015d560900231510bd434cbf6f7ca621 NeedsCompilation: no Title: PROspective Power Evaluation for RNAseq Description: This package provide simulation based methods for evaluating the statistical power in differential expression analysis from RNA-seq data. biocViews: ImmunoOncology, Sequencing, RNASeq, DifferentialExpression Author: Hao Wu Maintainer: Hao Wu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/PROPER git_branch: RELEASE_3_20 git_last_commit: e085023 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PROPER_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PROPER_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PROPER_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PROPER_1.38.0.tgz vignettes: vignettes/PROPER/inst/doc/PROPER.pdf vignetteTitles: Power and Sample size analysis for gene expression from RNA-seq hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PROPER/inst/doc/PROPER.R importsMe: cypress dependencyCount: 11 Package: PROPS Version: 1.28.0 Imports: bnlearn, reshape2, sva, stats, utils, Biobase Suggests: knitr, rmarkdown License: GPL-2 MD5sum: 71abf59b7196a20c012ab931aa6fff7d NeedsCompilation: no Title: PRObabilistic Pathway Score (PROPS) Description: This package calculates probabilistic pathway scores using gene expression data. Gene expression values are aggregated into pathway-based scores using Bayesian network representations of biological pathways. biocViews: Classification, Bayesian, GeneExpression Author: Lichy Han Maintainer: Lichy Han VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/PROPS git_branch: RELEASE_3_20 git_last_commit: ce4a0b7 git_last_commit_date: 2024-12-31 Date/Publication: 2025-01-02 source.ver: src/contrib/PROPS_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PROPS_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PROPS_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PROPS_1.28.0.tgz vignettes: vignettes/PROPS/inst/doc/props.html vignetteTitles: PRObabilistic Pathway Scores (PROPS) hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PROPS/inst/doc/props.R Package: Prostar Version: 1.38.1 Depends: R (>= 4.4.0) Imports: DAPAR (>= 1.35.1), DAPARdata (>= 1.30.0), rhandsontable, data.table, shiny, shinyBS, shinyAce, highcharter, htmlwidgets, webshot, shinythemes, later, shinycssloaders, future, promises, shinyjqui, tibble, ggplot2, gplots, shinyjs, vioplot, Biobase, DT, R.utils, RColorBrewer, XML, colourpicker, gtools, markdown, rclipboard, sass, shinyTree, shinyWidgets Suggests: BiocStyle, BiocManager, testthat, knitr License: Artistic-2.0 MD5sum: fe45fa3df7ebdceaf4cf3db98f66c7da NeedsCompilation: no Title: Provides a GUI for DAPAR Description: This package provides a GUI interface for the DAPAR package. The package Prostar (Proteomics statistical analysis with R) is a Bioconductor distributed R package which provides all the necessary functions to analyze quantitative data from label-free proteomics experiments. Contrarily to most other similar R packages, it is endowed with rich and user-friendly graphical interfaces, so that no programming skill is required. biocViews: Proteomics, MassSpectrometry, Normalization, Preprocessing, Software, GUI Author: Thomas Burger [aut], Florence Combes [aut], Samuel Wieczorek [cre, aut] Maintainer: Samuel Wieczorek URL: http://www.prostar-proteomics.org/ VignetteBuilder: knitr BugReports: https://github.com/edyp-lab/Prostar/issues git_url: https://git.bioconductor.org/packages/Prostar git_branch: RELEASE_3_20 git_last_commit: f93842a git_last_commit_date: 2024-11-25 Date/Publication: 2024-11-25 source.ver: src/contrib/Prostar_1.38.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/Prostar_1.38.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Prostar_1.38.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Prostar_1.38.1.tgz vignettes: vignettes/Prostar/inst/doc/Prostar_UserManual.html vignetteTitles: Prostar User Manual hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Prostar/inst/doc/Prostar_UserManual.R dependencyCount: 188 Package: proteinProfiles Version: 1.46.0 Depends: R (>= 2.15.2) Imports: graphics, stats Suggests: testthat License: GPL-3 MD5sum: bd105d4f0730d834b3485b18a6244163 NeedsCompilation: no Title: Protein Profiling Description: Significance assessment for distance measures of time-course protein profiles Author: Julian Gehring Maintainer: Julian Gehring git_url: https://git.bioconductor.org/packages/proteinProfiles git_branch: RELEASE_3_20 git_last_commit: f053897 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/proteinProfiles_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/proteinProfiles_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/proteinProfiles_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/proteinProfiles_1.46.0.tgz vignettes: vignettes/proteinProfiles/inst/doc/proteinProfiles.pdf vignetteTitles: The proteinProfiles package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/proteinProfiles/inst/doc/proteinProfiles.R dependencyCount: 2 Package: ProteoDisco Version: 1.12.0 Depends: R (>= 4.1.0), Imports: BiocGenerics (>= 0.38.0), BiocParallel (>= 1.26.0), Biostrings (>= 2.60.1), checkmate (>= 2.0.0), cleaver (>= 1.30.0), dplyr (>= 1.0.6), GenomeInfoDb (>= 1.28.0), GenomicFeatures (>= 1.44.0), GenomicRanges (>= 1.44.0), IRanges (>= 2.26.0), methods (>= 4.1.0), ParallelLogger (>= 2.0.1), plyr (>= 1.8.6), rlang (>= 0.4.11), S4Vectors (>= 0.30.0), tibble (>= 3.1.2), tidyr (>= 1.1.3), VariantAnnotation (>= 1.36.0), XVector (>= 0.32.0), Suggests: AnnotationDbi (>= 1.54.1), BSgenome (>= 1.60.0), BSgenome.Hsapiens.UCSC.hg19 (>= 1.4.3), BiocStyle (>= 2.20.1), DelayedArray (>= 0.18.0), devtools (>= 2.4.2), knitr (>= 1.33), matrixStats (>= 0.59.0), markdown (>= 1.1), org.Hs.eg.db (>= 3.13.0), purrr (>= 0.3.4), RCurl (>= 1.98.1.3), readr (>= 1.4.0), ggplot2 (>= 3.3.5), rmarkdown (>= 2.9), rtracklayer (>= 1.52.0), seqinr (>= 4.2.8), stringr (>= 1.4.0), reshape2 (>= 1.4.4), scales (>= 1.1.1), testthat (>= 3.0.3), TxDb.Hsapiens.UCSC.hg19.knownGene (>= 3.2.2) License: GPL-3 MD5sum: aef1788d8265e423bb2d6a4cc67fd317 NeedsCompilation: no Title: Generation of customized protein variant databases from genomic variants, splice-junctions and manual sequences Description: ProteoDisco is an R package to facilitate proteogenomics studies. It houses functions to create customized (variant) protein databases based on user-submitted genomic variants, splice-junctions, fusion genes and manual transcript sequences. The flexible workflow can be adopted to suit a myriad of research and experimental settings. biocViews: Software, Proteomics, RNASeq, SNP, Sequencing, VariantAnnotation, DataImport Author: Job van Riet [cre], Wesley van de Geer [aut], Harmen van de Werken [ths] Maintainer: Job van Riet URL: https://github.com/ErasmusMC-CCBC/ProteoDisco VignetteBuilder: knitr BugReports: https://github.com/ErasmusMC-CCBC/ProteoDisco/issues git_url: https://git.bioconductor.org/packages/ProteoDisco git_branch: RELEASE_3_20 git_last_commit: 89c9e43 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ProteoDisco_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ProteoDisco_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ProteoDisco_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ProteoDisco_1.12.0.tgz vignettes: vignettes/ProteoDisco/inst/doc/Overview_ProteoDisco.html vignetteTitles: Overview_Proteodisco hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ProteoDisco/inst/doc/Overview_ProteoDisco.R dependencyCount: 99 Package: ProteoMM Version: 1.24.0 Depends: R (>= 3.5) Imports: gdata, biomaRt, ggplot2, ggrepel, gtools, stats, matrixStats, graphics Suggests: BiocStyle, knitr, rmarkdown License: MIT MD5sum: d8c89e655a1cabcc73d039ee15550a48 NeedsCompilation: no Title: Multi-Dataset Model-based Differential Expression Proteomics Analysis Platform Description: ProteoMM is a statistical method to perform model-based peptide-level differential expression analysis of single or multiple datasets. For multiple datasets ProteoMM produces a single fold change and p-value for each protein across multiple datasets. ProteoMM provides functionality for normalization, missing value imputation and differential expression. Model-based peptide-level imputation and differential expression analysis component of package follows the analysis described in “A statistical framework for protein quantitation in bottom-up MS based proteomics" (Karpievitch et al. Bioinformatics 2009). EigenMS normalisation is implemented as described in "Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition." (Karpievitch et al. Bioinformatics 2009). biocViews: ImmunoOncology, MassSpectrometry, Proteomics, Normalization, DifferentialExpression Author: Yuliya V Karpievitch, Tim Stuart and Sufyaan Mohamed Maintainer: Yuliya V Karpievitch VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ProteoMM git_branch: RELEASE_3_20 git_last_commit: 20cdaa0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ProteoMM_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ProteoMM_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ProteoMM_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ProteoMM_1.24.0.tgz vignettes: vignettes/ProteoMM/inst/doc/ProteoMM_vignette.html vignetteTitles: Multi-Dataset Model-based Differential Expression Proteomics Platform hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ProteoMM/inst/doc/ProteoMM_vignette.R suggestsMe: mi4p dependencyCount: 91 Package: protGear Version: 1.10.0 Depends: R (>= 4.2), dplyr (>= 0.8.0) , limma (>= 3.40.2) ,vsn (>= 3.54.0) Imports: magrittr (>= 1.5) , stats (>= 3.6) , ggplot2 (>= 3.3.0) , tidyr (>= 1.1.3) , data.table (>= 1.14.0), ggpubr (>= 0.4.0), gtools (>= 3.8.2) , tibble (>= 3.1.0) , rmarkdown (>= 2.9) , knitr (>= 1.33), utils (>= 3.6), genefilter (>= 1.74.0), readr (>= 2.0.1) , Biobase (>= 2.52.0), plyr (>= 1.8.6) , Kendall (>= 2.2) , shiny (>= 1.0.0) , purrr (>= 0.3.4), plotly (>= 4.9.0) , MASS (>= 7.3) , htmltools (>= 0.4.0) , flexdashboard (>= 0.5.2) , shinydashboard (>= 0.7.1) , GGally (>= 2.1.2) , pheatmap (>= 1.0.12) , grid(>= 4.1.1), styler (>= 1.6.1) , factoextra (>= 1.0.7) ,FactoMineR (>= 2.4) , rlang (>= 0.4.11), remotes (>= 2.4.0) Suggests: gridExtra (>= 2.3), png (>= 0.1-7) , magick (>= 2.7.3) , ggplotify (>= 0.1.0) , scales (>= 1.1.1) , shinythemes (>= 1.2.0) , shinyjs (>= 2.0.0) , shinyWidgets (>= 0.6.2) , shinycssloaders (>= 1.0.0) , shinyalert (>= 3.0.0) , shinyFiles (>= 0.9.1) , shinyFeedback (>= 0.3.0) License: GPL-3 MD5sum: 0a2cf4e8e146f432a0ac89e6a6dc2f24 NeedsCompilation: no Title: Protein Micro Array Data Management and Interactive Visualization Description: A generic three-step pre-processing package for protein microarray data. This package contains different data pre-processing procedures to allow comparison of their performance.These steps are background correction, the coefficient of variation (CV) based filtering, batch correction and normalization. biocViews: Microarray, OneChannel, Preprocessing , BiomedicalInformatics , Proteomics , BatchEffect, Normalization , Bayesian, Clustering, Regression,SystemsBiology, ImmunoOncology Author: Kennedy Mwai [cre, aut], James Mburu [aut], Jacqueline Waeni [ctb] Maintainer: Kennedy Mwai URL: https://github.com/Keniajin/protGear VignetteBuilder: knitr BugReports: https://github.com/Keniajin/protGear/issues git_url: https://git.bioconductor.org/packages/protGear git_branch: RELEASE_3_20 git_last_commit: 7290eaf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/protGear_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/protGear_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/protGear_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/protGear_1.10.0.tgz vignettes: vignettes/protGear/inst/doc/vignette.html vignetteTitles: protGear hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/protGear/inst/doc/vignette.R dependencyCount: 188 Package: ProtGenerics Version: 1.38.0 Depends: methods Suggests: testthat License: Artistic-2.0 MD5sum: 7e7211a9fa758ca6f1b701c86e892895 NeedsCompilation: no Title: Generic infrastructure for Bioconductor mass spectrometry packages Description: S4 generic functions and classes needed by Bioconductor proteomics packages. biocViews: Infrastructure, Proteomics, MassSpectrometry Author: Laurent Gatto , Johannes Rainer Maintainer: Laurent Gatto URL: https://github.com/RforMassSpectrometry/ProtGenerics git_url: https://git.bioconductor.org/packages/ProtGenerics git_branch: RELEASE_3_20 git_last_commit: e75a9e0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ProtGenerics_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ProtGenerics_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ProtGenerics_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ProtGenerics_1.38.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: Cardinal, MsExperiment, MSnbase, SpectraQL, topdownr importsMe: CompoundDb, ensembldb, matter, MetaboAnnotation, MsBackendMassbank, MsBackendMetaboLights, MsBackendMgf, MsBackendMsp, MsBackendRawFileReader, MsBackendSql, MsFeatures, MSnID, MsQuality, mzID, mzR, PSMatch, QFeatures, Spectra, xcms dependencyCount: 1 Package: psichomics Version: 1.32.0 Depends: R (>= 4.0), shiny (>= 1.7.0), shinyBS Imports: AnnotationDbi, AnnotationHub, BiocFileCache, cluster, colourpicker, data.table, digest, dplyr, DT (>= 0.2), edgeR, fastICA, fastmatch, ggplot2, ggrepel, graphics, grDevices, highcharter (>= 0.5.0), htmltools, httr, jsonlite, limma, pairsD3, plyr, purrr, Rcpp (>= 0.12.14), recount, Rfast, R.utils, reshape2, shinyjs, stringr, stats, SummarizedExperiment, survival, tools, utils, XML, xtable, methods LinkingTo: Rcpp Suggests: testthat, knitr, parallel, devtools, rmarkdown, gplots, covr, car, rstudioapi, spelling License: MIT + file LICENSE MD5sum: 1d4af111319c0d85c7f0143b718f35ae NeedsCompilation: yes Title: Graphical Interface for Alternative Splicing Quantification, Analysis and Visualisation Description: Interactive R package with an intuitive Shiny-based graphical interface for alternative splicing quantification and integrative analyses of alternative splicing and gene expression based on The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression project (GTEx), Sequence Read Archive (SRA) and user-provided data. The tool interactively performs survival, dimensionality reduction and median- and variance-based differential splicing and gene expression analyses that benefit from the incorporation of clinical and molecular sample-associated features (such as tumour stage or survival). Interactive visual access to genomic mapping and functional annotation of selected alternative splicing events is also included. biocViews: Sequencing, RNASeq, AlternativeSplicing, DifferentialSplicing, Transcription, GUI, PrincipalComponent, Survival, BiomedicalInformatics, Transcriptomics, ImmunoOncology, Visualization, MultipleComparison, GeneExpression, DifferentialExpression Author: Nuno Saraiva-Agostinho [aut, cre] (), Nuno Luís Barbosa-Morais [aut, led, ths] (), André Falcão [ths], Lina Gallego Paez [ctb], Marie Bordone [ctb], Teresa Maia [ctb], Mariana Ferreira [ctb], Ana Carolina Leote [ctb], Bernardo de Almeida [ctb] Maintainer: Nuno Saraiva-Agostinho URL: https://nuno-agostinho.github.io/psichomics/, https://github.com/nuno-agostinho/psichomics/ VignetteBuilder: knitr BugReports: https://github.com/nuno-agostinho/psichomics/issues git_url: https://git.bioconductor.org/packages/psichomics git_branch: RELEASE_3_20 git_last_commit: e9a5f73 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/psichomics_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/psichomics_1.32.0.zip mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/psichomics_1.32.0.tgz vignettes: vignettes/psichomics/inst/doc/AS_events_preparation.html, vignettes/psichomics/inst/doc/CLI_tutorial.html, vignettes/psichomics/inst/doc/custom_data.html, vignettes/psichomics/inst/doc/GUI_tutorial.html vignetteTitles: Preparing an Alternative Splicing Annotation for psichomics, Case study: command-line interface (CLI) tutorial, Loading user-provided data, Case study: visual interface tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/psichomics/inst/doc/AS_events_preparation.R, vignettes/psichomics/inst/doc/CLI_tutorial.R, vignettes/psichomics/inst/doc/custom_data.R, vignettes/psichomics/inst/doc/GUI_tutorial.R dependencyCount: 210 Package: PSMatch Version: 1.10.0 Depends: S4Vectors Imports: utils, stats, igraph, methods, Matrix, BiocParallel, BiocGenerics, ProtGenerics (>= 1.27.1), QFeatures, MsCoreUtils Suggests: msdata, rpx, mzID, mzR, Spectra, SummarizedExperiment, BiocStyle, rmarkdown, knitr, factoextra, testthat License: Artistic-2.0 MD5sum: cf954495b58b7d4bb5af2b1f09f7f572 NeedsCompilation: no Title: Handling and Managing Peptide Spectrum Matches Description: The PSMatch package helps proteomics practitioners to load, handle and manage Peptide Spectrum Matches. It provides functions to model peptide-protein relations as adjacency matrices and connected components, visualise these as graphs and make informed decision about shared peptide filtering. The package also provides functions to calculate and visualise MS2 fragment ions. biocViews: Infrastructure, Proteomics, MassSpectrometry Author: Laurent Gatto [aut, cre] (), Johannes Rainer [aut] (), Sebastian Gibb [aut] (), Samuel Wieczorek [ctb], Thomas Burger [ctb] Maintainer: Laurent Gatto URL: https://github.com/RforMassSpectrometry/PSM VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/PSM/issues git_url: https://git.bioconductor.org/packages/PSMatch git_branch: RELEASE_3_20 git_last_commit: 4e358b8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PSMatch_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PSMatch_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PSMatch_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PSMatch_1.10.0.tgz vignettes: vignettes/PSMatch/inst/doc/AdjacencyMatrix.html, vignettes/PSMatch/inst/doc/Fragments.html, vignettes/PSMatch/inst/doc/PSM.html vignetteTitles: Understanding protein groups with adjacency matrices, MS2 fragment ions, Working with PSM data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PSMatch/inst/doc/AdjacencyMatrix.R, vignettes/PSMatch/inst/doc/Fragments.R, vignettes/PSMatch/inst/doc/PSM.R importsMe: MSnbase, omXplore, topdownr suggestsMe: MsDataHub dependencyCount: 117 Package: ptairMS Version: 1.14.0 Imports: Biobase, bit64, chron, data.table, doParallel, DT, enviPat, foreach, ggplot2, graphics, grDevices, ggpubr, gridExtra, Hmisc, methods, minpack.lm, MSnbase, parallel, plotly, rhdf5, rlang, Rcpp, shiny, shinyscreenshot, signal, scales, stats, utils LinkingTo: Rcpp Suggests: knitr, rmarkdown, BiocStyle, testthat (>= 2.1.0), ptairData, ropls License: GPL-3 MD5sum: 2197daf83bbc4b82563b65efaa58c890 NeedsCompilation: yes Title: Pre-processing PTR-TOF-MS Data Description: This package implements a suite of methods to preprocess data from PTR-TOF-MS instruments (HDF5 format) and generates the 'sample by features' table of peak intensities in addition to the sample and feature metadata (as a singl VignetteBuilder: knitr BugReports: https://github.com/camilleroquencourt/ptairMS/issues git_url: https://git.bioconductor.org/packages/ptairMS git_branch: RELEASE_3_20 git_last_commit: 305ca9a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ptairMS_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ptairMS_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ptairMS_1.14.0.tgz vignettes: vignettes/ptairMS/inst/doc/ptairMS.html vignetteTitles: ptaiMS: Processing and analysis of PTR-TOF-MS data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ptairMS/inst/doc/ptairMS.R dependencyCount: 190 Package: puma Version: 3.48.0 Depends: R (>= 3.2.0), oligo (>= 1.32.0),graphics,grDevices, methods, stats, utils, mclust, oligoClasses Imports: Biobase (>= 2.5.5), affy (>= 1.46.0), affyio, oligoClasses Suggests: pumadata, affydata, snow, limma, ROCR,annotate License: LGPL MD5sum: 6d7a6b96c444d8e8321bd9d616fb0950 NeedsCompilation: yes Title: Propagating Uncertainty in Microarray Analysis(including Affymetrix tranditional 3' arrays and exon arrays and Human Transcriptome Array 2.0) Description: Most analyses of Affymetrix GeneChip data (including tranditional 3' arrays and exon arrays and Human Transcriptome Array 2.0) are based on point estimates of expression levels and ignore the uncertainty of such estimates. By propagating uncertainty to downstream analyses we can improve results from microarray analyses. For the first time, the puma package makes a suite of uncertainty propagation methods available to a general audience. In additon to calculte gene expression from Affymetrix 3' arrays, puma also provides methods to process exon arrays and produces gene and isoform expression for alternative splicing study. puma also offers improvements in terms of scope and speed of execution over previously available uncertainty propagation methods. Included are summarisation, differential expression detection, clustering and PCA methods, together with useful plotting functions. biocViews: Microarray, OneChannel, Preprocessing, DifferentialExpression, Clustering, ExonArray, GeneExpression, mRNAMicroarray, ChipOnChip, AlternativeSplicing, DifferentialSplicing, Bayesian, TwoChannel, DataImport, HTA2.0 Author: Richard D. Pearson, Xuejun Liu, Magnus Rattray, Marta Milo, Neil D. Lawrence, Guido Sanguinetti, Li Zhang Maintainer: Xuejun Liu URL: http://umber.sbs.man.ac.uk/resources/puma git_url: https://git.bioconductor.org/packages/puma git_branch: RELEASE_3_20 git_last_commit: 269c99c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/puma_3.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/puma_3.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/puma_3.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/puma_3.48.0.tgz vignettes: vignettes/puma/inst/doc/puma.pdf vignetteTitles: puma User Guide hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/puma/inst/doc/puma.R suggestsMe: tigre dependencyCount: 66 Package: PureCN Version: 2.12.0 Depends: R (>= 3.5.0), DNAcopy, VariantAnnotation (>= 1.14.1) Imports: GenomicRanges (>= 1.20.3), IRanges (>= 2.2.1), RColorBrewer, S4Vectors, data.table, grDevices, graphics, stats, utils, SummarizedExperiment, GenomeInfoDb, GenomicFeatures, Rsamtools, Biobase, Biostrings, BiocGenerics, rtracklayer, ggplot2, gridExtra, futile.logger, VGAM, tools, methods, mclust, rhdf5, Matrix Suggests: BiocParallel, BiocStyle, PSCBS, R.utils, TxDb.Hsapiens.UCSC.hg19.knownGene, covr, knitr, optparse, org.Hs.eg.db, jsonlite, markdown, rmarkdown, testthat Enhances: genomicsdb (>= 0.0.3) License: Artistic-2.0 Archs: x64 MD5sum: e00cd4d68b2c9e0d03750f4d75e11991 NeedsCompilation: no Title: Copy number calling and SNV classification using targeted short read sequencing Description: This package estimates tumor purity, copy number, and loss of heterozygosity (LOH), and classifies single nucleotide variants (SNVs) by somatic status and clonality. PureCN is designed for targeted short read sequencing data, integrates well with standard somatic variant detection and copy number pipelines, and has support for tumor samples without matching normal samples. biocViews: CopyNumberVariation, Software, Sequencing, VariantAnnotation, VariantDetection, Coverage, ImmunoOncology Author: Markus Riester [aut, cre] (), Angad P. Singh [aut] Maintainer: Markus Riester URL: https://github.com/lima1/PureCN VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/PureCN git_branch: RELEASE_3_20 git_last_commit: 7a189a9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PureCN_2.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PureCN_2.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PureCN_2.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PureCN_2.12.0.tgz vignettes: vignettes/PureCN/inst/doc/PureCN.pdf, vignettes/PureCN/inst/doc/Quick.html vignetteTitles: Overview of the PureCN R package, Best practices,, quick start and command line usage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PureCN/inst/doc/PureCN.R, vignettes/PureCN/inst/doc/Quick.R dependencyCount: 107 Package: pvac Version: 1.54.0 Depends: R (>= 2.8.0) Imports: affy (>= 1.20.0), stats, Biobase Suggests: pbapply, affydata, ALLMLL, genefilter License: LGPL (>= 2.0) MD5sum: 603f27796d2268e8695b19e1d6509627 NeedsCompilation: no Title: PCA-based gene filtering for Affymetrix arrays Description: The package contains the function for filtering genes by the proportion of variation accounted for by the first principal component (PVAC). biocViews: Microarray, OneChannel, QualityControl Author: Jun Lu and Pierre R. Bushel Maintainer: Jun Lu , Pierre R. Bushel git_url: https://git.bioconductor.org/packages/pvac git_branch: RELEASE_3_20 git_last_commit: 0ad6a76 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pvac_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pvac_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pvac_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pvac_1.54.0.tgz vignettes: vignettes/pvac/inst/doc/pvac.pdf vignetteTitles: PCA-based gene filtering for Affymetrix GeneChips hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pvac/inst/doc/pvac.R dependencyCount: 12 Package: pvca Version: 1.46.0 Depends: R (>= 2.15.1) Imports: Matrix, Biobase, vsn, stats, lme4 Suggests: golubEsets License: LGPL (>= 2.0) Archs: x64 MD5sum: a58e00010280d2a69984c0edb9263382 NeedsCompilation: no Title: Principal Variance Component Analysis (PVCA) Description: This package contains the function to assess the batch sourcs by fitting all "sources" as random effects including two-way interaction terms in the Mixed Model(depends on lme4 package) to selected principal components, which were obtained from the original data correlation matrix. This package accompanies the book "Batch Effects and Noise in Microarray Experiements, chapter 12. biocViews: Microarray, BatchEffect Author: Pierre Bushel Maintainer: Jianying LI git_url: https://git.bioconductor.org/packages/pvca git_branch: RELEASE_3_20 git_last_commit: 97dac2b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pvca_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pvca_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pvca_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pvca_1.46.0.tgz vignettes: vignettes/pvca/inst/doc/pvca.pdf vignetteTitles: Batch effect estimation in Microarray data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pvca/inst/doc/pvca.R importsMe: ExpressionNormalizationWorkflow, statVisual dependencyCount: 52 Package: Pviz Version: 1.40.0 Depends: R(>= 3.0.0), Gviz(>= 1.7.10) Imports: biovizBase, Biostrings, GenomicRanges, IRanges, data.table, methods Suggests: knitr, pepDat License: Artistic-2.0 Archs: x64 MD5sum: a7a777df32c02f6ebdae9a899dce0ba8 NeedsCompilation: no Title: Peptide Annotation and Data Visualization using Gviz Description: Pviz adapts the Gviz package for protein sequences and data. biocViews: Visualization, Proteomics, Microarray Author: Renan Sauteraud, Mike Jiang, Raphael Gottardo Maintainer: Renan Sauteraud VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Pviz git_branch: RELEASE_3_20 git_last_commit: 0fc7524 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Pviz_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Pviz_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Pviz_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Pviz_1.40.0.tgz vignettes: vignettes/Pviz/inst/doc/Pviz.pdf vignetteTitles: The Pviz users guide hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Pviz/inst/doc/Pviz.R suggestsMe: pepStat dependencyCount: 157 Package: pwalign Version: 1.2.0 Depends: BiocGenerics, S4Vectors, IRanges, Biostrings (>= 2.71.5) Imports: methods, utils LinkingTo: S4Vectors, IRanges, XVector, Biostrings Suggests: RUnit Enhances: Rmpi License: Artistic-2.0 MD5sum: 02e773c9593e0e9c8ce0b9b7bde3bdae NeedsCompilation: yes Title: Perform pairwise sequence alignments Description: The two main functions in the package are pairwiseAlignment() and stringDist(). The former solves (Needleman-Wunsch) global alignment, (Smith-Waterman) local alignment, and (ends-free) overlap alignment problems. The latter computes the Levenshtein edit distance or pairwise alignment score matrix for a set of strings. biocViews: Alignment, SequenceMatching, Sequencing, Genetics Author: Patrick Aboyoun [aut], Robert Gentleman [aut], Hervé Pagès [cre] Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/pwalign BugReports: https://github.com/Bioconductor/pwalign/issues git_url: https://git.bioconductor.org/packages/pwalign git_branch: RELEASE_3_20 git_last_commit: 9d0fa61 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/pwalign_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/pwalign_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/pwalign_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pwalign_1.2.0.tgz vignettes: vignettes/pwalign/inst/doc/PairwiseAlignments.pdf vignetteTitles: Pairwise Sequence Alignments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/pwalign/inst/doc/PairwiseAlignments.R dependsOnMe: amplican, hiReadsProcessor, MethTargetedNGS, QSutils, R453Plus1Toolbox, sangeranalyseR, sangerseqR, CleanBSequences importsMe: ChIPpeakAnno, ClustIRR, CNEr, crisprShiny, DominoEffect, enhancerHomologSearch, ggseqalign, girafe, GUIDEseq, IMMAN, IsoformSwitchAnalyzeR, LinTInd, methylscaper, motifbreakR, MSA2dist, openPrimeR, scanMiR, ShortRead, SPLINTER, StructuralVariantAnnotation, svaNUMT, TFBSTools, XNAString, kmeRs suggestsMe: BiocGenerics, Biostrings, idpr, msa, RSVSim, dowser, seqtrie dependencyCount: 25 Package: PWMEnrich Version: 4.42.0 Depends: R (>= 3.5.0), methods, BiocGenerics, Biostrings Imports: grid, seqLogo, gdata, evd, S4Vectors Suggests: MotifDb, BSgenome, BSgenome.Dmelanogaster.UCSC.dm3, PWMEnrich.Dmelanogaster.background, testthat, gtools, parallel, PWMEnrich.Hsapiens.background, PWMEnrich.Mmusculus.background, BiocStyle, knitr License: LGPL (>= 2) MD5sum: 261788d0539274cf75100b2b390fd457 NeedsCompilation: no Title: PWM enrichment analysis Description: A toolkit of high-level functions for DNA motif scanning and enrichment analysis built upon Biostrings. The main functionality is PWM enrichment analysis of already known PWMs (e.g. from databases such as MotifDb), but the package also implements high-level functions for PWM scanning and visualisation. The package does not perform "de novo" motif discovery, but is instead focused on using motifs that are either experimentally derived or computationally constructed by other tools. biocViews: MotifAnnotation, SequenceMatching, Software Author: Robert Stojnic, Diego Diez Maintainer: Diego Diez VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/PWMEnrich git_branch: RELEASE_3_20 git_last_commit: a3c28d2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/PWMEnrich_4.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/PWMEnrich_4.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/PWMEnrich_4.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PWMEnrich_4.42.0.tgz vignettes: vignettes/PWMEnrich/inst/doc/PWMEnrich.pdf vignetteTitles: Overview of the 'PWMEnrich' package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/PWMEnrich/inst/doc/PWMEnrich.R dependsOnMe: PWMEnrich.Dmelanogaster.background, PWMEnrich.Hsapiens.background, PWMEnrich.Mmusculus.background suggestsMe: rTRM dependencyCount: 30 Package: qckitfastq Version: 1.22.0 Imports: magrittr, ggplot2, dplyr, seqTools, zlibbioc, data.table, reshape2, grDevices, graphics, stats, utils, Rcpp, rlang, RSeqAn LinkingTo: Rcpp, RSeqAn Suggests: knitr, rmarkdown, kableExtra, testthat License: Artistic-2.0 MD5sum: 77c0797c0e417c03aa5424bfb1d9ec15 NeedsCompilation: yes Title: FASTQ Quality Control Description: Assessment of FASTQ file format with multiple metrics including quality score, sequence content, overrepresented sequence and Kmers. biocViews: Software,QualityControl,Sequencing Author: Wenyue Xing [aut], August Guang [aut, cre] Maintainer: August Guang SystemRequirements: GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/qckitfastq git_branch: RELEASE_3_20 git_last_commit: c770a15 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/qckitfastq_1.22.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/qckitfastq_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/qckitfastq_1.22.0.tgz vignettes: vignettes/qckitfastq/inst/doc/vignette-qckitfastq.pdf vignetteTitles: Quality control analysis and visualization using qckitfastq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/qckitfastq/inst/doc/vignette-qckitfastq.R dependencyCount: 48 Package: qcmetrics Version: 1.44.0 Depends: R (>= 3.3) Imports: Biobase, methods, knitr, tools, xtable, pander, S4Vectors Suggests: affy, MSnbase, ggplot2, lattice, mzR, BiocStyle, rmarkdown, markdown License: GPL-2 MD5sum: 0f6c1fe40d9d8be77b652646b2ed082c NeedsCompilation: no Title: A Framework for Quality Control Description: The package provides a framework for generic quality control of data. It permits to create, manage and visualise individual or sets of quality control metrics and generate quality control reports in various formats. biocViews: ImmunoOncology, Software, QualityControl, Proteomics, Microarray, MassSpectrometry, Visualization, ReportWriting Author: Laurent Gatto [aut, cre] Maintainer: Laurent Gatto URL: http://lgatto.github.io/qcmetrics/articles/qcmetrics.html VignetteBuilder: knitr BugReports: https://github.com/lgatto/qcmetrics/issues git_url: https://git.bioconductor.org/packages/qcmetrics git_branch: RELEASE_3_20 git_last_commit: c5d48ad git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/qcmetrics_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/qcmetrics_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/qcmetrics_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/qcmetrics_1.44.0.tgz vignettes: vignettes/qcmetrics/inst/doc/qcmetrics.html vignetteTitles: Index file for the qcmetrics package vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/qcmetrics/inst/doc/qcmetrics.R importsMe: MSstatsQC dependencyCount: 19 Package: QDNAseq Version: 1.42.0 Depends: R (>= 3.1.0) Imports: graphics, methods, stats, utils, Biobase (>= 2.18.0), CGHbase (>= 1.18.0), CGHcall (>= 2.18.0), DNAcopy (>= 1.32.0), GenomicRanges (>= 1.20), IRanges (>= 2.2), matrixStats (>= 0.60.0), R.utils (>= 2.9.0), Rsamtools (>= 1.20), future.apply (>= 1.8.1) Suggests: BiocStyle (>= 1.8.0), BSgenome (>= 1.38.0), digest (>= 0.6.20), GenomeInfoDb (>= 1.6.0), future (>= 1.22.1), parallelly (>= 1.28.1), R.cache (>= 0.13.0), QDNAseq.hg19, QDNAseq.mm10 License: GPL MD5sum: 86d1bb0aad347d95853508b57aa97dc0 NeedsCompilation: no Title: Quantitative DNA Sequencing for Chromosomal Aberrations Description: Quantitative DNA sequencing for chromosomal aberrations. The genome is divided into non-overlapping fixed-sized bins, number of sequence reads in each counted, adjusted with a simultaneous two-dimensional loess correction for sequence mappability and GC content, and filtered to remove spurious regions in the genome. Downstream steps of segmentation and calling are also implemented via packages DNAcopy and CGHcall, respectively. biocViews: CopyNumberVariation, DNASeq, Genetics, GenomeAnnotation, Preprocessing, QualityControl, Sequencing Author: Ilari Scheinin [aut], Daoud Sie [aut, cre], Henrik Bengtsson [aut], Erik van Dijk [ctb] Maintainer: Daoud Sie URL: https://github.com/ccagc/QDNAseq BugReports: https://github.com/ccagc/QDNAseq/issues git_url: https://git.bioconductor.org/packages/QDNAseq git_branch: RELEASE_3_20 git_last_commit: ef944cd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/QDNAseq_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/QDNAseq_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/QDNAseq_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/QDNAseq_1.42.0.tgz vignettes: vignettes/QDNAseq/inst/doc/QDNAseq.pdf vignetteTitles: Introduction to QDNAseq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/QDNAseq/inst/doc/QDNAseq.R dependsOnMe: GeneBreak, QDNAseq.hg19, QDNAseq.mm10 importsMe: ACE, biscuiteer, cfdnakit dependencyCount: 58 Package: QFeatures Version: 1.16.0 Depends: R (>= 4.0), MultiAssayExperiment Imports: methods, stats, utils, S4Vectors, IRanges, SummarizedExperiment, BiocGenerics, ProtGenerics (>= 1.35.1), AnnotationFilter, lazyeval, Biobase, MsCoreUtils (>= 1.7.2), igraph, grDevices, plotly, tidyr, tidyselect, reshape2 Suggests: SingleCellExperiment, MsDataHub (>= 1.3.3), Matrix, HDF5Array, msdata, ggplot2, gplots, dplyr, limma, DT, shiny, shinydashboard, testthat, knitr, BiocStyle, rmarkdown, vsn, preprocessCore, matrixStats, imputeLCMD, pcaMethods, impute, norm, ComplexHeatmap License: Artistic-2.0 Archs: x64 MD5sum: 6013e8d25e7c98cfca285254718744c3 NeedsCompilation: no Title: Quantitative features for mass spectrometry data Description: The QFeatures infrastructure enables the management and processing of quantitative features for high-throughput mass spectrometry assays. It provides a familiar Bioconductor user experience to manages quantitative data across different assay levels (such as peptide spectrum matches, peptides and proteins) in a coherent and tractable format. biocViews: Infrastructure, MassSpectrometry, Proteomics, Metabolomics Author: Laurent Gatto [aut, cre] (), Christophe Vanderaa [aut] () Maintainer: Laurent Gatto URL: https://github.com/RforMassSpectrometry/QFeatures VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/QFeatures/issues git_url: https://git.bioconductor.org/packages/QFeatures git_branch: RELEASE_3_20 git_last_commit: 4961028 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/QFeatures_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/QFeatures_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/QFeatures_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/QFeatures_1.16.0.tgz vignettes: vignettes/QFeatures/inst/doc/Processing.html, vignettes/QFeatures/inst/doc/QFeatures.html, vignettes/QFeatures/inst/doc/Visualization.html vignetteTitles: Processing quantitative proteomics data with QFeatures, Quantitative features for mass spectrometry data, Data visualization from a QFeatures object hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/QFeatures/inst/doc/Processing.R, vignettes/QFeatures/inst/doc/QFeatures.R, vignettes/QFeatures/inst/doc/Visualization.R dependsOnMe: hdxmsqc, msqrob2, scp, scpdata importsMe: MetaboAnnotation, MsExperiment, PSMatch suggestsMe: MsDataHub dependencyCount: 107 Package: qmtools Version: 1.10.0 Depends: R (>= 4.2.0), SummarizedExperiment Imports: rlang, ggplot2, patchwork, heatmaply, methods, MsCoreUtils, stats, igraph, VIM, scales, grDevices, graphics, limma Suggests: Rtsne, missForest, vsn, pcaMethods, pls, MsFeatures, impute, imputeLCMD, nlme, testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown License: GPL-3 MD5sum: 6faa442b1949dd6c8af47c5285b455a7 NeedsCompilation: no Title: Quantitative Metabolomics Data Processing Tools Description: The qmtools (quantitative metabolomics tools) package provides basic tools for processing quantitative metabolomics data with the standard SummarizedExperiment class. This includes functions for imputation, normalization, feature filtering, feature clustering, dimension-reduction, and visualization to help users prepare data for statistical analysis. This package also offers a convenient way to compute empirical Bayes statistics for which metabolic features are different between two sets of study samples. Several functions in this package could also be used in other types of omics data. biocViews: Metabolomics, Preprocessing, Normalization, DimensionReduction, MassSpectrometry Author: Jaehyun Joo [aut, cre], Blanca Himes [aut] Maintainer: Jaehyun Joo URL: https://github.com/HimesGroup/qmtools VignetteBuilder: knitr BugReports: https://github.com/HimesGroup/qmtools/issues git_url: https://git.bioconductor.org/packages/qmtools git_branch: RELEASE_3_20 git_last_commit: 8b97db4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/qmtools_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/qmtools_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/qmtools_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/qmtools_1.10.0.tgz vignettes: vignettes/qmtools/inst/doc/qmtools.html vignetteTitles: Quantitative metabolomics data processing hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/qmtools/inst/doc/qmtools.R dependencyCount: 163 Package: qpcrNorm Version: 1.64.0 Depends: methods, Biobase, limma, affy License: LGPL (>= 2) MD5sum: 673a5545cde0b6a35d479b1c41a92cb6 NeedsCompilation: no Title: Data-driven normalization strategies for high-throughput qPCR data. Description: The package contains functions to perform normalization of high-throughput qPCR data. Basic functions for processing raw Ct data plus functions to generate diagnostic plots are also available. biocViews: Preprocessing, GeneExpression Author: Jessica Mar Maintainer: Jessica Mar git_url: https://git.bioconductor.org/packages/qpcrNorm git_branch: RELEASE_3_20 git_last_commit: e97d56f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/qpcrNorm_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/qpcrNorm_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/qpcrNorm_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/qpcrNorm_1.64.0.tgz vignettes: vignettes/qpcrNorm/inst/doc/qpcrNorm.pdf vignetteTitles: qPCR Normalization Example hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/qpcrNorm/inst/doc/qpcrNorm.R dependencyCount: 14 Package: qpgraph Version: 2.40.0 Depends: R (>= 3.5) Imports: methods, parallel, Matrix (>= 1.5-0), grid, annotate, graph (>= 1.45.1), Biobase, S4Vectors, BiocParallel, AnnotationDbi, IRanges, GenomeInfoDb, GenomicRanges, GenomicFeatures, mvtnorm, qtl, Rgraphviz Suggests: RUnit, BiocGenerics, BiocStyle, genefilter, org.EcK12.eg.db, rlecuyer, snow, Category, GOstats License: GPL (>= 2) MD5sum: 3eb484fe295f35d5b0171573be8067a1 NeedsCompilation: yes Title: Estimation of genetic and molecular regulatory networks from high-throughput genomics data Description: Estimate gene and eQTL networks from high-throughput expression and genotyping assays. biocViews: Microarray, GeneExpression, Transcription, Pathways, NetworkInference, GraphAndNetwork, GeneRegulation, Genetics, GeneticVariability, SNP, Software Author: Robert Castelo [aut, cre], Alberto Roverato [aut] Maintainer: Robert Castelo URL: https://github.com/rcastelo/qpgraph BugReports: https://github.com/rcastelo/rcastelo/issues git_url: https://git.bioconductor.org/packages/qpgraph git_branch: RELEASE_3_20 git_last_commit: 078b5fe git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/qpgraph_2.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/qpgraph_2.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/qpgraph_2.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/qpgraph_2.40.0.tgz vignettes: vignettes/qpgraph/inst/doc/BasicUsersGuide.pdf, vignettes/qpgraph/inst/doc/eQTLnetworks.pdf, vignettes/qpgraph/inst/doc/qpgraphSimulate.pdf, vignettes/qpgraph/inst/doc/qpTxRegNet.pdf vignetteTitles: BasicUsersGuide.pdf, Estimate eQTL networks using qpgraph, Simulating molecular regulatory networks using qpgraph, Reverse-engineer transcriptional regulatory networks using qpgraph hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/qpgraph/inst/doc/eQTLnetworks.R, vignettes/qpgraph/inst/doc/qpgraphSimulate.R, vignettes/qpgraph/inst/doc/qpTxRegNet.R importsMe: clipper, MOSClip, topologyGSA dependencyCount: 83 Package: qPLEXanalyzer Version: 1.24.0 Depends: R (>= 4.0), Biobase, MSnbase Imports: assertthat, BiocGenerics, Biostrings, dplyr (>= 1.0.0), ggdendro, ggplot2, graphics, grDevices, IRanges, limma, magrittr, preprocessCore, purrr, RColorBrewer, readr, rlang, scales, stats, stringr, tibble, tidyr, tidyselect, utils Suggests: patchwork, knitr, qPLEXdata, rmarkdown, statmod, testthat, UniProt.ws, vdiffr License: GPL-2 MD5sum: 079b6b261234e203346710c930541607 NeedsCompilation: no Title: Tools for quantitative proteomics data analysis Description: Tools for TMT based quantitative proteomics data analysis. biocViews: ImmunoOncology, Proteomics, MassSpectrometry, Normalization, Preprocessing, QualityControl, DataImport Author: Matthew Eldridge [aut], Kamal Kishore [aut], Ashley Sawle [aut, cre] Maintainer: Ashley Sawle VignetteBuilder: knitr BugReports: https://github.com/crukci-bioinformatics/qPLEXanalyzer/issues git_url: https://git.bioconductor.org/packages/qPLEXanalyzer git_branch: RELEASE_3_20 git_last_commit: 29217cb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/qPLEXanalyzer_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/qPLEXanalyzer_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/qPLEXanalyzer_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/qPLEXanalyzer_1.24.0.tgz vignettes: vignettes/qPLEXanalyzer/inst/doc/qPLEXanalyzer.html vignetteTitles: qPLEXanalyzer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/qPLEXanalyzer/inst/doc/qPLEXanalyzer.R dependsOnMe: qPLEXdata dependencyCount: 149 Package: qsea Version: 1.32.0 Depends: R (>= 4.3) Imports: Biostrings, graphics, gtools, methods, stats, utils, HMMcopy, rtracklayer, BSgenome, GenomicRanges, Rsamtools, IRanges, limma, GenomeInfoDb, BiocGenerics, grDevices, zoo, BiocParallel, S4Vectors Suggests: BSgenome.Hsapiens.UCSC.hg19, MEDIPSData, testthat, BiocStyle, knitr, rmarkdown, BiocManager, MASS License: GPL-2 MD5sum: 2ad89b066e549ed52b4a0b6768235d19 NeedsCompilation: yes Title: IP-seq data analysis and vizualization Description: qsea (quantitative sequencing enrichment analysis) was developed as the successor of the MEDIPS package for analyzing data derived from methylated DNA immunoprecipitation (MeDIP) experiments followed by sequencing (MeDIP-seq). However, qsea provides several functionalities for the analysis of other kinds of quantitative sequencing data (e.g. ChIP-seq, MBD-seq, CMS-seq and others) including calculation of differential enrichment between groups of samples. biocViews: Sequencing, DNAMethylation, CpGIsland, ChIPSeq, Preprocessing, Normalization, QualityControl, Visualization, CopyNumberVariation, ChipOnChip, DifferentialMethylation Author: Matthias Lienhard [aut, cre] (), Lukas Chavez [aut] (), Ralf Herwig [aut] () Maintainer: Matthias Lienhard VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/qsea git_branch: RELEASE_3_20 git_last_commit: cb91f8f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/qsea_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/qsea_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/qsea_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/qsea_1.32.0.tgz vignettes: vignettes/qsea/inst/doc/qsea_tutorial.html vignetteTitles: qsea hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/qsea/inst/doc/qsea_tutorial.R dependencyCount: 65 Package: qsmooth Version: 1.22.0 Depends: R (>= 4.0) Imports: SummarizedExperiment, utils, sva, stats, methods, graphics, Hmisc Suggests: bodymapRat, quantro, knitr, rmarkdown, BiocStyle, testthat License: GPL-3 MD5sum: 45909d751d39e66fd98d35c49930b013 NeedsCompilation: no Title: Smooth quantile normalization Description: Smooth quantile normalization is a generalization of quantile normalization, which is average of the two types of assumptions about the data generation process: quantile normalization and quantile normalization between groups. biocViews: Normalization, Preprocessing, MultipleComparison, Microarray, Sequencing, RNASeq, BatchEffect Author: Stephanie C. Hicks [aut, cre] (), Kwame Okrah [aut], Koen Van den Berge [ctb], Hector Corrada Bravo [aut] (), Rafael Irizarry [aut] () Maintainer: Stephanie C. Hicks VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/qsmooth git_branch: RELEASE_3_20 git_last_commit: 4544a4e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/qsmooth_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/qsmooth_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/qsmooth_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/qsmooth_1.22.0.tgz vignettes: vignettes/qsmooth/inst/doc/qsmooth.html vignetteTitles: The qsmooth user's guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/qsmooth/inst/doc/qsmooth.R importsMe: CleanUpRNAseq dependencyCount: 127 Package: QSutils Version: 1.24.0 Depends: R (>= 3.5), Biostrings, pwalign, BiocGenerics, methods Imports: ape, stats, psych Suggests: BiocStyle, knitr, rmarkdown, ggplot2 License: GPL-2 Archs: x64 MD5sum: 3aa765bb40d4a7eb359417b658873ab1 NeedsCompilation: no Title: Quasispecies Diversity Description: Set of utility functions for viral quasispecies analysis with NGS data. Most functions are equally useful for metagenomic studies. There are three main types: (1) data manipulation and exploration—functions useful for converting reads to haplotypes and frequencies, repairing reads, intersecting strand haplotypes, and visualizing haplotype alignments. (2) diversity indices—functions to compute diversity and entropy, in which incidence, abundance, and functional indices are considered. (3) data simulation—functions useful for generating random viral quasispecies data. biocViews: Software, Genetics, DNASeq, GeneticVariability, Sequencing, Alignment, SequenceMatching, DataImport Author: Mercedes Guerrero-Murillo [cre, aut] (), Josep Gregori i Font [aut] () Maintainer: Mercedes Guerrero-Murillo VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/QSutils git_branch: RELEASE_3_20 git_last_commit: c0cca94 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/QSutils_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/QSutils_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/QSutils_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/QSutils_1.24.0.tgz vignettes: vignettes/QSutils/inst/doc/QSUtils-Alignment.html, vignettes/QSutils/inst/doc/QSutils-Diversity.html, vignettes/QSutils/inst/doc/QSutils-Simulation.html vignetteTitles: QSUtils-Alignment, QSutils-Diversity, QSutils-Simulation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/QSutils/inst/doc/QSUtils-Alignment.R, vignettes/QSutils/inst/doc/QSutils-Diversity.R, vignettes/QSutils/inst/doc/QSutils-Simulation.R importsMe: longreadvqs dependencyCount: 36 Package: qsvaR Version: 1.10.0 Depends: R (>= 4.2), SummarizedExperiment Imports: sva, stats, ggplot2, rlang, tidyverse, methods Suggests: BiocFileCache, BiocStyle, covr, knitr, limma, RefManageR, rmarkdown, sessioninfo, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: 4eb890505b4495bb6b0367eb191caac9 NeedsCompilation: no Title: Generate Quality Surrogate Variable Analysis for Degradation Correction Description: The qsvaR package contains functions for removing the effect of degration in rna-seq data from postmortem brain tissue. The package is equipped to help users generate principal components associated with degradation. The components can be used in differential expression analysis to remove the effects of degradation. biocViews: Software, WorkflowStep, Normalization, BiologicalQuestion, DifferentialExpression, Sequencing, Coverage Author: Joshua Stolz [aut] (), Hedia Tnani [ctb, cre] (), Leonardo Collado-Torres [ctb] () Maintainer: Hedia Tnani URL: https://github.com/LieberInstitute/qsvaR VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/qsvaR git_url: https://git.bioconductor.org/packages/qsvaR git_branch: RELEASE_3_20 git_last_commit: f86c9fd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/qsvaR_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/qsvaR_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/qsvaR_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/qsvaR_1.10.0.tgz vignettes: vignettes/qsvaR/inst/doc/Intro_qsvaR.html vignetteTitles: Introduction to qsvaR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/qsvaR/inst/doc/Intro_qsvaR.R dependencyCount: 157 Package: QTLExperiment Version: 1.4.0 Depends: SummarizedExperiment Imports: methods, rlang, checkmate, dplyr, collapse, vroom, tidyr, tibble, utils, stats, ashr, S4Vectors, BiocGenerics Suggests: testthat, BiocStyle, knitr, rmarkdown, covr License: GPL-3 Archs: x64 MD5sum: 1e23219a564067f8eeda2c2efa0d0f07 NeedsCompilation: no Title: S4 classes for QTL summary statistics and metadata Description: QLTExperiment defines an S4 class for storing and manipulating summary statistics from QTL mapping experiments in one or more states. It is based on the 'SummarizedExperiment' class and contains functions for creating, merging, and subsetting objects. 'QTLExperiment' also stores experiment metadata and has checks in place to ensure that transformations apply correctly. biocViews: FunctionalGenomics, DataImport, DataRepresentation, Infrastructure, Sequencing, SNP, Software Author: Christina Del Azodi [aut], Davis McCarthy [ctb], Amelia Dunstone [cre, ctb] () Maintainer: Amelia Dunstone URL: https://github.com/dunstone-a/QTLExperiment VignetteBuilder: knitr BugReports: https://github.com/dunstone-a/QTLExperiment/issues git_url: https://git.bioconductor.org/packages/QTLExperiment git_branch: RELEASE_3_20 git_last_commit: f27a7b5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/QTLExperiment_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/QTLExperiment_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/QTLExperiment_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/QTLExperiment_1.4.0.tgz vignettes: vignettes/QTLExperiment/inst/doc/QTLExperiment.html vignetteTitles: An introduction to the QTLExperiment class hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/QTLExperiment/inst/doc/QTLExperiment.R dependsOnMe: multistateQTL dependencyCount: 75 Package: Qtlizer Version: 1.20.0 Depends: R (>= 3.6.0) Imports: httr, curl, GenomicRanges, stringi Suggests: BiocStyle, testthat, knitr, rmarkdown License: GPL-3 MD5sum: 56fe72150af71d2cb37d3d56f52dc872 NeedsCompilation: no Title: Comprehensive QTL annotation of GWAS results Description: This R package provides access to the Qtlizer web server. Qtlizer annotates lists of common small variants (mainly SNPs) and genes in humans with associated changes in gene expression using the most comprehensive database of published quantitative trait loci (QTLs). biocViews: GenomeWideAssociation, SNP, Genetics, LinkageDisequilibrium Author: Matthias Munz [aut, cre] (), Julia Remes [aut] Maintainer: Matthias Munz VignetteBuilder: knitr BugReports: https://github.com/matmu/Qtlizer/issues git_url: https://git.bioconductor.org/packages/Qtlizer git_branch: RELEASE_3_20 git_last_commit: 512167c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/Qtlizer_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Qtlizer_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Qtlizer_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Qtlizer_1.20.0.tgz vignettes: vignettes/Qtlizer/inst/doc/Qtlizer.html vignetteTitles: Qtlizer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Qtlizer/inst/doc/Qtlizer.R dependencyCount: 24 Package: quantiseqr Version: 1.14.0 Depends: R (>= 4.1.0) Imports: Biobase, limSolve, MASS, methods, preprocessCore, stats, SummarizedExperiment, ggplot2, tidyr, rlang, utils Suggests: AnnotationDbi, BiocStyle, dplyr, ExperimentHub, GEOquery, knitr, macrophage, org.Hs.eg.db, reshape2, rmarkdown, testthat, tibble License: GPL-3 MD5sum: a9551c10906fbb2f456a906cea0ab952 NeedsCompilation: no Title: Quantification of the Tumor Immune contexture from RNA-seq data Description: This package provides a streamlined workflow for the quanTIseq method, developed to perform the quantification of the Tumor Immune contexture from RNA-seq data. The quantification is performed against the TIL10 signature (dissecting the contributions of ten immune cell types), carefully crafted from a collection of human RNA-seq samples. The TIL10 signature has been extensively validated using simulated, flow cytometry, and immunohistochemistry data. biocViews: GeneExpression, Software, Transcription, Transcriptomics, Sequencing, Microarray, Visualization, Annotation, ImmunoOncology, FeatureExtraction, Classification, StatisticalMethod, ExperimentHubSoftware, FlowCytometry Author: Federico Marini [aut, cre] (), Francesca Finotello [aut] () Maintainer: Federico Marini VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/quantiseqr git_branch: RELEASE_3_20 git_last_commit: 4b19746 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/quantiseqr_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/quantiseqr_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/quantiseqr_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/quantiseqr_1.14.0.tgz vignettes: vignettes/quantiseqr/inst/doc/using_quantiseqr.html vignetteTitles: Using quantiseqr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/quantiseqr/inst/doc/using_quantiseqr.R importsMe: easier dependencyCount: 74 Package: quantro Version: 1.40.0 Depends: R (>= 4.0) Imports: Biobase, minfi, doParallel, foreach, iterators, ggplot2, methods, RColorBrewer Suggests: rmarkdown, knitr, RUnit, BiocGenerics, BiocStyle License: GPL-3 MD5sum: c1794f92b5943531bcac5f5ab43b09d5 NeedsCompilation: no Title: A test for when to use quantile normalization Description: A data-driven test for the assumptions of quantile normalization using raw data such as objects that inherit eSets (e.g. ExpressionSet, MethylSet). Group level information about each sample (such as Tumor / Normal status) must also be provided because the test assesses if there are global differences in the distributions between the user-defined groups. biocViews: Normalization, Preprocessing, MultipleComparison, Microarray, Sequencing Author: Stephanie Hicks [aut, cre] (), Rafael Irizarry [aut] () Maintainer: Stephanie Hicks VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/quantro git_branch: RELEASE_3_20 git_last_commit: 1aa440b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/quantro_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/quantro_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/quantro_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/quantro_1.40.0.tgz vignettes: vignettes/quantro/inst/doc/quantro.html vignetteTitles: The quantro user's guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/quantro/inst/doc/quantro.R importsMe: yarn suggestsMe: extraChIPs, qsmooth dependencyCount: 156 Package: quantsmooth Version: 1.72.0 Depends: R(>= 2.10.0), quantreg, grid License: GPL-2 MD5sum: 6e5d3e1ed3e05b786a8eb2418f28fb87 NeedsCompilation: no Title: Quantile smoothing and genomic visualization of array data Description: Implements quantile smoothing as introduced in: Quantile smoothing of array CGH data; Eilers PH, de Menezes RX; Bioinformatics. 2005 Apr 1;21(7):1146-53. biocViews: Visualization, CopyNumberVariation Author: Jan Oosting, Paul Eilers, Renee Menezes Maintainer: Jan Oosting git_url: https://git.bioconductor.org/packages/quantsmooth git_branch: RELEASE_3_20 git_last_commit: 7f84d09 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/quantsmooth_1.72.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/quantsmooth_1.72.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/quantsmooth_1.72.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/quantsmooth_1.72.0.tgz vignettes: vignettes/quantsmooth/inst/doc/quantsmooth.pdf vignetteTitles: quantsmooth hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/quantsmooth/inst/doc/quantsmooth.R importsMe: GWASTools, SIM suggestsMe: PREDA dependencyCount: 14 Package: QuasR Version: 1.46.0 Depends: R (>= 4.4), parallel, GenomicRanges, Rbowtie Imports: methods, grDevices, graphics, utils, stats, tools, BiocGenerics, S4Vectors, IRanges, Biobase, Biostrings, BSgenome, Rsamtools (>= 2.13.1), GenomicFeatures, txdbmaker, ShortRead, BiocParallel, GenomeInfoDb, rtracklayer, GenomicFiles, AnnotationDbi LinkingTo: Rhtslib (>= 1.99.1) Suggests: Gviz, BiocStyle, GenomicAlignments, Rhisat2, knitr, rmarkdown, covr, testthat License: GPL-2 MD5sum: 4eff6784217d0261a50a17c0f53fff8c NeedsCompilation: yes Title: Quantify and Annotate Short Reads in R Description: This package provides a framework for the quantification and analysis of Short Reads. It covers a complete workflow starting from raw sequence reads, over creation of alignments and quality control plots, to the quantification of genomic regions of interest. Read alignments are either generated through Rbowtie (data from DNA/ChIP/ATAC/Bis-seq experiments) or Rhisat2 (data from RNA-seq experiments that require spliced alignments), or can be provided in the form of bam files. biocViews: Genetics, Preprocessing, Sequencing, ChIPSeq, RNASeq, MethylSeq, Coverage, Alignment, QualityControl, ImmunoOncology Author: Anita Lerch [aut], Adam Alexander Thil SMITH [aut] (), Charlotte Soneson [aut] (), Dimos Gaidatzis [aut], Michael Stadler [aut, cre] () Maintainer: Michael Stadler URL: https://bioconductor.org/packages/QuasR SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/fmicompbio/QuasR/issues git_url: https://git.bioconductor.org/packages/QuasR git_branch: RELEASE_3_20 git_last_commit: 35eb1d4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/QuasR_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/QuasR_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/QuasR_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/QuasR_1.46.0.tgz vignettes: vignettes/QuasR/inst/doc/QuasR.html vignetteTitles: An introduction to QuasR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/QuasR/inst/doc/QuasR.R suggestsMe: eisaR dependencyCount: 117 Package: QuaternaryProd Version: 1.40.0 Depends: R (>= 3.2.0), Rcpp (>= 0.11.3), dplyr, yaml (>= 2.1.18) LinkingTo: Rcpp Suggests: knitr License: GPL (>=3) MD5sum: 417634579f84142a57115113561bac01 NeedsCompilation: yes Title: Computes the Quaternary Dot Product Scoring Statistic for Signed and Unsigned Causal Graphs Description: QuaternaryProd is an R package that performs causal reasoning on biological networks, including publicly available networks such as STRINGdb. QuaternaryProd is an open-source alternative to commercial products such as Inginuity Pathway Analysis. For a given a set of differentially expressed genes, QuaternaryProd computes the significance of upstream regulators in the network by performing causal reasoning using the Quaternary Dot Product Scoring Statistic (Quaternary Statistic), Ternary Dot product Scoring Statistic (Ternary Statistic) and Fisher's exact test (Enrichment test). The Quaternary Statistic handles signed, unsigned and ambiguous edges in the network. Ambiguity arises when the direction of causality is unknown, or when the source node (e.g., a protein) has edges with conflicting signs for the same target gene. On the other hand, the Ternary Statistic provides causal reasoning using the signed and unambiguous edges only. The Vignette provides more details on the Quaternary Statistic and illustrates an example of how to perform causal reasoning using STRINGdb. biocViews: GraphAndNetwork, GeneExpression, Transcription Author: Carl Tony Fakhry [cre, aut], Ping Chen [ths], Kourosh Zarringhalam [aut, ths] Maintainer: Carl Tony Fakhry VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/QuaternaryProd git_branch: RELEASE_3_20 git_last_commit: 59bdcda git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/QuaternaryProd_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/QuaternaryProd_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/QuaternaryProd_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/QuaternaryProd_1.40.0.tgz vignettes: vignettes/QuaternaryProd/inst/doc/QuaternaryProdVignette.pdf vignetteTitles: QuaternaryProdVignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/QuaternaryProd/inst/doc/QuaternaryProdVignette.R dependencyCount: 22 Package: QUBIC Version: 1.34.0 Depends: R (>= 3.1), biclust Imports: Rcpp (>= 0.11.0), methods, Matrix LinkingTo: Rcpp, RcppArmadillo Suggests: QUBICdata, qgraph, fields, knitr, rmarkdown Enhances: RColorBrewer License: CC BY-NC-ND 4.0 + file LICENSE MD5sum: f844837224467549b8492c833217f618 NeedsCompilation: yes Title: An R package for qualitative biclustering in support of gene co-expression analyses Description: The core function of this R package is to provide the implementation of the well-cited and well-reviewed QUBIC algorithm, aiming to deliver an effective and efficient biclustering capability. This package also includes the following related functions: (i) a qualitative representation of the input gene expression data, through a well-designed discretization way considering the underlying data property, which can be directly used in other biclustering programs; (ii) visualization of identified biclusters using heatmap in support of overall expression pattern analysis; (iii) bicluster-based co-expression network elucidation and visualization, where different correlation coefficient scores between a pair of genes are provided; and (iv) a generalize output format of biclusters and corresponding network can be freely downloaded so that a user can easily do following comprehensive functional enrichment analysis (e.g. DAVID) and advanced network visualization (e.g. Cytoscape). biocViews: StatisticalMethod, Microarray, DifferentialExpression, MultipleComparison, Clustering, Visualization, GeneExpression, Network Author: Yu Zhang [aut, cre], Qin Ma [aut] Maintainer: Yu Zhang URL: http://github.com/zy26/QUBIC SystemRequirements: C++11, Rtools (>= 3.1) VignetteBuilder: knitr BugReports: http://github.com/zy26/QUBIC/issues git_url: https://git.bioconductor.org/packages/QUBIC git_branch: RELEASE_3_20 git_last_commit: 4c4d83e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/QUBIC_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/QUBIC_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/QUBIC_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/QUBIC_1.34.0.tgz vignettes: vignettes/QUBIC/inst/doc/qubic_vignette.pdf vignetteTitles: QUBIC Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/QUBIC/inst/doc/qubic_vignette.R importsMe: mosbi suggestsMe: runibic dependencyCount: 53 Package: qusage Version: 2.40.0 Depends: R (>= 2.10), limma (>= 3.14), methods Imports: utils, Biobase, nlme, emmeans, fftw License: GPL (>= 2) MD5sum: 1d24ced931708e44e55e492594c65bd4 NeedsCompilation: no Title: qusage: Quantitative Set Analysis for Gene Expression Description: This package is an implementation the Quantitative Set Analysis for Gene Expression (QuSAGE) method described in (Yaari G. et al, Nucl Acids Res, 2013). This is a novel Gene Set Enrichment-type test, which is designed to provide a faster, more accurate, and easier to understand test for gene expression studies. qusage accounts for inter-gene correlations using the Variance Inflation Factor technique proposed by Wu et al. (Nucleic Acids Res, 2012). In addition, rather than simply evaluating the deviation from a null hypothesis with a single number (a P value), qusage quantifies gene set activity with a complete probability density function (PDF). From this PDF, P values and confidence intervals can be easily extracted. Preserving the PDF also allows for post-hoc analysis (e.g., pair-wise comparisons of gene set activity) while maintaining statistical traceability. Finally, while qusage is compatible with individual gene statistics from existing methods (e.g., LIMMA), a Welch-based method is implemented that is shown to improve specificity. The QuSAGE package also includes a mixed effects model implementation, as described in (Turner JA et al, BMC Bioinformatics, 2015), and a meta-analysis framework as described in (Meng H, et al. PLoS Comput Biol. 2019). For questions, contact Chris Bolen (cbolen1@gmail.com) or Steven Kleinstein (steven.kleinstein@yale.edu) biocViews: GeneSetEnrichment, Microarray, RNASeq, Software, ImmunoOncology Author: Christopher Bolen and Gur Yaari, with contributions from Juilee Thakar, Hailong Meng, Jacob Turner, Derek Blankenship, and Steven Kleinstein Maintainer: Christopher Bolen URL: http://clip.med.yale.edu/qusage git_url: https://git.bioconductor.org/packages/qusage git_branch: RELEASE_3_20 git_last_commit: 6c58ecb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/qusage_2.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/qusage_2.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/qusage_2.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/qusage_2.40.0.tgz vignettes: vignettes/qusage/inst/doc/qusage.pdf vignetteTitles: Running qusage hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/qusage/inst/doc/qusage.R importsMe: mExplorer suggestsMe: SigCheck dependencyCount: 17 Package: qvalue Version: 2.38.0 Depends: R(>= 2.10) Imports: splines, ggplot2, grid, reshape2 Suggests: knitr License: LGPL MD5sum: 5b0fe91fe7e412b4286f68ea98d900de NeedsCompilation: no Title: Q-value estimation for false discovery rate control Description: This package takes a list of p-values resulting from the simultaneous testing of many hypotheses and estimates their q-values and local FDR values. The q-value of a test measures the proportion of false positives incurred (called the false discovery rate) when that particular test is called significant. The local FDR measures the posterior probability the null hypothesis is true given the test's p-value. Various plots are automatically generated, allowing one to make sensible significance cut-offs. Several mathematical results have recently been shown on the conservative accuracy of the estimated q-values from this software. The software can be applied to problems in genomics, brain imaging, astrophysics, and data mining. biocViews: MultipleComparisons Author: John D. Storey [aut, cre], Andrew J. Bass [aut], Alan Dabney [aut], David Robinson [aut], Gregory Warnes [ctb] Maintainer: John D. Storey , Andrew J. Bass URL: http://github.com/jdstorey/qvalue VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/qvalue git_branch: RELEASE_3_20 git_last_commit: 7673a25 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/qvalue_2.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/qvalue_2.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/qvalue_2.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/qvalue_2.38.0.tgz vignettes: vignettes/qvalue/inst/doc/qvalue.pdf vignetteTitles: qvalue Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/qvalue/inst/doc/qvalue.R dependsOnMe: anota, DEGseq, DrugVsDisease, r3Cseq, webbioc, BonEV, cp4p, isva, ReAD, STAREG importsMe: Anaquin, anota, clusterProfiler, CTSV, DegCre, derfinder, DOSE, edge, erccdashboard, EventPointer, FindIT2, fishpond, metaseqR2, methylKit, MOMA, msmsTests, MWASTools, netresponse, normr, OPWeight, PAST, PolySTest, RiboDiPA, RNAsense, Rnits, RolDE, SDAMS, sights, signatureSearch, SpaceMarkers, subSeq, synapter, trigger, vsclust, webbioc, IHWpaper, AEenrich, cancerGI, fdrDiscreteNull, glmmSeq, groupedSurv, HDMT, jaccard, medScan, MOCHA, NBPSeq, qch, SeqFeatR, sffdr, shinyExprPortal, ssizeRNA, TFactSR suggestsMe: biobroom, LBE, PREDA, RnBeads, swfdr, RNAinteractMAPK, BootstrapQTL, dartR, dartR.base, dartR.popgen, DGEobj.utils, easylabel, familiar, jackstraw, mutoss, Rediscover, seqgendiff, volcano3D, wrMisc dependencyCount: 41 Package: R3CPET Version: 1.38.0 Depends: R (>= 3.2), Rcpp (>= 0.10.4), methods Imports: methods, parallel, ggplot2, pheatmap, clValid, igraph, data.table, reshape2, Hmisc, RCurl, BiocGenerics, S4Vectors, IRanges (>= 2.13.12), GenomeInfoDb, GenomicRanges (>= 1.31.8), ggbio LinkingTo: Rcpp Suggests: BiocStyle, knitr, TxDb.Hsapiens.UCSC.hg19.knownGene, biovizBase, biomaRt, AnnotationDbi, org.Hs.eg.db, shiny, ChIPpeakAnno License: GPL (>=2) Archs: x64 MD5sum: 79a135db58a5cd1c82c43e76864477a2 NeedsCompilation: yes Title: 3CPET: Finding Co-factor Complexes in Chia-PET experiment using a Hierarchical Dirichlet Process Description: The package provides a method to infer the set of proteins that are more probably to work together to maintain chormatin interaction given a ChIA-PET experiment results. biocViews: NetworkInference, GenePrediction, Bayesian, GraphAndNetwork, Network, GeneExpression, HiC Author: Djekidel MN, Yang Chen et al. Maintainer: Mohamed Nadhir Djekidel VignetteBuilder: knitr BugReports: https://github.com/sirusb/R3CPET/issues git_url: https://git.bioconductor.org/packages/R3CPET git_branch: RELEASE_3_20 git_last_commit: ff7280c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/R3CPET_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/R3CPET_1.38.0.zip vignettes: vignettes/R3CPET/inst/doc/R3CPET.pdf vignetteTitles: 3CPET: Finding Co-factor Complexes maintaining Chia-PET interactions hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/R3CPET/inst/doc/R3CPET.R dependencyCount: 167 Package: r3Cseq Version: 1.52.0 Depends: GenomicRanges, Rsamtools, rtracklayer, VGAM, qvalue Imports: methods, GenomeInfoDb, IRanges, Biostrings, data.table, sqldf, RColorBrewer Suggests: BSgenome.Mmusculus.UCSC.mm9.masked, BSgenome.Mmusculus.UCSC.mm10.masked, BSgenome.Hsapiens.UCSC.hg18.masked, BSgenome.Hsapiens.UCSC.hg19.masked, BSgenome.Rnorvegicus.UCSC.rn5.masked License: GPL-3 Archs: x64 MD5sum: 3d417020d49202c768b329fcab182186 NeedsCompilation: no Title: Analysis of Chromosome Conformation Capture and Next-generation Sequencing (3C-seq) Description: This package is used for the analysis of long-range chromatin interactions from 3C-seq assay. biocViews: Preprocessing, Sequencing Author: Supat Thongjuea, MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, UK Maintainer: Supat Thongjuea or URL: http://r3cseq.genereg.net,https://github.com/supatt-lab/r3Cseq/ git_url: https://git.bioconductor.org/packages/r3Cseq git_branch: RELEASE_3_20 git_last_commit: 9b21b9d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/r3Cseq_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/r3Cseq_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/r3Cseq_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/r3Cseq_1.52.0.tgz vignettes: vignettes/r3Cseq/inst/doc/r3Cseq.pdf vignetteTitles: r3Cseq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/r3Cseq/inst/doc/r3Cseq.R dependencyCount: 105 Package: R453Plus1Toolbox Version: 1.56.0 Depends: R (>= 2.12.0), methods, VariantAnnotation (>= 1.25.11), Biostrings (>= 2.47.6), pwalign, Biobase Imports: utils, grDevices, graphics, stats, tools, xtable, R2HTML, TeachingDemos, BiocGenerics, S4Vectors (>= 0.17.25), IRanges (>= 2.13.12), XVector, GenomicRanges (>= 1.31.8), SummarizedExperiment, biomaRt, BSgenome (>= 1.47.3), Rsamtools, ShortRead (>= 1.37.1) Suggests: rtracklayer, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Scerevisiae.UCSC.sacCer2 License: LGPL-3 Archs: x64 MD5sum: 331007d5708e801a668dc0ee055186d4 NeedsCompilation: yes Title: A package for importing and analyzing data from Roche's Genome Sequencer System Description: The R453Plus1 Toolbox comprises useful functions for the analysis of data generated by Roche's 454 sequencing platform. It adds functions for quality assurance as well as for annotation and visualization of detected variants, complementing the software tools shipped by Roche with their product. Further, a pipeline for the detection of structural variants is provided. biocViews: Sequencing, Infrastructure, DataImport, DataRepresentation, Visualization, QualityControl, ReportWriting Author: Hans-Ulrich Klein, Christoph Bartenhagen, Christian Ruckert Maintainer: Hans-Ulrich Klein git_url: https://git.bioconductor.org/packages/R453Plus1Toolbox git_branch: RELEASE_3_20 git_last_commit: bf27f3f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/R453Plus1Toolbox_1.56.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/R453Plus1Toolbox_1.56.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/R453Plus1Toolbox_1.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/R453Plus1Toolbox_1.56.0.tgz vignettes: vignettes/R453Plus1Toolbox/inst/doc/vignette.pdf vignetteTitles: A package for importing and analyzing data from Roche's Genome Sequencer System hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/R453Plus1Toolbox/inst/doc/vignette.R dependencyCount: 117 Package: R4RNA Version: 1.34.0 Depends: R (>= 3.2.0), Biostrings (>= 2.38.0) License: GPL-3 MD5sum: 5247e6e2486ba1fc17303aade988df31 NeedsCompilation: no Title: An R package for RNA visualization and analysis Description: A package for RNA basepair analysis, including the visualization of basepairs as arc diagrams for easy comparison and annotation of sequence and structure. Arc diagrams can additionally be projected onto multiple sequence alignments to assess basepair conservation and covariation, with numerical methods for computing statistics for each. biocViews: Alignment, MultipleSequenceAlignment, Preprocessing, Visualization, DataImport, DataRepresentation, MultipleComparison Author: Daniel Lai, Irmtraud Meyer Maintainer: Daniel Lai URL: http://www.e-rna.org/r-chie/ git_url: https://git.bioconductor.org/packages/R4RNA git_branch: RELEASE_3_20 git_last_commit: 4724663 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/R4RNA_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/R4RNA_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/R4RNA_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/R4RNA_1.34.0.tgz vignettes: vignettes/R4RNA/inst/doc/R4RNA.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/R4RNA/inst/doc/R4RNA.R importsMe: ggmsa, rnaCrosslinkOO suggestsMe: rfaRm dependencyCount: 25 Package: RadioGx Version: 2.10.0 Depends: R (>= 4.1), CoreGx Imports: SummarizedExperiment, BiocGenerics, data.table, S4Vectors, Biobase, parallel, BiocParallel, RColorBrewer, caTools, magicaxis, methods, reshape2, scales, grDevices, graphics, stats, utils, assertthat, matrixStats, downloader Suggests: rmarkdown, BiocStyle, knitr, pander, markdown License: GPL-3 MD5sum: 2319d4c0bbbbf909fa57592dc80e9557 NeedsCompilation: no Title: Analysis of Large-Scale Radio-Genomic Data Description: Computational tool box for radio-genomic analysis which integrates radio-response data, radio-biological modelling and comprehensive cell line annotations for hundreds of cancer cell lines. The 'RadioSet' class enables creation and manipulation of standardized datasets including information about cancer cells lines, radio-response assays and dose-response indicators. Included methods allow fitting and plotting dose-response data using established radio-biological models along with quality control to validate results. Additional functions related to fitting and plotting dose response curves, quantifying statistical correlation and calculating area under the curve (AUC) or survival fraction (SF) are included. For more details please see the included documentation, references, as well as: Manem, V. et al (2018) . biocViews: Software, Pharmacogenetics, QualityControl, Survival, Pharmacogenomics, Classification Author: Venkata Manem [aut], Petr Smirnov [aut], Ian Smith [aut], Meghan Lambie [aut], Christopher Eeles [aut], Scott Bratman [aut], Jermiah Joseph [aut], Benjamin Haibe-Kains [aut, cre] Maintainer: Benjamin Haibe-Kains VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RadioGx git_branch: RELEASE_3_20 git_last_commit: fe10372 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RadioGx_2.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RadioGx_2.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RadioGx_2.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RadioGx_2.10.0.tgz vignettes: vignettes/RadioGx/inst/doc/RadioGx.html vignetteTitles: RadioGx: An R Package for Analysis of Large Radiogenomic Datasets hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RadioGx/inst/doc/RadioGx.R dependencyCount: 154 Package: raer Version: 1.4.0 Imports: stats, methods, GenomicRanges, IRanges, Rsamtools, BSgenome, Biostrings, SummarizedExperiment, SingleCellExperiment, S4Vectors, GenomeInfoDb, GenomicAlignments, GenomicFeatures, BiocGenerics, BiocParallel, rtracklayer, Matrix, cli LinkingTo: Rhtslib Suggests: testthat (>= 3.0.0), knitr, DESeq2, edgeR, limma, rmarkdown, BiocStyle, ComplexHeatmap, TxDb.Hsapiens.UCSC.hg38.knownGene, SNPlocs.Hsapiens.dbSNP144.GRCh38, BSgenome.Hsapiens.NCBI.GRCh38, scater, scran, scuttle, AnnotationHub, covr, raerdata, txdbmaker License: MIT + file LICENSE Archs: x64 MD5sum: 62a848362e80523d0a265dea6475555b NeedsCompilation: yes Title: RNA editing tools in R Description: Toolkit for identification and statistical testing of RNA editing signals from within R. Provides support for identifying sites from bulk-RNA and single cell RNA-seq datasets, and general methods for extraction of allelic read counts from alignment files. Facilitates annotation and exploratory analysis of editing signals using Bioconductor packages and resources. biocViews: MultipleComparison, RNASeq, SingleCell, Sequencing, Coverage, Epitranscriptomics, FeatureExtraction, Annotation, Alignment Author: Kent Riemondy [aut, cre] (), Kristen Wells-Wrasman [aut] (), Ryan Sheridan [ctb] (), Jay Hesselberth [ctb] (), RNA Bioscience Initiative [cph, fnd] Maintainer: Kent Riemondy URL: https://rnabioco.github.io/raer, https://github.com/rnabioco/raer SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/rnabioco/raer/issues git_url: https://git.bioconductor.org/packages/raer git_branch: RELEASE_3_20 git_last_commit: 982e0af git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/raer_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/raer_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/raer_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/raer_1.4.0.tgz vignettes: vignettes/raer/inst/doc/raer.html vignetteTitles: Introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/raer/inst/doc/raer.R dependencyCount: 79 Package: RaggedExperiment Version: 1.30.0 Depends: R (>= 4.2.0), GenomicRanges (>= 1.37.17) Imports: BiocBaseUtils, BiocGenerics, GenomeInfoDb, IRanges, Matrix, MatrixGenerics, methods, S4Vectors, stats, SummarizedExperiment, utils Suggests: BiocStyle, knitr, rmarkdown, testthat, MultiAssayExperiment License: Artistic-2.0 MD5sum: aecd9d560431b4dbe85d945bd858bd30 NeedsCompilation: no Title: Representation of Sparse Experiments and Assays Across Samples Description: This package provides a flexible representation of copy number, mutation, and other data that fit into the ragged array schema for genomic location data. The basic representation of such data provides a rectangular flat table interface to the user with range information in the rows and samples/specimen in the columns. The RaggedExperiment class derives from a GRangesList representation and provides a semblance of a rectangular dataset. biocViews: Infrastructure, DataRepresentation Author: Martin Morgan [aut], Marcel Ramos [aut, cre] (), Lydia King [ctb] Maintainer: Marcel Ramos VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/RaggedExperiment/issues git_url: https://git.bioconductor.org/packages/RaggedExperiment git_branch: RELEASE_3_20 git_last_commit: 9c63b1d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RaggedExperiment_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RaggedExperiment_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RaggedExperiment_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RaggedExperiment_1.30.0.tgz vignettes: vignettes/RaggedExperiment/inst/doc/ASCAT_to_RaggedExperiment.html, vignettes/RaggedExperiment/inst/doc/RaggedExperiment.html vignetteTitles: ASCAT to RaggedExperiment, RaggedExperiment hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RaggedExperiment/inst/doc/ASCAT_to_RaggedExperiment.R, vignettes/RaggedExperiment/inst/doc/RaggedExperiment.R dependsOnMe: CNVRanger, SARC, curatedPCaData importsMe: cBioPortalData, omicsPrint, RTCGAToolbox, TCGAutils, terraTCGAdata, MOCHA suggestsMe: maftools, MultiAssayExperiment, MultiDataSet, TENxIO, curatedTCGAData, SingleCellMultiModal dependencyCount: 37 Package: RAIDS Version: 1.4.0 Depends: R (>= 4.2.0), gdsfmt, SNPRelate, stats, utils, GENESIS Imports: S4Vectors, GenomicRanges, ensembldb, BSgenome, AnnotationDbi, methods, class, pROC, IRanges, AnnotationFilter, rlang, VariantAnnotation, MatrixGenerics, ggplot2, stringr Suggests: testthat, knitr, rmarkdown, BiocStyle, withr, GenomeInfoDb, BSgenome.Hsapiens.UCSC.hg38, EnsDb.Hsapiens.v86 License: Apache License (>= 2) Archs: x64 MD5sum: 248ebb52129550059a96c3f92d39cafc NeedsCompilation: no Title: Accurate Inference of Genetic Ancestry from Cancer Sequences Description: This package implements specialized algorithms that enable genetic ancestry inference from various cancer sequences sources (RNA, Exome and Whole-Genome sequences). This package also implements a simulation algorithm that generates synthetic cancer-derived data. This code and analysis pipeline was designed and developed for the following publication: Belleau, P et al. Genetic Ancestry Inference from Cancer-Derived Molecular Data across Genomic and Transcriptomic Platforms. Cancer Res 1 January 2023; 83 (1): 49–58. biocViews: Genetics, Software, Sequencing, WholeGenome, PrincipalComponent, GeneticVariability, DimensionReduction, BiocViews Author: Pascal Belleau [cre, aut] (), Astrid Deschênes [aut] (), David A. Tuveson [aut] (), Alexander Krasnitz [aut] Maintainer: Pascal Belleau URL: https://krasnitzlab.github.io/RAIDS/ VignetteBuilder: knitr BugReports: https://github.com/KrasnitzLab/RAIDS/issues git_url: https://git.bioconductor.org/packages/RAIDS git_branch: RELEASE_3_20 git_last_commit: 6b32a2c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RAIDS_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RAIDS_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RAIDS_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RAIDS_1.4.0.tgz vignettes: vignettes/RAIDS/inst/doc/Create_Reference_GDS_File.html, vignettes/RAIDS/inst/doc/RAIDS.html, vignettes/RAIDS/inst/doc/Wrappers.html vignetteTitles: Population reference dataset GDS files, Accurate Inference of Genetic Ancestry from Cancer-derived Sequences, Using wrappper functionss hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RAIDS/inst/doc/Create_Reference_GDS_File.R, vignettes/RAIDS/inst/doc/RAIDS.R, vignettes/RAIDS/inst/doc/Wrappers.R dependencyCount: 165 Package: rain Version: 1.40.0 Depends: R (>= 2.10), gmp, multtest Suggests: lattice, BiocStyle License: GPL-2 MD5sum: 7fd347e176d9bfa00a7b48a169934b7a NeedsCompilation: no Title: Rhythmicity Analysis Incorporating Non-parametric Methods Description: This package uses non-parametric methods to detect rhythms in time series. It deals with outliers, missing values and is optimized for time series comprising 10-100 measurements. As it does not assume expect any distinct waveform it is optimal or detecting oscillating behavior (e.g. circadian or cell cycle) in e.g. genome- or proteome-wide biological measurements such as: micro arrays, proteome mass spectrometry, or metabolome measurements. biocViews: TimeCourse, Genetics, SystemsBiology, Proteomics, Microarray, MultipleComparison Author: Paul F. Thaben, Pål O. Westermark Maintainer: Paul F. Thaben git_url: https://git.bioconductor.org/packages/rain git_branch: RELEASE_3_20 git_last_commit: 0dca59f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rain_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rain_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rain_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rain_1.40.0.tgz vignettes: vignettes/rain/inst/doc/rain.pdf vignetteTitles: Rain Usage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rain/inst/doc/rain.R dependencyCount: 16 Package: ramr Version: 1.14.0 Depends: R (>= 4.1), GenomicRanges, parallel, doParallel, foreach, doRNG, methods Imports: IRanges, BiocGenerics, ggplot2, reshape2, EnvStats, ExtDist, matrixStats, S4Vectors Suggests: RUnit, knitr, rmarkdown, gridExtra, annotatr, LOLA, org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg19.knownGene License: Artistic-2.0 MD5sum: 45dfa15b6a3fc7acdf6ef9a5006b8cae NeedsCompilation: no Title: Detection of Rare Aberrantly Methylated Regions in Array and NGS Data Description: ramr is an R package for detection of low-frequency aberrant methylation events in large data sets obtained by methylation profiling using array or high-throughput bisulfite sequencing. In addition, package provides functions to visualize found aberrantly methylated regions (AMRs), to generate sets of all possible regions to be used as reference sets for enrichment analysis, and to generate biologically relevant test data sets for performance evaluation of AMR/DMR search algorithms. biocViews: DNAMethylation, DifferentialMethylation, Epigenetics, MethylationArray, MethylSeq Author: Oleksii Nikolaienko [aut, cre] () Maintainer: Oleksii Nikolaienko URL: https://github.com/BBCG/ramr VignetteBuilder: knitr BugReports: https://github.com/BBCG/ramr/issues git_url: https://git.bioconductor.org/packages/ramr git_branch: RELEASE_3_20 git_last_commit: a5f113d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ramr_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ramr_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ramr_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ramr_1.14.0.tgz vignettes: vignettes/ramr/inst/doc/ramr.html vignetteTitles: ramr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ramr/inst/doc/ramr.R dependencyCount: 74 Package: ramwas Version: 1.30.0 Depends: R (>= 3.3.0), methods, filematrix Imports: graphics, stats, utils, digest, glmnet, KernSmooth, grDevices, GenomicAlignments, Rsamtools, parallel, biomaRt, Biostrings, BiocGenerics Suggests: knitr, rmarkdown, pander, BiocStyle, BSgenome.Ecoli.NCBI.20080805 License: LGPL-3 Archs: x64 MD5sum: e27bd83b278844ef7cfbe09a4d49fcc6 NeedsCompilation: yes Title: Fast Methylome-Wide Association Study Pipeline for Enrichment Platforms Description: A complete toolset for methylome-wide association studies (MWAS). It is specifically designed for data from enrichment based methylation assays, but can be applied to other data as well. The analysis pipeline includes seven steps: (1) scanning aligned reads from BAM files, (2) calculation of quality control measures, (3) creation of methylation score (coverage) matrix, (4) principal component analysis for capturing batch effects and detection of outliers, (5) association analysis with respect to phenotypes of interest while correcting for top PCs and known covariates, (6) annotation of significant findings, and (7) multi-marker analysis (methylation risk score) using elastic net. Additionally, RaMWAS include tools for joint analysis of methlyation and genotype data. This work is published in Bioinformatics, Shabalin et al. (2018) . biocViews: DNAMethylation, Sequencing, QualityControl, Coverage, Preprocessing, Normalization, BatchEffect, PrincipalComponent, DifferentialMethylation, Visualization Author: Andrey A Shabalin [aut, cre] (), Shaunna L Clark [aut], Mohammad W Hattab [aut], Karolina A Aberg [aut], Edwin J C G van den Oord [aut] Maintainer: Andrey A Shabalin URL: https://bioconductor.org/packages/ramwas/ VignetteBuilder: knitr BugReports: https://github.com/andreyshabalin/ramwas/issues git_url: https://git.bioconductor.org/packages/ramwas git_branch: RELEASE_3_20 git_last_commit: 3a1566e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ramwas_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ramwas_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ramwas_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ramwas_1.30.0.tgz vignettes: vignettes/ramwas/inst/doc/RW1_intro.html, vignettes/ramwas/inst/doc/RW2_CpG_sets.html, vignettes/ramwas/inst/doc/RW3_BAM_QCs.html, vignettes/ramwas/inst/doc/RW4_SNPs.html, vignettes/ramwas/inst/doc/RW5a_matrix.html, vignettes/ramwas/inst/doc/RW5c_matrix.html, vignettes/ramwas/inst/doc/RW6_param.html vignetteTitles: 1. Overview, 2. CpG sets, 3. BAM Quality Control Measures, 4. Joint Analysis of Methylation and Genotype Data, 5.a. Analyzing Illumina Methylation Array Data, 5.c. Analyzing data from other sources, 6. RaMWAS parameters hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ramwas/inst/doc/RW1_intro.R, vignettes/ramwas/inst/doc/RW2_CpG_sets.R, vignettes/ramwas/inst/doc/RW3_BAM_QCs.R, vignettes/ramwas/inst/doc/RW4_SNPs.R, vignettes/ramwas/inst/doc/RW5a_matrix.R, vignettes/ramwas/inst/doc/RW5c_matrix.R, vignettes/ramwas/inst/doc/RW6_param.R dependencyCount: 103 Package: randPack Version: 1.52.0 Depends: methods Imports: Biobase License: Artistic 2.0 MD5sum: 3b62e01dd95b189100960ee0c9691b7f NeedsCompilation: no Title: Randomization routines for Clinical Trials Description: A suite of classes and functions for randomizing patients in clinical trials. biocViews: StatisticalMethod Author: Vincent Carey and Robert Gentleman Maintainer: Robert Gentleman git_url: https://git.bioconductor.org/packages/randPack git_branch: RELEASE_3_20 git_last_commit: e078a7a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/randPack_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/randPack_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/randPack_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/randPack_1.52.0.tgz vignettes: vignettes/randPack/inst/doc/randPack.pdf vignetteTitles: Clinical trial randomization infrastructure hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/randPack/inst/doc/randPack.R dependencyCount: 6 Package: randRotation Version: 1.18.0 Imports: methods, graphics, utils, stats, Rdpack (>= 0.7) Suggests: knitr, BiocParallel, lme4, nlme, rmarkdown, BiocStyle, testthat (>= 2.1.0), limma, sva License: GPL-3 MD5sum: 4b11105b6e7ebcd4f91794541b888b1e NeedsCompilation: no Title: Random Rotation Methods for High Dimensional Data with Batch Structure Description: A collection of methods for performing random rotations on high-dimensional, normally distributed data (e.g. microarray or RNA-seq data) with batch structure. The random rotation approach allows exact testing of dependent test statistics with linear models following arbitrary batch effect correction methods. biocViews: Software, Sequencing, BatchEffect, BiomedicalInformatics, RNASeq, Preprocessing, Microarray, DifferentialExpression, GeneExpression, Genetics, MicroRNAArray, Normalization, StatisticalMethod Author: Peter Hettegger [aut, cre] () Maintainer: Peter Hettegger URL: https://github.com/phettegger/randRotation VignetteBuilder: knitr BugReports: https://github.com/phettegger/randRotation/issues git_url: https://git.bioconductor.org/packages/randRotation git_branch: RELEASE_3_20 git_last_commit: b1e84b6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/randRotation_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/randRotation_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/randRotation_1.18.0.tgz vignettes: vignettes/randRotation/inst/doc/randRotationIntro.pdf vignetteTitles: Random Rotation Package Introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/randRotation/inst/doc/randRotationIntro.R dependencyCount: 7 Package: RankProd Version: 3.32.0 Depends: R (>= 3.2.1), stats, methods, Rmpfr, gmp Imports: graphics License: file LICENSE License_restricts_use: yes MD5sum: 1dac9aa5435507951740d1c58d8bf42b NeedsCompilation: no Title: Rank Product method for identifying differentially expressed genes with application in meta-analysis Description: Non-parametric method for identifying differentially expressed (up- or down- regulated) genes based on the estimated percentage of false predictions (pfp). The method can combine data sets from different origins (meta-analysis) to increase the power of the identification. biocViews: DifferentialExpression, StatisticalMethod, Software, ResearchField, Metabolomics, Lipidomics, Proteomics, SystemsBiology, GeneExpression, Microarray, GeneSignaling Author: Francesco Del Carratore , Andris Jankevics Fangxin Hong , Ben Wittner , Rainer Breitling , and Florian Battke Maintainer: Francesco Del Carratore git_url: https://git.bioconductor.org/packages/RankProd git_branch: RELEASE_3_20 git_last_commit: 29bdb0b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RankProd_3.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RankProd_3.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RankProd_3.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RankProd_3.32.0.tgz vignettes: vignettes/RankProd/inst/doc/RankProd.pdf vignetteTitles: RankProd Tutorial hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/RankProd/inst/doc/RankProd.R dependsOnMe: tRanslatome importsMe: mslp, POMA, synlet, INCATome suggestsMe: sigQC dependencyCount: 6 Package: RAREsim Version: 1.10.0 Depends: R (>= 4.1.0) Imports: nloptr Suggests: markdown, ggplot2, BiocStyle, rmarkdown, knitr, testthat (>= 3.0.0) License: GPL-3 MD5sum: 6a90455bf846efb071d61507b0f76c83 NeedsCompilation: no Title: Simulation of Rare Variant Genetic Data Description: Haplotype simulations of rare variant genetic data that emulates real data can be performed with RAREsim. RAREsim uses the expected number of variants in MAC bins - either as provided by default parameters or estimated from target data - and an abundance of rare variants as simulated HAPGEN2 to probabilistically prune variants. RAREsim produces haplotypes that emulate real sequencing data with respect to the total number of variants, allele frequency spectrum, haplotype structure, and variant annotation. biocViews: Genetics, Software, VariantAnnotation, Sequencing Author: Megan Null [aut], Ryan Barnard [cre] Maintainer: Ryan Barnard URL: https://github.com/meganmichelle/RAREsim VignetteBuilder: knitr BugReports: https://github.com/meganmichelle/RAREsim/issues git_url: https://git.bioconductor.org/packages/RAREsim git_branch: RELEASE_3_20 git_last_commit: 13ea295 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RAREsim_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RAREsim_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RAREsim_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RAREsim_1.10.0.tgz vignettes: vignettes/RAREsim/inst/doc/RAREsim_Vignette.html vignetteTitles: RAREsim Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RAREsim/inst/doc/RAREsim_Vignette.R dependencyCount: 1 Package: RareVariantVis Version: 2.34.0 Depends: BiocGenerics, VariantAnnotation, googleVis, GenomicFeatures Imports: S4Vectors, IRanges, GenomeInfoDb, GenomicRanges, gtools, BSgenome, BSgenome.Hsapiens.UCSC.hg19, TxDb.Hsapiens.UCSC.hg19.knownGene, phastCons100way.UCSC.hg19, SummarizedExperiment, GenomicScores Suggests: knitr License: Artistic-2.0 Archs: x64 MD5sum: 5960585b1e7d21d079eee7d71c24a1ea NeedsCompilation: no Title: A suite for analysis of rare genomic variants in whole genome sequencing data Description: Second version of RareVariantVis package aims to provide comprehensive information about rare variants for your genome data. It annotates, filters and presents genomic variants (especially rare ones) in a global, per chromosome way. For discovered rare variants CRISPR guide RNAs are designed, so the user can plan further functional studies. Large structural variants, including copy number variants are also supported. Package accepts variants directly from variant caller - for example GATK or Speedseq. Output of package are lists of variants together with adequate visualization. Visualization of variants is performed in two ways - standard that outputs png figures and interactive that uses JavaScript d3 package. Interactive visualization allows to analyze trio/family data, for example in search for causative variants in rare Mendelian diseases, in point-and-click interface. The package includes homozygous region caller and allows to analyse whole human genomes in less than 30 minutes on a desktop computer. RareVariantVis disclosed novel causes of several rare monogenic disorders, including one with non-coding causative variant - keratolythic winter erythema. biocViews: GenomicVariation, Sequencing, WholeGenome Author: Adam Gudys and Tomasz Stokowy Maintainer: Tomasz Stokowy VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RareVariantVis git_branch: RELEASE_3_20 git_last_commit: 1b0f976 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RareVariantVis_2.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RareVariantVis_2.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RareVariantVis_2.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RareVariantVis_2.34.0.tgz vignettes: vignettes/RareVariantVis/inst/doc/RareVariantsVis.pdf vignetteTitles: RareVariantVis hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RareVariantVis/inst/doc/RareVariantsVis.R dependencyCount: 109 Package: Rarr Version: 1.6.0 Depends: DelayedArray, BiocGenerics Imports: jsonlite, httr, stringr, R.utils, utils, paws.storage, methods Suggests: BiocStyle, covr, knitr, tinytest, mockery License: MIT + file LICENSE MD5sum: b8aaee77be85b5c1f1ef3e67321f9f64 NeedsCompilation: yes Title: Read Zarr Files in R Description: The Zarr specification defines a format for chunked, compressed, N-dimensional arrays. It's design allows efficient access to subsets of the stored array, and supports both local and cloud storage systems. Rarr aims to implement this specifcation in R with minimal reliance on an external tools or libraries. biocViews: DataImport Author: Mike Smith [aut, cre] () Maintainer: Mike Smith URL: https://github.com/grimbough/Rarr SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/grimbough/Rarr/issues git_url: https://git.bioconductor.org/packages/Rarr git_branch: RELEASE_3_20 git_last_commit: 270345b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rarr_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rarr_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rarr_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rarr_1.6.0.tgz vignettes: vignettes/Rarr/inst/doc/Rarr.html vignetteTitles: "Working with Zarr arrays in R" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Rarr/inst/doc/Rarr.R dependencyCount: 47 Package: rawDiag Version: 1.2.0 Depends: R (>= 4.4) Imports: dplyr, ggplot2 (>= 3.4), grDevices, hexbin, htmltools, BiocManager, BiocParallel, rawrr (>= 1.13.3), rlang, reshape2, scales, shiny (>= 1.5), stats, utils Suggests: BiocStyle (>= 2.28), ExperimentHub, tartare, knitr, testthat License: GPL-3 MD5sum: 115692133b84a768ea91a43cac8abced NeedsCompilation: no Title: Brings Orbitrap Mass Spectrometry Data to Life; Fast and Colorful Description: Optimizing methods for liquid chromatography coupled to mass spectrometry (LC-MS) poses a nontrivial challenge. The rawDiag package facilitates rational method optimization by generating MS operator-tailored diagnostic plots of scan-level metadata. The package is designed for use on the R shell or as a Shiny application on the Orbitrap instrument PC. biocViews: MassSpectrometry, Proteomics, Metabolomics, Infrastructure, Software, ShinyApps Author: Christian Panse [aut, cre] (), Christian Trachsel [aut], Tobias Kockmann [aut] Maintainer: Christian Panse URL: https://github.com/fgcz/rawDiag/ SystemRequirements: mono 4.x or higher on OSX / Linux, .NET 4.x or higher on Windows, 'msbuild' and 'nuget' available in the path VignetteBuilder: knitr BugReports: https://github.com/fgcz/rawDiag/issues git_url: https://git.bioconductor.org/packages/rawDiag git_branch: RELEASE_3_20 git_last_commit: 93447f9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rawDiag_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rawDiag_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rawDiag_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rawDiag_1.2.0.tgz vignettes: vignettes/rawDiag/inst/doc/rawDiag.html vignetteTitles: Brings Orbitrap Mass Spectrometry Data to Life; Fast and Colorful hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: FALSE Rfiles: vignettes/rawDiag/inst/doc/rawDiag.R dependencyCount: 79 Package: rawrr Version: 1.14.0 Depends: R (>= 4.1) Imports: grDevices, graphics, stats, utils Suggests: BiocStyle (>= 2.5), ExperimentHub, knitr, protViz (>= 0.7), rmarkdown, tartare (>= 1.5), testthat License: GPL-3 MD5sum: 55a9376088cb6b3fe2a698aef0000063 NeedsCompilation: no Title: Direct Access to Orbitrap Data and Beyond Description: This package wraps the functionality of the RawFileReader .NET assembly. Within the R environment, spectra and chromatograms are represented by S3 objects. The package provides basic functions to download and install the required third-party libraries. The package is developed, tested, and used at the Functional Genomics Center Zurich, Switzerland. biocViews: MassSpectrometry, Proteomics, Metabolomics, Infrastructure, Software Author: Christian Panse [aut, cre] (), Leonardo Schwarz [ctb] (), Tobias Kockmann [aut] () Maintainer: Christian Panse URL: https://github.com/fgcz/rawrr/ SystemRequirements: mono-runtime 4.x or higher (including System.Data library) on Linux/macOS, .Net Framework (>= 4.5.1) on Microsoft Windows. VignetteBuilder: knitr BugReports: https://github.com/fgcz/rawrr/issues git_url: https://git.bioconductor.org/packages/rawrr git_branch: RELEASE_3_20 git_last_commit: 7d885bc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/rawrr_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rawrr_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rawrr_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rawrr_1.14.0.tgz vignettes: vignettes/rawrr/inst/doc/rawrr.html vignetteTitles: Direct Access to Orbitrap Data and Beyond hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: FALSE Rfiles: vignettes/rawrr/inst/doc/rawrr.R importsMe: MsBackendRawFileReader, rawDiag dependencyCount: 4 Package: RbcBook1 Version: 1.74.0 Depends: R (>= 2.10), Biobase, graph, rpart License: Artistic-2.0 MD5sum: 7753fb21d64b213fbae45060fb88b2bc NeedsCompilation: no Title: Support for Springer monograph on Bioconductor Description: tools for building book biocViews: Software Author: Vince Carey and Wolfgang Huber Maintainer: Vince Carey URL: http://www.biostat.harvard.edu/~carey git_url: https://git.bioconductor.org/packages/RbcBook1 git_branch: RELEASE_3_20 git_last_commit: 7932e84 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RbcBook1_1.74.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RbcBook1_1.74.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RbcBook1_1.74.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RbcBook1_1.74.0.tgz vignettes: vignettes/RbcBook1/inst/doc/RbcBook1.pdf vignetteTitles: RbcBook1 Primer hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RbcBook1/inst/doc/RbcBook1.R dependencyCount: 10 Package: Rbec Version: 1.14.0 Imports: Rcpp (>= 1.0.6), dada2, ggplot2, readr, doParallel, foreach, grDevices, stats, utils LinkingTo: Rcpp Suggests: knitr, rmarkdown License: LGPL-3 MD5sum: b1d464bf92f81348c020054540cfe603 NeedsCompilation: yes Title: Rbec: a tool for analysis of amplicon sequencing data from synthetic microbial communities Description: Rbec is a adapted version of DADA2 for analyzing amplicon sequencing data from synthetic communities (SynComs), where the reference sequences for each strain exists. Rbec can not only accurately profile the microbial compositions in SynComs, but also predict the contaminants in SynCom samples. biocViews: Sequencing, MicrobialStrain, Microbiome Author: Pengfan Zhang [aut, cre] Maintainer: Pengfan Zhang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Rbec git_branch: RELEASE_3_20 git_last_commit: 5acc5f9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rbec_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rbec_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rbec_1.14.0.tgz vignettes: vignettes/Rbec/inst/doc/Rbec.html vignetteTitles: Rbec hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rbec/inst/doc/Rbec.R dependencyCount: 106 Package: RBGL Version: 1.82.0 Depends: graph, methods Imports: methods LinkingTo: BH Suggests: Rgraphviz, XML, RUnit, BiocGenerics, BiocStyle, knitr License: Artistic-2.0 Archs: x64 MD5sum: 3c15ded2511af5c004e3e541d1a243f8 NeedsCompilation: yes Title: An interface to the BOOST graph library Description: A fairly extensive and comprehensive interface to the graph algorithms contained in the BOOST library. biocViews: GraphAndNetwork, Network Author: Vince Carey [aut], Li Long [aut], R. Gentleman [aut], Emmanuel Taiwo [ctb] (Converted RBGL vignette from Sweave to RMarkdown / HTML.), Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer URL: http://www.bioconductor.org VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RBGL git_branch: RELEASE_3_20 git_last_commit: 88aa55c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RBGL_1.82.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RBGL_1.82.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RBGL_1.82.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RBGL_1.82.0.tgz vignettes: vignettes/RBGL/inst/doc/RBGL.html vignetteTitles: RBGL Overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RBGL/inst/doc/RBGL.R dependsOnMe: apComplex, BioNet, CellNOptR, fgga, PerfMeas, SubpathwayLNCE importsMe: BiocPkgTools, biocViews, CAMERA, Category, ChIPpeakAnno, CHRONOS, CytoML, DEGraph, DEsubs, EventPointer, flowWorkspace, GenomicInteractionNodes, GOstats, NCIgraph, OrganismDbi, Streamer, VariantFiltering, BiDAG, clustNet, eff2, HEMDAG, micd, pcalg, rags2ridges, RANKS, SEMgraph, SID suggestsMe: DEGraph, GeneNetworkBuilder, graph, gwascat, KEGGgraph, rBiopaxParser, VariantTools, yeastExpData, archeofrag, maGUI dependencyCount: 8 Package: RBioFormats Version: 1.6.0 Imports: EBImage, methods, rJava (>= 0.9-6), S4Vectors, stats Suggests: BiocStyle, knitr, testthat, xml2 License: GPL-3 MD5sum: a376f226e64307c3b02230b87f0270f2 NeedsCompilation: no Title: R interface to Bio-Formats Description: An R package which interfaces the OME Bio-Formats Java library to allow reading of proprietary microscopy image data and metadata. biocViews: DataImport Author: Andrzej Oleś [aut, cre] (), John Lee [ctb] () Maintainer: Andrzej Oleś URL: https://github.com/aoles/RBioFormats SystemRequirements: Java (>= 1.7) VignetteBuilder: knitr BugReports: https://github.com/aoles/RBioFormats/issues git_url: https://git.bioconductor.org/packages/RBioFormats git_branch: RELEASE_3_20 git_last_commit: dcd6c87 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RBioFormats_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RBioFormats_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RBioFormats_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RBioFormats_1.6.0.tgz vignettes: vignettes/RBioFormats/inst/doc/RBioFormats.html vignetteTitles: RBioFormats: an R interface to the Bio-Formats library hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RBioFormats/inst/doc/RBioFormats.R importsMe: SpatialOmicsOverlay suggestsMe: SpatialFeatureExperiment, Voyager dependencyCount: 48 Package: RBioinf Version: 1.66.0 Depends: graph, methods Suggests: Rgraphviz License: Artistic-2.0 MD5sum: 303fc235421e997fcfcaa5f4615bc90e NeedsCompilation: yes Title: RBioinf Description: Functions and datasets and examples to accompany the monograph R For Bioinformatics. biocViews: GeneExpression, Microarray, Preprocessing, QualityControl, Classification, Clustering, MultipleComparison, Annotation Author: Robert Gentleman Maintainer: Robert Gentleman git_url: https://git.bioconductor.org/packages/RBioinf git_branch: RELEASE_3_20 git_last_commit: 89f3f1a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RBioinf_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RBioinf_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RBioinf_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RBioinf_1.66.0.tgz vignettes: vignettes/RBioinf/inst/doc/RBioinf.pdf vignetteTitles: RBioinf Introduction hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RBioinf/inst/doc/RBioinf.R dependencyCount: 7 Package: rBiopaxParser Version: 2.46.0 Depends: R (>= 4.0), data.table Imports: XML Suggests: Rgraphviz, RCurl, graph, RUnit, BiocGenerics, RBGL, igraph License: GPL (>= 2) MD5sum: 8d29fadf37c6f8a0d5dbdd683db3e540 NeedsCompilation: no Title: Parses BioPax files and represents them in R Description: Parses BioPAX files and represents them in R, at the moment BioPAX level 2 and level 3 are supported. biocViews: DataRepresentation Author: Frank Kramer Maintainer: Frank Kramer URL: https://github.com/frankkramer-lab/rBiopaxParser git_url: https://git.bioconductor.org/packages/rBiopaxParser git_branch: RELEASE_3_20 git_last_commit: cd51b12 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rBiopaxParser_2.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rBiopaxParser_2.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rBiopaxParser_2.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rBiopaxParser_2.46.0.tgz vignettes: vignettes/rBiopaxParser/inst/doc/rBiopaxParserVignette.pdf vignetteTitles: rBiopaxParser Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rBiopaxParser/inst/doc/rBiopaxParserVignette.R suggestsMe: AnnotationHub, NetPathMiner dependencyCount: 4 Package: rBLAST Version: 1.2.0 Depends: Biostrings (>= 2.26.2) Imports: methods, utils, BiocFileCache Suggests: knitr, rmarkdown, testthat License: GPL-3 Archs: x64 MD5sum: bb818a89758192a34847b9f3c8071dde NeedsCompilation: no Title: R Interface for the Basic Local Alignment Search Tool Description: Seamlessly interfaces the Basic Local Alignment Search Tool (BLAST) to search genetic sequence data bases. This work was partially supported by grant no. R21HG005912 from the National Human Genome Research Institute. biocViews: Genetics, Sequencing, SequenceMatching, Alignment, DataImport Author: Michael Hahsler [aut, cre] (), Nagar Anurag [aut] Maintainer: Michael Hahsler URL: https://github.com/mhahsler/rBLAST SystemRequirements: ncbi-blast+ VignetteBuilder: knitr BugReports: https://github.com/mhahsler/rBLAST/issues git_url: https://git.bioconductor.org/packages/rBLAST git_branch: RELEASE_3_20 git_last_commit: 145f261 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rBLAST_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rBLAST_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rBLAST_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rBLAST_1.2.0.tgz vignettes: vignettes/rBLAST/inst/doc/blast.html vignetteTitles: rBLAST: R Interface for the Basic Local Alignment Search Tool hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: FALSE Rfiles: vignettes/rBLAST/inst/doc/blast.R dependencyCount: 57 Package: RBM Version: 1.38.0 Depends: R (>= 3.2.0), limma, marray License: GPL (>= 2) Archs: x64 MD5sum: a1ce0bc981d4211829735494f172053e NeedsCompilation: no Title: RBM: a R package for microarray and RNA-Seq data analysis Description: Use A Resampling-Based Empirical Bayes Approach to Assess Differential Expression in Two-Color Microarrays and RNA-Seq data sets. biocViews: Microarray, DifferentialExpression Author: Dongmei Li and Chin-Yuan Liang Maintainer: Dongmei Li git_url: https://git.bioconductor.org/packages/RBM git_branch: RELEASE_3_20 git_last_commit: 7a2f69f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RBM_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RBM_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RBM_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RBM_1.38.0.tgz vignettes: vignettes/RBM/inst/doc/RBM.pdf vignetteTitles: RBM hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RBM/inst/doc/RBM.R dependencyCount: 8 Package: Rbowtie Version: 1.46.0 Imports: utils Suggests: testthat, parallel, BiocStyle, knitr, rmarkdown License: Artistic-2.0 | file LICENSE MD5sum: ec35e70cc07cf7e6756c4598af50f07d NeedsCompilation: yes Title: R bowtie wrapper Description: This package provides an R wrapper around the popular bowtie short read aligner and around SpliceMap, a de novo splice junction discovery and alignment tool. The package is used by the QuasR bioconductor package. We recommend to use the QuasR package instead of using Rbowtie directly. biocViews: Sequencing, Alignment Author: Florian Hahne [aut], Anita Lerch [aut], Michael Stadler [aut, cre] () Maintainer: Michael Stadler URL: https://github.com/fmicompbio/Rbowtie SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/fmicompbio/Rbowtie/issues git_url: https://git.bioconductor.org/packages/Rbowtie git_branch: RELEASE_3_20 git_last_commit: 67e156a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rbowtie_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rbowtie_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rbowtie_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rbowtie_1.46.0.tgz vignettes: vignettes/Rbowtie/inst/doc/Rbowtie-Overview.html vignetteTitles: An introduction to Rbowtie hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Rbowtie/inst/doc/Rbowtie-Overview.R dependsOnMe: QuasR importsMe: crisprBowtie, multicrispr, seqpac suggestsMe: crisprDesign, eisaR dependencyCount: 1 Package: Rbowtie2 Version: 2.12.0 Depends: R (>= 4.1.0) Imports: magrittr, Rsamtools Suggests: knitr, testthat (>= 3.0.0), rmarkdown License: GPL (>= 3) Archs: x64 MD5sum: 8f768a243738cb290ab05e0699b70d80 NeedsCompilation: yes Title: An R Wrapper for Bowtie2 and AdapterRemoval Description: This package provides an R wrapper of the popular bowtie2 sequencing reads aligner and AdapterRemoval, a convenient tool for rapid adapter trimming, identification, and read merging. The package contains wrapper functions that allow for genome indexing and alignment to those indexes. The package also allows for the creation of .bam files via Rsamtools. biocViews: Sequencing, Alignment, Preprocessing Author: Zheng Wei [aut, cre], Wei Zhang [aut] Maintainer: Zheng Wei SystemRequirements: C++11, GNU make, samtools VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Rbowtie2 git_branch: RELEASE_3_20 git_last_commit: 79a646a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rbowtie2_2.12.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rbowtie2_2.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rbowtie2_2.12.0.tgz vignettes: vignettes/Rbowtie2/inst/doc/Rbowtie2-Introduction.html vignetteTitles: An Introduction to Rbowtie2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rbowtie2/inst/doc/Rbowtie2-Introduction.R importsMe: CircSeqAlignTk, esATAC, UMI4Cats, MetaScope dependencyCount: 40 Package: rbsurv Version: 2.64.0 Depends: R (>= 2.5.0), Biobase (>= 2.5.5), survival License: GPL (>= 2) Archs: x64 MD5sum: c5c1b0485d5f9b2ea2053c30dcc709ee NeedsCompilation: no Title: Robust likelihood-based survival modeling with microarray data Description: This package selects genes associated with survival. biocViews: Microarray Author: HyungJun Cho , Sukwoo Kim , Soo-heang Eo , Jaewoo Kang Maintainer: Soo-heang Eo URL: http://www.korea.ac.kr/~stat2242/ git_url: https://git.bioconductor.org/packages/rbsurv git_branch: RELEASE_3_20 git_last_commit: 8994811 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rbsurv_2.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rbsurv_2.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rbsurv_2.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rbsurv_2.64.0.tgz vignettes: vignettes/rbsurv/inst/doc/rbsurv.pdf vignetteTitles: Overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rbsurv/inst/doc/rbsurv.R dependencyCount: 12 Package: Rbwa Version: 1.10.0 Depends: R (>= 4.1) Suggests: testthat, BiocStyle, knitr, rmarkdown License: MIT + file LICENSE OS_type: unix MD5sum: 6b903361122cbe4f67049f14cf3141ea NeedsCompilation: yes Title: R wrapper for BWA-backtrack and BWA-MEM aligners Description: Provides an R wrapper for BWA alignment algorithms. Both BWA-backtrack and BWA-MEM are available. Convenience function to build a BWA index from a reference genome is also provided. Currently not supported for Windows machines. biocViews: Sequencing, Alignment Author: Jean-Philippe Fortin [aut, cre] Maintainer: Jean-Philippe Fortin URL: https://github.com/Jfortin1/Rbwa SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/crisprVerse/Rbwa/issues git_url: https://git.bioconductor.org/packages/Rbwa git_branch: RELEASE_3_20 git_last_commit: 82c4a0b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rbwa_1.10.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rbwa_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rbwa_1.10.0.tgz vignettes: vignettes/Rbwa/inst/doc/Rbwa.html vignetteTitles: An introduction to Rbwa hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Rbwa/inst/doc/Rbwa.R importsMe: crisprBwa suggestsMe: crisprDesign dependencyCount: 0 Package: RCAS Version: 1.32.0 Depends: R (>= 3.5.0), plotly (>= 4.5.2), DT (>= 0.2), data.table Imports: GenomicRanges, IRanges, BSgenome, BSgenome.Hsapiens.UCSC.hg19, GenomeInfoDb (>= 1.12.0), Biostrings, rtracklayer, GenomicFeatures, txdbmaker, rmarkdown (>= 0.9.5), genomation (>= 1.5.5), knitr (>= 1.12.3), BiocGenerics, S4Vectors, plotrix, pbapply, RSQLite, proxy, pheatmap, ggplot2, cowplot, seqLogo, utils, ranger, gprofiler2 Suggests: testthat, covr, BiocManager License: Artistic-2.0 MD5sum: 328e8ba6ff2d09439eeda000470fcc09 NeedsCompilation: no Title: RNA Centric Annotation System Description: RCAS is an R/Bioconductor package designed as a generic reporting tool for the functional analysis of transcriptome-wide regions of interest detected by high-throughput experiments. Such transcriptomic regions could be, for instance, signal peaks detected by CLIP-Seq analysis for protein-RNA interaction sites, RNA modification sites (alias the epitranscriptome), CAGE-tag locations, or any other collection of query regions at the level of the transcriptome. RCAS produces in-depth annotation summaries and coverage profiles based on the distribution of the query regions with respect to transcript features (exons, introns, 5'/3' UTR regions, exon-intron boundaries, promoter regions). Moreover, RCAS can carry out functional enrichment analyses and discriminative motif discovery. biocViews: Software, GeneTarget, MotifAnnotation, MotifDiscovery, GO, Transcriptomics, GenomeAnnotation, GeneSetEnrichment, Coverage Author: Bora Uyar [aut, cre], Dilmurat Yusuf [aut], Ricardo Wurmus [aut], Altuna Akalin [aut] Maintainer: Bora Uyar SystemRequirements: pandoc (>= 1.12.3) VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RCAS git_branch: RELEASE_3_20 git_last_commit: 6e3cea1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RCAS_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RCAS_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RCAS_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RCAS_1.32.0.tgz vignettes: vignettes/RCAS/inst/doc/RCAS.metaAnalysis.vignette.html, vignettes/RCAS/inst/doc/RCAS.vignette.html vignetteTitles: How to do meta-analysis of multiple samples, Introduction - single sample analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RCAS/inst/doc/RCAS.metaAnalysis.vignette.R, vignettes/RCAS/inst/doc/RCAS.vignette.R importsMe: GenomicPlot dependencyCount: 162 Package: RCASPAR Version: 1.52.0 License: GPL (>=3) MD5sum: d6b29f80f202d281b777aea72b3e55b5 NeedsCompilation: no Title: A package for survival time prediction based on a piecewise baseline hazard Cox regression model. Description: The package is the R-version of the C-based software \bold{CASPAR} (Kaderali,2006: \url{http://bioinformatics.oxfordjournals.org/content/22/12/1495}). It is meant to help predict survival times in the presence of high-dimensional explanatory covariates. The model is a piecewise baseline hazard Cox regression model with an Lq-norm based prior that selects for the most important regression coefficients, and in turn the most relevant covariates for survival analysis. It was primarily tried on gene expression and aCGH data, but can be used on any other type of high-dimensional data and in disciplines other than biology and medicine. biocViews: aCGH, GeneExpression, Genetics, Proteomics, Visualization Author: Douaa Mugahid, Lars Kaderali Maintainer: Douaa Mugahid , Lars Kaderali git_url: https://git.bioconductor.org/packages/RCASPAR git_branch: RELEASE_3_20 git_last_commit: 4df789d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RCASPAR_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RCASPAR_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RCASPAR_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RCASPAR_1.52.0.tgz vignettes: vignettes/RCASPAR/inst/doc/RCASPAR.pdf vignetteTitles: RCASPAR: Software for high-dimentional-data driven survival time prediction hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RCASPAR/inst/doc/RCASPAR.R dependencyCount: 0 Package: rcellminer Version: 2.28.0 Depends: R (>= 3.2), Biobase, rcellminerData (>= 2.0.0) Imports: stringr, gplots, ggplot2, methods, stats, utils, shiny Suggests: knitr, RColorBrewer, sqldf, BiocGenerics, testthat, BiocStyle, jsonlite, heatmaply, glmnet, foreach, doSNOW, parallel, rmarkdown License: LGPL-3 + file LICENSE MD5sum: b947209ffa23ae0a8bc95c3e1f83fab4 NeedsCompilation: no Title: rcellminer: Molecular Profiles, Drug Response, and Chemical Structures for the NCI-60 Cell Lines Description: The NCI-60 cancer cell line panel has been used over the course of several decades as an anti-cancer drug screen. This panel was developed as part of the Developmental Therapeutics Program (DTP, http://dtp.nci.nih.gov/) of the U.S. National Cancer Institute (NCI). Thousands of compounds have been tested on the NCI-60, which have been extensively characterized by many platforms for gene and protein expression, copy number, mutation, and others (Reinhold, et al., 2012). The purpose of the CellMiner project (http://discover.nci.nih.gov/ cellminer) has been to integrate data from multiple platforms used to analyze the NCI-60 and to provide a powerful suite of tools for exploration of NCI-60 data. biocViews: aCGH, CellBasedAssays, CopyNumberVariation, GeneExpression, Pharmacogenomics, Pharmacogenetics, miRNA, Cheminformatics, Visualization, Software, SystemsBiology Author: Augustin Luna, Vinodh Rajapakse, Fabricio Sousa Maintainer: Augustin Luna , Vinodh Rajapakse , Fathi Elloumi URL: http://discover.nci.nih.gov/cellminer/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/rcellminer git_branch: RELEASE_3_20 git_last_commit: ccaaf15 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rcellminer_2.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rcellminer_2.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rcellminer_2.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rcellminer_2.28.0.tgz vignettes: vignettes/rcellminer/inst/doc/rcellminerUsage.html vignetteTitles: Using rcellminer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/rcellminer/inst/doc/rcellminerUsage.R suggestsMe: rcellminerData dependencyCount: 69 Package: rCGH Version: 1.36.0 Depends: R (>= 3.4),methods,stats,utils,graphics Imports: plyr,DNAcopy,lattice,ggplot2,grid,shiny (>= 0.11.1), limma,affy,mclust,TxDb.Hsapiens.UCSC.hg18.knownGene, TxDb.Hsapiens.UCSC.hg19.knownGene,TxDb.Hsapiens.UCSC.hg38.knownGene, org.Hs.eg.db,GenomicFeatures,GenomeInfoDb,GenomicRanges,AnnotationDbi, parallel,IRanges,grDevices,aCGH Suggests: BiocStyle, knitr, BiocGenerics, RUnit License: Artistic-2.0 Archs: x64 MD5sum: 2abd9fb5cfc57b8f4fd3f0b62ae92831 NeedsCompilation: no Title: Comprehensive Pipeline for Analyzing and Visualizing Array-Based CGH Data Description: A comprehensive pipeline for analyzing and interactively visualizing genomic profiles generated through commercial or custom aCGH arrays. As inputs, rCGH supports Agilent dual-color Feature Extraction files (.txt), from 44 to 400K, Affymetrix SNP6.0 and cytoScanHD probeset.txt, cychp.txt, and cnchp.txt files exported from ChAS or Affymetrix Power Tools. rCGH also supports custom arrays, provided data complies with the expected format. This package takes over all the steps required for individual genomic profiles analysis, from reading files to profiles segmentation and gene annotations. This package also provides several visualization functions (static or interactive) which facilitate individual profiles interpretation. Input files can be in compressed format, e.g. .bz2 or .gz. biocViews: aCGH,CopyNumberVariation,Preprocessing,FeatureExtraction Author: Frederic Commo [aut, cre] Maintainer: Frederic Commo URL: https://github.com/fredcommo/rCGH VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/rCGH git_branch: RELEASE_3_20 git_last_commit: 6ef906b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rCGH_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rCGH_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rCGH_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rCGH_1.36.0.tgz vignettes: vignettes/rCGH/inst/doc/rCGH.pdf vignetteTitles: using rCGH package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rCGH/inst/doc/rCGH.R importsMe: preciseTAD dependencyCount: 131 Package: RcisTarget Version: 1.26.0 Depends: R (>= 3.5.0) Imports: AUCell (>= 1.1.6), BiocGenerics, data.table, graphics, GenomeInfoDb, GenomicRanges, arrow (>= 2.0.0), dplyr, tibble, GSEABase, methods, R.utils, stats, SummarizedExperiment, S4Vectors, utils, zoo Suggests: Biobase, BiocStyle, BiocParallel, doParallel, DT, foreach, gplots, rtracklayer, igraph, knitr, RcisTarget.hg19.motifDBs.cisbpOnly.500bp, rmarkdown, testthat, visNetwork Enhances: doMC, doRNG License: GPL-3 MD5sum: 10124dd3e66007aa4e69635ff4a2055a NeedsCompilation: no Title: RcisTarget Identify transcription factor binding motifs enriched on a list of genes or genomic regions Description: RcisTarget identifies transcription factor binding motifs (TFBS) over-represented on a gene list. In a first step, RcisTarget selects DNA motifs that are significantly over-represented in the surroundings of the transcription start site (TSS) of the genes in the gene-set. This is achieved by using a database that contains genome-wide cross-species rankings for each motif. The motifs that are then annotated to TFs and those that have a high Normalized Enrichment Score (NES) are retained. Finally, for each motif and gene-set, RcisTarget predicts the candidate target genes (i.e. genes in the gene-set that are ranked above the leading edge). biocViews: GeneRegulation, MotifAnnotation, Transcriptomics, Transcription, GeneSetEnrichment, GeneTarget Author: Sara Aibar, Gert Hulselmans, Stein Aerts. Laboratory of Computational Biology. VIB-KU Leuven Center for Brain & Disease Research. Leuven, Belgium Maintainer: Gert Hulselmans URL: http://scenic.aertslab.org VignetteBuilder: knitr BugReports: https://github.com/aertslab/RcisTarget/issues git_url: https://git.bioconductor.org/packages/RcisTarget git_branch: RELEASE_3_20 git_last_commit: 16577dc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RcisTarget_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RcisTarget_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RcisTarget_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RcisTarget_1.26.0.tgz vignettes: vignettes/RcisTarget/inst/doc/RcisTarget_MainTutorial.html, vignettes/RcisTarget/inst/doc/Tutorial_AnalysisOfGenomicRegions.html, vignettes/RcisTarget/inst/doc/Tutorial_AnalysisWithBackground.html vignetteTitles: RcisTarget: Transcription factor binding motif enrichment, RcisTarget - on regions, RcisTarget - with background hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RcisTarget/inst/doc/RcisTarget_MainTutorial.R, vignettes/RcisTarget/inst/doc/Tutorial_AnalysisOfGenomicRegions.R, vignettes/RcisTarget/inst/doc/Tutorial_AnalysisWithBackground.R dependencyCount: 125 Package: RCM Version: 1.22.0 Depends: R (>= 4.0), DBI Imports: RColorBrewer, alabama, edgeR, reshape2, tseries, stats, VGAM, ggplot2 (>= 2.2.1.9000), nleqslv, phyloseq, tensor, MASS, grDevices, graphics, methods Suggests: knitr, rmarkdown, testthat License: GPL-2 MD5sum: b9ae0db23764d294d38458ed9fae3014 NeedsCompilation: no Title: Fit row-column association models with the negative binomial distribution for the microbiome Description: Combine ideas of log-linear analysis of contingency table, flexible response function estimation and empirical Bayes dispersion estimation for explorative visualization of microbiome datasets. The package includes unconstrained as well as constrained analysis. In addition, diagnostic plot to detect lack of fit are available. biocViews: Metagenomics, DimensionReduction, Microbiome, Visualization Author: Stijn Hawinkel [cre, aut] () Maintainer: Stijn Hawinkel URL: https://bioconductor.org/packages/release/bioc/vignettes/RCM/inst/doc/RCMvignette.html/ VignetteBuilder: knitr BugReports: https://github.com/CenterForStatistics-UGent/RCM/issues git_url: https://git.bioconductor.org/packages/RCM git_branch: RELEASE_3_20 git_last_commit: e72daa1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RCM_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RCM_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RCM_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RCM_1.22.0.tgz vignettes: vignettes/RCM/inst/doc/RCMvignette.html vignetteTitles: Manual for the RCM pacakage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RCM/inst/doc/RCMvignette.R dependencyCount: 99 Package: Rcollectl Version: 1.6.0 Imports: utils, ggplot2, lubridate, processx Suggests: knitr, BiocStyle, knitcitations, sessioninfo, rmarkdown, testthat, covr License: Artistic-2.0 MD5sum: d556bceb7e9105aa481ae3dea2630674 NeedsCompilation: no Title: Help use collectl with R in Linux, to measure resource consumption in R processes Description: Provide functions to obtain instrumentation data on processes in a unix environment. Parse output of a collectl run. Vizualize aspects of system usage over time, with annotation. biocViews: Software, Infrastructure Author: Vincent Carey [aut, cre] (), Yubo Cheng [aut] Maintainer: Vincent Carey URL: https://github.com/vjcitn/Rcollectl SystemRequirements: collectl VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/Rcollectl git_url: https://git.bioconductor.org/packages/Rcollectl git_branch: RELEASE_3_20 git_last_commit: 75a1d4c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rcollectl_1.6.0.tar.gz vignettes: vignettes/Rcollectl/inst/doc/Rcollectl.html vignetteTitles: Rcollectl hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rcollectl/inst/doc/Rcollectl.R dependencyCount: 41 Package: Rcpi Version: 1.42.0 Depends: R (>= 3.0.2) Imports: Biostrings, GOSemSim, curl, doParallel, foreach, httr2, jsonlite, methods, rlang, stats, utils Suggests: knitr, rmarkdown, testthat (>= 3.0.0) License: Artistic-2.0 | file LICENSE MD5sum: 83acc5f4a67a80de2d3ff48c06ff7cb1 NeedsCompilation: no Title: Molecular Informatics Toolkit for Compound-Protein Interaction in Drug Discovery Description: A molecular informatics toolkit with an integration of bioinformatics and chemoinformatics tools for drug discovery. biocViews: Software, DataImport, DataRepresentation, FeatureExtraction, Cheminformatics, BiomedicalInformatics, Proteomics, GO, SystemsBiology Author: Nan Xiao [aut, cre] (), Dong-Sheng Cao [aut], Qing-Song Xu [aut] Maintainer: Nan Xiao URL: https://nanx.me/Rcpi/, https://github.com/nanxstats/Rcpi VignetteBuilder: knitr BugReports: https://github.com/nanxstats/Rcpi/issues git_url: https://git.bioconductor.org/packages/Rcpi git_branch: RELEASE_3_20 git_last_commit: c03a28c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rcpi_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rcpi_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rcpi_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rcpi_1.42.0.tgz vignettes: vignettes/Rcpi/inst/doc/Rcpi.html, vignettes/Rcpi/inst/doc/Rcpi-quickref.html vignetteTitles: Rcpi: R/Bioconductor Package as an Integrated Informatics Platform for Drug Discovery, Rcpi Quick Reference Card hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Rcpi/inst/doc/Rcpi.R dependencyCount: 63 Package: RCSL Version: 1.14.0 Depends: R (>= 4.1) Imports: RcppAnnoy, igraph, NbClust, Rtsne, ggplot2(>= 3.4.0), methods, pracma, umap, grDevices, graphics, stats, Rcpp (>= 0.11.0), MatrixGenerics, SingleCellExperiment Suggests: testthat, knitr, BiocStyle, rmarkdown, mclust, tidyverse, tinytex License: Artistic-2.0 MD5sum: 2624ecbd83fdbb8adbd2478ca9c59f40 NeedsCompilation: no Title: Rank Constrained Similarity Learning for single cell RNA sequencing data Description: A novel clustering algorithm and toolkit RCSL (Rank Constrained Similarity Learning) to accurately identify various cell types using scRNA-seq data from a complex tissue. RCSL considers both lo-cal similarity and global similarity among the cells to discern the subtle differences among cells of the same type as well as larger differences among cells of different types. RCSL uses Spearman’s rank correlations of a cell’s expression vector with those of other cells to measure its global similar-ity, and adaptively learns neighbour representation of a cell as its local similarity. The overall similar-ity of a cell to other cells is a linear combination of its global similarity and local similarity. biocViews: SingleCell, Software, Clustering, DimensionReduction, RNASeq, Visualization, Sequencing Author: Qinglin Mei [cre, aut], Guojun Li [fnd], Zhengchang Su [fnd] Maintainer: Qinglin Mei URL: https://github.com/QinglinMei/RCSL VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RCSL git_branch: RELEASE_3_20 git_last_commit: ca9f4a1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RCSL_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RCSL_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RCSL_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RCSL_1.14.0.tgz vignettes: vignettes/RCSL/inst/doc/RCSL.html vignetteTitles: RCSL package manual hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RCSL/inst/doc/RCSL.R dependencyCount: 79 Package: Rcwl Version: 1.22.0 Depends: R (>= 3.6), yaml, methods, S4Vectors Imports: utils, stats, BiocParallel, batchtools, DiagrammeR, shiny, R.utils, codetools, basilisk Suggests: testthat, knitr, rmarkdown, BiocStyle License: GPL-2 | file LICENSE MD5sum: 0a5a5d1c4e6080eaa34d121a5e59fbc9 NeedsCompilation: no Title: An R interface to the Common Workflow Language Description: The Common Workflow Language (CWL) is an open standard for development of data analysis workflows that is portable and scalable across different tools and working environments. Rcwl provides a simple way to wrap command line tools and build CWL data analysis pipelines programmatically within R. It increases the ease of usage, development, and maintenance of CWL pipelines. biocViews: Software, WorkflowStep, ImmunoOncology Author: Qiang Hu [aut, cre], Qian Liu [aut] Maintainer: Qiang Hu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Rcwl git_branch: RELEASE_3_20 git_last_commit: 974555e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rcwl_1.22.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rcwl_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rcwl_1.22.0.tgz vignettes: vignettes/Rcwl/inst/doc/Rcwl.html vignetteTitles: Rcwl: An R interface to the Common Workflow Language hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Rcwl/inst/doc/Rcwl.R dependsOnMe: RcwlPipelines importsMe: ReUseData dependencyCount: 111 Package: RcwlPipelines Version: 1.22.0 Depends: R (>= 3.6), Rcwl, BiocFileCache Imports: rappdirs, methods, utils, git2r, httr, S4Vectors Suggests: testthat, knitr, rmarkdown, BiocStyle License: GPL-2 MD5sum: c94b429f4daa3fc5bc2f9dd0a0bee8eb NeedsCompilation: no Title: Bioinformatics pipelines based on Rcwl Description: A collection of Bioinformatics tools and pipelines based on R and the Common Workflow Language. biocViews: Software, WorkflowStep, Alignment, Preprocessing, QualityControl, DNASeq, RNASeq, DataImport, ImmunoOncology Author: Qiang Hu [aut, cre], Qian Liu [aut], Shuang Gao [aut] Maintainer: Qiang Hu SystemRequirements: nodejs VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RcwlPipelines git_branch: RELEASE_3_20 git_last_commit: 1e43126 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RcwlPipelines_1.22.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RcwlPipelines_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RcwlPipelines_1.22.0.tgz vignettes: vignettes/RcwlPipelines/inst/doc/RcwlPipelines.html vignetteTitles: RcwlPipelines hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RcwlPipelines/inst/doc/RcwlPipelines.R importsMe: ReUseData dependencyCount: 124 Package: RCX Version: 1.10.0 Depends: R (>= 4.2.0) Imports: jsonlite, plyr, igraph, methods Suggests: BiocStyle, testthat, knitr, rmarkdown, base64enc, graph License: MIT + file LICENSE MD5sum: fdec8869f3d06fc348f0a872824159ae NeedsCompilation: no Title: R package implementing the Cytoscape Exchange (CX) format Description: Create, handle, validate, visualize and convert networks in the Cytoscape exchange (CX) format to standard data types and objects. The package also provides conversion to and from objects of iGraph and graphNEL. The CX format is also used by the NDEx platform, a online commons for biological networks, and the network visualization software Cytocape. biocViews: Pathways, DataImport, Network Author: Florian Auer [aut, cre] () Maintainer: Florian Auer URL: https://github.com/frankkramer-lab/RCX VignetteBuilder: knitr BugReports: https://github.com/frankkramer-lab/RCX/issues git_url: https://git.bioconductor.org/packages/RCX git_branch: RELEASE_3_20 git_last_commit: df064cb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RCX_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RCX_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RCX_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RCX_1.10.0.tgz vignettes: vignettes/RCX/inst/doc/Appendix_The_RCX_and_CX_Data_Model.html, vignettes/RCX/inst/doc/Creating_RCX_from_scratch.html, vignettes/RCX/inst/doc/Extending_the_RCX_Data_Model.html, vignettes/RCX/inst/doc/RCX_an_R_package_implementing_the_Cytoscape_Exchange_format.html vignetteTitles: Appendix: The RCX and CX Data Model, 02. Creating RCX from scratch, 03. Extending the RCX Data Model, 01. RCX - an R package implementing the Cytoscape Exchange (CX) format hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/RCX/inst/doc/Appendix_The_RCX_and_CX_Data_Model.R, vignettes/RCX/inst/doc/Creating_RCX_from_scratch.R, vignettes/RCX/inst/doc/Extending_the_RCX_Data_Model.R, vignettes/RCX/inst/doc/RCX_an_R_package_implementing_the_Cytoscape_Exchange_format.R dependsOnMe: ndexr dependencyCount: 20 Package: RCy3 Version: 2.26.0 Imports: httr, methods, RJSONIO, XML, utils, BiocGenerics, stats, graph, fs, uuid, stringi, glue, RCurl, base64url, base64enc, IRkernel, IRdisplay, RColorBrewer, gplots Suggests: BiocStyle, knitr, rmarkdown, igraph, grDevices License: MIT + file LICENSE MD5sum: b6b75d115fce1878d5251f3fea1dfd3d NeedsCompilation: no Title: Functions to Access and Control Cytoscape Description: Vizualize, analyze and explore networks using Cytoscape via R. Anything you can do using the graphical user interface of Cytoscape, you can now do with a single RCy3 function. biocViews: Visualization, GraphAndNetwork, ThirdPartyClient, Network Author: Alex Pico [aut, cre] (), Tanja Muetze [aut], Paul Shannon [aut], Ruth Isserlin [ctb], Shraddha Pai [ctb], Julia Gustavsen [ctb], Georgi Kolishovski [ctb], Yihang Xin [ctb] Maintainer: Alex Pico URL: https://github.com/cytoscape/RCy3 SystemRequirements: Cytoscape (>= 3.7.1), CyREST (>= 3.8.0) VignetteBuilder: knitr BugReports: https://github.com/cytoscape/RCy3/issues git_url: https://git.bioconductor.org/packages/RCy3 git_branch: RELEASE_3_20 git_last_commit: c3be18a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RCy3_2.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RCy3_2.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RCy3_2.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RCy3_2.26.0.tgz vignettes: vignettes/RCy3/inst/doc/Cancer-networks-and-data.html, vignettes/RCy3/inst/doc/Custom-Graphics.html, vignettes/RCy3/inst/doc/Cytoscape-and-graphNEL.html, vignettes/RCy3/inst/doc/Cytoscape-and-iGraph.html, vignettes/RCy3/inst/doc/Cytoscape-and-NDEx.html, vignettes/RCy3/inst/doc/Filtering-Networks.html, vignettes/RCy3/inst/doc/Group-nodes.html, vignettes/RCy3/inst/doc/Identifier-mapping.html, vignettes/RCy3/inst/doc/Importing-data.html, vignettes/RCy3/inst/doc/Jupyter-bridge-rcy3.html, vignettes/RCy3/inst/doc/Network-functions-and-visualization.html, vignettes/RCy3/inst/doc/Overview-of-RCy3.html, vignettes/RCy3/inst/doc/Phylogenetic-trees.html, vignettes/RCy3/inst/doc/Upgrading-existing-scripts.html vignetteTitles: 06. Cancer networks and data ~40 min, 11. Custom Graphics and Labels ~10 min, 03. Cytoscape and graphNEL ~5 min, 02. Cytoscape and igraph ~5 min, 09. Cytoscape and NDEx ~20 min, 12. Filtering Networks ~10 min, 10. Group nodes ~15 min, 07. Identifier mapping ~20 min, 04. Importing data ~5 min, 14. Jupyter Bridge and RCy3 ~10 min, 05. Network functions and visualization ~15 min, 01. Overview of RCy3 ~25 min, 13. Phylogenetic Trees ~3 min, 08. Upgrading existing scripts ~15 min hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/RCy3/inst/doc/Cancer-networks-and-data.R, vignettes/RCy3/inst/doc/Custom-Graphics.R, vignettes/RCy3/inst/doc/Cytoscape-and-graphNEL.R, vignettes/RCy3/inst/doc/Cytoscape-and-iGraph.R, vignettes/RCy3/inst/doc/Cytoscape-and-NDEx.R, vignettes/RCy3/inst/doc/Filtering-Networks.R, vignettes/RCy3/inst/doc/Group-nodes.R, vignettes/RCy3/inst/doc/Identifier-mapping.R, vignettes/RCy3/inst/doc/Importing-data.R, vignettes/RCy3/inst/doc/Jupyter-bridge-rcy3.R, vignettes/RCy3/inst/doc/Network-functions-and-visualization.R, vignettes/RCy3/inst/doc/Overview-of-RCy3.R, vignettes/RCy3/inst/doc/Phylogenetic-trees.R, vignettes/RCy3/inst/doc/Upgrading-existing-scripts.R importsMe: categoryCompare, CeTF, enrichViewNet, fedup, GeneNetworkBuilder, MetaPhOR, MOGAMUN, NCIgraph, netZooR, regutools, transomics2cytoscape, dendroNetwork, lilikoi, netgsa, ScriptMapR suggestsMe: graphite, rScudo, tidysbml, sharp dependencyCount: 48 Package: RCyjs Version: 2.28.0 Depends: R (>= 3.5.0), BrowserViz (>= 2.7.18), graph (>= 1.56.0) Imports: methods, httpuv (>= 1.5.0), BiocGenerics, base64enc, utils Suggests: RUnit, BiocStyle, knitr, rmarkdown License: MIT + file LICENSE MD5sum: 88082db73f4802d75c8ff1513e669cd1 NeedsCompilation: no Title: Display and manipulate graphs in cytoscape.js Description: Interactive viewing and exploration of graphs, connecting R to Cytoscape.js, using websockets. biocViews: Visualization, GraphAndNetwork, ThirdPartyClient Author: Paul Shannon Maintainer: Paul Shannon VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RCyjs git_branch: RELEASE_3_20 git_last_commit: e9b5dce git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RCyjs_2.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RCyjs_2.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RCyjs_2.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RCyjs_2.28.0.tgz vignettes: vignettes/RCyjs/inst/doc/RCyjs.html vignetteTitles: "RCyjs: programmatic access to the web browser-based network viewer,, cytoscape.js" hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/RCyjs/inst/doc/RCyjs.R dependencyCount: 18 Package: Rdisop Version: 1.66.0 Depends: R (>= 2.0.0), Rcpp LinkingTo: Rcpp Suggests: knitr, rmarkdown, RUnit, testthat (>= 3.0.0) License: GPL-2 MD5sum: 2c028e825b2eb802759a8005d318c009 NeedsCompilation: yes Title: Decomposition of Isotopic Patterns Description: In high resolution mass spectrometry (HR-MS), the measured masses can be decomposed into potential element combinations (chemical sum formulas). Where additional mass/intensity information of respective isotopic peaks is available, decomposition can take this information into account to better rank the potential candidate sum formulas. To compare measured mass/intensity information with the theoretical distribution of candidate sum formulas, the latter needs to be calculated. This package implements fast algorithms to address both tasks, the calculation of isotopic distributions for arbitrary sum formulas (assuming a HR-MS resolution of roughly 30,000), and the ranked list of sum formulas fitting an observed peak or isotopic peak set. biocViews: ImmunoOncology, MassSpectrometry, Metabolomics Author: Anton Pervukhin [aut], Steffen Neumann [aut, cre] (), Jan Lisec [ctb] (), Miao Yu [ctb] Maintainer: Steffen Neumann URL: https://github.com/sneumann/Rdisop SystemRequirements: None VignetteBuilder: knitr BugReports: https://github.com/sneumann/Rdisop/issues/new git_url: https://git.bioconductor.org/packages/Rdisop git_branch: RELEASE_3_20 git_last_commit: f99f401 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rdisop_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rdisop_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rdisop_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rdisop_1.66.0.tgz vignettes: vignettes/Rdisop/inst/doc/Rdisop.html vignetteTitles: Mass decomposition with the Rdisop package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: TRUE hasLICENSE: FALSE importsMe: enviGCMS suggestsMe: adductomicsR, MSnbase, RforProteomics, CorMID, InterpretMSSpectrum dependencyCount: 3 Package: RDRToolbox Version: 1.56.0 Depends: R (>= 2.9.0) Imports: graphics, grDevices, methods, stats, MASS, rgl Suggests: golubEsets License: GPL (>= 2) MD5sum: 41bf57d357f7d8fbb7410bcab94bd9cb NeedsCompilation: no Title: A package for nonlinear dimension reduction with Isomap and LLE. Description: A package for nonlinear dimension reduction using the Isomap and LLE algorithm. It also includes a routine for computing the Davis-Bouldin-Index for cluster validation, a plotting tool and a data generator for microarray gene expression data and for the Swiss Roll dataset. biocViews: DimensionReduction, FeatureExtraction, Visualization, Clustering, Microarray Author: Christoph Bartenhagen Maintainer: Christoph Bartenhagen git_url: https://git.bioconductor.org/packages/RDRToolbox git_branch: RELEASE_3_20 git_last_commit: 6d6b9af git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RDRToolbox_1.56.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RDRToolbox_1.56.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RDRToolbox_1.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RDRToolbox_1.56.0.tgz vignettes: vignettes/RDRToolbox/inst/doc/vignette.pdf vignetteTitles: A package for nonlinear dimension reduction with Isomap and LLE. hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RDRToolbox/inst/doc/vignette.R suggestsMe: loon dependencyCount: 36 Package: ReactomeGSA Version: 1.20.0 Imports: jsonlite, httr, progress, ggplot2, methods, gplots, RColorBrewer, dplyr, tidyr, Biobase Suggests: testthat, knitr, rmarkdown, ReactomeGSA.data, devtools Enhances: limma, edgeR, Seurat (>= 3.0), scater License: MIT + file LICENSE MD5sum: 9ac75169cf50f17bee67fe2487c30a57 NeedsCompilation: no Title: Client for the Reactome Analysis Service for comparative multi-omics gene set analysis Description: The ReactomeGSA packages uses Reactome's online analysis service to perform a multi-omics gene set analysis. The main advantage of this package is, that the retrieved results can be visualized using REACTOME's powerful webapplication. Since Reactome's analysis service also uses R to perfrom the actual gene set analysis you will get similar results when using the same packages (such as limma and edgeR) locally. Therefore, if you only require a gene set analysis, different packages are more suited. biocViews: GeneSetEnrichment, Proteomics, Transcriptomics, SystemsBiology, GeneExpression, Reactome Author: Johannes Griss [aut, cre] () Maintainer: Johannes Griss URL: https://github.com/reactome/ReactomeGSA VignetteBuilder: knitr BugReports: https://github.com/reactome/ReactomeGSA/issues git_url: https://git.bioconductor.org/packages/ReactomeGSA git_branch: RELEASE_3_20 git_last_commit: b1f2efd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ReactomeGSA_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ReactomeGSA_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ReactomeGSA_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ReactomeGSA_1.20.0.tgz vignettes: vignettes/ReactomeGSA/inst/doc/analysing-scRNAseq.html, vignettes/ReactomeGSA/inst/doc/reanalysing-public-data.html, vignettes/ReactomeGSA/inst/doc/using-reactomegsa.html vignetteTitles: Analysing single-cell RNAseq data, Loading and re-analysing public data through ReactomeGSA, Using the ReactomeGSA package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ReactomeGSA/inst/doc/analysing-scRNAseq.R, vignettes/ReactomeGSA/inst/doc/reanalysing-public-data.R, vignettes/ReactomeGSA/inst/doc/using-reactomegsa.R dependsOnMe: ReactomeGSA.data dependencyCount: 62 Package: ReactomePA Version: 1.50.0 Depends: R (>= 3.4.0) Imports: AnnotationDbi, DOSE (>= 3.5.1), enrichplot, ggplot2 (>= 3.3.5), ggraph, reactome.db, igraph, graphite, gson, yulab.utils (>= 0.1.5) Suggests: BiocStyle, clusterProfiler, knitr, rmarkdown, org.Hs.eg.db, prettydoc, testthat License: GPL-2 MD5sum: 53e6b4f22aec5d9faf9f2cf3f07e55ae NeedsCompilation: no Title: Reactome Pathway Analysis Description: This package provides functions for pathway analysis based on REACTOME pathway database. It implements enrichment analysis, gene set enrichment analysis and several functions for visualization. This package is not affiliated with the Reactome team. biocViews: Pathways, Visualization, Annotation, MultipleComparison, GeneSetEnrichment, Reactome Author: Guangchuang Yu [aut, cre], Vladislav Petyuk [ctb] Maintainer: Guangchuang Yu URL: https://yulab-smu.top/contribution-knowledge-mining/ VignetteBuilder: knitr BugReports: https://github.com/GuangchuangYu/ReactomePA/issues git_url: https://git.bioconductor.org/packages/ReactomePA git_branch: RELEASE_3_20 git_last_commit: 5651432 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ReactomePA_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ReactomePA_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ReactomePA_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ReactomePA_1.50.0.tgz vignettes: vignettes/ReactomePA/inst/doc/ReactomePA.html vignetteTitles: An R package for Reactome Pathway Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ReactomePA/inst/doc/ReactomePA.R dependsOnMe: maEndToEnd importsMe: bioCancer, gINTomics, miRSM, miRspongeR, Pigengene, scTensor, ExpHunterSuite suggestsMe: CBNplot, ChIPseeker, CINdex, cola, GeDi, GRaNIE, scGPS dependencyCount: 133 Package: ReadqPCR Version: 1.52.0 Depends: R(>= 2.14.0), Biobase, methods Suggests: qpcR License: LGPL-3 MD5sum: 5f14f25a5a7a20d73aff23a783fb6822 NeedsCompilation: no Title: Read qPCR data Description: The package provides functions to read raw RT-qPCR data of different platforms. biocViews: DataImport, MicrotitrePlateAssay, GeneExpression, qPCR Author: James Perkins, Matthias Kohl, Nor Izayu Abdul Rahman Maintainer: James Perkins URL: http://www.bioconductor.org/packages/release/bioc/html/ReadqPCR.html git_url: https://git.bioconductor.org/packages/ReadqPCR git_branch: RELEASE_3_20 git_last_commit: d7ac6c2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ReadqPCR_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ReadqPCR_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ReadqPCR_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ReadqPCR_1.52.0.tgz vignettes: vignettes/ReadqPCR/inst/doc/ReadqPCR.pdf vignetteTitles: Functions to load RT-qPCR data into R hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ReadqPCR/inst/doc/ReadqPCR.R dependsOnMe: NormqPCR dependencyCount: 6 Package: REBET Version: 1.24.0 Depends: ASSET Imports: stats, utils Suggests: RUnit, BiocGenerics License: GPL-2 Archs: x64 MD5sum: ddafdb1225d19db016e4acc664eec77f NeedsCompilation: yes Title: The subREgion-based BurdEn Test (REBET) Description: There is an increasing focus to investigate the association between rare variants and diseases. The REBET package implements the subREgion-based BurdEn Test which is a powerful burden test that simultaneously identifies susceptibility loci and sub-regions. biocViews: Software, VariantAnnotation, SNP Author: Bill Wheeler [cre], Bin Zhu [aut], Lisa Mirabello [ctb], Nilanjan Chatterjee [ctb] Maintainer: Bill Wheeler git_url: https://git.bioconductor.org/packages/REBET git_branch: RELEASE_3_20 git_last_commit: 418e069 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/REBET_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/REBET_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/REBET_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/REBET_1.24.0.tgz vignettes: vignettes/REBET/inst/doc/vignette.pdf vignetteTitles: REBET Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/REBET/inst/doc/vignette.R dependencyCount: 28 Package: rebook Version: 1.16.0 Imports: utils, methods, knitr (>= 1.32), rmarkdown, CodeDepends, dir.expiry, filelock, BiocStyle Suggests: testthat, igraph, XML, BiocManager, RCurl, bookdown, rappdirs, yaml, BiocParallel, OSCA.intro, OSCA.workflows License: GPL-3 MD5sum: 1a43fb79b3571524d0fbae53c3b3d4ee NeedsCompilation: no Title: Re-using Content in Bioconductor Books Description: Provides utilities to re-use content across chapters of a Bioconductor book. This is mostly based on functionality developed while writing the OSCA book, but generalized for potential use in other large books with heavy compute. Also contains some functions to assist book deployment. biocViews: Software, Infrastructure, ReportWriting Author: Aaron Lun [aut, cre, cph] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/rebook git_branch: RELEASE_3_20 git_last_commit: 4109cbb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rebook_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rebook_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rebook_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rebook_1.16.0.tgz vignettes: vignettes/rebook/inst/doc/userguide.html vignetteTitles: Reusing book content hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rebook/inst/doc/userguide.R dependsOnMe: csawBook, OSCA, OSCA.basic, OSCA.intro, OSCA.workflows, SingleRBook dependencyCount: 43 Package: receptLoss Version: 1.18.0 Depends: R (>= 3.6.0) Imports: dplyr, ggplot2, magrittr, tidyr, SummarizedExperiment Suggests: knitr, rmarkdown, testthat (>= 2.1.0), here License: GPL-3 + file LICENSE MD5sum: d54134c825a4dab0483bcc572df24f5d NeedsCompilation: no Title: Unsupervised Identification of Genes with Expression Loss in Subsets of Tumors Description: receptLoss identifies genes whose expression is lost in subsets of tumors relative to normal tissue. It is particularly well-suited in cases where the number of normal tissue samples is small, as the distribution of gene expression in normal tissue samples is approximated by a Gaussian. Originally designed for identifying nuclear hormone receptor expression loss but can be applied transcriptome wide as well. biocViews: GeneExpression, StatisticalMethod Author: Daniel Pique, John Greally, Jessica Mar Maintainer: Daniel Pique VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/receptLoss git_branch: RELEASE_3_20 git_last_commit: f0b251d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/receptLoss_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/receptLoss_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/receptLoss_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/receptLoss_1.18.0.tgz vignettes: vignettes/receptLoss/inst/doc/receptLoss.html vignetteTitles: receptLoss hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/receptLoss/inst/doc/receptLoss.R dependencyCount: 70 Package: reconsi Version: 1.18.0 Imports: phyloseq, ks, reshape2, ggplot2, stats, methods, graphics, grDevices, matrixStats, Matrix Suggests: knitr, rmarkdown, testthat License: GPL-2 MD5sum: 2c0ca47c7f0dcbd2f683f5d5c69c365a NeedsCompilation: no Title: Resampling Collapsed Null Distributions for Simultaneous Inference Description: Improves simultaneous inference under dependence of tests by estimating a collapsed null distribution through resampling. Accounting for the dependence between tests increases the power while reducing the variability of the false discovery proportion. This dependence is common in genomics applications, e.g. when combining flow cytometry measurements with microbiome sequence counts. biocViews: Metagenomics, Microbiome, MultipleComparison, FlowCytometry Author: Stijn Hawinkel [cre, aut] () Maintainer: Stijn Hawinkel VignetteBuilder: knitr BugReports: https://github.com/CenterForStatistics-UGent/reconsi/issues git_url: https://git.bioconductor.org/packages/reconsi git_branch: RELEASE_3_20 git_last_commit: 75e4796 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/reconsi_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/reconsi_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/reconsi_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/reconsi_1.18.0.tgz vignettes: vignettes/reconsi/inst/doc/reconsiVignette.html vignetteTitles: Manual for the RCM pacakage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/reconsi/inst/doc/reconsiVignette.R dependencyCount: 92 Package: recount Version: 1.32.0 Depends: R (>= 3.5.0), SummarizedExperiment Imports: BiocParallel, derfinder, downloader, GEOquery, GenomeInfoDb, GenomicRanges, IRanges, methods, RCurl, rentrez, rtracklayer (>= 1.35.3), S4Vectors, stats, utils Suggests: AnnotationDbi, BiocManager, BiocStyle (>= 2.5.19), DESeq2, sessioninfo, EnsDb.Hsapiens.v79, GenomicFeatures, txdbmaker, knitr (>= 1.6), org.Hs.eg.db, RefManageR, regionReport (>= 1.9.4), rmarkdown (>= 0.9.5), testthat (>= 2.1.0), covr, pheatmap, DT, edgeR, ggplot2, RColorBrewer License: Artistic-2.0 MD5sum: 173cd146ead4195e569d69b6531237da NeedsCompilation: no Title: Explore and download data from the recount project Description: Explore and download data from the recount project available at https://jhubiostatistics.shinyapps.io/recount/. Using the recount package you can download RangedSummarizedExperiment objects at the gene, exon or exon-exon junctions level, the raw counts, the phenotype metadata used, the urls to the sample coverage bigWig files or the mean coverage bigWig file for a particular study. The RangedSummarizedExperiment objects can be used by different packages for performing differential expression analysis. Using http://bioconductor.org/packages/derfinder you can perform annotation-agnostic differential expression analyses with the data from the recount project as described at http://www.nature.com/nbt/journal/v35/n4/full/nbt.3838.html. biocViews: Coverage, DifferentialExpression, GeneExpression, RNASeq, Sequencing, Software, DataImport, ImmunoOncology Author: Leonardo Collado-Torres [aut, cre] (), Abhinav Nellore [ctb], Andrew E. Jaffe [ctb] (), Margaret A. Taub [ctb], Kai Kammers [ctb], Shannon E. Ellis [ctb] (), Kasper Daniel Hansen [ctb] (), Ben Langmead [ctb] (), Jeffrey T. Leek [aut, ths] () Maintainer: Leonardo Collado-Torres URL: https://github.com/leekgroup/recount VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/recount/ git_url: https://git.bioconductor.org/packages/recount git_branch: RELEASE_3_20 git_last_commit: 7e6a3cd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/recount_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/recount_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/recount_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/recount_1.32.0.tgz vignettes: vignettes/recount/inst/doc/recount-quickstart.html, vignettes/recount/inst/doc/SRP009615-results.html vignetteTitles: recount quick start guide, Basic DESeq2 results exploration hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/recount/inst/doc/recount-quickstart.R, vignettes/recount/inst/doc/SRP009615-results.R importsMe: psichomics, RNAAgeCalc, recountWorkflow suggestsMe: recount3 dependencyCount: 167 Package: recount3 Version: 1.16.0 Depends: SummarizedExperiment Imports: BiocFileCache, methods, rtracklayer, S4Vectors, utils, httr, data.table, R.utils, Matrix, GenomicRanges, sessioninfo, tools Suggests: BiocStyle, covr, knitcitations, knitr, RefManageR, rmarkdown, testthat, pryr, interactiveDisplayBase, recount License: Artistic-2.0 Archs: x64 MD5sum: bc93fa96e743a69d2b0f79e398237a26 NeedsCompilation: no Title: Explore and download data from the recount3 project Description: The recount3 package enables access to a large amount of uniformly processed RNA-seq data from human and mouse. You can download RangedSummarizedExperiment objects at the gene, exon or exon-exon junctions level with sample metadata and QC statistics. In addition we provide access to sample coverage BigWig files. biocViews: Coverage, DifferentialExpression, GeneExpression, RNASeq, Sequencing, Software, DataImport Author: Leonardo Collado-Torres [aut, cre] () Maintainer: Leonardo Collado-Torres URL: https://github.com/LieberInstitute/recount3 VignetteBuilder: knitr BugReports: https://github.com/LieberInstitute/recount3/issues git_url: https://git.bioconductor.org/packages/recount3 git_branch: RELEASE_3_20 git_last_commit: 36a1e0c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/recount3_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/recount3_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/recount3_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/recount3_1.16.0.tgz vignettes: vignettes/recount3/inst/doc/recount3-quickstart.html vignetteTitles: recount3 quick start guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/recount3/inst/doc/recount3-quickstart.R suggestsMe: RNAseqQC dependencyCount: 94 Package: recountmethylation Version: 1.16.0 Depends: R (>= 4.1) Imports: minfi, HDF5Array, rhdf5, S4Vectors, utils, methods, RCurl, R.utils, BiocFileCache, basilisk, reticulate, DelayedMatrixStats Suggests: minfiData, minfiDataEPIC, knitr, testthat, ggplot2, gridExtra, rmarkdown, BiocStyle, GenomicRanges, limma, ExperimentHub, AnnotationHub License: Artistic-2.0 MD5sum: bc6547f4dc230ade1e241686514d57dd NeedsCompilation: no Title: Access and analyze public DNA methylation array data compilations Description: Resources for cross-study analyses of public DNAm array data from NCBI GEO repo, produced using Illumina's Infinium HumanMethylation450K (HM450K) and MethylationEPIC (EPIC) platforms. Provided functions enable download, summary, and filtering of large compilation files. Vignettes detail background about file formats, example analyses, and more. Note the disclaimer on package load and consult the main manuscripts for further info. biocViews: DNAMethylation, Epigenetics, Microarray, MethylationArray, ExperimentHub Author: Sean K Maden [cre, aut] (), Brian Walsh [aut] (), Kyle Ellrott [aut] (), Kasper D Hansen [aut] (), Reid F Thompson [aut] (), Abhinav Nellore [aut] () Maintainer: Sean K Maden URL: https://github.com/metamaden/recountmethylation VignetteBuilder: knitr BugReports: https://github.com/metamaden/recountmethylation/issues git_url: https://git.bioconductor.org/packages/recountmethylation git_branch: RELEASE_3_20 git_last_commit: 4cb7d32 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/recountmethylation_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/recountmethylation_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/recountmethylation_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/recountmethylation_1.16.0.tgz vignettes: vignettes/recountmethylation/inst/doc/cpg_probe_annotations.html, vignettes/recountmethylation/inst/doc/exporting_saving_data.html, vignettes/recountmethylation/inst/doc/recountmethylation_data_analyses.html, vignettes/recountmethylation/inst/doc/recountmethylation_glint.html, vignettes/recountmethylation/inst/doc/recountmethylation_pwrewas.html, vignettes/recountmethylation/inst/doc/recountmethylation_search_index.html, vignettes/recountmethylation/inst/doc/recountmethylation_users_guide.html vignetteTitles: Practical uses for CpG annotations, Working with DNAm data types, Data Analyses, Determine population ancestry from DNAm arrays, Power analysis for DNAm arrays, Nearest neighbors analysis for DNAm arrays, recountmethylation User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/recountmethylation/inst/doc/cpg_probe_annotations.R, vignettes/recountmethylation/inst/doc/exporting_saving_data.R, vignettes/recountmethylation/inst/doc/recountmethylation_data_analyses.R, vignettes/recountmethylation/inst/doc/recountmethylation_glint.R, vignettes/recountmethylation/inst/doc/recountmethylation_pwrewas.R, vignettes/recountmethylation/inst/doc/recountmethylation_search_index.R, vignettes/recountmethylation/inst/doc/recountmethylation_users_guide.R dependencyCount: 155 Package: recoup Version: 1.34.0 Depends: R (>= 4.0.0), GenomicRanges, GenomicAlignments, ggplot2, ComplexHeatmap Imports: BiocGenerics, biomaRt, Biostrings, circlize, GenomeInfoDb, GenomicFeatures, graphics, grDevices, httr, IRanges, methods, parallel, RSQLite, Rsamtools, rtracklayer, S4Vectors, stats, stringr, txdbmaker, utils Suggests: grid, BiocStyle, knitr, rmarkdown, zoo, RUnit, BiocManager, BSgenome, RMySQL License: GPL (>= 3) MD5sum: e706ef9dc0be3a41f2ebf9c6ef0cde4b NeedsCompilation: no Title: An R package for the creation of complex genomic profile plots Description: recoup calculates and plots signal profiles created from short sequence reads derived from Next Generation Sequencing technologies. The profiles provided are either sumarized curve profiles or heatmap profiles. Currently, recoup supports genomic profile plots for reads derived from ChIP-Seq and RNA-Seq experiments. The package uses ggplot2 and ComplexHeatmap graphics facilities for curve and heatmap coverage profiles respectively. biocViews: ImmunoOncology, Software, GeneExpression, Preprocessing, QualityControl, RNASeq, ChIPSeq, Sequencing, Coverage, ATACSeq, ChipOnChip, Alignment, DataImport Author: Panagiotis Moulos Maintainer: Panagiotis Moulos URL: https://github.com/pmoulos/recoup VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/recoup git_branch: RELEASE_3_20 git_last_commit: 0a61aae git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/recoup_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/recoup_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/recoup_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/recoup_1.34.0.tgz vignettes: vignettes/recoup/inst/doc/recoup_intro.html vignetteTitles: Introduction to the recoup package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/recoup/inst/doc/recoup_intro.R dependencyCount: 126 Package: RedeR Version: 3.2.0 Depends: R (>= 4.0), methods Imports: scales, igraph Suggests: knitr, rmarkdown, markdown, BiocStyle, TreeAndLeaf License: GPL-3 MD5sum: ef1c2425218353186e59818411cca25d NeedsCompilation: no Title: Interactive visualization and manipulation of nested networks Description: RedeR is an R-based package combined with a stand-alone Java application for interactive visualization and manipulation of nested networks. Graph, node, and edge attributes can be configured using either graphical or command-line methods, following igraph syntax rules. biocViews: GUI, GraphAndNetwork, Network, NetworkEnrichment, NetworkInference, Software, SystemsBiology Author: Xin Wang [ctb], Florian Markowetz [ctb], Mauro Castro [aut, cre] () Maintainer: Mauro Castro URL: https://doi.org/10.1186/gb-2012-13-4-r29 SystemRequirements: Java Runtime Environment (Java>= 11) VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RedeR git_branch: RELEASE_3_20 git_last_commit: 641e8f5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RedeR_3.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RedeR_3.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RedeR_3.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RedeR_3.2.0.tgz vignettes: vignettes/RedeR/inst/doc/RedeR.html vignetteTitles: "RedeR: nested networks" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RedeR/inst/doc/RedeR.R dependsOnMe: Fletcher2013b, dc3net importsMe: PANR, RTN, transcriptogramer, TreeAndLeaf suggestsMe: PathwaySpace dependencyCount: 25 Package: RedisParam Version: 1.8.0 Depends: R (>= 4.2.0), BiocParallel (>= 1.29.12) Imports: methods, redux, withr, futile.logger Suggests: rmarkdown, knitr, testthat, BiocStyle License: Artistic-2.0 MD5sum: 2afb7949c088cc8c661b205072bfc951 NeedsCompilation: no Title: Provide a 'redis' back-end for BiocParallel Description: This package provides a Redis-based back-end for BiocParallel, enabling an alternative mechanism for distributed computation. The The 'manager' distributes tasks to a 'worker' pool through a central Redis server, rather than directly to workers as with other BiocParallel implementations. This means that the worker pool can change dynamically during job evaluation. All features of BiocParallel are supported, including reproducible random number streams, logging to the manager, and alternative 'load balancing' task distributions. biocViews: Infrastructure Author: Martin Morgan [aut, cre] (), Jiefei Wang [aut] Maintainer: Martin Morgan SystemRequirements: hiredis VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RedisParam git_branch: RELEASE_3_20 git_last_commit: dbdd130 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RedisParam_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RedisParam_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RedisParam_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RedisParam_1.8.0.tgz vignettes: vignettes/RedisParam/inst/doc/RedisParamDeveloperGuide.html, vignettes/RedisParam/inst/doc/RedisParamUserGuide.html vignetteTitles: RedisParam for Developers, Using RedisParam hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: FALSE Rfiles: vignettes/RedisParam/inst/doc/RedisParamDeveloperGuide.R, vignettes/RedisParam/inst/doc/RedisParamUserGuide.R dependencyCount: 20 Package: REDseq Version: 1.52.0 Depends: R (>= 3.5.0), BiocGenerics, BSgenome.Celegans.UCSC.ce2, multtest, Biostrings, BSgenome, ChIPpeakAnno Imports: AnnotationDbi, graphics, IRanges (>= 1.13.5), stats, utils License: GPL (>=2) MD5sum: c84c3e86db14ef19355e4039acf08309 NeedsCompilation: no Title: Analysis of high-throughput sequencing data processed by restriction enzyme digestion Description: The package includes functions to build restriction enzyme cut site (RECS) map, distribute mapped sequences on the map with five different approaches, find enriched/depleted RECSs for a sample, and identify differentially enriched/depleted RECSs between samples. biocViews: Sequencing, SequenceMatching, Preprocessing Author: Lihua Julie Zhu, Junhui Li and Thomas Fazzio Maintainer: Lihua Julie Zhu git_url: https://git.bioconductor.org/packages/REDseq git_branch: RELEASE_3_20 git_last_commit: 57b35f3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/REDseq_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/REDseq_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/REDseq_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/REDseq_1.52.0.tgz vignettes: vignettes/REDseq/inst/doc/REDseq.pdf vignetteTitles: REDseq Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/REDseq/inst/doc/REDseq.R dependencyCount: 134 Package: RegEnrich Version: 1.16.0 Depends: R (>= 4.0.0), S4Vectors, dplyr, tibble, BiocSet, SummarizedExperiment Imports: randomForest, fgsea, DOSE, BiocParallel, DESeq2, limma, WGCNA, ggplot2 (>= 2.2.0), methods, reshape2, magrittr, BiocStyle Suggests: GEOquery, rmarkdown, knitr, BiocManager, testthat License: GPL (>= 2) MD5sum: f091133a6d86b9ae5114bbd3a96281bb NeedsCompilation: no Title: Gene regulator enrichment analysis Description: This package is a pipeline to identify the key gene regulators in a biological process, for example in cell differentiation and in cell development after stimulation. There are four major steps in this pipeline: (1) differential expression analysis; (2) regulator-target network inference; (3) enrichment analysis; and (4) regulators scoring and ranking. biocViews: GeneExpression, Transcriptomics, RNASeq, TwoChannel, Transcription, GeneTarget, NetworkEnrichment, DifferentialExpression, Network, NetworkInference, GeneSetEnrichment, FunctionalPrediction Author: Weiyang Tao [cre, aut], Aridaman Pandit [aut] Maintainer: Weiyang Tao VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RegEnrich git_branch: RELEASE_3_20 git_last_commit: 8fe45ed git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RegEnrich_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RegEnrich_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RegEnrich_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RegEnrich_1.16.0.tgz vignettes: vignettes/RegEnrich/inst/doc/RegEnrich.html vignetteTitles: Gene regulator enrichment with RegEnrich hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RegEnrich/inst/doc/RegEnrich.R dependencyCount: 157 Package: regionalpcs Version: 1.4.0 Depends: R (>= 4.3.0) Imports: dplyr, PCAtools, tibble, GenomicRanges Suggests: knitr, rmarkdown, RMTstat, testthat (>= 3.0.0), BiocStyle, tidyr, minfiData, TxDb.Hsapiens.UCSC.hg19.knownGene, IRanges License: MIT + file LICENSE MD5sum: 5bd633cf37f4f1e6510e072d95229143 NeedsCompilation: no Title: Summarizing Regional Methylation with Regional Principal Components Analysis Description: Functions to summarize DNA methylation data using regional principal components. Regional principal components are computed using principal components analysis within genomic regions to summarize the variability in methylation levels across CpGs. The number of principal components is chosen using either the Marcenko-Pasteur or Gavish-Donoho method to identify relevant signal in the data. biocViews: DNAMethylation, DifferentialMethylation, StatisticalMethod, Software, MethylationArray Author: Tiffany Eulalio [aut, cre] () Maintainer: Tiffany Eulalio URL: https://github.com/tyeulalio/regionalpcs VignetteBuilder: knitr BugReports: https://github.com/tyeulalio/regionalpcs/issues git_url: https://git.bioconductor.org/packages/regionalpcs git_branch: RELEASE_3_20 git_last_commit: 5639765 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/regionalpcs_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/regionalpcs_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/regionalpcs_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/regionalpcs_1.4.0.tgz vignettes: vignettes/regionalpcs/inst/doc/regionalpcs.html vignetteTitles: regionalpcs hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/regionalpcs/inst/doc/regionalpcs.R dependencyCount: 91 Package: RegionalST Version: 1.4.2 Depends: R (>= 4.3.0) Imports: stats, grDevices, utils, ggplot2, dplyr, scater, gridExtra, BiocStyle, BayesSpace, fgsea, magrittr, SingleCellExperiment, RColorBrewer, Seurat, S4Vectors, tibble, TOAST, assertthat, colorspace, shiny, SummarizedExperiment Suggests: knitr, rmarkdown, gplots, testthat (>= 3.0.0) License: GPL-3 MD5sum: 84c99fe0e49482b45f43884d4dc8dcac NeedsCompilation: no Title: Investigating regions of interest and performing regional cell type-specific analysis with spatial transcriptomics data Description: This package analyze spatial transcriptomics data through cross-regional cell type-specific analysis. It selects regions of interest (ROIs) and identifys cross-regional cell type-specific differential signals. The ROIs can be selected using automatic algorithm or through manual selection. It facilitates manual selection of ROIs using a shiny application. biocViews: Spatial, Transcriptomics, Reactome, KEGG Author: Ziyi Li [aut, cre] Maintainer: Ziyi Li VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RegionalST git_branch: RELEASE_3_20 git_last_commit: e896620 git_last_commit_date: 2024-12-05 Date/Publication: 2024-12-05 source.ver: src/contrib/RegionalST_1.4.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/RegionalST_1.4.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RegionalST_1.4.2.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RegionalST_1.4.2.tgz vignettes: vignettes/RegionalST/inst/doc/RegionalST.html vignetteTitles: RegionalST hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RegionalST/inst/doc/RegionalST.R dependencyCount: 254 Package: regioneR Version: 1.38.0 Depends: GenomicRanges Imports: memoise, GenomicRanges, IRanges, BSgenome, Biostrings, rtracklayer, parallel, graphics, stats, utils, methods, GenomeInfoDb, S4Vectors, tools Suggests: BiocStyle, knitr, rmarkdown, BSgenome.Hsapiens.UCSC.hg19.masked, testthat License: Artistic-2.0 MD5sum: 5a11528b9d1d841c4a547a289e1b0788 NeedsCompilation: no Title: Association analysis of genomic regions based on permutation tests Description: regioneR offers a statistical framework based on customizable permutation tests to assess the association between genomic region sets and other genomic features. biocViews: Genetics, ChIPSeq, DNASeq, MethylSeq, CopyNumberVariation Author: Anna Diez-Villanueva , Roberto Malinverni and Bernat Gel Maintainer: Bernat Gel VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/regioneR git_branch: RELEASE_3_20 git_last_commit: fc1c86f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/regioneR_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/regioneR_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/regioneR_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/regioneR_1.38.0.tgz vignettes: vignettes/regioneR/inst/doc/regioneR.html vignetteTitles: regioneR vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/regioneR/inst/doc/regioneR.R dependsOnMe: karyoploteR, regioneReloaded importsMe: annotatr, ChIPpeakAnno, CNVfilteR, CopyNumberPlots, karyoploteR, RgnTX, UMI4Cats suggestsMe: CNVRanger, EpiMix, UPDhmm, MitoHEAR dependencyCount: 63 Package: regioneReloaded Version: 1.8.0 Depends: R (>= 4.2), regioneR Imports: stats, RColorBrewer, Rtsne, umap, ggplot2, ggrepel, reshape2, methods, scales, cluster, grid, grDevices Suggests: rmarkdown, BiocStyle, GenomeInfoDb, knitr, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: 98c503cd7743188a9bc0ff1334206529 NeedsCompilation: no Title: RegioneReloaded: Multiple Association for Genomic Region Sets Description: RegioneReloaded is a package that allows simultaneous analysis of associations between genomic region sets, enabling clustering of data and the creation of ready-to-publish graphs. It takes over and expands on all the features of its predecessor regioneR. It also incorporates a strategy to improve p-value calculations and normalize z-scores coming from multiple analysis to allow for their direct comparison. RegioneReloaded builds upon regioneR by adding new plotting functions for obtaining publication-ready graphs. biocViews: Genetics, ChIPSeq, DNASeq, MethylSeq, CopyNumberVariation, Clustering, MultipleComparison Author: Roberto Malinverni [aut, cre] (), David Corujo [aut], Bernat Gel [aut] Maintainer: Roberto Malinverni URL: https://github.com/RMalinverni/regioneReload VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/regioneReloaded git_branch: RELEASE_3_20 git_last_commit: 92bca8d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/regioneReloaded_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/regioneReloaded_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/regioneReloaded_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/regioneReloaded_1.8.0.tgz vignettes: vignettes/regioneReloaded/inst/doc/regioneReloaded.html vignetteTitles: regioneReloaded hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/regioneReloaded/inst/doc/regioneReloaded.R dependencyCount: 106 Package: regionReport Version: 1.40.0 Depends: R(>= 3.2) Imports: BiocStyle (>= 2.5.19), derfinder (>= 1.25.3), DEFormats, DESeq2, GenomeInfoDb, GenomicRanges, knitr (>= 1.6), knitrBootstrap (>= 0.9.0), methods, RefManageR, rmarkdown (>= 0.9.5), S4Vectors, SummarizedExperiment, utils Suggests: BiocManager, biovizBase, bumphunter (>= 1.7.6), derfinderPlot (>= 1.29.1), sessioninfo, DT, edgeR, ggbio (>= 1.35.2), ggplot2, grid, gridExtra, IRanges, mgcv, pasilla, pheatmap, RColorBrewer, TxDb.Hsapiens.UCSC.hg19.knownGene, whisker License: Artistic-2.0 MD5sum: be8e7ffb64f6f476fc9c5ce47b80f971 NeedsCompilation: no Title: Generate HTML or PDF reports for a set of genomic regions or DESeq2/edgeR results Description: Generate HTML or PDF reports to explore a set of regions such as the results from annotation-agnostic expression analysis of RNA-seq data at base-pair resolution performed by derfinder. You can also create reports for DESeq2 or edgeR results. biocViews: DifferentialExpression, Sequencing, RNASeq, Software, Visualization, Transcription, Coverage, ReportWriting, DifferentialMethylation, DifferentialPeakCalling, ImmunoOncology, QualityControl Author: Leonardo Collado-Torres [aut, cre] (), Andrew E. Jaffe [aut] (), Jeffrey T. Leek [aut, ths] () Maintainer: Leonardo Collado-Torres URL: https://github.com/leekgroup/regionReport VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/regionReport/ git_url: https://git.bioconductor.org/packages/regionReport git_branch: RELEASE_3_20 git_last_commit: 67af4db git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/regionReport_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/regionReport_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/regionReport_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/regionReport_1.40.0.tgz vignettes: vignettes/regionReport/inst/doc/bumphunterExample.html, vignettes/regionReport/inst/doc/regionReport.html vignetteTitles: Example report using bumphunter results, Introduction to regionReport hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/regionReport/inst/doc/bumphunterExample.R, vignettes/regionReport/inst/doc/regionReport.R importsMe: recountWorkflow suggestsMe: recount dependencyCount: 161 Package: regsplice Version: 1.32.0 Imports: glmnet, SummarizedExperiment, S4Vectors, limma, edgeR, stats, pbapply, utils, methods Suggests: testthat, BiocStyle, knitr, rmarkdown License: MIT + file LICENSE MD5sum: 2056541facad1da77268eefce16f9995 NeedsCompilation: no Title: L1-regularization based methods for detection of differential splicing Description: Statistical methods for detection of differential splicing (differential exon usage) in RNA-seq and exon microarray data, using L1-regularization (lasso) to improve power. biocViews: ImmunoOncology, AlternativeSplicing, DifferentialExpression, DifferentialSplicing, Sequencing, RNASeq, Microarray, ExonArray, ExperimentalDesign, Software Author: Lukas M. Weber [aut, cre] Maintainer: Lukas M. Weber URL: https://github.com/lmweber/regsplice VignetteBuilder: knitr BugReports: https://github.com/lmweber/regsplice/issues git_url: https://git.bioconductor.org/packages/regsplice git_branch: RELEASE_3_20 git_last_commit: ad6eccd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/regsplice_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/regsplice_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/regsplice_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/regsplice_1.32.0.tgz vignettes: vignettes/regsplice/inst/doc/regsplice-workflow.html vignetteTitles: regsplice workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/regsplice/inst/doc/regsplice-workflow.R dependencyCount: 51 Package: regutools Version: 1.18.0 Depends: R (>= 4.0) Imports: AnnotationDbi, AnnotationHub, Biostrings, DBI, GenomicRanges, Gviz, IRanges, RCy3, RSQLite, S4Vectors, methods, stats, utils, BiocFileCache Suggests: BiocStyle, knitr, RefManageR, rmarkdown, sessioninfo, testthat (>= 2.1.0), covr License: Artistic-2.0 MD5sum: d9b98dbb968dcdd93c48fe18bd7e2ac8 NeedsCompilation: no Title: regutools: an R package for data extraction from RegulonDB Description: RegulonDB has collected, harmonized and centralized data from hundreds of experiments for nearly two decades and is considered a point of reference for transcriptional regulation in Escherichia coli K12. Here, we present the regutools R package to facilitate programmatic access to RegulonDB data in computational biology. regutools provides researchers with the possibility of writing reproducible workflows with automated queries to RegulonDB. The regutools package serves as a bridge between RegulonDB data and the Bioconductor ecosystem by reusing the data structures and statistical methods powered by other Bioconductor packages. We demonstrate the integration of regutools with Bioconductor by analyzing transcription factor DNA binding sites and transcriptional regulatory networks from RegulonDB. We anticipate that regutools will serve as a useful building block in our progress to further our understanding of gene regulatory networks. biocViews: GeneRegulation, GeneExpression, SystemsBiology, Network,NetworkInference,Visualization, Transcription Author: Joselyn Chavez [aut, cre] (), Carmina Barberena-Jonas [aut] (), Jesus E. Sotelo-Fonseca [aut] (), Jose Alquicira-Hernandez [ctb] (), Heladia Salgado [ctb] (), Leonardo Collado-Torres [aut] (), Alejandro Reyes [aut] () Maintainer: Joselyn Chavez URL: https://github.com/ComunidadBioInfo/regutools VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/regutools git_url: https://git.bioconductor.org/packages/regutools git_branch: RELEASE_3_20 git_last_commit: c84dd61 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/regutools_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/regutools_1.18.0.zip mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/regutools_1.18.0.tgz vignettes: vignettes/regutools/inst/doc/regutools.html vignetteTitles: regutools: an R package for data extraction from RegulonDB hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/regutools/inst/doc/regutools.R dependencyCount: 173 Package: REMP Version: 1.30.0 Depends: R (>= 3.6), SummarizedExperiment(>= 1.1.6), minfi (>= 1.22.0) Imports: readr, rtracklayer, graphics, stats, utils, methods, settings, BiocGenerics, S4Vectors, Biostrings, GenomicRanges, IRanges, GenomeInfoDb, BiocParallel, doParallel, parallel, foreach, caret, kernlab, ranger, BSgenome, AnnotationHub, org.Hs.eg.db, impute, iterators Suggests: IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylationEPICanno.ilm10b2.hg19, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38, knitr, rmarkdown, minfiDataEPIC License: GPL-3 MD5sum: 4f14fb9db26661b7e3ae34a0264bd67e NeedsCompilation: no Title: Repetitive Element Methylation Prediction Description: Machine learning-based tools to predict DNA methylation of locus-specific repetitive elements (RE) by learning surrounding genetic and epigenetic information. These tools provide genomewide and single-base resolution of DNA methylation prediction on RE that are difficult to measure using array-based or sequencing-based platforms, which enables epigenome-wide association study (EWAS) and differentially methylated region (DMR) analysis on RE. biocViews: DNAMethylation, Microarray, MethylationArray, Sequencing, GenomeWideAssociation, Epigenetics, Preprocessing, MultiChannel, TwoChannel, DifferentialMethylation, QualityControl, DataImport Author: Yinan Zheng [aut, cre], Lei Liu [aut], Wei Zhang [aut], Warren Kibbe [aut], Lifang Hou [aut, cph] Maintainer: Yinan Zheng URL: https://github.com/YinanZheng/REMP BugReports: https://github.com/YinanZheng/REMP/issues git_url: https://git.bioconductor.org/packages/REMP git_branch: RELEASE_3_20 git_last_commit: cec411a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/REMP_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/REMP_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/REMP_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/REMP_1.30.0.tgz vignettes: vignettes/REMP/inst/doc/REMP.pdf vignetteTitles: An Introduction to the REMP Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/REMP/inst/doc/REMP.R dependencyCount: 199 Package: Repitools Version: 1.52.0 Depends: R (>= 3.5.0), methods, BiocGenerics (>= 0.8.0) Imports: parallel, S4Vectors (>= 0.17.25), IRanges (>= 2.13.12), GenomeInfoDb, GenomicRanges, Biostrings, Rsamtools, GenomicAlignments, rtracklayer, BSgenome (>= 1.47.3), gplots, grid, MASS, gsmoothr, edgeR (>= 3.4.0), DNAcopy, Rsolnp, cluster Suggests: ShortRead, BSgenome.Hsapiens.UCSC.hg18 License: LGPL (>= 2) MD5sum: 3b0d4ab302e58e688e9eccfaa6902df8 NeedsCompilation: yes Title: Epigenomic tools Description: Tools for the analysis of enrichment-based epigenomic data. Features include summarization and visualization of epigenomic data across promoters according to gene expression context, finding regions of differential methylation/binding, BayMeth for quantifying methylation etc. biocViews: DNAMethylation, GeneExpression, MethylSeq Author: Mark Robinson , Dario Strbenac , Aaron Statham , Andrea Riebler Maintainer: Mark Robinson git_url: https://git.bioconductor.org/packages/Repitools git_branch: RELEASE_3_20 git_last_commit: 712f7a5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Repitools_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Repitools_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Repitools_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Repitools_1.52.0.tgz vignettes: vignettes/Repitools/inst/doc/Repitools_vignette.pdf vignetteTitles: Using Repitools for Epigenomic Sequencing Data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Repitools/inst/doc/Repitools_vignette.R dependencyCount: 73 Package: ReportingTools Version: 2.46.0 Depends: methods, knitr, utils Imports: Biobase,hwriter,Category,GOstats,limma(>= 3.17.5),lattice,AnnotationDbi,edgeR, annotate,PFAM.db, GSEABase, BiocGenerics(>= 0.1.6), grid, XML, R.utils, DESeq2(>= 1.3.41), ggplot2, ggbio, IRanges Suggests: RUnit, ALL, hgu95av2.db, org.Mm.eg.db, shiny, pasilla, org.Sc.sgd.db, rmarkdown, markdown License: Artistic-2.0 MD5sum: c16cb671104ea6cb9603b5b35c30392c NeedsCompilation: no Title: Tools for making reports in various formats Description: The ReportingTools software package enables users to easily display reports of analysis results generated from sources such as microarray and sequencing data. The package allows users to create HTML pages that may be viewed on a web browser such as Safari, or in other formats readable by programs such as Excel. Users can generate tables with sortable and filterable columns, make and display plots, and link table entries to other data sources such as NCBI or larger plots within the HTML page. Using the package, users can also produce a table of contents page to link various reports together for a particular project that can be viewed in a web browser. For more examples, please visit our site: http:// research-pub.gene.com/ReportingTools. biocViews: ImmunoOncology, Software, Visualization, Microarray, RNASeq, GO, DataRepresentation, GeneSetEnrichment Author: Jason A. Hackney, Melanie Huntley, Jessica L. Larson, Christina Chaivorapol, Gabriel Becker, and Josh Kaminker Maintainer: Jason A. Hackney , Gabriel Becker , Jessica L. Larson VignetteBuilder: utils, rmarkdown git_url: https://git.bioconductor.org/packages/ReportingTools git_branch: RELEASE_3_20 git_last_commit: a3a5795 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ReportingTools_2.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ReportingTools_2.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ReportingTools_2.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ReportingTools_2.46.0.tgz vignettes: vignettes/ReportingTools/inst/doc/basicReportingTools.pdf, vignettes/ReportingTools/inst/doc/microarrayAnalysis.pdf, vignettes/ReportingTools/inst/doc/rnaseqAnalysis.pdf, vignettes/ReportingTools/inst/doc/shiny.pdf vignetteTitles: ReportingTools basics, Reporting on microarray differential expression, Reporting on RNA-seq differential expression, ReportingTools shiny hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ReportingTools/inst/doc/basicReportingTools.R, vignettes/ReportingTools/inst/doc/microarrayAnalysis.R, vignettes/ReportingTools/inst/doc/rnaseqAnalysis.R, vignettes/ReportingTools/inst/doc/shiny.R importsMe: affycoretools suggestsMe: cpvSNP, EnrichmentBrowser, GSEABase, npGSEA dependencyCount: 184 Package: RepViz Version: 1.22.0 Depends: R (>= 3.5.1), GenomicRanges (>= 1.30.0), Rsamtools (>= 1.34.1), IRanges (>= 2.14.0), biomaRt (>= 2.36.0), S4Vectors (>= 0.18.0), graphics, grDevices, utils Suggests: rmarkdown, knitr, testthat License: GPL-3 MD5sum: 94101722411a12bff37c268534f4f4a0 NeedsCompilation: no Title: Replicate oriented Visualization of a genomic region Description: RepViz enables the view of a genomic region in a simple and efficient way. RepViz allows simultaneous viewing of both intra- and intergroup variation in sequencing counts of the studied conditions, as well as their comparison to the output features (e.g. identified peaks) from user selected data analysis methods.The RepViz tool is primarily designed for chromatin data such as ChIP-seq and ATAC-seq, but can also be used with other sequencing data such as RNA-seq, or combinations of different types of genomic data. biocViews: WorkflowStep, Visualization, Sequencing, ChIPSeq, ATACSeq, Software, Coverage, GenomicVariation Author: Thomas Faux, Kalle Rytkönen, Asta Laiho, Laura L. Elo Maintainer: Thomas Faux, Asta Laiho VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RepViz git_branch: RELEASE_3_20 git_last_commit: bc3e86e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RepViz_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RepViz_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RepViz_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RepViz_1.22.0.tgz vignettes: vignettes/RepViz/inst/doc/RepViz.html vignetteTitles: RepViz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RepViz/inst/doc/RepViz.R dependencyCount: 82 Package: ResidualMatrix Version: 1.16.0 Imports: methods, Matrix, S4Vectors, DelayedArray Suggests: testthat, BiocStyle, knitr, rmarkdown, BiocSingular License: GPL-3 MD5sum: 4b6ec484f681ceb2dead4a076bbec9af NeedsCompilation: no Title: Creating a DelayedMatrix of Regression Residuals Description: Provides delayed computation of a matrix of residuals after fitting a linear model to each column of an input matrix. Also supports partial computation of residuals where selected factors are to be preserved in the output matrix. Implements a number of efficient methods for operating on the delayed matrix of residuals, most notably matrix multiplication and calculation of row/column sums or means. biocViews: Software, DataRepresentation, Regression, BatchEffect, ExperimentalDesign Author: Aaron Lun [aut, cre, cph] Maintainer: Aaron Lun URL: https://github.com/LTLA/ResidualMatrix VignetteBuilder: knitr BugReports: https://github.com/LTLA/ResidualMatrix/issues git_url: https://git.bioconductor.org/packages/ResidualMatrix git_branch: RELEASE_3_20 git_last_commit: c35e727 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ResidualMatrix_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ResidualMatrix_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ResidualMatrix_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ResidualMatrix_1.16.0.tgz vignettes: vignettes/ResidualMatrix/inst/doc/ResidualMatrix.html vignetteTitles: Using the ResidualMatrix hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ResidualMatrix/inst/doc/ResidualMatrix.R importsMe: batchelor suggestsMe: alabaster.matrix, BiocSingular, chihaya, scran dependencyCount: 22 Package: RESOLVE Version: 1.8.0 Depends: R (>= 4.1.0) Imports: Biostrings, BSgenome, BSgenome.Hsapiens.1000genomes.hs37d5, data.table, GenomeInfoDb, GenomicRanges, glmnet, ggplot2, gridExtra, IRanges, lsa, MutationalPatterns, nnls, parallel, reshape2, S4Vectors, RhpcBLASctl Suggests: BiocGenerics, BiocStyle, testthat, knitr License: file LICENSE MD5sum: dbd5f54b85966d066eb0ca4db3395a20 NeedsCompilation: no Title: RESOLVE: An R package for the efficient analysis of mutational signatures from cancer genomes Description: Cancer is a genetic disease caused by somatic mutations in genes controlling key biological functions such as cellular growth and division. Such mutations may arise both through cell-intrinsic and exogenous processes, generating characteristic mutational patterns over the genome named mutational signatures. The study of mutational signatures have become a standard component of modern genomics studies, since it can reveal which (environmental and endogenous) mutagenic processes are active in a tumor, and may highlight markers for therapeutic response. Mutational signatures computational analysis presents many pitfalls. First, the task of determining the number of signatures is very complex and depends on heuristics. Second, several signatures have no clear etiology, casting doubt on them being computational artifacts rather than due to mutagenic processes. Last, approaches for signatures assignment are greatly influenced by the set of signatures used for the analysis. To overcome these limitations, we developed RESOLVE (Robust EStimation Of mutationaL signatures Via rEgularization), a framework that allows the efficient extraction and assignment of mutational signatures. RESOLVE implements a novel algorithm that enables (i) the efficient extraction, (ii) exposure estimation, and (iii) confidence assessment during the computational inference of mutational signatures. biocViews: BiomedicalInformatics, SomaticMutation Author: Daniele Ramazzotti [aut] (), Luca De Sano [cre, aut] () Maintainer: Luca De Sano URL: https://github.com/danro9685/RESOLVE VignetteBuilder: knitr BugReports: https://github.com/danro9685/RESOLVE/issues git_url: https://git.bioconductor.org/packages/RESOLVE git_branch: RELEASE_3_20 git_last_commit: cdcd72c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RESOLVE_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RESOLVE_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RESOLVE_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RESOLVE_1.8.0.tgz vignettes: vignettes/RESOLVE/inst/doc/RESOLVE.html vignetteTitles: RESOLVE.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/RESOLVE/inst/doc/RESOLVE.R dependencyCount: 136 Package: retrofit Version: 1.6.0 Depends: R (>= 4.2), Rcpp LinkingTo: Rcpp Suggests: BiocStyle, knitr, rmarkdown, testthat, DescTools, ggplot2, corrplot, cowplot, grid, colorspace, png, reshape2, pals, RCurl License: GPL-3 Archs: x64 MD5sum: d3fb30a061a10552e92ee052157b4ca4 NeedsCompilation: yes Title: RETROFIT: Reference-free deconvolution of cell mixtures in spatial transcriptomics Description: RETROFIT is a Bayesian non-negative matrix factorization framework to decompose cell type mixtures in ST data without using external single-cell expression references. RETROFIT outperforms existing reference-based methods in estimating cell type proportions and reconstructing gene expressions in simulations with varying spot size and sample heterogeneity, irrespective of the quality or availability of the single-cell reference. RETROFIT recapitulates known cell-type localization patterns in a Slide-seq dataset of mouse cerebellum without using any single-cell data. biocViews: Transcriptomics, Visualization, RNASeq, Bayesian, Spatial, Software, GeneExpression, DimensionReduction, FeatureExtraction, SingleCell Author: Adam Park [aut, cre], Roopali Singh [aut] (), Xiang Zhu [aut] (), Qunhua Li [aut] () Maintainer: Adam Park URL: https://github.com/qunhualilab/retrofit VignetteBuilder: knitr BugReports: https://github.com/qunhualilab/retrofit/issues git_url: https://git.bioconductor.org/packages/retrofit git_branch: RELEASE_3_20 git_last_commit: d8925a0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/retrofit_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/retrofit_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/retrofit_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/retrofit_1.6.0.tgz vignettes: vignettes/retrofit/inst/doc/ColonVignette.html, vignettes/retrofit/inst/doc/SimulationVignette.html vignetteTitles: Retrofit Colon Vignette, Retrofit Simulation Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/retrofit/inst/doc/ColonVignette.R, vignettes/retrofit/inst/doc/SimulationVignette.R dependencyCount: 3 Package: ReUseData Version: 1.6.0 Imports: Rcwl, RcwlPipelines, BiocFileCache, S4Vectors, stats, tools, utils, methods, jsonlite, yaml, basilisk Suggests: knitr, rmarkdown, testthat (>= 3.0.0), BiocStyle License: GPL-3 MD5sum: c96d63fa9beb9571fd690ff5525f0713 NeedsCompilation: no Title: Reusable and reproducible Data Management Description: ReUseData is an _R/Bioconductor_ software tool to provide a systematic and versatile approach for standardized and reproducible data management. ReUseData facilitates transformation of shell or other ad hoc scripts for data preprocessing into workflow-based data recipes. Evaluation of data recipes generate curated data files in their generic formats (e.g., VCF, bed). Both recipes and data are cached using database infrastructure for easy data management and reuse. Prebuilt data recipes are available through ReUseData portal ("https://rcwl.org/dataRecipes/") with full annotation and user instructions. Pregenerated data are available through ReUseData cloud bucket that is directly downloadable through "getCloudData()". biocViews: Software, Infrastructure, DataImport, Preprocessing, ImmunoOncology Author: Qian Liu [aut, cre] () Maintainer: Qian Liu URL: https://github.com/rworkflow/ReUseData VignetteBuilder: knitr BugReports: https://github.com/rworkflow/ReUseData/issues git_url: https://git.bioconductor.org/packages/ReUseData git_branch: RELEASE_3_20 git_last_commit: 5d8c0ee git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ReUseData_1.6.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ReUseData_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ReUseData_1.6.0.tgz vignettes: vignettes/ReUseData/inst/doc/ReUseData_data.html, vignettes/ReUseData/inst/doc/ReUseData_quickStart.html, vignettes/ReUseData/inst/doc/ReUseData_recipe.html vignetteTitles: ReUseDataData, ReUseDataQS, ReUseDataRecipes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ReUseData/inst/doc/ReUseData_data.R, vignettes/ReUseData/inst/doc/ReUseData_quickStart.R, vignettes/ReUseData/inst/doc/ReUseData_recipe.R dependencyCount: 125 Package: rexposome Version: 1.28.0 Depends: R (>= 3.5), Biobase Imports: methods, utils, stats, lsr, FactoMineR, stringr, circlize, corrplot, ggplot2, ggridges, reshape2, pryr, S4Vectors, imputeLCMD, scatterplot3d, glmnet, gridExtra, grid, Hmisc, gplots, gtools, scales, lme4, grDevices, graphics, ggrepel, mice Suggests: mclust, flexmix, testthat, BiocStyle, knitr, formatR, rmarkdown License: MIT + file LICENSE MD5sum: 2da6c4f78af706bbf12f8a47d0a03378 NeedsCompilation: no Title: Exposome exploration and outcome data analysis Description: Package that allows to explore the exposome and to perform association analyses between exposures and health outcomes. biocViews: Software, BiologicalQuestion, Infrastructure, DataImport, DataRepresentation, BiomedicalInformatics, ExperimentalDesign, MultipleComparison, Classification, Clustering Author: Carles Hernandez-Ferrer [aut, cre], Juan R. Gonzalez [aut], Xavier Escribà-Montagut [aut] Maintainer: Xavier Escribà Montagut VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/rexposome git_branch: RELEASE_3_20 git_last_commit: 6a4640d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rexposome_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rexposome_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rexposome_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rexposome_1.28.0.tgz vignettes: vignettes/rexposome/inst/doc/exposome_data_analysis.html, vignettes/rexposome/inst/doc/mutiple_imputation_data_analysis.html vignetteTitles: Exposome Data Analysis, Dealing with Multiple Imputations hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/rexposome/inst/doc/exposome_data_analysis.R, vignettes/rexposome/inst/doc/mutiple_imputation_data_analysis.R importsMe: omicRexposome suggestsMe: brgedata dependencyCount: 166 Package: rfaRm Version: 1.18.0 Imports: httr, stringi, rsvg, magick, data.table, Biostrings, utils, rvest, xml2, IRanges, S4Vectors, jsonlite Suggests: R4RNA, treeio, knitr, BiocStyle, rmarkdown, BiocGenerics, RUnit License: GPL-3 MD5sum: fa2958c8284e8a5eaee4258da8074379 NeedsCompilation: no Title: An R interface to the Rfam database Description: rfaRm provides a client interface to the Rfam database of RNA families. Data that can be retrieved include RNA families, secondary structure images, covariance models, sequences within each family, alignments leading to the identification of a family and secondary structures in the dot-bracket format. biocViews: FunctionalGenomics, DataImport, ThirdPartyClient, Visualization, MultipleSequenceAlignment Author: Lara Selles Vidal, Rafael Ayala, Guy-Bart Stan, Rodrigo Ledesma-Amaro Maintainer: Lara Selles Vidal , Rafael Ayala VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/rfaRm git_branch: RELEASE_3_20 git_last_commit: e0b1719 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rfaRm_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rfaRm_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rfaRm_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rfaRm_1.18.0.tgz vignettes: vignettes/rfaRm/inst/doc/rfaRm.html vignetteTitles: rfaRm hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rfaRm/inst/doc/rfaRm.R dependencyCount: 45 Package: Rfastp Version: 1.16.0 Imports: Rcpp, rjson, ggplot2, reshape2 LinkingTo: Rcpp, Rhtslib, zlibbioc Suggests: BiocStyle, testthat, knitr, rmarkdown License: GPL-3 + file LICENSE MD5sum: 32c7dac97e09175f4fe7941ccd764de9 NeedsCompilation: yes Title: An Ultra-Fast and All-in-One Fastq Preprocessor (Quality Control, Adapter, low quality and polyX trimming) and UMI Sequence Parsing). Description: Rfastp is an R wrapper of fastp developed in c++. fastp performs quality control for fastq files. including low quality bases trimming, polyX trimming, adapter auto-detection and trimming, paired-end reads merging, UMI sequence/id handling. Rfastp can concatenate multiple files into one file (like shell command cat) and accept multiple files as input. biocViews: QualityControl, Sequencing, Preprocessing, Software Author: Wei Wang [aut] (), Ji-Dung Luo [ctb] (), Thomas Carroll [cre, aut] () Maintainer: Thomas Carroll SystemRequirements: GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Rfastp git_branch: RELEASE_3_20 git_last_commit: e17bf6b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rfastp_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rfastp_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rfastp_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rfastp_1.16.0.tgz vignettes: vignettes/Rfastp/inst/doc/Rfastp.html vignetteTitles: Rfastp hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Rfastp/inst/doc/Rfastp.R dependencyCount: 44 Package: rfPred Version: 1.44.0 Depends: R (>= 3.5.0), methods Imports: utils, GenomeInfoDb, data.table, IRanges, GenomicRanges, parallel, Rsamtools Suggests: BiocStyle License: GPL (>=2 ) MD5sum: 92e824180ef6f21a8636166a146a56c0 NeedsCompilation: yes Title: Assign rfPred functional prediction scores to a missense variants list Description: Based on external numerous data files where rfPred scores are pre-calculated on all genomic positions of the human exome, the package gives rfPred scores to missense variants identified by the chromosome, the position (hg19 version), the referent and alternative nucleotids and the uniprot identifier of the protein. Note that for using the package, the user has to download the TabixFile and index (approximately 3.3 Go). biocViews: Software, Annotation, Classification Author: Fabienne Jabot-Hanin, Hugo Varet and Jean-Philippe Jais Maintainer: Hugo Varet git_url: https://git.bioconductor.org/packages/rfPred git_branch: RELEASE_3_20 git_last_commit: 9a5122d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rfPred_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rfPred_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rfPred_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rfPred_1.44.0.tgz vignettes: vignettes/rfPred/inst/doc/vignette.pdf vignetteTitles: CalculatingrfPredscoreswithpackagerfPred hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rfPred/inst/doc/vignette.R dependencyCount: 40 Package: rGADEM Version: 2.54.0 Depends: R (>= 2.11.0), Biostrings, IRanges, BSgenome, methods, seqLogo Imports: Biostrings, GenomicRanges, methods, graphics, seqLogo Suggests: BSgenome.Hsapiens.UCSC.hg19, rtracklayer License: Artistic-2.0 Archs: x64 MD5sum: 241489c941f013446526da273d7d6584 NeedsCompilation: yes Title: de novo motif discovery Description: rGADEM is an efficient de novo motif discovery tool for large-scale genomic sequence data. It is an open-source R package, which is based on the GADEM software. biocViews: Microarray, ChIPchip, Sequencing, ChIPSeq, MotifDiscovery Author: Arnaud Droit, Raphael Gottardo, Gordon Robertson and Leiping Li Maintainer: Arnaud Droit git_url: https://git.bioconductor.org/packages/rGADEM git_branch: RELEASE_3_20 git_last_commit: 38aa7f5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rGADEM_2.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rGADEM_2.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rGADEM_2.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rGADEM_2.54.0.tgz vignettes: vignettes/rGADEM/inst/doc/rGADEM.pdf vignetteTitles: The rGADEM users guide hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rGADEM/inst/doc/rGADEM.R importsMe: TCGAWorkflow dependencyCount: 60 Package: rGenomeTracks Version: 1.12.0 Depends: R (>= 4.1.0), Imports: imager, reticulate, methods, rGenomeTracksData Suggests: rmarkdown, knitr, testthat (>= 3.0.0) License: GPL-3 MD5sum: 5aa4d66be2643587e0b63e95fbe28629 NeedsCompilation: no Title: Integerated visualization of epigenomic data Description: rGenomeTracks package leverages the power of pyGenomeTracks software with the interactivity of R. pyGenomeTracks is a python software that offers robust method for visualizing epigenetic data files like narrowPeak, Hic matrix, TADs and arcs, however though, here is no way currently to use it within R interactive session. rGenomeTracks wrapped the whole functionality of pyGenomeTracks with additional utilites to make to more pleasant for R users. biocViews: Software, HiC, Visualization Author: Omar Elashkar [aut, cre] () Maintainer: Omar Elashkar SystemRequirements: pyGenomeTracks (prefered to use install_pyGenomeTracks()) VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/rGenomeTracks git_branch: RELEASE_3_20 git_last_commit: 9c2d37d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rGenomeTracks_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rGenomeTracks_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rGenomeTracks_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rGenomeTracks_1.12.0.tgz vignettes: vignettes/rGenomeTracks/inst/doc/rGenomeTracks.html vignetteTitles: rGenomeTracks hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rGenomeTracks/inst/doc/rGenomeTracks.R dependencyCount: 83 Package: RgnTX Version: 1.8.0 Depends: R (>= 4.2.0) Imports: GenomeInfoDb, GenomicFeatures, GenomicRanges, ggplot2, graphics, IRanges, methods, regioneR, S4Vectors, stats, TxDb.Hsapiens.UCSC.hg19.knownGene Suggests: BiocStyle, rmarkdown, knitr, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: 5569e79d566959caaf9fa785838cde42 NeedsCompilation: no Title: Colocalization analysis of transcriptome elements in the presence of isoform heterogeneity and ambiguity Description: RgnTX allows the integration of transcriptome annotations so as to model the complex alternative splicing patterns. It supports the testing of transcriptome elements without clear isoform association, which is often the real scenario due to technical limitations. It involves functions that do permutaion test for evaluating association between features and transcriptome regions. biocViews: AlternativeSplicing, Sequencing, RNASeq, MethylSeq, Transcription, SplicedAlignment Author: Yue Wang [aut, cre], Jia Meng [aut] Maintainer: Yue Wang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RgnTX git_branch: RELEASE_3_20 git_last_commit: 6c2f504 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RgnTX_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RgnTX_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RgnTX_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RgnTX_1.8.0.tgz vignettes: vignettes/RgnTX/inst/doc/RgnTX.html vignetteTitles: RgnTX hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RgnTX/inst/doc/RgnTX.R dependencyCount: 100 Package: rgoslin Version: 1.10.0 Imports: Rcpp (>= 1.0.3), dplyr LinkingTo: Rcpp Suggests: testthat (>= 2.1.0), BiocStyle, knitr, rmarkdown, kableExtra, BiocManager, stringr, stringi, ggplot2, tibble, lipidr License: MIT + file LICENSE Archs: x64 MD5sum: 4affb62b178e0dcc6453a7f34755e471 NeedsCompilation: yes Title: Lipid Shorthand Name Parsing and Normalization Description: The R implementation for the Grammar of Succint Lipid Nomenclature parses different short hand notation dialects for lipid names. It normalizes them to a standard name. It further provides calculated monoisotopic masses and sum formulas for each successfully parsed lipid name and supplements it with LIPID MAPS Category and Class information. Also, the structural level and further structural details about the head group, fatty acyls and functional groups are returned, where applicable. biocViews: Software, Lipidomics, Metabolomics, Preprocessing, Normalization, MassSpectrometry Author: Nils Hoffmann [aut, cre] (), Dominik Kopczynski [aut] () Maintainer: Nils Hoffmann URL: https://github.com/lifs-tools/rgoslin VignetteBuilder: knitr BugReports: https://github.com/lifs-tools/rgoslin/issues git_url: https://git.bioconductor.org/packages/rgoslin git_branch: RELEASE_3_20 git_last_commit: d91f79a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rgoslin_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rgoslin_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rgoslin_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rgoslin_1.10.0.tgz vignettes: vignettes/rgoslin/inst/doc/introduction.html vignetteTitles: Using R Goslin to parse and normalize lipid nomenclature hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/rgoslin/inst/doc/introduction.R suggestsMe: MetMashR dependencyCount: 21 Package: RGraph2js Version: 1.34.0 Imports: utils, whisker, rjson, digest, graph Suggests: RUnit, BiocStyle, BiocGenerics, xtable, sna License: GPL-2 Archs: x64 MD5sum: 05152598c5c004db4823453285452209 NeedsCompilation: no Title: Convert a Graph into a D3js Script Description: Generator of web pages which display interactive network/graph visualizations with D3js, jQuery and Raphael. biocViews: Visualization, Network, GraphAndNetwork, ThirdPartyClient Author: Stephane Cano [aut, cre], Sylvain Gubian [aut], Florian Martin [aut] Maintainer: Stephane Cano SystemRequirements: jQuery, jQueryUI, qTip2, D3js and Raphael are required Javascript libraries made available via the online CDNJS service (http://cdnjs.cloudflare.com). git_url: https://git.bioconductor.org/packages/RGraph2js git_branch: RELEASE_3_20 git_last_commit: fb6265d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RGraph2js_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RGraph2js_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RGraph2js_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RGraph2js_1.34.0.tgz vignettes: vignettes/RGraph2js/inst/doc/RGraph2js.pdf vignetteTitles: RGraph2js hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RGraph2js/inst/doc/RGraph2js.R dependencyCount: 10 Package: Rgraphviz Version: 2.50.0 Depends: R (>= 2.6.0), methods, utils, graph, grid Imports: stats4, graphics, grDevices Suggests: RUnit, BiocGenerics, XML License: EPL Archs: x64 MD5sum: 0e7b5c05caa3f2b31e26f04a26d4974b NeedsCompilation: yes Title: Provides plotting capabilities for R graph objects Description: Interfaces R with the AT and T graphviz library for plotting R graph objects from the graph package. biocViews: GraphAndNetwork, Visualization Author: Kasper Daniel Hansen [cre, aut], Jeff Gentry [aut], Li Long [aut], Robert Gentleman [aut], Seth Falcon [aut], Florian Hahne [aut], Deepayan Sarkar [aut] Maintainer: Kasper Daniel Hansen SystemRequirements: optionally Graphviz (>= 2.16) git_url: https://git.bioconductor.org/packages/Rgraphviz git_branch: RELEASE_3_20 git_last_commit: afcb63b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rgraphviz_2.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rgraphviz_2.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rgraphviz_2.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rgraphviz_2.50.0.tgz vignettes: vignettes/Rgraphviz/inst/doc/newRgraphvizInterface.pdf, vignettes/Rgraphviz/inst/doc/Rgraphviz.pdf vignetteTitles: A New Interface to Plot Graphs Using Rgraphviz, How To Plot A Graph Using Rgraphviz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rgraphviz/inst/doc/newRgraphvizInterface.R, vignettes/Rgraphviz/inst/doc/Rgraphviz.R dependsOnMe: biocGraph, BioMVCClass, CellNOptR, MineICA, netresponse, paircompviz, pathRender, ROntoTools, SplicingGraphs, maEndToEnd, dlsem, gridGraphviz, GUIProfiler, hasseDiagram importsMe: apComplex, biocGraph, bnem, chimeraviz, CytoML, dce, DEGraph, EnrichDO, EnrichmentBrowser, flowWorkspace, GeneNetworkBuilder, GOstats, hyperdraw, KEGGgraph, mirIntegrator, MIRit, mnem, OncoSimulR, ontoProc, paircompviz, pathview, Pigengene, qpgraph, SGCP, TRONCO, abn, agena.ai, BCDAG, BiDAG, bnpa, bnRep, ceg, CePa, classGraph, cogmapr, ontologyPlot, SEMgraph, stablespec suggestsMe: a4, altcdfenvs, annotate, Category, CNORfeeder, CNORfuzzy, DEGraph, flowCore, geneplotter, GlobalAncova, globaltest, GSEABase, MLP, NCIgraph, OmnipathR, RBGL, RBioinf, rBiopaxParser, Rtreemix, safe, SPIA, SRAdb, Streamer, topGO, vtpnet, NCIgraphData, SNAData, arulesViz, BayesNetBP, bnlearn, bnstruct, bsub, ChoR, CodeDepends, gbutils, GeneNet, HEMDAG, iTOP, kpcalg, kst, lava, loon, maGUI, micd, multiplex, ParallelPC, pcalg, pchc, pks, psych, relations, rEMM, rPref, rSpectral, SCCI, sisal, textplot, tm, topologyGSA, tpc, unifDAG, zenplots dependencyCount: 9 Package: rGREAT Version: 2.8.0 Depends: R (>= 4.0.0), GenomicRanges, IRanges, methods Imports: graphics, rjson, GetoptLong (>= 0.0.9), RCurl, utils, stats, GlobalOptions, shiny, DT, GenomicFeatures, digest, GO.db, progress, circlize, AnnotationDbi, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg38.knownGene, org.Hs.eg.db, RColorBrewer, S4Vectors, GenomeInfoDb, foreach, doParallel, Rcpp LinkingTo: Rcpp Suggests: testthat (>= 0.3), knitr, rmarkdown, BiocManager, org.Mm.eg.db, msigdbr, KEGGREST, reactome.db Enhances: BioMartGOGeneSets, UniProtKeywords License: MIT + file LICENSE MD5sum: 65306910d877fc9a7fadb33224ed9729 NeedsCompilation: yes Title: GREAT Analysis - Functional Enrichment on Genomic Regions Description: GREAT (Genomic Regions Enrichment of Annotations Tool) is a type of functional enrichment analysis directly performed on genomic regions. This package implements the GREAT algorithm (the local GREAT analysis), also it supports directly interacting with the GREAT web service (the online GREAT analysis). Both analysis can be viewed by a Shiny application. rGREAT by default supports more than 600 organisms and a large number of gene set collections, as well as self-provided gene sets and organisms from users. Additionally, it implements a general method for dealing with background regions. biocViews: GeneSetEnrichment, GO, Pathways, Software, Sequencing, WholeGenome, GenomeAnnotation, Coverage Author: Zuguang Gu [aut, cre] () Maintainer: Zuguang Gu URL: https://github.com/jokergoo/rGREAT, http://great.stanford.edu/public/html/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/rGREAT git_branch: RELEASE_3_20 git_last_commit: dacc937 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rGREAT_2.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rGREAT_2.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rGREAT_2.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rGREAT_2.8.0.tgz vignettes: vignettes/rGREAT/inst/doc/rGREAT.html vignetteTitles: The rGREAT package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE dependencyCount: 122 Package: RGSEA Version: 1.40.0 Depends: R(>= 2.10.0) Imports: BiocGenerics Suggests: BiocStyle, GEOquery, knitr, RUnit License: GPL(>=3) MD5sum: 08b1d6a2df3449e12fe7d0358fb62404 NeedsCompilation: no Title: Random Gene Set Enrichment Analysis Description: Combining bootstrap aggregating and Gene set enrichment analysis (GSEA), RGSEA is a classfication algorithm with high robustness and no over-fitting problem. It performs well especially for the data generated from different exprements. biocViews: GeneSetEnrichment, StatisticalMethod, Classification Author: Chengcheng Ma Maintainer: Chengcheng Ma VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RGSEA git_branch: RELEASE_3_20 git_last_commit: 967e464 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RGSEA_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RGSEA_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RGSEA_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RGSEA_1.40.0.tgz vignettes: vignettes/RGSEA/inst/doc/RGSEA.pdf vignetteTitles: Introduction to RGSEA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RGSEA/inst/doc/RGSEA.R dependencyCount: 5 Package: rgsepd Version: 1.38.0 Depends: R (>= 4.2.0), DESeq2, goseq (>= 1.28) Imports: gplots, biomaRt, org.Hs.eg.db, GO.db, SummarizedExperiment, AnnotationDbi Suggests: boot, tools, BiocGenerics, knitr, xtable License: GPL-3 Archs: x64 MD5sum: 8c4849c46cf35321625ef3e7b502def8 NeedsCompilation: no Title: Gene Set Enrichment / Projection Displays Description: R/GSEPD is a bioinformatics package for R to help disambiguate transcriptome samples (a matrix of RNA-Seq counts at transcript IDs) by automating differential expression (with DESeq2), then gene set enrichment (with GOSeq), and finally a N-dimensional projection to quantify in which ways each sample is like either treatment group. biocViews: ImmunoOncology, Software, DifferentialExpression, GeneSetEnrichment, RNASeq Author: Karl Stamm Maintainer: Karl Stamm VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/rgsepd git_branch: RELEASE_3_20 git_last_commit: 9b94389 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rgsepd_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rgsepd_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rgsepd_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rgsepd_1.38.0.tgz vignettes: vignettes/rgsepd/inst/doc/rgsepd.pdf vignetteTitles: An Introduction to the rgsepd package hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rgsepd/inst/doc/rgsepd.R dependencyCount: 129 Package: rhdf5 Version: 2.50.1 Depends: R (>= 4.0.0), methods Imports: Rhdf5lib (>= 1.13.4), rhdf5filters (>= 1.15.5) LinkingTo: Rhdf5lib Suggests: bit64, BiocStyle, knitr, rmarkdown, testthat, bench, dplyr, ggplot2, mockery, BiocParallel License: Artistic-2.0 MD5sum: 1f9079e44c5aa27a88a7d06bded4202a NeedsCompilation: yes Title: R Interface to HDF5 Description: This package provides an interface between HDF5 and R. HDF5's main features are the ability to store and access very large and/or complex datasets and a wide variety of metadata on mass storage (disk) through a completely portable file format. The rhdf5 package is thus suited for the exchange of large and/or complex datasets between R and other software package, and for letting R applications work on datasets that are larger than the available RAM. biocViews: Infrastructure, DataImport Author: Bernd Fischer [aut], Mike Smith [aut, cre] (), Gregoire Pau [aut], Martin Morgan [ctb], Daniel van Twisk [ctb] Maintainer: Mike Smith URL: https://github.com/grimbough/rhdf5 SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/grimbough/rhdf5/issues git_url: https://git.bioconductor.org/packages/rhdf5 git_branch: RELEASE_3_20 git_last_commit: d0313f0 git_last_commit_date: 2024-12-09 Date/Publication: 2024-12-09 source.ver: src/contrib/rhdf5_2.50.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/rhdf5_2.50.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rhdf5_2.50.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rhdf5_2.50.1.tgz vignettes: vignettes/rhdf5/inst/doc/practical_tips.html, vignettes/rhdf5/inst/doc/rhdf5_cloud_reading.html, vignettes/rhdf5/inst/doc/rhdf5.html vignetteTitles: rhdf5 Practical Tips, Reading HDF5 Files In The Cloud, rhdf5 - HDF5 interface for R hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rhdf5/inst/doc/practical_tips.R, vignettes/rhdf5/inst/doc/rhdf5_cloud_reading.R, vignettes/rhdf5/inst/doc/rhdf5.R dependsOnMe: GSCA, HDF5Array, HiCBricks, LoomExperiment, MuData, octad importsMe: alabaster.base, alabaster.bumpy, alabaster.mae, alabaster.matrix, alabaster.ranges, alabaster.spatial, BayesSpace, BgeeCall, biomformat, bnbc, bsseq, chihaya, CiteFuse, cmapR, CoGAPS, CopyNumberPlots, cTRAP, cytomapper, diffHic, DropletUtils, epigraHMM, EventPointer, FRASER, GenomicScores, gep2pep, h5vc, HicAggR, HiCcompare, HiCExperiment, IONiseR, mariner, methodical, MOFA2, MoleculeExperiment, phantasus, plotgardener, ptairMS, PureCN, recountmethylation, ribor, scCB2, scMitoMut, scone, scRNAseqApp, signatureSearch, SpliceWiz, SpotClean, SurfR, TENxIO, trackViewer, MafH5.gnomAD.v4.0.GRCh38, DmelSGI, MethylSeqData, ptairData, scMultiome, signatureSearchData, TumourMethData, bioRad, ebvcube, file2meco, karyotapR, LOMAR, NEONiso, ondisc, rDataPipeline suggestsMe: beachmat.hdf5, edgeR, HiCDOC, mia, pairedGSEA, phantasusLite, rhdf5filters, SCArray, scviR, slalom, SpatialFeatureExperiment, spatialHeatmap, Spectra, SummarizedExperiment, tximport, Voyager, zellkonverter, conos, CRMetrics, io, MplusAutomation, neonstore, neonUtilities, rbiom, SignacX, SpatialDDLS dependencyCount: 3 Package: rhdf5client Version: 1.28.0 Depends: R (>= 3.6), methods, DelayedArray Imports: httr, rjson, utils, data.table Suggests: knitr, testthat, BiocStyle, DT, rmarkdown License: Artistic-2.0 Archs: x64 MD5sum: 61c367b6450eacb2dd7283daf399a80c NeedsCompilation: yes Title: Access HDF5 content from HDF Scalable Data Service Description: This package provides functionality for reading data from HDF Scalable Data Service from within R. The HSDSArray function bridges from HSDS to the user via the DelayedArray interface. Bioconductor manages an open HSDS instance graciously provided by John Readey of the HDF Group. biocViews: DataImport, Software, Infrastructure Author: Samuela Pollack [aut], Shweta Gopaulakrishnan [aut], BJ Stubbs [aut], Alexey Sergushichev [aut], Vincent Carey [cre, aut] Maintainer: Vincent Carey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/rhdf5client git_branch: RELEASE_3_20 git_last_commit: 2636c08 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rhdf5client_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rhdf5client_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rhdf5client_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rhdf5client_1.28.0.tgz vignettes: vignettes/rhdf5client/inst/doc/delayed-array.html vignetteTitles: HSDSArray DelayedArray backend hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rhdf5client/inst/doc/delayed-array.R importsMe: phantasus, phantasusLite dependencyCount: 32 Package: rhdf5filters Version: 1.18.0 LinkingTo: Rhdf5lib Suggests: BiocStyle, knitr, rmarkdown, tinytest, rhdf5 (>= 2.47.7) License: BSD_2_clause + file LICENSE Archs: x64 MD5sum: b505519cacc6df4de9334c695ef2c205 NeedsCompilation: yes Title: HDF5 Compression Filters Description: Provides a collection of additional compression filters for HDF5 datasets. The package is intended to provide seemless integration with rhdf5, however the compiled filters can also be used with external applications. biocViews: Infrastructure, DataImport Author: Mike Smith [aut, cre] () Maintainer: Mike Smith URL: https://github.com/grimbough/rhdf5filters SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/grimbough/rhdf5filters git_url: https://git.bioconductor.org/packages/rhdf5filters git_branch: RELEASE_3_20 git_last_commit: 1e07604 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rhdf5filters_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rhdf5filters_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rhdf5filters_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rhdf5filters_1.18.0.tgz vignettes: vignettes/rhdf5filters/inst/doc/rhdf5filters.html vignetteTitles: HDF5 Compression Filters hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/rhdf5filters/inst/doc/rhdf5filters.R importsMe: HDF5Array, rhdf5 dependencyCount: 1 Package: Rhdf5lib Version: 1.28.0 Depends: R (>= 4.2.0) Suggests: BiocStyle, knitr, rmarkdown, tinytest, mockery License: Artistic-2.0 MD5sum: 2038bed88d3c7b81f8cc9caaf0b0a068 NeedsCompilation: yes Title: hdf5 library as an R package Description: Provides C and C++ hdf5 libraries. biocViews: Infrastructure Author: Mike Smith [ctb, cre] (), The HDF Group [cph] Maintainer: Mike Smith URL: https://github.com/grimbough/Rhdf5lib SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/grimbough/Rhdf5lib git_url: https://git.bioconductor.org/packages/Rhdf5lib git_branch: RELEASE_3_20 git_last_commit: f37cb76 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rhdf5lib_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rhdf5lib_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rhdf5lib_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rhdf5lib_1.28.0.tgz vignettes: vignettes/Rhdf5lib/inst/doc/downloadHDF5.html, vignettes/Rhdf5lib/inst/doc/Rhdf5lib.html vignetteTitles: Creating this HDF5 distribution, Linking to Rhdf5lib hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rhdf5lib/inst/doc/downloadHDF5.R, vignettes/Rhdf5lib/inst/doc/Rhdf5lib.R importsMe: epigraHMM, rhdf5 suggestsMe: mbkmeans linksToMe: alabaster.base, beachmat.hdf5, chihaya, CytoML, DropletUtils, epigraHMM, HDF5Array, mbkmeans, mzR, ncdfFlow, rhdf5, rhdf5filters, ondisc dependencyCount: 0 Package: rhinotypeR Version: 1.0.0 Depends: R (>= 4.4.0) Imports: Biostrings Suggests: knitr, rmarkdown, BiocManager, BiocStyle, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: b0cb821c3bd76f66792d367677d8f0b4 NeedsCompilation: no Title: Rhinovirus genotyping Description: "rhinotypeR" is designed to automate the comparison of sequence data against prototype strains, streamlining the genotype assignment process. By implementing predefined pairwise distance thresholds, this package makes genotype assignment accessible to researchers and public health professionals. This tool enhances our epidemiological toolkit by enabling more efficient surveillance and analysis of rhinoviruses (RVs) and other viral pathogens with complex genomic landscapes. Additionally, "rhinotypeR" supports comprehensive visualization and analysis of single nucleotide polymorphisms (SNPs) and amino acid substitutions, facilitating in-depth genetic and evolutionary studies. biocViews: Sequencing, Genetics, Phylogenetics Author: Martha Luka [aut, cre] (), Ruth Nanjala [aut], Winfred Gatua [aut], Wafaa M. Rashed [aut], Olaitan Awe [aut] Maintainer: Martha Luka URL: https://github.com/omicscodeathon/rhinotypeR VignetteBuilder: knitr BugReports: https://github.com/omicscodeathon/rhinotypeR/issues git_url: https://git.bioconductor.org/packages/rhinotypeR git_branch: RELEASE_3_20 git_last_commit: 93a3854 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rhinotypeR_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rhinotypeR_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rhinotypeR_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rhinotypeR_1.0.0.tgz vignettes: vignettes/rhinotypeR/inst/doc/rhinotypeR.html vignetteTitles: Introduction to rhinotypeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/rhinotypeR/inst/doc/rhinotypeR.R dependencyCount: 25 Package: Rhisat2 Version: 1.22.0 Depends: R (>= 4.4.0) Imports: txdbmaker, SGSeq, GenomicRanges, methods, utils Suggests: testthat, knitr, rmarkdown, BiocStyle License: GPL-3 Archs: x64 MD5sum: bbf4203f12d4fe54294b9c4fb71330f7 NeedsCompilation: yes Title: R Wrapper for HISAT2 Aligner Description: An R interface to the HISAT2 spliced short-read aligner by Kim et al. (2015). The package contains wrapper functions to create a genome index and to perform the read alignment to the generated index. biocViews: Alignment, Sequencing, SplicedAlignment Author: Charlotte Soneson [aut, cre] () Maintainer: Charlotte Soneson URL: https://github.com/fmicompbio/Rhisat2 SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/fmicompbio/Rhisat2/issues git_url: https://git.bioconductor.org/packages/Rhisat2 git_branch: RELEASE_3_20 git_last_commit: 4d2c209 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rhisat2_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rhisat2_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rhisat2_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rhisat2_1.22.0.tgz vignettes: vignettes/Rhisat2/inst/doc/Rhisat2.html vignetteTitles: Rhisat2 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Rhisat2/inst/doc/Rhisat2.R importsMe: CircSeqAlignTk suggestsMe: eisaR, QuasR dependencyCount: 105 Package: Rhtslib Version: 3.2.0 Imports: tools, zlibbioc LinkingTo: zlibbioc Suggests: knitr, rmarkdown, BiocStyle License: LGPL (>= 2) Archs: x64 MD5sum: 1d8eabf0934373b61aca2dc20cab712b NeedsCompilation: yes Title: HTSlib high-throughput sequencing library as an R package Description: This package provides version 1.18 of the 'HTSlib' C library for high-throughput sequence analysis. The package is primarily useful to developers of other R packages who wish to make use of HTSlib. Motivation and instructions for use of this package are in the vignette, vignette(package="Rhtslib", "Rhtslib"). biocViews: DataImport, Sequencing Author: Nathaniel Hayden [led, aut], Martin Morgan [aut], Hervé Pagès [aut, cre], Tomas Kalibera [ctb], Jeroen Ooms [ctb] Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/Rhtslib, http://www.htslib.org/ SystemRequirements: libbz2 & liblzma & libcurl (with header files), GNU make VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/Rhtslib/issues git_url: https://git.bioconductor.org/packages/Rhtslib git_branch: RELEASE_3_20 git_last_commit: 3add51c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rhtslib_3.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rhtslib_3.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rhtslib_3.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rhtslib_3.2.0.tgz vignettes: vignettes/Rhtslib/inst/doc/Rhtslib.html vignetteTitles: Motivation and use of Rhtslib hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rhtslib/inst/doc/Rhtslib.R importsMe: deepSNV, diffHic, maftools, mitoClone2, scPipe linksToMe: bamsignals, csaw, deepSNV, DiffBind, diffHic, epialleleR, FLAMES, h5vc, maftools, methylKit, mitoClone2, podkat, QuasR, raer, Rfastp, Rsamtools, scPipe, ShortRead, VariantAnnotation, jackalope dependencyCount: 2 Package: RiboCrypt Version: 1.12.0 Depends: R (>= 3.6.0), ORFik (>= 1.13.12) Imports: bslib, BiocGenerics, BiocParallel, Biostrings, data.table, dplyr, GenomeInfoDb, GenomicFeatures, GenomicRanges, ggplot2, htmlwidgets, httr, IRanges, jsonlite, knitr, markdown, NGLVieweR, plotly, rlang, RCurl, shiny, shinycssloaders, shinyhelper, shinyjqui, stringr Suggests: testthat, rmarkdown, BiocStyle, BSgenome, BSgenome.Hsapiens.UCSC.hg19 License: MIT + file LICENSE Archs: x64 MD5sum: 4216d254444fa2e4f3edd8a003ab3162 NeedsCompilation: no Title: Interactive visualization in genomics Description: R Package for interactive visualization and browsing NGS data. It contains a browser for both transcript and genomic coordinate view. In addition a QC and general metaplots are included, among others differential translation plots and gene expression plots. The package is still under development. biocViews: Software, Sequencing, RiboSeq, RNASeq, Author: Michal Swirski [aut, cre, cph], Haakon Tjeldnes [aut, ctb], Kornel Labun [ctb] Maintainer: Michal Swirski URL: https://github.com/m-swirski/RiboCrypt VignetteBuilder: knitr BugReports: https://github.com/m-swirski/RiboCrypt/issues git_url: https://git.bioconductor.org/packages/RiboCrypt git_branch: RELEASE_3_20 git_last_commit: 58dbf65 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RiboCrypt_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RiboCrypt_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RiboCrypt_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RiboCrypt_1.12.0.tgz vignettes: vignettes/RiboCrypt/inst/doc/RiboCrypt_app_tutorial.html, vignettes/RiboCrypt/inst/doc/RiboCrypt_overview.html vignetteTitles: RiboCrypt_app_tutorial.html, RiboCrypt_overview.html hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/RiboCrypt/inst/doc/RiboCrypt_app_tutorial.R, vignettes/RiboCrypt/inst/doc/RiboCrypt_overview.R dependencyCount: 168 Package: RiboDiPA Version: 1.14.0 Depends: R (>= 4.1), Rsamtools, GenomicFeatures, GenomicAlignments Imports: Rcpp (>= 1.0.2), graphics, stats, data.table, elitism, methods, S4Vectors, IRanges, GenomicRanges, matrixStats, reldist, doParallel, foreach, parallel, qvalue, DESeq2, ggplot2, BiocFileCache, BiocGenerics, txdbmaker LinkingTo: Rcpp Suggests: knitr, rmarkdown License: LGPL (>= 3) Archs: x64 MD5sum: a3bd7b10e416c2f5cdb84fb5e1ba51d8 NeedsCompilation: yes Title: Differential pattern analysis for Ribo-seq data Description: This package performs differential pattern analysis for Ribo-seq data. It identifies genes with significantly different patterns in the ribosome footprint between two conditions. RiboDiPA contains five major components including bam file processing, P-site mapping, data binning, differential pattern analysis and footprint visualization. biocViews: RiboSeq, GeneExpression, GeneRegulation, DifferentialExpression, Sequencing, Coverage, Alignment, RNASeq, ImmunoOncology, QualityControl, DataImport, Software, Normalization Author: Keren Li [aut], Matt Hope [aut], Xiaozhong Wang [aut], Ji-Ping Wang [aut, cre] Maintainer: Ji-Ping Wang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RiboDiPA git_branch: RELEASE_3_20 git_last_commit: 5f86ed3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RiboDiPA_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RiboDiPA_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RiboDiPA_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RiboDiPA_1.14.0.tgz vignettes: vignettes/RiboDiPA/inst/doc/RiboDiPA.html vignetteTitles: RiboDiPA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RiboDiPA/inst/doc/RiboDiPA.R dependencyCount: 150 Package: RiboProfiling Version: 1.36.0 Depends: R (>= 3.5.0), Biostrings Imports: BiocGenerics, GenomeInfoDb, GenomicRanges, IRanges, reshape2, GenomicFeatures, grid, plyr, S4Vectors, GenomicAlignments, ggplot2, ggbio, Rsamtools, rtracklayer, data.table, sqldf Suggests: knitr, BiocStyle, TxDb.Hsapiens.UCSC.hg19.knownGene, BSgenome.Hsapiens.UCSC.hg19, testthat, SummarizedExperiment License: GPL-3 MD5sum: 31099c07405aa0b838b71d20efced62b NeedsCompilation: no Title: Ribosome Profiling Data Analysis: from BAM to Data Representation and Interpretation Description: Starting with a BAM file, this package provides the necessary functions for quality assessment, read start position recalibration, the counting of reads on CDS, 3'UTR, and 5'UTR, plotting of count data: pairs, log fold-change, codon frequency and coverage assessment, principal component analysis on codon coverage. biocViews: RiboSeq, Sequencing, Coverage, Alignment, QualityControl, Software, PrincipalComponent Author: Alexandra Popa Maintainer: A. Popa VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RiboProfiling git_branch: RELEASE_3_20 git_last_commit: bd5135b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RiboProfiling_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RiboProfiling_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RiboProfiling_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RiboProfiling_1.36.0.tgz vignettes: vignettes/RiboProfiling/inst/doc/RiboProfiling.pdf vignetteTitles: Analysing Ribo-Seq data with the "RiboProfiling" package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RiboProfiling/inst/doc/RiboProfiling.R dependencyCount: 167 Package: ribor Version: 1.18.0 Depends: R (>= 3.6.0) Imports: dplyr, ggplot2, hash, methods, rhdf5, rlang, stats, S4Vectors, tidyr, tools, yaml Suggests: testthat, knitr, rmarkdown License: GPL-3 Archs: x64 MD5sum: 6e05511565c53a49597d82f5786c7891 NeedsCompilation: no Title: An R Interface for Ribo Files Description: The ribor package provides an R Interface for .ribo files. It provides functionality to read the .ribo file, which is of HDF5 format, and performs common analyses on its contents. biocViews: Software, Infrastructure Author: Michael Geng [cre, aut], Hakan Ozadam [aut], Can Cenik [aut] Maintainer: Michael Geng VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ribor git_branch: RELEASE_3_20 git_last_commit: 9bd57ce git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ribor_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ribor_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ribor_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ribor_1.18.0.tgz vignettes: vignettes/ribor/inst/doc/ribor.html vignetteTitles: A Walkthrough of RiboR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ribor/inst/doc/ribor.R dependencyCount: 52 Package: riboSeqR Version: 1.40.0 Depends: R (>= 3.0.2), methods, GenomicRanges, abind Imports: Rsamtools, IRanges, S4Vectors, baySeq, GenomeInfoDb, seqLogo Suggests: BiocStyle, RUnit, BiocGenerics License: GPL-3 Archs: x64 MD5sum: 4635ef611203db0cd52c6f64da120bf0 NeedsCompilation: no Title: Analysis of sequencing data from ribosome profiling experiments Description: Plotting functions, frameshift detection and parsing of sequencing data from ribosome profiling experiments. biocViews: Sequencing,Genetics,Visualization,RiboSeq Author: Thomas J. Hardcastle [aut], Samuel Granjeaud [cre] () Maintainer: Samuel Granjeaud URL: https://github.com/samgg/riboSeqR BugReports: https://github.com/samgg/riboSeqR/issues git_url: https://git.bioconductor.org/packages/riboSeqR git_branch: RELEASE_3_20 git_last_commit: f5236a1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/riboSeqR_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/riboSeqR_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/riboSeqR_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/riboSeqR_1.40.0.tgz vignettes: vignettes/riboSeqR/inst/doc/riboSeqR.pdf vignetteTitles: riboSeqR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/riboSeqR/inst/doc/riboSeqR.R dependencyCount: 48 Package: ribosomeProfilingQC Version: 1.18.0 Depends: R (>= 4.0), GenomicRanges Imports: AnnotationDbi, BiocGenerics, Biostrings, BSgenome, EDASeq, GenomicAlignments, GenomicFeatures, GenomeInfoDb, IRanges, methods, motifStack, rtracklayer, Rsamtools, RUVSeq, Rsubread, S4Vectors, XVector, ggplot2, ggfittext, scales, ggrepel, utils, cluster, stats, graphics, grid, txdbmaker, ggExtra Suggests: RUnit, BiocStyle, knitr, BSgenome.Drerio.UCSC.danRer10, edgeR, DESeq2, limma, ashr, testthat, rmarkdown, vsn, Biobase License: GPL (>=3) + file LICENSE MD5sum: a3c34fd8292aea1d9c4e2c2e02a04cb1 NeedsCompilation: no Title: Ribosome Profiling Quality Control Description: Ribo-Seq (also named ribosome profiling or footprinting) measures translatome (unlike RNA-Seq, which sequences the transcriptome) by direct quantification of the ribosome-protected fragments (RPFs). This package provides the tools for quality assessment of ribosome profiling. In addition, it can preprocess Ribo-Seq data for subsequent differential analysis. biocViews: RiboSeq, Sequencing, GeneRegulation, QualityControl, Visualization, Coverage Author: Jianhong Ou [aut, cre] (), Mariah Hoye [aut] Maintainer: Jianhong Ou VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ribosomeProfilingQC git_branch: RELEASE_3_20 git_last_commit: 0dc9a36 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ribosomeProfilingQC_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ribosomeProfilingQC_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ribosomeProfilingQC_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ribosomeProfilingQC_1.18.0.tgz vignettes: vignettes/ribosomeProfilingQC/inst/doc/ribosomeProfilingQC.html vignetteTitles: ribosomeProfilingQC Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ribosomeProfilingQC/inst/doc/ribosomeProfilingQC.R dependencyCount: 191 Package: rifi Version: 1.10.0 Depends: R (>= 4.2) Imports: car, cowplot, doMC, parallel, dplyr, egg, foreach, ggplot2, graphics, grDevices, grid, methods, nls2, nnet, rlang, S4Vectors, scales, stats, stringr, SummarizedExperiment, tibble, rtracklayer, reshape2, utils Suggests: DescTools, devtools, knitr, rmarkdown, BiocStyle License: GPL-3 + file LICENSE MD5sum: 9c1fda271448f428b30150b5c48f8607 NeedsCompilation: no Title: 'rifi' analyses data from rifampicin time series created by microarray or RNAseq Description: 'rifi' analyses data from rifampicin time series created by microarray or RNAseq. 'rifi' is a transcriptome data analysis tool for the holistic identification of transcription and decay associated processes. The decay constants and the delay of the onset of decay is fitted for each probe/bin. Subsequently, probes/bins of equal properties are combined into segments by dynamic programming, independent of a existing genome annotation. This allows to detect transcript segments of different stability or transcriptional events within one annotated gene. In addition to the classic decay constant/half-life analysis, 'rifi' detects processing sites, transcription pausing sites, internal transcription start sites in operons, sites of partial transcription termination in operons, identifies areas of likely transcriptional interference by the collision mechanism and gives an estimate of the transcription velocity. All data are integrated to give an estimate of continous transcriptional units, i.e. operons. Comprehensive output tables and visualizations of the full genome result and the individual fits for all probes/bins are produced. biocViews: RNASeq, DifferentialExpression, GeneRegulation, Transcriptomics, Regression, Microarray, Software Author: Loubna Youssar [aut, ctb], Walja Wanney [aut, ctb], Jens Georg [aut, cre] Maintainer: Jens Georg VignetteBuilder: knitr BugReports: https://github.com/CyanolabFreiburg/rifi git_url: https://git.bioconductor.org/packages/rifi git_branch: RELEASE_3_20 git_last_commit: 3101e35 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rifi_1.10.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rifi_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rifi_1.10.0.tgz vignettes: vignettes/rifi/inst/doc/vignette.html vignetteTitles: Rifi for decay estimation,, based on high resolution microarray or RNA-seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/rifi/inst/doc/vignette.R dependencyCount: 123 Package: rifiComparative Version: 1.6.0 Depends: R (>= 4.2) Imports: cowplot, doMC, parallel, dplyr, egg, foreach, ggplot2, ggrepel, graphics, grDevices, grid, methods, nnet, rlang, S4Vectors, scales, stats, stringr, tibble, rtracklayer, utils, writexl, DTA, LSD, reshape2, devtools, SummarizedExperiment Suggests: DescTools, knitr, rmarkdown, BiocStyle License: GPL-3 + file LICENSE MD5sum: 5f76b5f9e57e55da53a99a5360140c62 NeedsCompilation: no Title: 'rifiComparative' compares the output of rifi from two different conditions. Description: 'rifiComparative' is a continuation of rifi package. It compares two conditions output of rifi using half-life and mRNA at time 0 segments. As an input for the segmentation, the difference between half-life of both condtions and log2FC of the mRNA at time 0 are used. The package provides segmentation, statistics, summary table, fragments visualization and some additional useful plots for further anaylsis. biocViews: RNASeq, DifferentialExpression, GeneRegulation, Transcriptomics, Microarray, Software Author: Loubna Youssar [aut, cre], Jens cre Georg [aut] Maintainer: Loubna Youssar VignetteBuilder: knitr BugReports: https://github.com/CyanolabFreiburg/rifiComparative git_url: https://git.bioconductor.org/packages/rifiComparative git_branch: RELEASE_3_20 git_last_commit: df3f321 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rifiComparative_1.6.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rifiComparative_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rifiComparative_1.6.0.tgz vignettes: vignettes/rifiComparative/inst/doc/rifiComparative.html vignetteTitles: rifiComparative hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/rifiComparative/inst/doc/rifiComparative.R dependencyCount: 173 Package: RImmPort Version: 1.34.0 Imports: plyr, dplyr, DBI, data.table, reshape2, methods, sqldf, tools, utils, RSQLite Suggests: knitr License: GPL-3 Archs: x64 MD5sum: c880a54538cd5f22795dd2dc27bd1114 NeedsCompilation: no Title: RImmPort: Enabling Ready-for-analysis Immunology Research Data Description: The RImmPort package simplifies access to ImmPort data for analysis in the R environment. It provides a standards-based interface to the ImmPort study data that is in a proprietary format. biocViews: BiomedicalInformatics, DataImport, DataRepresentation Author: Ravi Shankar Maintainer: Zicheng Hu , Ravi Shankar URL: http://bioconductor.org/packages/RImmPort/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RImmPort git_branch: RELEASE_3_20 git_last_commit: 96364a3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RImmPort_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RImmPort_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RImmPort_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RImmPort_1.34.0.tgz vignettes: vignettes/RImmPort/inst/doc/RImmPort_Article.pdf, vignettes/RImmPort/inst/doc/RImmPort_QuickStart.pdf vignetteTitles: RImmPort: Enabling ready-for-analysis immunology research data, RImmPort: Quick Start Guide hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RImmPort/inst/doc/RImmPort_Article.R, vignettes/RImmPort/inst/doc/RImmPort_QuickStart.R dependencyCount: 42 Package: RITAN Version: 1.30.0 Depends: R (>= 4.0), Imports: graphics, methods, stats, utils, grid, gridExtra, reshape2, gplots, ggplot2, plotrix, RColorBrewer, STRINGdb, MCL, linkcomm, dynamicTreeCut, gsubfn, hash, png, sqldf, igraph, BgeeDB, knitr, RITANdata, GenomicFeatures, ensembldb, AnnotationFilter, EnsDb.Hsapiens.v86 Suggests: rmarkdown, BgeeDB License: file LICENSE MD5sum: ccc0ac36181470a62acdb7be08aface6 NeedsCompilation: no Title: Rapid Integration of Term Annotation and Network resources Description: Tools for comprehensive gene set enrichment and extraction of multi-resource high confidence subnetworks. RITAN facilitates bioinformatic tasks for enabling network biology research. biocViews: QualityControl, Network, NetworkEnrichment, NetworkInference, GeneSetEnrichment, FunctionalGenomics, GraphAndNetwork Author: Michael Zimmermann [aut, cre] Maintainer: Michael Zimmermann VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RITAN git_branch: RELEASE_3_20 git_last_commit: 04a43ed git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RITAN_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RITAN_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RITAN_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RITAN_1.30.0.tgz vignettes: vignettes/RITAN/inst/doc/choosing_resources.html, vignettes/RITAN/inst/doc/enrichment.html, vignettes/RITAN/inst/doc/multi_tissue_analysis.html, vignettes/RITAN/inst/doc/resource_relationships.html, vignettes/RITAN/inst/doc/subnetworks.html vignetteTitles: Choosing Resources, Enrichment Vignette, Multi-Tissue Analysis, Relationships Among Resources, Network Biology Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/RITAN/inst/doc/choosing_resources.R, vignettes/RITAN/inst/doc/enrichment.R, vignettes/RITAN/inst/doc/multi_tissue_analysis.R, vignettes/RITAN/inst/doc/resource_relationships.R, vignettes/RITAN/inst/doc/subnetworks.R dependencyCount: 162 Package: RIVER Version: 1.30.0 Depends: R (>= 3.3.2) Imports: glmnet, pROC, ggplot2, graphics, stats, Biobase, methods, utils Suggests: BiocStyle, knitr, rmarkdown, testthat, devtools License: GPL (>= 2) MD5sum: 06027af259a42a4baff99b729b703214 NeedsCompilation: no Title: R package for RIVER (RNA-Informed Variant Effect on Regulation) Description: An implementation of a probabilistic modeling framework that jointly analyzes personal genome and transcriptome data to estimate the probability that a variant has regulatory impact in that individual. It is based on a generative model that assumes that genomic annotations, such as the location of a variant with respect to regulatory elements, determine the prior probability that variant is a functional regulatory variant, which is an unobserved variable. The functional regulatory variant status then influences whether nearby genes are likely to display outlier levels of gene expression in that person. See the RIVER website for more information, documentation and examples. biocViews: GeneExpression, GeneticVariability, SNP, Transcription, FunctionalPrediction, GeneRegulation, GenomicVariation, BiomedicalInformatics, FunctionalGenomics, Genetics, SystemsBiology, Transcriptomics, Bayesian, Clustering, TranscriptomeVariant, Regression Author: Yungil Kim [aut, cre], Alexis Battle [aut] Maintainer: Yungil Kim URL: https://github.com/ipw012/RIVER VignetteBuilder: knitr BugReports: https://github.com/ipw012/RIVER/issues git_url: https://git.bioconductor.org/packages/RIVER git_branch: RELEASE_3_20 git_last_commit: 5816aa9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RIVER_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RIVER_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RIVER_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RIVER_1.30.0.tgz vignettes: vignettes/RIVER/inst/doc/RIVER.html vignetteTitles: RIVER hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RIVER/inst/doc/RIVER.R dependencyCount: 47 Package: RJMCMCNucleosomes Version: 1.30.0 Depends: R (>= 3.5.0), IRanges, GenomicRanges Imports: Rcpp (>= 0.12.5), consensusSeekeR, BiocGenerics, GenomeInfoDb, S4Vectors (>= 0.23.10), BiocParallel, stats, graphics, methods, grDevices LinkingTo: Rcpp Suggests: BiocStyle, knitr, rmarkdown, nucleoSim, RUnit License: Artistic-2.0 MD5sum: bf76f59fa3d0f158997b9c90f9420aaf NeedsCompilation: yes Title: Bayesian hierarchical model for genome-wide nucleosome positioning with high-throughput short-read data (MNase-Seq) Description: This package does nucleosome positioning using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling. biocViews: BiologicalQuestion, ChIPSeq, NucleosomePositioning, Software, StatisticalMethod, Bayesian, Sequencing, Coverage Author: Pascal Belleau [aut], Rawane Samb [aut], Astrid Deschênes [cre, aut], Khader Khadraoui [aut], Lajmi Lakhal-Chaieb [aut], Arnaud Droit [aut] Maintainer: Astrid Deschênes URL: https://github.com/ArnaudDroitLab/RJMCMCNucleosomes SystemRequirements: Rcpp VignetteBuilder: knitr BugReports: https://github.com/ArnaudDroitLab/RJMCMCNucleosomes/issues git_url: https://git.bioconductor.org/packages/RJMCMCNucleosomes git_branch: RELEASE_3_20 git_last_commit: 827b9c6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RJMCMCNucleosomes_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RJMCMCNucleosomes_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RJMCMCNucleosomes_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RJMCMCNucleosomes_1.30.0.tgz vignettes: vignettes/RJMCMCNucleosomes/inst/doc/RJMCMCNucleosomes.html vignetteTitles: Nucleosome Positioning hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RJMCMCNucleosomes/inst/doc/RJMCMCNucleosomes.R dependencyCount: 68 Package: RLassoCox Version: 1.14.0 Depends: R (>= 4.1), glmnet Imports: Matrix, igraph, survival, stats Suggests: knitr License: Artistic-2.0 MD5sum: d1db688298e71f72ea0cfb4f24e85432 NeedsCompilation: no Title: A reweighted Lasso-Cox by integrating gene interaction information Description: RLassoCox is a package that implements the RLasso-Cox model proposed by Wei Liu. The RLasso-Cox model integrates gene interaction information into the Lasso-Cox model for accurate survival prediction and survival biomarker discovery. It is based on the hypothesis that topologically important genes in the gene interaction network tend to have stable expression changes. The RLasso-Cox model uses random walk to evaluate the topological weight of genes, and then highlights topologically important genes to improve the generalization ability of the Lasso-Cox model. The RLasso-Cox model has the advantage of identifying small gene sets with high prognostic performance on independent datasets, which may play an important role in identifying robust survival biomarkers for various cancer types. biocViews: Survival, Regression, GeneExpression, GenePrediction, Network Author: Wei Liu [cre, aut] () Maintainer: Wei Liu VignetteBuilder: knitr BugReports: https://github.com/weiliu123/RLassoCox/issues git_url: https://git.bioconductor.org/packages/RLassoCox git_branch: RELEASE_3_20 git_last_commit: 10a7611 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RLassoCox_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RLassoCox_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RLassoCox_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RLassoCox_1.14.0.tgz vignettes: vignettes/RLassoCox/inst/doc/RLassoCox.pdf vignetteTitles: RLassoCox hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RLassoCox/inst/doc/RLassoCox.R dependencyCount: 26 Package: RLMM Version: 1.68.0 Depends: R (>= 2.1.0) Imports: graphics, grDevices, MASS, stats, utils License: LGPL (>= 2) MD5sum: 7f8b6b4bd9eb1d640055893d283d6b0a NeedsCompilation: no Title: A Genotype Calling Algorithm for Affymetrix SNP Arrays Description: A classification algorithm, based on a multi-chip, multi-SNP approach for Affymetrix SNP arrays. Using a large training sample where the genotype labels are known, this aglorithm will obtain more accurate classification results on new data. RLMM is based on a robust, linear model and uses the Mahalanobis distance for classification. The chip-to-chip non-biological variation is removed through normalization. This model-based algorithm captures the similarities across genotype groups and probes, as well as thousands other SNPs for accurate classification. NOTE: 100K-Xba only at for now. biocViews: Microarray, OneChannel, SNP, GeneticVariability Author: Nusrat Rabbee , Gary Wong Maintainer: Nusrat Rabbee URL: http://www.stat.berkeley.edu/users/nrabbee/RLMM SystemRequirements: Internal files Xba.CQV, Xba.regions (or other regions file) git_url: https://git.bioconductor.org/packages/RLMM git_branch: RELEASE_3_20 git_last_commit: 56e075e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RLMM_1.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RLMM_1.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RLMM_1.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RLMM_1.68.0.tgz vignettes: vignettes/RLMM/inst/doc/RLMM.pdf vignetteTitles: RLMM Doc hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RLMM/inst/doc/RLMM.R dependencyCount: 6 Package: Rmagpie Version: 1.62.0 Depends: R (>= 2.6.1), Biobase (>= 2.5.5) Imports: Biobase (>= 2.5.5), e1071, graphics, grDevices, kernlab, methods, pamr, stats, utils Suggests: xtable License: GPL (>= 3) MD5sum: 28e2db2a1ed2acea51df1036ff00aa52 NeedsCompilation: no Title: MicroArray Gene-expression-based Program In Error rate estimation Description: Microarray Classification is designed for both biologists and statisticians. It offers the ability to train a classifier on a labelled microarray dataset and to then use that classifier to predict the class of new observations. A range of modern classifiers are available, including support vector machines (SVMs), nearest shrunken centroids (NSCs)... Advanced methods are provided to estimate the predictive error rate and to report the subset of genes which appear essential in discriminating between classes. biocViews: Microarray, Classification Author: Camille Maumet , with contributions from C. Ambroise J. Zhu Maintainer: Camille Maumet URL: http://www.bioconductor.org/ git_url: https://git.bioconductor.org/packages/Rmagpie git_branch: RELEASE_3_20 git_last_commit: 2ab8d56 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rmagpie_1.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rmagpie_1.62.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rmagpie_1.62.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rmagpie_1.62.0.tgz vignettes: vignettes/Rmagpie/inst/doc/Magpie_examples.pdf vignetteTitles: Rmagpie Examples hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rmagpie/inst/doc/Magpie_examples.R dependencyCount: 19 Package: RMassBank Version: 3.16.0 Depends: Rcpp Imports: assertthat, Biobase, ChemmineR, data.table, digest, dplyr, enviPat, glue, httr, httr2, logger, methods, MSnbase, mzR, purrr, R.utils, rcdk, readJDX, readr, rjson, S4Vectors, tibble, tidyselect, webchem, XML, yaml Suggests: BiocStyle, CAMERA, gplots, knitr, magick, rmarkdown, RMassBankData (>= 1.33.1), RUnit, xcms (>= 1.37.1) License: Artistic-2.0 MD5sum: 63db3f188ead6224735d06f429e1ea43 NeedsCompilation: no Title: Workflow to process tandem MS files and build MassBank records Description: Workflow to process tandem MS files and build MassBank records. Functions include automated extraction of tandem MS spectra, formula assignment to tandem MS fragments, recalibration of tandem MS spectra with assigned fragments, spectrum cleanup, automated retrieval of compound information from Internet databases, and export to MassBank records. biocViews: ImmunoOncology, Bioinformatics, MassSpectrometry, Metabolomics, Software Author: Michael Stravs, Emma Schymanski, Steffen Neumann, Erik Mueller, Paul Stahlhofen, Tobias Schulze with contributions of Hendrik Treutler Maintainer: RMassBank at Eawag SystemRequirements: OpenBabel VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RMassBank git_branch: RELEASE_3_20 git_last_commit: aadbd4c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-31 source.ver: src/contrib/RMassBank_3.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RMassBank_3.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RMassBank_3.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RMassBank_3.16.0.tgz vignettes: vignettes/RMassBank/inst/doc/RMassBank.html, vignettes/RMassBank/inst/doc/RMassBankNonstandard.html vignetteTitles: RMassBank: The workflow by example, RMassBank: Non-standard usage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RMassBank/inst/doc/RMassBankNonstandard.R, vignettes/RMassBank/inst/doc/RMassBank.R suggestsMe: RMassBankData dependencyCount: 174 Package: rmelting Version: 1.22.0 Depends: R (>= 3.6) Imports: Rdpack, rJava (>= 0.9-8) Suggests: readxl, knitr, rmarkdown, reshape2, pander, testthat License: GPL-2 | GPL-3 Archs: x64 MD5sum: 79c4d4dc8accde517b50067ddbdacd16 NeedsCompilation: no Title: R Interface to MELTING 5 Description: R interface to the MELTING 5 program (https://www.ebi.ac.uk/biomodels/tools/melting/) to compute melting temperatures of nucleic acid duplexes along with other thermodynamic parameters. biocViews: BiomedicalInformatics, Cheminformatics, Author: J. Aravind [aut, cre] (), G. K. Krishna [aut], Bob Rudis [ctb] (melting5jars), Nicolas Le Novère [ctb] (MELTING 5 Java Library), Marine Dumousseau [ctb] (MELTING 5 Java Library), William John Gowers [ctb] (MELTING 5 Java Library) Maintainer: J. Aravind URL: https://github.com/aravind-j/rmelting, https://aravind-j.github.io/rmelting/ SystemRequirements: Java VignetteBuilder: knitr BugReports: https://github.com/aravind-j/rmelting/issues git_url: https://git.bioconductor.org/packages/rmelting git_branch: RELEASE_3_20 git_last_commit: 50630b0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rmelting_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rmelting_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rmelting_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rmelting_1.22.0.tgz vignettes: vignettes/rmelting/inst/doc/Tutorial.pdf vignetteTitles: Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 6 Package: Rmmquant Version: 1.24.0 Depends: R (>= 3.6) Imports: Rcpp (>= 0.12.8), methods, S4Vectors, GenomicRanges, SummarizedExperiment, devtools, TBX20BamSubset, TxDb.Mmusculus.UCSC.mm9.knownGene, org.Mm.eg.db, DESeq2, apeglm, BiocStyle LinkingTo: Rcpp Suggests: knitr, rmarkdown, testthat License: GPL-3 MD5sum: 963847e0892a9a7b11f628fadea1e82a NeedsCompilation: yes Title: RNA-Seq multi-mapping Reads Quantification Tool Description: RNA-Seq is currently used routinely, and it provides accurate information on gene transcription. However, the method cannot accurately estimate duplicated genes expression. Several strategies have been previously used, but all of them provide biased results. With Rmmquant, if a read maps at different positions, the tool detects that the corresponding genes are duplicated; it merges the genes and creates a merged gene. The counts of ambiguous reads is then based on the input genes and the merged genes. Rmmquant is a drop-in replacement of the widely used tools findOverlaps and featureCounts that handles multi-mapping reads in an unabiased way. biocViews: GeneExpression, Transcription Author: Zytnicki Matthias [aut, cre] Maintainer: Zytnicki Matthias SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Rmmquant git_branch: RELEASE_3_20 git_last_commit: d9dd5c2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rmmquant_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rmmquant_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rmmquant_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rmmquant_1.24.0.tgz vignettes: vignettes/Rmmquant/inst/doc/Rmmquant.html vignetteTitles: The Rmmquant package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rmmquant/inst/doc/Rmmquant.R dependencyCount: 185 Package: rmspc Version: 1.12.0 Imports: processx, BiocManager, rtracklayer, stats, tools, methods, GenomicRanges, stringr Suggests: knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0) License: GPL-3 MD5sum: 74d5acc56723380f34610c01f8851294 NeedsCompilation: no Title: Multiple Sample Peak Calling Description: The rmspc package runs MSPC (Multiple Sample Peak Calling) software using R. The analysis of ChIP-seq samples outputs a number of enriched regions (commonly known as "peaks"), each indicating a protein-DNA interaction or a specific chromatin modification. When replicate samples are analyzed, overlapping peaks are expected. This repeated evidence can therefore be used to locally lower the minimum significance required to accept a peak. MSPC uses combined evidence from replicated experiments to evaluate peak calling output, rescuing peaks, and reduce false positives. It takes any number of replicates as input and improves sensitivity and specificity of peak calling on each, and identifies consensus regions between the input samples. biocViews: ChIPSeq, Sequencing, ChipOnChip, DataImport, RNASeq Author: Vahid Jalili [aut], Marzia Angela Cremona [aut], Fernando Palluzzi [aut], Meriem Bahda [aut, cre] Maintainer: Meriem Bahda URL: https://genometric.github.io/MSPC/ SystemRequirements: .NET 6.0 VignetteBuilder: knitr BugReports: https://github.com/Genometric/MSPC/issues git_url: https://git.bioconductor.org/packages/rmspc git_branch: RELEASE_3_20 git_last_commit: 7bb1ab9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-12-23 source.ver: src/contrib/rmspc_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rmspc_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rmspc_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rmspc_1.12.0.tgz vignettes: vignettes/rmspc/inst/doc/rmpsc.html vignetteTitles: User guide to the rmspc package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rmspc/inst/doc/rmpsc.R dependencyCount: 69 Package: RNAAgeCalc Version: 1.18.0 Depends: R (>= 3.6) Imports: ggplot2, recount, impute, AnnotationDbi, org.Hs.eg.db, stats, SummarizedExperiment, methods Suggests: knitr, rmarkdown, testthat License: GPL-2 MD5sum: bb8c07d160976feccd3ab8a850b9cc26 NeedsCompilation: no Title: A multi-tissue transcriptional age calculator Description: It has been shown that both DNA methylation and RNA transcription are linked to chronological age and age related diseases. Several estimators have been developed to predict human aging from DNA level and RNA level. Most of the human transcriptional age predictor are based on microarray data and limited to only a few tissues. To date, transcriptional studies on aging using RNASeq data from different human tissues is limited. The aim of this package is to provide a tool for across-tissue and tissue-specific transcriptional age calculation based on GTEx RNASeq data. biocViews: RNASeq,GeneExpression Author: Xu Ren [aut, cre], Pei Fen Kuan [aut] Maintainer: Xu Ren URL: https://github.com/reese3928/RNAAgeCalc VignetteBuilder: knitr BugReports: https://github.com/reese3928/RNAAgeCalc/issues git_url: https://git.bioconductor.org/packages/RNAAgeCalc git_branch: RELEASE_3_20 git_last_commit: da0dc67 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RNAAgeCalc_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RNAAgeCalc_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RNAAgeCalc_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RNAAgeCalc_1.18.0.tgz vignettes: vignettes/RNAAgeCalc/inst/doc/RNAAge-vignette.html vignetteTitles: RNAAgeCalc hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RNAAgeCalc/inst/doc/RNAAge-vignette.R dependencyCount: 170 Package: RNAdecay Version: 1.26.0 Depends: R (>= 3.5) Imports: stats, grDevices, grid, ggplot2, gplots, utils, TMB, nloptr, scales Suggests: parallel, knitr, reshape2, rmarkdown License: GPL-2 MD5sum: 234bd79f217035934dc16605bca37397 NeedsCompilation: yes Title: Maximum Likelihood Decay Modeling of RNA Degradation Data Description: RNA degradation is monitored through measurement of RNA abundance after inhibiting RNA synthesis. This package has functions and example scripts to facilitate (1) data normalization, (2) data modeling using constant decay rate or time-dependent decay rate models, (3) the evaluation of treatment or genotype effects, and (4) plotting of the data and models. Data Normalization: functions and scripts make easy the normalization to the initial (T0) RNA abundance, as well as a method to correct for artificial inflation of Reads per Million (RPM) abundance in global assessments as the total size of the RNA pool decreases. Modeling: Normalized data is then modeled using maximum likelihood to fit parameters. For making treatment or genotype comparisons (up to four), the modeling step models all possible treatment effects on each gene by repeating the modeling with constraints on the model parameters (i.e., the decay rate of treatments A and B are modeled once with them being equal and again allowing them to both vary independently). Model Selection: The AICc value is calculated for each model, and the model with the lowest AICc is chosen. Modeling results of selected models are then compiled into a single data frame. Graphical Plotting: functions are provided to easily visualize decay data model, or half-life distributions using ggplot2 package functions. biocViews: ImmunoOncology, Software, GeneExpression, GeneRegulation, DifferentialExpression, Transcription, Transcriptomics, TimeCourse, Regression, RNASeq, Normalization, WorkflowStep Author: Reed Sorenson [aut, cre], Katrina Johnson [aut], Frederick Adler [aut], Leslie Sieburth [aut] Maintainer: Reed Sorenson VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RNAdecay git_branch: RELEASE_3_20 git_last_commit: 908ebd3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RNAdecay_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RNAdecay_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RNAdecay_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RNAdecay_1.26.0.tgz vignettes: vignettes/RNAdecay/inst/doc/RNAdecay_workflow.html vignetteTitles: RNAdecay hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RNAdecay/inst/doc/RNAdecay_workflow.R dependencyCount: 44 Package: rnaEditr Version: 1.16.0 Depends: R (>= 4.0) Imports: GenomicRanges, IRanges, BiocGenerics, GenomeInfoDb, bumphunter, S4Vectors, stats, survival, logistf, plyr, corrplot Suggests: knitr, rmarkdown, testthat License: GPL-3 MD5sum: 5e9cc8a9cb2460aa6efe45fb45cc1f50 NeedsCompilation: no Title: Statistical analysis of RNA editing sites and hyper-editing regions Description: RNAeditr analyzes site-specific RNA editing events, as well as hyper-editing regions. The editing frequencies can be tested against binary, continuous or survival outcomes. Multiple covariate variables as well as interaction effects can also be incorporated in the statistical models. biocViews: GeneTarget, Epigenetics, DimensionReduction, FeatureExtraction, Regression, Survival, RNASeq Author: Lanyu Zhang [aut, cre], Gabriel Odom [aut], Tiago Silva [aut], Lissette Gomez [aut], Lily Wang [aut] Maintainer: Lanyu Zhang URL: https://github.com/TransBioInfoLab/rnaEditr VignetteBuilder: knitr BugReports: https://github.com/TransBioInfoLab/rnaEditr/issues git_url: https://git.bioconductor.org/packages/rnaEditr git_branch: RELEASE_3_20 git_last_commit: ffbbfce git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rnaEditr_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rnaEditr_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rnaEditr_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rnaEditr_1.16.0.tgz vignettes: vignettes/rnaEditr/inst/doc/introduction_to_rnaEditr.html vignetteTitles: Introduction to rnaEditr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rnaEditr/inst/doc/introduction_to_rnaEditr.R dependencyCount: 137 Package: RNAmodR Version: 1.20.0 Depends: R (>= 4.0), S4Vectors (>= 0.27.12), IRanges (>= 2.23.9), GenomicRanges, Modstrings Imports: methods, stats, grDevices, matrixStats, BiocGenerics, Biostrings (>= 2.57.2), BiocParallel, txdbmaker, GenomicFeatures, GenomicAlignments, GenomeInfoDb, rtracklayer, Rsamtools, BSgenome, RColorBrewer, colorRamps, ggplot2, Gviz (>= 1.31.0), reshape2, graphics, ROCR Suggests: BiocStyle, knitr, rmarkdown, testthat, RNAmodR.Data License: Artistic-2.0 Archs: x64 MD5sum: 391d754edd4e3269fd8d604883b37b14 NeedsCompilation: no Title: Detection of post-transcriptional modifications in high throughput sequencing data Description: RNAmodR provides classes and workflows for loading/aggregation data from high througput sequencing aimed at detecting post-transcriptional modifications through analysis of specific patterns. In addition, utilities are provided to validate and visualize the results. The RNAmodR package provides a core functionality from which specific analysis strategies can be easily implemented as a seperate package. biocViews: Software, Infrastructure, WorkflowStep, Visualization, Sequencing Author: Felix G.M. Ernst [aut, cre] (), Denis L.J. Lafontaine [ctb, fnd] Maintainer: Felix G.M. Ernst URL: https://github.com/FelixErnst/RNAmodR VignetteBuilder: knitr BugReports: https://github.com/FelixErnst/RNAmodR/issues git_url: https://git.bioconductor.org/packages/RNAmodR git_branch: RELEASE_3_20 git_last_commit: 9f21857 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RNAmodR_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RNAmodR_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RNAmodR_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RNAmodR_1.20.0.tgz vignettes: vignettes/RNAmodR/inst/doc/RNAmodR.creation.html, vignettes/RNAmodR/inst/doc/RNAmodR.html vignetteTitles: RNAmodR - creating new classes for a new detection strategy, RNAmodR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RNAmodR/inst/doc/RNAmodR.creation.R, vignettes/RNAmodR/inst/doc/RNAmodR.R dependsOnMe: RNAmodR.AlkAnilineSeq, RNAmodR.ML, RNAmodR.RiboMethSeq dependencyCount: 167 Package: RNAmodR.AlkAnilineSeq Version: 1.20.0 Depends: R (>= 4.0), RNAmodR (>= 1.5.3) Imports: methods, S4Vectors, IRanges, BiocGenerics, GenomicRanges, Gviz Suggests: BiocStyle, knitr, rmarkdown, testthat, rtracklayer, Biostrings, RNAmodR.Data License: Artistic-2.0 MD5sum: fa2a8c83e29b1895f93bff5ec487a784 NeedsCompilation: no Title: Detection of m7G, m3C and D modification by AlkAnilineSeq Description: RNAmodR.AlkAnilineSeq implements the detection of m7G, m3C and D modifications on RNA from experimental data generated with the AlkAnilineSeq protocol. The package builds on the core functionality of the RNAmodR package to detect specific patterns of the modifications in high throughput sequencing data. biocViews: Software, WorkflowStep, Visualization, Sequencing Author: Felix G.M. Ernst [aut, cre] (), Denis L.J. Lafontaine [ctb, fnd] Maintainer: Felix G.M. Ernst URL: https://github.com/FelixErnst/RNAmodR.AlkAnilineSeq VignetteBuilder: knitr BugReports: https://github.com/FelixErnst/RNAmodR.AlkAnilineSeq/issues git_url: https://git.bioconductor.org/packages/RNAmodR.AlkAnilineSeq git_branch: RELEASE_3_20 git_last_commit: 345fa21 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RNAmodR.AlkAnilineSeq_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RNAmodR.AlkAnilineSeq_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RNAmodR.AlkAnilineSeq_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RNAmodR.AlkAnilineSeq_1.20.0.tgz vignettes: vignettes/RNAmodR.AlkAnilineSeq/inst/doc/RNAmodR.AlkAnilineSeq.html vignetteTitles: RNAmodR.AlkAnilineSeq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RNAmodR.AlkAnilineSeq/inst/doc/RNAmodR.AlkAnilineSeq.R suggestsMe: RNAmodR.ML dependencyCount: 168 Package: RNAmodR.ML Version: 1.20.0 Depends: R (>= 3.6), RNAmodR Imports: methods, BiocGenerics, S4Vectors, IRanges, GenomicRanges, stats, ranger Suggests: BiocStyle, knitr, rmarkdown, testthat, RNAmodR.Data, RNAmodR.AlkAnilineSeq, GenomicFeatures, Rsamtools, rtracklayer, keras License: Artistic-2.0 MD5sum: 6869e376dfa0bdbc43899f3963029282 NeedsCompilation: no Title: Detecting patterns of post-transcriptional modifications using machine learning Description: RNAmodR.ML extend the functionality of the RNAmodR package and classical detection strategies towards detection through machine learning models. RNAmodR.ML provides classes, functions and an example workflow to establish a detection stratedy, which can be packaged. biocViews: Software, Infrastructure, WorkflowStep, Visualization, Sequencing Author: Felix G.M. Ernst [aut, cre] (), Denis L.J. Lafontaine [ctb] Maintainer: Felix G.M. Ernst URL: https://github.com/FelixErnst/RNAmodR.ML VignetteBuilder: knitr BugReports: https://github.com/FelixErnst/RNAmodR.ML/issues git_url: https://git.bioconductor.org/packages/RNAmodR.ML git_branch: RELEASE_3_20 git_last_commit: ebd785f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RNAmodR.ML_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RNAmodR.ML_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RNAmodR.ML_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RNAmodR.ML_1.20.0.tgz vignettes: vignettes/RNAmodR.ML/inst/doc/RNAmodR.ML.html vignetteTitles: RNAmodR.ML hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RNAmodR.ML/inst/doc/RNAmodR.ML.R dependencyCount: 169 Package: RNAmodR.RiboMethSeq Version: 1.20.0 Depends: R (>= 4.0), RNAmodR (>= 1.5.3) Imports: methods, S4Vectors, BiocGenerics, IRanges, GenomicRanges, Gviz Suggests: BiocStyle, knitr, rmarkdown, testthat, rtracklayer, RNAmodR.Data License: Artistic-2.0 Archs: x64 MD5sum: a82549ffea70152b4e323ffb2ea69620 NeedsCompilation: no Title: Detection of 2'-O methylations by RiboMethSeq Description: RNAmodR.RiboMethSeq implements the detection of 2'-O methylations on RNA from experimental data generated with the RiboMethSeq protocol. The package builds on the core functionality of the RNAmodR package to detect specific patterns of the modifications in high throughput sequencing data. biocViews: Software, WorkflowStep, Visualization, Sequencing Author: Felix G.M. Ernst [aut, cre] (), Denis L.J. Lafontaine [ctb, fnd] Maintainer: Felix G.M. Ernst URL: https://github.com/FelixErnst/RNAmodR.RiboMethSeq VignetteBuilder: knitr BugReports: https://github.com/FelixErnst/RNAmodR.RiboMethSeq/issues git_url: https://git.bioconductor.org/packages/RNAmodR.RiboMethSeq git_branch: RELEASE_3_20 git_last_commit: 9769050 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RNAmodR.RiboMethSeq_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RNAmodR.RiboMethSeq_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RNAmodR.RiboMethSeq_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RNAmodR.RiboMethSeq_1.20.0.tgz vignettes: vignettes/RNAmodR.RiboMethSeq/inst/doc/RNAmodR.RiboMethSeq.html vignetteTitles: RNAmodR.RiboMethSeq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RNAmodR.RiboMethSeq/inst/doc/RNAmodR.RiboMethSeq.R dependencyCount: 168 Package: RNAsense Version: 1.20.0 Depends: R (>= 3.6) Imports: ggplot2, parallel, NBPSeq, qvalue, SummarizedExperiment, stats, utils, methods Suggests: knitr, rmarkdown License: GPL-3 MD5sum: 3607e197234601375c6c097c48d937fa NeedsCompilation: no Title: Analysis of Time-Resolved RNA-Seq Data Description: RNA-sense tool compares RNA-seq time curves in two experimental conditions, i.e. wild-type and mutant, and works in three steps. At Step 1, it builds expression profile for each transcript in one condition (i.e. wild-type) and tests if the transcript abundance grows or decays significantly. Dynamic transcripts are then sorted to non-overlapping groups (time profiles) by the time point of switch up or down. At Step 2, RNA-sense outputs the groups of differentially expressed transcripts, which are up- or downregulated in the mutant compared to the wild-type at each time point. At Step 3, Correlations (Fisher's exact test) between the outputs of Step 1 (switch up- and switch down- time profile groups) and the outputs of Step2 (differentially expressed transcript groups) are calculated. The results of the correlation analysis are printed as two-dimensional color plot, with time profiles and differential expression groups at y- and x-axis, respectively, and facilitates the biological interpretation of the data. biocViews: RNASeq, GeneExpression, DifferentialExpression Author: Marcus Rosenblatt [cre], Gao Meijang [aut], Helge Hass [aut], Daria Onichtchouk [aut] Maintainer: Marcus Rosenblatt VignetteBuilder: knitr BugReports: https://github.com/marcusrosenblatt/RNAsense git_url: https://git.bioconductor.org/packages/RNAsense git_branch: RELEASE_3_20 git_last_commit: 2ba6876 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RNAsense_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RNAsense_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RNAsense_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RNAsense_1.20.0.tgz vignettes: vignettes/RNAsense/inst/doc/example.html vignetteTitles: Put the title of your vignette here hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RNAsense/inst/doc/example.R dependencyCount: 70 Package: rnaseqcomp Version: 1.36.0 Depends: R (>= 3.2.0) Imports: RColorBrewer, methods Suggests: BiocStyle, knitr, rmarkdown License: GPL-3 MD5sum: 43d09a0edafe42e83d9652ad5f8962ce NeedsCompilation: no Title: Benchmarks for RNA-seq Quantification Pipelines Description: Several quantitative and visualized benchmarks for RNA-seq quantification pipelines. Two-condition quantifications for genes, transcripts, junctions or exons by each pipeline with necessary meta information should be organized into numeric matrices in order to proceed the evaluation. biocViews: RNASeq, Visualization, QualityControl Author: Mingxiang Teng and Rafael A. Irizarry Maintainer: Mingxiang Teng URL: https://github.com/tengmx/rnaseqcomp VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/rnaseqcomp git_branch: RELEASE_3_20 git_last_commit: aaad7f8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rnaseqcomp_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rnaseqcomp_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rnaseqcomp_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rnaseqcomp_1.36.0.tgz vignettes: vignettes/rnaseqcomp/inst/doc/rnaseqcomp.html vignetteTitles: The rnaseqcomp user's guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rnaseqcomp/inst/doc/rnaseqcomp.R dependencyCount: 2 Package: RNAseqCovarImpute Version: 1.4.0 Depends: R (>= 4.3.0) Imports: Biobase, BiocGenerics, BiocParallel, stats, limma, dplyr, magrittr, rlang, edgeR, foreach, mice Suggests: BiocStyle, knitr, PCAtools, rmarkdown, tidyr, stringr, testthat (>= 3.0.0) License: GPL-3 MD5sum: 2b8770546c6f7feeacc2935c0db3065a NeedsCompilation: no Title: Impute Covariate Data in RNA Sequencing Studies Description: The RNAseqCovarImpute package makes linear model analysis for RNA sequencing read counts compatible with multiple imputation (MI) of missing covariates. A major problem with implementing MI in RNA sequencing studies is that the outcome data must be included in the imputation prediction models to avoid bias. This is difficult in omics studies with high-dimensional data. The first method we developed in the RNAseqCovarImpute package surmounts the problem of high-dimensional outcome data by binning genes into smaller groups to analyze pseudo-independently. This method implements covariate MI in gene expression studies by 1) randomly binning genes into smaller groups, 2) creating M imputed datasets separately within each bin, where the imputation predictor matrix includes all covariates and the log counts per million (CPM) for the genes within each bin, 3) estimating gene expression changes using `limma::voom` followed by `limma::lmFit` functions, separately on each M imputed dataset within each gene bin, 4) un-binning the gene sets and stacking the M sets of model results before applying the `limma::squeezeVar` function to apply a variance shrinking Bayesian procedure to each M set of model results, 5) pooling the results with Rubins’ rules to produce combined coefficients, standard errors, and P-values, and 6) adjusting P-values for multiplicity to account for false discovery rate (FDR). A faster method uses principal component analysis (PCA) to avoid binning genes while still retaining outcome information in the MI models. Binning genes into smaller groups requires that the MI and limma-voom analysis is run many times (typically hundreds). The more computationally efficient MI PCA method implements covariate MI in gene expression studies by 1) performing PCA on the log CPM values for all genes using the Bioconductor `PCAtools` package, 2) creating M imputed datasets where the imputation predictor matrix includes all covariates and the optimum number of PCs to retain (e.g., based on Horn’s parallel analysis or the number of PCs that account for >80% explained variation), 3) conducting the standard limma-voom pipeline with the `voom` followed by `lmFit` followed by `eBayes` functions on each M imputed dataset, 4) pooling the results with Rubins’ rules to produce combined coefficients, standard errors, and P-values, and 5) adjusting P-values for multiplicity to account for false discovery rate (FDR). biocViews: RNASeq, GeneExpression, DifferentialExpression, Sequencing Author: Brennan Baker [aut, cre] (), Sheela Sathyanarayana [aut], Adam Szpiro [aut], James MacDonald [aut], Alison Paquette [aut] Maintainer: Brennan Baker URL: https://github.com/brennanhilton/RNAseqCovarImpute VignetteBuilder: knitr BugReports: https://github.com/brennanhilton/RNAseqCovarImpute/issues git_url: https://git.bioconductor.org/packages/RNAseqCovarImpute git_branch: RELEASE_3_20 git_last_commit: a863a3d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RNAseqCovarImpute_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RNAseqCovarImpute_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RNAseqCovarImpute_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RNAseqCovarImpute_1.4.0.tgz vignettes: vignettes/RNAseqCovarImpute/inst/doc/Example_Data_for_RNAseqCovarImpute.html, vignettes/RNAseqCovarImpute/inst/doc/Impute_Covariate_Data_in_RNA_sequencing_Studies.html vignetteTitles: Example Data for RNAseqCovarImpute, Impute Covariate Data in RNA-sequencing Studies hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RNAseqCovarImpute/inst/doc/Example_Data_for_RNAseqCovarImpute.R, vignettes/RNAseqCovarImpute/inst/doc/Impute_Covariate_Data_in_RNA_sequencing_Studies.R dependencyCount: 82 Package: RNASeqPower Version: 1.46.0 License: LGPL (>=2) MD5sum: 9ab53302908772115383389e5780aac6 NeedsCompilation: no Title: Sample size for RNAseq studies Description: RNA-seq, sample size biocViews: ImmunoOncology, RNASeq Author: Terry M Therneau [aut, cre], Hart Stephen [ctb] Maintainer: Terry M Therneau git_url: https://git.bioconductor.org/packages/RNASeqPower git_branch: RELEASE_3_20 git_last_commit: 67c3f4d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RNASeqPower_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RNASeqPower_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RNASeqPower_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RNASeqPower_1.46.0.tgz vignettes: vignettes/RNASeqPower/inst/doc/samplesize.pdf vignetteTitles: RNAseq samplesize hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RNASeqPower/inst/doc/samplesize.R suggestsMe: DGEobj.utils dependencyCount: 0 Package: RnaSeqSampleSize Version: 2.16.0 Depends: R (>= 4.0.0), ggplot2, RnaSeqSampleSizeData Imports: biomaRt,edgeR,heatmap3,matlab,KEGGREST,methods,grDevices, graphics, stats, Rcpp (>= 0.11.2),recount,ggpubr,SummarizedExperiment,tidyr,dplyr,tidyselect,utils LinkingTo: Rcpp Suggests: BiocStyle, knitr, testthat License: GPL (>= 2) MD5sum: 4be5717671e4e3becac1dd4e8479545b NeedsCompilation: yes Title: RnaSeqSampleSize Description: RnaSeqSampleSize package provides a sample size calculation method based on negative binomial model and the exact test for assessing differential expression analysis of RNA-seq data. It controls FDR for multiple testing and utilizes the average read count and dispersion distributions from real data to estimate a more reliable sample size. It is also equipped with several unique features, including estimation for interested genes or pathway, power curve visualization, and parameter optimization. biocViews: ImmunoOncology, ExperimentalDesign, Sequencing, RNASeq, GeneExpression, DifferentialExpression Author: Shilin Zhao Developer [aut, cre], Chung-I Li [aut], Yan Guo [aut], Quanhu Sheng [aut], Yu Shyr [aut] Maintainer: Shilin Zhao Developer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RnaSeqSampleSize git_branch: RELEASE_3_20 git_last_commit: 9e84c3b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RnaSeqSampleSize_2.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RnaSeqSampleSize_2.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RnaSeqSampleSize_2.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RnaSeqSampleSize_2.16.0.tgz vignettes: vignettes/RnaSeqSampleSize/inst/doc/RnaSeqSampleSize.pdf vignetteTitles: RnaSeqSampleSize: Sample size estimation by real data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RnaSeqSampleSize/inst/doc/RnaSeqSampleSize.R dependencyCount: 203 Package: RnBeads Version: 2.24.0 Depends: R (>= 3.0.0), BiocGenerics, S4Vectors (>= 0.9.25), GenomicRanges, MASS, cluster, ff, fields, ggplot2 (>= 0.9.2), gplots, grid, gridExtra, limma, matrixStats, methods, illuminaio, methylumi, plyr Imports: IRanges Suggests: Category, GOstats, Gviz, IlluminaHumanMethylation450kmanifest, RPMM, RnBeads.hg19, RnBeads.mm9, RnBeads.hg38, XML, annotate, biomaRt, foreach, doParallel, ggbio, isva, mclust, mgcv, minfi, nlme, org.Hs.eg.db, org.Mm.eg.db, org.Rn.eg.db, quadprog, rtracklayer, qvalue, sva, wateRmelon, wordcloud, qvalue, argparse, glmnet, IlluminaHumanMethylation450kanno.ilmn12.hg19, scales, missMethyl, impute, shiny, shinyjs, plotrix, hexbin, RUnit, MethylSeekR, sesame License: GPL-3 MD5sum: a59434a7e62b7cd71c227eefac1c3c36 NeedsCompilation: no Title: RnBeads Description: RnBeads facilitates comprehensive analysis of various types of DNA methylation data at the genome scale. biocViews: DNAMethylation, MethylationArray, MethylSeq, Epigenetics, QualityControl, Preprocessing, BatchEffect, DifferentialMethylation, Sequencing, CpGIsland, ImmunoOncology, TwoChannel, DataImport Author: Yassen Assenov [aut], Christoph Bock [aut], Pavlo Lutsik [aut], Michael Scherer [aut], Fabian Mueller [aut, cre] Maintainer: Fabian Mueller git_url: https://git.bioconductor.org/packages/RnBeads git_branch: RELEASE_3_20 git_last_commit: a6b1698 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RnBeads_2.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RnBeads_2.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RnBeads_2.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RnBeads_2.24.0.tgz vignettes: vignettes/RnBeads/inst/doc/RnBeads_Annotations.pdf, vignettes/RnBeads/inst/doc/RnBeads.pdf vignetteTitles: RnBeads Annotation, Comprehensive DNA Methylation Analysis with RnBeads hasREADME: TRUE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RnBeads/inst/doc/RnBeads_Annotations.R, vignettes/RnBeads/inst/doc/RnBeads.R dependsOnMe: MAGAR suggestsMe: RnBeads.hg19, RnBeads.hg38, RnBeads.mm10, RnBeads.mm9, RnBeads.rn5 dependencyCount: 171 Package: Rnits Version: 1.40.0 Depends: R (>= 3.6.0), Biobase, ggplot2, limma, methods Imports: affy, boot, impute, splines, graphics, qvalue, reshape2 Suggests: BiocStyle, knitr, GEOquery, stringr License: GPL-3 MD5sum: a2800d06ff629ccdf2f4eaaca7f9068e NeedsCompilation: no Title: R Normalization and Inference of Time Series data Description: R/Bioconductor package for normalization, curve registration and inference in time course gene expression data. biocViews: GeneExpression, Microarray, TimeCourse, DifferentialExpression, Normalization Author: Dipen P. Sangurdekar Maintainer: Dipen P. Sangurdekar VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Rnits git_branch: RELEASE_3_20 git_last_commit: b91bcc9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rnits_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rnits_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rnits_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rnits_1.40.0.tgz vignettes: vignettes/Rnits/inst/doc/Rnits-vignette.pdf vignetteTitles: R/Bioconductor package for normalization and differential expression inference in time series gene expression microarray data. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rnits/inst/doc/Rnits-vignette.R dependencyCount: 53 Package: roar Version: 1.42.0 Depends: R (>= 3.0.1) Imports: methods, BiocGenerics, S4Vectors, IRanges, GenomicRanges, SummarizedExperiment, GenomicAlignments (>= 0.99.4), rtracklayer, GenomeInfoDb Suggests: RNAseqData.HNRNPC.bam.chr14, testthat License: GPL-3 MD5sum: f4506037026e7ca7e2c64752290768cf NeedsCompilation: no Title: Identify differential APA usage from RNA-seq alignments Description: Identify preferential usage of APA sites, comparing two biological conditions, starting from known alternative sites and alignments obtained from standard RNA-seq experiments. biocViews: Sequencing, HighThroughputSequencing, RNAseq, Transcription Author: Elena Grassi Maintainer: Elena Grassi URL: https://github.com/vodkatad/roar/ git_url: https://git.bioconductor.org/packages/roar git_branch: RELEASE_3_20 git_last_commit: c672da9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/roar_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/roar_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/roar_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/roar_1.42.0.tgz vignettes: vignettes/roar/inst/doc/roar.pdf vignetteTitles: Identify differential APA usage from RNA-seq alignments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/roar/inst/doc/roar.R dependencyCount: 58 Package: roastgsa Version: 1.4.0 Depends: R (>= 4.3.0) Imports: parallel, grDevices, graphics, utils, stats, methods, grid, RColorBrewer, gplots, ggplot2, limma, Biobase Suggests: BiocStyle, knitr, rmarkdown, GSEABenchmarkeR, EnrichmentBrowser, preprocessCore, DESeq2 License: GPL-3 MD5sum: 082654cdda86a6de591abc1c71353c1c NeedsCompilation: no Title: Rotation based gene set analysis Description: This package implements a variety of functions useful for gene set analysis using rotations to approximate the null distribution. It contributes with the implementation of seven test statistic scores that can be used with different goals and interpretations. Several functions are available to complement the statistical results with graphical representations. biocViews: Microarray, Preprocessing, Normalization, GeneExpression, Survival, Transcription, Sequencing, Transcriptomics, Bayesian, Clustering, Regression, RNASeq, MicroRNAArray, mRNAMicroarray, FunctionalGenomics, SystemsBiology, ImmunoOncology, DifferentialExpression, GeneSetEnrichment, BatchEffect, MultipleComparison, QualityControl, TimeCourse, Metabolomics, Proteomics, Epigenetics, Cheminformatics, ExonArray, OneChannel, TwoChannel, ProprietaryPlatforms, CellBiology, BiomedicalInformatics, AlternativeSplicing, DifferentialSplicing, DataImport, Pathways Author: Adria Caballe [aut, cre] () Maintainer: Adria Caballe VignetteBuilder: knitr BugReports: https://github.com/adricaba/roastgsa/issues git_url: https://git.bioconductor.org/packages/roastgsa git_branch: RELEASE_3_20 git_last_commit: c7de156 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/roastgsa_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/roastgsa_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/roastgsa_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/roastgsa_1.4.0.tgz vignettes: vignettes/roastgsa/inst/doc/roastgsaExample_genesetcollections.html, vignettes/roastgsa/inst/doc/roastgsaExample_main.html, vignettes/roastgsa/inst/doc/roastgsaExample_RNAseq.html vignetteTitles: roastgsa vignette (gene set collections), roastgsa vignette (main), roastgsa vignette (RNAseq) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/roastgsa/inst/doc/roastgsaExample_genesetcollections.R, vignettes/roastgsa/inst/doc/roastgsaExample_main.R, vignettes/roastgsa/inst/doc/roastgsaExample_RNAseq.R dependencyCount: 45 Package: ROC Version: 1.82.0 Depends: R (>= 1.9.0), utils, methods Imports: knitr Suggests: rmarkdown, Biobase, BiocStyle License: Artistic-2.0 Archs: x64 MD5sum: 4a2c9c81127df2c4fd0f6e2008462919 NeedsCompilation: yes Title: utilities for ROC, with microarray focus Description: Provide utilities for ROC, with microarray focus. biocViews: DifferentialExpression Author: Vince Carey , Henning Redestig for C++ language enhancements Maintainer: Vince Carey URL: http://www.bioconductor.org VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ROC git_branch: RELEASE_3_20 git_last_commit: dc67803 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ROC_1.82.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ROC_1.82.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ROC_1.82.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ROC_1.82.0.tgz vignettes: vignettes/ROC/inst/doc/ROCnotes.html vignetteTitles: Notes on ROC package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: TCC, wateRmelon importsMe: clst suggestsMe: genefilter dependencyCount: 10 Package: ROCpAI Version: 1.18.0 Depends: boot, SummarizedExperiment, fission, knitr, methods Suggests: BiocStyle, knitr, rmarkdown License: GPL-3 MD5sum: 6216b95550c42c30ecd534b136a38272 NeedsCompilation: no Title: Receiver Operating Characteristic Partial Area Indexes for evaluating classifiers Description: The package analyzes the Curve ROC, identificates it among different types of Curve ROC and calculates the area under de curve through the method that is most accuracy. This package is able to standarizate proper and improper pAUC. biocViews: Software, StatisticalMethod, Classification Author: Juan-Pedro Garcia [aut, cre], Manuel Franco [aut], Juana-María Vivo [aut] Maintainer: Juan-Pedro Garcia VignetteBuilder: knitr BugReports: https://github.com/juanpegarcia/ROCpAI/tree/master/issues git_url: https://git.bioconductor.org/packages/ROCpAI git_branch: RELEASE_3_20 git_last_commit: 5e7eba5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-08 source.ver: src/contrib/ROCpAI_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ROCpAI_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ROCpAI_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ROCpAI_1.18.0.tgz vignettes: vignettes/ROCpAI/inst/doc/vignettes.html vignetteTitles: ROC Partial Area Indexes for evaluating classifiers hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ROCpAI/inst/doc/vignettes.R dependencyCount: 43 Package: RolDE Version: 1.10.0 Depends: R (>= 4.2.0) Imports: stats, methods, ROTS, matrixStats, foreach, parallel, doParallel, doRNG, rngtools, SummarizedExperiment, nlme, qvalue, grDevices, graphics, utils Suggests: knitr, printr, rmarkdown, testthat License: GPL-3 MD5sum: 36d0e8d7a7ed59c691e8ca4312cf0478 NeedsCompilation: no Title: RolDE: Robust longitudinal Differential Expression Description: RolDE detects longitudinal differential expression between two conditions in noisy high-troughput data. Suitable even for data with a moderate amount of missing values.RolDE is a composite method, consisting of three independent modules with different approaches to detecting longitudinal differential expression. The combination of these diverse modules allows RolDE to robustly detect varying differences in longitudinal trends and expression levels in diverse data types and experimental settings. biocViews: StatisticalMethod, Software, TimeCourse, Regression, Proteomics, DifferentialExpression Author: Tommi Valikangas [aut], Medical Bioinformatics Centre [cre] Maintainer: Medical Bioinformatics Centre URL: https://github.com/elolab/RolDE VignetteBuilder: knitr BugReports: https://github.com/elolab/RolDE/issues git_url: https://git.bioconductor.org/packages/RolDE git_branch: RELEASE_3_20 git_last_commit: 64a13b1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RolDE_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RolDE_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RolDE_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RolDE_1.10.0.tgz vignettes: vignettes/RolDE/inst/doc/Introduction.html vignetteTitles: Introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RolDE/inst/doc/Introduction.R dependencyCount: 77 Package: rols Version: 3.2.0 Depends: methods Imports: httr2, jsonlite, utils, Biobase, BiocGenerics (>= 0.23.1) Suggests: GO.db, knitr (>= 1.1.0), BiocStyle (>= 2.5.19), testthat, lubridate, DT, rmarkdown, License: GPL-2 MD5sum: adf7e2ebfb9e1cc9d449a606aaa9768c NeedsCompilation: no Title: An R interface to the Ontology Lookup Service Description: The rols package is an interface to the Ontology Lookup Service (OLS) to access and query hundred of ontolgies directly from R. biocViews: ImmunoOncology, Software, Annotation, MassSpectrometry, GO Author: Laurent Gatto [aut, cre] (), Tiage Chedraoui Silva [ctb], Andrew Clugston [ctb] Maintainer: Laurent Gatto URL: http://lgatto.github.io/rols/ VignetteBuilder: knitr BugReports: https://github.com/lgatto/rols/issues git_url: https://git.bioconductor.org/packages/rols git_branch: RELEASE_3_20 git_last_commit: c2cf419 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rols_3.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rols_3.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rols_3.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rols_3.2.0.tgz vignettes: vignettes/rols/inst/doc/rols.html vignetteTitles: An R interface to the Ontology Lookup Service hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rols/inst/doc/rols.R importsMe: OmicsMLRepoR, struct suggestsMe: MSnbase, spatialHeatmap, RforProteomics dependencyCount: 22 Package: ROntoTools Version: 2.34.0 Depends: methods, graph, boot, KEGGREST, KEGGgraph, Rgraphviz Suggests: RUnit, BiocGenerics License: CC BY-NC-ND 4.0 + file LICENSE MD5sum: ebc83d02dc550f9673920bf52ee6ee1b NeedsCompilation: no Title: R Onto-Tools suite Description: Suite of tools for functional analysis. biocViews: NetworkAnalysis, Microarray, GraphsAndNetworks Author: Calin Voichita and Sahar Ansari and Sorin Draghici Maintainer: Sorin Draghici git_url: https://git.bioconductor.org/packages/ROntoTools git_branch: RELEASE_3_20 git_last_commit: 0414b53 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ROntoTools_2.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ROntoTools_2.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ROntoTools_2.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ROntoTools_2.34.0.tgz vignettes: vignettes/ROntoTools/inst/doc/rontotools.pdf vignetteTitles: ROntoTools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ROntoTools/inst/doc/rontotools.R dependsOnMe: BLMA suggestsMe: RCPA dependencyCount: 35 Package: ropls Version: 1.38.0 Depends: R (>= 3.5.0) Imports: Biobase, ggplot2, graphics, grDevices, methods, plotly, stats, MultiAssayExperiment, MultiDataSet, SummarizedExperiment, utils Suggests: BiocGenerics, BiocStyle, knitr, multtest, omicade4, phenomis, rmarkdown, testthat License: CeCILL Archs: x64 MD5sum: e7e220266bf229dcbf1e8e18d0afe28c NeedsCompilation: no Title: PCA, PLS(-DA) and OPLS(-DA) for multivariate analysis and feature selection of omics data Description: Latent variable modeling with Principal Component Analysis (PCA) and Partial Least Squares (PLS) are powerful methods for visualization, regression, classification, and feature selection of omics data where the number of variables exceeds the number of samples and with multicollinearity among variables. Orthogonal Partial Least Squares (OPLS) enables to separately model the variation correlated (predictive) to the factor of interest and the uncorrelated (orthogonal) variation. While performing similarly to PLS, OPLS facilitates interpretation. Successful applications of these chemometrics techniques include spectroscopic data such as Raman spectroscopy, nuclear magnetic resonance (NMR), mass spectrometry (MS) in metabolomics and proteomics, but also transcriptomics data. In addition to scores, loadings and weights plots, the package provides metrics and graphics to determine the optimal number of components (e.g. with the R2 and Q2 coefficients), check the validity of the model by permutation testing, detect outliers, and perform feature selection (e.g. with Variable Importance in Projection or regression coefficients). The package can be accessed via a user interface on the Workflow4Metabolomics.org online resource for computational metabolomics (built upon the Galaxy environment). biocViews: Regression, Classification, PrincipalComponent, Transcriptomics, Proteomics, Metabolomics, Lipidomics, MassSpectrometry, ImmunoOncology Author: Etienne A. Thevenot [aut, cre] () Maintainer: Etienne A. Thevenot URL: https://doi.org/10.1021/acs.jproteome.5b00354 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ropls git_branch: RELEASE_3_20 git_last_commit: 8d16302 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ropls_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ropls_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ropls_1.38.0.tgz vignettes: vignettes/ropls/inst/doc/ropls-vignette.html vignetteTitles: ropls-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ropls/inst/doc/ropls-vignette.R importsMe: ASICS, biosigner, lipidr, MultiBaC, phenomis suggestsMe: autonomics, ptairMS, structToolbox, MetabolomicsBasics dependencyCount: 105 Package: ROSeq Version: 1.18.0 Depends: R (>= 4.0) Imports: pbmcapply, edgeR, limma Suggests: knitr, rmarkdown, testthat, RUnit, BiocGenerics License: GPL-3 MD5sum: c8bf453697a193df2e041152c9e64b2b NeedsCompilation: no Title: Modeling expression ranks for noise-tolerant differential expression analysis of scRNA-Seq data Description: ROSeq - A rank based approach to modeling gene expression with filtered and normalized read count matrix. ROSeq takes filtered and normalized read matrix and cell-annotation/condition as input and determines the differentially expressed genes between the contrasting groups of single cells. One of the input parameters is the number of cores to be used. biocViews: GeneExpression, DifferentialExpression, SingleCell Author: Krishan Gupta [aut, cre], Manan Lalit [aut], Aditya Biswas [aut], Abhik Ghosh [aut], Debarka Sengupta [aut] Maintainer: Krishan Gupta URL: https://github.com/krishan57gupta/ROSeq VignetteBuilder: knitr BugReports: https://github.com/krishan57gupta/ROSeq/issues git_url: https://git.bioconductor.org/packages/ROSeq git_branch: RELEASE_3_20 git_last_commit: 08d3a67 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ROSeq_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ROSeq_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ROSeq_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ROSeq_1.18.0.tgz vignettes: vignettes/ROSeq/inst/doc/ROSeq.html vignetteTitles: ROSeq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ROSeq/inst/doc/ROSeq.R dependencyCount: 13 Package: ROTS Version: 1.34.0 Depends: R (>= 3.3) Imports: Rcpp, stats, Biobase, methods LinkingTo: Rcpp Suggests: testthat License: GPL (>= 2) MD5sum: 4f180993ef115cb9c6e7f1f27b64d0ef NeedsCompilation: yes Title: Reproducibility-Optimized Test Statistic Description: Calculates the Reproducibility-Optimized Test Statistic (ROTS) for differential testing in omics data. biocViews: Software, GeneExpression, DifferentialExpression, Microarray, RNASeq, Proteomics, ImmunoOncology Author: Fatemeh Seyednasrollah, Tomi Suomi, Laura L. Elo Maintainer: Tomi Suomi git_url: https://git.bioconductor.org/packages/ROTS git_branch: RELEASE_3_20 git_last_commit: 3223131 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ROTS_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ROTS_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ROTS_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ROTS_1.34.0.tgz vignettes: vignettes/ROTS/inst/doc/ROTS.pdf vignetteTitles: ROTS: Reproducibility Optimized Test Statistic hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ROTS/inst/doc/ROTS.R importsMe: PECA, PRONE, RolDE suggestsMe: wrProteo dependencyCount: 7 Package: RPA Version: 1.62.0 Depends: R (>= 3.1.1), affy, BiocGenerics, BiocStyle, methods, rmarkdown Imports: phyloseq Suggests: knitr, parallel License: BSD_2_clause + file LICENSE MD5sum: caac0a78a269db4b0e272e18ca8ddb0f NeedsCompilation: no Title: RPA: Robust Probabilistic Averaging for probe-level analysis Description: Probabilistic analysis of probe reliability and differential gene expression on short oligonucleotide arrays. biocViews: GeneExpression, Microarray, Preprocessing, QualityControl Author: Leo Lahti [aut, cre] () Maintainer: Leo Lahti URL: https://github.com/antagomir/RPA VignetteBuilder: knitr BugReports: https://github.com/antagomir/RPA git_url: https://git.bioconductor.org/packages/RPA git_branch: RELEASE_3_20 git_last_commit: 202ff51 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RPA_1.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RPA_1.62.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RPA_1.62.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RPA_1.62.0.tgz vignettes: vignettes/RPA/inst/doc/RPA.html vignetteTitles: RPA R package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE dependsOnMe: prebs dependencyCount: 107 Package: rprimer Version: 1.10.0 Depends: R (>= 4.1) Imports: Biostrings, bslib, DT, ggplot2, IRanges, mathjaxr, methods, patchwork, reshape2, S4Vectors, shiny, shinycssloaders, shinyFeedback Suggests: BiocStyle, covr, kableExtra, knitr, rmarkdown, styler, testthat (>= 3.0.0) License: GPL-3 MD5sum: 644134f1fa3fa1f38156cbbae27ef3f4 NeedsCompilation: no Title: Design Degenerate Oligos from a Multiple DNA Sequence Alignment Description: Functions, workflow, and a Shiny application for visualizing sequence conservation and designing degenerate primers, probes, and (RT)-(q/d)PCR assays from a multiple DNA sequence alignment. The results can be presented in data frame format and visualized as dashboard-like plots. For more information, please see the package vignette. biocViews: Alignment, ddPCR, Coverage, MultipleSequenceAlignment, SequenceMatching, qPCR Author: Sofia Persson [aut, cre] () Maintainer: Sofia Persson URL: https://github.com/sofpn/rprimer VignetteBuilder: knitr BugReports: https://github.com/sofpn/rprimer/issues git_url: https://git.bioconductor.org/packages/rprimer git_branch: RELEASE_3_20 git_last_commit: 1bcb0e4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rprimer_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rprimer_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rprimer_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rprimer_1.10.0.tgz vignettes: vignettes/rprimer/inst/doc/getting-started-with-rprimer.html vignetteTitles: Instructions for use hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rprimer/inst/doc/getting-started-with-rprimer.R dependencyCount: 93 Package: RProtoBufLib Version: 2.18.0 Suggests: knitr, rmarkdown License: BSD_3_clause MD5sum: 7de7917bb81b2f16b83661795e3f13bd NeedsCompilation: yes Title: C++ headers and static libraries of Protocol buffers Description: This package provides the headers and static library of Protocol buffers for other R packages to compile and link against. biocViews: Infrastructure Author: Mike Jiang Maintainer: Mike Jiang SystemRequirements: GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RProtoBufLib git_branch: RELEASE_3_20 git_last_commit: f4b0679 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RProtoBufLib_2.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RProtoBufLib_2.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RProtoBufLib_2.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RProtoBufLib_2.18.0.tgz vignettes: vignettes/RProtoBufLib/inst/doc/UsingRProtoBufLib.html vignetteTitles: Using RProtoBufLib hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: TRUE Rfiles: vignettes/RProtoBufLib/inst/doc/UsingRProtoBufLib.R importsMe: cytolib, flowWorkspace linksToMe: cytolib, CytoML, flowCore, flowWorkspace dependencyCount: 0 Package: rpx Version: 2.14.0 Depends: R (>= 3.5.0), methods Imports: BiocFileCache, jsonlite, xml2, RCurl, curl, utils Suggests: Biostrings, BiocStyle, testthat, knitr, tibble, rmarkdown License: GPL-2 MD5sum: 24126081958186fa31a3f70954627ab1 NeedsCompilation: no Title: R Interface to the ProteomeXchange Repository Description: The rpx package implements an interface to proteomics data submitted to the ProteomeXchange consortium. biocViews: ImmunoOncology, Proteomics, MassSpectrometry, DataImport, ThirdPartyClient Author: Laurent Gatto Maintainer: Laurent Gatto URL: https://github.com/lgatto/rpx VignetteBuilder: knitr BugReports: https://github.com/lgatto/rpx/issues git_url: https://git.bioconductor.org/packages/rpx git_branch: RELEASE_3_20 git_last_commit: 16995b2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rpx_2.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rpx_2.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rpx_2.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rpx_2.14.0.tgz vignettes: vignettes/rpx/inst/doc/rpx.html vignetteTitles: An R interface to the ProteomeXchange repository hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rpx/inst/doc/rpx.R suggestsMe: MsExperiment, MSnbase, PSMatch, RforProteomics dependencyCount: 49 Package: Rqc Version: 1.40.0 Depends: BiocParallel, ShortRead, ggplot2 Imports: BiocGenerics (>= 0.25.1), Biostrings, IRanges, methods, S4Vectors, knitr (>= 1.7), BiocStyle, plyr, markdown, grid, reshape2, Rcpp (>= 0.11.6), biovizBase, shiny, Rsamtools, GenomicAlignments, GenomicFiles LinkingTo: Rcpp Suggests: rmarkdown, testthat License: GPL (>= 2) Archs: x64 MD5sum: d7c52435ef38a762bdf10bc88b2a84d5 NeedsCompilation: yes Title: Quality Control Tool for High-Throughput Sequencing Data Description: Rqc is an optimised tool designed for quality control and assessment of high-throughput sequencing data. It performs parallel processing of entire files and produces a report which contains a set of high-resolution graphics. biocViews: Sequencing, QualityControl, DataImport Author: Welliton Souza, Benilton Carvalho Maintainer: Welliton Souza URL: https://github.com/labbcb/Rqc VignetteBuilder: knitr BugReports: https://github.com/labbcb/Rqc/issues git_url: https://git.bioconductor.org/packages/Rqc git_branch: RELEASE_3_20 git_last_commit: 956d2d1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rqc_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rqc_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rqc_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rqc_1.40.0.tgz vignettes: vignettes/Rqc/inst/doc/Rqc.html vignetteTitles: Using Rqc hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rqc/inst/doc/Rqc.R dependencyCount: 159 Package: rqt Version: 1.32.0 Depends: R (>= 3.4), SummarizedExperiment Imports: stats,Matrix,ropls,methods,car,RUnit,metap,CompQuadForm,glmnet,utils,pls Suggests: BiocStyle, knitr, rmarkdown License: GPL MD5sum: b9852546c427e3c9beab93ca0cbd28a9 NeedsCompilation: no Title: rqt: utilities for gene-level meta-analysis Description: Despite the recent advances of modern GWAS methods, it still remains an important problem of addressing calculation an effect size and corresponding p-value for the whole gene rather than for single variant. The R- package rqt offers gene-level GWAS meta-analysis. For more information, see: "Gene-set association tests for next-generation sequencing data" by Lee et al (2016), Bioinformatics, 32(17), i611-i619, . biocViews: GenomeWideAssociation, Regression, Survival, PrincipalComponent, StatisticalMethod, Sequencing Author: Ilya Zhbannikov [aut, cre], Konstantin Arbeev [aut], Anatoliy Yashin [aut] Maintainer: Ilya Zhbannikov URL: https://github.com/izhbannikov/rqt VignetteBuilder: knitr BugReports: https://github.com/izhbannikov/rqt/issues git_url: https://git.bioconductor.org/packages/rqt git_branch: RELEASE_3_20 git_last_commit: 2cb8668 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rqt_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rqt_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rqt_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rqt_1.32.0.tgz vignettes: vignettes/rqt/inst/doc/rqt-vignette.html vignetteTitles: Tutorial for rqt package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rqt/inst/doc/rqt-vignette.R dependencyCount: 155 Package: rqubic Version: 1.52.0 Imports: methods, Biobase, BiocGenerics, biclust Suggests: RColorBrewer License: GPL-2 MD5sum: d40e52edf078a301d33df897d1d77b48 NeedsCompilation: yes Title: Qualitative biclustering algorithm for expression data analysis in R Description: This package implements the QUBIC algorithm introduced by Li et al. for the qualitative biclustering with gene expression data. biocViews: Clustering Author: Jitao David Zhang [aut, cre, ctb] () Maintainer: Jitao David Zhang git_url: https://git.bioconductor.org/packages/rqubic git_branch: RELEASE_3_20 git_last_commit: abfcca8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rqubic_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rqubic_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rqubic_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rqubic_1.52.0.tgz vignettes: vignettes/rqubic/inst/doc/rqubic.pdf vignetteTitles: Qualitative Biclustering with Bioconductor Package rqubic hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rqubic/inst/doc/rqubic.R importsMe: miRSM suggestsMe: RcmdrPlugin.BiclustGUI dependencyCount: 53 Package: rRDP Version: 1.40.0 Depends: Biostrings (>= 2.26.2) Imports: rJava, utils Suggests: rRDPData, knitr, rmarkdown License: GPL-2 + file LICENSE Archs: x64 MD5sum: 2dc3e7d6baa2781859dbf38bc08ecbc5 NeedsCompilation: no Title: Interface to the RDP Classifier Description: This package installs and interfaces the naive Bayesian classifier for 16S rRNA sequences developed by the Ribosomal Database Project (RDP). With this package the classifier trained with the standard training set can be used or a custom classifier can be trained. biocViews: Genetics, Sequencing, Infrastructure, Classification, Microbiome, ImmunoOncology, Alignment, SequenceMatching, DataImport, Bayesian Author: Michael Hahsler [aut, cre] (), Nagar Anurag [aut] Maintainer: Michael Hahsler URL: https://github.com/mhahsler/rRDP/ SystemRequirements: Java JDK 1.4 or higher VignetteBuilder: knitr BugReports: https://github.com/mhahsler/rRDP/issues git_url: https://git.bioconductor.org/packages/rRDP git_branch: RELEASE_3_20 git_last_commit: 6e97eac git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rRDP_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rRDP_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rRDP_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rRDP_1.40.0.tgz vignettes: vignettes/rRDP/inst/doc/rRDP.html vignetteTitles: rRDP: Interface to the RDP Classifier hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/rRDP/inst/doc/rRDP.R dependsOnMe: rRDPData dependencyCount: 26 Package: RRHO Version: 1.46.0 Depends: R (>= 2.10), grid Imports: VennDiagram Suggests: lattice License: GPL-2 MD5sum: acd367fc75b3b57bf9d3f14e55dcc043 NeedsCompilation: no Title: Inference on agreement between ordered lists Description: The package is aimed at inference on the amount of agreement in two sorted lists using the Rank-Rank Hypergeometric Overlap test. biocViews: Genetics, SequenceMatching, Microarray, Transcription Author: Jonathan Rosenblatt and Jason Stein Maintainer: Jonathan Rosenblatt git_url: https://git.bioconductor.org/packages/RRHO git_branch: RELEASE_3_20 git_last_commit: ff3a12a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RRHO_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RRHO_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RRHO_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RRHO_1.46.0.tgz vignettes: vignettes/RRHO/inst/doc/RRHO.pdf vignetteTitles: RRHO hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RRHO/inst/doc/RRHO.R dependencyCount: 8 Package: rrvgo Version: 1.18.0 Imports: GOSemSim, AnnotationDbi, GO.db, pheatmap, ggplot2, ggrepel, treemap, tm, wordcloud, shiny, grDevices, grid, stats, methods, umap Suggests: knitr, rmarkdown, BiocStyle, testthat (>= 2.1.0), shinydashboard, DT, plotly, heatmaply, magrittr, utils, clusterProfiler, DOSE, slam, org.Ag.eg.db, org.At.tair.db, org.Bt.eg.db, org.Ce.eg.db, org.Cf.eg.db, org.Dm.eg.db, org.Dr.eg.db, org.EcK12.eg.db, org.EcSakai.eg.db, org.Gg.eg.db, org.Hs.eg.db, org.Mm.eg.db, org.Mmu.eg.db, org.Pt.eg.db, org.Rn.eg.db, org.Sc.sgd.db, org.Ss.eg.db, org.Xl.eg.db License: GPL-3 Archs: x64 MD5sum: 55c4e9d1f6bed0a9ca671085def08cb7 NeedsCompilation: no Title: Reduce + Visualize GO Description: Reduce and visualize lists of Gene Ontology terms by identifying redudance based on semantic similarity. biocViews: Annotation, Clustering, GO, Network, Pathways, Software Author: Sergi Sayols [aut, cre], Sara Elmeligy [ctb] Maintainer: Sergi Sayols URL: https://www.bioconductor.org/packages/rrvgo, https://ssayols.github.io/rrvgo/index.html VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/rrvgo git_branch: RELEASE_3_20 git_last_commit: dd25aab git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rrvgo_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rrvgo_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rrvgo_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rrvgo_1.18.0.tgz vignettes: vignettes/rrvgo/inst/doc/rrvgo.html vignetteTitles: Using rrvgo hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/rrvgo/inst/doc/rrvgo.R suggestsMe: genekitr, scDiffCom dependencyCount: 111 Package: Rsamtools Version: 2.22.0 Depends: methods, GenomeInfoDb (>= 1.1.3), GenomicRanges (>= 1.31.8), Biostrings (>= 2.47.6), R (>= 3.5.0) Imports: utils, BiocGenerics (>= 0.25.1), S4Vectors (>= 0.17.25), IRanges (>= 2.13.12), XVector (>= 0.19.7), zlibbioc, bitops, BiocParallel, stats LinkingTo: Rhtslib (>= 2.99.1), S4Vectors, IRanges, XVector, Biostrings Suggests: GenomicAlignments, ShortRead (>= 1.19.10), GenomicFeatures, TxDb.Dmelanogaster.UCSC.dm3.ensGene, TxDb.Hsapiens.UCSC.hg18.knownGene, RNAseqData.HNRNPC.bam.chr14, BSgenome.Hsapiens.UCSC.hg19, RUnit, BiocStyle, knitr License: Artistic-2.0 | file LICENSE MD5sum: a2863f9fd8439f30148428b1f2f20714 NeedsCompilation: yes Title: Binary alignment (BAM), FASTA, variant call (BCF), and tabix file import Description: This package provides an interface to the 'samtools', 'bcftools', and 'tabix' utilities for manipulating SAM (Sequence Alignment / Map), FASTA, binary variant call (BCF) and compressed indexed tab-delimited (tabix) files. biocViews: DataImport, Sequencing, Coverage, Alignment, QualityControl Author: Martin Morgan [aut], Hervé Pagès [aut], Valerie Obenchain [aut], Nathaniel Hayden [aut], Busayo Samuel [ctb] (Converted Rsamtools vignette from Sweave to RMarkdown / HTML.), Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer URL: https://bioconductor.org/packages/Rsamtools SystemRequirements: GNU make VignetteBuilder: knitr Video: https://www.youtube.com/watch?v=Rfon-DQYbWA&list=UUqaMSQd_h-2EDGsU6WDiX0Q BugReports: https://github.com/Bioconductor/Rsamtools/issues git_url: https://git.bioconductor.org/packages/Rsamtools git_branch: RELEASE_3_20 git_last_commit: 9c5d473 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rsamtools_2.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rsamtools_2.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rsamtools_2.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rsamtools_2.22.0.tgz vignettes: vignettes/Rsamtools/inst/doc/Rsamtools-Overview.html vignetteTitles: An Introduction to Rsamtools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Rsamtools/inst/doc/Rsamtools-Overview.R dependsOnMe: CODEX, CoverageView, esATAC, FRASER, GenomicAlignments, GenomicFiles, girafe, gmapR, HelloRanges, IntEREst, MEDIPS, methylPipe, MMDiff2, podkat, r3Cseq, RepViz, RiboDiPA, SCOPE, SGSeq, ShortRead, SICtools, SNPhood, spiky, ssviz, systemPipeR, TEQC, VariantAnnotation, wavClusteR, leeBamViews, TBX20BamSubset, sequencing, csawBook importsMe: alabaster.files, alabaster.vcf, AllelicImbalance, AneuFinder, annmap, AnnotationHubData, APAlyzer, appreci8R, ASpli, ATACseqQC, ATACseqTFEA, atena, BadRegionFinder, bambu, BBCAnalyzer, biovizBase, biscuiteer, breakpointR, BSgenome, CAGEr, casper, CellBarcode, cellbaseR, CexoR, cfdnakit, cfDNAPro, chimeraviz, ChIPexoQual, ChIPpeakAnno, ChIPQC, ChromSCape, chromstaR, chromVAR, CircSeqAlignTk, CleanUpRNAseq, cn.mops, CNVfilteR, CNVPanelizer, CNVrd2, compEpiTools, consensusDE, CopyNumberPlots, CrispRVariants, csaw, CSSQ, customProDB, DAMEfinder, Damsel, DegNorm, derfinder, DEXSeq, DiffBind, diffHic, DNAfusion, easyRNASeq, EDASeq, ensembldb, epigenomix, epigraHMM, eudysbiome, extraChIPs, FilterFFPE, FLAMES, gcapc, gDNAx, GeneGeneInteR, genomation, GenomicAlignments, GenomicInteractions, GenomicPlot, GenVisR, ggbio, gmoviz, GOTHiC, GreyListChIP, GUIDEseq, Gviz, h5vc, icetea, IMAS, INSPEcT, karyoploteR, MADSEQ, magpie, MDTS, metagene2, metaseqR2, methylKit, mosaics, motifmatchr, msgbsR, NADfinder, NanoMethViz, nearBynding, nucleR, ORFik, panelcn.mops, PICS, plyranges, pram, profileplyr, PureCN, QDNAseq, qsea, QuasR, R453Plus1Toolbox, raer, ramwas, Rbowtie2, recoup, Repitools, rfPred, RiboProfiling, riboSeqR, ribosomeProfilingQC, RNAmodR, Rqc, rtracklayer, scDblFinder, scPipe, scRNAseqApp, scruff, segmentSeq, seqsetvis, SimFFPE, sitadela, soGGi, SplicingGraphs, strandCheckR, tadar, TCseq, TFutils, tracktables, trackViewer, transcriptR, TRESS, tRNAscanImport, TVTB, UMI4Cats, uncoverappLib, VariantFiltering, VariantTools, VaSP, VCFArray, VplotR, ZygosityPredictor, chipseqDBData, gDNAinRNAseqData, LungCancerLines, MetaScope, raerdata, GenoPop, hoardeR, iimi, kibior, MAAPER, MicroSEC, NIPTeR, noisyr, PlasmaMutationDetector, PlasmaMutationDetector2, revert, scPloidy, Signac, umiAnalyzer, VALERIE suggestsMe: AnnotationHub, bamsignals, BaseSpaceR, BiocGenerics, BiocParallel, biomvRCNS, BSgenomeForge, Chicago, epivizrChart, gage, GenomeInfoDb, GenomicDataCommons, GenomicFeatures, GenomicRanges, gwascat, HIBAG, igvShiny, IRanges, ldblock, MOSim, MungeSumstats, omicsPrint, RNAmodR.ML, SeqArray, SigFuge, similaRpeak, Streamer, TENxIO, GeuvadisTranscriptExpr, NanoporeRNASeq, parathyroidSE, systemPipeRdata, chipseqDB, karyotapR, polyRAD, seqmagick dependencyCount: 38 Package: rsbml Version: 2.64.0 Depends: R (>= 2.6.0), BiocGenerics (>= 0.3.2), methods, utils Imports: BiocGenerics, graph, utils License: Artistic-2.0 Archs: x64 MD5sum: c0f210dcdea4192cd5745ff9813b1a5b NeedsCompilation: yes Title: R support for SBML, using libsbml Description: Links R to libsbml for SBML parsing, validating output, provides an S4 SBML DOM, converts SBML to R graph objects. Optionally links to the SBML ODE Solver Library (SOSLib) for simulating models. biocViews: GraphAndNetwork, Pathways, Network Author: Michael Lawrence Maintainer: Michael Lawrence URL: http://www.sbml.org SystemRequirements: libsbml (==5.10.2) git_url: https://git.bioconductor.org/packages/rsbml git_branch: RELEASE_3_20 git_last_commit: 15f8a4c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rsbml_2.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rsbml_2.64.0.zip vignettes: vignettes/rsbml/inst/doc/quick-start.pdf vignetteTitles: Quick start for rsbml hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: FALSE Rfiles: vignettes/rsbml/inst/doc/quick-start.R dependsOnMe: BiGGR suggestsMe: piano, SBMLR, seeds dependencyCount: 7 Package: rScudo Version: 1.22.0 Depends: R (>= 3.6) Imports: methods, stats, igraph, stringr, grDevices, Biobase, S4Vectors, SummarizedExperiment, BiocGenerics Suggests: testthat, BiocStyle, knitr, rmarkdown, ALL, RCy3, caret, e1071, parallel, doParallel License: GPL-3 MD5sum: bfe6b848b97974bd3b093f5c0684b528 NeedsCompilation: no Title: Signature-based Clustering for Diagnostic Purposes Description: SCUDO (Signature-based Clustering for Diagnostic Purposes) is a rank-based method for the analysis of gene expression profiles for diagnostic and classification purposes. It is based on the identification of sample-specific gene signatures composed of the most up- and down-regulated genes for that sample. Starting from gene expression data, functions in this package identify sample-specific gene signatures and use them to build a graph of samples. In this graph samples are joined by edges if they have a similar expression profile, according to a pre-computed similarity matrix. The similarity between the expression profiles of two samples is computed using a method similar to GSEA. The graph of samples can then be used to perform community clustering or to perform supervised classification of samples in a testing set. biocViews: GeneExpression, DifferentialExpression, BiomedicalInformatics, Classification, Clustering, GraphAndNetwork, Network, Proteomics, Transcriptomics, SystemsBiology, FeatureExtraction Author: Matteo Ciciani [aut, cre], Thomas Cantore [aut], Enrica Colasurdo [ctb], Mario Lauria [ctb] Maintainer: Matteo Ciciani URL: https://github.com/Matteo-Ciciani/scudo VignetteBuilder: knitr BugReports: https://github.com/Matteo-Ciciani/scudo/issues git_url: https://git.bioconductor.org/packages/rScudo git_branch: RELEASE_3_20 git_last_commit: 2cce2b5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rScudo_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rScudo_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rScudo_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rScudo_1.22.0.tgz vignettes: vignettes/rScudo/inst/doc/rScudo-vignette.html vignetteTitles: Signature-based Clustering for Diagnostic Purposes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rScudo/inst/doc/rScudo-vignette.R dependencyCount: 47 Package: rsemmed Version: 1.16.0 Depends: R (>= 4.0), igraph Imports: methods, magrittr, stringr, dplyr Suggests: testthat, knitr, BiocStyle, rmarkdown License: Artistic-2.0 MD5sum: 61ec666b4025b52f5112dc4321fb1769 NeedsCompilation: no Title: An interface to the Semantic MEDLINE database Description: A programmatic interface to the Semantic MEDLINE database. It provides functions for searching the database for concepts and finding paths between concepts. Path searching can also be tailored to user specifications, such as placing restrictions on concept types and the type of link between concepts. It also provides functions for summarizing and visualizing those paths. biocViews: Software, Annotation, Pathways, SystemsBiology Author: Leslie Myint [aut, cre] () Maintainer: Leslie Myint URL: https://github.com/lmyint/rsemmed VignetteBuilder: knitr BugReports: https://github.com/lmyint/rsemmed/issues git_url: https://git.bioconductor.org/packages/rsemmed git_branch: RELEASE_3_20 git_last_commit: 513c0a2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rsemmed_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rsemmed_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rsemmed_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rsemmed_1.16.0.tgz vignettes: vignettes/rsemmed/inst/doc/rsemmed_user_guide.html vignetteTitles: rsemmed User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rsemmed/inst/doc/rsemmed_user_guide.R dependencyCount: 29 Package: RSeqAn Version: 1.26.0 Imports: Rcpp LinkingTo: Rcpp Suggests: knitr, rmarkdown, testthat License: BSD_3_clause + file LICENSE MD5sum: 41a1812a3db0e862af22935db17742a5 NeedsCompilation: yes Title: R SeqAn Description: Headers and some wrapper functions from the SeqAn C++ library for ease of usage in R. biocViews: Infrastructure, Software Author: August Guang [aut, cre] Maintainer: August Guang VignetteBuilder: knitr BugReports: https://github.com/compbiocore/RSeqAn/issues git_url: https://git.bioconductor.org/packages/RSeqAn git_branch: RELEASE_3_20 git_last_commit: 3e7ac01 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RSeqAn_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RSeqAn_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RSeqAn_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RSeqAn_1.26.0.tgz vignettes: vignettes/RSeqAn/inst/doc/first_example.html vignetteTitles: Introduction to Using RSeqAn hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/RSeqAn/inst/doc/first_example.R importsMe: qckitfastq linksToMe: qckitfastq dependencyCount: 3 Package: Rsubread Version: 2.20.0 Imports: grDevices, stats, utils, Matrix License: GPL (>=3) Archs: x64 MD5sum: ff51de2d85704503bda2039364d50130 NeedsCompilation: yes Title: Mapping, quantification and variant analysis of sequencing data Description: Alignment, quantification and analysis of RNA sequencing data (including both bulk RNA-seq and scRNA-seq) and DNA sequenicng data (including ATAC-seq, ChIP-seq, WGS, WES etc). Includes functionality for read mapping, read counting, SNP calling, structural variant detection and gene fusion discovery. Can be applied to all major sequencing techologies and to both short and long sequence reads. biocViews: Sequencing, Alignment, SequenceMatching, RNASeq, ChIPSeq, SingleCell, GeneExpression, GeneRegulation, Genetics, ImmunoOncology, SNP, GeneticVariability, Preprocessing, QualityControl, GenomeAnnotation, GeneFusionDetection, IndelDetection, VariantAnnotation, VariantDetection, MultipleSequenceAlignment Author: Wei Shi, Yang Liao and Gordon K Smyth with contributions from Jenny Dai Maintainer: Wei Shi , Yang Liao and Gordon K Smyth URL: http://bioconductor.org/packages/Rsubread git_url: https://git.bioconductor.org/packages/Rsubread git_branch: RELEASE_3_20 git_last_commit: 423e745 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rsubread_2.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rsubread_2.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rsubread_2.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rsubread_2.20.0.tgz vignettes: vignettes/Rsubread/inst/doc/Rsubread.pdf, vignettes/Rsubread/inst/doc/SubreadUsersGuide.pdf vignetteTitles: Rsubread Vignette, SubreadUsersGuide.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rsubread/inst/doc/Rsubread.R dependsOnMe: ExCluster importsMe: APAlyzer, CleanUpRNAseq, Damsel, diffUTR, dupRadar, FRASER, ribosomeProfilingQC, scPipe, scruff suggestsMe: autonomics, icetea, singleCellTK, SpliceWiz, tidybulk, MetaScope dependencyCount: 8 Package: RSVSim Version: 1.46.0 Depends: R (>= 3.5.0), Biostrings, GenomicRanges Imports: methods, IRanges, ShortRead Suggests: BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg19.masked, MASS, rtracklayer, pwalign License: LGPL-3 Archs: x64 MD5sum: 6f231fbeeb1e93359dee86530dfbd7e0 NeedsCompilation: no Title: RSVSim: an R/Bioconductor package for the simulation of structural variations Description: RSVSim is a package for the simulation of deletions, insertions, inversion, tandem-duplications and translocations of various sizes in any genome available as FASTA-file or BSgenome data package. SV breakpoints can be placed uniformly accross the whole genome, with a bias towards repeat regions and regions of high homology (for hg19) or at user-supplied coordinates. biocViews: Sequencing Author: Christoph Bartenhagen Maintainer: Christoph Bartenhagen git_url: https://git.bioconductor.org/packages/RSVSim git_branch: RELEASE_3_20 git_last_commit: 38de341 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RSVSim_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RSVSim_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RSVSim_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RSVSim_1.46.0.tgz vignettes: vignettes/RSVSim/inst/doc/vignette.pdf vignetteTitles: RSVSim: an R/Bioconductor package for the simulation of structural variations hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RSVSim/inst/doc/vignette.R dependencyCount: 63 Package: rSWeeP Version: 1.18.0 Depends: foreach, doParallel, parallel, Biostrings, methods, utils Imports: tools, stringi, Suggests: Rtsne, ape, Seurat, knitr, rmarkdown, tictoc, BiocStyle, testthat (>= 3.0.0) License: GPL (>= 2) MD5sum: e9f05e3b0bad39fefd41f1fa4692ee2a NeedsCompilation: no Title: Spaced Words Projection (SWeeP) Description: "Spaced Words Projection (SWeeP)" is a method for representing biological sequences using vectors preserving inter-sequence comparability. Author: Camila Pereira Perico [com, cre, aut, cph] (), Danrley Rafael Fernandes [aut], Mariane Gonçalves Kulik [aut] (), Júlia Formighieri Varaschin [aut], Camilla Reginatto de Pierri [aut] (), Ricardo Assunção Vialle [aut] (), Roberto Tadeu Raittz [aut, cph] () Maintainer: Camila P Perico VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/rSWeeP git_branch: RELEASE_3_20 git_last_commit: c7ca291 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rSWeeP_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rSWeeP_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rSWeeP_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rSWeeP_1.18.0.tgz vignettes: vignettes/rSWeeP/inst/doc/rSWeeP.html vignetteTitles: rSWeeP hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rSWeeP/inst/doc/rSWeeP.R dependencyCount: 31 Package: RTCA Version: 1.58.0 Depends: methods,stats,graphics,Biobase,RColorBrewer, gtools Suggests: xtable License: LGPL-3 MD5sum: 432ff93e50002d5471a2e8864a6e5f2a NeedsCompilation: no Title: Open-source toolkit to analyse data from xCELLigence System (RTCA) Description: Import, analyze and visualize data from Roche(R) xCELLigence RTCA systems. The package imports real-time cell electrical impedance data into R. As an alternative to commercial software shipped along the system, the Bioconductor package RTCA provides several unique transformation (normalization) strategies and various visualization tools. biocViews: ImmunoOncology, CellBasedAssays, Infrastructure, Visualization, TimeCourse Author: Jitao David Zhang Maintainer: Jitao David Zhang URL: http://code.google.com/p/xcelligence/,http://www.xcelligence.roche.com/,http://www.nextbiomotif.com/Home/scientific-programming git_url: https://git.bioconductor.org/packages/RTCA git_branch: RELEASE_3_20 git_last_commit: 1f29a87 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RTCA_1.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RTCA_1.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RTCA_1.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RTCA_1.58.0.tgz vignettes: vignettes/RTCA/inst/doc/aboutRTCA.pdf, vignettes/RTCA/inst/doc/RTCAtransformation.pdf vignetteTitles: Introduction to Data Analysis of the Roche xCELLigence System with RTCA Package, RTCAtransformation: Discussion of transformation methods of RTCA data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RTCA/inst/doc/aboutRTCA.R, vignettes/RTCA/inst/doc/RTCAtransformation.R dependencyCount: 8 Package: RTCGA Version: 1.36.0 Depends: R (>= 3.3.0) Imports: XML, RCurl, assertthat, stringi, rvest, data.table, xml2, dplyr, purrr, survival, survminer, ggplot2, ggthemes, viridis, knitr, scales, rmarkdown, htmltools Suggests: devtools, testthat, pander, Biobase, GenomicRanges, IRanges, S4Vectors, RTCGA.rnaseq, RTCGA.clinical, RTCGA.mutations, RTCGA.RPPA, RTCGA.mRNA, RTCGA.miRNASeq, RTCGA.methylation, RTCGA.CNV, magrittr, tidyr License: GPL-2 MD5sum: 03057219eee1d04132b4e14add6a8a37 NeedsCompilation: no Title: The Cancer Genome Atlas Data Integration Description: The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes. The key is to understand genomics to improve cancer care. RTCGA package offers download and integration of the variety and volume of TCGA data using patient barcode key, what enables easier data possession. This may have an benefcial infuence on impact on development of science and improvement of patients' treatment. Furthermore, RTCGA package transforms TCGA data to tidy form which is convenient to use. biocViews: ImmunoOncology, Software, DataImport, DataRepresentation, Preprocessing, RNASeq, Survival, DNAMethylation, PrincipalComponent, Visualization Author: Marcin Kosinski [aut, cre], Przemyslaw Biecek [ctb], Witold Chodor [ctb] Maintainer: Marcin Kosinski URL: https://rtcga.github.io/RTCGA VignetteBuilder: knitr BugReports: https://github.com/RTCGA/RTCGA/issues git_url: https://git.bioconductor.org/packages/RTCGA git_branch: RELEASE_3_20 git_last_commit: 235623e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RTCGA_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RTCGA_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RTCGA_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RTCGA_1.36.0.tgz vignettes: vignettes/RTCGA/inst/doc/RTCGA_Workflow.html vignetteTitles: Integrating TCGA Data - RTCGA Workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RTCGA/inst/doc/RTCGA_Workflow.R dependsOnMe: RTCGA.clinical, RTCGA.CNV, RTCGA.methylation, RTCGA.miRNASeq, RTCGA.mRNA, RTCGA.mutations, RTCGA.PANCAN12, RTCGA.rnaseq, RTCGA.RPPA importsMe: TDbasedUFEadv dependencyCount: 128 Package: RTCGAToolbox Version: 2.36.0 Depends: R (>= 4.3.0) Imports: BiocGenerics, data.table, DelayedArray, GenomicRanges, GenomeInfoDb, httr, methods, RaggedExperiment, RCurl, RJSONIO, rvest, S4Vectors (>= 0.23.10), stats, stringr, SummarizedExperiment, TCGAutils (>= 1.9.4), utils Suggests: BiocStyle, Homo.sapiens, knitr, readr, rmarkdown License: GPL-2 Archs: x64 MD5sum: 8a19b80403d1ac8ad04b699bb29fd959 NeedsCompilation: no Title: A new tool for exporting TCGA Firehose data Description: Managing data from large scale projects such as The Cancer Genome Atlas (TCGA) for further analysis is an important and time consuming step for research projects. Several efforts, such as Firehose project, make TCGA pre-processed data publicly available via web services and data portals but it requires managing, downloading and preparing the data for following steps. We developed an open source and extensible R based data client for Firehose pre-processed data and demonstrated its use with sample case studies. Results showed that RTCGAToolbox could improve data management for researchers who are interested with TCGA data. In addition, it can be integrated with other analysis pipelines for following data analysis. biocViews: DifferentialExpression, GeneExpression, Sequencing Author: Mehmet Samur [aut], Marcel Ramos [aut, cre] (), Ludwig Geistlinger [ctb] Maintainer: Marcel Ramos URL: http://mksamur.github.io/RTCGAToolbox/ VignetteBuilder: knitr BugReports: https://github.com/mksamur/RTCGAToolbox/issues git_url: https://git.bioconductor.org/packages/RTCGAToolbox git_branch: RELEASE_3_20 git_last_commit: 7f67e4b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RTCGAToolbox_2.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RTCGAToolbox_2.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RTCGAToolbox_2.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RTCGAToolbox_2.36.0.tgz vignettes: vignettes/RTCGAToolbox/inst/doc/RTCGAToolbox-vignette.html vignetteTitles: RTCGAToolbox Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RTCGAToolbox/inst/doc/RTCGAToolbox-vignette.R importsMe: cBioPortalData, TCGAWorkflow suggestsMe: TCGAutils dependencyCount: 108 Package: RTN Version: 2.30.0 Depends: R (>= 3.6.3), methods, Imports: RedeR, minet, viper, mixtools, snow, stats, limma, data.table, IRanges, igraph, S4Vectors, SummarizedExperiment, car, pwr, pheatmap, grDevices, graphics, utils Suggests: RUnit, BiocGenerics, BiocStyle, knitr, rmarkdown License: Artistic-2.0 MD5sum: 3484f1a39b89baaf284fb2c439582bf3 NeedsCompilation: no Title: RTN: Reconstruction of Transcriptional regulatory Networks and analysis of regulons Description: A transcriptional regulatory network (TRN) consists of a collection of transcription factors (TFs) and the regulated target genes. TFs are regulators that recognize specific DNA sequences and guide the expression of the genome, either activating or repressing the expression the target genes. The set of genes controlled by the same TF forms a regulon. This package provides classes and methods for the reconstruction of TRNs and analysis of regulons. biocViews: Transcription, Network, NetworkInference, NetworkEnrichment, GeneRegulation, GeneExpression, GraphAndNetwork, GeneSetEnrichment, GeneticVariability Author: Clarice Groeneveld [ctb], Gordon Robertson [ctb], Xin Wang [aut], Michael Fletcher [aut], Florian Markowetz [aut], Kerstin Meyer [aut], and Mauro Castro [aut] Maintainer: Mauro Castro URL: http://dx.doi.org/10.1038/ncomms3464 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RTN git_branch: RELEASE_3_20 git_last_commit: 14d8c18 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RTN_2.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RTN_2.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RTN_2.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RTN_2.30.0.tgz vignettes: vignettes/RTN/inst/doc/RTN.html vignetteTitles: "RTN: reconstruction of transcriptional regulatory networks and analysis of regulons."" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RTN/inst/doc/RTN.R dependsOnMe: RTNduals, RTNsurvival, Fletcher2013b suggestsMe: geneplast dependencyCount: 137 Package: RTNduals Version: 1.30.0 Depends: R(>= 3.6.3), RTN(>= 2.14.1), methods Imports: graphics, grDevices, stats, utils Suggests: knitr, rmarkdown, BiocStyle, RUnit, BiocGenerics License: Artistic-2.0 MD5sum: 9905fa804241cc408b39a6b72503fc05 NeedsCompilation: no Title: Analysis of co-regulation and inference of 'dual regulons' Description: RTNduals is a tool that searches for possible co-regulatory loops between regulon pairs generated by the RTN package. It compares the shared targets in order to infer 'dual regulons', a new concept that tests whether regulators can co-operate or compete in influencing targets. biocViews: GeneRegulation, GeneExpression, NetworkEnrichment, NetworkInference, GraphAndNetwork Author: Vinicius S. Chagas, Clarice S. Groeneveld, Gordon Robertson, Kerstin B. Meyer, Mauro A. A. Castro Maintainer: Mauro Castro , Clarice Groeneveld VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RTNduals git_branch: RELEASE_3_20 git_last_commit: 580636d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RTNduals_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RTNduals_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RTNduals_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RTNduals_1.30.0.tgz vignettes: vignettes/RTNduals/inst/doc/RTNduals.html vignetteTitles: "RTNduals: analysis of co-regulation and inference of dual regulons." hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RTNduals/inst/doc/RTNduals.R dependsOnMe: RTNsurvival dependencyCount: 138 Package: RTNsurvival Version: 1.30.0 Depends: R(>= 3.6.3), RTN(>= 2.14.1), RTNduals(>= 1.14.1), methods Imports: survival, RColorBrewer, grDevices, graphics, stats, utils, scales, data.table, egg, ggplot2, pheatmap, dunn.test Suggests: Fletcher2013b, knitr, rmarkdown, BiocStyle, RUnit, BiocGenerics License: Artistic-2.0 MD5sum: b00a4d74a034854f0b1170ab56e21e78 NeedsCompilation: no Title: Survival analysis using transcriptional networks inferred by the RTN package Description: RTNsurvival is a tool for integrating regulons generated by the RTN package with survival information. For a given regulon, the 2-tailed GSEA approach computes a differential Enrichment Score (dES) for each individual sample, and the dES distribution of all samples is then used to assess the survival statistics for the cohort. There are two main survival analysis workflows: a Cox Proportional Hazards approach used to model regulons as predictors of survival time, and a Kaplan-Meier analysis assessing the stratification of a cohort based on the regulon activity. All plots can be fine-tuned to the user's specifications. biocViews: NetworkEnrichment, Survival, GeneRegulation, GeneSetEnrichment, NetworkInference, GraphAndNetwork Author: Clarice S. Groeneveld, Vinicius S. Chagas, Mauro A. A. Castro Maintainer: Clarice Groeneveld , Mauro A. A. Castro VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RTNsurvival git_branch: RELEASE_3_20 git_last_commit: 1fe4461 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RTNsurvival_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RTNsurvival_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RTNsurvival_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RTNsurvival_1.30.0.tgz vignettes: vignettes/RTNsurvival/inst/doc/RTNsurvival.html vignetteTitles: "RTNsurvival: multivariate survival analysis using transcriptional networks and regulons." hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RTNsurvival/inst/doc/RTNsurvival.R dependencyCount: 142 Package: RTopper Version: 1.52.0 Depends: R (>= 2.12.0), Biobase Imports: limma, multtest Suggests: org.Hs.eg.db, KEGGREST, GO.db License: GPL (>= 3) + file LICENSE MD5sum: 572d44333992c9d55db163dbaf59aad9 NeedsCompilation: no Title: This package is designed to perform Gene Set Analysis across multiple genomic platforms Description: the RTopper package is designed to perform and integrate gene set enrichment results across multiple genomic platforms. biocViews: Microarray Author: Luigi Marchionni , Svitlana Tyekucheva Maintainer: Luigi Marchionni git_url: https://git.bioconductor.org/packages/RTopper git_branch: RELEASE_3_20 git_last_commit: 6accc58 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RTopper_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RTopper_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RTopper_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RTopper_1.52.0.tgz vignettes: vignettes/RTopper/inst/doc/RTopper.pdf vignetteTitles: RTopper user's manual hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/RTopper/inst/doc/RTopper.R dependencyCount: 17 Package: Rtpca Version: 1.16.0 Depends: R (>= 4.0.0), stats, dplyr, tidyr Imports: Biobase, methods, ggplot2, pROC, fdrtool, splines, utils, tibble Suggests: knitr, BiocStyle, TPP, testthat, rmarkdown License: GPL-3 MD5sum: 6a5f30e9ef1149d9572f6e3d4cf3cfd4 NeedsCompilation: no Title: Thermal proximity co-aggregation with R Description: R package for performing thermal proximity co-aggregation analysis with thermal proteome profiling datasets to analyse protein complex assembly and (differential) protein-protein interactions across conditions. biocViews: Software, Proteomics, DataImport Author: Nils Kurzawa [aut, cre], André Mateus [aut], Mikhail M. Savitski [aut] Maintainer: Nils Kurzawa VignetteBuilder: knitr BugReports: https://support.bioconductor.org/ git_url: https://git.bioconductor.org/packages/Rtpca git_branch: RELEASE_3_20 git_last_commit: 40d3ded git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rtpca_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rtpca_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rtpca_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rtpca_1.16.0.tgz vignettes: vignettes/Rtpca/inst/doc/Rtpca.html vignetteTitles: Introduction to Rtpca hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rtpca/inst/doc/Rtpca.R dependencyCount: 50 Package: rtracklayer Version: 1.66.0 Depends: R (>= 3.5.0), methods, GenomicRanges (>= 1.37.2) Imports: XML (>= 1.98-0), BiocGenerics (>= 0.35.3), S4Vectors (>= 0.23.18), IRanges (>= 2.13.13), XVector (>= 0.19.7), GenomeInfoDb (>= 1.15.2), Biostrings (>= 2.47.6), zlibbioc, curl, httr, Rsamtools (>= 1.31.2), GenomicAlignments (>= 1.15.6), BiocIO, tools, restfulr (>= 0.0.13) LinkingTo: S4Vectors, IRanges, XVector Suggests: BSgenome (>= 1.33.4), humanStemCell, microRNA (>= 1.1.1), genefilter, limma, org.Hs.eg.db, hgu133plus2.db, GenomicFeatures, BSgenome.Hsapiens.UCSC.hg19, TxDb.Hsapiens.UCSC.hg19.knownGene, RUnit License: Artistic-2.0 + file LICENSE MD5sum: a104b15f928583554639289984edec35 NeedsCompilation: yes Title: R interface to genome annotation files and the UCSC genome browser Description: Extensible framework for interacting with multiple genome browsers (currently UCSC built-in) and manipulating annotation tracks in various formats (currently GFF, BED, bedGraph, BED15, WIG, BigWig and 2bit built-in). The user may export/import tracks to/from the supported browsers, as well as query and modify the browser state, such as the current viewport. biocViews: Annotation,Visualization,DataImport Author: Michael Lawrence, Vince Carey, Robert Gentleman Maintainer: Michael Lawrence git_url: https://git.bioconductor.org/packages/rtracklayer git_branch: RELEASE_3_20 git_last_commit: d81035b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rtracklayer_1.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rtracklayer_1.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rtracklayer_1.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rtracklayer_1.66.0.tgz vignettes: vignettes/rtracklayer/inst/doc/rtracklayer.pdf vignetteTitles: rtracklayer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: TRUE hasLICENSE: TRUE Rfiles: vignettes/rtracklayer/inst/doc/rtracklayer.R dependsOnMe: BSgenome, CAGEfightR, CoverageView, CSSQ, cummeRbund, ExCluster, geneXtendeR, GenomicFiles, groHMM, HelloRanges, IdeoViz, MethylSeekR, ORFhunteR, r3Cseq, StructuralVariantAnnotation, svaNUMT, svaRetro, EatonEtAlChIPseq, liftOver, sequencing, csawBook, OSCA.intro importsMe: AnnotationHubData, annotatr, APAlyzer, ATACseqQC, ATACseqTFEA, ballgown, BgeeCall, BindingSiteFinder, biscuiteer, BiSeq, branchpointer, BSgenomeForge, CAGEr, casper, CexoR, chipenrich, ChIPpeakAnno, ChIPseeker, ChromHeatMap, ChromSCape, circRNAprofiler, cliProfiler, CNEr, consensusSeekeR, conumee, crisprDesign, customProDB, derfinder, DEScan2, diffHic, diffUTR, DMCFB, DMCHMM, dmrseq, DuplexDiscovereR, easylift, ELMER, enhancerHomologSearch, ensembldb, EpiCompare, epidecodeR, epigraHMM, epimutacions, erma, esATAC, extraChIPs, factR, fcScan, FindIT2, FLAMES, geneAttribution, genomation, GenomicFeatures, GenomicInteractions, GenomicPlot, ggbio, gmapR, gmoviz, goseq, GOTHiC, GreyListChIP, Gviz, hiAnnotator, HicAggR, hicVennDiagram, HiTC, icetea, igvR, INSPEcT, IsoformSwitchAnalyzeR, karyoploteR, m6Aboost, MADSEQ, magpie, maser, MEDIPS, metagene2, metaseqR2, methodical, methrix, methylKit, mobileRNA, Moonlight2R, motifbreakR, MotifDb, multicrispr, MungeSumstats, NADfinder, nearBynding, normr, OGRE, OMICsPCA, ORFik, PAST, periodicDNA, plyranges, pram, primirTSS, proBAMr, profileplyr, PureCN, qsea, QuasR, raer, RCAS, recount, recount3, recoup, regioneR, REMP, Repitools, RiboProfiling, ribosomeProfilingQC, rifi, rifiComparative, rmspc, RNAmodR, roar, scanMiRApp, scDblFinder, scPipe, scRNAseqApp, scruff, seqCAT, seqsetvis, sevenC, SGSeq, shinyepico, signeR, SigsPack, sitadela, soGGi, SOMNiBUS, SpliceWiz, syntenet, TEKRABber, TFBSTools, tidyCoverage, trackViewer, transcriptR, TRESS, tRNAscanImport, txcutr, txdbmaker, VariantAnnotation, VariantTools, wavClusteR, wiggleplotr, GenomicState, chipenrich.data, DMRcatedata, geneLenDataBase, NxtIRFdata, raerdata, spatialLIBD, seqpac, SingscoreAMLMutations, crispRdesignR, GALLO, geneHapR, kibior, locuszoomr, PlasmaMutationDetector, PlasmaMutationDetector2, valr suggestsMe: alabaster.files, AnnotationHub, autonomics, BiocFileCache, biovizBase, BREW3R.r, bsseq, cicero, CINdex, compEpiTools, CrispRVariants, crisprViz, DAMEfinder, DiffBind, eisaR, epistack, epivizrChart, epivizrData, FRASER, geneXtendeR, GenomicAlignments, GenomicDistributions, GenomicInteractionNodes, GenomicRanges, gwascat, HiCExperiment, HiContacts, igvShiny, InPAS, interactiveDisplay, megadepth, methylumi, miRBaseConverter, motifTestR, MutationalPatterns, NanoMethViz, OrganismDbi, PICS, PING, pipeFrame, plotgardener, plyinteractions, pqsfinder, ProteoDisco, R453Plus1Toolbox, RcisTarget, rGADEM, RNAmodR.AlkAnilineSeq, RNAmodR.ML, RNAmodR.RiboMethSeq, RnBeads, RSVSim, similaRpeak, systemPipeR, TAPseq, TCGAutils, transmogR, triplex, tRNAdbImport, TVTB, xcore, EpiTxDb.Hs.hg38, EpiTxDb.Sc.sacCer3, excluderanges, FDb.FANTOM4.promoters.hg19, fourDNData, GeuvadisTranscriptExpr, nanotubes, PasillaTranscriptExpr, systemPipeRdata, chipseqDB, gkmSVM, MOCHA, Rgff, RTIGER, Seurat, Signac dependencyCount: 57 Package: Rtreemix Version: 1.68.0 Depends: R (>= 2.5.0) Imports: methods, graph, Biobase, Hmisc Suggests: Rgraphviz License: LGPL MD5sum: 87e82c520ead56ce7deb2810a83feb40 NeedsCompilation: yes Title: Rtreemix: Mutagenetic trees mixture models. Description: Rtreemix is a package that offers an environment for estimating the mutagenetic trees mixture models from cross-sectional data and using them for various predictions. It includes functions for fitting the trees mixture models, likelihood computations, model comparisons, waiting time estimations, stability analysis, etc. biocViews: StatisticalMethod Author: Jasmina Bogojeska Maintainer: Jasmina Bogojeska git_url: https://git.bioconductor.org/packages/Rtreemix git_branch: RELEASE_3_20 git_last_commit: 37417f2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rtreemix_1.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rtreemix_1.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rtreemix_1.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rtreemix_1.68.0.tgz vignettes: vignettes/Rtreemix/inst/doc/Rtreemix.pdf vignetteTitles: Rtreemix hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rtreemix/inst/doc/Rtreemix.R dependencyCount: 77 Package: rTRM Version: 1.44.0 Depends: R (>= 2.10), igraph (>= 1.0) Imports: methods, AnnotationDbi, DBI, RSQLite Suggests: RUnit, BiocGenerics, MotifDb, graph, PWMEnrich, biomaRt, Biostrings, BSgenome.Mmusculus.UCSC.mm8.masked, org.Hs.eg.db, org.Mm.eg.db, ggplot2, BiocStyle, knitr, rmarkdown License: GPL-3 MD5sum: 18daea52e386d0f963f647b18e7c89c7 NeedsCompilation: no Title: Identification of Transcriptional Regulatory Modules from Protein-Protein Interaction Networks Description: rTRM identifies transcriptional regulatory modules (TRMs) from protein-protein interaction networks. biocViews: Transcription, Network, GeneRegulation, GraphAndNetwork Author: Diego Diez Maintainer: Diego Diez URL: https://github.com/ddiez/rTRM VignetteBuilder: knitr BugReports: https://github.com/ddiez/rTRM/issues git_url: https://git.bioconductor.org/packages/rTRM git_branch: RELEASE_3_20 git_last_commit: ad13709 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rTRM_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rTRM_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rTRM_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rTRM_1.44.0.tgz vignettes: vignettes/rTRM/inst/doc/Introduction.html vignetteTitles: Introduction to rTRM hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rTRM/inst/doc/Introduction.R importsMe: rTRMui dependencyCount: 50 Package: rTRMui Version: 1.44.0 Imports: shiny (>= 0.9), rTRM, MotifDb, org.Hs.eg.db, org.Mm.eg.db License: GPL-3 MD5sum: 6f4baf596e1a9987e285330b3b04e046 NeedsCompilation: no Title: A shiny user interface for rTRM Description: This package provides a web interface to compute transcriptional regulatory modules with rTRM. biocViews: Transcription, Network, GeneRegulation, GraphAndNetwork, GUI Author: Diego Diez Maintainer: Diego Diez URL: https://github.com/ddiez/rTRMui BugReports: https://github.com/ddiez/rTRMui/issues git_url: https://git.bioconductor.org/packages/rTRMui git_branch: RELEASE_3_20 git_last_commit: 0363fac git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rTRMui_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rTRMui_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rTRMui_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rTRMui_1.44.0.tgz vignettes: vignettes/rTRMui/inst/doc/rTRMui.pdf vignetteTitles: Introduction to rTRMui hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/rTRMui/inst/doc/rTRMui.R dependencyCount: 102 Package: runibic Version: 1.28.0 Depends: R (>= 3.4.0), biclust, SummarizedExperiment Imports: Rcpp (>= 0.12.12), testthat, methods LinkingTo: Rcpp Suggests: knitr, rmarkdown, GEOquery, affy, airway, QUBIC License: MIT + file LICENSE MD5sum: 7741b1c71cce3fc9588e6d4665a18ff5 NeedsCompilation: yes Title: runibic: row-based biclustering algorithm for analysis of gene expression data in R Description: This package implements UbiBic algorithm in R. This biclustering algorithm for analysis of gene expression data was introduced by Zhenjia Wang et al. in 2016. It is currently considered the most promising biclustering method for identification of meaningful structures in complex and noisy data. biocViews: Microarray, Clustering, GeneExpression, Sequencing, Coverage Author: Patryk Orzechowski, Artur Pańszczyk Maintainer: Patryk Orzechowski URL: http://github.com/athril/runibic SystemRequirements: C++11, GNU make VignetteBuilder: knitr BugReports: http://github.com/athril/runibic/issues git_url: https://git.bioconductor.org/packages/runibic git_branch: RELEASE_3_20 git_last_commit: b2f4fa2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/runibic_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/runibic_1.28.0.zip vignettes: vignettes/runibic/inst/doc/runibic.html vignetteTitles: runibic: UniBic in R Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE suggestsMe: mosbi dependencyCount: 92 Package: RUVcorr Version: 1.38.0 Imports: corrplot, MASS, stats, lattice, grDevices, gridExtra, snowfall, psych, BiocParallel, grid, bladderbatch, reshape2, graphics Suggests: knitr, hgu133a2.db, rmarkdown License: GPL-2 Archs: x64 MD5sum: f30e4a32f61a74390b0e101d16f3cfb2 NeedsCompilation: no Title: Removal of unwanted variation for gene-gene correlations and related analysis Description: RUVcorr allows to apply global removal of unwanted variation (ridged version of RUV) to real and simulated gene expression data. biocViews: GeneExpression, Normalization Author: Saskia Freytag Maintainer: Saskia Freytag VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RUVcorr git_branch: RELEASE_3_20 git_last_commit: 0cfee14 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RUVcorr_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RUVcorr_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RUVcorr_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RUVcorr_1.38.0.tgz vignettes: vignettes/RUVcorr/inst/doc/Vignette.html vignetteTitles: Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RUVcorr/inst/doc/Vignette.R dependencyCount: 41 Package: RUVnormalize Version: 1.40.0 Depends: R (>= 2.10.0) Imports: RUVnormalizeData, Biobase Enhances: spams License: GPL-3 Archs: x64 MD5sum: 1cc0f59467a2eba7cb2f4002f747c403 NeedsCompilation: no Title: RUV for normalization of expression array data Description: RUVnormalize is meant to remove unwanted variation from gene expression data when the factor of interest is not defined, e.g., to clean up a dataset for general use or to do any kind of unsupervised analysis. biocViews: StatisticalMethod, Normalization Author: Laurent Jacob Maintainer: Laurent Jacob git_url: https://git.bioconductor.org/packages/RUVnormalize git_branch: RELEASE_3_20 git_last_commit: 2526e7a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RUVnormalize_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RUVnormalize_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RUVnormalize_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RUVnormalize_1.40.0.tgz vignettes: vignettes/RUVnormalize/inst/doc/RUVnormalize.pdf vignetteTitles: RUVnormalize hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RUVnormalize/inst/doc/RUVnormalize.R dependencyCount: 7 Package: RUVSeq Version: 1.40.0 Depends: Biobase, EDASeq (>= 1.99.1), edgeR Imports: methods, MASS Suggests: BiocStyle, knitr, RColorBrewer, zebrafishRNASeq, DESeq2 License: Artistic-2.0 MD5sum: 086e8941b21a0fba238044a475b925b7 NeedsCompilation: no Title: Remove Unwanted Variation from RNA-Seq Data Description: This package implements the remove unwanted variation (RUV) methods of Risso et al. (2014) for the normalization of RNA-Seq read counts between samples. biocViews: ImmunoOncology, DifferentialExpression, Preprocessing, RNASeq, Software Author: Davide Risso [aut, cre, cph], Sandrine Dudoit [aut], Lorena Pantano [ctb], Kamil Slowikowski [ctb] Maintainer: Davide Risso URL: https://github.com/drisso/RUVSeq VignetteBuilder: knitr BugReports: https://github.com/drisso/RUVSeq/issues git_url: https://git.bioconductor.org/packages/RUVSeq git_branch: RELEASE_3_20 git_last_commit: 2ed42a1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RUVSeq_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RUVSeq_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RUVSeq_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RUVSeq_1.40.0.tgz vignettes: vignettes/RUVSeq/inst/doc/RUVSeq.html vignetteTitles: RUVSeq: Remove Unwanted Variation from RNA-Seq Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RUVSeq/inst/doc/RUVSeq.R dependsOnMe: octad, rnaseqGene importsMe: consensusDE, ribosomeProfilingQC, scone, standR suggestsMe: DEScan2, NanoTube dependencyCount: 122 Package: Rvisdiff Version: 1.4.0 Depends: R (>= 4.3.0) Imports: edgeR, utils Suggests: knitr, rmarkdown, DESeq2, limma, SummarizedExperiment, airway, BiocStyle, matrixTests, BiocManager License: GPL-2 | GPL-3 MD5sum: 4ba986d27d98c2d83005b9e6d69c0f32 NeedsCompilation: no Title: Interactive Graphs for Differential Expression Description: Creates a muti-graph web page which allows the interactive exploration of differential expression results. The graphical web interface presents results as a table which is integrated with five interactive graphs: MA-plot, volcano plot, box plot, lines plot and cluster heatmap. Graphical aspect and information represented in the graphs can be customized by means of user controls. Final graphics can be exported as PNG format. biocViews: Software, Visualization, RNASeq, DataRepresentation, DifferentialExpression Author: Carlos Prieto [aut] (), David Barrios [cre, aut] () Maintainer: David Barrios URL: https://github.com/BioinfoUSAL/Rvisdiff/ VignetteBuilder: knitr BugReports: https://github.com/BioinfoUSAL/Rvisdiff/issues/ git_url: https://git.bioconductor.org/packages/Rvisdiff git_branch: RELEASE_3_20 git_last_commit: 84dabd0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Rvisdiff_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Rvisdiff_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Rvisdiff_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Rvisdiff_1.4.0.tgz vignettes: vignettes/Rvisdiff/inst/doc/Rvisdiff.html vignetteTitles: Visualize Differential Expression results hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Rvisdiff/inst/doc/Rvisdiff.R dependencyCount: 11 Package: RVS Version: 1.28.0 Depends: R (>= 3.5.0) Imports: GENLIB, gRain, snpStats, kinship2, methods, stats, utils, R.utils Suggests: knitr, testthat, rmarkdown, BiocStyle, VariantAnnotation License: GPL-2 Archs: x64 MD5sum: 01c75a05d91e9ae8d3058976f52671e2 NeedsCompilation: no Title: Computes estimates of the probability of related individuals sharing a rare variant Description: Rare Variant Sharing (RVS) implements tests of association and linkage between rare genetic variant genotypes and a dichotomous phenotype, e.g. a disease status, in family samples. The tests are based on probabilities of rare variant sharing by relatives under the null hypothesis of absence of linkage and association between the rare variants and the phenotype and apply to single variants or multiple variants in a region (e.g. gene-based test). biocViews: ImmunoOncology, Genetics, GenomeWideAssociation, VariantDetection, ExomeSeq, WholeGenome Author: Alexandre Bureau, Ingo Ruczinski, Samuel Younkin, Thomas Sherman Maintainer: Alexandre Bureau VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/RVS git_branch: RELEASE_3_20 git_last_commit: b74c74d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/RVS_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/RVS_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/RVS_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/RVS_1.28.0.tgz vignettes: vignettes/RVS/inst/doc/RVS.html vignetteTitles: The RVS Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/RVS/inst/doc/RVS.R dependencyCount: 62 Package: rWikiPathways Version: 1.26.0 Imports: httr, utils, XML, rjson, data.table, RCurl, dplyr, tidyr, readr, stringr, purrr, lubridate Suggests: testthat, BiocStyle, knitr, rmarkdown License: MIT + file LICENSE MD5sum: c726fe822b39d58fbbb070f81205e011 NeedsCompilation: no Title: rWikiPathways - R client library for the WikiPathways API Description: Use this package to interface with the WikiPathways API. It provides programmatic access to WikiPathways content in multiple data and image formats, including official monthly release files and convenient GMT read/write functions. biocViews: Visualization, GraphAndNetwork, ThirdPartyClient, Network, Metabolomics Author: Egon Willighagen [aut, cre] (), Alex Pico [aut] () Maintainer: Egon Willighagen URL: https://github.com/wikipathways/rwikipathways VignetteBuilder: knitr BugReports: https://github.com/wikipathways/rwikipathways/issues git_url: https://git.bioconductor.org/packages/rWikiPathways git_branch: RELEASE_3_20 git_last_commit: 8619a89 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/rWikiPathways_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/rWikiPathways_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/rWikiPathways_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rWikiPathways_1.26.0.tgz vignettes: vignettes/rWikiPathways/inst/doc/Overview.html, vignettes/rWikiPathways/inst/doc/Pathway-Analysis.html, vignettes/rWikiPathways/inst/doc/rWikiPathways-and-BridgeDbR.html, vignettes/rWikiPathways/inst/doc/rWikiPathways-and-RCy3.html vignetteTitles: 1. Overview, 4. Pathway Analysis, 2. rWikiPathways and BridgeDbR, 3. rWikiPathways and RCy3 hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/rWikiPathways/inst/doc/Overview.R, vignettes/rWikiPathways/inst/doc/Pathway-Analysis.R, vignettes/rWikiPathways/inst/doc/rWikiPathways-and-BridgeDbR.R, vignettes/rWikiPathways/inst/doc/rWikiPathways-and-RCy3.R importsMe: famat, RVA suggestsMe: TRONCO dependencyCount: 51 Package: S4Arrays Version: 1.6.0 Depends: R (>= 4.3.0), methods, Matrix, abind, BiocGenerics (>= 0.45.2), S4Vectors, IRanges Imports: stats, crayon LinkingTo: S4Vectors Suggests: BiocParallel, SparseArray (>= 0.0.4), DelayedArray, testthat, knitr, rmarkdown, BiocStyle License: Artistic-2.0 MD5sum: 0bdfca3df96ee46fa23a4913cbeccf9b NeedsCompilation: yes Title: Foundation of array-like containers in Bioconductor Description: The S4Arrays package defines the Array virtual class to be extended by other S4 classes that wish to implement a container with an array-like semantic. It also provides: (1) low-level functionality meant to help the developer of such container to implement basic operations like display, subsetting, or coercion of their array-like objects to an ordinary matrix or array, and (2) a framework that facilitates block processing of array-like objects (typically on-disk objects). biocViews: Infrastructure, DataRepresentation Author: Hervé Pagès [aut, cre], Jacques Serizay [ctb] Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/S4Arrays VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/S4Arrays/issues git_url: https://git.bioconductor.org/packages/S4Arrays git_branch: RELEASE_3_20 git_last_commit: e100af0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/S4Arrays_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/S4Arrays_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/S4Arrays_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/S4Arrays_1.6.0.tgz vignettes: vignettes/S4Arrays/inst/doc/S4Arrays_quick_overview.html vignetteTitles: A quick overview of the S4Arrays package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/S4Arrays/inst/doc/S4Arrays_quick_overview.R dependsOnMe: DelayedArray, SparseArray importsMe: alabaster.matrix, DelayedTensor, dreamlet, HDF5Array, scran, scuttle, SummarizedExperiment suggestsMe: BiocGenerics dependencyCount: 14 Package: S4Vectors Version: 0.44.0 Depends: R (>= 4.0.0), methods, utils, stats, stats4, BiocGenerics (>= 0.37.0) Suggests: IRanges, GenomicRanges, SummarizedExperiment, Matrix, DelayedArray, ShortRead, graph, data.table, RUnit, BiocStyle, knitr License: Artistic-2.0 MD5sum: 6f87d627de90deccd2bc907b36d6d75d NeedsCompilation: yes Title: Foundation of vector-like and list-like containers in Bioconductor Description: The S4Vectors package defines the Vector and List virtual classes and a set of generic functions that extend the semantic of ordinary vectors and lists in R. Package developers can easily implement vector-like or list-like objects as concrete subclasses of Vector or List. In addition, a few low-level concrete subclasses of general interest (e.g. DataFrame, Rle, Factor, and Hits) are implemented in the S4Vectors package itself (many more are implemented in the IRanges package and in other Bioconductor infrastructure packages). biocViews: Infrastructure, DataRepresentation Author: Hervé Pagès [aut, cre], Michael Lawrence [aut], Patrick Aboyoun [aut], Aaron Lun [ctb], Beryl Kanali [ctb] (Converted vignettes from Sweave to RMarkdown) Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/S4Vectors VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/S4Vectors/issues git_url: https://git.bioconductor.org/packages/S4Vectors git_branch: RELEASE_3_20 git_last_commit: 79c3948 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/S4Vectors_0.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/S4Vectors_0.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/S4Vectors_0.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/S4Vectors_0.44.0.tgz vignettes: vignettes/S4Vectors/inst/doc/S4QuickOverview.pdf, vignettes/S4Vectors/inst/doc/RleTricks.html, vignettes/S4Vectors/inst/doc/S4VectorsOverview.html vignetteTitles: A quick overview of the S4 class system, Rle Tips and Tricks, An Overview of the S4Vectors package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/S4Vectors/inst/doc/RleTricks.R, vignettes/S4Vectors/inst/doc/S4QuickOverview.R, vignettes/S4Vectors/inst/doc/S4VectorsOverview.R dependsOnMe: altcdfenvs, AnnotationHubData, ATACseqQC, bambu, bandle, betaHMM, Biostrings, BiSeq, BSgenome, bumphunter, Cardinal, CellMapper, CexoR, chimeraviz, ChIPpeakAnno, chipseq, ChIPseqR, ClassifyR, cliProfiler, CODEX, CompoundDb, coseq, CSAR, CSSQ, DelayedArray, DelayedDataFrame, DESeq2, DEXSeq, DirichletMultinomial, DMCFB, DMCHMM, DMRcaller, epigenomix, ExperimentHubData, ExpressionAtlas, fCCAC, GA4GHclient, GenomeInfoDb, GenomicAlignments, GenomicFeatures, GenomicRanges, GenomicScores, GenomicTuples, GeomxTools, girafe, groHMM, Gviz, hdxmsqc, HelloRanges, HERON, InTAD, IntEREst, IRanges, LinTInd, LoomExperiment, m6Aboost, MetNet, MotifDb, MSnbase, MuData, MultimodalExperiment, NADfinder, NanoStringNCTools, NBAMSeq, octad, OGRE, OTUbase, padma, PSMatch, pwalign, Rcwl, RegEnrich, RepViz, RNAmodR, RnBeads, S4Arrays, scDataviz, screenCounter, segmentSeq, seqArchRplus, SeqGate, SparseArray, Spectra, SQLDataFrame, Structstrings, topdownr, TreeSummarizedExperiment, TRESS, triplex, txdbmaker, updateObject, VariantExperiment, VariantTools, vulcan, XVector, pd.ag, pd.aragene.1.0.st, pd.aragene.1.1.st, pd.ath1.121501, pd.barley1, pd.bovgene.1.0.st, pd.bovgene.1.1.st, pd.bovine, pd.bsubtilis, pd.cangene.1.0.st, pd.cangene.1.1.st, pd.canine, pd.canine.2, pd.celegans, pd.chicken, pd.chigene.1.0.st, pd.chigene.1.1.st, pd.chogene.2.0.st, pd.chogene.2.1.st, pd.citrus, pd.clariom.d.human, pd.clariom.s.human, pd.clariom.s.human.ht, pd.clariom.s.mouse, pd.clariom.s.mouse.ht, pd.clariom.s.rat, pd.clariom.s.rat.ht, pd.cotton, pd.cyngene.1.0.st, pd.cyngene.1.1.st, pd.cyrgene.1.0.st, pd.cyrgene.1.1.st, pd.cytogenetics.array, pd.drogene.1.0.st, pd.drogene.1.1.st, pd.drosgenome1, pd.drosophila.2, pd.e.coli.2, pd.ecoli, pd.ecoli.asv2, pd.elegene.1.0.st, pd.elegene.1.1.st, pd.equgene.1.0.st, pd.equgene.1.1.st, pd.felgene.1.0.st, pd.felgene.1.1.st, pd.fingene.1.0.st, pd.fingene.1.1.st, pd.genomewidesnp.5, pd.genomewidesnp.6, pd.guigene.1.0.st, pd.guigene.1.1.st, pd.hc.g110, pd.hg.focus, pd.hg.u133.plus.2, pd.hg.u133a, pd.hg.u133a.2, pd.hg.u133a.tag, pd.hg.u133b, pd.hg.u219, pd.hg.u95a, pd.hg.u95av2, pd.hg.u95b, pd.hg.u95c, pd.hg.u95d, pd.hg.u95e, pd.hg18.60mer.expr, pd.ht.hg.u133.plus.pm, pd.ht.hg.u133a, pd.ht.mg.430a, pd.hta.2.0, pd.hu6800, pd.huex.1.0.st.v2, pd.hugene.1.0.st.v1, pd.hugene.1.1.st.v1, pd.hugene.2.0.st, pd.hugene.2.1.st, pd.maize, pd.mapping250k.nsp, pd.mapping250k.sty, pd.mapping50k.hind240, pd.mapping50k.xba240, pd.margene.1.0.st, pd.margene.1.1.st, pd.medgene.1.0.st, pd.medgene.1.1.st, pd.medicago, pd.mg.u74a, pd.mg.u74av2, pd.mg.u74b, pd.mg.u74bv2, pd.mg.u74c, pd.mg.u74cv2, pd.mirna.1.0, pd.mirna.2.0, pd.mirna.3.0, pd.mirna.4.0, pd.moe430a, pd.moe430b, pd.moex.1.0.st.v1, pd.mogene.1.0.st.v1, pd.mogene.1.1.st.v1, pd.mogene.2.0.st, pd.mogene.2.1.st, pd.mouse430.2, pd.mouse430a.2, pd.mta.1.0, pd.mu11ksuba, pd.mu11ksubb, pd.nugo.hs1a520180, pd.nugo.mm1a520177, pd.ovigene.1.0.st, pd.ovigene.1.1.st, pd.pae.g1a, pd.plasmodium.anopheles, pd.poplar, pd.porcine, pd.porgene.1.0.st, pd.porgene.1.1.st, pd.rabgene.1.0.st, pd.rabgene.1.1.st, pd.rae230a, pd.rae230b, pd.raex.1.0.st.v1, pd.ragene.1.0.st.v1, pd.ragene.1.1.st.v1, pd.ragene.2.0.st, pd.ragene.2.1.st, pd.rat230.2, pd.rcngene.1.0.st, pd.rcngene.1.1.st, pd.rg.u34a, pd.rg.u34b, pd.rg.u34c, pd.rhegene.1.0.st, pd.rhegene.1.1.st, pd.rhesus, pd.rice, pd.rjpgene.1.0.st, pd.rjpgene.1.1.st, pd.rn.u34, pd.rta.1.0, pd.rusgene.1.0.st, pd.rusgene.1.1.st, pd.s.aureus, pd.soybean, pd.soygene.1.0.st, pd.soygene.1.1.st, pd.sugar.cane, pd.tomato, pd.u133.x3p, pd.vitis.vinifera, pd.wheat, pd.x.laevis.2, pd.x.tropicalis, pd.xenopus.laevis, pd.yeast.2, pd.yg.s98, pd.zebgene.1.0.st, pd.zebgene.1.1.st, pd.zebrafish, curatedPCaData, scATAC.Explorer, generegulation importsMe: ADImpute, adverSCarial, affycoretools, aggregateBioVar, airpart, alabaster.base, alabaster.bumpy, alabaster.files, alabaster.mae, alabaster.matrix, alabaster.ranges, alabaster.se, alabaster.spatial, alabaster.string, alabaster.vcf, ALDEx2, AllelicImbalance, amplican, AneuFinder, animalcules, AnnotationDbi, AnnotationForge, AnnotationHub, annotatr, appreci8R, ASpli, ASURAT, ATACseqTFEA, atena, autonomics, BadRegionFinder, ballgown, Banksy, barcodetrackR, BASiCS, batchelor, BatchQC, BayesSpace, bettr, BindingSiteFinder, BiocHubsShiny, BiocIO, BiocSet, BiocSingular, biotmle, biovizBase, biscuiteer, BiSeq, bluster, bnbc, BPRMeth, branchpointer, breakpointR, BREW3R.r, BSgenomeForge, bsseq, BumpyMatrix, BUSpaRse, BUSseq, CAGEfightR, CAGEr, cardelino, CardinalIO, casper, CATALYST, CatsCradle, cBioPortalData, ccfindR, celaref, celda, CellBarcode, censcyt, Cepo, CeTF, cfdnakit, CHETAH, chipenrich, ChIPexoQual, ChIPQC, ChIPseeker, ChromSCape, chromstaR, chromVAR, cicero, circRNAprofiler, CircSeqAlignTk, CiteFuse, cleanUpdTSeq, cleaver, CluMSID, clusterExperiment, clustifyr, CNEr, cn.mops, CNVMetrics, CNVPanelizer, CNVRanger, COCOA, CoGAPS, Cogito, comapr, compEpiTools, consensusDE, consensusSeekeR, CoreGx, COTAN, CoverageView, crisprBase, crisprDesign, CRISPRseek, crisprShiny, CrispRVariants, crisprViz, csaw, CTDquerier, cummeRbund, CuratedAtlasQueryR, customProDB, cydar, cytofQC, cytoKernel, cytomapper, cytoviewer, DAMEfinder, debrowser, DECIPHER, decompTumor2Sig, decontX, deconvR, DEFormats, DegCre, DegNorm, DEGreport, DelayedMatrixStats, derfinder, derfinderHelper, derfinderPlot, DEScan2, DESpace, DEWSeq, DFplyr, DiffBind, diffcyt, diffHic, diffUTR, Dino, DiscoRhythm, dittoSeq, DMRcate, dmrseq, DNAfusion, doseR, dreamlet, DRIMSeq, DropletUtils, drugTargetInteractions, dStruct, easyRNASeq, eisaR, ELMER, enhancerHomologSearch, EnrichDO, EnrichmentBrowser, ensembldb, epigraHMM, EpiMix, epimutacions, epiregulon, epistack, EpiTxDb, epivizr, epivizrData, epivizrStandalone, erma, esATAC, EventPointer, ExperimentHub, ExperimentSubset, ExploreModelMatrix, extraChIPs, factR, FastqCleaner, fastseg, FilterFFPE, FindIT2, fishpond, FLAMES, flowCore, flowWorkspace, FRASER, FuseSOM, GA4GHshiny, gcapc, gDNAx, gDRcore, gDRimport, gDRutils, GDSArray, gemma.R, GeneRegionScan, GENESIS, GeneTonic, genomation, GenomAutomorphism, genomeIntervals, GenomicAlignments, GenomicFiles, GenomicInteractionNodes, GenomicInteractions, GenomicOZone, GenomicSuperSignature, geomeTriD, GEOquery, ggbio, Glimma, gmapR, gmoviz, GOpro, GOTHiC, GRaNIE, GRmetrics, GSEABenchmarkeR, GSVA, GUIDEseq, gwascat, h5vc, HDF5Array, hermes, HicAggR, HiCBricks, HiCcompare, HiCDOC, HiCExperiment, HiContacts, HiCool, hicVennDiagram, HiLDA, hipathia, hmdbQuery, HoloFoodR, icetea, ideal, IFAA, ILoReg, IMAS, imcRtools, INSPEcT, InteractionSet, InteractiveComplexHeatmap, iSEE, iSEEde, iSEEhub, iSEEpathways, iSEEtree, iSEEu, IsoBayes, IsoformSwitchAnalyzeR, isomiRs, IVAS, ivygapSE, karyoploteR, katdetectr, kebabs, kmcut, knowYourCG, lefser, lemur, limpca, lionessR, lipidr, lisaClust, loci2path, LOLA, lute, MACSr, MADSEQ, magpie, MAI, mariner, marr, MAST, mbkmeans, mCSEA, MEAL, meshr, MesKit, metabCombiner, MetaboAnnotation, metaseqR2, MetCirc, methInheritSim, methodical, methrix, methylCC, methylInheritance, methylKit, methylPipe, methylSig, methylumi, MGnifyR, mia, miaSim, miaViz, MICSQTL, midasHLA, miloR, mimager, minfi, MinimumDistance, MIRA, MiRaGE, missMethyl, missRows, mitoClone2, MMDiff2, moanin, mobileRNA, Modstrings, MoleculeExperiment, monaLisa, mosaics, MOSClip, mosdef, MOSim, Motif2Site, motifbreakR, motifmatchr, motifTestR, MPAC, mpra, msa, MsBackendMassbank, MsBackendMetaboLights, MsBackendMgf, MsBackendMsp, MsBackendRawFileReader, MsBackendSql, MsCoreUtils, MsExperiment, msgbsR, MSPrep, MultiAssayExperiment, MultiDataSet, MultiRNAflow, multistateQTL, mumosa, muscat, musicatk, MutationalPatterns, mygene, myvariant, NanoMethViz, ncRNAtools, nearBynding, nucleoSim, nucleR, nullranges, oligoClasses, omicsViewer, oncoscanR, ontoProc, openPrimeR, ORFik, OrganismDbi, Organism.dplyr, orthos, OUTRIDER, OutSplice, packFinder, PAIRADISE, pairedGSEA, panelcn.mops, PAST, pcaExplorer, pdInfoBuilder, Pedixplorer, periodicDNA, pgxRpi, PharmacoGx, PhIPData, PhosR, PING, pipeComp, Pirat, plyinteractions, plyranges, plyxp, pmp, pogos, PolySTest, pqsfinder, pram, prebs, preciseTAD, primirTSS, proActiv, procoil, proDA, profileplyr, PRONE, ProteoDisco, PureCN, PWMEnrich, qcmetrics, QFeatures, qpgraph, qsea, QTLExperiment, QuasR, R3CPET, R453Plus1Toolbox, RadioGx, raer, RaggedExperiment, RAIDS, ramr, RareVariantVis, RBioFormats, RCAS, RcisTarget, RcwlPipelines, recount, recount3, recountmethylation, recoup, RegionalST, regioneR, regionReport, regsplice, regutools, REMP, Repitools, ResidualMatrix, RESOLVE, ReUseData, rexposome, rfaRm, RgnTX, rGREAT, RiboDiPA, RiboProfiling, ribor, riboSeqR, ribosomeProfilingQC, rifi, rifiComparative, RJMCMCNucleosomes, RMassBank, Rmmquant, rnaEditr, RNAmodR.AlkAnilineSeq, RNAmodR.ML, RNAmodR.RiboMethSeq, roar, rprimer, Rqc, Rsamtools, rScudo, RTCGAToolbox, RTN, rtracklayer, saseR, SC3, ScaledMatrix, scanMiR, scanMiRApp, SCArray, SCArray.sat, scater, scClassify, scDblFinder, scDD, scds, scHOT, scider, scmap, scMerge, scMET, SCnorm, SCOPE, scp, scPipe, scran, scRepertoire, scRNAseqApp, scruff, scTensor, scTGIF, scTreeViz, scuttle, scviR, sechm, segmenter, SeqArray, seqCAT, seqsetvis, SeqSQC, SeqVarTools, sesame, SEtools, sevenbridges, sevenC, SGSeq, ShortRead, simona, simPIC, simpleSeg, SingleCellAlleleExperiment, SingleCellExperiment, singleCellTK, SingleR, singscore, sitadela, skewr, slingshot, SMITE, SNPhood, soGGi, SomaticSignatures, SOMNiBUS, Spaniel, SpaNorm, SpatialExperiment, SpatialFeatureExperiment, spatialHeatmap, SpatialOmicsOverlay, spatzie, spicyR, spiky, spillR, splatter, SpliceWiz, SplicingGraphs, SPLINTER, SpotClean, sRACIPE, standR, Statial, strandCheckR, struct, StructuralVariantAnnotation, SummarizedExperiment, svaNUMT, svaRetro, SynExtend, systemPipeR, tadar, TAPseq, TCGAbiolinks, TCGAutils, TENxIO, terraTCGAdata, TFBSTools, TFHAZ, tidybulk, tidyCoverage, tidySingleCellExperiment, tidySpatialExperiment, tidySummarizedExperiment, TileDBArray, TnT, ToxicoGx, trackViewer, tradeSeq, TrajectoryUtils, transcriptR, transmogR, treeclimbR, Trendy, tricycle, tRNA, tRNAdbImport, tRNAscanImport, TSCAN, TVTB, twoddpcr, txcutr, tximeta, UCSC.utils, Ularcirc, UMI4Cats, universalmotif, UPDhmm, VanillaICE, VariantAnnotation, VariantFiltering, VaSP, VCFArray, VDJdive, velociraptor, VisiumIO, Voyager, VplotR, wavClusteR, weitrix, wiggleplotr, xcms, xcore, xenLite, XNAString, XVector, yamss, zellkonverter, BioMartGOGeneSets, fitCons.UCSC.hg19, MafDb.1Kgenomes.phase1.GRCh38, MafDb.1Kgenomes.phase1.hs37d5, MafDb.1Kgenomes.phase3.GRCh38, MafDb.1Kgenomes.phase3.hs37d5, MafDb.ExAC.r1.0.GRCh38, MafDb.ExAC.r1.0.hs37d5, MafDb.ExAC.r1.0.nonTCGA.GRCh38, MafDb.ExAC.r1.0.nonTCGA.hs37d5, MafDb.gnomAD.r2.1.GRCh38, MafDb.gnomAD.r2.1.hs37d5, MafDb.gnomADex.r2.1.GRCh38, MafDb.gnomADex.r2.1.hs37d5, MafDb.TOPMed.freeze5.hg19, MafDb.TOPMed.freeze5.hg38, MafH5.gnomAD.v4.0.GRCh38, phastCons100way.UCSC.hg19, phastCons100way.UCSC.hg38, phastCons7way.UCSC.hg38, SNPlocs.Hsapiens.dbSNP144.GRCh37, SNPlocs.Hsapiens.dbSNP144.GRCh38, SNPlocs.Hsapiens.dbSNP149.GRCh38, SNPlocs.Hsapiens.dbSNP150.GRCh38, SNPlocs.Hsapiens.dbSNP155.GRCh37, SNPlocs.Hsapiens.dbSNP155.GRCh38, XtraSNPlocs.Hsapiens.dbSNP144.GRCh37, XtraSNPlocs.Hsapiens.dbSNP144.GRCh38, bugphyzz, celldex, chipenrich.data, chipseqDBData, curatedMetagenomicData, curatedTCGAData, DNAZooData, DropletTestFiles, FlowSorted.Blood.EPIC, fourDNData, HCATonsilData, HighlyReplicatedRNASeq, HMP16SData, HMP2Data, homosapienDEE2CellScore, imcdatasets, leeBamViews, LegATo, MerfishData, MetaGxPancreas, MetaScope, MethylSeqData, MicrobiomeBenchmarkData, MouseGastrulationData, MouseThymusAgeing, pd.atdschip.tiling, scMultiome, scpdata, scRNAseq, sesameData, SimBenchData, SingleCellMultiModal, SomaticCancerAlterations, spatialLIBD, TransOmicsData, tuberculosis, GeoMxWorkflows, seqpac, crispRdesignR, DR.SC, driveR, genBaRcode, geno2proteo, hoardeR, imcExperiment, karyotapR, LoopRig, MetAlyzer, microbial, MOCHA, multimedia, NIPTeR, oncoPredict, PlasmaMutationDetector, PlasmaMutationDetector2, restfulr, rliger, rnaCrosslinkOO, rsolr, SC.MEB, SCRIP, scROSHI, Signac, SpatialDDLS, TaxaNorm, toxpiR suggestsMe: AlpsNMR, ANCOMBC, BiocGenerics, chihaya, dearseq, epiregulon.extra, epivizrChart, GeoTcgaData, globalSeq, GWASTools, GWENA, gypsum, hca, koinar, maftools, martini, MicrobiotaProcess, MsQuality, MungeSumstats, RTCGA, scFeatures, SpectraQL, SPOTlight, TFEA.ChIP, TFutils, alternativeSplicingEvents.hg19, alternativeSplicingEvents.hg38, BioPlex, curatedAdipoChIP, curatedAdipoRNA, ObMiTi, xcoredata, gkmSVM, grandR, LorMe, MARVEL, pmartR, polyRAD, RCPA, Rgff, Seurat, SNPassoc, updog, valr linksToMe: Biostrings, CNEr, DECIPHER, DelayedArray, GenomicAlignments, GenomicRanges, HDF5Array, IRanges, kebabs, MatrixRider, pwalign, Rsamtools, rtracklayer, S4Arrays, ShortRead, SparseArray, Structstrings, triplex, VariantAnnotation, VariantFiltering, XVector dependencyCount: 6 Package: safe Version: 3.46.0 Depends: R (>= 2.4.0), AnnotationDbi, Biobase, methods, SparseM Suggests: GO.db, PFAM.db, reactome.db, hgu133a.db, breastCancerUPP, survival, foreach, doRNG, Rgraphviz, GOstats License: GPL (>= 2) MD5sum: 3483a0332c96f982bb8fc8cdae477eaa NeedsCompilation: no Title: Significance Analysis of Function and Expression Description: SAFE is a resampling-based method for testing functional categories in gene expression experiments. SAFE can be applied to 2-sample and multi-class comparisons, or simple linear regressions. Other experimental designs can also be accommodated through user-defined functions. biocViews: DifferentialExpression, Pathways, GeneSetEnrichment, StatisticalMethod, Software Author: William T. Barry Maintainer: Ludwig Geistlinger git_url: https://git.bioconductor.org/packages/safe git_branch: RELEASE_3_20 git_last_commit: ef13224 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/safe_3.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/safe_3.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/safe_3.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/safe_3.46.0.tgz vignettes: vignettes/safe/inst/doc/SAFEmanual3.pdf vignetteTitles: SAFE manual hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/safe/inst/doc/SAFEmanual3.R importsMe: EGSEA, EnrichmentBrowser suggestsMe: ReporterScore dependencyCount: 46 Package: sagenhaft Version: 1.76.0 Depends: R (>= 2.10), SparseM (>= 0.73), methods Imports: graphics, stats, utils License: GPL (>= 2) MD5sum: 9546300f36a4c600915b430f7a982ce1 NeedsCompilation: no Title: Collection of functions for reading and comparing SAGE libraries Description: This package implements several functions useful for analysis of gene expression data by sequencing tags as done in SAGE (Serial Analysis of Gene Expressen) data, i.e. extraction of a SAGE library from sequence files, sequence error correction, library comparison. Sequencing error correction is implementing using an Expectation Maximization Algorithm based on a Mixture Model of tag counts. biocViews: SAGE Author: Tim Beissbarth , with contributions from Gordon Smyth Maintainer: Tim Beissbarth URL: http://www.bioinf.med.uni-goettingen.de git_url: https://git.bioconductor.org/packages/sagenhaft git_branch: RELEASE_3_20 git_last_commit: b977493 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sagenhaft_1.76.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sagenhaft_1.76.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sagenhaft_1.76.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sagenhaft_1.76.0.tgz vignettes: vignettes/sagenhaft/inst/doc/SAGEnhaft.pdf vignetteTitles: SAGEnhaft hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sagenhaft/inst/doc/SAGEnhaft.R dependencyCount: 5 Package: SAIGEgds Version: 2.6.0 Depends: R (>= 3.5.0), gdsfmt (>= 1.28.0), SeqArray (>= 1.43.7), Rcpp Imports: methods, stats, utils, Matrix, RcppParallel, CompQuadForm, survey LinkingTo: Rcpp, RcppArmadillo, RcppParallel (>= 5.0.0) Suggests: parallel, markdown, rmarkdown, crayon, SNPRelate, RUnit, knitr, ggmanh, BiocGenerics License: GPL-3 MD5sum: 6b3e2939d8ff51b9b7199227dabd6c73 NeedsCompilation: yes Title: Scalable Implementation of Generalized mixed models using GDS files in Phenome-Wide Association Studies Description: Scalable implementation of generalized mixed models with highly optimized C++ implementation and integration with Genomic Data Structure (GDS) files. It is designed for single variant tests and set-based aggregate tests in large-scale Phenome-wide Association Studies (PheWAS) with millions of variants and samples, controlling for sample structure and case-control imbalance. The implementation is based on the SAIGE R package (v0.45, Zhou et al. 2018 and Zhou et al. 2020), and it is extended to include the state-of-the-art ACAT-O set-based tests. Benchmarks show that SAIGEgds is significantly faster than the SAIGE R package. biocViews: Software, Genetics, StatisticalMethod, GenomeWideAssociation Author: Xiuwen Zheng [aut, cre] (), Wei Zhou [ctb] (the original author of the SAIGE R package), J. Wade Davis [ctb] Maintainer: Xiuwen Zheng URL: https://github.com/AbbVie-ComputationalGenomics/SAIGEgds SystemRequirements: C++11, GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SAIGEgds git_branch: RELEASE_3_20 git_last_commit: 1b9b0ae git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SAIGEgds_2.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SAIGEgds_2.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SAIGEgds_2.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SAIGEgds_2.6.0.tgz vignettes: vignettes/SAIGEgds/inst/doc/SAIGEgds.html vignetteTitles: SAIGEgds Tutorial (single variant tests) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SAIGEgds/inst/doc/SAIGEgds.R dependencyCount: 43 Package: sampleClassifier Version: 1.30.0 Depends: R (>= 4.0), MGFM, MGFR, annotate Imports: e1071, ggplot2, stats, utils Suggests: sampleClassifierData, BiocStyle, hgu133a.db, hgu133plus2.db License: Artistic-2.0 Archs: x64 MD5sum: 2472d8a26d6f263d2633882d5c409b7e NeedsCompilation: no Title: Sample Classifier Description: The package is designed to classify microarray RNA-seq gene expression profiles. biocViews: ImmunoOncology, Classification, Microarray, RNASeq, GeneExpression Author: Khadija El Amrani [aut, cre] Maintainer: Khadija El Amrani git_url: https://git.bioconductor.org/packages/sampleClassifier git_branch: RELEASE_3_20 git_last_commit: b6908d4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sampleClassifier_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sampleClassifier_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sampleClassifier_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sampleClassifier_1.30.0.tgz vignettes: vignettes/sampleClassifier/inst/doc/sampleClassifier.pdf vignetteTitles: sampleClassifier Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sampleClassifier/inst/doc/sampleClassifier.R dependencyCount: 94 Package: SamSPECTRAL Version: 1.60.0 Depends: R (>= 3.3.3) Imports: methods License: GPL (>= 2) Archs: x64 MD5sum: dc3da48feb16c796c61a290b9e10708f NeedsCompilation: yes Title: Identifies cell population in flow cytometry data Description: Samples large data such that spectral clustering is possible while preserving density information in edge weights. More specifically, given a matrix of coordinates as input, SamSPECTRAL first builds the communities to sample the data points. Then, it builds a graph and after weighting the edges by conductance computation, the graph is passed to a classic spectral clustering algorithm to find the spectral clusters. The last stage of SamSPECTRAL is to combine the spectral clusters. The resulting "connected components" estimate biological cell populations in the data. See the vignette for more details on how to use this package, some illustrations, and simple examples. biocViews: FlowCytometry, CellBiology, Clustering, Cancer, FlowCytometry, StemCells, HIV, ImmunoOncology Author: Habil Zare and Parisa Shooshtari Maintainer: Habil git_url: https://git.bioconductor.org/packages/SamSPECTRAL git_branch: RELEASE_3_20 git_last_commit: 1d113a8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SamSPECTRAL_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SamSPECTRAL_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SamSPECTRAL_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SamSPECTRAL_1.60.0.tgz vignettes: vignettes/SamSPECTRAL/inst/doc/Clustering_by_SamSPECTRAL.pdf vignetteTitles: A modified spectral clustering method for clustering Flow Cytometry Data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SamSPECTRAL/inst/doc/Clustering_by_SamSPECTRAL.R importsMe: ddPCRclust dependencyCount: 1 Package: sangeranalyseR Version: 1.16.0 Depends: R (>= 4.0.0), stringr, ape, Biostrings, pwalign, DECIPHER, parallel, reshape2, sangerseqR, gridExtra, shiny, shinydashboard, shinyjs, data.table, plotly, DT, zeallot, excelR, shinycssloaders, ggdendro, shinyWidgets, openxlsx, tools, rmarkdown (>= 2.9), knitr (>= 1.33), seqinr, BiocStyle, logger Suggests: testthat (>= 2.1.0) License: GPL-2 MD5sum: c769810033a1ba71ac1833a2a9d9e254 NeedsCompilation: no Title: sangeranalyseR: a suite of functions for the analysis of Sanger sequence data in R Description: This package builds on sangerseqR to allow users to create contigs from collections of Sanger sequencing reads. It provides a wide range of options for a number of commonly-performed actions including read trimming, detecting secondary peaks, and detecting indels using a reference sequence. All parameters can be adjusted interactively either in R or in the associated Shiny applications. There is extensive online documentation, and the package can outputs detailed HTML reports, including chromatograms. biocViews: Genetics, Alignment, Sequencing, SangerSeq, Preprocessing, QualityControl, Visualization, GUI Author: Rob Lanfear , Kuan-Hao Chao Maintainer: Kuan-Hao Chao VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/sangeranalyseR git_branch: RELEASE_3_20 git_last_commit: 9ddb390 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sangeranalyseR_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sangeranalyseR_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sangeranalyseR_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sangeranalyseR_1.16.0.tgz vignettes: vignettes/sangeranalyseR/inst/doc/sangeranalyseR.html vignetteTitles: sangeranalyseR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/sangeranalyseR/inst/doc/sangeranalyseR.R dependencyCount: 123 Package: sangerseqR Version: 1.42.0 Depends: R (>= 3.5.0), Biostrings, pwalign, stringr Imports: methods, shiny Suggests: BiocStyle, knitr, RUnit, BiocGenerics License: GPL-2 MD5sum: f23125bae93ccaf24462cf34eb3aa323 NeedsCompilation: no Title: Tools for Sanger Sequencing Data in R Description: This package contains several tools for analyzing Sanger Sequencing data files in R, including reading .scf and .ab1 files, making basecalls and plotting chromatograms. biocViews: Sequencing, SNP, Visualization Author: Jonathon T. Hill, Bradley Demarest Maintainer: Jonathon Hill VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/sangerseqR git_branch: RELEASE_3_20 git_last_commit: 9707fb4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sangerseqR_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sangerseqR_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sangerseqR_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sangerseqR_1.42.0.tgz vignettes: vignettes/sangerseqR/inst/doc/sangerseqRWalkthrough.html vignetteTitles: Using the sangerseqR package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sangerseqR/inst/doc/sangerseqRWalkthrough.R dependsOnMe: sangeranalyseR importsMe: scifer suggestsMe: CrispRVariants dependencyCount: 55 Package: SANTA Version: 2.42.0 Depends: R (>= 4.1), igraph Imports: graphics, Matrix, methods, stats Suggests: BiocGenerics, BioNet, formatR, knitr, msm, org.Sc.sgd.db, markdown, rmarkdown, RUnit License: GPL (>= 2) Archs: x64 MD5sum: 837afa9960831d36373b4b82d3443ebc NeedsCompilation: yes Title: Spatial Analysis of Network Associations Description: This package provides methods for measuring the strength of association between a network and a phenotype. It does this by measuring clustering of the phenotype across the network (Knet). Vertices can also be individually ranked by their strength of association with high-weight vertices (Knode). biocViews: Network, NetworkEnrichment, Clustering Author: Alex Cornish [cre, aut] Maintainer: Alex Cornish VignetteBuilder: knitr BugReports: https://github.com/alexjcornish/SANTA git_url: https://git.bioconductor.org/packages/SANTA git_branch: RELEASE_3_20 git_last_commit: 440bbbb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SANTA_2.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SANTA_2.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SANTA_2.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SANTA_2.42.0.tgz vignettes: vignettes/SANTA/inst/doc/SANTA-vignette.html vignetteTitles: Introduction to SANTA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SANTA/inst/doc/SANTA-vignette.R dependencyCount: 17 Package: SARC Version: 1.4.0 Depends: R (>= 4.3), RaggedExperiment, GenomicRanges Imports: tidyverse, utils, reshape2, DescTools, metap, multtest, plyranges, data.table, scales, RColorBrewer, grid, gtable, gridExtra, GenomicFeatures, stats, ggplot2, plotly, IRanges Suggests: knitr, kableExtra, testthat, TxDb.Hsapiens.UCSC.hg38.knownGene, Homo.sapiens, TxDb.Mmusculus.UCSC.mm10.knownGene, Mus.musculus, GenomicAlignments License: GPL-3 MD5sum: e9da6decb3dcdfca23fcb7cef3cfe455 NeedsCompilation: no Title: Statistical Analysis of Regions with CNVs Description: Imports a cov/coverage file (normalised read coverages from BAM files) and a cnv file (list of CNVs - similiar to a BED file) from WES/ WGS CNV (copy number variation) detection pipelines and utilises several metrics to weigh the likelihood of a sample containing a detected CNV being a true CNV or a false positive. Highly useful for diagnostic testing to filter out false positives to provide clinicians with fewer variants to interpret. SARC uniquely only used cov and csv (similiar to BED file) files which are the common CNV pipeline calling filetypes, and can be used as to supplement the Interactive Genome Browser (IGV) to generate many figures automatedly, which can be especially helpful in large cohorts with 100s-1000s of patients. biocViews: Software, CopyNumberVariation, Visualization, DNASeq, Sequencing Author: Krutik Patel [aut, cre] () Maintainer: Krutik Patel URL: https://github.com/Krutik6/SARC/ VignetteBuilder: knitr BugReports: https://github.com/Krutik6/SARC/issues git_url: https://git.bioconductor.org/packages/SARC git_branch: RELEASE_3_20 git_last_commit: 86bcfc0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SARC_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SARC_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SARC_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SARC_1.4.0.tgz vignettes: vignettes/SARC/inst/doc/SARC_guide.html vignetteTitles: SARC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SARC/inst/doc/SARC_guide.R dependencyCount: 205 Package: sarks Version: 1.18.0 Depends: R (>= 4.0) Imports: rJava, Biostrings, IRanges, utils, stats, cluster, binom Suggests: RUnit, BiocGenerics, ggplot2 License: BSD_3_clause + file LICENSE Archs: x64 MD5sum: 52a4452437aa3323e71b492d069a99b5 NeedsCompilation: no Title: Suffix Array Kernel Smoothing for discovery of correlative sequence motifs and multi-motif domains Description: Suffix Array Kernel Smoothing (see https://academic.oup.com/bioinformatics/article-abstract/35/20/3944/5418797), or SArKS, identifies sequence motifs whose presence correlates with numeric scores (such as differential expression statistics) assigned to the sequences (such as gene promoters). SArKS smooths over sequence similarity, quantified by location within a suffix array based on the full set of input sequences. A second round of smoothing over spatial proximity within sequences reveals multi-motif domains. Discovered motifs can then be merged or extended based on adjacency within MMDs. False positive rates are estimated and controlled by permutation testing. biocViews: MotifDiscovery, GeneRegulation, GeneExpression, Transcriptomics, RNASeq, DifferentialExpression, FeatureExtraction Author: Dennis Wylie [aut, cre] () Maintainer: Dennis Wylie URL: https://academic.oup.com/bioinformatics/article-abstract/35/20/3944/5418797, https://github.com/denniscwylie/sarks SystemRequirements: Java (>= 1.8) BugReports: https://github.com/denniscwylie/sarks/issues git_url: https://git.bioconductor.org/packages/sarks git_branch: RELEASE_3_20 git_last_commit: 6e332ff git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sarks_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sarks_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sarks_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sarks_1.18.0.tgz vignettes: vignettes/sarks/inst/doc/sarks-vignette.pdf vignetteTitles: sarks-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/sarks/inst/doc/sarks-vignette.R dependencyCount: 28 Package: saseR Version: 1.2.0 Depends: R (>= 4.3.0) Imports: ASpli, S4Vectors, BiocGenerics, GenomicFeatures, MASS, PRROC, SummarizedExperiment, edgeR, pracma, precrec, BiocParallel, DESeq2, DEXSeq, data.table, limma, methods, GenomicRanges, GenomicAlignments, rrcov, MatrixGenerics, stats, IRanges, knitr, dplyr, igraph, parallel License: Artistic-2.0 MD5sum: dcb28a0f27d7666b286394f28a1e2a71 NeedsCompilation: no Title: Scalable Aberrant Splicing and Expression Retrieval Description: saseR is a highly performant and fast framework for aberrant expression and splicing analyses. The main functions are: \itemize{ \item \code{\link{BamtoAspliCounts}} - Process BAM files to ASpli counts \item \code{\link{convertASpli}} - Get gene, bin or junction counts from ASpli SummarizedExperiment \item \code{\link{calculateOffsets}} - Create an offsets assays for aberrant expression or splicing analysis \item \code{\link{saseRfindEncodingDim}} - Estimate the optimal number of latent factors to include when estimating the mean expression \item \code{\link{saseRfit}} - Parameter estimation of the negative binomial distribution and compute p-values for aberrant expression and splicing } For information upon how to use these functions, check out our vignette at \url{https://github.com/statOmics/saseR/blob/main/vignettes/Vignette.Rmd} and the saseR paper: Segers, A. et al. (2023). Juggling offsets unlocks RNA-seq tools for fast scalable differential usage, aberrant splicing and expression analyses. bioRxiv. \url{https://doi.org/10.1101/2023.06.29.547014}. biocViews: DifferentialExpression, DifferentialSplicing, Regression, GeneExpression, AlternativeSplicing, RNASeq, Sequencing, Software Author: Alexandre Segers [aut, cre], Jeroen Gilis [ctb], Mattias Van Heetvelde [ctb], Elfride De Baere [ctb], Lieven Clement [ctb] Maintainer: Alexandre Segers URL: https://github.com/statOmics/saseR, https://doi.org/10.1101/2023.06.29.547014 VignetteBuilder: knitr BugReports: https://github.com/statOmics/saseR/issues git_url: https://git.bioconductor.org/packages/saseR git_branch: RELEASE_3_20 git_last_commit: a4bfcb8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/saseR_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/saseR_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/saseR_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/saseR_1.2.0.tgz vignettes: vignettes/saseR/inst/doc/saseR-vignette.html vignetteTitles: Main vignette: saseR analyses hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/saseR/inst/doc/saseR-vignette.R dependencyCount: 193 Package: satuRn Version: 1.14.0 Depends: R (>= 4.1) Imports: locfdr, SummarizedExperiment, BiocParallel, limma, pbapply, ggplot2, boot, Matrix, stats, methods, graphics Suggests: knitr, rmarkdown, testthat, covr, BiocStyle, AnnotationHub, ensembldb, edgeR, DEXSeq, stageR, DelayedArray License: Artistic-2.0 MD5sum: 4be609ec2dd806f2e876cec9693cad2b NeedsCompilation: no Title: Scalable Analysis of Differential Transcript Usage for Bulk and Single-Cell RNA-sequencing Applications Description: satuRn provides a higly performant and scalable framework for performing differential transcript usage analyses. The package consists of three main functions. The first function, fitDTU, fits quasi-binomial generalized linear models that model transcript usage in different groups of interest. The second function, testDTU, tests for differential usage of transcripts between groups of interest. Finally, plotDTU visualizes the usage profiles of transcripts in groups of interest. biocViews: Regression, ExperimentalDesign, DifferentialExpression, GeneExpression, RNASeq, Sequencing, Software, SingleCell, Transcriptomics, MultipleComparison, Visualization Author: Jeroen Gilis [aut, cre], Kristoffer Vitting-Seerup [ctb], Koen Van den Berge [ctb], Lieven Clement [ctb] Maintainer: Jeroen Gilis URL: https://github.com/statOmics/satuRn VignetteBuilder: knitr BugReports: https://github.com/statOmics/satuRn/issues git_url: https://git.bioconductor.org/packages/satuRn git_branch: RELEASE_3_20 git_last_commit: 4642168 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/satuRn_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/satuRn_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/satuRn_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/satuRn_1.14.0.tgz vignettes: vignettes/satuRn/inst/doc/Vignette.html vignetteTitles: satuRn - vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/satuRn/inst/doc/Vignette.R dependsOnMe: IsoformSwitchAnalyzeR dependencyCount: 77 Package: SBGNview Version: 1.20.0 Depends: R (>= 3.6), pathview, SBGNview.data Imports: Rdpack, grDevices, methods, stats, utils, xml2, rsvg, igraph, rmarkdown, knitr, SummarizedExperiment, AnnotationDbi, httr, KEGGREST, bookdown Suggests: testthat, gage License: AGPL-3 Archs: x64 MD5sum: 254ed7863707573c5be6b8138351aef0 NeedsCompilation: no Title: "SBGNview: Data Analysis, Integration and Visualization on SBGN Pathways" Description: SBGNview is a tool set for pathway based data visalization, integration and analysis. SBGNview is similar and complementary to the widely used Pathview, with the following key features: 1. Pathway definition by the widely adopted Systems Biology Graphical Notation (SBGN); 2. Supports multiple major pathway databases beyond KEGG (Reactome, MetaCyc, SMPDB, PANTHER, METACROP) and user defined pathways; 3. Covers 5,200 reference pathways and over 3,000 species by default; 4. Extensive graphics controls, including glyph and edge attributes, graph layout and sub-pathway highlight; 5. SBGN pathway data manipulation, processing, extraction and analysis. biocViews: GeneTarget, Pathways, GraphAndNetwork, Visualization, GeneSetEnrichment, DifferentialExpression, GeneExpression, Microarray, RNASeq, Genetics, Metabolomics, Proteomics, SystemsBiology, Sequencing, GeneTarget Author: Xiaoxi Dong*, Kovidh Vegesna*, Weijun Luo Maintainer: Weijun Luo URL: https://github.com/datapplab/SBGNview VignetteBuilder: knitr BugReports: https://github.com/datapplab/SBGNview/issues git_url: https://git.bioconductor.org/packages/SBGNview git_branch: RELEASE_3_20 git_last_commit: c6f7413 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SBGNview_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SBGNview_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SBGNview_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SBGNview_1.20.0.tgz vignettes: vignettes/SBGNview/inst/doc/pathway.enrichment.analysis.html, vignettes/SBGNview/inst/doc/SBGNview.quick.start.html, vignettes/SBGNview/inst/doc/SBGNview.Vignette.html vignetteTitles: Pathway analysis using SBGNview gene set, Quick start SBGNview, SBGNview functions hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SBGNview/inst/doc/pathway.enrichment.analysis.R, vignettes/SBGNview/inst/doc/SBGNview.quick.start.R, vignettes/SBGNview/inst/doc/SBGNview.Vignette.R dependencyCount: 88 Package: SBMLR Version: 2.2.0 Depends: XML, deSolve Suggests: rsbml License: GPL-2 MD5sum: 46faae1fb0b5e49168f88e8cb67ab6b0 NeedsCompilation: no Title: SBML-R Interface and Analysis Tools Description: This package contains a systems biology markup language (SBML) interface to R. biocViews: GraphAndNetwork, Pathways, Network Author: Tomas Radivoyevitch, Vishak Venkateswaran Maintainer: Tomas Radivoyevitch URL: http://epbi-radivot.cwru.edu/SBMLR/SBMLR.html git_url: https://git.bioconductor.org/packages/SBMLR git_branch: RELEASE_3_20 git_last_commit: 4ce3794 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SBMLR_2.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SBMLR_2.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SBMLR_2.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SBMLR_2.2.0.tgz vignettes: vignettes/SBMLR/inst/doc/quick-start.pdf vignetteTitles: Quick intro to SBMLR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SBMLR/inst/doc/quick-start.R dependencyCount: 7 Package: SC3 Version: 1.34.0 Depends: R(>= 3.3) Imports: graphics, stats, utils, methods, e1071, parallel, foreach, doParallel, doRNG, shiny, ggplot2, pheatmap (>= 1.0.8), ROCR, robustbase, rrcov, cluster, WriteXLS, Rcpp (>= 0.11.1), SummarizedExperiment, SingleCellExperiment, BiocGenerics, S4Vectors LinkingTo: Rcpp, RcppArmadillo Suggests: knitr, rmarkdown, mclust, scater, BiocStyle License: GPL-3 MD5sum: 3608b0bf7724f32238239d885aa89a7d NeedsCompilation: yes Title: Single-Cell Consensus Clustering Description: A tool for unsupervised clustering and analysis of single cell RNA-Seq data. biocViews: ImmunoOncology, SingleCell, Software, Classification, Clustering, DimensionReduction, SupportVectorMachine, RNASeq, Visualization, Transcriptomics, DataRepresentation, GUI, DifferentialExpression, Transcription Author: Vladimir Kiselev Maintainer: Vladimir Kiselev URL: https://github.com/hemberg-lab/SC3 VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/sc3/ git_url: https://git.bioconductor.org/packages/SC3 git_branch: RELEASE_3_20 git_last_commit: ece1027 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SC3_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SC3_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SC3_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SC3_1.34.0.tgz vignettes: vignettes/SC3/inst/doc/SC3.html vignetteTitles: SC3 package manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SC3/inst/doc/SC3.R importsMe: FEAST suggestsMe: InteractiveComplexHeatmap, scTreeViz, VAExprs dependencyCount: 108 Package: Scale4C Version: 1.28.0 Depends: R (>= 3.4), smoothie, GenomicRanges, IRanges, SummarizedExperiment Imports: methods, grDevices, graphics, utils License: LGPL-3 MD5sum: bcd8fcbb9e81f09cd4af4796cd6ba56a NeedsCompilation: no Title: Scale4C: an R/Bioconductor package for scale-space transformation of 4C-seq data Description: Scale4C is an R/Bioconductor package for scale-space transformation and visualization of 4C-seq data. The scale-space transformation is a multi-scale visualization technique to transform a 2D signal (e.g. 4C-seq reads on a genomic interval of choice) into a tesselation in the scale space (2D, genomic position x scale factor) by applying different smoothing kernels (Gauss, with increasing sigma). This transformation allows for explorative analysis and comparisons of the data's structure with other samples. biocViews: Visualization, QualityControl, DataImport, Sequencing, Coverage Author: Carolin Walter Maintainer: Carolin Walter git_url: https://git.bioconductor.org/packages/Scale4C git_branch: RELEASE_3_20 git_last_commit: b123b83 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Scale4C_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Scale4C_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Scale4C_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Scale4C_1.28.0.tgz vignettes: vignettes/Scale4C/inst/doc/vignette.pdf vignetteTitles: Scale4C: an R/Bioconductor package for scale-space transformation of 4C-seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Scale4C/inst/doc/vignette.R dependencyCount: 37 Package: ScaledMatrix Version: 1.14.0 Imports: methods, Matrix, S4Vectors, DelayedArray Suggests: testthat, BiocStyle, knitr, rmarkdown, BiocSingular, DelayedMatrixStats License: GPL-3 MD5sum: 763b5e7b3c5a90238ee676a2d1f9c7e0 NeedsCompilation: no Title: Creating a DelayedMatrix of Scaled and Centered Values Description: Provides delayed computation of a matrix of scaled and centered values. The result is equivalent to using the scale() function but avoids explicit realization of a dense matrix during block processing. This permits greater efficiency in common operations, most notably matrix multiplication. biocViews: Software, DataRepresentation Author: Aaron Lun [aut, cre, cph] Maintainer: Aaron Lun URL: https://github.com/LTLA/ScaledMatrix VignetteBuilder: knitr BugReports: https://github.com/LTLA/ScaledMatrix/issues git_url: https://git.bioconductor.org/packages/ScaledMatrix git_branch: RELEASE_3_20 git_last_commit: 3fdccbc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ScaledMatrix_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ScaledMatrix_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ScaledMatrix_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ScaledMatrix_1.14.0.tgz vignettes: vignettes/ScaledMatrix/inst/doc/ScaledMatrix.html vignetteTitles: Using the ScaledMatrix hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ScaledMatrix/inst/doc/ScaledMatrix.R importsMe: batchelor, BiocSingular, mumosa, scPCA suggestsMe: scran dependencyCount: 22 Package: scanMiR Version: 1.12.0 Depends: R (>= 4.0) Imports: Biostrings, pwalign, GenomicRanges, IRanges, data.table, BiocParallel, methods, GenomeInfoDb, S4Vectors, ggplot2, stats, stringi, utils, graphics, grid, seqLogo, cowplot Suggests: knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0) License: GPL-3 MD5sum: 0462c08dd1520af82e09351a0605a521 NeedsCompilation: no Title: scanMiR Description: A set of tools for working with miRNA affinity models (KdModels), efficiently scanning for miRNA binding sites, and predicting target repression. It supports scanning using miRNA seeds, full miRNA sequences (enabling 3' alignment) and KdModels, and includes the prediction of slicing and TDMD sites. Finally, it includes utility and plotting functions (e.g. for the visual representation of miRNA-target alignment). biocViews: miRNA, SequenceMatching, Alignment Author: Pierre-Luc Germain [cre, aut] (), Michael Soutschek [aut], Fridolin Gross [aut] Maintainer: Pierre-Luc Germain VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/scanMiR git_branch: RELEASE_3_20 git_last_commit: 3e518c6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scanMiR_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scanMiR_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scanMiR_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scanMiR_1.12.0.tgz vignettes: vignettes/scanMiR/inst/doc/Kdmodels.html, vignettes/scanMiR/inst/doc/scanning.html vignetteTitles: 2_Kdmodels, 1_scanning hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scanMiR/inst/doc/Kdmodels.R, vignettes/scanMiR/inst/doc/scanning.R dependsOnMe: scanMiRApp importsMe: scanMiRData dependencyCount: 70 Package: scanMiRApp Version: 1.12.0 Depends: R (>= 4.0), scanMiR Imports: AnnotationDbi, AnnotationFilter, AnnotationHub, BiocParallel, Biostrings, data.table, digest, DT, ensembldb, fst, GenomeInfoDb, GenomicFeatures, GenomicRanges, ggplot2, htmlwidgets, IRanges, Matrix, methods, plotly, rintrojs, rtracklayer, S4Vectors, scanMiRData, shiny, shinycssloaders, shinydashboard, shinyjqui, stats, utils, txdbmaker, waiter Suggests: knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0), shinytest, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm10, BSgenome.Mmusculus.UCSC.mm39, BSgenome.Rnorvegicus.UCSC.rn6 License: GPL-3 MD5sum: 737b7abc0ac7def7215de0f2b99e7365 NeedsCompilation: no Title: scanMiR shiny application Description: A shiny interface to the scanMiR package. The application enables the scanning of transcripts and custom sequences for miRNA binding sites, the visualization of KdModels and binding results, as well as browsing predicted repression data. In addition contains the IndexedFst class for fast indexed reading of large GenomicRanges or data.frames, and some utilities for facilitating scans and identifying enriched miRNA-target pairs. biocViews: miRNA, SequenceMatching, GUI, ShinyApps Author: Pierre-Luc Germain [cre, aut] (), Michael Soutschek [aut], Fridolin Gross [ctb] Maintainer: Pierre-Luc Germain VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/scanMiRApp git_branch: RELEASE_3_20 git_last_commit: 4732d5d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scanMiRApp_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scanMiRApp_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scanMiRApp_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scanMiRApp_1.12.0.tgz vignettes: vignettes/scanMiRApp/inst/doc/IndexedFST.html, vignettes/scanMiRApp/inst/doc/scanMiRApp.html vignetteTitles: IndexedFst, scanMiRApp hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scanMiRApp/inst/doc/IndexedFST.R, vignettes/scanMiRApp/inst/doc/scanMiRApp.R dependencyCount: 161 Package: scAnnotatR Version: 1.12.0 Depends: R (>= 4.1), Seurat, SingleCellExperiment, SummarizedExperiment Imports: dplyr, ggplot2, caret, ROCR, pROC, data.tree, methods, stats, e1071, ape, kernlab, AnnotationHub, utils Suggests: knitr, rmarkdown, scRNAseq, testthat License: MIT + file LICENSE Archs: x64 MD5sum: 3bd5234a9ccd7f826dde33664c488b87 NeedsCompilation: no Title: Pretrained learning models for cell type prediction on single cell RNA-sequencing data Description: The package comprises a set of pretrained machine learning models to predict basic immune cell types. This enables all users to quickly get a first annotation of the cell types present in their dataset without requiring prior knowledge. scAnnotatR also allows users to train their own models to predict new cell types based on specific research needs. biocViews: SingleCell, Transcriptomics, GeneExpression, SupportVectorMachine, Classification, Software Author: Vy Nguyen [aut] (), Johannes Griss [cre] () Maintainer: Johannes Griss URL: https://github.com/grisslab/scAnnotatR VignetteBuilder: knitr BugReports: https://github.com/grisslab/scAnnotatR/issues/new git_url: https://git.bioconductor.org/packages/scAnnotatR git_branch: RELEASE_3_20 git_last_commit: a89857e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scAnnotatR_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scAnnotatR_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scAnnotatR_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scAnnotatR_1.12.0.tgz vignettes: vignettes/scAnnotatR/inst/doc/classifying-cells.html, vignettes/scAnnotatR/inst/doc/training-basic-model.html, vignettes/scAnnotatR/inst/doc/training-child-model.html vignetteTitles: 1. Introduction to scAnnotatR, 2. Training basic model, 3. Training child model hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scAnnotatR/inst/doc/classifying-cells.R, vignettes/scAnnotatR/inst/doc/training-basic-model.R, vignettes/scAnnotatR/inst/doc/training-child-model.R suggestsMe: scAnnotatR.models dependencyCount: 215 Package: SCAN.UPC Version: 2.48.0 Depends: R (>= 2.14.0), Biobase (>= 2.6.0), oligo, Biostrings, GEOquery, affy, affyio, foreach, sva Imports: utils, methods, MASS, tools, IRanges Suggests: pd.hg.u95a License: MIT MD5sum: 403a8b5b1d552f3d65597f0cd10975c4 NeedsCompilation: no Title: Single-channel array normalization (SCAN) and Universal exPression Codes (UPC) Description: SCAN is a microarray normalization method to facilitate personalized-medicine workflows. Rather than processing microarray samples as groups, which can introduce biases and present logistical challenges, SCAN normalizes each sample individually by modeling and removing probe- and array-specific background noise using only data from within each array. SCAN can be applied to one-channel (e.g., Affymetrix) or two-channel (e.g., Agilent) microarrays. The Universal exPression Codes (UPC) method is an extension of SCAN that estimates whether a given gene/transcript is active above background levels in a given sample. The UPC method can be applied to one-channel or two-channel microarrays as well as to RNA-Seq read counts. Because UPC values are represented on the same scale and have an identical interpretation for each platform, they can be used for cross-platform data integration. biocViews: ImmunoOncology, Software, Microarray, Preprocessing, RNASeq, TwoChannel, OneChannel Author: Stephen R. Piccolo and Andrea H. Bild and W. Evan Johnson Maintainer: Stephen R. Piccolo URL: http://bioconductor.org, http://jlab.bu.edu/software/scan-upc git_url: https://git.bioconductor.org/packages/SCAN.UPC git_branch: RELEASE_3_20 git_last_commit: 3fca63a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SCAN.UPC_2.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SCAN.UPC_2.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SCAN.UPC_2.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SCAN.UPC_2.48.0.tgz vignettes: vignettes/SCAN.UPC/inst/doc/SCAN.vignette.pdf vignetteTitles: Primer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SCAN.UPC/inst/doc/SCAN.vignette.R dependencyCount: 120 Package: SCANVIS Version: 1.20.0 Depends: R (>= 3.6) Imports: IRanges,plotrix,RCurl,rtracklayer Suggests: knitr, rmarkdown License: file LICENSE MD5sum: 8aae61c0614d456037d68f12b87be219 NeedsCompilation: no Title: SCANVIS - a tool for SCoring, ANnotating and VISualizing splice junctions Description: SCANVIS is a set of annotation-dependent tools for analyzing splice junctions and their read support as predetermined by an alignment tool of choice (for example, STAR aligner). SCANVIS assesses each junction's relative read support (RRS) by relating to the context of local split reads aligning to annotated transcripts. SCANVIS also annotates each splice junction by indicating whether the junction is supported by annotation or not, and if not, what type of junction it is (e.g. exon skipping, alternative 5' or 3' events, Novel Exons). Unannotated junctions are also futher annotated by indicating whether it induces a frame shift or not. SCANVIS includes a visualization function to generate static sashimi-style plots depicting relative read support and number of split reads using arc thickness and arc heights, making it easy for users to spot well-supported junctions. These plots also clearly delineate unannotated junctions from annotated ones using designated color schemes, and users can also highlight splice junctions of choice. Variants and/or a read profile are also incoroporated into the plot if the user supplies variants in bed format and/or the BAM file. One further feature of the visualization function is that users can submit multiple samples of a certain disease or cohort to generate a single plot - this occurs via a "merge" function wherein junction details over multiple samples are merged to generate a single sashimi plot, which is useful when contrasting cohorots (eg. disease vs control). biocViews: Software,ResearchField,Transcriptomics,WorkflowStep,Annotation,Visualization Author: Phaedra Agius Maintainer: Phaedra Agius VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SCANVIS git_branch: RELEASE_3_20 git_last_commit: f7e50ee git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SCANVIS_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SCANVIS_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SCANVIS_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SCANVIS_1.20.0.tgz vignettes: vignettes/SCANVIS/inst/doc/runningSCANVIS.pdf vignetteTitles: SCANVIS hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SCANVIS/inst/doc/runningSCANVIS.R dependencyCount: 59 Package: SCArray Version: 1.14.0 Depends: R (>= 3.5.0), gdsfmt (>= 1.36.0), methods, DelayedArray (>= 0.31.5) Imports: S4Vectors, utils, Matrix, SparseArray (>= 1.5.13), BiocParallel, DelayedMatrixStats, SummarizedExperiment, SingleCellExperiment, BiocSingular Suggests: BiocGenerics, scater, scuttle, uwot, RUnit, knitr, markdown, rmarkdown, rhdf5, HDF5Array License: GPL-3 MD5sum: 1b7148e404ab5f3820f470daf18b2e82 NeedsCompilation: yes Title: Large-scale single-cell omics data manipulation with GDS files Description: Provides large-scale single-cell omics data manipulation using Genomic Data Structure (GDS) files. It combines dense and sparse matrices stored in GDS files and the Bioconductor infrastructure framework (SingleCellExperiment and DelayedArray) to provide out-of-memory data storage and large-scale manipulation using the R programming language. biocViews: Infrastructure, DataRepresentation, DataImport, SingleCell, RNASeq Author: Xiuwen Zheng [aut, cre] () Maintainer: Xiuwen Zheng URL: https://github.com/AbbVie-ComputationalGenomics/SCArray VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SCArray git_branch: RELEASE_3_20 git_last_commit: 7b7fe44 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SCArray_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SCArray_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SCArray_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SCArray_1.14.0.tgz vignettes: vignettes/SCArray/inst/doc/Overview.html, vignettes/SCArray/inst/doc/SCArray.html vignetteTitles: Overview, Single-cell RNA-seq data manipulation using GDS files hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SCArray/inst/doc/SCArray.R dependsOnMe: SCArray.sat dependencyCount: 57 Package: SCArray.sat Version: 1.6.0 Depends: methods, SCArray (>= 1.13.1), SeuratObject (>= 5.0), Seurat (>= 5.0) Imports: S4Vectors, utils, stats, BiocGenerics, BiocParallel, gdsfmt, DelayedArray, BiocSingular, SummarizedExperiment, Matrix Suggests: future, RUnit, knitr, markdown, rmarkdown, BiocStyle License: GPL-3 MD5sum: a4fd7f15216b7396071b90d9cfb3b91b NeedsCompilation: no Title: Large-scale single-cell RNA-seq data analysis using GDS files and Seurat Description: Extends the Seurat classes and functions to support Genomic Data Structure (GDS) files as a DelayedArray backend for data representation. It relies on the implementation of GDS-based DelayedMatrix in the SCArray package to represent single cell RNA-seq data. The common optimized algorithms leveraging GDS-based and single cell-specific DelayedMatrix (SC_GDSMatrix) are implemented in the SCArray package. SCArray.sat introduces a new SCArrayAssay class (derived from the Seurat Assay), which wraps raw counts, normalized expressions and scaled data matrix based on GDS-specific DelayedMatrix. It is designed to integrate seamlessly with the Seurat package to provide common data analysis in the SeuratObject-based workflow. Compared with Seurat, SCArray.sat significantly reduces the memory usage without downsampling and can be applied to very large datasets. biocViews: DataRepresentation, DataImport, SingleCell, RNASeq Author: Xiuwen Zheng [aut, cre] (), Seurat contributors [ctb] (for the classes and methods defined in Seurat) Maintainer: Xiuwen Zheng VignetteBuilder: knitr BugReports: https://github.com/AbbVie-ComputationalGenomics/SCArray/issues git_url: https://git.bioconductor.org/packages/SCArray.sat git_branch: RELEASE_3_20 git_last_commit: 7f868f4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SCArray.sat_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SCArray.sat_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SCArray.sat_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SCArray.sat_1.6.0.tgz vignettes: vignettes/SCArray.sat/inst/doc/SCArray.sat.html vignetteTitles: scRNA-seq data analysis with GDS files and Seurat hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SCArray.sat/inst/doc/SCArray.sat.R dependencyCount: 187 Package: scater Version: 1.34.0 Depends: SingleCellExperiment, scuttle, ggplot2 Imports: stats, utils, methods, Matrix, BiocGenerics, S4Vectors, SummarizedExperiment, MatrixGenerics, SparseArray, DelayedArray, beachmat, BiocNeighbors, BiocSingular, BiocParallel, rlang, ggbeeswarm, viridis, Rtsne, RColorBrewer, RcppML, uwot, pheatmap, ggrepel, ggrastr Suggests: BiocStyle, DelayedMatrixStats, snifter, densvis, cowplot, biomaRt, knitr, scRNAseq, robustbase, rmarkdown, testthat, Biobase, scattermore License: GPL-3 MD5sum: a9ee792d78c5f066f05a90247cd1aa6a NeedsCompilation: no Title: Single-Cell Analysis Toolkit for Gene Expression Data in R Description: A collection of tools for doing various analyses of single-cell RNA-seq gene expression data, with a focus on quality control and visualization. biocViews: ImmunoOncology, SingleCell, RNASeq, QualityControl, Preprocessing, Normalization, Visualization, DimensionReduction, Transcriptomics, GeneExpression, Sequencing, Software, DataImport, DataRepresentation, Infrastructure, Coverage Author: Davis McCarthy [aut], Kieran Campbell [aut], Aaron Lun [aut, ctb], Quin Wills [aut], Vladimir Kiselev [ctb], Felix G.M. Ernst [ctb], Alan O'Callaghan [ctb, cre], Yun Peng [ctb], Leo Lahti [ctb] (), Tuomas Borman [ctb] () Maintainer: Alan O'Callaghan URL: http://bioconductor.org/packages/scater/ VignetteBuilder: knitr BugReports: https://support.bioconductor.org/ git_url: https://git.bioconductor.org/packages/scater git_branch: RELEASE_3_20 git_last_commit: 08b5dc0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scater_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scater_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scater_1.34.0.tgz vignettes: vignettes/scater/inst/doc/overview.html vignetteTitles: Overview of scater functionality hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scater/inst/doc/overview.R dependsOnMe: netSmooth, OSCA.basic, OSCA.intro, OSCA.workflows, SingleRBook importsMe: airpart, BayesSpace, CATALYST, celda, CelliD, CellMixS, ChromSCape, decontX, distinct, epiregulon.extra, FLAMES, M3Drop, MEB, mia, miaViz, muscat, peco, pipeComp, RegionalST, scDblFinder, scDotPlot, scMerge, scTreeViz, scviR, singleCellTK, Spaniel, tricycle, VAExprs, spatialLIBD, CAESAR.Suite, PRECAST, SC.MEB suggestsMe: APL, Banksy, batchelor, bluster, ccImpute, CellTrails, Cepo, CiteFuse, concordexR, corral, dittoSeq, dreamlet, epiregulon, escheR, ExperimentSubset, ggsc, ggspavis, Glimma, InteractiveComplexHeatmap, iSEE, iSEEfier, iSEEhex, iSEEpathways, iSEEtree, iSEEu, MAST, mbkmeans, MGnifyR, miloR, miQC, monocle, MOSim, MuData, mumosa, Nebulosa, raer, SC3, SCArray, scDiagnostics, scds, schex, scHOT, scone, scp, scPipe, scran, scRepertoire, SingleCellAlleleExperiment, SingleR, sketchR, slalom, smartid, smoothclust, SpatialFeatureExperiment, spatialHeatmap, speckle, splatter, SPOTlight, StabMap, standR, tidySingleCellExperiment, tidySpatialExperiment, UCell, velociraptor, Voyager, waddR, curatedMetagenomicData, DuoClustering2018, HCAData, HCATonsilData, MerfishData, MouseAgingData, muscData, SingleCellMultiModal, TabulaMurisData, tuberculosis, simpleSingleCell, spicyWorkflow, Canek, ProFAST, SCdeconR, scellpam, SuperCell dependencyCount: 105 Package: scatterHatch Version: 1.12.0 Depends: R (>= 4.1) Imports: grid, ggplot2, plyr, spatstat.geom, stats, grDevices Suggests: knitr, rmarkdown, testthat License: MIT + file LICENSE MD5sum: 082ffb512455bf34b7c607c584399074 NeedsCompilation: no Title: Creates hatched patterns for scatterplots Description: The objective of this package is to efficiently create scatterplots where groups can be distinguished by color and texture. Visualizations in computational biology tend to have many groups making it difficult to distinguish between groups solely on color. Thus, this package is useful for increasing the accessibility of scatterplot visualizations to those with visual impairments such as color blindness. biocViews: Visualization, SingleCell, CellBiology, Software, Spatial Author: Atul Deshpande [aut, cre] () Maintainer: Atul Deshpande URL: https://github.com/FertigLab/scatterHatch VignetteBuilder: knitr BugReports: https://github.com/FertigLab/scatterHatch/issues git_url: https://git.bioconductor.org/packages/scatterHatch git_branch: RELEASE_3_20 git_last_commit: 9341edc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scatterHatch_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scatterHatch_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scatterHatch_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scatterHatch_1.12.0.tgz vignettes: vignettes/scatterHatch/inst/doc/vignette.html vignetteTitles: Creating a Scatterplot with Texture hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scatterHatch/inst/doc/vignette.R dependencyCount: 43 Package: scBFA Version: 1.20.0 Depends: R (>= 3.6) Imports: SingleCellExperiment, SummarizedExperiment, Seurat, MASS, zinbwave, stats, copula, ggplot2, DESeq2, utils, grid, methods, Matrix Suggests: knitr, rmarkdown, testthat, Rtsne License: GPL-3 + file LICENSE MD5sum: d8da099c3fe5f619b2b834eb458c14be NeedsCompilation: no Title: A dimensionality reduction tool using gene detection pattern to mitigate noisy expression profile of scRNA-seq Description: This package is designed to model gene detection pattern of scRNA-seq through a binary factor analysis model. This model allows user to pass into a cell level covariate matrix X and gene level covariate matrix Q to account for nuisance variance(e.g batch effect), and it will output a low dimensional embedding matrix for downstream analysis. biocViews: SingleCell, Transcriptomics, DimensionReduction,GeneExpression, ATACSeq, BatchEffect, KEGG, QualityControl Author: Ruoxin Li [aut, cre], Gerald Quon [aut] Maintainer: Ruoxin Li URL: https://github.com/ucdavis/quon-titative-biology/BFA VignetteBuilder: knitr BugReports: https://github.com/ucdavis/quon-titative-biology/BFA/issues git_url: https://git.bioconductor.org/packages/scBFA git_branch: RELEASE_3_20 git_last_commit: 8b59b3c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scBFA_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scBFA_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scBFA_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scBFA_1.20.0.tgz vignettes: vignettes/scBFA/inst/doc/vignette.html vignetteTitles: Gene Detection Analysis for scRNA-seq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scBFA/inst/doc/vignette.R dependencyCount: 205 Package: SCBN Version: 1.24.0 Depends: R (>= 3.5.0) Imports: stats Suggests: knitr,rmarkdown,BiocStyle,BiocManager License: GPL-2 Archs: x64 MD5sum: 091087bd3f6adc46eb6cd1ee2ab425c2 NeedsCompilation: no Title: A statistical normalization method and differential expression analysis for RNA-seq data between different species Description: This package provides a scale based normalization (SCBN) method to identify genes with differential expression between different species. It takes into account the available knowledge of conserved orthologous genes and the hypothesis testing framework to detect differentially expressed orthologous genes. The method on this package are described in the article 'A statistical normalization method and differential expression analysis for RNA-seq data between different species' by Yan Zhou, Jiadi Zhu, Tiejun Tong, Junhui Wang, Bingqing Lin, Jun Zhang (2018, pending publication). biocViews: DifferentialExpression, GeneExpression, Normalization Author: Yan Zhou Maintainer: Yan Zhou <2160090406@email.szu.edu.cn> VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SCBN git_branch: RELEASE_3_20 git_last_commit: b745577 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SCBN_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SCBN_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SCBN_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SCBN_1.24.0.tgz vignettes: vignettes/SCBN/inst/doc/SCBN.html vignetteTitles: SCBN Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SCBN/inst/doc/SCBN.R importsMe: TEKRABber dependencyCount: 1 Package: scBubbletree Version: 1.8.0 Depends: R (>= 4.2.0) Imports: reshape2, BiocParallel, ape, scales, Seurat, ggplot2, ggtree, patchwork, proxy, methods, stats, base, utils, dplyr Suggests: BiocStyle, knitr, testthat, cluster, SingleCellExperiment License: GPL-3 + file LICENSE MD5sum: 7dc4b512d5cdce8a4ca12cb8b10c352e NeedsCompilation: no Title: Quantitative visual exploration of scRNA-seq data Description: scBubbletree is a quantitative method for the visual exploration of scRNA-seq data, preserving key biological properties such as local and global cell distances and cell density distributions across samples. It effectively resolves overplotting and enables the visualization of diverse cell attributes from multiomic single-cell experiments. Additionally, scBubbletree is user-friendly and integrates seamlessly with popular scRNA-seq analysis tools, facilitating comprehensive and intuitive data interpretation. biocViews: Visualization,Clustering, SingleCell,Transcriptomics,RNASeq Author: Simo Kitanovski [aut, cre] Maintainer: Simo Kitanovski URL: https://github.com/snaketron/scBubbletree SystemRequirements: Python (>= 3.6), leidenalg (>= 0.8.2) VignetteBuilder: knitr BugReports: https://github.com/snaketron/scBubbletree/issues git_url: https://git.bioconductor.org/packages/scBubbletree git_branch: RELEASE_3_20 git_last_commit: a0f6882 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scBubbletree_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scBubbletree_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scBubbletree_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scBubbletree_1.8.0.tgz vignettes: vignettes/scBubbletree/inst/doc/User_manual.html vignetteTitles: User Manual: scBubbletree hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scBubbletree/inst/doc/User_manual.R dependencyCount: 172 Package: scCB2 Version: 1.16.0 Depends: R (>= 3.6.0) Imports: SingleCellExperiment, SummarizedExperiment, Matrix, methods, utils, stats, edgeR, rhdf5, parallel, DropletUtils, doParallel, iterators, foreach, Seurat Suggests: testthat (>= 2.1.0), KernSmooth, beachmat, knitr, BiocStyle, rmarkdown License: GPL-3 MD5sum: c2c4b1521c5b877a1acca0004c8d7fb0 NeedsCompilation: yes Title: CB2 improves power of cell detection in droplet-based single-cell RNA sequencing data Description: scCB2 is an R package implementing CB2 for distinguishing real cells from empty droplets in droplet-based single cell RNA-seq experiments (especially for 10x Chromium). It is based on clustering similar barcodes and calculating Monte-Carlo p-value for each cluster to test against background distribution. This cluster-level test outperforms single-barcode-level tests in dealing with low count barcodes and homogeneous sequencing library, while keeping FDR well controlled. biocViews: DataImport, RNASeq, SingleCell, Sequencing, GeneExpression, Transcriptomics, Preprocessing, Clustering Author: Zijian Ni [aut, cre], Shuyang Chen [ctb], Christina Kendziorski [ctb] Maintainer: Zijian Ni URL: https://github.com/zijianni/scCB2 SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/zijianni/scCB2/issues git_url: https://git.bioconductor.org/packages/scCB2 git_branch: RELEASE_3_20 git_last_commit: 031ba83 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scCB2_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scCB2_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scCB2_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scCB2_1.16.0.tgz vignettes: vignettes/scCB2/inst/doc/scCB2.html vignetteTitles: CB2 improves power of cell detection in droplet-based single-cell RNA sequencing data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scCB2/inst/doc/scCB2.R dependencyCount: 198 Package: scClassify Version: 1.18.0 Depends: R (>= 4.0) Imports: S4Vectors, limma, ggraph, igraph, methods, cluster, minpack.lm, mixtools, BiocParallel, proxy, proxyC, Matrix, ggplot2, hopach, diptest, mgcv, stats, graphics, statmod, Cepo Suggests: knitr, rmarkdown, BiocStyle, pkgdown License: GPL-3 MD5sum: 9cc6d31006c45bc4450c75942b39422f NeedsCompilation: no Title: scClassify: single-cell Hierarchical Classification Description: scClassify is a multiscale classification framework for single-cell RNA-seq data based on ensemble learning and cell type hierarchies, enabling sample size estimation required for accurate cell type classification and joint classification of cells using multiple references. biocViews: SingleCell, GeneExpression, Classification Author: Yingxin Lin Maintainer: Yingxin Lin VignetteBuilder: knitr BugReports: https://github.com/SydneyBioX/scClassify/issues git_url: https://git.bioconductor.org/packages/scClassify git_branch: RELEASE_3_20 git_last_commit: 837daf8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scClassify_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scClassify_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scClassify_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scClassify_1.18.0.tgz vignettes: vignettes/scClassify/inst/doc/pretrainedModel.html, vignettes/scClassify/inst/doc/scClassify.html vignetteTitles: pretrainedModel, scClassify hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scClassify/inst/doc/pretrainedModel.R, vignettes/scClassify/inst/doc/scClassify.R dependencyCount: 157 Package: sccomp Version: 1.10.0 Depends: R (>= 4.2.0) Imports: instantiate (>= 0.2.3), callr, fs, stats, SeuratObject, SingleCellExperiment, parallel, dplyr, tidyr, purrr, magrittr, rlang, tibble, boot, lifecycle, stats, tidyselect, utils, ggplot2, ggrepel, patchwork, forcats, readr, scales, stringr, glue, withr, digest Suggests: knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0), markdown, knitr, loo, prettydoc, tidyseurat, tidySingleCellExperiment, bayesplot, posterior License: GPL-3 MD5sum: 763de87d7776c55e2321e17c85f433c7 NeedsCompilation: no Title: Robust Outlier-aware Estimation of Composition and Heterogeneity for Single-cell Data Description: A robust and outlier-aware method for testing differential tissue composition from single-cell data. This model can infer changes in tissue composition and heterogeneity, and can produce realistic data simulations based on any existing dataset. This model can also transfer knowledge from a large set of integrated datasets to increase accuracy further. biocViews: Bayesian, Regression, DifferentialExpression, SingleCell Author: Stefano Mangiola [aut, cre] Maintainer: Stefano Mangiola URL: https://github.com/MangiolaLaboratory/sccomp SystemRequirements: CmdStan (https://mc-stan.org/users/interfaces/cmdstan) VignetteBuilder: knitr BugReports: https://github.com/MangiolaLaboratory/sccomp/issues git_url: https://git.bioconductor.org/packages/sccomp git_branch: RELEASE_3_20 git_last_commit: 9d3562d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sccomp_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sccomp_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sccomp_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sccomp_1.10.0.tgz vignettes: vignettes/sccomp/inst/doc/introduction.html vignetteTitles: sccomp hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sccomp/inst/doc/introduction.R dependencyCount: 104 Package: scDataviz Version: 1.16.0 Depends: R (>= 4.0), S4Vectors, SingleCellExperiment, Imports: ggplot2, ggrepel, flowCore, umap, Seurat, reshape2, scales, RColorBrewer, corrplot, stats, grDevices, graphics, utils, MASS, matrixStats, methods Suggests: PCAtools, cowplot, BiocGenerics, RUnit, knitr, kableExtra, rmarkdown License: GPL-3 MD5sum: 323fdfdad14d30359b8b319c1caa81af NeedsCompilation: no Title: scDataviz: single cell dataviz and downstream analyses Description: In the single cell World, which includes flow cytometry, mass cytometry, single-cell RNA-seq (scRNA-seq), and others, there is a need to improve data visualisation and to bring analysis capabilities to researchers even from non-technical backgrounds. scDataviz attempts to fit into this space, while also catering for advanced users. Additonally, due to the way that scDataviz is designed, which is based on SingleCellExperiment, it has a 'plug and play' feel, and immediately lends itself as flexibile and compatibile with studies that go beyond scDataviz. Finally, the graphics in scDataviz are generated via the ggplot engine, which means that users can 'add on' features to these with ease. biocViews: SingleCell, ImmunoOncology, RNASeq, GeneExpression, Transcription, FlowCytometry, MassSpectrometry, DataImport Author: Kevin Blighe [aut, cre] Maintainer: Kevin Blighe URL: https://github.com/kevinblighe/scDataviz VignetteBuilder: knitr BugReports: https://github.com/kevinblighe/scDataviz/issues git_url: https://git.bioconductor.org/packages/scDataviz git_branch: RELEASE_3_20 git_last_commit: 5d2b475 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scDataviz_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scDataviz_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scDataviz_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scDataviz_1.16.0.tgz vignettes: vignettes/scDataviz/inst/doc/scDataviz.html vignetteTitles: scDataviz: single cell dataviz and downstream analyses hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scDataviz/inst/doc/scDataviz.R dependencyCount: 178 Package: scDblFinder Version: 1.20.0 Depends: R (>= 4.0), SingleCellExperiment Imports: igraph, Matrix, BiocGenerics, BiocParallel, BiocNeighbors, BiocSingular, S4Vectors, SummarizedExperiment, scran, scater, scuttle, bluster, methods, DelayedArray, xgboost, stats, utils, MASS, IRanges, GenomicRanges, GenomeInfoDb, Rsamtools, rtracklayer Suggests: BiocStyle, knitr, rmarkdown, testthat, scRNAseq, circlize, ComplexHeatmap, ggplot2, dplyr, viridisLite, mbkmeans License: GPL-3 + file LICENSE MD5sum: 3643546da7a3961cb2a39e9ce689b013 NeedsCompilation: no Title: scDblFinder Description: The scDblFinder package gathers various methods for the detection and handling of doublets/multiplets in single-cell sequencing data (i.e. multiple cells captured within the same droplet or reaction volume). It includes methods formerly found in the scran package, the new fast and comprehensive scDblFinder method, and a reimplementation of the Amulet detection method for single-cell ATAC-seq. biocViews: Preprocessing, SingleCell, RNASeq, ATACSeq Author: Pierre-Luc Germain [cre, aut] (), Aaron Lun [ctb] Maintainer: Pierre-Luc Germain URL: https://github.com/plger/scDblFinder, https://plger.github.io/scDblFinder/ VignetteBuilder: knitr BugReports: https://github.com/plger/scDblFinder/issues git_url: https://git.bioconductor.org/packages/scDblFinder git_branch: RELEASE_3_20 git_last_commit: 980f749 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scDblFinder_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scDblFinder_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scDblFinder_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scDblFinder_1.20.0.tgz vignettes: vignettes/scDblFinder/inst/doc/computeDoubletDensity.html, vignettes/scDblFinder/inst/doc/findDoubletClusters.html, vignettes/scDblFinder/inst/doc/introduction.html, vignettes/scDblFinder/inst/doc/recoverDoublets.html, vignettes/scDblFinder/inst/doc/scATAC.html, vignettes/scDblFinder/inst/doc/scDblFinder.html vignetteTitles: 4_computeDoubletDensity, 3_findDoubletClusters, 1_introduction, 5_recoverDoublets, 6_scATAC, 2_scDblFinder hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scDblFinder/inst/doc/computeDoubletDensity.R, vignettes/scDblFinder/inst/doc/findDoubletClusters.R, vignettes/scDblFinder/inst/doc/introduction.R, vignettes/scDblFinder/inst/doc/recoverDoublets.R, vignettes/scDblFinder/inst/doc/scATAC.R, vignettes/scDblFinder/inst/doc/scDblFinder.R importsMe: singleCellTK dependencyCount: 129 Package: scDD Version: 1.30.0 Depends: R (>= 3.5.0) Imports: fields, mclust, BiocParallel, outliers, ggplot2, EBSeq, arm, SingleCellExperiment, SummarizedExperiment, grDevices, graphics, stats, S4Vectors, scran Suggests: BiocStyle, knitr, gridExtra License: GPL-2 MD5sum: 15fb6dcf4a58c5560a54e791e4052840 NeedsCompilation: yes Title: Mixture modeling of single-cell RNA-seq data to identify genes with differential distributions Description: This package implements a method to analyze single-cell RNA- seq Data utilizing flexible Dirichlet Process mixture models. Genes with differential distributions of expression are classified into several interesting patterns of differences between two conditions. The package also includes functions for simulating data with these patterns from negative binomial distributions. biocViews: ImmunoOncology, Bayesian, Clustering, RNASeq, SingleCell, MultipleComparison, Visualization, DifferentialExpression Author: Keegan Korthauer [cre, aut] () Maintainer: Keegan Korthauer URL: https://github.com/kdkorthauer/scDD VignetteBuilder: knitr BugReports: https://github.com/kdkorthauer/scDD/issues git_url: https://git.bioconductor.org/packages/scDD git_branch: RELEASE_3_20 git_last_commit: 3aef6d1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scDD_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scDD_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scDD_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scDD_1.30.0.tgz vignettes: vignettes/scDD/inst/doc/scDD.pdf vignetteTitles: scDD Quickstart hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scDD/inst/doc/scDD.R suggestsMe: splatter dependencyCount: 128 Package: scDDboost Version: 1.8.0 Depends: R (>= 4.2), ggplot2 Imports: Rcpp (>= 0.12.11), RcppEigen (>= 0.3.2.9.0),EBSeq, BiocParallel, mclust, SingleCellExperiment, cluster, Oscope, SummarizedExperiment, stats, methods LinkingTo: Rcpp, RcppEigen, BH Suggests: knitr, rmarkdown, BiocStyle, testthat License: GPL (>= 2) MD5sum: 888bd691549bf9be9f0c557fe50d29a4 NeedsCompilation: yes Title: A compositional model to assess expression changes from single-cell rna-seq data Description: scDDboost is an R package to analyze changes in the distribution of single-cell expression data between two experimental conditions. Compared to other methods that assess differential expression, scDDboost benefits uniquely from information conveyed by the clustering of cells into cellular subtypes. Through a novel empirical Bayesian formulation it calculates gene-specific posterior probabilities that the marginal expression distribution is the same (or different) between the two conditions. The implementation in scDDboost treats gene-level expression data within each condition as a mixture of negative binomial distributions. biocViews: SingleCell, Software, Clustering, Sequencing, GeneExpression, DifferentialExpression, Bayesian Author: Xiuyu Ma [cre, aut], Michael A. Newton [ctb] Maintainer: Xiuyu Ma URL: https://github.com/wiscstatman/scDDboost SystemRequirements: c++11 VignetteBuilder: knitr BugReports: https://github.com/wiscstatman/scDDboost/issues git_url: https://git.bioconductor.org/packages/scDDboost git_branch: RELEASE_3_20 git_last_commit: 042b4c2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scDDboost_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scDDboost_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scDDboost_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scDDboost_1.8.0.tgz vignettes: vignettes/scDDboost/inst/doc/scDDboost.html vignetteTitles: scDDboost Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scDDboost/inst/doc/scDDboost.R dependencyCount: 100 Package: scde Version: 2.34.0 Depends: R (>= 3.0.0), flexmix Imports: Rcpp (>= 0.10.4), RcppArmadillo (>= 0.5.400.2.0), mgcv, Rook, rjson, MASS, Cairo, RColorBrewer, edgeR, quantreg, methods, nnet, RMTstat, extRemes, pcaMethods, BiocParallel, parallel LinkingTo: Rcpp, RcppArmadillo Suggests: knitr, cba, fastcluster, WGCNA, GO.db, org.Hs.eg.db, rmarkdown License: GPL-2 MD5sum: 5011b4f51c2dea4d48dc891fcba77ee5 NeedsCompilation: yes Title: Single Cell Differential Expression Description: The scde package implements a set of statistical methods for analyzing single-cell RNA-seq data. scde fits individual error models for single-cell RNA-seq measurements. These models can then be used for assessment of differential expression between groups of cells, as well as other types of analysis. The scde package also contains the pagoda framework which applies pathway and gene set overdispersion analysis to identify and characterize putative cell subpopulations based on transcriptional signatures. The overall approach to the differential expression analysis is detailed in the following publication: "Bayesian approach to single-cell differential expression analysis" (Kharchenko PV, Silberstein L, Scadden DT, Nature Methods, doi: 10.1038/nmeth.2967). The overall approach to subpopulation identification and characterization is detailed in the following pre-print: "Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis" (Fan J, Salathia N, Liu R, Kaeser G, Yung Y, Herman J, Kaper F, Fan JB, Zhang K, Chun J, and Kharchenko PV, Nature Methods, doi:10.1038/nmeth.3734). biocViews: ImmunoOncology, RNASeq, StatisticalMethod, DifferentialExpression, Bayesian, Transcription, Software Author: Peter Kharchenko [aut, cre], Jean Fan [aut], Evan Biederstedt [aut] Maintainer: Evan Biederstedt URL: http://pklab.med.harvard.edu/scde VignetteBuilder: knitr BugReports: https://github.com/hms-dbmi/scde/issues git_url: https://git.bioconductor.org/packages/scde git_branch: RELEASE_3_20 git_last_commit: 65d769d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scde_2.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scde_2.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scde_2.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scde_2.34.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE suggestsMe: pagoda2 dependencyCount: 49 Package: scDesign3 Version: 1.4.0 Depends: R (>= 4.3.0) Imports: dplyr, tibble, stats, methods, mgcv, gamlss, gamlss.dist, SummarizedExperiment, SingleCellExperiment, mclust, mvtnorm, parallel, pbmcapply, rvinecopulib, umap, ggplot2, irlba, viridis, BiocParallel, matrixStats, Matrix, sparseMVN, coop Suggests: mvnfast, igraph, knitr, rmarkdown, testthat (>= 3.0.0), RefManageR, sessioninfo, BiocStyle License: MIT + file LICENSE MD5sum: 7a2051e5737f93a928cfe0f983c7ba0f NeedsCompilation: no Title: A unified framework of realistic in silico data generation and statistical model inference for single-cell and spatial omics Description: We present a statistical simulator, scDesign3, to generate realistic single-cell and spatial omics data, including various cell states, experimental designs, and feature modalities, by learning interpretable parameters from real data. Using a unified probabilistic model for single-cell and spatial omics data, scDesign3 infers biologically meaningful parameters; assesses the goodness-of-fit of inferred cell clusters, trajectories, and spatial locations; and generates in silico negative and positive controls for benchmarking computational tools. biocViews: Software, SingleCell, Sequencing, GeneExpression, Spatial Author: Dongyuan Song [aut, cre] (), Qingyang Wang [aut] () Maintainer: Dongyuan Song URL: https://github.com/SONGDONGYUAN1994/scDesign3 VignetteBuilder: knitr BugReports: https://github.com/SONGDONGYUAN1994/scDesign3/issues git_url: https://git.bioconductor.org/packages/scDesign3 git_branch: RELEASE_3_20 git_last_commit: 0c3d1ba git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scDesign3_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scDesign3_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scDesign3_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scDesign3_1.4.0.tgz vignettes: vignettes/scDesign3/inst/doc/scDesign3.html vignetteTitles: scDesign3-quickstart-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scDesign3/inst/doc/scDesign3.R dependencyCount: 105 Package: scDiagnostics Version: 1.0.0 Depends: R (>= 4.4.0) Imports: SingleCellExperiment, methods, isotree, ggplot2, ggridges, SummarizedExperiment, ranger, transport, speedglm, cramer, rlang, bluster, patchwork Suggests: AUCell, BiocStyle, knitr, Matrix, rmarkdown, scran, scRNAseq, SingleR, celldex, scuttle, scater, dplyr, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: 9c3175299b05983588f064916c420da8 NeedsCompilation: no Title: Cell type annotation diagnostics Description: The scDiagnostics package provides diagnostic plots to assess the quality of cell type assignments from single cell gene expression profiles. The implemented functionality allows to assess the reliability of cell type annotations, investigate gene expression patterns, and explore relationships between different cell types in query and reference datasets allowing users to detect potential misalignments between reference and query datasets. The package also provides visualization capabilities for diagnostics purposes. biocViews: Annotation, Classification, Clustering, GeneExpression, RNASeq, SingleCell, Software, Transcriptomics Author: Anthony Christidis [aut, cre] (), Andrew Ghazi [aut], Smriti Chawla [aut], Nitesh Turaga [ctb], Ludwig Geistlinger [aut], Robert Gentleman [aut] Maintainer: Anthony Christidis URL: https://github.com/ccb-hms/scDiagnostics VignetteBuilder: knitr BugReports: https://github.com/ccb-hms/scDiagnostics/issues git_url: https://git.bioconductor.org/packages/scDiagnostics git_branch: RELEASE_3_20 git_last_commit: f91e911 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scDiagnostics_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scDiagnostics_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scDiagnostics_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scDiagnostics_1.0.0.tgz vignettes: vignettes/scDiagnostics/inst/doc/AnnotationAnomalies.html, vignettes/scDiagnostics/inst/doc/DatasetMarkerGeneAlignment.html, vignettes/scDiagnostics/inst/doc/scDiagnostics.html, vignettes/scDiagnostics/inst/doc/VisualizationTools.html vignetteTitles: 4. Detection and Analysis of Annotation Anomalies, 3. Evaluation of Dataset and Marker Gene Alignment, 1. Getting Started with scDiagnostics, 2. Visualization of Cell Type Annotations hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scDiagnostics/inst/doc/AnnotationAnomalies.R, vignettes/scDiagnostics/inst/doc/DatasetMarkerGeneAlignment.R, vignettes/scDiagnostics/inst/doc/scDiagnostics.R, vignettes/scDiagnostics/inst/doc/VisualizationTools.R dependencyCount: 92 Package: scDotPlot Version: 1.0.0 Depends: R (>= 4.4.0) Imports: aplot, BiocGenerics, cli, dplyr, ggplot2, ggsci, ggtree, grDevices, magrittr, purrr, rlang, scales, scater, Seurat, SingleCellExperiment, stats, stringr, tibble, tidyr Suggests: AnnotationDbi, BiocStyle, knitr, rmarkdown, scran, scRNAseq, scuttle, SeuratObject, testthat, vdiffr License: Artistic-2.0 MD5sum: 3016f3b050f8246442354c35f6424f87 NeedsCompilation: no Title: Cluster a Single-cell RNA-seq Dot Plot Description: Dot plots of single-cell RNA-seq data allow for an examination of the relationships between cell groupings (e.g. clusters) and marker gene expression. The scDotPlot package offers a unified approach to perform a hierarchical clustering analysis and add annotations to the columns and/or rows of a scRNA-seq dot plot. It works with SingleCellExperiment and Seurat objects as well as data frames. biocViews: Software, Visualization, DifferentialExpression, GeneExpression, Transcription, RNASeq, SingleCell, Sequencing, Clustering Author: Benjamin I Laufer [aut, cre], Brad A Friedman [aut] Maintainer: Benjamin I Laufer URL: https://github.com/ben-laufer/scDotPlot VignetteBuilder: knitr BugReports: https://github.com/ben-laufer/scDotPlot/issues git_url: https://git.bioconductor.org/packages/scDotPlot git_branch: RELEASE_3_20 git_last_commit: a4792ee git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scDotPlot_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scDotPlot_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scDotPlot_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scDotPlot_1.0.0.tgz vignettes: vignettes/scDotPlot/inst/doc/scDotPlot.html vignetteTitles: scDotPlot hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scDotPlot/inst/doc/scDotPlot.R dependencyCount: 207 Package: scds Version: 1.22.0 Depends: R (>= 3.6.0) Imports: Matrix, S4Vectors, SingleCellExperiment, SummarizedExperiment, xgboost, methods, stats, dplyr, pROC Suggests: BiocStyle, knitr, rsvd, Rtsne, scater, cowplot, rmarkdown License: MIT + file LICENSE Archs: x64 MD5sum: ea1f46023a9499a5ed4b416f31fec655 NeedsCompilation: no Title: In-Silico Annotation of Doublets for Single Cell RNA Sequencing Data Description: In single cell RNA sequencing (scRNA-seq) data combinations of cells are sometimes considered a single cell (doublets). The scds package provides methods to annotate doublets in scRNA-seq data computationally. biocViews: SingleCell, RNASeq, QualityControl, Preprocessing, Transcriptomics, GeneExpression, Sequencing, Software, Classification Author: Dennis Kostka [aut, cre], Bais Abha [aut] Maintainer: Dennis Kostka VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/scds git_branch: RELEASE_3_20 git_last_commit: 9ee5a7c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scds_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scds_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scds_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scds_1.22.0.tgz vignettes: vignettes/scds/inst/doc/scds.html vignetteTitles: Introduction to the scds package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scds/inst/doc/scds.R importsMe: singleCellTK suggestsMe: ExperimentSubset, muscData dependencyCount: 57 Package: SCFA Version: 1.16.0 Depends: R (>= 4.0) Imports: matrixStats, BiocParallel, torch (>= 0.3.0), coro, igraph, Matrix, cluster, psych, glmnet, RhpcBLASctl, stats, utils, methods, survival Suggests: knitr, rmarkdown, BiocStyle License: LGPL Archs: x64 MD5sum: 270f83e5c4aa3b5aa4754f384a439ca7 NeedsCompilation: no Title: SCFA: Subtyping via Consensus Factor Analysis Description: Subtyping via Consensus Factor Analysis (SCFA) can efficiently remove noisy signals from consistent molecular patterns in multi-omics data. SCFA first uses an autoencoder to select only important features and then repeatedly performs factor analysis to represent the data with different numbers of factors. Using these representations, it can reliably identify cancer subtypes and accurately predict risk scores of patients. biocViews: Survival, Clustering, Classification Author: Duc Tran [aut, cre], Hung Nguyen [aut], Tin Nguyen [fnd] Maintainer: Duc Tran URL: https://github.com/duct317/SCFA VignetteBuilder: knitr BugReports: https://github.com/duct317/SCFA/issues git_url: https://git.bioconductor.org/packages/SCFA git_branch: RELEASE_3_20 git_last_commit: 2d58d56 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SCFA_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SCFA_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SCFA_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SCFA_1.16.0.tgz vignettes: vignettes/SCFA/inst/doc/Example.html vignetteTitles: SCFA package manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SCFA/inst/doc/Example.R dependencyCount: 55 Package: scFeatureFilter Version: 1.26.0 Depends: R (>= 3.6) Imports: dplyr (>= 0.7.3), ggplot2 (>= 2.1.0), magrittr (>= 1.5), rlang (>= 0.1.2), tibble (>= 1.3.4), stats, methods Suggests: testthat, knitr, rmarkdown, BiocStyle, SingleCellExperiment, SummarizedExperiment, scRNAseq, cowplot License: MIT + file LICENSE MD5sum: 95ed10e4f805f9a9c00a963e143459d8 NeedsCompilation: no Title: A correlation-based method for quality filtering of single-cell RNAseq data Description: An R implementation of the correlation-based method developed in the Joshi laboratory to analyse and filter processed single-cell RNAseq data. It returns a filtered version of the data containing only genes expression values unaffected by systematic noise. biocViews: ImmunoOncology, SingleCell, RNASeq, Preprocessing, GeneExpression Author: Angeles Arzalluz-Luque [aut], Guillaume Devailly [aut, cre], Anagha Joshi [aut] Maintainer: Guillaume Devailly VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/scFeatureFilter git_branch: RELEASE_3_20 git_last_commit: c9b38b0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scFeatureFilter_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scFeatureFilter_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scFeatureFilter_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scFeatureFilter_1.26.0.tgz vignettes: vignettes/scFeatureFilter/inst/doc/Introduction.html vignetteTitles: Introduction to scFeatureFilter hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scFeatureFilter/inst/doc/Introduction.R dependencyCount: 38 Package: scFeatures Version: 1.6.0 Depends: R (>= 4.2.0) Imports: DelayedArray, DelayedMatrixStats, EnsDb.Hsapiens.v79, EnsDb.Mmusculus.v79, GSVA, ape, glue, dplyr, ensembldb, gtools, msigdbr, proxyC, reshape2, spatstat.explore, spatstat.geom, tidyr, AUCell, BiocParallel, rmarkdown, methods, stats, cli, SingleCellSignalR, MatrixGenerics, Seurat, DT Suggests: knitr, S4Vectors, survival, survminer, BiocStyle, ClassifyR, org.Hs.eg.db, clusterProfiler License: GPL-3 MD5sum: df5ae072515e820cc5027911aae2e49a NeedsCompilation: no Title: scFeatures: Multi-view representations of single-cell and spatial data for disease outcome prediction Description: scFeatures constructs multi-view representations of single-cell and spatial data. scFeatures is a tool that generates multi-view representations of single-cell and spatial data through the construction of a total of 17 feature types. These features can then be used for a variety of analyses using other software in Biocondutor. biocViews: CellBasedAssays, SingleCell, Spatial, Software, Transcriptomics Author: Yue Cao [aut, cre], Yingxin Lin [aut], Ellis Patrick [aut], Pengyi Yang [aut], Jean Yee Hwa Yang [aut] Maintainer: Yue Cao URL: https://sydneybiox.github.io/scFeatures/ https://github.com/SydneyBioX/scFeatures/ VignetteBuilder: knitr BugReports: https://github.com/SydneyBioX/scFeatures/issues git_url: https://git.bioconductor.org/packages/scFeatures git_branch: RELEASE_3_20 git_last_commit: 73ee2f1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scFeatures_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scFeatures_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scFeatures_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scFeatures_1.6.0.tgz vignettes: vignettes/scFeatures/inst/doc/scFeatures_overview.html vignetteTitles: Overview of scFeatures with case studies hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scFeatures/inst/doc/scFeatures_overview.R dependencyCount: 252 Package: scGPS Version: 1.20.0 Depends: R (>= 3.6), SummarizedExperiment, dynamicTreeCut, SingleCellExperiment Imports: glmnet (> 2.0), caret (>= 6.0), ggplot2 (>= 2.2.1), fastcluster, dplyr, Rcpp, RcppArmadillo, RcppParallel, grDevices, graphics, stats, utils, DESeq2, locfit LinkingTo: Rcpp, RcppArmadillo, RcppParallel Suggests: Matrix (>= 1.2), testthat, knitr, parallel, rmarkdown, RColorBrewer, ReactomePA, clusterProfiler, cowplot, org.Hs.eg.db, reshape2, xlsx, dendextend, networkD3, Rtsne, BiocParallel, e1071, WGCNA, devtools, DOSE License: GPL-3 MD5sum: 656578131e67e1f49507007d41c7c772 NeedsCompilation: yes Title: A complete analysis of single cell subpopulations, from identifying subpopulations to analysing their relationship (scGPS = single cell Global Predictions of Subpopulation) Description: The package implements two main algorithms to answer two key questions: a SCORE (Stable Clustering at Optimal REsolution) to find subpopulations, followed by scGPS to investigate the relationships between subpopulations. biocViews: SingleCell, Clustering, DataImport, Sequencing, Coverage Author: Quan Nguyen [aut, cre], Michael Thompson [aut], Anne Senabouth [aut] Maintainer: Quan Nguyen SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/IMB-Computational-Genomics-Lab/scGPS/issues git_url: https://git.bioconductor.org/packages/scGPS git_branch: RELEASE_3_20 git_last_commit: 69321f3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scGPS_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scGPS_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scGPS_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scGPS_1.20.0.tgz vignettes: vignettes/scGPS/inst/doc/vignette.html vignetteTitles: single cell Global fate Potential of Subpopulations hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scGPS/inst/doc/vignette.R dependencyCount: 126 Package: schex Version: 1.20.0 Depends: SingleCellExperiment (>= 1.7.4), ggplot2 (>= 3.2.1) Imports: hexbin, stats, methods, cluster, dplyr, entropy, ggforce, grid, rlang, concaveman Suggests: ggrepel, knitr, rmarkdown, testthat (>= 2.1.0), covr, TENxPBMCData, scater, Seurat, shinydashboard, iSEE, igraph, scran, tibble, scuttle License: GPL-3 MD5sum: cfc765d08e235787112c320def671495 NeedsCompilation: no Title: Hexbin plots for single cell omics data Description: Builds hexbin plots for variables and dimension reduction stored in single cell omics data such as SingleCellExperiment. The ideas used in this package are based on the excellent work of Dan Carr, Nicholas Lewin-Koh, Martin Maechler and Thomas Lumley. biocViews: Software, Sequencing, SingleCell, DimensionReduction, Visualization, ImmunoOncology, DataImport Author: Saskia Freytag [aut, cre], Wancheng Tang [ctb], Zimo Peng [ctb], Jingxiu Huang [ctb] Maintainer: Saskia Freytag URL: https://github.com/SaskiaFreytag/schex VignetteBuilder: knitr BugReports: https://github.com/SaskiaFreytag/schex/issues git_url: https://git.bioconductor.org/packages/schex git_branch: RELEASE_3_20 git_last_commit: 5da0507 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/schex_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/schex_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/schex_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/schex_1.20.0.tgz vignettes: vignettes/schex/inst/doc/Seurat_to_SCE.html, vignettes/schex/inst/doc/using_schex.html vignetteTitles: Seurat_to_SCE, using_schex hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/schex/inst/doc/Seurat_to_SCE.R, vignettes/schex/inst/doc/using_schex.R importsMe: scTensor, scTGIF dependencyCount: 88 Package: scHOT Version: 1.18.0 Depends: R (>= 4.0) Imports: S4Vectors (>= 0.24.3), SingleCellExperiment, Matrix, SummarizedExperiment, IRanges, methods, stats, BiocParallel, reshape, ggplot2, igraph, grDevices, ggforce, graphics Suggests: knitr, markdown, rmarkdown, scater, scattermore, scales, matrixStats, deldir License: GPL-3 MD5sum: 07d76ef9e86a9cd78462437f1bf84196 NeedsCompilation: no Title: single-cell higher order testing Description: Single cell Higher Order Testing (scHOT) is an R package that facilitates testing changes in higher order structure of gene expression along either a developmental trajectory or across space. scHOT is general and modular in nature, can be run in multiple data contexts such as along a continuous trajectory, between discrete groups, and over spatial orientations; as well as accommodate any higher order measurement such as variability or correlation. scHOT meaningfully adds to first order effect testing, such as differential expression, and provides a framework for interrogating higher order interactions from single cell data. biocViews: GeneExpression, RNASeq, Sequencing, SingleCell, Software, Transcriptomics Author: Shila Ghazanfar [aut, cre], Yingxin Lin [aut] Maintainer: Shila Ghazanfar VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/scHOT git_branch: RELEASE_3_20 git_last_commit: 0d9a9b7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scHOT_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scHOT_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scHOT_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scHOT_1.18.0.tgz vignettes: vignettes/scHOT/inst/doc/scHOT.html vignetteTitles: Getting started: scHOT hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scHOT/inst/doc/scHOT.R dependencyCount: 83 Package: scider Version: 1.4.0 Depends: R (>= 4.3) Imports: SpatialExperiment, SummarizedExperiment, spatstat.geom, spatstat.explore, sf, lwgeom, ggplot2, stats, pheatmap, plotly, shiny, igraph, janitor, knitr, methods, utils, rlang, isoband, S4Vectors, grDevices Suggests: edgeR, testthat (>= 3.0.0) License: GPL-3 + file LICENSE MD5sum: a97bda001a8ffbe4a5491691b675310a NeedsCompilation: no Title: Spatial cell-type inter-correlation by density in R Description: scider is a user-friendly R package providing functions to model the global density of cells in a slide of spatial transcriptomics data. All functions in the package are built based on the SpatialExperiment object, allowing integration into various spatial transcriptomics-related packages from Bioconductor. After modelling density, the package allows for serveral downstream analysis, including colocalization analysis, boundary detection analysis and differential density analysis. biocViews: Spatial, Transcriptomics Author: Ning Liu [aut] (), Mengbo Li [aut] (), Yunshun Chen [aut, cre] () Maintainer: Yunshun Chen URL: https://github.com/ChenLaboratory/scider, https://chenlaboratory.github.io/scider/ VignetteBuilder: knitr BugReports: https://github.com/ChenLaboratory/scider/issues git_url: https://git.bioconductor.org/packages/scider git_branch: RELEASE_3_20 git_last_commit: 66eb493 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scider_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scider_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scider_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scider_1.4.0.tgz vignettes: vignettes/scider/inst/doc/scider_userGuide.html vignetteTitles: scider_introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scider/inst/doc/scider_userGuide.R dependencyCount: 143 Package: scifer Version: 1.8.1 Imports: dplyr, rmarkdown, data.table, Biostrings, stats, plyr, knitr, ggplot2, gridExtra, DECIPHER, stringr, sangerseqR, kableExtra, tibble, scales, rlang, flowCore, methods, basilisk, reticulate, here, utils, basilisk.utils Suggests: BiocBaseUtils, fs, BiocStyle, testthat (>= 3.0.0) Enhances: parallel License: MIT + file LICENSE MD5sum: 7f0b87e5a6c23d567b31d17e6a4a1078 NeedsCompilation: no Title: Scifer: Single-Cell Immunoglobulin Filtering of Sanger Sequences Description: Have you ever index sorted cells in a 96 or 384-well plate and then sequenced using Sanger sequencing? If so, you probably had some struggles to either check the electropherogram of each cell sequenced manually, or when you tried to identify which cell was sorted where after sequencing the plate. Scifer was developed to solve this issue by performing basic quality control of Sanger sequences and merging flow cytometry data from probed single-cell sorted B cells with sequencing data. scifer can export summary tables, 'fasta' files, electropherograms for visual inspection, and generate reports. biocViews: Preprocessing, QualityControl, SangerSeq, Sequencing, Software, FlowCytometry, SingleCell Author: Rodrigo Arcoverde Cerveira [aut, cre, cph] (), Marcel Martin [ctb], Matthew James Hinchcliff [ctb], Sebastian Ols [aut, dtc] (), Karin Loré [dtc, ths, fnd] () Maintainer: Rodrigo Arcoverde Cerveira URL: https://github.com/rodrigarc/scifer VignetteBuilder: knitr BugReports: https://github.com/rodrigarc/scifer/issues git_url: https://git.bioconductor.org/packages/scifer git_branch: RELEASE_3_20 git_last_commit: ea4b063 git_last_commit_date: 2024-12-17 Date/Publication: 2024-12-19 source.ver: src/contrib/scifer_1.8.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/scifer_1.8.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scifer_1.8.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scifer_1.8.1.tgz vignettes: vignettes/scifer/inst/doc/scifer_walkthrough.html vignetteTitles: Using scifer to filter single-cell sorted B cell receptor (BCR) sanger sequences hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scifer/inst/doc/scifer_walkthrough.R dependencyCount: 116 Package: scmap Version: 1.28.0 Depends: R(>= 3.4) Imports: Biobase, SingleCellExperiment, SummarizedExperiment, BiocGenerics, S4Vectors, dplyr, reshape2, matrixStats, proxy, utils, googleVis, ggplot2, methods, stats, e1071, randomForest, Rcpp (>= 0.12.12) LinkingTo: Rcpp, RcppArmadillo Suggests: knitr, rmarkdown, BiocStyle License: GPL-3 Archs: x64 MD5sum: f6a5af5c1a78e5dcdcad2e20efc99bb3 NeedsCompilation: yes Title: A tool for unsupervised projection of single cell RNA-seq data Description: Single-cell RNA-seq (scRNA-seq) is widely used to investigate the composition of complex tissues since the technology allows researchers to define cell-types using unsupervised clustering of the transcriptome. However, due to differences in experimental methods and computational analyses, it is often challenging to directly compare the cells identified in two different experiments. scmap is a method for projecting cells from a scRNA-seq experiment on to the cell-types or individual cells identified in a different experiment. biocViews: ImmunoOncology, SingleCell, Software, Classification, SupportVectorMachine, RNASeq, Visualization, Transcriptomics, DataRepresentation, Transcription, Sequencing, Preprocessing, GeneExpression, DataImport Author: Vladimir Kiselev Maintainer: Vladimir Kiselev URL: https://github.com/hemberg-lab/scmap VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/scmap/ git_url: https://git.bioconductor.org/packages/scmap git_branch: RELEASE_3_20 git_last_commit: 2214cd6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scmap_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scmap_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scmap_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scmap_1.28.0.tgz vignettes: vignettes/scmap/inst/doc/scmap.html vignetteTitles: `scmap` package vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scmap/inst/doc/scmap.R dependencyCount: 77 Package: scMerge Version: 1.22.0 Depends: R (>= 3.6.0) Imports: BiocParallel, BiocSingular, BiocNeighbors, cluster, DelayedArray, DelayedMatrixStats, distr, igraph, M3Drop (>= 1.9.4), proxyC, ruv, cvTools, scater, batchelor, scran, methods, S4Vectors (>= 0.23.19), SingleCellExperiment (>= 1.7.3), SummarizedExperiment Suggests: BiocStyle, covr, HDF5Array, knitr, Matrix, rmarkdown, scales, proxy, testthat, badger License: GPL-3 MD5sum: 0ead2213629965114185276b50d3f4d7 NeedsCompilation: no Title: scMerge: Merging multiple batches of scRNA-seq data Description: Like all gene expression data, single-cell data suffers from batch effects and other unwanted variations that makes accurate biological interpretations difficult. The scMerge method leverages factor analysis, stably expressed genes (SEGs) and (pseudo-) replicates to remove unwanted variations and merge multiple single-cell data. This package contains all the necessary functions in the scMerge pipeline, including the identification of SEGs, replication-identification methods, and merging of single-cell data. biocViews: BatchEffect, GeneExpression, Normalization, RNASeq, Sequencing, SingleCell, Software, Transcriptomics Author: Yingxin Lin [aut, cre], Kevin Wang [aut], Sydney Bioinformatics and Biometrics Group [fnd] Maintainer: Yingxin Lin URL: https://github.com/SydneyBioX/scMerge VignetteBuilder: knitr BugReports: https://github.com/SydneyBioX/scMerge/issues git_url: https://git.bioconductor.org/packages/scMerge git_branch: RELEASE_3_20 git_last_commit: f957ecd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scMerge_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scMerge_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scMerge_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scMerge_1.22.0.tgz vignettes: vignettes/scMerge/inst/doc/scMerge2.html, vignettes/scMerge/inst/doc/scMerge.html vignetteTitles: scMerge2, scMerge hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scMerge/inst/doc/scMerge2.R, vignettes/scMerge/inst/doc/scMerge.R importsMe: singleCellTK suggestsMe: Cepo dependencyCount: 188 Package: scMET Version: 1.8.0 Depends: R (>= 4.2.0) Imports: methods, Rcpp (>= 1.0.0), RcppParallel (>= 5.0.1), rstan (>= 2.21.3), rstantools (>= 2.1.0), VGAM, data.table, MASS, logitnorm, ggplot2, matrixStats, assertthat, viridis, coda, BiocStyle, cowplot, stats, SummarizedExperiment, SingleCellExperiment, Matrix, dplyr, S4Vectors LinkingTo: BH (>= 1.66.0), Rcpp (>= 1.0.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.21.3), StanHeaders (>= 2.21.0.7) Suggests: testthat, knitr, rmarkdown License: GPL-3 MD5sum: 454268faca57a0ade6352837704f5b15 NeedsCompilation: yes Title: Bayesian modelling of cell-to-cell DNA methylation heterogeneity Description: High-throughput single-cell measurements of DNA methylomes can quantify methylation heterogeneity and uncover its role in gene regulation. However, technical limitations and sparse coverage can preclude this task. scMET is a hierarchical Bayesian model which overcomes sparsity, sharing information across cells and genomic features to robustly quantify genuine biological heterogeneity. scMET can identify highly variable features that drive epigenetic heterogeneity, and perform differential methylation and variability analyses. We illustrate how scMET facilitates the characterization of epigenetically distinct cell populations and how it enables the formulation of novel hypotheses on the epigenetic regulation of gene expression. biocViews: ImmunoOncology, DNAMethylation, DifferentialMethylation, DifferentialExpression, GeneExpression, GeneRegulation, Epigenetics, Genetics, Clustering, FeatureExtraction, Regression, Bayesian, Sequencing, Coverage, SingleCell Author: Andreas C. Kapourani [aut, cre] (), John Riddell [ctb] Maintainer: Andreas C. Kapourani SystemRequirements: GNU make VignetteBuilder: knitr BugReports: https://github.com/andreaskapou/scMET/issues git_url: https://git.bioconductor.org/packages/scMET git_branch: RELEASE_3_20 git_last_commit: 5931d7c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scMET_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scMET_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scMET_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scMET_1.8.0.tgz vignettes: vignettes/scMET/inst/doc/scMET_vignette.html vignetteTitles: scMET analysis using synthetic data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scMET/inst/doc/scMET_vignette.R dependencyCount: 118 Package: scmeth Version: 1.26.0 Depends: R (>= 3.5.0) Imports: knitr, rmarkdown, bsseq, AnnotationHub, GenomicRanges, reshape2, stats, utils, BSgenome, DelayedArray (>= 0.5.15), annotatr, SummarizedExperiment (>= 1.5.6), GenomeInfoDb, Biostrings, DT, HDF5Array (>= 1.7.5) Suggests: BSgenome.Mmusculus.UCSC.mm10, BSgenome.Hsapiens.NCBI.GRCh38, TxDb.Hsapiens.UCSC.hg38.knownGene, org.Hs.eg.db, Biobase, BiocGenerics, ggplot2, ggthemes License: GPL-2 MD5sum: 4a9841823c20b5a904aa0ccb3190d599 NeedsCompilation: no Title: Functions to conduct quality control analysis in methylation data Description: Functions to analyze methylation data can be found here. Some functions are relevant for single cell methylation data but most other functions can be used for any methylation data. Highlight of this workflow is the comprehensive quality control report. biocViews: DNAMethylation, QualityControl, Preprocessing, SingleCell, ImmunoOncology Author: Divy Kangeyan Maintainer: Divy Kangeyan VignetteBuilder: knitr BugReports: https://github.com/aryeelab/scmeth/issues git_url: https://git.bioconductor.org/packages/scmeth git_branch: RELEASE_3_20 git_last_commit: 897c945 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scmeth_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scmeth_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scmeth_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scmeth_1.26.0.tgz vignettes: vignettes/scmeth/inst/doc/my-vignette.html vignetteTitles: Vignette Title hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scmeth/inst/doc/my-vignette.R suggestsMe: biscuiteer dependencyCount: 163 Package: scMitoMut Version: 1.2.0 Depends: R (>= 4.3.0) Imports: data.table, Rcpp, magrittr, plyr, stringr, utils, stats, methods, ggplot2, pheatmap, zlibbioc, RColorBrewer, rhdf5, readr, parallel, grDevices LinkingTo: Rcpp, RcppArmadillo Suggests: testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown, VGAM, R.utils License: Artistic-2.0 MD5sum: 4add4309acee79623e5cdee0482242fc NeedsCompilation: yes Title: Single-cell Mitochondrial Mutation Analysis Tool Description: This package is designed for calling lineage-informative mitochondrial mutations using single-cell sequencing data, such as scRNASeq and scATACSeq (preferably the latter due to RNA editing issues). It includes functions for mutation calling and visualization. Mutation calling is done using beta-binomial distribution. biocViews: Preprocessing, Sequencing, SingleCell Author: Wenjie Sun [cre, aut] (), Leila Perie [ctb] Maintainer: Wenjie Sun URL: http://github.com/wenjie1991/scMitoMut VignetteBuilder: knitr BugReports: https://github.com/wenjie1991/scMitoMut/issues git_url: https://git.bioconductor.org/packages/scMitoMut git_branch: RELEASE_3_20 git_last_commit: ba417ca git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scMitoMut_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scMitoMut_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scMitoMut_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scMitoMut_1.2.0.tgz vignettes: vignettes/scMitoMut/inst/doc/Analysis_colon_cancer_dataset.html vignetteTitles: CRC_dataset_demo hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scMitoMut/inst/doc/Analysis_colon_cancer_dataset.R dependencyCount: 60 Package: scMultiSim Version: 1.2.0 Depends: R (>= 4.4.0) Imports: foreach, rlang, dplyr, ggplot2, Rtsne, ape, MASS, matrixStats, phytools, KernelKnn, gplots, zeallot, crayon, assertthat, igraph, methods, grDevices, graphics, stats, utils, markdown, SummarizedExperiment, BiocParallel Suggests: knitr, rmarkdown, roxygen2, shiny, testthat (>= 3.0.0) License: Artistic-2.0 Archs: x64 MD5sum: ad7fee6876a5388c41fae6890079f95e NeedsCompilation: no Title: Simulation of Multi-Modality Single Cell Data Guided By Gene Regulatory Networks and Cell-Cell Interactions Description: scMultiSim simulates paired single cell RNA-seq, single cell ATAC-seq and RNA velocity data, while incorporating mechanisms of gene regulatory networks, chromatin accessibility and cell-cell interactions. It allows users to tune various parameters controlling the amount of each biological factor, variation of gene-expression levels, the influence of chromatin accessibility on RNA sequence data, and so on. It can be used to benchmark various computational methods for single cell multi-omics data, and to assist in experimental design of wet-lab experiments. biocViews: SingleCell, Transcriptomics, GeneExpression, Sequencing, ExperimentalDesign Author: Hechen Li [aut, cre] (), Xiuwei Zhang [aut], Ziqi Zhang [aut], Michael Squires [aut] Maintainer: Hechen Li URL: https://zhanglabgt.github.io/scMultiSim/ VignetteBuilder: knitr BugReports: https://github.com/ZhangLabGT/scMultiSim/issues git_url: https://git.bioconductor.org/packages/scMultiSim git_branch: RELEASE_3_20 git_last_commit: 92f9425 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scMultiSim_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scMultiSim_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scMultiSim_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scMultiSim_1.2.0.tgz vignettes: vignettes/scMultiSim/inst/doc/basics.html, vignettes/scMultiSim/inst/doc/options.html, vignettes/scMultiSim/inst/doc/spatialCCI.html, vignettes/scMultiSim/inst/doc/workflow.html vignetteTitles: 2. Simulating Multimodal Single-cell Datasets, 4. Parameter Guide, 3. Simulating Spatial Cell-Cell Interactions, 1. Getting Started hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scMultiSim/inst/doc/basics.R, vignettes/scMultiSim/inst/doc/options.R, vignettes/scMultiSim/inst/doc/spatialCCI.R, vignettes/scMultiSim/inst/doc/workflow.R dependencyCount: 109 Package: SCnorm Version: 1.28.0 Depends: R (>= 3.4.0), Imports: SingleCellExperiment, SummarizedExperiment, stats, methods, graphics, grDevices, parallel, quantreg, cluster, moments, data.table, BiocParallel, S4Vectors, ggplot2, forcats, BiocGenerics Suggests: BiocStyle, knitr, rmarkdown, devtools License: GPL (>= 2) MD5sum: 3243d13c27af322a2664ee0f094d755d NeedsCompilation: no Title: Normalization of single cell RNA-seq data Description: This package implements SCnorm — a method to normalize single-cell RNA-seq data. biocViews: Normalization, RNASeq, SingleCell, ImmunoOncology Author: Rhonda Bacher Maintainer: Rhonda Bacher URL: https://github.com/rhondabacher/SCnorm VignetteBuilder: knitr BugReports: https://github.com/rhondabacher/SCnorm/issues git_url: https://git.bioconductor.org/packages/SCnorm git_branch: RELEASE_3_20 git_last_commit: e976f2f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SCnorm_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SCnorm_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SCnorm_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SCnorm_1.28.0.tgz vignettes: vignettes/SCnorm/inst/doc/SCnorm.pdf vignetteTitles: SCnorm Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SCnorm/inst/doc/SCnorm.R dependencyCount: 81 Package: scone Version: 1.30.0 Depends: R (>= 3.4), methods, SummarizedExperiment Imports: graphics, stats, utils, aroma.light, BiocParallel, class, cluster, compositions, diptest, edgeR, fpc, gplots, grDevices, hexbin, limma, matrixStats, mixtools, RColorBrewer, boot, rhdf5, RUVSeq, rARPACK, MatrixGenerics, SingleCellExperiment, DelayedMatrixStats, sparseMatrixStats Suggests: BiocStyle, DT, ggplot2, knitr, miniUI, NMF, plotly, reshape2, rmarkdown, scran, scRNAseq, shiny, testthat, visNetwork, doParallel, batchtools, splatter, scater, kableExtra, mclust, TENxPBMCData License: Artistic-2.0 Archs: x64 MD5sum: 98f2097f5c2cec8327af9125f51852e7 NeedsCompilation: no Title: Single Cell Overview of Normalized Expression data Description: SCONE is an R package for comparing and ranking the performance of different normalization schemes for single-cell RNA-seq and other high-throughput analyses. biocViews: ImmunoOncology, Normalization, Preprocessing, QualityControl, GeneExpression, RNASeq, Software, Transcriptomics, Sequencing, SingleCell, Coverage Author: Michael Cole [aut, cph], Davide Risso [aut, cre, cph], Matteo Borella [ctb], Chiara Romualdi [ctb] Maintainer: Davide Risso VignetteBuilder: knitr BugReports: https://github.com/YosefLab/scone/issues git_url: https://git.bioconductor.org/packages/scone git_branch: RELEASE_3_20 git_last_commit: 3f91c01 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scone_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scone_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scone_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scone_1.30.0.tgz vignettes: vignettes/scone/inst/doc/PsiNorm.html, vignettes/scone/inst/doc/sconeTutorial.html vignetteTitles: PsiNorm normalization, Introduction to SCONE hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scone/inst/doc/PsiNorm.R, vignettes/scone/inst/doc/sconeTutorial.R dependencyCount: 188 Package: Sconify Version: 1.26.0 Depends: R (>= 3.5) Imports: tibble, dplyr, FNN, flowCore, Rtsne, ggplot2, magrittr, utils, stats, readr Suggests: knitr, rmarkdown, testthat License: Artistic-2.0 MD5sum: 8cd64b7a4ca0bcd04fb3aad9a7da3429 NeedsCompilation: no Title: A toolkit for performing KNN-based statistics for flow and mass cytometry data Description: This package does k-nearest neighbor based statistics and visualizations with flow and mass cytometery data. This gives tSNE maps"fold change" functionality and provides a data quality metric by assessing manifold overlap between fcs files expected to be the same. Other applications using this package include imputation, marker redundancy, and testing the relative information loss of lower dimension embeddings compared to the original manifold. biocViews: ImmunoOncology, SingleCell, FlowCytometry, Software, MultipleComparison, Visualization Author: Tyler J Burns Maintainer: Tyler J Burns VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Sconify git_branch: RELEASE_3_20 git_last_commit: 83670d8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Sconify_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Sconify_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Sconify_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Sconify_1.26.0.tgz vignettes: vignettes/Sconify/inst/doc/DataQuality.html, vignettes/Sconify/inst/doc/FindingIdealK.html, vignettes/Sconify/inst/doc/Step1.PreProcessing.html, vignettes/Sconify/inst/doc/Step2.TheSconeWorkflow.html, vignettes/Sconify/inst/doc/Step3.PostProcessing.html vignetteTitles: Data Quality, Finding Ideal K, How to process FCS files for downstream use in R, General Scone Analysis, Final Post-Processing Steps for Scone hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Sconify/inst/doc/DataQuality.R, vignettes/Sconify/inst/doc/FindingIdealK.R, vignettes/Sconify/inst/doc/Step1.PreProcessing.R, vignettes/Sconify/inst/doc/Step2.TheSconeWorkflow.R, vignettes/Sconify/inst/doc/Step3.PostProcessing.R dependencyCount: 62 Package: SCOPE Version: 1.18.0 Depends: R (>= 3.6.0), GenomicRanges, IRanges, Rsamtools, GenomeInfoDb, BSgenome.Hsapiens.UCSC.hg19 Imports: stats, grDevices, graphics, utils, DescTools, RColorBrewer, gplots, foreach, parallel, doParallel, DNAcopy, BSgenome, Biostrings, BiocGenerics, S4Vectors Suggests: knitr, rmarkdown, WGSmapp, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm10, testthat (>= 2.1.0) License: GPL-2 Archs: x64 MD5sum: 9c3441b1dcb0f8a7f7cc20d12d534730 NeedsCompilation: no Title: A normalization and copy number estimation method for single-cell DNA sequencing Description: Whole genome single-cell DNA sequencing (scDNA-seq) enables characterization of copy number profiles at the cellular level. This circumvents the averaging effects associated with bulk-tissue sequencing and has increased resolution yet decreased ambiguity in deconvolving cancer subclones and elucidating cancer evolutionary history. ScDNA-seq data is, however, sparse, noisy, and highly variable even within a homogeneous cell population, due to the biases and artifacts that are introduced during the library preparation and sequencing procedure. Here, we propose SCOPE, a normalization and copy number estimation method for scDNA-seq data. The distinguishing features of SCOPE include: (i) utilization of cell-specific Gini coefficients for quality controls and for identification of normal/diploid cells, which are further used as negative control samples in a Poisson latent factor model for normalization; (ii) modeling of GC content bias using an expectation-maximization algorithm embedded in the Poisson generalized linear models, which accounts for the different copy number states along the genome; (iii) a cross-sample iterative segmentation procedure to identify breakpoints that are shared across cells from the same genetic background. biocViews: SingleCell, Normalization, CopyNumberVariation, Sequencing, WholeGenome, Coverage, Alignment, QualityControl, DataImport, DNASeq Author: Rujin Wang, Danyu Lin, Yuchao Jiang Maintainer: Rujin Wang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SCOPE git_branch: RELEASE_3_20 git_last_commit: dbce5ad git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SCOPE_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SCOPE_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SCOPE_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SCOPE_1.18.0.tgz vignettes: vignettes/SCOPE/inst/doc/SCOPE_vignette.html vignetteTitles: SCOPE: Single-cell Copy Number Estimation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SCOPE/inst/doc/SCOPE_vignette.R dependencyCount: 112 Package: scoreInvHap Version: 1.28.0 Depends: R (>= 3.6.0) Imports: Biostrings, methods, snpStats, VariantAnnotation, GenomicRanges, BiocParallel, graphics, SummarizedExperiment Suggests: testthat, knitr, BiocStyle, rmarkdown License: file LICENSE MD5sum: c12cfc5f84f75c3194003486aa5d7179 NeedsCompilation: no Title: Get inversion status in predefined regions Description: scoreInvHap can get the samples' inversion status of known inversions. scoreInvHap uses SNP data as input and requires the following information about the inversion: genotype frequencies in the different haplotypes, R2 between the region SNPs and inversion status and heterozygote genotypes in the reference. The package include this data for 21 inversions. biocViews: SNP, Genetics, GenomicVariation Author: Carlos Ruiz [aut], Dolors Pelegrí [aut], Juan R. Gonzalez [aut, cre] Maintainer: Dolors Pelegri-Siso VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/scoreInvHap git_branch: RELEASE_3_20 git_last_commit: f2fff05 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scoreInvHap_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scoreInvHap_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scoreInvHap_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scoreInvHap_1.28.0.tgz vignettes: vignettes/scoreInvHap/inst/doc/scoreInvHap.html vignetteTitles: Inversion genotyping with scoreInvHap hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scoreInvHap/inst/doc/scoreInvHap.R dependencyCount: 82 Package: scoup Version: 1.0.0 Depends: R (>= 4.4), Matrix Imports: Biostrings, methods Suggests: BiocManager, BiocStyle, bookdown, htmltools, knitr, testthat (>= 3.0.0), yaml License: GPL (>= 2) MD5sum: 17986a009bc26f64976fde1c6bf17cff NeedsCompilation: no Title: Simulate Codons with Darwinian Selection Modelled as an OU Process Description: An elaborate molecular evolutionary framework that facilitates straightforward simulation of codon genetic sequences subjected to different degrees and/or patterns of Darwinian selection. The model was built upon the fitness landscape paradigm of Sewall Wright, as popularised by the mutation-selection model of Halpern and Bruno. This enabled realistic evolutionary process of living organisms to be reproduced seamlessly. For example, an Ornstein-Uhlenbeck fitness update algorithm is incorporated herein. Consequently, otherwise complex biological processes, such as the effect of the interplay between genetic drift and mutation on the inference of diversifying selection, may now be investigated with minimal effort. Frequency-dependent and deterministic fitness landscape update techniques are also available. biocViews: Alignment, Classification, ComparativeGenomics, DataImport, Genetics, MathematicalBiology, ResearchField, Sequencing, SequenceMatching, Software, StatisticalMethod, WorkflowStep Author: Hassan Sadiq [aut, cre, cph] () Maintainer: Hassan Sadiq URL: https://github.com/thsadiq/scoup VignetteBuilder: knitr BugReports: https://github.com/thsadiq/scoup/issues git_url: https://git.bioconductor.org/packages/scoup git_branch: RELEASE_3_20 git_last_commit: 0bd7126 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scoup_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scoup_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scoup_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scoup_1.0.0.tgz vignettes: vignettes/scoup/inst/doc/scoup.html vignetteTitles: scoup Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scoup/inst/doc/scoup.R dependencyCount: 28 Package: scp Version: 1.16.0 Depends: R (>= 4.3.0), QFeatures (>= 1.13.5) Imports: IHW, ggplot2, ggrepel, matrixStats, metapod, methods, MsCoreUtils, MultiAssayExperiment, nipals, RColorBrewer, S4Vectors, SingleCellExperiment, SummarizedExperiment, stats, utils Suggests: BiocStyle, BiocGenerics, MsDataHub (>= 1.3.3), impute, knitr, patchwork, preprocessCore, rmarkdown, scater, scpdata, sva, testthat, vdiffr, vsn, uwot License: Artistic-2.0 MD5sum: 0216fe89610f6d2a2430695639439fd7 NeedsCompilation: no Title: Mass Spectrometry-Based Single-Cell Proteomics Data Analysis Description: Utility functions for manipulating, processing, and analyzing mass spectrometry-based single-cell proteomics data. The package is an extension to the 'QFeatures' package and relies on 'SingleCellExpirement' to enable single-cell proteomics analyses. The package offers the user the functionality to process quantitative table (as generated by MaxQuant, Proteome Discoverer, and more) into data tables ready for downstream analysis and data visualization. biocViews: GeneExpression, Proteomics, SingleCell, MassSpectrometry, Preprocessing, CellBasedAssays Author: Christophe Vanderaa [aut, cre] (), Laurent Gatto [aut] () Maintainer: Christophe Vanderaa URL: https://UCLouvain-CBIO.github.io/scp VignetteBuilder: knitr BugReports: https://github.com/UCLouvain-CBIO/scp/issues git_url: https://git.bioconductor.org/packages/scp git_branch: RELEASE_3_20 git_last_commit: 1faab32 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scp_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scp_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scp_1.16.0.tgz vignettes: vignettes/scp/inst/doc/advanced.html, vignettes/scp/inst/doc/QFeatures_nutshell.html, vignettes/scp/inst/doc/read_scp.html, vignettes/scp/inst/doc/reporting_missing_values.html, vignettes/scp/inst/doc/scp_data_modelling.html, vignettes/scp/inst/doc/scp.html vignetteTitles: Advanced usage of `scp`, QFeatures in a nutshell, Load data using readSCP, Reporting missing values, Single Cell Proteomics data modelling, Single Cell Proteomics data processing and analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scp/inst/doc/advanced.R, vignettes/scp/inst/doc/QFeatures_nutshell.R, vignettes/scp/inst/doc/read_scp.R, vignettes/scp/inst/doc/reporting_missing_values.R, vignettes/scp/inst/doc/scp_data_modelling.R, vignettes/scp/inst/doc/scp.R suggestsMe: scpdata dependencyCount: 116 Package: scPCA Version: 1.20.0 Depends: R (>= 4.0.0) Imports: stats, methods, assertthat, tibble, dplyr, purrr, stringr, Rdpack, matrixStats, BiocParallel, elasticnet, sparsepca, cluster, kernlab, origami, RSpectra, coop, Matrix, DelayedArray, ScaledMatrix, MatrixGenerics Suggests: DelayedMatrixStats, sparseMatrixStats, testthat (>= 2.1.0), covr, knitr, rmarkdown, BiocStyle, ggplot2, ggpubr, splatter, SingleCellExperiment, microbenchmark License: MIT + file LICENSE MD5sum: a3b9cac8e449f8898a5274fff7fd9f16 NeedsCompilation: no Title: Sparse Contrastive Principal Component Analysis Description: A toolbox for sparse contrastive principal component analysis (scPCA) of high-dimensional biological data. scPCA combines the stability and interpretability of sparse PCA with contrastive PCA's ability to disentangle biological signal from unwanted variation through the use of control data. Also implements and extends cPCA. biocViews: PrincipalComponent, GeneExpression, DifferentialExpression, Sequencing, Microarray, RNASeq Author: Philippe Boileau [aut, cre, cph] (), Nima Hejazi [aut] (), Sandrine Dudoit [ctb, ths] () Maintainer: Philippe Boileau URL: https://github.com/PhilBoileau/scPCA VignetteBuilder: knitr BugReports: https://github.com/PhilBoileau/scPCA/issues git_url: https://git.bioconductor.org/packages/scPCA git_branch: RELEASE_3_20 git_last_commit: 4bd05f7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scPCA_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scPCA_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scPCA_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scPCA_1.20.0.tgz vignettes: vignettes/scPCA/inst/doc/scpca_intro.html vignetteTitles: Sparse contrastive principal component analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scPCA/inst/doc/scpca_intro.R dependsOnMe: OSCA.workflows dependencyCount: 73 Package: scPipe Version: 2.6.0 Depends: R (>= 4.2.0), SingleCellExperiment Imports: AnnotationDbi, basilisk, BiocGenerics, biomaRt, Biostrings, data.table, dplyr, DropletUtils, flexmix, GenomicRanges, GenomicAlignments, GGally, ggplot2, glue (>= 1.3.0), grDevices, graphics, hash, IRanges, magrittr, MASS, Matrix (>= 1.5.0), mclust, methods, MultiAssayExperiment, org.Hs.eg.db, org.Mm.eg.db, purrr, Rcpp (>= 0.11.3), reshape, reticulate, Rhtslib, rlang, robustbase, Rsamtools, Rsubread, rtracklayer, SummarizedExperiment, S4Vectors, scales, stats, stringr, tibble, tidyr, tools, utils, vctrs (>= 0.5.2) LinkingTo: Rcpp, Rhtslib (>= 1.13.1), zlibbioc, testthat Suggests: BiocStyle, DT, GenomicFeatures, grid, igraph, kableExtra, knitr, locStra, plotly, rmarkdown, RColorBrewer, readr, reshape2, RANN, shiny, scater (>= 1.11.0), testthat, xml2, umap License: GPL (>= 2) MD5sum: e6ee5ea588aa24d6ae27300f8de7d8ff NeedsCompilation: yes Title: Pipeline for single cell multi-omic data pre-processing Description: A preprocessing pipeline for single cell RNA-seq/ATAC-seq data that starts from the fastq files and produces a feature count matrix with associated quality control information. It can process fastq data generated by CEL-seq, MARS-seq, Drop-seq, Chromium 10x and SMART-seq protocols. biocViews: ImmunoOncology, Software, Sequencing, RNASeq, GeneExpression, SingleCell, Visualization, SequenceMatching, Preprocessing, QualityControl, GenomeAnnotation, DataImport Author: Luyi Tian [aut], Shian Su [aut, cre], Shalin Naik [ctb], Shani Amarasinghe [aut], Oliver Voogd [aut], Phil Yang [aut], Matthew Ritchie [ctb] Maintainer: Shian Su URL: https://github.com/LuyiTian/scPipe SystemRequirements: C++11, GNU make VignetteBuilder: knitr BugReports: https://github.com/LuyiTian/scPipe git_url: https://git.bioconductor.org/packages/scPipe git_branch: RELEASE_3_20 git_last_commit: a29d66c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scPipe_2.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scPipe_2.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scPipe_2.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scPipe_2.6.0.tgz vignettes: vignettes/scPipe/inst/doc/scPipe_atac_tutorial.html, vignettes/scPipe/inst/doc/scPipe_tutorial.html vignetteTitles: scPipe: a flexible data preprocessing pipeline for scATAC-seq data, scPipe: a flexible data preprocessing pipeline for 3' end scRNA-seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scPipe/inst/doc/scPipe_atac_tutorial.R, vignettes/scPipe/inst/doc/scPipe_tutorial.R dependencyCount: 174 Package: scran Version: 1.34.0 Depends: SingleCellExperiment, scuttle Imports: SummarizedExperiment, S4Vectors, BiocGenerics, BiocParallel, Rcpp, stats, methods, utils, Matrix, edgeR, limma, igraph, statmod, MatrixGenerics, S4Arrays, DelayedArray, BiocSingular, bluster, metapod, dqrng, beachmat LinkingTo: Rcpp, beachmat, BH, dqrng, scuttle Suggests: testthat, BiocStyle, knitr, rmarkdown, DelayedMatrixStats, HDF5Array, scRNAseq, dynamicTreeCut, ResidualMatrix, ScaledMatrix, DESeq2, pheatmap, scater License: GPL-3 MD5sum: bac540bd32795a5cc1a0c1c0164a7b33 NeedsCompilation: yes Title: Methods for Single-Cell RNA-Seq Data Analysis Description: Implements miscellaneous functions for interpretation of single-cell RNA-seq data. Methods are provided for assignment of cell cycle phase, detection of highly variable and significantly correlated genes, identification of marker genes, and other common tasks in routine single-cell analysis workflows. biocViews: ImmunoOncology, Normalization, Sequencing, RNASeq, Software, GeneExpression, Transcriptomics, SingleCell, Clustering Author: Aaron Lun [aut, cre], Karsten Bach [aut], Jong Kyoung Kim [ctb], Antonio Scialdone [ctb] Maintainer: Aaron Lun URL: https://github.com/MarioniLab/scran/ SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/MarioniLab/scran/issues git_url: https://git.bioconductor.org/packages/scran git_branch: RELEASE_3_20 git_last_commit: a517459 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scran_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scran_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scran_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scran_1.34.0.tgz vignettes: vignettes/scran/inst/doc/scran.html vignetteTitles: Using scran to analyze scRNA-seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scran/inst/doc/scran.R dependsOnMe: OSCA.basic, OSCA.intro, OSCA.workflows, SingleRBook importsMe: BASiCS, BASiCStan, BatchQC, BayesSpace, BioTIP, celda, ChromSCape, CiteFuse, Dino, epiregulon, epiregulon.extra, FLAMES, lute, MOSim, MPAC, msImpute, mumosa, pipeComp, scDblFinder, scDD, scMerge, scTreeViz, SingleCellSignalR, singleCellTK, Spaniel, SpaNorm, mixhvg, SC.MEB, SpatialDDLS suggestsMe: APL, Banksy, batchelor, bluster, CellTrails, clusterExperiment, decontX, destiny, dittoSeq, escape, escheR, ExperimentSubset, ggsc, ggspavis, Glimma, glmGamPoi, iSEEu, miloR, Nebulosa, nnSVG, PCAtools, raer, scDiagnostics, scDotPlot, schex, scone, scuttle, SingleCellAlleleExperiment, SingleR, sketchR, smoothclust, spatialHeatmap, splatter, SPOTlight, StabMap, tidySingleCellExperiment, tpSVG, transformGamPoi, TSCAN, velociraptor, Voyager, HCAData, SingleCellMultiModal, TabulaMurisData, simpleSingleCell, Canek, SCdeconR dependencyCount: 73 Package: scrapper Version: 1.0.3 Imports: methods, Rcpp, beachmat (>= 2.21.6), DelayedArray, BiocNeighbors (>= 1.99.0), igraph, parallel LinkingTo: Rcpp, assorthead, beachmat, BiocNeighbors Suggests: testthat, knitr, rmarkdown, BiocStyle, MatrixGenerics, sparseMatrixStats, Matrix, scRNAseq License: MIT + file LICENSE MD5sum: b6fe0c4cb2a7c26afa9dd65e5de03c34 NeedsCompilation: yes Title: Bindings to C++ Libraries for Single-Cell Analysis Description: Implements R bindings to C++ code for analyzing single-cell (expression) data, mostly from various libscran libraries. Each function performs an individual step in the single-cell analysis workflow, ranging from quality control to clustering and marker detection. It is mostly intended for other Bioconductor package developers to build more user-friendly end-to-end workflows. biocViews: Normalization, RNASeq, Software, GeneExpression, Transcriptomics, SingleCell, BatchEffect, QualityControl, DifferentialExpression, FeatureExtraction, PrincipalComponent, Clustering Author: Aaron Lun [cre, aut] Maintainer: Aaron Lun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/scrapper git_branch: RELEASE_3_20 git_last_commit: 732a984 git_last_commit_date: 2024-12-17 Date/Publication: 2024-12-19 source.ver: src/contrib/scrapper_1.0.3.tar.gz win.binary.ver: bin/windows/contrib/4.4/scrapper_1.0.3.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scrapper_1.0.3.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scrapper_1.0.3.tgz vignettes: vignettes/scrapper/inst/doc/userguide.html vignetteTitles: Using scrapper to analyze single-cell data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scrapper/inst/doc/userguide.R dependencyCount: 36 Package: scReClassify Version: 1.12.0 Depends: R (>= 4.1) Imports: randomForest, e1071, stats, SummarizedExperiment, SingleCellExperiment, methods Suggests: testthat, knitr, BiocStyle, rmarkdown, DT, mclust, dplyr License: GPL-3 + file LICENSE MD5sum: 9cdca0d574ab1644788d0261f0c531ad NeedsCompilation: no Title: scReClassify: post hoc cell type classification of single-cell RNA-seq data Description: A post hoc cell type classification tool to fine-tune cell type annotations generated by any cell type classification procedure with semi-supervised learning algorithm AdaSampling technique. The current version of scReClassify supports Support Vector Machine and Random Forest as a base classifier. biocViews: Software, Transcriptomics, SingleCell, Classification, SupportVectorMachine Author: Pengyi Yang [aut] (), Taiyun Kim [aut, cre] () Maintainer: Taiyun Kim URL: https://github.com/SydneyBioX/scReClassify, http://www.bioconductor.org/packages/release/bioc/html/scReClassify.html VignetteBuilder: knitr BugReports: https://github.com/SydneyBioX/scReClassify/issues git_url: https://git.bioconductor.org/packages/scReClassify git_branch: RELEASE_3_20 git_last_commit: 84aa234 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scReClassify_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scReClassify_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scReClassify_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scReClassify_1.12.0.tgz vignettes: vignettes/scReClassify/inst/doc/scReClassify.html vignetteTitles: An introduction to scReClassify package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scReClassify/inst/doc/scReClassify.R dependencyCount: 42 Package: scRecover Version: 1.22.0 Depends: R (>= 3.4.0) Imports: stats, utils, methods, graphics, doParallel, foreach, parallel, penalized, kernlab, rsvd, Matrix (>= 1.2-14), MASS (>= 7.3-45), pscl (>= 1.4.9), bbmle (>= 1.0.18), gamlss (>= 4.4-0), preseqR (>= 4.0.0), SAVER (>= 1.1.1), BiocParallel (>= 1.12.0) Suggests: knitr, rmarkdown, SingleCellExperiment, testthat License: GPL MD5sum: 50e417ce98131850e0320f6fc7e6af45 NeedsCompilation: no Title: scRecover for imputation of single-cell RNA-seq data Description: scRecover is an R package for imputation of single-cell RNA-seq (scRNA-seq) data. It will detect and impute dropout values in a scRNA-seq raw read counts matrix while keeping the real zeros unchanged, since there are both dropout zeros and real zeros in scRNA-seq data. By combination with scImpute, SAVER and MAGIC, scRecover not only detects dropout and real zeros at higher accuracy, but also improve the downstream clustering and visualization results. biocViews: GeneExpression, SingleCell, RNASeq, Transcriptomics, Sequencing, Preprocessing, Software Author: Zhun Miao, Xuegong Zhang Maintainer: Zhun Miao URL: https://miaozhun.github.io/scRecover VignetteBuilder: knitr BugReports: https://github.com/miaozhun/scRecover/issues git_url: https://git.bioconductor.org/packages/scRecover git_branch: RELEASE_3_20 git_last_commit: c6d060c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scRecover_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scRecover_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scRecover_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scRecover_1.22.0.tgz vignettes: vignettes/scRecover/inst/doc/scRecover.html vignetteTitles: scRecover hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scRecover/inst/doc/scRecover.R dependencyCount: 46 Package: screenCounter Version: 1.6.0 Depends: S4Vectors, SummarizedExperiment Imports: Rcpp, zlibbioc, BiocParallel LinkingTo: Rcpp Suggests: BiocGenerics, Biostrings, BiocStyle, knitr, rmarkdown, testthat License: MIT + file LICENSE Archs: x64 MD5sum: 20a49381e47c9974f07ea9f8e4031584 NeedsCompilation: yes Title: Counting Reads in High-Throughput Sequencing Screens Description: Provides functions for counting reads from high-throughput sequencing screen data (e.g., CRISPR, shRNA) to quantify barcode abundance. Currently supports single barcodes in single- or paired-end data, and combinatorial barcodes in paired-end data. biocViews: CRISPR, Alignment, FunctionalGenomics, FunctionalPrediction Author: Aaron Lun [aut, cre] () Maintainer: Aaron Lun URL: https://github.com/crisprVerse/screenCounter SystemRequirements: C++17, GNU make VignetteBuilder: knitr BugReports: https://github.com/crisprVerse/screenCounter/issues git_url: https://git.bioconductor.org/packages/screenCounter git_branch: RELEASE_3_20 git_last_commit: 9597423 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/screenCounter_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/screenCounter_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/screenCounter_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/screenCounter_1.6.0.tgz vignettes: vignettes/screenCounter/inst/doc/counting.html vignetteTitles: Counting barcodes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/screenCounter/inst/doc/counting.R dependencyCount: 47 Package: ScreenR Version: 1.8.0 Depends: R (>= 4.2) Imports: methods (>= 4.0), rlang (>= 0.4), stringr (>= 1.4), limma (>= 3.46), patchwork (>= 1.1), tibble (>= 3.1.6), scales (>= 1.1.1), ggvenn (>= 0.1.9), purrr (>= 0.3.4), ggplot2 (>= 3.3), stats, tidyr (>= 1.2), magrittr (>= 1.0), dplyr (>= 1.0), edgeR (>= 3.32), tidyselect (>= 1.1.2) Suggests: rmarkdown (>= 2.11), knitr (>= 1.37), testthat (>= 3.0.0), BiocStyle (>= 2.22.0), covr (>= 3.5) License: MIT + file LICENSE Archs: x64 MD5sum: c2a515eaadacbe1c59c36a40814e5ab7 NeedsCompilation: no Title: Package to Perform High Throughput Biological Screening Description: ScreenR is a package suitable to perform hit identification in loss of function High Throughput Biological Screenings performed using barcoded shRNA-based libraries. ScreenR combines the computing power of software such as edgeR with the simplicity of use of the Tidyverse metapackage. ScreenR executes a pipeline able to find candidate hits from barcode counts, and integrates a wide range of visualization modes for each step of the analysis. biocViews: Software, AssayDomain, GeneExpression Author: Emanuel Michele Soda [aut, cre] (0000-0002-2301-6465), Elena Ceccacci [aut] (0000-0002-2285-8994), Saverio Minucci [fnd, ths] (0000-0001-5678-536X) Maintainer: Emanuel Michele Soda URL: https://emanuelsoda.github.io/ScreenR/ VignetteBuilder: knitr BugReports: https://github.com/EmanuelSoda/ScreenR/issues git_url: https://git.bioconductor.org/packages/ScreenR git_branch: RELEASE_3_20 git_last_commit: 5c07e14 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ScreenR_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ScreenR_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ScreenR_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ScreenR_1.8.0.tgz vignettes: vignettes/ScreenR/inst/doc/Analysis_Example.html vignetteTitles: ScreenR Example Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ScreenR/inst/doc/Analysis_Example.R dependencyCount: 50 Package: scRepertoire Version: 2.2.1 Depends: ggplot2, R (>= 4.0) Imports: assertthat, cubature, dplyr, evmix, ggalluvial, ggdendro, ggraph, grDevices, igraph, iNEXT, methods, plyr, quantreg, Rcpp, reshape2, rjson, rlang, S4Vectors, SeuratObject, SingleCellExperiment, stats, stringr, stringdist, SummarizedExperiment, tidygraph, truncdist, utils, VGAM, hash, purrr, lifecycle LinkingTo: Rcpp Suggests: BiocManager, BiocStyle, circlize, knitr, rmarkdown, scales, scater, Seurat, spelling, testthat (>= 3.0.0), vdiffr License: MIT + file LICENSE Archs: x64 MD5sum: 6499720e8ba9e80e3472a9b575ffbabd NeedsCompilation: yes Title: A toolkit for single-cell immune receptor profiling Description: scRepertoire is a toolkit for processing and analyzing single-cell T-cell receptor (TCR) and immunoglobulin (Ig). The scRepertoire framework supports use of 10x, AIRR, BD, MiXCR, Omniscope, TRUST4, and WAT3R single-cell formats. The functionality includes basic clonal analyses, repertoire summaries, distance-based clustering and interaction with the popular Seurat and SingleCellExperiment/Bioconductor R workflows. biocViews: Software, ImmunoOncology, SingleCell, Classification, Annotation, Sequencing Author: Nick Borcherding [aut, cre], Qile Yang [aut], Ksenia Safina [aut] Maintainer: Nick Borcherding URL: https://www.borch.dev/uploads/scRepertoire/ VignetteBuilder: knitr BugReports: https://github.com/ncborcherding/scRepertoire/issues git_url: https://git.bioconductor.org/packages/scRepertoire git_branch: RELEASE_3_20 git_last_commit: 356de29 git_last_commit_date: 2024-11-04 Date/Publication: 2024-11-05 source.ver: src/contrib/scRepertoire_2.2.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/scRepertoire_2.2.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scRepertoire_2.2.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scRepertoire_2.2.1.tgz vignettes: vignettes/scRepertoire/inst/doc/vignette.html vignetteTitles: Using scRepertoire hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scRepertoire/inst/doc/vignette.R suggestsMe: immApex dependencyCount: 121 Package: scRNAseqApp Version: 1.6.0 Depends: R (>= 4.3.0) Imports: bibtex, bslib, circlize, ComplexHeatmap, colourpicker, data.table, DBI, DT, GenomicRanges, GenomeInfoDb, ggdendro, ggforce, ggplot2, ggrepel, ggridges, grDevices, grid, gridExtra, htmltools, IRanges, jsonlite, magrittr, methods, patchwork, plotly, RColorBrewer, RefManageR, rhdf5, Rsamtools, RSQLite, rtracklayer, S4Vectors, scales, scrypt, Seurat, SeuratObject, shiny, shinyhelper, shinymanager, slingshot, SingleCellExperiment, sortable, stats, tools, xfun, xml2, utils Suggests: rmarkdown, knitr, testthat, BiocStyle Enhances: celldex, future, SingleR, SummarizedExperiment, tricycle License: GPL-3 MD5sum: 7c98a1c5c3e90b1df917e94b08c7560b NeedsCompilation: no Title: A single-cell RNAseq Shiny app-package Description: The scRNAseqApp is a Shiny app package designed for interactive visualization of single-cell data. It is an enhanced version derived from the ShinyCell, repackaged to accommodate multiple datasets. The app enables users to visualize data containing various types of information simultaneously, facilitating comprehensive analysis. Additionally, it includes a user management system to regulate database accessibility for different users. biocViews: Visualization, SingleCell, RNASeq Author: Jianhong Ou [aut, cre] () Maintainer: Jianhong Ou URL: https://github.com/jianhong/scRNAseqApp VignetteBuilder: knitr BugReports: https://github.com/jianhong/scRNAseqApp/issues git_url: https://git.bioconductor.org/packages/scRNAseqApp git_branch: RELEASE_3_20 git_last_commit: f77325f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scRNAseqApp_1.6.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scRNAseqApp_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scRNAseqApp_1.6.0.tgz vignettes: vignettes/scRNAseqApp/inst/doc/scRNAseqApp.html vignetteTitles: scRNAseqApp Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scRNAseqApp/inst/doc/scRNAseqApp.R dependencyCount: 236 Package: scruff Version: 1.24.0 Depends: R (>= 4.0) Imports: data.table, GenomicAlignments, GenomicFeatures, txdbmaker, GenomicRanges, Rsamtools, ShortRead, parallel, plyr, BiocGenerics, BiocParallel, S4Vectors, AnnotationDbi, Biostrings, methods, ggplot2, ggthemes, scales, GenomeInfoDb, stringdist, ggbio, rtracklayer, SingleCellExperiment, SummarizedExperiment, Rsubread, parallelly Suggests: BiocStyle, knitr, rmarkdown, testthat License: MIT + file LICENSE MD5sum: f9a472c6e9a2f95b808e60231272f687 NeedsCompilation: no Title: Single Cell RNA-Seq UMI Filtering Facilitator (scruff) Description: A pipeline which processes single cell RNA-seq (scRNA-seq) reads from CEL-seq and CEL-seq2 protocols. Demultiplex scRNA-seq FASTQ files, align reads to reference genome using Rsubread, and generate UMI filtered count matrix. Also provide visualizations of read alignments and pre- and post-alignment QC metrics. biocViews: Software, Technology, Sequencing, Alignment, RNASeq, SingleCell, WorkflowStep, Preprocessing, QualityControl, Visualization, ImmunoOncology Author: Zhe Wang [aut, cre], Junming Hu [aut], Joshua Campbell [aut] Maintainer: Zhe Wang VignetteBuilder: knitr BugReports: https://github.com/campbio/scruff/issues git_url: https://git.bioconductor.org/packages/scruff git_branch: RELEASE_3_20 git_last_commit: 5344b5e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scruff_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scruff_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scruff_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scruff_1.24.0.tgz vignettes: vignettes/scruff/inst/doc/scruff.html vignetteTitles: Process Single Cell RNA-Seq reads using scruff hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/scruff/inst/doc/scruff.R dependencyCount: 176 Package: scry Version: 1.18.0 Depends: R (>= 4.0), stats, methods Imports: DelayedArray, glmpca (>= 0.2.0), Matrix, SingleCellExperiment, SummarizedExperiment, BiocSingular Suggests: BiocGenerics, covr, DuoClustering2018, ggplot2, HDF5Array, knitr, markdown, rmarkdown, TENxPBMCData, testthat License: Artistic-2.0 MD5sum: 707c3684c772110a0c1fdab3e7a1e38a NeedsCompilation: no Title: Small-Count Analysis Methods for High-Dimensional Data Description: Many modern biological datasets consist of small counts that are not well fit by standard linear-Gaussian methods such as principal component analysis. This package provides implementations of count-based feature selection and dimension reduction algorithms. These methods can be used to facilitate unsupervised analysis of any high-dimensional data such as single-cell RNA-seq. biocViews: DimensionReduction, GeneExpression, Normalization, PrincipalComponent, RNASeq, Software, Sequencing, SingleCell, Transcriptomics Author: Kelly Street [aut, cre], F. William Townes [aut, cph], Davide Risso [aut], Stephanie Hicks [aut] Maintainer: Kelly Street URL: https://bioconductor.org/packages/scry.html VignetteBuilder: knitr BugReports: https://github.com/kstreet13/scry/issues git_url: https://git.bioconductor.org/packages/scry git_branch: RELEASE_3_20 git_last_commit: 388b6e5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scry_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scry_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scry_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scry_1.18.0.tgz vignettes: vignettes/scry/inst/doc/bigdata.html, vignettes/scry/inst/doc/scry.html vignetteTitles: Scry Methods For Larger Datasets, Overview of Scry Methods hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scry/inst/doc/bigdata.R, vignettes/scry/inst/doc/scry.R dependencyCount: 56 Package: scShapes Version: 1.12.0 Depends: R (>= 4.1) Imports: Matrix, stats, methods, pscl, VGAM, dgof, BiocParallel, MASS, emdbook, magrittr, utils Suggests: knitr, rmarkdown, testthat (>= 3.0.0) License: GPL-3 Archs: x64 MD5sum: 302294eba46ef3b09fafd9bd4cba4a9e NeedsCompilation: yes Title: A Statistical Framework for Modeling and Identifying Differential Distributions in Single-cell RNA-sequencing Data Description: We present a novel statistical framework for identifying differential distributions in single-cell RNA-sequencing (scRNA-seq) data between treatment conditions by modeling gene expression read counts using generalized linear models (GLMs). We model each gene independently under each treatment condition using error distributions Poisson (P), Negative Binomial (NB), Zero-inflated Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB) with log link function and model based normalization for differences in sequencing depth. Since all four distributions considered in our framework belong to the same family of distributions, we first perform a Kolmogorov-Smirnov (KS) test to select genes belonging to the family of ZINB distributions. Genes passing the KS test will be then modeled using GLMs. Model selection is done by calculating the Bayesian Information Criterion (BIC) and likelihood ratio test (LRT) statistic. biocViews: RNASeq, SingleCell, MultipleComparison, GeneExpression Author: Malindrie Dharmaratne [cre, aut] () Maintainer: Malindrie Dharmaratne URL: https://github.com/Malindrie/scShapes VignetteBuilder: knitr BugReports: https://github.com/Malindrie/scShapes/issues git_url: https://git.bioconductor.org/packages/scShapes git_branch: RELEASE_3_20 git_last_commit: 9daec39 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scShapes_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scShapes_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scShapes_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scShapes_1.12.0.tgz vignettes: vignettes/scShapes/inst/doc/vignette_scShapes.html vignetteTitles: The vignette for running scShapes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scShapes/inst/doc/vignette_scShapes.R dependencyCount: 34 Package: scTensor Version: 2.16.0 Depends: R (>= 4.1.0) Imports: methods, RSQLite, igraph, S4Vectors, plotly, reactome.db, AnnotationDbi, SummarizedExperiment, SingleCellExperiment, nnTensor (>= 1.1.5), ccTensor (>= 1.0.2), rTensor (>= 1.4.8), abind, plotrix, heatmaply, tagcloud, rmarkdown, BiocStyle, knitr, AnnotationHub, MeSHDbi (>= 1.29.2), grDevices, graphics, stats, utils, outliers, Category, meshr (>= 1.99.1), GOstats, ReactomePA, DOSE, crayon, checkmate, BiocManager, visNetwork, schex, ggplot2 Suggests: testthat, LRBaseDbi, Seurat, scTGIF, Homo.sapiens, AnnotationHub License: Artistic-2.0 MD5sum: e55082b94f3ca78f04041ca3a86f4e64 NeedsCompilation: no Title: Detection of cell-cell interaction from single-cell RNA-seq dataset by tensor decomposition Description: The algorithm is based on the non-negative tucker decomposition (NTD2) of nnTensor. biocViews: DimensionReduction, SingleCell, Software, GeneExpression Author: Koki Tsuyuzaki [aut, cre], Kozo Nishida [aut] Maintainer: Koki Tsuyuzaki VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/scTensor git_branch: RELEASE_3_20 git_last_commit: a87f346 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scTensor_2.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scTensor_2.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scTensor_2.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scTensor_2.16.0.tgz vignettes: vignettes/scTensor/inst/doc/scTensor_1_Data_format_ID_Conversion.html, vignettes/scTensor/inst/doc/scTensor_2_Report_Interpretation.html, vignettes/scTensor/inst/doc/scTensor_3_CCI_Simulation.html, vignettes/scTensor/inst/doc/scTensor_4_Reanalysis.html, vignettes/scTensor/inst/doc/scTensor.html vignetteTitles: scTensor: 1. Data format and ID conversion, scTensor: 2. Interpretation of HTML report, scTensor: 3. Simulation of CCI, scTensor: 4. Reanalysis of the results of scTensor, scTensor hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scTensor/inst/doc/scTensor_1_Data_format_ID_Conversion.R, vignettes/scTensor/inst/doc/scTensor_2_Report_Interpretation.R, vignettes/scTensor/inst/doc/scTensor_3_CCI_Simulation.R, vignettes/scTensor/inst/doc/scTensor_4_Reanalysis.R, vignettes/scTensor/inst/doc/scTensor.R dependencyCount: 237 Package: scTGIF Version: 1.20.0 Depends: R (>= 3.6.0) Imports: GSEABase, Biobase, SingleCellExperiment, BiocStyle, plotly, tagcloud, rmarkdown, Rcpp, grDevices, graphics, utils, knitr, S4Vectors, SummarizedExperiment, RColorBrewer, nnTensor, methods, scales, msigdbr, schex, tibble, ggplot2, igraph Suggests: testthat License: Artistic-2.0 Archs: x64 MD5sum: 6d66dfa6c5f610ac934bfd39a8cc3967 NeedsCompilation: no Title: Cell type annotation for unannotated single-cell RNA-Seq data Description: scTGIF connects the cells and the related gene functions without cell type label. biocViews: DimensionReduction, QualityControl, SingleCell, Software, GeneExpression Author: Koki Tsuyuzaki [aut, cre] Maintainer: Koki Tsuyuzaki VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/scTGIF git_branch: RELEASE_3_20 git_last_commit: 78129bd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scTGIF_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scTGIF_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scTGIF_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scTGIF_1.20.0.tgz vignettes: vignettes/scTGIF/inst/doc/scTGIF.html vignetteTitles: scTGIF hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scTGIF/inst/doc/scTGIF.R suggestsMe: scTensor dependencyCount: 149 Package: scTHI Version: 1.18.0 Depends: R (>= 4.0) Imports: BiocParallel, Rtsne, grDevices, graphics, stats Suggests: scTHI.data, knitr, rmarkdown, BiocStyle License: GPL-2 MD5sum: b2cfcf2cceabf2f1c7f21749898cfac3 NeedsCompilation: no Title: Indentification of significantly activated ligand-receptor interactions across clusters of cells from single-cell RNA sequencing data Description: scTHI is an R package to identify active pairs of ligand-receptors from single cells in order to study,among others, tumor-host interactions. scTHI contains a set of signatures to classify cells from the tumor microenvironment. biocViews: Software,SingleCell Author: Francesca Pia Caruso [aut], Michele Ceccarelli [aut, cre] Maintainer: Michele Ceccarelli VignetteBuilder: knitr BugReports: https://github.com/miccec/scTHI/issues git_url: https://git.bioconductor.org/packages/scTHI git_branch: RELEASE_3_20 git_last_commit: e0df609 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scTHI_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scTHI_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scTHI_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scTHI_1.18.0.tgz vignettes: vignettes/scTHI/inst/doc/vignette.html vignetteTitles: Using scTHI hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scTHI/inst/doc/vignette.R dependencyCount: 17 Package: scTreeViz Version: 1.12.0 Depends: R (>= 4.0), methods, epivizr, SummarizedExperiment Imports: data.table, S4Vectors, digest, Matrix, Rtsne, httr, igraph, clustree, scran, sys, epivizrData, epivizrServer, ggraph, scater, Seurat, SingleCellExperiment, ggplot2, stats, utils Suggests: knitr, BiocStyle, testthat, SC3, scRNAseq, rmarkdown, msd16s, metagenomeSeq, epivizrStandalone, GenomeInfoDb License: Artistic-2.0 MD5sum: 8c96789f4dd4d0338e36fa08172d47d1 NeedsCompilation: no Title: R/Bioconductor package to interactively explore and visualize single cell RNA-seq datasets with hierarhical annotations Description: scTreeViz provides classes to support interactive data aggregation and visualization of single cell RNA-seq datasets with hierarchies for e.g. cell clusters at different resolutions. The `TreeIndex` class provides methods to manage hierarchy and split the tree at a given resolution or across resolutions. The `TreeViz` class extends `SummarizedExperiment` and can performs quick aggregations on the count matrix defined by clusters. biocViews: Visualization, Infrastructure, GUI, SingleCell Author: Jayaram Kancherla [aut, cre], Hector Corrada Bravo [aut], Kazi Tasnim Zinat [aut], Stephanie Hicks [aut] Maintainer: Jayaram Kancherla VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/scTreeViz git_branch: RELEASE_3_20 git_last_commit: 27723f6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scTreeViz_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scTreeViz_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scTreeViz_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scTreeViz_1.12.0.tgz vignettes: vignettes/scTreeViz/inst/doc/ExploreTreeViz.html vignetteTitles: Explore Data using scTreeViz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scTreeViz/inst/doc/ExploreTreeViz.R dependencyCount: 256 Package: scuttle Version: 1.16.0 Depends: SingleCellExperiment Imports: methods, utils, stats, Matrix, Rcpp, BiocGenerics, S4Vectors, BiocParallel, GenomicRanges, SummarizedExperiment, S4Arrays, MatrixGenerics, SparseArray, DelayedArray, beachmat LinkingTo: Rcpp, beachmat Suggests: BiocStyle, knitr, scRNAseq, rmarkdown, testthat, sparseMatrixStats, DelayedMatrixStats, scran License: GPL-3 MD5sum: f10f6358407c2d4aa3457a6efebc6a93 NeedsCompilation: yes Title: Single-Cell RNA-Seq Analysis Utilities Description: Provides basic utility functions for performing single-cell analyses, focusing on simple normalization, quality control and data transformations. Also provides some helper functions to assist development of other packages. biocViews: ImmunoOncology, SingleCell, RNASeq, QualityControl, Preprocessing, Normalization, Transcriptomics, GeneExpression, Sequencing, Software, DataImport Author: Aaron Lun [aut, cre], Davis McCarthy [aut] Maintainer: Aaron Lun SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/scuttle git_branch: RELEASE_3_20 git_last_commit: ca4d5bd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scuttle_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/scuttle_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/scuttle_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scuttle_1.16.0.tgz vignettes: vignettes/scuttle/inst/doc/misc.html, vignettes/scuttle/inst/doc/norm.html, vignettes/scuttle/inst/doc/qc.html vignetteTitles: 3. Other functions, 2. Normalization, 1. Quality control hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scuttle/inst/doc/misc.R, vignettes/scuttle/inst/doc/norm.R, vignettes/scuttle/inst/doc/qc.R dependsOnMe: scater, scran, OSCA.basic, OSCA.intro, OSCA.workflows, SingleRBook importsMe: BASiCS, BASiCStan, batchelor, DropletUtils, epiregulon, FLAMES, imcRtools, mia, mumosa, muscat, scDblFinder, simPIC, singleCellTK, splatter, spoon, velociraptor, spatialLIBD, mixhvg, SpatialDDLS suggestsMe: Banksy, bluster, DESpace, dreamlet, epiregulon.extra, escheR, ggsc, iSEEde, iSEEfier, iSEEpathways, mastR, miloR, raer, SCArray, scDiagnostics, scDotPlot, schex, SingleCellAlleleExperiment, SingleR, sketchR, smoothclust, spatialHeatmap, SpotSweeper, tpSVG, TSCAN, HCAData, MouseThymusAgeing, scCustomize linksToMe: DropletUtils, scran dependencyCount: 50 Package: scviR Version: 1.6.0 Depends: R (>= 4.3), basilisk, shiny, SingleCellExperiment Imports: reticulate, BiocFileCache, utils, pheatmap, SummarizedExperiment, S4Vectors, limma, scater, stats, MatrixGenerics Suggests: knitr, testthat, reshape2, ggplot2, rhdf5, BiocStyle License: Artistic-2.0 MD5sum: f74a3316c36a41c893d5fb09c718a465 NeedsCompilation: no Title: experimental inferface from R to scvi-tools Description: This package defines interfaces from R to scvi-tools. A vignette works through the totalVI tutorial for analyzing CITE-seq data. Another vignette compares outputs of Chapter 12 of the OSCA book with analogous outputs based on totalVI quantifications. Future work will address other components of scvi-tools, with a focus on building understanding of probabilistic methods based on variational autoencoders. biocViews: Infrastructure, SingleCell, DataImport Author: Vincent Carey [aut, cre] () Maintainer: Vincent Carey URL: https://github.com/vjcitn/scviR VignetteBuilder: knitr BugReports: https://github.com/vjcitn/scviR/issues git_url: https://git.bioconductor.org/packages/scviR git_branch: RELEASE_3_20 git_last_commit: 735221a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/scviR_1.6.0.tar.gz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/scviR_1.6.0.tgz vignettes: vignettes/scviR/inst/doc/citeseq_tut.html, vignettes/scviR/inst/doc/compch12.html, vignettes/scviR/inst/doc/scviR.html vignetteTitles: scvi-tools CITE-seq tutorial in R,, using serialized tutorial components, Comparing totalVI and OSCA book CITE-seq analyses, scviR: an R package interfacing Bioconductor and scvi-tools hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/scviR/inst/doc/citeseq_tut.R, vignettes/scviR/inst/doc/compch12.R, vignettes/scviR/inst/doc/scviR.R dependencyCount: 150 Package: SDAMS Version: 1.26.0 Depends: R(>= 3.5), SummarizedExperiment Imports: trust, qvalue, methods, stats, utils Suggests: testthat License: GPL MD5sum: 00f019a01ecc97ee6585f066502dde93 NeedsCompilation: no Title: Differential Abundant/Expression Analysis for Metabolomics, Proteomics and single-cell RNA sequencing Data Description: This Package utilizes a Semi-parametric Differential Abundance/expression analysis (SDA) method for metabolomics and proteomics data from mass spectrometry as well as single-cell RNA sequencing data. SDA is able to robustly handle non-normally distributed data and provides a clear quantification of the effect size. biocViews: ImmunoOncology, DifferentialExpression, Metabolomics, Proteomics, MassSpectrometry, SingleCell Author: Yuntong Li , Chi Wang , Li Chen Maintainer: Yuntong Li git_url: https://git.bioconductor.org/packages/SDAMS git_branch: RELEASE_3_20 git_last_commit: 61cbd64 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SDAMS_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SDAMS_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SDAMS_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SDAMS_1.26.0.tgz vignettes: vignettes/SDAMS/inst/doc/SDAMS.pdf vignetteTitles: SDAMS Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SDAMS/inst/doc/SDAMS.R dependencyCount: 69 Package: seahtrue Version: 1.0.0 Depends: R (>= 4.2.0) Imports: dplyr (>= 1.1.2), readxl (>= 1.4.1), logger (>= 0.2.2), tidyxl (>= 1.0.8), purrr (>= 0.3.5), tidyr (>= 1.3.0), lubridate (>= 1.8.0), stringr (>= 1.4.1), tibble (>= 3.1.8), validate (>= 1.1.1), rlang (>= 1.0.0), glue (>= 1.6.2), cli (>= 3.4.1), janitor (>= 2.2.0), ggplot2 (>= 3.5.0), RColorBrewer (>= 1.1.3), colorspace (>= 2.1.0), forcats (>= 1.0.0), ggridges (>= 0.5.6), readr (>= 2.1.5), scales (>= 1.3.0) Suggests: rmarkdown, knitr, testthat (>= 3.0.0), BiocStyle License: Artistic-2.0 MD5sum: bee1e14310733bbd79afb3af3894b05b NeedsCompilation: no Title: Seahtrue revives XF data for structured data analysis Description: Seahtrue organizes oxygen consumption and extracellular acidification analysis data from experiments performed on an XF analyzer into structured nested tibbles.This allows for detailed processing of raw data and advanced data visualization and statistics. Seahtrue introduces an open and reproducible way to analyze these XF experiments. It uses file paths to .xlsx files. These .xlsx files are supplied by the userand are generated by the user in the Wave software from Agilent from the assay result files (.asyr). The .xlsx file contains different sheets of important data for the experiment; 1. Assay Information - Details about how the experiment was set up. 2. Rate Data - Information about the OCR and ECAR rates. 3. Raw Data - The original raw data collected during the experiment. 4. Calibration Data - Data related to calibrating the instrument. Seahtrue focuses on getting the specific data needed for analysis. Once this data is extracted, it is prepared for calculations through preprocessing. To make sure everything is accurate, both the initial data and the preprocessed data go through thorough checks. biocViews: CellBasedAssays, FunctionalPrediction, DataRepresentation, DataImport, CellBiology, Cheminformatics, Metabolomics, MicrotitrePlateAssay, Visualization, QualityControl, BatchEffect, ExperimentalDesign, Preprocessing, GO Author: Vincent de Boer [cre, aut] (), Gerwin Smits [aut], Xiang Zhang [aut] Maintainer: Vincent de Boer URL: https://vcjdeboer.github.io/seahtrue/ VignetteBuilder: knitr BugReports: https://vcjdeboer.github.io/seahtrue/issues git_url: https://git.bioconductor.org/packages/seahtrue git_branch: RELEASE_3_20 git_last_commit: 2eb4413 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/seahtrue_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/seahtrue_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/seahtrue_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/seahtrue_1.0.0.tgz vignettes: vignettes/seahtrue/inst/doc/seahtrue.html vignetteTitles: Introduction to Seahtrue hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/seahtrue/inst/doc/seahtrue.R dependencyCount: 70 Package: sechm Version: 1.14.0 Depends: R (>= 4.0), SummarizedExperiment, ComplexHeatmap Imports: S4Vectors, seriation, circlize, methods, randomcoloR, stats, grid, grDevices, matrixStats Suggests: BiocStyle, knitr, rmarkdown License: GPL-3 MD5sum: c89224d13b5d6792fa4568f08b69081f NeedsCompilation: no Title: sechm: Complex Heatmaps from a SummarizedExperiment Description: sechm provides a simple interface between SummarizedExperiment objects and the ComplexHeatmap package. It enables plotting annotated heatmaps from SE objects, with easy access to rowData and colData columns, and implements a number of features to make the generation of heatmaps easier and more flexible. These functionalities used to be part of the SEtools package. biocViews: GeneExpression, Visualization Author: Pierre-Luc Germain [cre, aut] () Maintainer: Pierre-Luc Germain VignetteBuilder: knitr BugReports: https://github.com/plger/sechm git_url: https://git.bioconductor.org/packages/sechm git_branch: RELEASE_3_20 git_last_commit: 4a0720c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sechm_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sechm_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sechm_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sechm_1.14.0.tgz vignettes: vignettes/sechm/inst/doc/sechm.html vignetteTitles: sechm hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sechm/inst/doc/sechm.R dependsOnMe: SEtools importsMe: broadSeq dependencyCount: 82 Package: segmenter Version: 1.12.0 Depends: R (>= 4.1) Imports: ChIPseeker, GenomicRanges, SummarizedExperiment, IRanges, S4Vectors, bamsignals, ComplexHeatmap, graphics, stats, utils, methods, chromhmmData Suggests: testthat, knitr, rmarkdown, TxDb.Hsapiens.UCSC.hg18.knownGene, Gviz License: GPL-3 MD5sum: b6c2d7f5ad306fc10a3d4c6865c5668b NeedsCompilation: no Title: Perform Chromatin Segmentation Analysis in R by Calling ChromHMM Description: Chromatin segmentation analysis transforms ChIP-seq data into signals over the genome. The latter represents the observed states in a multivariate Markov model to predict the chromatin's underlying states. ChromHMM, written in Java, integrates histone modification datasets to learn the chromatin states de-novo. The goal of this package is to call chromHMM from within R, capture the output files in an S4 object and interface to other relevant Bioconductor analysis tools. In addition, segmenter provides functions to test, select and visualize the output of the segmentation. biocViews: Software, HistoneModification Author: Mahmoud Ahmed [aut, cre] () Maintainer: Mahmoud Ahmed VignetteBuilder: knitr BugReports: https://github.com/MahShaaban/segmenter/issues git_url: https://git.bioconductor.org/packages/segmenter git_branch: RELEASE_3_20 git_last_commit: c64c4ca git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/segmenter_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/segmenter_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/segmenter_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/segmenter_1.12.0.tgz vignettes: vignettes/segmenter/inst/doc/segmenter.html vignetteTitles: Chromatin Segmentation Analysis Using segmenter hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/segmenter/inst/doc/segmenter.R dependencyCount: 162 Package: segmentSeq Version: 2.40.0 Depends: R (>= 3.5.0), methods, baySeq (>= 2.9.0), S4Vectors, parallel, GenomicRanges, ShortRead, stats Imports: Rsamtools, IRanges, GenomeInfoDb, graphics, grDevices, utils, abind Suggests: BiocStyle, BiocGenerics License: GPL-3 Archs: x64 MD5sum: 27365cd159f6e2b16071be25219114e1 NeedsCompilation: no Title: Methods for identifying small RNA loci from high-throughput sequencing data Description: High-throughput sequencing technologies allow the production of large volumes of short sequences, which can be aligned to the genome to create a set of matches to the genome. By looking for regions of the genome which to which there are high densities of matches, we can infer a segmentation of the genome into regions of biological significance. The methods in this package allow the simultaneous segmentation of data from multiple samples, taking into account replicate data, in order to create a consensus segmentation. This has obvious applications in a number of classes of sequencing experiments, particularly in the discovery of small RNA loci and novel mRNA transcriptome discovery. biocViews: MultipleComparison, Sequencing, Alignment, DifferentialExpression, QualityControl, DataImport Author: Thomas J. Hardcastle [aut], Samuel Granjeaud [cre] () Maintainer: Samuel Granjeaud URL: https://github.com/samgg/segmentSeq BugReports: https://github.com/samgg/segmentSeq/issues git_url: https://git.bioconductor.org/packages/segmentSeq git_branch: RELEASE_3_20 git_last_commit: 310dbb9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-30 source.ver: src/contrib/segmentSeq_2.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/segmentSeq_2.39.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/segmentSeq_2.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/segmentSeq_2.40.0.tgz vignettes: vignettes/segmentSeq/inst/doc/methylationAnalysis.pdf, vignettes/segmentSeq/inst/doc/segmentSeq.pdf vignetteTitles: segmentsSeq: Methylation locus identification, segmentSeq: small RNA locus detection hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/segmentSeq/inst/doc/methylationAnalysis.R, vignettes/segmentSeq/inst/doc/segmentSeq.R dependencyCount: 68 Package: selectKSigs Version: 1.18.0 Depends: R(>= 3.6) Imports: HiLDA, magrittr, gtools, methods, Rcpp LinkingTo: Rcpp Suggests: knitr, rmarkdown, testthat, BiocStyle, ggplot2, dplyr, tidyr License: GPL-3 MD5sum: 5c94b8595503af2cc228959d5b8d68f3 NeedsCompilation: yes Title: Selecting the number of mutational signatures using a perplexity-based measure and cross-validation Description: A package to suggest the number of mutational signatures in a collection of somatic mutations using calculating the cross-validated perplexity score. biocViews: Software, SomaticMutation, Sequencing, StatisticalMethod, Clustering Author: Zhi Yang [aut, cre], Yuichi Shiraishi [ctb] Maintainer: Zhi Yang URL: https://github.com/USCbiostats/selectKSigs VignetteBuilder: knitr BugReports: https://github.com/USCbiostats/HiLDA/selectKSigs git_url: https://git.bioconductor.org/packages/selectKSigs git_branch: RELEASE_3_20 git_last_commit: 2cc78e8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/selectKSigs_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/selectKSigs_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/selectKSigs_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/selectKSigs_1.18.0.tgz vignettes: vignettes/selectKSigs/inst/doc/selectKSigs.html vignetteTitles: An introduction to HiLDA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/selectKSigs/inst/doc/selectKSigs.R dependencyCount: 117 Package: SELEX Version: 1.38.0 Depends: rJava (>= 0.5-0), Biostrings (>= 2.26.0) Imports: stats, utils License: GPL (>=2) MD5sum: 25034e2be1f002487837d965f3812b63 NeedsCompilation: no Title: Functions for analyzing SELEX-seq data Description: Tools for quantifying DNA binding specificities based on SELEX-seq data. biocViews: Software, MotifDiscovery, MotifAnnotation, GeneRegulation, Transcription Author: Chaitanya Rastogi, Dahong Liu, Lucas Melo, and Harmen J. Bussemaker Maintainer: Harmen J. Bussemaker URL: https://bussemakerlab.org/site/software/ SystemRequirements: Java (>= 1.5) git_url: https://git.bioconductor.org/packages/SELEX git_branch: RELEASE_3_20 git_last_commit: 1337acf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SELEX_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SELEX_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SELEX_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SELEX_1.38.0.tgz vignettes: vignettes/SELEX/inst/doc/SELEX.pdf vignetteTitles: Motif Discovery with SELEX-seq hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SELEX/inst/doc/SELEX.R dependencyCount: 26 Package: SemDist Version: 1.40.0 Depends: R (>= 3.1), AnnotationDbi, GO.db, annotate Suggests: GOSemSim License: GPL (>= 2) MD5sum: f253ae30232aebcb7f34d1573d92d308 NeedsCompilation: no Title: Information Accretion-based Function Predictor Evaluation Description: This package implements methods to calculate information accretion for a given version of the gene ontology and uses this data to calculate remaining uncertainty, misinformation, and semantic similarity for given sets of predicted annotations and true annotations from a protein function predictor. biocViews: Classification, Annotation, GO, Software Author: Ian Gonzalez and Wyatt Clark Maintainer: Ian Gonzalez URL: http://github.com/iangonzalez/SemDist git_url: https://git.bioconductor.org/packages/SemDist git_branch: RELEASE_3_20 git_last_commit: 4eead33 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SemDist_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SemDist_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SemDist_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SemDist_1.40.0.tgz vignettes: vignettes/SemDist/inst/doc/introduction.pdf vignetteTitles: introduction.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SemDist/inst/doc/introduction.R dependencyCount: 49 Package: semisup Version: 1.30.0 Depends: R (>= 3.0.0) Imports: VGAM Suggests: knitr, testthat, SummarizedExperiment License: GPL-3 MD5sum: 6c4a3b77b2d1403bf24cc9954c7f7148 NeedsCompilation: no Title: Semi-Supervised Mixture Model Description: Implements a parametric semi-supervised mixture model. The permutation test detects markers with main or interactive effects, without distinguishing them. Possible applications include genome-wide association analysis and differential expression analysis. biocViews: SNP, GenomicVariation, SomaticMutation, Genetics, Classification, Clustering, DNASeq, Microarray, MultipleComparison Author: Armin Rauschenberger [aut, cre] Maintainer: Armin Rauschenberger URL: https://github.com/rauschenberger/semisup VignetteBuilder: knitr BugReports: https://github.com/rauschenberger/semisup/issues git_url: https://git.bioconductor.org/packages/semisup git_branch: RELEASE_3_20 git_last_commit: ad0ab69 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/semisup_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/semisup_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/semisup_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/semisup_1.30.0.tgz vignettes: vignettes/semisup/inst/doc/semisup.pdf, vignettes/semisup/inst/doc/article.html, vignettes/semisup/inst/doc/vignette.html vignetteTitles: vignette source, article frame, vignette frame hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/semisup/inst/doc/semisup.R dependencyCount: 5 Package: seq2pathway Version: 1.38.0 Depends: R (>= 3.6.2) Imports: nnet, WGCNA, GSA, biomaRt, GenomicRanges, seq2pathway.data License: GPL-2 MD5sum: 250480b364466bf484e3a5a63e4dd65d NeedsCompilation: no Title: a novel tool for functional gene-set (or termed as pathway) analysis of next-generation sequencing data Description: Seq2pathway is a novel tool for functional gene-set (or termed as pathway) analysis of next-generation sequencing data, consisting of "seq2gene" and "gene2path" components. The seq2gene links sequence-level measurements of genomic regions (including SNPs or point mutation coordinates) to gene-level scores, and the gene2pathway summarizes gene scores to pathway-scores for each sample. The seq2gene has the feasibility to assign both coding and non-exon regions to a broader range of neighboring genes than only the nearest one, thus facilitating the study of functional non-coding regions. The gene2pathway takes into account the quantity of significance for gene members within a pathway compared those outside a pathway. The output of seq2pathway is a general structure of quantitative pathway-level scores, thus allowing one to functional interpret such datasets as RNA-seq, ChIP-seq, GWAS, and derived from other next generational sequencing experiments. biocViews: Software Author: Xinan Yang ; Bin Wang Maintainer: Arjun Kinstlick git_url: https://git.bioconductor.org/packages/seq2pathway git_branch: RELEASE_3_20 git_last_commit: f91c878 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/seq2pathway_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/seq2pathway_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/seq2pathway_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/seq2pathway_1.38.0.tgz vignettes: vignettes/seq2pathway/inst/doc/seq2pathwaypackage.pdf vignetteTitles: An R package for sequence hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/seq2pathway/inst/doc/seq2pathwaypackage.R dependencyCount: 131 Package: seqArchR Version: 1.10.0 Depends: R (>= 4.2.0) Imports: utils, graphics, cvTools (>= 0.3.2), MASS, Matrix, methods, stats, cluster, matrixStats, fpc, cli, prettyunits, reshape2 (>= 1.4.3), reticulate (>= 1.22), BiocParallel, Biostrings, grDevices, ggplot2 (>= 3.1.1), ggseqlogo (>= 0.1) Suggests: cowplot, hopach (>= 2.42.0), BiocStyle, knitr (>= 1.22), rmarkdown (>= 1.12), testthat (>= 3.0.2), covr, vdiffr (>= 0.3.0) License: GPL-3 | file LICENSE Archs: x64 MD5sum: 51de82aa4ddab7b96a23a2bf7125e07b NeedsCompilation: no Title: Identify Different Architectures of Sequence Elements Description: seqArchR enables unsupervised discovery of _de novo_ clusters with characteristic sequence architectures characterized by position-specific motifs or composition of stretches of nucleotides, e.g., CG-richness. seqArchR does _not_ require any specifications w.r.t. the number of clusters, the length of any individual motifs, or the distance between motifs if and when they occur in pairs/groups; it directly detects them from the data. seqArchR uses non-negative matrix factorization (NMF) as its backbone, and employs a chunking-based iterative procedure that enables processing of large sequence collections efficiently. Wrapper functions are provided for visualizing cluster architectures as sequence logos. biocViews: MotifDiscovery, GeneRegulation, MathematicalBiology, SystemsBiology, Transcriptomics, Genetics, Clustering, DimensionReduction, FeatureExtraction, DNASeq Author: Sarvesh Nikumbh [aut, cre, cph] () Maintainer: Sarvesh Nikumbh URL: https://snikumbh.github.io/seqArchR/, https://github.com/snikumbh/seqArchR SystemRequirements: Python (>= 3.5), scikit-learn (>= 0.21.2), packaging VignetteBuilder: knitr BugReports: https://github.com/snikumbh/seqArchR/issues git_url: https://git.bioconductor.org/packages/seqArchR git_branch: RELEASE_3_20 git_last_commit: c6daa9f git_last_commit_date: 2024-10-29 Date/Publication: 2024-12-23 source.ver: src/contrib/seqArchR_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/seqArchR_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/seqArchR_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/seqArchR_1.10.0.tgz vignettes: vignettes/seqArchR/inst/doc/seqArchR.html vignetteTitles: Example usage of _seqArchR_ on simulated DNA sequences hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/seqArchR/inst/doc/seqArchR.R importsMe: seqArchRplus dependencyCount: 91 Package: seqArchRplus Version: 1.6.0 Depends: R (>= 4.2), GenomicRanges, IRanges, S4Vectors Imports: BiocParallel, Biostrings, BSgenome, ChIPseeker, cli, clusterProfiler, cowplot, factoextra, GenomeInfoDb, ggplot2, ggimage, graphics, grDevices, gridExtra, heatmaps, magick, methods, RColorBrewer, scales, seqArchR, seqPattern, stats, utils Suggests: BSgenome.Dmelanogaster.UCSC.dm6, BiocStyle, CAGEr (>= 2.0.2), covr, knitr (>= 1.22), org.Dm.eg.db, pdftools, rmarkdown (>= 1.12), slickR, TxDb.Dmelanogaster.UCSC.dm6.ensGene, xfun License: GPL-3 MD5sum: e92db630da3de17bfeb536647b178e59 NeedsCompilation: no Title: Downstream analyses of promoter sequence architectures and HTML report generation Description: seqArchRplus facilitates downstream analyses of promoter sequence architectures/clusters identified by seqArchR (or any other tool/method). With additional available information such as the TPM values and interquantile widths (IQWs) of the CAGE tag clusters, seqArchRplus can order the input promoter clusters by their shape (IQWs), and write the cluster information as browser/IGV track files. Provided visualizations are of two kind: per sample/stage and per cluster visualizations. Those of the first kind include: plot panels for each sample showing per cluster shape, TPM and other score distributions, sequence logos, and peak annotations. The second include per cluster chromosome-wise and strand distributions, motif occurrence heatmaps and GO term enrichments. Additionally, seqArchRplus can also generate HTML reports for easy viewing and comparison of promoter architectures between samples/stages. biocViews: Annotation, Visualization, ReportWriting, GO, MotifAnnotation, Clustering Author: Sarvesh Nikumbh [aut, cre, cph] () Maintainer: Sarvesh Nikumbh URL: https://github.com/snikumbh/seqArchRplus VignetteBuilder: knitr BugReports: https://github.com/snikumbh/seqArchRplus/issues git_url: https://git.bioconductor.org/packages/seqArchRplus git_branch: RELEASE_3_20 git_last_commit: 73fb470 git_last_commit_date: 2024-10-29 Date/Publication: 2024-12-23 source.ver: src/contrib/seqArchRplus_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/seqArchRplus_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/seqArchRplus_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/seqArchRplus_1.6.0.tgz vignettes: vignettes/seqArchRplus/inst/doc/seqArchRplus.html vignetteTitles: seqArchRplus facilitates downstream analysis of clusters of promoter sequence architectures hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/seqArchRplus/inst/doc/seqArchRplus.R dependencyCount: 239 Package: SeqArray Version: 1.46.1 Depends: R (>= 3.5.0), gdsfmt (>= 1.31.1) Imports: methods, parallel, IRanges, GenomicRanges, GenomeInfoDb, Biostrings, S4Vectors LinkingTo: gdsfmt Suggests: Biobase, BiocGenerics, BiocParallel, RUnit, Rcpp, SNPRelate, digest, crayon, knitr, markdown, rmarkdown, Rsamtools, VariantAnnotation License: GPL-3 MD5sum: 165a33dbd4b5a81f63cc35bf517dbc4e NeedsCompilation: yes Title: Data Management of Large-Scale Whole-Genome Sequence Variant Calls Description: Data management of large-scale whole-genome sequencing variant calls with thousands of individuals: genotypic data (e.g., SNVs, indels and structural variation calls) and annotations in SeqArray GDS files are stored in an array-oriented and compressed manner, with efficient data access using the R programming language. biocViews: Infrastructure, DataRepresentation, Sequencing, Genetics Author: Xiuwen Zheng [aut, cre] (), Stephanie Gogarten [aut], David Levine [ctb], Cathy Laurie [ctb] Maintainer: Xiuwen Zheng URL: https://github.com/zhengxwen/SeqArray VignetteBuilder: knitr BugReports: https://github.com/zhengxwen/SeqArray/issues git_url: https://git.bioconductor.org/packages/SeqArray git_branch: RELEASE_3_20 git_last_commit: ae6fd76 git_last_commit_date: 2024-12-25 Date/Publication: 2024-12-26 source.ver: src/contrib/SeqArray_1.46.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/SeqArray_1.46.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SeqArray_1.46.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SeqArray_1.46.1.tgz vignettes: vignettes/SeqArray/inst/doc/OverviewSlides.html, vignettes/SeqArray/inst/doc/SeqArray.html, vignettes/SeqArray/inst/doc/SeqArrayTutorial.html vignetteTitles: SeqArray Overview, R Integration, SeqArray Data Format and Access hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SeqArray/inst/doc/SeqArray.R, vignettes/SeqArray/inst/doc/SeqArrayTutorial.R dependsOnMe: GBScleanR, SAIGEgds, SeqVarTools importsMe: GDSArray, GENESIS, ggmanh, VariantExperiment suggestsMe: DelayedDataFrame, HIBAG, VCFArray, GMMAT, MAGEE dependencyCount: 28 Package: seqCAT Version: 1.28.0 Depends: R (>= 3.6), GenomicRanges (>= 1.26.4), VariantAnnotation(>= 1.20.3) Imports: dplyr (>= 0.5.0), GenomeInfoDb (>= 1.13.4), ggplot2 (>= 2.2.1), grid (>= 3.5.0), IRanges (>= 2.8.2), methods, rtracklayer, rlang, scales (>= 0.4.1), S4Vectors (>= 0.12.2), stats, SummarizedExperiment (>= 1.4.0), tidyr (>= 0.6.1), utils Suggests: knitr, BiocStyle, rmarkdown, testthat, BiocManager License: MIT + file LICENCE MD5sum: 5b6197a98759a7cb4100d4bfcc37ca65 NeedsCompilation: no Title: High Throughput Sequencing Cell Authentication Toolkit Description: The seqCAT package uses variant calling data (in the form of VCF files) from high throughput sequencing technologies to authenticate and validate the source, function and characteristics of biological samples used in scientific endeavours. biocViews: Coverage, GenomicVariation, Sequencing, VariantAnnotation Author: Erik Fasterius [aut, cre] Maintainer: Erik Fasterius VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/seqCAT git_branch: RELEASE_3_20 git_last_commit: e0768b3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/seqCAT_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/seqCAT_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/seqCAT_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/seqCAT_1.28.0.tgz vignettes: vignettes/seqCAT/inst/doc/seqCAT.html vignetteTitles: seqCAT: The High Throughput Sequencing Cell Authentication Toolkit hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/seqCAT/inst/doc/seqCAT.R dependencyCount: 106 Package: seqcombo Version: 1.28.0 Depends: R (>= 3.4.0) Imports: ggplot2, grid, igraph, utils, yulab.utils Suggests: emojifont, knitr, rmarkdown, prettydoc, tibble License: Artistic-2.0 MD5sum: 57aaa841ba97972f5ea8272d9e354ace NeedsCompilation: no Title: Visualization Tool for Genetic Reassortment Description: Provides useful functions for visualizing virus reassortment events. biocViews: Alignment, Software, Visualization Author: Guangchuang Yu [aut, cre] Maintainer: Guangchuang Yu VignetteBuilder: knitr BugReports: https://github.com/GuangchuangYu/seqcombo/issues git_url: https://git.bioconductor.org/packages/seqcombo git_branch: RELEASE_3_20 git_last_commit: b18fa7c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/seqcombo_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/seqcombo_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/seqcombo_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/seqcombo_1.28.0.tgz vignettes: vignettes/seqcombo/inst/doc/seqcombo.html vignetteTitles: Reassortment hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/seqcombo/inst/doc/seqcombo.R dependencyCount: 41 Package: SeqGate Version: 1.16.0 Depends: S4Vectors, SummarizedExperiment, GenomicRanges Imports: stats, methods, BiocManager Suggests: testthat (>= 3.0.0), edgeR, BiocStyle, knitr, rmarkdown License: GPL (>= 2.0) MD5sum: 0a1c3365067d26ef25b06a3fcb13a1f5 NeedsCompilation: no Title: Filtering of Lowly Expressed Features Description: Filtering of lowly expressed features (e.g. genes) is a common step before performing statistical analysis, but an arbitrary threshold is generally chosen. SeqGate implements a method that rationalize this step by the analysis of the distibution of counts in replicate samples. The gate is the threshold above which sequenced features can be considered as confidently quantified. biocViews: DifferentialExpression, GeneExpression, Transcriptomics, Sequencing, RNASeq Author: Christelle Reynès [aut], Stéphanie Rialle [aut, cre] Maintainer: Stéphanie Rialle VignetteBuilder: knitr BugReports: https://github.com/srialle/SeqGate/issues git_url: https://git.bioconductor.org/packages/SeqGate git_branch: RELEASE_3_20 git_last_commit: 8dd91d9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SeqGate_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SeqGate_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SeqGate_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SeqGate_1.16.0.tgz vignettes: vignettes/SeqGate/inst/doc/Seqgate-html-vignette.html vignetteTitles: SeqGate: Filter lowly expressed features hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SeqGate/inst/doc/Seqgate-html-vignette.R dependencyCount: 37 Package: SeqGSEA Version: 1.46.0 Depends: Biobase, doParallel, DESeq2 Imports: methods, biomaRt Suggests: GenomicRanges License: GPL (>= 3) MD5sum: 8aa3f3c9f25bec465e1388734a23784a NeedsCompilation: no Title: Gene Set Enrichment Analysis (GSEA) of RNA-Seq Data: integrating differential expression and splicing Description: The package generally provides methods for gene set enrichment analysis of high-throughput RNA-Seq data by integrating differential expression and splicing. It uses negative binomial distribution to model read count data, which accounts for sequencing biases and biological variation. Based on permutation tests, statistical significance can also be achieved regarding each gene's differential expression and splicing, respectively. biocViews: Sequencing, RNASeq, GeneSetEnrichment, GeneExpression, DifferentialExpression, DifferentialSplicing, ImmunoOncology Author: Xi Wang Maintainer: Xi Wang git_url: https://git.bioconductor.org/packages/SeqGSEA git_branch: RELEASE_3_20 git_last_commit: ae089ed git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SeqGSEA_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SeqGSEA_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SeqGSEA_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SeqGSEA_1.46.0.tgz vignettes: vignettes/SeqGSEA/inst/doc/SeqGSEA.pdf vignetteTitles: Gene set enrichment analysis of RNA-Seq data with the SeqGSEA package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SeqGSEA/inst/doc/SeqGSEA.R dependencyCount: 110 Package: seq.hotSPOT Version: 1.6.0 Depends: R (>= 3.5.0) Imports: R.utils, hash, stats, base, utils Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0) License: Artistic-2.0 Archs: x64 MD5sum: 2a061f0311bfeaf86ed51a9cdc48b966 NeedsCompilation: no Title: Targeted sequencing panel design based on mutation hotspots Description: seq.hotSPOT provides a resource for designing effective sequencing panels to help improve mutation capture efficacy for ultradeep sequencing projects. Using SNV datasets, this package designs custom panels for any tissue of interest and identify the genomic regions likely to contain the most mutations. Establishing efficient targeted sequencing panels can allow researchers to study mutation burden in tissues at high depth without the economic burden of whole-exome or whole-genome sequencing. This tool was developed to make high-depth sequencing panels to study low-frequency clonal mutations in clinically normal and cancerous tissues. biocViews: Software, Technology, Sequencing, DNASeq, WholeGenome Author: Sydney Grant [aut, cre], Lei Wei [aut], Gyorgy Paragh [aut] Maintainer: Sydney Grant URL: https://github.com/sydney-grant/seq.hotSPOT VignetteBuilder: knitr BugReports: https://github.com/sydney-grant/seq.hotSPOT/issues git_url: https://git.bioconductor.org/packages/seq.hotSPOT git_branch: RELEASE_3_20 git_last_commit: 9f8f545 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/seq.hotSPOT_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/seq.hotSPOT_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/seq.hotSPOT_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/seq.hotSPOT_1.6.0.tgz vignettes: vignettes/seq.hotSPOT/inst/doc/hotSPOT-vignette.html vignetteTitles: hotSPOT-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/seq.hotSPOT/inst/doc/hotSPOT-vignette.R dependencyCount: 9 Package: seqLogo Version: 1.72.0 Depends: R (>= 4.2), methods, grid Imports: stats4, grDevices Suggests: knitr, BiocStyle, rmarkdown, testthat License: LGPL (>= 2) MD5sum: a4abef9336767a981efc4395fa831aea NeedsCompilation: no Title: Sequence logos for DNA sequence alignments Description: seqLogo takes the position weight matrix of a DNA sequence motif and plots the corresponding sequence logo as introduced by Schneider and Stephens (1990). biocViews: SequenceMatching Author: Oliver Bembom [aut], Robert Ivanek [aut, cre] () Maintainer: Robert Ivanek VignetteBuilder: knitr BugReports: https://github.com/ivanek/seqLogo/issues git_url: https://git.bioconductor.org/packages/seqLogo git_branch: RELEASE_3_20 git_last_commit: e710390 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/seqLogo_1.72.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/seqLogo_1.72.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/seqLogo_1.72.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/seqLogo_1.72.0.tgz vignettes: vignettes/seqLogo/inst/doc/seqLogo.html vignetteTitles: Sequence logos for DNA sequence alignments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/seqLogo/inst/doc/seqLogo.R dependsOnMe: rGADEM, generegulation importsMe: IntEREst, PWMEnrich, RCAS, rGADEM, riboSeqR, scanMiR, SPLINTER, TFBSTools, kmeRtone suggestsMe: BCRANK, DiffLogo, igvR, MAGAR, motifcounter, MotifDb, universalmotif dependencyCount: 4 Package: seqPattern Version: 1.38.0 Depends: methods, R (>= 2.15.0) Imports: Biostrings, GenomicRanges, IRanges, KernSmooth, plotrix Suggests: BSgenome.Drerio.UCSC.danRer7, CAGEr, RUnit, BiocGenerics, BiocStyle Enhances: parallel License: GPL-3 MD5sum: dbdb048e7fc633edc7d941dfafbc8bca NeedsCompilation: no Title: Visualising oligonucleotide patterns and motif occurrences across a set of sorted sequences Description: Visualising oligonucleotide patterns and sequence motifs occurrences across a large set of sequences centred at a common reference point and sorted by a user defined feature. biocViews: Visualization, SequenceMatching Author: Vanja Haberle Maintainer: Vanja Haberle git_url: https://git.bioconductor.org/packages/seqPattern git_branch: RELEASE_3_20 git_last_commit: 1006414 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/seqPattern_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/seqPattern_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/seqPattern_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/seqPattern_1.38.0.tgz vignettes: vignettes/seqPattern/inst/doc/seqPattern.pdf vignetteTitles: seqPattern hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/seqPattern/inst/doc/seqPattern.R importsMe: genomation, seqArchRplus dependencyCount: 28 Package: seqsetvis Version: 1.26.0 Depends: R (>= 4.3), ggplot2 Imports: cowplot, data.table, eulerr, GenomeInfoDb, GenomicAlignments, GenomicRanges, ggplotify, grDevices, grid, IRanges, limma, methods, pbapply, pbmcapply, png, RColorBrewer, Rsamtools, rtracklayer, S4Vectors, scales, stats, UpSetR Suggests: BiocFileCache, BiocManager, BiocStyle, ChIPpeakAnno, covr, knitr, rmarkdown, testthat License: MIT + file LICENSE MD5sum: 596d00c266a2b595ef7118666963cf30 NeedsCompilation: no Title: Set Based Visualizations for Next-Gen Sequencing Data Description: seqsetvis enables the visualization and analysis of sets of genomic sites in next gen sequencing data. Although seqsetvis was designed for the comparison of mulitple ChIP-seq samples, this package is domain-agnostic and allows the processing of multiple genomic coordinate files (bed-like files) and signal files (bigwig files pileups from bam file). seqsetvis has multiple functions for fetching data from regions into a tidy format for analysis in data.table or tidyverse and visualization via ggplot2. biocViews: Software, ChIPSeq, MultipleComparison, Sequencing, Visualization Author: Joseph R Boyd [aut, cre] () Maintainer: Joseph R Boyd VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/seqsetvis git_branch: RELEASE_3_20 git_last_commit: 31e216f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/seqsetvis_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/seqsetvis_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/seqsetvis_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/seqsetvis_1.26.0.tgz vignettes: vignettes/seqsetvis/inst/doc/seqsetvis_overview.html vignetteTitles: Overview and Use Cases hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/seqsetvis/inst/doc/seqsetvis_overview.R dependencyCount: 105 Package: SeqSQC Version: 1.28.0 Depends: R (>= 3.4), ExperimentHub (>= 1.3.7), SNPRelate (>= 1.10.2) Imports: e1071, GenomicRanges, gdsfmt, ggplot2, GGally, IRanges, methods, plotly, RColorBrewer, reshape2, rmarkdown, S4Vectors, stats, utils Suggests: BiocStyle, knitr, testthat License: GPL-3 MD5sum: d3038a849a70cc2625cf2931230e0a2a NeedsCompilation: no Title: A bioconductor package for sample quality check with next generation sequencing data Description: The SeqSQC is designed to identify problematic samples in NGS data, including samples with gender mismatch, contamination, cryptic relatedness, and population outlier. biocViews: Experiment Data, Homo_sapiens_Data, Sequencing Data, Project1000genomes, Genome Author: Qian Liu [aut, cre] Maintainer: Qian Liu URL: https://github.com/Liubuntu/SeqSQC VignetteBuilder: knitr BugReports: https://github.com/Liubuntu/SeqSQC/issues git_url: https://git.bioconductor.org/packages/SeqSQC git_branch: RELEASE_3_20 git_last_commit: 023fb61 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SeqSQC_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SeqSQC_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SeqSQC_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SeqSQC_1.28.0.tgz vignettes: vignettes/SeqSQC/inst/doc/vignette.html vignetteTitles: Sample Quality Check for Next-Generation Sequencing Data with SeqSQC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SeqSQC/inst/doc/vignette.R dependencyCount: 121 Package: seqTools Version: 1.40.0 Depends: methods,utils,zlibbioc LinkingTo: zlibbioc Suggests: RUnit, BiocGenerics License: Artistic-2.0 MD5sum: ae732af0b68234893f0cb7852dbe64c7 NeedsCompilation: yes Title: Analysis of nucleotide, sequence and quality content on fastq files Description: Analyze read length, phred scores and alphabet frequency and DNA k-mers on uncompressed and compressed fastq files. biocViews: QualityControl,Sequencing Author: Wolfgang Kaisers Maintainer: Wolfgang Kaisers git_url: https://git.bioconductor.org/packages/seqTools git_branch: RELEASE_3_20 git_last_commit: ed4c3a8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/seqTools_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/seqTools_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/seqTools_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/seqTools_1.40.0.tgz vignettes: vignettes/seqTools/inst/doc/seqTools.pdf, vignettes/seqTools/inst/doc/seqTools_qual_report.pdf vignetteTitles: Introduction, seqTools_qual_report hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/seqTools/inst/doc/seqTools_qual_report.R, vignettes/seqTools/inst/doc/seqTools.R importsMe: qckitfastq dependencyCount: 3 Package: SeqVarTools Version: 1.44.0 Depends: SeqArray Imports: grDevices, graphics, stats, methods, Biobase, BiocGenerics, gdsfmt, GenomicRanges, IRanges, S4Vectors, GWASExactHW, logistf, Matrix, data.table, Suggests: BiocStyle, RUnit, stringr License: GPL-3 MD5sum: 31e63d1f87278b6809aa14cb1c3a7d0e NeedsCompilation: no Title: Tools for variant data Description: An interface to the fast-access storage format for VCF data provided in SeqArray, with tools for common operations and analysis. biocViews: SNP, GeneticVariability, Sequencing, Genetics Author: Stephanie M. Gogarten, Xiuwen Zheng, Adrienne Stilp Maintainer: Stephanie M. Gogarten URL: https://github.com/smgogarten/SeqVarTools git_url: https://git.bioconductor.org/packages/SeqVarTools git_branch: RELEASE_3_20 git_last_commit: f9630cc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SeqVarTools_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SeqVarTools_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SeqVarTools_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SeqVarTools_1.44.0.tgz vignettes: vignettes/SeqVarTools/inst/doc/Iterators.pdf, vignettes/SeqVarTools/inst/doc/SeqVarTools.pdf vignetteTitles: Iterators in SeqVarTools, Introduction to SeqVarTools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SeqVarTools/inst/doc/Iterators.R, vignettes/SeqVarTools/inst/doc/SeqVarTools.R importsMe: GENESIS suggestsMe: GMMAT, MAGEE dependencyCount: 96 Package: sesame Version: 1.24.0 Depends: R (>= 4.3.0), sesameData Imports: graphics, BiocParallel, utils, methods, stringr, readr, tibble, MASS, wheatmap (>= 0.2.0), GenomicRanges, IRanges, grid, preprocessCore, S4Vectors, ggplot2, BiocFileCache, GenomeInfoDb, stats, SummarizedExperiment, dplyr, reshape2 Suggests: scales, BiocManager, knitr, DNAcopy, e1071, randomForest, RPMM, rmarkdown, testthat, tidyr, BiocStyle, ggrepel, grDevices, KernSmooth, pals License: MIT + file LICENSE MD5sum: 18b0d7200e2924b57ff218e52943c0d0 NeedsCompilation: no Title: SEnsible Step-wise Analysis of DNA MEthylation BeadChips Description: Tools For analyzing Illumina Infinium DNA methylation arrays. SeSAMe provides utilities to support analyses of multiple generations of Infinium DNA methylation BeadChips, including preprocessing, quality control, visualization and inference. SeSAMe features accurate detection calling, intelligent inference of ethnicity, sex and advanced quality control routines. biocViews: DNAMethylation, MethylationArray, Preprocessing, QualityControl Author: Wanding Zhou [aut, cre] (), Wubin Ding [ctb], David Goldberg [ctb], Ethan Moyer [ctb], Bret Barnes [ctb], Timothy Triche [ctb], Hui Shen [aut] Maintainer: Wanding Zhou URL: https://github.com/zwdzwd/sesame VignetteBuilder: knitr BugReports: https://github.com/zwdzwd/sesame/issues git_url: https://git.bioconductor.org/packages/sesame git_branch: RELEASE_3_20 git_last_commit: e86f791 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sesame_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sesame_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sesame_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sesame_1.24.0.tgz vignettes: vignettes/sesame/inst/doc/inferences.html, vignettes/sesame/inst/doc/KYCG.html, vignettes/sesame/inst/doc/modeling.html, vignettes/sesame/inst/doc/nonhuman.html, vignettes/sesame/inst/doc/QC.html, vignettes/sesame/inst/doc/sesame.html vignetteTitles: "4. Data Inference", "5. knowYourCG", 3. Modeling, 2. Non-human Array, 1. Quality Control, "0. Basic Usage" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/sesame/inst/doc/inferences.R, vignettes/sesame/inst/doc/KYCG.R, vignettes/sesame/inst/doc/modeling.R, vignettes/sesame/inst/doc/nonhuman.R, vignettes/sesame/inst/doc/QC.R, vignettes/sesame/inst/doc/sesame.R importsMe: CytoMethIC suggestsMe: knowYourCG, RnBeads, TCGAbiolinks, sesameData dependencyCount: 114 Package: SEtools Version: 1.20.0 Depends: R (>= 4.0), SummarizedExperiment, sechm Imports: BiocParallel, Matrix, DESeq2, S4Vectors, data.table, edgeR, openxlsx, pheatmap, stats, circlize, methods, sva Suggests: BiocStyle, knitr, rmarkdown, ggplot2 License: GPL MD5sum: 0157f338d5325713e2b2d7f299c7a5d4 NeedsCompilation: no Title: SEtools: tools for working with SummarizedExperiment Description: This includes a set of convenience functions for working with the SummarizedExperiment class. Note that plotting functions historically in this package have been moved to the sechm package (see vignette for details). biocViews: GeneExpression Author: Pierre-Luc Germain [cre, aut] () Maintainer: Pierre-Luc Germain VignetteBuilder: knitr BugReports: https://github.com/plger/SEtools git_url: https://git.bioconductor.org/packages/SEtools git_branch: RELEASE_3_20 git_last_commit: af7efb7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SEtools_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SEtools_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SEtools_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SEtools_1.20.0.tgz vignettes: vignettes/SEtools/inst/doc/SEtools.html vignetteTitles: SEtools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SEtools/inst/doc/SEtools.R dependencyCount: 128 Package: sevenbridges Version: 1.36.0 Depends: methods, utils, stats Imports: httr, jsonlite, yaml, objectProperties, stringr, S4Vectors, docopt, curl, uuid, data.table Suggests: knitr, rmarkdown, testthat, readr License: Apache License 2.0 | file LICENSE MD5sum: 72f0145f3fcdb5070afe3919368399c2 NeedsCompilation: no Title: Seven Bridges Platform API Client and Common Workflow Language Tool Builder in R Description: R client and utilities for Seven Bridges platform API, from Cancer Genomics Cloud to other Seven Bridges supported platforms. biocViews: Software, DataImport, ThirdPartyClient Author: Phil Webster [aut, cre], Soner Koc [aut] (), Nan Xiao [aut], Tengfei Yin [aut], Dusan Randjelovic [ctb], Emile Young [ctb], Velsera [cph, fnd] Maintainer: Phil Webster URL: https://www.sevenbridges.com, https://sbg.github.io/sevenbridges-r/, https://github.com/sbg/sevenbridges-r VignetteBuilder: knitr BugReports: https://github.com/sbg/sevenbridges-r/issues git_url: https://git.bioconductor.org/packages/sevenbridges git_branch: RELEASE_3_20 git_last_commit: 7d65500 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sevenbridges_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sevenbridges_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sevenbridges_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sevenbridges_1.36.0.tgz vignettes: vignettes/sevenbridges/inst/doc/api.html, vignettes/sevenbridges/inst/doc/apps.html, vignettes/sevenbridges/inst/doc/bioc-workflow.html, vignettes/sevenbridges/inst/doc/cgc-datasets.html, vignettes/sevenbridges/inst/doc/docker.html, vignettes/sevenbridges/inst/doc/rstudio.html vignetteTitles: Complete Guide for Seven Bridges API R Client, Describe and Execute CWL Tools/Workflows in R, Master Tutorial: Use R for Cancer Genomics Cloud, Find Data on CGC via Data Browser and Datasets API, Creating Your Docker Container and Command Line Interface (with docopt), IDE Container: RStudio Server,, Shiny Server,, and More hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/sevenbridges/inst/doc/api.R, vignettes/sevenbridges/inst/doc/apps.R, vignettes/sevenbridges/inst/doc/bioc-workflow.R, vignettes/sevenbridges/inst/doc/cgc-datasets.R, vignettes/sevenbridges/inst/doc/docker.R, vignettes/sevenbridges/inst/doc/rstudio.R dependencyCount: 30 Package: sevenC Version: 1.26.0 Depends: R (>= 3.5), InteractionSet (>= 1.2.0) Imports: rtracklayer (>= 1.34.1), BiocGenerics (>= 0.22.0), GenomeInfoDb (>= 1.12.2), GenomicRanges (>= 1.28.5), IRanges (>= 2.10.3), S4Vectors (>= 0.14.4), readr (>= 1.1.0), purrr (>= 0.2.2), data.table (>= 1.10.4), boot (>= 1.3-20), methods (>= 3.4.1) Suggests: testthat, BiocStyle, knitr, rmarkdown, GenomicInteractions, covr License: GPL-3 Archs: x64 MD5sum: 4124d617aff47e59b6673c17d8c93dab NeedsCompilation: no Title: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs Description: Chromatin looping is an essential feature of eukaryotic genomes and can bring regulatory sequences, such as enhancers or transcription factor binding sites, in the close physical proximity of regulated target genes. Here, we provide sevenC, an R package that uses protein binding signals from ChIP-seq and sequence motif information to predict chromatin looping events. Cross-linking of proteins that bind close to loop anchors result in ChIP-seq signals at both anchor loci. These signals are used at CTCF motif pairs together with their distance and orientation to each other to predict whether they interact or not. The resulting chromatin loops might be used to associate enhancers or transcription factor binding sites (e.g., ChIP-seq peaks) to regulated target genes. biocViews: DNA3DStructure, ChIPchip, Coverage, DataImport, Epigenetics, FunctionalGenomics, Classification, Regression, ChIPSeq, HiC, Annotation Author: Jonas Ibn-Salem [aut, cre] Maintainer: Jonas Ibn-Salem URL: https://github.com/ibn-salem/sevenC VignetteBuilder: knitr BugReports: https://github.com/ibn-salem/sevenC/issues git_url: https://git.bioconductor.org/packages/sevenC git_branch: RELEASE_3_20 git_last_commit: 2df2e79 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sevenC_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sevenC_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sevenC_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sevenC_1.26.0.tgz vignettes: vignettes/sevenC/inst/doc/sevenC.html vignetteTitles: Introduction to sevenC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sevenC/inst/doc/sevenC.R dependencyCount: 85 Package: SGCP Version: 1.6.0 Depends: R (>= 4.2.0) Imports: ggplot2, expm, caret, plyr, dplyr, GO.db, annotate, SummarizedExperiment, genefilter, GOstats, RColorBrewer, xtable, Rgraphviz, reshape2, openxlsx, ggridges, DescTools, org.Hs.eg.db, methods, grDevices, stats, RSpectra, graph Suggests: knitr, rmarkdown, BiocManager, devtools, BiocStyle License: GPL-3 MD5sum: bc891da768259608cd73b693089ffa39 NeedsCompilation: no Title: SGCP: A semi-supervised pipeline for gene clustering using self-training approach in gene co-expression networks Description: SGC is a semi-supervised pipeline for gene clustering in gene co-expression networks. SGC consists of multiple novel steps that enable the computation of highly enriched modules in an unsupervised manner. But unlike all existing frameworks, it further incorporates a novel step that leverages Gene Ontology information in a semi-supervised clustering method that further improves the quality of the computed modules. biocViews: GeneExpression, GeneSetEnrichment, NetworkEnrichment, SystemsBiology, Classification, Clustering, DimensionReduction, GraphAndNetwork, NeuralNetwork, Network, mRNAMicroarray, RNASeq, Visualization Author: Niloofar AghaieAbiane [aut, cre] (), Ioannis Koutis [aut] Maintainer: Niloofar AghaieAbiane URL: https://github.com/na396/SGCP VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SGCP git_branch: RELEASE_3_20 git_last_commit: e164401 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SGCP_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SGCP_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SGCP_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SGCP_1.6.0.tgz vignettes: vignettes/SGCP/inst/doc/SGCP.html vignetteTitles: SGCP package manual hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SGCP/inst/doc/SGCP.R dependencyCount: 165 Package: SGSeq Version: 1.40.0 Depends: R (>= 4.0), IRanges (>= 2.13.15), GenomicRanges (>= 1.31.10), Rsamtools (>= 1.31.2), SummarizedExperiment, methods Imports: AnnotationDbi, BiocGenerics (>= 0.31.5), Biostrings (>= 2.47.6), GenomicAlignments (>= 1.15.7), GenomicFeatures (>= 1.31.5), GenomeInfoDb, RUnit, S4Vectors (>= 0.23.19), grDevices, graphics, igraph, parallel, rtracklayer (>= 1.39.7), stats Suggests: BiocStyle, BSgenome.Hsapiens.UCSC.hg19, TxDb.Hsapiens.UCSC.hg19.knownGene, knitr, rmarkdown License: Artistic-2.0 MD5sum: 516203d55f790ca154f4fe4b69591a43 NeedsCompilation: no Title: Splice event prediction and quantification from RNA-seq data Description: SGSeq is a software package for analyzing splice events from RNA-seq data. Input data are RNA-seq reads mapped to a reference genome in BAM format. Genes are represented as a splice graph, which can be obtained from existing annotation or predicted from the mapped sequence reads. Splice events are identified from the graph and are quantified locally using structurally compatible reads at the start or end of each splice variant. The software includes functions for splice event prediction, quantification, visualization and interpretation. biocViews: AlternativeSplicing, ImmunoOncology, RNASeq, Transcription Author: Leonard Goldstein [cre, aut] Maintainer: Leonard Goldstein VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SGSeq git_branch: RELEASE_3_20 git_last_commit: 80a8025 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SGSeq_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SGSeq_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SGSeq_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SGSeq_1.40.0.tgz vignettes: vignettes/SGSeq/inst/doc/SGSeq.html vignetteTitles: SGSeq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SGSeq/inst/doc/SGSeq.R dependsOnMe: EventPointer importsMe: Rhisat2 suggestsMe: FRASER dependencyCount: 80 Package: SharedObject Version: 1.20.0 Depends: R (>= 3.6.0) Imports: Rcpp, methods, stats, BiocGenerics LinkingTo: BH, Rcpp Suggests: testthat, parallel, knitr, rmarkdown, BiocStyle License: GPL-3 MD5sum: 72c88a08e6e3bed0f4b4c1fdcae274ec NeedsCompilation: yes Title: Sharing R objects across multiple R processes without memory duplication Description: This package is developed for facilitating parallel computing in R. It is capable to create an R object in the shared memory space and share the data across multiple R processes. It avoids the overhead of memory dulplication and data transfer, which make sharing big data object across many clusters possible. biocViews: Infrastructure Author: Jiefei Wang [aut, cre], Martin Morgan [aut] Maintainer: Jiefei Wang SystemRequirements: GNU make, C++11 VignetteBuilder: knitr BugReports: https://github.com/Jiefei-Wang/SharedObject/issues git_url: https://git.bioconductor.org/packages/SharedObject git_branch: RELEASE_3_20 git_last_commit: 02132bf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SharedObject_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SharedObject_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SharedObject_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SharedObject_1.20.0.tgz vignettes: vignettes/SharedObject/inst/doc/quick_start_guide_Chinese.html, vignettes/SharedObject/inst/doc/quick_start_guide.html vignetteTitles: quickStartChinese, quickStart hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SharedObject/inst/doc/quick_start_guide_Chinese.R, vignettes/SharedObject/inst/doc/quick_start_guide.R importsMe: NewWave dependencyCount: 7 Package: shinyepico Version: 1.14.0 Depends: R (>= 4.3.0) Imports: DT (>= 0.15.0), data.table (>= 1.13.0), doParallel (>= 1.0.0), dplyr (>= 1.0.9), foreach (>= 1.5.0), GenomicRanges (>= 1.38.0), ggplot2 (>= 3.3.0), gplots (>= 3.0.0), heatmaply (>= 1.1.0), limma (>= 3.42.0), minfi (>= 1.32.0), plotly (>= 4.9.2), reshape2 (>= 1.4.0), rlang (>= 1.0.2), rmarkdown (>= 2.3.0), rtracklayer (>= 1.46.0), shiny (>= 1.5.0), shinyWidgets (>= 0.5.0), shinycssloaders (>= 0.3.0), shinyjs (>= 1.1.0), shinythemes (>= 1.1.0), statmod (>= 1.4.0), tidyr (>= 1.2.0), zip (>= 2.1.0) Suggests: knitr (>= 1.30.0), mCSEA (>= 1.10.0), IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylation450kmanifest, IlluminaHumanMethylationEPICanno.ilm10b4.hg19, IlluminaHumanMethylationEPICmanifest, testthat, minfiData, BiocStyle License: AGPL-3 + file LICENSE MD5sum: 134dc9e08350da1492af99fb7349567d NeedsCompilation: no Title: ShinyÉPICo Description: ShinyÉPICo is a graphical pipeline to analyze Illumina DNA methylation arrays (450k or EPIC). It allows to calculate differentially methylated positions and differentially methylated regions in a user-friendly interface. Moreover, it includes several options to export the results and obtain files to perform downstream analysis. biocViews: DifferentialMethylation,DNAMethylation,Microarray,Preprocessing,QualityControl Author: Octavio Morante-Palacios [cre, aut] Maintainer: Octavio Morante-Palacios URL: https://github.com/omorante/shiny_epico VignetteBuilder: knitr BugReports: https://github.com/omorante/shiny_epico/issues git_url: https://git.bioconductor.org/packages/shinyepico git_branch: RELEASE_3_20 git_last_commit: 1ddde64 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/shinyepico_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/shinyepico_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/shinyepico_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/shinyepico_1.14.0.tgz vignettes: vignettes/shinyepico/inst/doc/shiny_epico.html vignetteTitles: shinyepico hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/shinyepico/inst/doc/shiny_epico.R dependencyCount: 210 Package: shiny.gosling Version: 1.2.0 Imports: htmltools, jsonlite, rlang, shiny, shiny.react, fs, digest, rjson Suggests: config, covr, knitr, lintr, mockery (>= 0.4.3), rcmdcheck, rmarkdown, sessioninfo, spelling, testthat (>= 3.0.0), GenomicRanges, VariantAnnotation, StructuralVariantAnnotation, biovizBase, ggbio License: LGPL-3 MD5sum: daf1969e34ee8ff6c8f5e2bd65b3f780 NeedsCompilation: no Title: A Grammar-based Toolkit for Scalable and Interactive Genomics Data Visualization for R and Shiny Description: A Grammar-based Toolkit for Scalable and Interactive Genomics Data Visualization. http://gosling-lang.org/. This R package is based on gosling.js. It uses R functions to create gosling plots that could be embedded onto R Shiny apps. biocViews: ShinyApps, Genetics, Visualization Author: Appsilon [aut, cre], Anirban Shaw [aut] (), Federico Rivadeneira [aut] (), Vedha Viyash [aut] Maintainer: Appsilon VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/shiny.gosling git_branch: RELEASE_3_20 git_last_commit: 892dca2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/shiny.gosling_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/shiny.gosling_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/shiny.gosling_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/shiny.gosling_1.2.0.tgz vignettes: vignettes/shiny.gosling/inst/doc/GRanges.html, vignettes/shiny.gosling/inst/doc/intro.html, vignettes/shiny.gosling/inst/doc/lineChart.html, vignettes/shiny.gosling/inst/doc/textAnnotation.html, vignettes/shiny.gosling/inst/doc/VCF.html vignetteTitles: 2. Using a GRanges object in shiny.gosling, 1. Introduction to shiny.gosling, 4. Creating an Interactive Line Chart with shiny.gosling, 5. Creating a Multi-Scale Sequence Track, 3. Creating a Circos Plot with VCF Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/shiny.gosling/inst/doc/GRanges.R, vignettes/shiny.gosling/inst/doc/intro.R, vignettes/shiny.gosling/inst/doc/lineChart.R, vignettes/shiny.gosling/inst/doc/textAnnotation.R, vignettes/shiny.gosling/inst/doc/VCF.R importsMe: gINTomics suggestsMe: AlphaMissenseR dependencyCount: 42 Package: shinyMethyl Version: 1.42.0 Imports: Biobase, BiocGenerics, graphics, grDevices, htmltools, MatrixGenerics, methods, minfi, RColorBrewer, shiny, stats, utils Suggests: shinyMethylData, minfiData, BiocStyle, knitr, testthat License: Artistic-2.0 MD5sum: cf500be83d4657e46813a8d9102e3a26 NeedsCompilation: no Title: Interactive visualization for Illumina methylation arrays Description: Interactive tool for visualizing Illumina methylation array data. Both the 450k and EPIC array are supported. biocViews: DNAMethylation, Microarray, TwoChannel, Preprocessing, QualityControl, MethylationArray Author: Jean-Philippe Fortin [cre, aut], Kasper Daniel Hansen [aut] Maintainer: Jean-Philippe Fortin URL: https://github.com/Jfortin1/shinyMethyl VignetteBuilder: knitr BugReports: https://github.com/Jfortin1/shinyMethyl git_url: https://git.bioconductor.org/packages/shinyMethyl git_branch: RELEASE_3_20 git_last_commit: dfaef9a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/shinyMethyl_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/shinyMethyl_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/shinyMethyl_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/shinyMethyl_1.42.0.tgz vignettes: vignettes/shinyMethyl/inst/doc/shinyMethyl.html vignetteTitles: shinyMethyl: interactive visualization of Illumina 450K methylation arrays hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/shinyMethyl/inst/doc/shinyMethyl.R dependencyCount: 158 Package: ShortRead Version: 1.64.0 Depends: BiocGenerics (>= 0.23.3), BiocParallel, Biostrings (>= 2.47.6), Rsamtools (>= 1.31.2), GenomicAlignments (>= 1.15.6) Imports: Biobase, S4Vectors (>= 0.17.25), IRanges (>= 2.13.12), GenomeInfoDb (>= 1.15.2), GenomicRanges (>= 1.31.8), pwalign, hwriter, methods, lattice, latticeExtra, LinkingTo: S4Vectors, IRanges, XVector, Biostrings, Rhtslib Suggests: BiocStyle, RUnit, biomaRt, GenomicFeatures, yeastNagalakshmi, knitr License: Artistic-2.0 MD5sum: 6550882a18baeb952edc082bd4aef6ec NeedsCompilation: yes Title: FASTQ input and manipulation Description: This package implements sampling, iteration, and input of FASTQ files. The package includes functions for filtering and trimming reads, and for generating a quality assessment report. Data are represented as DNAStringSet-derived objects, and easily manipulated for a diversity of purposes. The package also contains legacy support for early single-end, ungapped alignment formats. biocViews: DataImport, Sequencing, QualityControl Author: Bioconductor Package Maintainer [cre], Martin Morgan [aut], Michael Lawrence [ctb], Simon Anders [ctb], Rohit Satyam [ctb] (Converted Overview.Rnw vignette from Sweave to RMarkdown / HTML.), J Wokaty [ctb] Maintainer: Bioconductor Package Maintainer URL: https://bioconductor.org/packages/ShortRead, https://github.com/Bioconductor/ShortRead, https://support.bioconductor.org/tag/ShortRead VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/ShortRead/issues git_url: https://git.bioconductor.org/packages/ShortRead git_branch: RELEASE_3_20 git_last_commit: 88fd3ab git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ShortRead_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ShortRead_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ShortRead_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ShortRead_1.64.0.tgz vignettes: vignettes/ShortRead/inst/doc/Overview.html vignetteTitles: An introduction to ShortRead hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ShortRead/inst/doc/Overview.R dependsOnMe: chipseq, EDASeq, esATAC, girafe, OTUbase, Rqc, segmentSeq, systemPipeR, EatonEtAlChIPseq, NestLink, sequencing, STRMPS importsMe: amplican, basecallQC, BEAT, CellBarcode, chipseq, ChIPseqR, ChIPsim, CircSeqAlignTk, dada2, easyRNASeq, FastqCleaner, GOTHiC, icetea, IONiseR, nucleR, QuasR, R453Plus1Toolbox, RSVSim, scruff, UMI4Cats, seqpac, DBTC, genBaRcode suggestsMe: BiocParallel, CSAR, FLAMES, GenomicAlignments, PING, Repitools, Rsamtools, S4Vectors, HiCDataLymphoblast, systemPipeRdata, yeastRNASeq dependencyCount: 62 Package: SIAMCAT Version: 2.10.0 Depends: R (>= 4.2.0), mlr3, phyloseq Imports: beanplot, glmnet, graphics, grDevices, grid, gridBase, gridExtra, LiblineaR, matrixStats, methods, pROC, PRROC, RColorBrewer, scales, stats, stringr, utils, infotheo, progress, corrplot, lmerTest, mlr3learners, mlr3tuning, paradox, lgr Suggests: BiocStyle, testthat, knitr, rmarkdown, tidyverse, ggpubr License: GPL-3 Archs: x64 MD5sum: e2c0cfba5a48d7811ad976655f252e49 NeedsCompilation: no Title: Statistical Inference of Associations between Microbial Communities And host phenoTypes Description: Pipeline for Statistical Inference of Associations between Microbial Communities And host phenoTypes (SIAMCAT). A primary goal of analyzing microbiome data is to determine changes in community composition that are associated with environmental factors. In particular, linking human microbiome composition to host phenotypes such as diseases has become an area of intense research. For this, robust statistical modeling and biomarker extraction toolkits are crucially needed. SIAMCAT provides a full pipeline supporting data preprocessing, statistical association testing, statistical modeling (LASSO logistic regression) including tools for evaluation and interpretation of these models (such as cross validation, parameter selection, ROC analysis and diagnostic model plots). biocViews: ImmunoOncology, Metagenomics, Classification, Microbiome, Sequencing, Preprocessing, Clustering, FeatureExtraction, GeneticVariability, MultipleComparison,Regression Author: Konrad Zych [aut] (), Jakob Wirbel [aut, cre] (), Georg Zeller [aut] (), Morgan Essex [ctb], Nicolai Karcher [ctb], Kersten Breuer [ctb] Maintainer: Jakob Wirbel VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SIAMCAT git_branch: RELEASE_3_20 git_last_commit: 6e37aed git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SIAMCAT_2.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SIAMCAT_2.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SIAMCAT_2.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SIAMCAT_2.10.0.tgz vignettes: vignettes/SIAMCAT/inst/doc/SIAMCAT_confounder.html, vignettes/SIAMCAT/inst/doc/SIAMCAT_holdout.html, vignettes/SIAMCAT/inst/doc/SIAMCAT_meta.html, vignettes/SIAMCAT/inst/doc/SIAMCAT_ml_pitfalls.html, vignettes/SIAMCAT/inst/doc/SIAMCAT_read-in.html, vignettes/SIAMCAT/inst/doc/SIAMCAT_vignette.html vignetteTitles: SIAMCAT confounder example, SIAMCAT holdout testing, SIAMCAT meta-analysis, SIAMCAT ML pitfalls, SIAMCAT input, SIAMCAT basic vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SIAMCAT/inst/doc/SIAMCAT_confounder.R, vignettes/SIAMCAT/inst/doc/SIAMCAT_holdout.R, vignettes/SIAMCAT/inst/doc/SIAMCAT_meta.R, vignettes/SIAMCAT/inst/doc/SIAMCAT_ml_pitfalls.R, vignettes/SIAMCAT/inst/doc/SIAMCAT_read-in.R, vignettes/SIAMCAT/inst/doc/SIAMCAT_vignette.R dependencyCount: 123 Package: SICtools Version: 1.36.0 Depends: R (>= 3.0.0), methods, Rsamtools (>= 1.18.1), doParallel (>= 1.0.8), Biostrings (>= 2.32.1), stringr (>= 0.6.2), matrixStats (>= 0.10.0), plyr (>= 1.8.3), GenomicRanges (>= 1.22.4), IRanges (>= 2.4.8) Suggests: knitr, RUnit, BiocGenerics License: GPL (>=2) MD5sum: 211832c3db57789ff2e090a1c344926c NeedsCompilation: yes Title: Find SNV/Indel differences between two bam files with near relationship Description: This package is to find SNV/Indel differences between two bam files with near relationship in a way of pairwise comparison thourgh each base position across the genome region of interest. The difference is inferred by fisher test and euclidean distance, the input of which is the base count (A,T,G,C) in a given position and read counts for indels that span no less than 2bp on both sides of indel region. biocViews: Alignment, Sequencing, Coverage, SequenceMatching, QualityControl, DataImport, Software, SNP, VariantDetection Author: Xiaobin Xing, Wu Wei Maintainer: Xiaobin Xing VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SICtools git_branch: RELEASE_3_20 git_last_commit: 5a37844 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SICtools_1.36.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SICtools_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SICtools_1.36.0.tgz vignettes: vignettes/SICtools/inst/doc/SICtools.pdf vignetteTitles: Using SICtools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SICtools/inst/doc/SICtools.R dependencyCount: 53 Package: SigCheck Version: 2.38.0 Depends: R (>= 4.0.0), MLInterfaces, Biobase, e1071, BiocParallel, survival Imports: graphics, stats, utils, methods Suggests: BiocStyle, breastCancerNKI, qusage License: Artistic-2.0 MD5sum: bd93e43ae20c57f05c62df1361f7f914 NeedsCompilation: no Title: Check a gene signature's prognostic performance against random signatures, known signatures, and permuted data/metadata Description: While gene signatures are frequently used to predict phenotypes (e.g. predict prognosis of cancer patients), it it not always clear how optimal or meaningful they are (cf David Venet, Jacques E. Dumont, and Vincent Detours' paper "Most Random Gene Expression Signatures Are Significantly Associated with Breast Cancer Outcome"). Based on suggestions in that paper, SigCheck accepts a data set (as an ExpressionSet) and a gene signature, and compares its performance on survival and/or classification tasks against a) random gene signatures of the same length; b) known, related and unrelated gene signatures; and c) permuted data and/or metadata. biocViews: GeneExpression, Classification, GeneSetEnrichment Author: Rory Stark and Justin Norden Maintainer: Rory Stark git_url: https://git.bioconductor.org/packages/SigCheck git_branch: RELEASE_3_20 git_last_commit: 1524ce7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SigCheck_2.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SigCheck_2.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SigCheck_2.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SigCheck_2.38.0.tgz vignettes: vignettes/SigCheck/inst/doc/SigCheck.pdf vignetteTitles: Checking gene expression signatures against random and known signatures with SigCheck hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SigCheck/inst/doc/SigCheck.R dependencyCount: 135 Package: sigFeature Version: 1.24.0 Depends: R (>= 3.5.0) Imports: biocViews, nlme, e1071, openxlsx, pheatmap, RColorBrewer, Matrix, SparseM, graphics, stats, utils, SummarizedExperiment, BiocParallel, methods Suggests: RUnit, BiocGenerics, knitr, rmarkdown License: GPL (>= 2) MD5sum: 44db06bf580ea2d3a41785a52c5cf4e6 NeedsCompilation: no Title: sigFeature: Significant feature selection using SVM-RFE & t-statistic Description: This package provides a novel feature selection algorithm for binary classification using support vector machine recursive feature elimination SVM-RFE and t-statistic. In this feature selection process, the selected features are differentially significant between the two classes and also they are good classifier with higher degree of classification accuracy. biocViews: FeatureExtraction, GeneExpression, Microarray, Transcription, mRNAMicroarray, GenePrediction, Normalization, Classification, SupportVectorMachine Author: Pijush Das Developer [aut, cre], Dr. Susanta Roychudhury User [ctb], Dr. Sucheta Tripathy User [ctb] Maintainer: Pijush Das Developer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/sigFeature git_branch: RELEASE_3_20 git_last_commit: 49d6620 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sigFeature_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sigFeature_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sigFeature_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sigFeature_1.24.0.tgz vignettes: vignettes/sigFeature/inst/doc/vignettes.html vignetteTitles: sigFeature hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sigFeature/inst/doc/vignettes.R dependencyCount: 77 Package: SigFuge Version: 1.44.0 Depends: R (>= 3.5.0), GenomicRanges Imports: ggplot2, matlab, reshape, sigclust Suggests: org.Hs.eg.db, prebsdata, Rsamtools (>= 1.17.0), TxDb.Hsapiens.UCSC.hg19.knownGene, BiocStyle License: GPL-3 MD5sum: d721b007563cff93176dd80bf87f79b3 NeedsCompilation: no Title: SigFuge Description: Algorithm for testing significance of clustering in RNA-seq data. biocViews: Clustering, Visualization, RNASeq, ImmunoOncology Author: Patrick Kimes, Christopher Cabanski Maintainer: Patrick Kimes git_url: https://git.bioconductor.org/packages/SigFuge git_branch: RELEASE_3_20 git_last_commit: 649ddc6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SigFuge_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SigFuge_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SigFuge_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SigFuge_1.44.0.tgz vignettes: vignettes/SigFuge/inst/doc/SigFuge.pdf vignetteTitles: SigFuge Tutorial hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SigFuge/inst/doc/SigFuge.R dependencyCount: 58 Package: siggenes Version: 1.80.0 Depends: Biobase, multtest, splines, methods Imports: stats4, grDevices, graphics, stats, scrime (>= 1.2.5) Suggests: affy, annotate, genefilter, KernSmooth License: LGPL (>= 2) Archs: x64 MD5sum: 9273fff292c699d7045af85d7b064917 NeedsCompilation: no Title: Multiple Testing using SAM and Efron's Empirical Bayes Approaches Description: Identification of differentially expressed genes and estimation of the False Discovery Rate (FDR) using both the Significance Analysis of Microarrays (SAM) and the Empirical Bayes Analyses of Microarrays (EBAM). biocViews: MultipleComparison, Microarray, GeneExpression, SNP, ExonArray, DifferentialExpression Author: Holger Schwender Maintainer: Holger Schwender git_url: https://git.bioconductor.org/packages/siggenes git_branch: RELEASE_3_20 git_last_commit: 18cb74e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/siggenes_1.80.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/siggenes_1.80.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/siggenes_1.80.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/siggenes_1.80.0.tgz vignettes: vignettes/siggenes/inst/doc/siggenes.pdf, vignettes/siggenes/inst/doc/siggenesRnews.pdf, vignettes/siggenes/inst/doc/identify.sam.html, vignettes/siggenes/inst/doc/plot.ebam.html, vignettes/siggenes/inst/doc/plot.finda0.html, vignettes/siggenes/inst/doc/plot.sam.html, vignettes/siggenes/inst/doc/print.ebam.html, vignettes/siggenes/inst/doc/print.finda0.html, vignettes/siggenes/inst/doc/print.sam.html, vignettes/siggenes/inst/doc/summary.ebam.html, vignettes/siggenes/inst/doc/summary.sam.html vignetteTitles: siggenes Manual, siggenesRnews.pdf, identify.sam.html, plot.ebam.html, plot.finda0.html, plot.sam.html, print.ebam.html, print.finda0.html, print.sam.html, summary.ebam.html, summary.sam.html hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/siggenes/inst/doc/siggenes.R dependsOnMe: KCsmart importsMe: minfi, trio, XDE, DeSousa2013, INCATome, NPFD suggestsMe: logicFS dependencyCount: 16 Package: sights Version: 1.32.0 Depends: R(>= 3.3) Imports: MASS(>= 7.3), qvalue(>= 2.2), ggplot2(>= 2.0), reshape2(>= 1.4), lattice(>= 0.2), stats(>= 3.3) Suggests: testthat, knitr, rmarkdown, ggthemes, gridExtra, xlsx License: GPL-3 | file LICENSE MD5sum: fcb27503e3f774c56e849c62da44697f NeedsCompilation: no Title: Statistics and dIagnostic Graphs for HTS Description: SIGHTS is a suite of normalization methods, statistical tests, and diagnostic graphical tools for high throughput screening (HTS) assays. HTS assays use microtitre plates to screen large libraries of compounds for their biological, chemical, or biochemical activity. biocViews: ImmunoOncology, CellBasedAssays, MicrotitrePlateAssay, Normalization, MultipleComparison, Preprocessing, QualityControl, BatchEffect, Visualization Author: Elika Garg [aut, cre], Carl Murie [aut], Heydar Ensha [ctb], Robert Nadon [aut] Maintainer: Elika Garg URL: https://eg-r.github.io/sights/ VignetteBuilder: knitr BugReports: https://github.com/eg-r/sights/issues git_url: https://git.bioconductor.org/packages/sights git_branch: RELEASE_3_20 git_last_commit: 2f2afed git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sights_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sights_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sights_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sights_1.32.0.tgz vignettes: vignettes/sights/inst/doc/sights.html vignetteTitles: Using **SIGHTS** R-package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/sights/inst/doc/sights.R dependencyCount: 42 Package: signatureSearch Version: 1.20.0 Depends: R(>= 4.2.0), Rcpp, SummarizedExperiment, org.Hs.eg.db Imports: AnnotationDbi, ggplot2, data.table, ExperimentHub, HDF5Array, magrittr, RSQLite, dplyr, fgsea, scales, methods, qvalue, stats, utils, reshape2, visNetwork, BiocParallel, fastmatch, reactome.db, Matrix, clusterProfiler, readr, DOSE, rhdf5, GSEABase, DelayedArray, BiocGenerics, tibble LinkingTo: Rcpp Suggests: knitr, testthat, rmarkdown, BiocStyle, signatureSearchData, DT License: Artistic-2.0 MD5sum: bd5e9ae4a91a4a12e107f0ee13921b1e NeedsCompilation: yes Title: Environment for Gene Expression Searching Combined with Functional Enrichment Analysis Description: This package implements algorithms and data structures for performing gene expression signature (GES) searches, and subsequently interpreting the results functionally with specialized enrichment methods. biocViews: Software, GeneExpression, GO, KEGG, NetworkEnrichment, Sequencing, Coverage, DifferentialExpression Author: Yuzhu Duan [aut], Brendan Gongol [cre, aut], Thomas Girke [aut] Maintainer: Brendan Gongol URL: https://github.com/yduan004/signatureSearch/ SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/yduan004/signatureSearch/issues git_url: https://git.bioconductor.org/packages/signatureSearch git_branch: RELEASE_3_20 git_last_commit: edcc107 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/signatureSearch_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/signatureSearch_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/signatureSearch_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/signatureSearch_1.20.0.tgz vignettes: vignettes/signatureSearch/inst/doc/signatureSearch.html vignetteTitles: signatureSearch hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/signatureSearch/inst/doc/signatureSearch.R importsMe: DFD dependencyCount: 173 Package: signeR Version: 2.8.0 Depends: R (>= 3.0.2), VariantAnnotation, NMF Imports: BiocGenerics, Biostrings, class, grDevices, GenomeInfoDb, GenomicRanges, IRanges, nloptr, methods, stats, utils, PMCMRplus, parallel, pvclust, ppclust, clue, survival, maxstat, survivalAnalysis, future, VGAM, MASS, kknn, glmnet, e1071, randomForest, ada, future.apply, ggplot2, pROC, pheatmap, RColorBrewer, listenv, reshape2, scales, survminer, dplyr, ggpubr, cowplot, tibble, readr, shiny, shinydashboard, shinycssloaders, shinyWidgets, bsplus, DT, magrittr, tidyr, BiocFileCache, proxy, rtracklayer, BSgenome LinkingTo: Rcpp, RcppArmadillo (>= 0.7.100) Suggests: knitr, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38, rmarkdown License: GPL-3 MD5sum: 44ad74b94e8c65b23858d84d085ddd07 NeedsCompilation: yes Title: Empirical Bayesian approach to mutational signature discovery Description: The signeR package provides an empirical Bayesian approach to mutational signature discovery. It is designed to analyze single nucleotide variation (SNV) counts in cancer genomes, but can also be applied to other features as well. Functionalities to characterize signatures or genome samples according to exposure patterns are also provided. biocViews: GenomicVariation, SomaticMutation, StatisticalMethod, Visualization Author: Rafael Rosales, Rodrigo Drummond, Renan Valieris, Alexandre Defelicibus, Israel Tojal da Silva Maintainer: Renan Valieris URL: https://github.com/TojalLab/signeR SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/signeR git_branch: RELEASE_3_20 git_last_commit: 99cef7c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/signeR_2.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/signeR_2.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/signeR_2.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/signeR_2.8.0.tgz vignettes: vignettes/signeR/inst/doc/signeRFlow.html, vignettes/signeR/inst/doc/signeR-vignette.html vignetteTitles: signeRFlow, signeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/signeR/inst/doc/signeRFlow.R, vignettes/signeR/inst/doc/signeR-vignette.R dependencyCount: 242 Package: SigsPack Version: 1.20.0 Depends: R (>= 3.6) Imports: quadprog (>= 1.5-5), methods, Biobase, BSgenome (>= 1.46.0), VariantAnnotation (>= 1.24.5), Biostrings, GenomeInfoDb, GenomicRanges, rtracklayer, SummarizedExperiment, graphics, stats, utils Suggests: IRanges, BSgenome.Hsapiens.UCSC.hg19, BiocStyle, knitr, rmarkdown License: GPL-3 MD5sum: f4107a1fa2e4d7dc1d6c9f875ea8604c NeedsCompilation: no Title: Mutational Signature Estimation for Single Samples Description: Single sample estimation of exposure to mutational signatures. Exposures to known mutational signatures are estimated for single samples, based on quadratic programming algorithms. Bootstrapping the input mutational catalogues provides estimations on the stability of these exposures. The effect of the sequence composition of mutational context can be taken into account by normalising the catalogues. biocViews: SomaticMutation, SNP, VariantAnnotation, BiomedicalInformatics, DNASeq Author: Franziska Schumann Maintainer: Franziska Schumann URL: https://github.com/bihealth/SigsPack VignetteBuilder: knitr BugReports: https://github.com/bihealth/SigsPack/issues git_url: https://git.bioconductor.org/packages/SigsPack git_branch: RELEASE_3_20 git_last_commit: 8e5885e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SigsPack_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SigsPack_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SigsPack_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SigsPack_1.20.0.tgz vignettes: vignettes/SigsPack/inst/doc/SigsPack.html vignetteTitles: Introduction to SigsPack hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SigsPack/inst/doc/SigsPack.R dependencyCount: 80 Package: sigsquared Version: 1.38.0 Depends: R (>= 3.2.0), methods Imports: Biobase, survival Suggests: RUnit, BiocGenerics License: GPL version 3 MD5sum: e1807436779fc908917dacd8f237ef81 NeedsCompilation: no Title: Gene signature generation for functionally validated signaling pathways Description: By leveraging statistical properties (log-rank test for survival) of patient cohorts defined by binary thresholds, poor-prognosis patients are identified by the sigsquared package via optimization over a cost function reducing type I and II error. Author: UnJin Lee Maintainer: UnJin Lee git_url: https://git.bioconductor.org/packages/sigsquared git_branch: RELEASE_3_20 git_last_commit: d3bd66f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sigsquared_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sigsquared_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sigsquared_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sigsquared_1.38.0.tgz vignettes: vignettes/sigsquared/inst/doc/sigsquared.pdf vignetteTitles: SigSquared hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sigsquared/inst/doc/sigsquared.R dependencyCount: 12 Package: SIM Version: 1.76.0 Depends: R (>= 3.5), quantreg Imports: graphics, stats, globaltest, quantsmooth Suggests: biomaRt, RColorBrewer License: GPL (>= 2) MD5sum: ad97c8ac31f33a53a9bf7319c3abdf0a NeedsCompilation: yes Title: Integrated Analysis on two human genomic datasets Description: Finds associations between two human genomic datasets. biocViews: Microarray, Visualization Author: Renee X. de Menezes and Judith M. Boer Maintainer: Renee X. de Menezes git_url: https://git.bioconductor.org/packages/SIM git_branch: RELEASE_3_20 git_last_commit: 663acd3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SIM_1.76.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SIM_1.76.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SIM_1.76.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SIM_1.76.0.tgz vignettes: vignettes/SIM/inst/doc/SIM.pdf vignetteTitles: SIM vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SIM/inst/doc/SIM.R dependencyCount: 59 Package: SIMAT Version: 1.38.0 Depends: R (>= 3.5.0), Rcpp (>= 0.11.3) Imports: mzR, ggplot2, grid, reshape2, grDevices, stats, utils Suggests: RUnit, BiocGenerics License: GPL-2 Archs: x64 MD5sum: 95fb0d70ca9802bf2a2efc703fa79dba NeedsCompilation: no Title: GC-SIM-MS data processing and alaysis tool Description: This package provides a pipeline for analysis of GC-MS data acquired in selected ion monitoring (SIM) mode. The tool also provides a guidance in choosing appropriate fragments for the targets of interest by using an optimization algorithm. This is done by considering overlapping peaks from a provided library by the user. biocViews: ImmunoOncology, Software, Metabolomics, MassSpectrometry Author: M. R. Nezami Ranjbar Maintainer: M. R. Nezami Ranjbar URL: http://omics.georgetown.edu/SIMAT.html git_url: https://git.bioconductor.org/packages/SIMAT git_branch: RELEASE_3_20 git_last_commit: a091a2f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SIMAT_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SIMAT_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SIMAT_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SIMAT_1.38.0.tgz vignettes: vignettes/SIMAT/inst/doc/SIMAT-vignette.pdf vignetteTitles: SIMAT Usage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SIMAT/inst/doc/SIMAT-vignette.R dependencyCount: 47 Package: SimBu Version: 1.8.0 Imports: basilisk, BiocParallel, data.table, dplyr, ggplot2, tools, Matrix (>= 1.3.3), methods, phyloseq, proxyC, RColorBrewer, RCurl, reticulate, sparseMatrixStats, SummarizedExperiment, tidyr Suggests: curl, knitr, matrixStats, rmarkdown, Seurat (>= 5.0.0), SeuratObject (>= 5.0.0), testthat (>= 3.0.0) License: GPL-3 + file LICENSE Archs: x64 MD5sum: 6481bcae0136a8572d411c675417284f NeedsCompilation: no Title: Simulate Bulk RNA-seq Datasets from Single-Cell Datasets Description: SimBu can be used to simulate bulk RNA-seq datasets with known cell type fractions. You can either use your own single-cell study for the simulation or the sfaira database. Different pre-defined simulation scenarios exist, as are options to run custom simulations. Additionally, expression values can be adapted by adding an mRNA bias, which produces more biologically relevant simulations. biocViews: Software, RNASeq, SingleCell Author: Alexander Dietrich [aut, cre] Maintainer: Alexander Dietrich URL: https://github.com/omnideconv/SimBu VignetteBuilder: knitr BugReports: https://github.com/omnideconv/SimBu/issues git_url: https://git.bioconductor.org/packages/SimBu git_branch: RELEASE_3_20 git_last_commit: ee811fe git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SimBu_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SimBu_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SimBu_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SimBu_1.8.0.tgz vignettes: vignettes/SimBu/inst/doc/sfaira_vignette.html, vignettes/SimBu/inst/doc/SimBu.html, vignettes/SimBu/inst/doc/simulator_input_output.html, vignettes/SimBu/inst/doc/simulator_scaling_factors.html vignetteTitles: Public Data Integration using Sfaira, Getting started, Inputs and Outputs, Introducing mRNA bias into simulations with scaling factors hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SimBu/inst/doc/sfaira_vignette.R, vignettes/SimBu/inst/doc/SimBu.R, vignettes/SimBu/inst/doc/simulator_input_output.R, vignettes/SimBu/inst/doc/simulator_scaling_factors.R dependencyCount: 117 Package: SIMD Version: 1.24.0 Depends: R (>= 3.5.0) Imports: edgeR, statmod, methylMnM, stats, utils Suggests: BiocStyle, knitr,rmarkdown License: GPL-3 MD5sum: eb3e40e49e40d33edc36976821de390b NeedsCompilation: yes Title: Statistical Inferences with MeDIP-seq Data (SIMD) to infer the methylation level for each CpG site Description: This package provides a inferential analysis method for detecting differentially expressed CpG sites in MeDIP-seq data. It uses statistical framework and EM algorithm, to identify differentially expressed CpG sites. The methods on this package are described in the article 'Methylation-level Inferences and Detection of Differential Methylation with Medip-seq Data' by Yan Zhou, Jiadi Zhu, Mingtao Zhao, Baoxue Zhang, Chunfu Jiang and Xiyan Yang (2018, pending publication). biocViews: ImmunoOncology, DifferentialMethylation,SingleCell, DifferentialExpression Author: Yan Zhou Maintainer: Jiadi Zhu <2160090406@email.szu.edu.cn> VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SIMD git_branch: RELEASE_3_20 git_last_commit: acd02d5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SIMD_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SIMD_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SIMD_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SIMD_1.24.0.tgz vignettes: vignettes/SIMD/inst/doc/SIMD.html vignetteTitles: SIMD Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SIMD/inst/doc/SIMD.R dependencyCount: 12 Package: SimFFPE Version: 1.18.0 Depends: Biostrings Imports: dplyr, foreach, doParallel, truncnorm, GenomicRanges, IRanges, Rsamtools, parallel, graphics, stats, utils, methods Suggests: BiocStyle License: LGPL-3 MD5sum: 12d6d7ebffbb39b585919105c63bc958 NeedsCompilation: no Title: NGS Read Simulator for FFPE Tissue Description: The NGS (Next-Generation Sequencing) reads from FFPE (Formalin-Fixed Paraffin-Embedded) samples contain numerous artifact chimeric reads (ACRS), which can lead to false positive structural variant calls. These ACRs are derived from the combination of two single-stranded DNA (ss-DNA) fragments with short reverse complementary regions (SRCRs). This package simulates these artifact chimeric reads as well as normal reads for FFPE samples on the whole genome / several chromosomes / large regions. biocViews: Sequencing, Alignment, MultipleComparison, SequenceMatching, DataImport Author: Lanying Wei [aut, cre] () Maintainer: Lanying Wei git_url: https://git.bioconductor.org/packages/SimFFPE git_branch: RELEASE_3_20 git_last_commit: a137368 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SimFFPE_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SimFFPE_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SimFFPE_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SimFFPE_1.18.0.tgz vignettes: vignettes/SimFFPE/inst/doc/SimFFPE.pdf vignetteTitles: An introduction to SimFFPE hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SimFFPE/inst/doc/SimFFPE.R dependencyCount: 58 Package: similaRpeak Version: 1.38.0 Depends: R6 (>= 2.0) Imports: stats Suggests: RUnit, BiocGenerics, knitr, Rsamtools, GenomicAlignments, rtracklayer, rmarkdown, BiocStyle License: Artistic-2.0 Archs: x64 MD5sum: 326a9c389d85c0e026cad982ae4aa5cd NeedsCompilation: no Title: Metrics to estimate a level of similarity between two ChIP-Seq profiles Description: This package calculates metrics which quantify the level of similarity between ChIP-Seq profiles. More specifically, the package implements six pseudometrics specialized in pattern similarity detection in ChIP-Seq profiles. biocViews: BiologicalQuestion, ChIPSeq, Genetics, MultipleComparison, DifferentialExpression Author: Astrid Deschênes [cre, aut], Elsa Bernatchez [aut], Charles Joly Beauparlant [aut], Fabien Claude Lamaze [aut], Rawane Samb [aut], Pascal Belleau [aut], Arnaud Droit [aut] Maintainer: Astrid Deschênes URL: https://github.com/adeschen/similaRpeak VignetteBuilder: knitr BugReports: https://github.com/adeschen/similaRpeak/issues git_url: https://git.bioconductor.org/packages/similaRpeak git_branch: RELEASE_3_20 git_last_commit: 6aff0d8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/similaRpeak_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/similaRpeak_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/similaRpeak_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/similaRpeak_1.38.0.tgz vignettes: vignettes/similaRpeak/inst/doc/similaRpeak.html vignetteTitles: Similarity between two ChIP-Seq profiles hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/similaRpeak/inst/doc/similaRpeak.R dependencyCount: 2 Package: SIMLR Version: 1.32.0 Depends: R (>= 4.1.0), Imports: parallel, Matrix, stats, methods, Rcpp, pracma, RcppAnnoy, RSpectra LinkingTo: Rcpp Suggests: BiocGenerics, BiocStyle, testthat, knitr, igraph License: file LICENSE MD5sum: 6add06309485ff6326731e6be60c0b46 NeedsCompilation: yes Title: Single-cell Interpretation via Multi-kernel LeaRning (SIMLR) Description: Single-cell RNA-seq technologies enable high throughput gene expression measurement of individual cells, and allow the discovery of heterogeneity within cell populations. Measurement of cell-to-cell gene expression similarity is critical for the identification, visualization and analysis of cell populations. However, single-cell data introduce challenges to conventional measures of gene expression similarity because of the high level of noise, outliers and dropouts. We develop a novel similarity-learning framework, SIMLR (Single-cell Interpretation via Multi-kernel LeaRning), which learns an appropriate distance metric from the data for dimension reduction, clustering and visualization. biocViews: ImmunoOncology, Clustering, GeneExpression, Sequencing, SingleCell Author: Daniele Ramazzotti [aut] (), Bo Wang [aut], Luca De Sano [cre, aut] (), Serafim Batzoglou [ctb] Maintainer: Luca De Sano URL: https://github.com/BatzoglouLabSU/SIMLR VignetteBuilder: knitr BugReports: https://github.com/BatzoglouLabSU/SIMLR git_url: https://git.bioconductor.org/packages/SIMLR git_branch: RELEASE_3_20 git_last_commit: 866063e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SIMLR_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SIMLR_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SIMLR_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SIMLR_1.32.0.tgz vignettes: vignettes/SIMLR/inst/doc/v1_introduction.html, vignettes/SIMLR/inst/doc/v2_running_SIMLR.html vignetteTitles: Introduction, Running SIMLR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SIMLR/inst/doc/v1_introduction.R, vignettes/SIMLR/inst/doc/v2_running_SIMLR.R dependencyCount: 14 Package: simona Version: 1.4.0 Depends: R (>= 4.1.0) Imports: methods, Rcpp, matrixStats, GetoptLong, grid, GlobalOptions, igraph, Polychrome, S4Vectors, xml2 (>= 1.3.3), circlize, ComplexHeatmap, grDevices, stats, utils, shiny LinkingTo: Rcpp Suggests: knitr, testthat, BiocManager, GO.db, org.Hs.eg.db, proxyC, AnnotationDbi, Matrix, DiagrammeR, ragg, png, InteractiveComplexHeatmap, UniProtKeywords, simplifyEnrichment, AnnotationHub, jsonlite License: MIT + file LICENSE MD5sum: b1e954e8f591b4440136f4b60280f1d9 NeedsCompilation: yes Title: Semantic Similarity on Bio-Ontologies Description: This package implements infrastructures for ontology analysis by offering efficient data structures, fast ontology traversal methods, and elegant visualizations. It provides a robust toolbox supporting over 70 methods for semantic similarity analysis. biocViews: Software, Annotation, GO, BiomedicalInformatics Author: Zuguang Gu [aut, cre] () Maintainer: Zuguang Gu URL: https://github.com/jokergoo/simona SystemRequirements: Perl, Java VignetteBuilder: knitr BugReports: https://github.com/jokergoo/simona/issues git_url: https://git.bioconductor.org/packages/simona git_branch: RELEASE_3_20 git_last_commit: 925d6df git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/simona_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/simona_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/simona_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/simona_1.4.0.tgz vignettes: vignettes/simona/inst/doc/simona.html vignetteTitles: The simona package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE importsMe: simplifyEnrichment dependencyCount: 67 Package: simPIC Version: 1.2.0 Depends: R (>= 4.4.0), SingleCellExperiment Imports: BiocGenerics, checkmate (>= 2.0.0), fitdistrplus, matrixStats, Matrix, stats, SummarizedExperiment, actuar, rlang, S4Vectors, methods, scales, scuttle Suggests: ggplot2 (>= 3.4.0), knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0) License: GPL-3 Archs: x64 MD5sum: cbab2494177921bb0d655613910b54a6 NeedsCompilation: no Title: simPIC: flexible simulation of paired-insertion counts for single-cell ATAC-sequencing data Description: simPIC is a package for simulating single-cell ATAC-seq count data. It provides a user-friendly, well documented interface for data simulation. Functions are provided for parameter estimation, realistic scATAC-seq data simulation, and comparing real and simulated datasets. biocViews: SingleCell, ATACSeq, Software, Sequencing, ImmunoOncology, DataImport Author: Sagrika Chugh [aut, cre] (), Davis McCarthy [aut], Heejung Shim [aut] Maintainer: Sagrika Chugh URL: https://github.com/sagrikachugh/simPIC VignetteBuilder: knitr BugReports: https://github.com/sagrikachugh/simPIC/issues git_url: https://git.bioconductor.org/packages/simPIC git_branch: RELEASE_3_20 git_last_commit: 2c06911 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/simPIC_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/simPIC_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/simPIC_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/simPIC_1.2.0.tgz vignettes: vignettes/simPIC/inst/doc/vignette.html vignetteTitles: simPIC: simulating single-cell ATAC-seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/simPIC/inst/doc/vignette.R dependencyCount: 70 Package: simpleSeg Version: 1.8.0 Depends: R (>= 3.5.0) Imports: BiocParallel, EBImage, terra, stats, spatstat.geom, S4Vectors, grDevices, SummarizedExperiment, methods, cytomapper Suggests: BiocStyle, testthat (>= 3.0.0), knitr, ggplot2 License: GPL-3 MD5sum: c65ea4225e3500fb4674ab0fbb189772 NeedsCompilation: no Title: A package to perform simple cell segmentation Description: Image segmentation is the process of identifying the borders of individual objects (in this case cells) within an image. This allows for the features of cells such as marker expression and morphology to be extracted, stored and analysed. simpleSeg provides functionality for user friendly, watershed based segmentation on multiplexed cellular images in R based on the intensity of user specified protein marker channels. simpleSeg can also be used for the normalization of single cell data obtained from multiple images. biocViews: Classification, Survival, SingleCell, Normalization, Spatial Author: Nicolas Canete [aut], Alexander Nicholls [aut], Ellis Patrick [aut, cre] Maintainer: Ellis Patrick URL: https://sydneybiox.github.io/simpleSeg/ https://github.com/SydneyBioX/simpleSeg VignetteBuilder: knitr BugReports: https://github.com/SydneyBioX/simpleSeg/issues git_url: https://git.bioconductor.org/packages/simpleSeg git_branch: RELEASE_3_20 git_last_commit: 272f5dc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/simpleSeg_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/simpleSeg_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/simpleSeg_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/simpleSeg_1.8.0.tgz vignettes: vignettes/simpleSeg/inst/doc/simpleSeg.html vignetteTitles: "Introduction to simpleSeg" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/simpleSeg/inst/doc/simpleSeg.R suggestsMe: spicyWorkflow dependencyCount: 152 Package: simplifyEnrichment Version: 2.0.0 Depends: R (>= 4.0.0) Imports: simona, ComplexHeatmap (>= 2.7.4), grid, circlize, GetoptLong, digest, tm, GO.db, AnnotationDbi, slam, methods, clue, grDevices, stats, utils, cluster (>= 1.14.2), colorspace, GlobalOptions (>= 0.1.0) Suggests: knitr, ggplot2, cowplot, mclust, apcluster, MCL, dbscan, igraph, gridExtra, dynamicTreeCut, testthat, gridGraphics, flexclust, BiocManager, InteractiveComplexHeatmap (>= 0.99.11), shiny, shinydashboard, cola, hu6800.db, rmarkdown, genefilter, gridtext, fpc License: MIT + file LICENSE MD5sum: 57602d6e3858ec77d41291fd31f7d743 NeedsCompilation: no Title: Simplify Functional Enrichment Results Description: A new clustering algorithm, "binary cut", for clustering similarity matrices of functional terms is implemeted in this package. It also provides functions for visualizing, summarizing and comparing the clusterings. biocViews: Software, Visualization, GO, Clustering, GeneSetEnrichment Author: Zuguang Gu [aut, cre] () Maintainer: Zuguang Gu URL: https://github.com/jokergoo/simplifyEnrichment, https://simplifyEnrichment.github.io VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/simplifyEnrichment git_branch: RELEASE_3_20 git_last_commit: 4c092b1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/simplifyEnrichment_2.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/simplifyEnrichment_2.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/simplifyEnrichment_2.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/simplifyEnrichment_2.0.0.tgz vignettes: vignettes/simplifyEnrichment/inst/doc/simplifyEnrichment.html vignetteTitles: The simplifyEnrichment package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE suggestsMe: cola, InteractiveComplexHeatmap, simona, scITD dependencyCount: 93 Package: sincell Version: 1.38.0 Depends: R (>= 3.0.2), igraph Imports: Rcpp (>= 0.11.2), entropy, scatterplot3d, MASS, TSP, ggplot2, reshape2, fields, proxy, parallel, Rtsne, fastICA, cluster, statmod LinkingTo: Rcpp Suggests: BiocStyle, knitr, biomaRt, stringr, monocle License: GPL (>= 2) Archs: x64 MD5sum: 20b8bd991b46ef01e3ceef836254899d NeedsCompilation: yes Title: R package for the statistical assessment of cell state hierarchies from single-cell RNA-seq data Description: Cell differentiation processes are achieved through a continuum of hierarchical intermediate cell-states that might be captured by single-cell RNA seq. Existing computational approaches for the assessment of cell-state hierarchies from single-cell data might be formalized under a general workflow composed of i) a metric to assess cell-to-cell similarities (combined or not with a dimensionality reduction step), and ii) a graph-building algorithm (optionally making use of a cells-clustering step). Sincell R package implements a methodological toolbox allowing flexible workflows under such framework. Furthermore, Sincell contributes new algorithms to provide cell-state hierarchies with statistical support while accounting for stochastic factors in single-cell RNA seq. Graphical representations and functional association tests are provided to interpret hierarchies. biocViews: ImmunoOncology, Sequencing, RNASeq, Clustering, GraphAndNetwork, Visualization, GeneExpression, GeneSetEnrichment, BiomedicalInformatics, CellBiology, FunctionalGenomics, SystemsBiology Author: Miguel Julia , Amalio Telenti , Antonio Rausell Maintainer: Miguel Julia , Antonio Rausell URL: http://bioconductor.org/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/sincell git_branch: RELEASE_3_20 git_last_commit: 892a15e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sincell_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sincell_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sincell_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sincell_1.38.0.tgz vignettes: vignettes/sincell/inst/doc/sincell-vignette.pdf vignetteTitles: Sincell: Analysis of cell state hierarchies from single-cell RNA-seq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sincell/inst/doc/sincell-vignette.R dependencyCount: 59 Package: SingleCellAlleleExperiment Version: 1.2.0 Depends: R (>= 4.4.0), SingleCellExperiment Imports: SummarizedExperiment, BiocParallel, DelayedArray, methods, utils, Matrix, S4Vectors, stats Suggests: scaeData, knitr, rmarkdown, BiocStyle, scran, scater, scuttle, ggplot2, patchwork, org.Hs.eg.db, AnnotationDbi, DropletUtils, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: 8071d08019c40f812d8f8d09531835e9 NeedsCompilation: no Title: S4 Class for Single Cell Data with Allele and Functional Levels for Immune Genes Description: Defines a S4 class that is based on SingleCellExperiment. In addition to the usual gene layer the object can also store data for immune genes such as HLAs, Igs and KIRs at allele and functional level. The package is part of a workflow named single-cell ImmunoGenomic Diversity (scIGD), that firstly incorporates allele-aware quantification data for immune genes. This new data can then be used with the here implemented data structure and functionalities for further data handling and data analysis. biocViews: DataRepresentation, Infrastructure, SingleCell, Transcriptomics, GeneExpression, Genetics, ImmunoOncology, DataImport Author: Jonas Schuck [aut, cre] (), Ahmad Al Ajami [aut] (), Federico Marini [aut] (), Katharina Imkeller [aut] () Maintainer: Jonas Schuck URL: https://github.com/AGImkeller/SingleCellAlleleExperiment VignetteBuilder: knitr BugReports: https://github.com/AGImkeller/SingleCellAlleleExperiment/issues git_url: https://git.bioconductor.org/packages/SingleCellAlleleExperiment git_branch: RELEASE_3_20 git_last_commit: d83d4ab git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SingleCellAlleleExperiment_1.2.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SingleCellAlleleExperiment_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SingleCellAlleleExperiment_1.2.0.tgz vignettes: vignettes/SingleCellAlleleExperiment/inst/doc/scae_intro.html vignetteTitles: An introduction to the SingleCellAlleleExperiment class hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SingleCellAlleleExperiment/inst/doc/scae_intro.R suggestsMe: scaeData dependencyCount: 47 Package: SingleCellExperiment Version: 1.28.1 Depends: SummarizedExperiment Imports: methods, utils, stats, S4Vectors, BiocGenerics, GenomicRanges, DelayedArray Suggests: testthat, BiocStyle, knitr, rmarkdown, Matrix, scRNAseq (>= 2.9.1), Rtsne License: GPL-3 Archs: x64 MD5sum: 3fea5507416eb3d407c7c9ae5bf86a5f NeedsCompilation: no Title: S4 Classes for Single Cell Data Description: Defines a S4 class for storing data from single-cell experiments. This includes specialized methods to store and retrieve spike-in information, dimensionality reduction coordinates and size factors for each cell, along with the usual metadata for genes and libraries. biocViews: ImmunoOncology, DataRepresentation, DataImport, Infrastructure, SingleCell Author: Aaron Lun [aut, cph], Davide Risso [aut, cre, cph], Keegan Korthauer [ctb], Kevin Rue-Albrecht [ctb], Luke Zappia [ctb] (, lazappi) Maintainer: Davide Risso VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SingleCellExperiment git_branch: RELEASE_3_20 git_last_commit: f3e30fb git_last_commit_date: 2024-11-08 Date/Publication: 2024-11-10 source.ver: src/contrib/SingleCellExperiment_1.28.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/SingleCellExperiment_1.28.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SingleCellExperiment_1.28.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SingleCellExperiment_1.28.1.tgz vignettes: vignettes/SingleCellExperiment/inst/doc/apply.html, vignettes/SingleCellExperiment/inst/doc/devel.html, vignettes/SingleCellExperiment/inst/doc/intro.html vignetteTitles: 2. Applying over a SingleCellExperiment object, 3. Developing around the SingleCellExperiment class, 1. An introduction to the SingleCellExperiment class hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SingleCellExperiment/inst/doc/apply.R, vignettes/SingleCellExperiment/inst/doc/devel.R, vignettes/SingleCellExperiment/inst/doc/intro.R dependsOnMe: alabaster.sce, BASiCS, batchelor, BayesSpace, CATALYST, celda, CellBench, CelliD, CellTrails, CHETAH, clusterExperiment, cydar, cytomapper, demuxSNP, dreamlet, DropletUtils, epiregulon, epiregulon.extra, ExperimentSubset, iSEE, iSEEhub, iSEEindex, LoomExperiment, lute, MAST, mia, mumosa, POWSC, scAnnotatR, scater, scDblFinder, scGPS, schex, scPipe, scran, scuttle, scviR, simPIC, SingleCellAlleleExperiment, singleCellTK, SiPSiC, SpatialExperiment, splatter, switchde, TENxIO, tidySingleCellExperiment, TrajectoryUtils, TreeSummarizedExperiment, tricycle, TSCAN, zinbwave, HCAData, imcdatasets, MouseAgingData, MouseGastrulationData, MouseThymusAgeing, muscData, scATAC.Explorer, scMultiome, scRNAseq, STexampleData, TENxBrainData, TENxPBMCData, TMExplorer, WeberDivechaLCdata, OSCA.intro, DIscBIO, imcExperiment, karyotapR importsMe: ADImpute, aggregateBioVar, airpart, APL, ASURAT, Banksy, BASiCStan, bayNorm, BUSseq, CatsCradle, ccfindR, ccImpute, CDI, CellMixS, Cepo, ChromSCape, CiteFuse, ClusterFoldSimilarity, clustifyr, CoGAPS, concordexR, condiments, corral, COTAN, CTexploreR, CuratedAtlasQueryR, cytofQC, cytoviewer, decontX, destiny, DifferentialRegulation, Dino, distinct, dittoSeq, escape, escheR, EWCE, FEAST, fishpond, FLAMES, ggsc, ggspavis, glmGamPoi, GloScope, GSVA, HIPPO, ILoReg, imcRtools, immApex, infercnv, iSEEfier, iSEEtree, iSEEu, lemur, lisaClust, mastR, mbkmeans, MEB, MetaNeighbor, miaViz, miloR, miQC, MPAC, MuData, muscat, Nebulosa, netSmooth, NewWave, nnSVG, partCNV, peco, pipeComp, raer, RCSL, RegionalST, SC3, SCArray, scBFA, scCB2, sccomp, scDD, scDDboost, scDesign3, scDiagnostics, scDotPlot, scds, scHOT, scmap, scMerge, scMET, SCnorm, scone, scp, scReClassify, scRepertoire, scRNAseqApp, scruff, scry, scTensor, scTGIF, scTreeViz, slalom, slingshot, Spaniel, SpaNorm, SpatialFeatureExperiment, spatialHeatmap, speckle, spicyR, SPOTlight, SpotSweeper, SPsimSeq, standR, Statial, tidySpatialExperiment, tpSVG, tradeSeq, treekoR, UCell, VAExprs, VDJdive, velociraptor, VisiumIO, Voyager, waddR, xenLite, zellkonverter, HCATonsilData, MerfishData, raerdata, scpdata, SingleCellMultiModal, spatialLIBD, TabulaMurisSenisData, mixhvg, nebula, SC.MEB, SCIntRuler, SCRIP, scROSHI, SpatialDDLS suggestsMe: ANCOMBC, cellxgenedp, CTdata, DEsingle, dominoSignal, FuseSOM, genomicInstability, hca, HDF5Array, InteractiveComplexHeatmap, M3Drop, microSTASIS, MOFA2, MOSim, ontoProc, phenopath, progeny, QFeatures, scBubbletree, scFeatureFilter, scPCA, scRecover, SingleR, sketchR, SummarizedExperiment, tidytof, TREG, updateObject, dorothea, DuoClustering2018, GSE103322, microbiomeDataSets, TabulaMurisData, simpleSingleCell, Canek, clustree, CytoSimplex, dyngen, harmony, Platypus, RaceID, rliger, SCdeconR, SCORPIUS, Seurat, singleCellHaystack, SuperCell, tidydr dependencyCount: 36 Package: SingleCellSignalR Version: 1.18.0 Depends: R (>= 4.0) Imports: BiocManager, circlize, limma, igraph, gplots, grDevices, edgeR, data.table, pheatmap, stats, Rtsne, graphics, stringr, foreach, multtest, scran, utils, Suggests: knitr, rmarkdown License: GPL-3 MD5sum: 0e82613ffe044a13aff73b6929714472 NeedsCompilation: no Title: Cell Signalling Using Single Cell RNAseq Data Analysis Description: Allows single cell RNA seq data analysis, clustering, creates internal network and infers cell-cell interactions. biocViews: SingleCell, Network, Clustering, RNASeq, Classification Author: Simon Cabello-Aguilar Developer [aut], Jacques Colinge Developer [aut, cre] Maintainer: Jacques Colinge Developer VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SingleCellSignalR git_branch: RELEASE_3_20 git_last_commit: f39dfd8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SingleCellSignalR_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SingleCellSignalR_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SingleCellSignalR_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SingleCellSignalR_1.18.0.tgz vignettes: vignettes/SingleCellSignalR/inst/doc/UsersGuide.html vignetteTitles: my-vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SingleCellSignalR/inst/doc/UsersGuide.R importsMe: scFeatures suggestsMe: tidySingleCellExperiment, scDiffCom dependencyCount: 102 Package: singleCellTK Version: 2.16.0 Depends: R (>= 4.0), SummarizedExperiment, SingleCellExperiment, DelayedArray, Biobase Imports: ape, anndata, AnnotationHub, batchelor, BiocParallel, celldex, colourpicker, colorspace, cowplot, cluster, ComplexHeatmap, data.table, DelayedMatrixStats, DESeq2, dplyr, DT, ExperimentHub, ensembldb, fields, ggplot2, ggplotify, ggrepel, ggtree, gridExtra, grid, GSVA (>= 1.50.0), GSVAdata, igraph, KernSmooth, limma, MAST, Matrix (>= 1.6-1), matrixStats, methods, msigdbr, multtest, plotly, plyr, ROCR, Rtsne, S4Vectors, scater, scMerge (>= 1.2.0), scran, Seurat (>= 3.1.3), shiny, shinyjs, SingleR, stringr, SoupX, sva, reshape2, shinyalert, circlize, enrichR (>= 3.2), celda, shinycssloaders, DropletUtils, scds (>= 1.2.0), reticulate (>= 1.14), tools, tximport, tidyr, eds, withr, GSEABase, R.utils, zinbwave, scRNAseq (>= 2.0.2), TENxPBMCData, yaml, rmarkdown, magrittr, scDblFinder, metap, VAM (>= 0.5.3), tibble, rlang, TSCAN, TrajectoryUtils, scuttle, utils, stats, zellkonverter Suggests: testthat, Rsubread, BiocStyle, knitr, lintr, spelling, org.Mm.eg.db, kableExtra, shinythemes, shinyBS, shinyjqui, shinyWidgets, shinyFiles, BiocGenerics, RColorBrewer, fastmap (>= 1.1.0), harmony, SeuratObject, optparse License: MIT + file LICENSE MD5sum: bb7bd2d338add88f67814720ea9b34b6 NeedsCompilation: no Title: Comprehensive and Interactive Analysis of Single Cell RNA-Seq Data Description: The Single Cell Toolkit (SCTK) in the singleCellTK package provides an interface to popular tools for importing, quality control, analysis, and visualization of single cell RNA-seq data. SCTK allows users to seamlessly integrate tools from various packages at different stages of the analysis workflow. A general "a la carte" workflow gives users the ability access to multiple methods for data importing, calculation of general QC metrics, doublet detection, ambient RNA estimation and removal, filtering, normalization, batch correction or integration, dimensionality reduction, 2-D embedding, clustering, marker detection, differential expression, cell type labeling, pathway analysis, and data exporting. Curated workflows can be used to run Seurat and Celda. Streamlined quality control can be performed on the command line using the SCTK-QC pipeline. Users can analyze their data using commands in the R console or by using an interactive Shiny Graphical User Interface (GUI). Specific analyses or entire workflows can be summarized and shared with comprehensive HTML reports generated by Rmarkdown. Additional documentation and vignettes can be found at camplab.net/sctk. biocViews: SingleCell, GeneExpression, DifferentialExpression, Alignment, Clustering, ImmunoOncology, BatchEffect, Normalization, QualityControl, DataImport, GUI Author: Yichen Wang [aut] (), Irzam Sarfraz [aut] (), Rui Hong [aut], Yusuke Koga [aut], Salam Alabdullatif [aut], Nida Pervaiz [aut], David Jenkins [aut] (), Vidya Akavoor [aut], Xinyun Cao [aut], Shruthi Bandyadka [aut], Anastasia Leshchyk [aut], Tyler Faits [aut], Mohammed Muzamil Khan [aut], Zhe Wang [aut], W. Evan Johnson [aut] (), Ming Liu [aut], Joshua David Campbell [aut, cre] () Maintainer: Joshua David Campbell URL: https://www.camplab.net/sctk/ VignetteBuilder: knitr BugReports: https://github.com/compbiomed/singleCellTK/issues git_url: https://git.bioconductor.org/packages/singleCellTK git_branch: RELEASE_3_20 git_last_commit: 6bbe76f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/singleCellTK_2.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/singleCellTK_2.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/singleCellTK_2.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/singleCellTK_2.15.2.tgz vignettes: vignettes/singleCellTK/inst/doc/singleCellTK.html vignetteTitles: 1. Introduction to singleCellTK hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/singleCellTK/inst/doc/singleCellTK.R suggestsMe: celda dependencyCount: 385 Package: SingleMoleculeFootprinting Version: 2.0.0 Depends: R (>= 4.4.1) Imports: BiocGenerics, Biostrings, BSgenome, dplyr, GenomeInfoDb, GenomicRanges, ggpointdensity, ggplot2, ggrepel, grDevices, IRanges, Matrix, parallel, patchwork, plyr, plyranges, QuasR, RColorBrewer, rlang, S4Vectors, stats, stringr, tibble, tidyr, tidyverse, viridis Suggests: BSgenome.Mmusculus.UCSC.mm10, devtools, ExperimentHub, knitr, qs, rmarkdown, readr, SingleMoleculeFootprintingData, testthat (>= 3.0.0) License: GPL-3 MD5sum: ffcca6ebb15db8845361824fd1ffb92f NeedsCompilation: no Title: Analysis tools for Single Molecule Footprinting (SMF) data Description: SingleMoleculeFootprinting provides functions to analyze Single Molecule Footprinting (SMF) data. Following the workflow exemplified in its vignette, the user will be able to perform basic data analysis of SMF data with minimal coding effort. Starting from an aligned bam file, we show how to perform quality controls over sequencing libraries, extract methylation information at the single molecule level accounting for the two possible kind of SMF experiments (single enzyme or double enzyme), classify single molecules based on their patterns of molecular occupancy, plot SMF information at a given genomic location. biocViews: DNAMethylation, Coverage, NucleosomePositioning, DataRepresentation, Epigenetics, MethylSeq, QualityControl, Sequencing Author: Guido Barzaghi [aut, cre] (), Arnaud Krebs [aut] (), Mike Smith [ctb] () Maintainer: Guido Barzaghi VignetteBuilder: knitr BugReports: https://github.com/Krebslabrep/SingleMoleculeFootprinting/issues git_url: https://git.bioconductor.org/packages/SingleMoleculeFootprinting git_branch: RELEASE_3_20 git_last_commit: 4d5ea07 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SingleMoleculeFootprinting_2.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SingleMoleculeFootprinting_2.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SingleMoleculeFootprinting_2.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SingleMoleculeFootprinting_2.0.0.tgz vignettes: vignettes/SingleMoleculeFootprinting/inst/doc/FootprintCharter.html, vignettes/SingleMoleculeFootprinting/inst/doc/methylation_calling_and_QCs.html, vignettes/SingleMoleculeFootprinting/inst/doc/single_molecule_sorting_by_TF.html vignetteTitles: FootprintCharter.html, methylation_calling_and_QCs.html, single_molecule_sorting_by_TF.html hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SingleMoleculeFootprinting/inst/doc/FootprintCharter.R, vignettes/SingleMoleculeFootprinting/inst/doc/methylation_calling_and_QCs.R, vignettes/SingleMoleculeFootprinting/inst/doc/single_molecule_sorting_by_TF.R Package: SingleR Version: 2.8.0 Depends: SummarizedExperiment Imports: methods, Matrix, S4Vectors, DelayedArray, DelayedMatrixStats, BiocParallel, BiocSingular, BiocNeighbors, stats, utils, Rcpp, beachmat (>= 2.21.1), parallel LinkingTo: Rcpp, beachmat, assorthead, BiocNeighbors Suggests: testthat, knitr, rmarkdown, BiocStyle, BiocGenerics, SingleCellExperiment, scuttle, scater, scran, scRNAseq, ggplot2, pheatmap, grDevices, gridExtra, viridis, celldex License: GPL-3 Archs: x64 MD5sum: 9421b0d69afd536c1859d17557a79de1 NeedsCompilation: yes Title: Reference-Based Single-Cell RNA-Seq Annotation Description: Performs unbiased cell type recognition from single-cell RNA sequencing data, by leveraging reference transcriptomic datasets of pure cell types to infer the cell of origin of each single cell independently. biocViews: Software, SingleCell, GeneExpression, Transcriptomics, Classification, Clustering, Annotation Author: Dvir Aran [aut, cph], Aaron Lun [ctb, cre], Daniel Bunis [ctb], Jared Andrews [ctb], Friederike Dündar [ctb] Maintainer: Aaron Lun URL: https://github.com/SingleR-inc/SingleR SystemRequirements: C++17 VignetteBuilder: knitr BugReports: https://github.com/SingleR-inc/SingleR/issues git_url: https://git.bioconductor.org/packages/SingleR git_branch: RELEASE_3_20 git_last_commit: 0035541 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SingleR_2.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SingleR_2.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SingleR_2.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SingleR_2.8.0.tgz vignettes: vignettes/SingleR/inst/doc/SingleR.html vignetteTitles: Annotating scRNA-seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SingleR/inst/doc/SingleR.R dependsOnMe: OSCA.basic, OSCA.workflows, SingleRBook importsMe: singleCellTK suggestsMe: scDiagnostics, sketchR, tidySingleCellExperiment, tidyseurat dependencyCount: 56 Package: singscore Version: 1.26.0 Depends: R (>= 3.6) Imports: methods, stats, graphics, ggplot2, grDevices, ggrepel, GSEABase, plotly, tidyr, plyr, magrittr, reshape, edgeR, RColorBrewer, Biobase, BiocParallel, SummarizedExperiment, matrixStats, reshape2, S4Vectors Suggests: pkgdown, BiocStyle, hexbin, knitr, rmarkdown, testthat, covr License: GPL-3 MD5sum: 070e0e54e5c7abf22271db64323404f3 NeedsCompilation: no Title: Rank-based single-sample gene set scoring method Description: A simple single-sample gene signature scoring method that uses rank-based statistics to analyze the sample's gene expression profile. It scores the expression activities of gene sets at a single-sample level. biocViews: Software, GeneExpression, GeneSetEnrichment Author: Dharmesh D. Bhuva [aut] (), Ruqian Lyu [aut, ctb], Momeneh Foroutan [aut, ctb] (), Malvika Kharbanda [aut, cre] () Maintainer: Malvika Kharbanda URL: https://davislaboratory.github.io/singscore VignetteBuilder: knitr BugReports: https://github.com/DavisLaboratory/singscore/issues git_url: https://git.bioconductor.org/packages/singscore git_branch: RELEASE_3_20 git_last_commit: f97f63c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/singscore_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/singscore_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/singscore_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/singscore_1.26.0.tgz vignettes: vignettes/singscore/inst/doc/singscore.html vignetteTitles: Single sample scoring hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/singscore/inst/doc/singscore.R importsMe: SingscoreAMLMutations, clustermole, GSEMA suggestsMe: mastR, vissE, msigdb dependencyCount: 129 Package: SiPSiC Version: 1.6.0 Depends: Matrix, SingleCellExperiment Suggests: knitr, rmarkdown, BiocStyle License: file LICENSE MD5sum: 83dae26f17bd94c83b20cf42726a065d NeedsCompilation: no Title: Calculate Pathway Scores for Each Cell in scRNA-Seq Data Description: Infer biological pathway activity of cells from single-cell RNA-sequencing data by calculating a pathway score for each cell (pathway genes are specified by the user). It is recommended to have the data in Transcripts-Per-Million (TPM) or Counts-Per-Million (CPM) units for best results. Scores may change when adding cells to or removing cells off the data. SiPSiC stands for Single Pathway analysis in Single Cells. biocViews: Software, DifferentialExpression, GeneSetEnrichment, BiomedicalInformatics, CellBiology, Transcriptomics, RNASeq, SingleCell, Transcription, Sequencing, ImmunoOncology, DataImport Author: Daniel Davis [aut, cre] (), Yotam Drier [aut] Maintainer: Daniel Davis URL: https://www.genome.org/cgi/doi/10.1101/gr.278431.123 VignetteBuilder: knitr BugReports: https://github.com/DanielDavis12/SiPSiC/issues git_url: https://git.bioconductor.org/packages/SiPSiC git_branch: RELEASE_3_20 git_last_commit: 72032bd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SiPSiC_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SiPSiC_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SiPSiC_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SiPSiC_1.6.0.tgz vignettes: vignettes/SiPSiC/inst/doc/SiPSiC.html vignetteTitles: Infer Biological Pathway Activity from Single-Cell RNA-Seq Data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SiPSiC/inst/doc/SiPSiC.R dependencyCount: 37 Package: sitadela Version: 1.14.0 Depends: R (>= 4.1.0) Imports: Biobase, BiocGenerics, biomaRt, Biostrings, GenomeInfoDb, GenomicFeatures, GenomicRanges, IRanges, methods, parallel, Rsamtools, RSQLite, rtracklayer, S4Vectors, tools, txdbmaker, utils Suggests: BiocStyle, BSgenome, knitr, rmarkdown, RMySQL, RUnit License: Artistic-2.0 MD5sum: 707012bd9511f0c66885f57ee1c177e7 NeedsCompilation: no Title: An R package for the easy provision of simple but complete tab-delimited genomic annotation from a variety of sources and organisms Description: Provides an interface to build a unified database of genomic annotations and their coordinates (gene, transcript and exon levels). It is aimed to be used when simple tab-delimited annotations (or simple GRanges objects) are required instead of the more complex annotation Bioconductor packages. Also useful when combinatorial annotation elements are reuired, such as RefSeq coordinates with Ensembl biotypes. Finally, it can download, construct and handle annotations with versioned genes and transcripts (where available, e.g. RefSeq and latest Ensembl). This is particularly useful in precision medicine applications where the latter must be reported. biocViews: Software, WorkflowStep, RNASeq, Transcription, Sequencing, Transcriptomics, BiomedicalInformatics, FunctionalGenomics, SystemsBiology, AlternativeSplicing, DataImport, ChIPSeq Author: Panagiotis Moulos [aut, cre] Maintainer: Panagiotis Moulos URL: https://github.com/pmoulos/sitadela VignetteBuilder: knitr BugReports: https://github.com/pmoulos/sitadela/issues git_url: https://git.bioconductor.org/packages/sitadela git_branch: RELEASE_3_20 git_last_commit: 5de4c47 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sitadela_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sitadela_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sitadela_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sitadela_1.14.0.tgz vignettes: vignettes/sitadela/inst/doc/sitadela.html vignetteTitles: Building a simple annotation database hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sitadela/inst/doc/sitadela.R dependencyCount: 102 Package: sitePath Version: 1.22.0 Depends: R (>= 4.1) Imports: RColorBrewer, Rcpp, ape, aplot, ggplot2, ggrepel, ggtree, graphics, grDevices, gridExtra, methods, parallel, seqinr, stats, tidytree, utils LinkingTo: Rcpp Suggests: BiocStyle, devtools, knitr, magick, rmarkdown, testthat License: MIT + file LICENSE MD5sum: 63e88d5b3dc83e098747760bb340563a NeedsCompilation: yes Title: Phylogeny-based sequence clustering with site polymorphism Description: Using site polymorphism is one of the ways to cluster DNA/protein sequences but it is possible for the sequences with the same polymorphism on a single site to be genetically distant. This package is aimed at clustering sequences using site polymorphism and their corresponding phylogenetic trees. By considering their location on the tree, only the structurally adjacent sequences will be clustered. However, the adjacent sequences may not necessarily have the same polymorphism. So a branch-and-bound like algorithm is used to minimize the entropy representing the purity of site polymorphism of each cluster. biocViews: Alignment, MultipleSequenceAlignment, Phylogenetics, SNP, Software Author: Chengyang Ji [aut, cre, cph] (), Hangyu Zhou [ths], Aiping Wu [ths] Maintainer: Chengyang Ji URL: https://wuaipinglab.github.io/sitePath/ VignetteBuilder: knitr BugReports: https://github.com/wuaipinglab/sitePath/issues git_url: https://git.bioconductor.org/packages/sitePath git_branch: RELEASE_3_20 git_last_commit: 0223628 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sitePath_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sitePath_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sitePath_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sitePath_1.22.0.tgz vignettes: vignettes/sitePath/inst/doc/sitePath.html vignetteTitles: An introduction to sitePath hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/sitePath/inst/doc/sitePath.R dependencyCount: 68 Package: sizepower Version: 1.76.0 Depends: stats License: LGPL MD5sum: 53bba3b5f22b789f25f51d04692e3f3b NeedsCompilation: no Title: Sample Size and Power Calculation in Micorarray Studies Description: This package has been prepared to assist users in computing either a sample size or power value for a microarray experimental study. The user is referred to the cited references for technical background on the methodology underpinning these calculations. This package provides support for five types of sample size and power calculations. These five types can be adapted in various ways to encompass many of the standard designs encountered in practice. biocViews: Microarray Author: Weiliang Qiu and Mei-Ling Ting Lee and George Alex Whitmore Maintainer: Weiliang Qiu git_url: https://git.bioconductor.org/packages/sizepower git_branch: RELEASE_3_20 git_last_commit: 861b047 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sizepower_1.76.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sizepower_1.76.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sizepower_1.76.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sizepower_1.76.0.tgz vignettes: vignettes/sizepower/inst/doc/sizepower.pdf vignetteTitles: Sample Size and Power Calculation in Microarray Studies Using the \Rpackage{sizepower} package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sizepower/inst/doc/sizepower.R dependencyCount: 1 Package: sketchR Version: 1.2.0 Imports: basilisk, Biobase, DelayedArray, dplyr, ggplot2, methods, reticulate, rlang, scales, stats Suggests: rmarkdown, knitr, testthat (>= 3.0.0), TENxPBMCData, scuttle, scran, scater, SingleR, celldex, cowplot, SummarizedExperiment, beachmat.hdf5, BiocStyle, BiocManager, SingleCellExperiment License: MIT + file LICENSE Archs: x64 MD5sum: 8e0ff413b98f71050948bdaf582b5d8e NeedsCompilation: no Title: An R interface for python subsampling/sketching algorithms Description: Provides an R interface for various subsampling algorithms implemented in python packages. Currently, interfaces to the geosketch and scSampler python packages are implemented. In addition it also provides diagnostic plots to evaluate the subsampling. biocViews: SingleCell Author: Charlotte Soneson [aut, cre] (), Michael Stadler [aut] (), Friedrich Miescher Institute for Biomedical Research [cph] Maintainer: Charlotte Soneson URL: https://github.com/fmicompbio/sketchR VignetteBuilder: knitr BugReports: https://github.com/fmicompbio/sketchR/issues git_url: https://git.bioconductor.org/packages/sketchR git_branch: RELEASE_3_20 git_last_commit: fffb755 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sketchR_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sketchR_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sketchR_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sketchR_1.2.0.tgz vignettes: vignettes/sketchR/inst/doc/sketchR.html vignetteTitles: sketchR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/sketchR/inst/doc/sketchR.R dependencyCount: 66 Package: skewr Version: 1.38.0 Depends: R (>= 3.1.1), methylumi, wateRmelon, mixsmsn, IlluminaHumanMethylation450kmanifest Imports: minfi, S4Vectors (>= 0.19.1), RColorBrewer Suggests: GEOquery, knitr, minfiData License: GPL-2 MD5sum: c360cf904dbc931e77d6ce9159ad01fc NeedsCompilation: no Title: Visualize Intensities Produced by Illumina's Human Methylation 450k BeadChip Description: The skewr package is a tool for visualizing the output of the Illumina Human Methylation 450k BeadChip to aid in quality control. It creates a panel of nine plots. Six of the plots represent the density of either the methylated intensity or the unmethylated intensity given by one of three subsets of the 485,577 total probes. These subsets include Type I-red, Type I-green, and Type II.The remaining three distributions give the density of the Beta-values for these same three subsets. Each of the nine plots optionally displays the distributions of the "rs" SNP probes and the probes associated with imprinted genes as series of 'tick' marks located above the x-axis. biocViews: DNAMethylation, TwoChannel, Preprocessing, QualityControl Author: Ryan Putney [cre, aut], Steven Eschrich [aut], Anders Berglund [aut] Maintainer: Ryan Putney VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/skewr git_branch: RELEASE_3_20 git_last_commit: 1f79243 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/skewr_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/skewr_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/skewr_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/skewr_1.38.0.tgz vignettes: vignettes/skewr/inst/doc/skewr.pdf vignetteTitles: An Introduction to the skewr Package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/skewr/inst/doc/skewr.R dependencyCount: 176 Package: slalom Version: 1.28.0 Depends: R (>= 4.0) Imports: Rcpp (>= 0.12.8), RcppArmadillo, BH, ggplot2, grid, GSEABase, methods, rsvd, SingleCellExperiment, SummarizedExperiment, stats LinkingTo: Rcpp, RcppArmadillo, BH Suggests: BiocStyle, knitr, rhdf5, rmarkdown, scater, testthat License: GPL-2 MD5sum: e9156957107ed916936ebd9c062336f4 NeedsCompilation: yes Title: Factorial Latent Variable Modeling of Single-Cell RNA-Seq Data Description: slalom is a scalable modelling framework for single-cell RNA-seq data that uses gene set annotations to dissect single-cell transcriptome heterogeneity, thereby allowing to identify biological drivers of cell-to-cell variability and model confounding factors. The method uses Bayesian factor analysis with a latent variable model to identify active pathways (selected by the user, e.g. KEGG pathways) that explain variation in a single-cell RNA-seq dataset. This an R/C++ implementation of the f-scLVM Python package. See the publication describing the method at https://doi.org/10.1186/s13059-017-1334-8. biocViews: ImmunoOncology, SingleCell, RNASeq, Normalization, Visualization, DimensionReduction, Transcriptomics, GeneExpression, Sequencing, Software, Reactome, KEGG Author: Florian Buettner [aut], Naruemon Pratanwanich [aut], Davis McCarthy [aut, cre], John Marioni [aut], Oliver Stegle [aut] Maintainer: Davis McCarthy VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/slalom git_branch: RELEASE_3_20 git_last_commit: b1da2b5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/slalom_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/slalom_1.28.0.zip vignettes: vignettes/slalom/inst/doc/vignette.html vignetteTitles: Introduction to slalom hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/slalom/inst/doc/vignette.R dependencyCount: 86 Package: slingshot Version: 2.14.0 Depends: R (>= 4.0), princurve (>= 2.0.4), stats, TrajectoryUtils Imports: graphics, grDevices, igraph, matrixStats, methods, S4Vectors, SingleCellExperiment, SummarizedExperiment Suggests: BiocGenerics, BiocStyle, clusterExperiment, DelayedMatrixStats, knitr, mclust, mgcv, RColorBrewer, rgl, rmarkdown, testthat, uwot, covr License: Artistic-2.0 MD5sum: 127a8d3a7c6cb6521059f882b12a9c8e NeedsCompilation: no Title: Tools for ordering single-cell sequencing Description: Provides functions for inferring continuous, branching lineage structures in low-dimensional data. Slingshot was designed to model developmental trajectories in single-cell RNA sequencing data and serve as a component in an analysis pipeline after dimensionality reduction and clustering. It is flexible enough to handle arbitrarily many branching events and allows for the incorporation of prior knowledge through supervised graph construction. biocViews: Clustering, DifferentialExpression, GeneExpression, RNASeq, Sequencing, Software, Sequencing, SingleCell, Transcriptomics, Visualization Author: Kelly Street [aut, cre, cph], Davide Risso [aut], Diya Das [aut], Sandrine Dudoit [ths], Koen Van den Berge [ctb], Robrecht Cannoodt [ctb] (, rcannood) Maintainer: Kelly Street VignetteBuilder: knitr BugReports: https://github.com/kstreet13/slingshot/issues git_url: https://git.bioconductor.org/packages/slingshot git_branch: RELEASE_3_20 git_last_commit: a10430b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/slingshot_2.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/slingshot_2.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/slingshot_2.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/slingshot_2.14.0.tgz vignettes: vignettes/slingshot/inst/doc/conditionsVignette.html, vignettes/slingshot/inst/doc/vignette.html vignetteTitles: Differential Topology: Comparing Conditions along a Trajectory, Slingshot: Trajectory Inference for Single-Cell Data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/slingshot/inst/doc/conditionsVignette.R, vignettes/slingshot/inst/doc/vignette.R importsMe: condiments, scRNAseqApp, tradeSeq suggestsMe: Platypus, RaceID dependencyCount: 49 Package: SLqPCR Version: 1.72.0 Depends: R(>= 2.4.0) Imports: stats Suggests: RColorBrewer License: GPL (>= 2) Archs: x64 MD5sum: 7bf08a56b19db7f31c3c36e65a760b98 NeedsCompilation: no Title: Functions for analysis of real-time quantitative PCR data at SIRS-Lab GmbH Description: Functions for analysis of real-time quantitative PCR data at SIRS-Lab GmbH biocViews: MicrotitrePlateAssay, qPCR Author: Matthias Kohl Maintainer: Matthias Kohl git_url: https://git.bioconductor.org/packages/SLqPCR git_branch: RELEASE_3_20 git_last_commit: 934e4c3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SLqPCR_1.72.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SLqPCR_1.72.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SLqPCR_1.72.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SLqPCR_1.72.0.tgz vignettes: vignettes/SLqPCR/inst/doc/SLqPCR.pdf vignetteTitles: SLqPCR hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SLqPCR/inst/doc/SLqPCR.R dependencyCount: 1 Package: SMAD Version: 1.22.0 Depends: R (>= 3.6.0), RcppAlgos Imports: magrittr (>= 1.5), dplyr, stats, tidyr, utils, Rcpp (>= 1.0.0) LinkingTo: Rcpp Suggests: knitr, rmarkdown, testthat, BiocStyle License: MIT + file LICENSE MD5sum: aadca1bedea5db4730f49638cbc0bdd0 NeedsCompilation: yes Title: Statistical Modelling of AP-MS Data (SMAD) Description: Assigning probability scores to protein interactions captured in affinity purification mass spectrometry (AP-MS) expriments to infer protein-protein interactions. The output would facilitate non-specific background removal as contaminants are commonly found in AP-MS data. biocViews: MassSpectrometry, Proteomics, Software Author: Qingzhou Zhang [aut, cre] Maintainer: Qingzhou Zhang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SMAD git_branch: RELEASE_3_20 git_last_commit: 1378d76 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SMAD_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SMAD_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SMAD_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SMAD_1.22.0.tgz vignettes: vignettes/SMAD/inst/doc/quickstart.html vignetteTitles: SMAD Quick Start hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SMAD/inst/doc/quickstart.R dependencyCount: 30 Package: smartid Version: 1.2.0 Depends: R (>= 4.4) Imports: dplyr, ggplot2, graphics, Matrix, mclust, methods, mixtools, sparseMatrixStats, stats, SummarizedExperiment, tidyr, utils Suggests: BiocStyle, dbscan, ggpubr, knitr, rmarkdown, scater, splatter, testthat (>= 3.0.0), tidytext, UpSetR License: MIT + file LICENSE MD5sum: e34221de22ae4cbc80203960aaaaf335 NeedsCompilation: no Title: Scoring and Marker Selection Method Based on Modified TF-IDF Description: This package enables automated selection of group specific signature, especially for rare population. The package is developed for generating specifc lists of signature genes based on Term Frequency-Inverse Document Frequency (TF-IDF) modified methods. It can also be used as a new gene-set scoring method or data transformation method. Multiple visualization functions are implemented in this package. biocViews: Software, GeneExpression, Transcriptomics Author: Jinjin Chen [aut, cre] () Maintainer: Jinjin Chen URL: https://davislaboratory.github.io/smartid VignetteBuilder: knitr BugReports: https://github.com/DavisLaboratory/smartid/issues git_url: https://git.bioconductor.org/packages/smartid git_branch: RELEASE_3_20 git_last_commit: 7b06ff8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/smartid_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/smartid_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/smartid_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/smartid_1.2.0.tgz vignettes: vignettes/smartid/inst/doc/smartid_Demo.html vignetteTitles: smartid: Scoring and MARker selection method based on modified Tf-IDf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/smartid/inst/doc/smartid_Demo.R dependencyCount: 103 Package: SMITE Version: 1.34.0 Depends: R (>= 3.5), GenomicRanges Imports: scales, plyr, Hmisc, AnnotationDbi, org.Hs.eg.db, ggplot2, reactome.db, KEGGREST, BioNet, goseq, methods, IRanges, igraph, Biobase,tools, S4Vectors, geneLenDataBase, grDevices, graphics, stats, utils Suggests: knitr, rmarkdown License: GPL (>=2) MD5sum: 31df3cd19d2ba3d0a2453ab18a80b51c NeedsCompilation: no Title: Significance-based Modules Integrating the Transcriptome and Epigenome Description: This package builds on the Epimods framework which facilitates finding weighted subnetworks ("modules") on Illumina Infinium 27k arrays using the SpinGlass algorithm, as implemented in the iGraph package. We have created a class of gene centric annotations associated with p-values and effect sizes and scores from any researchers prior statistical results to find functional modules. biocViews: ImmunoOncology, DifferentialMethylation, DifferentialExpression, SystemsBiology, NetworkEnrichment,GenomeAnnotation,Network, Sequencing, RNASeq, Coverage Author: Neil Ari Wijetunga, Andrew Damon Johnston, John Murray Greally Maintainer: Neil Ari Wijetunga , Andrew Damon Johnston URL: https://github.com/GreallyLab/SMITE VignetteBuilder: knitr BugReports: https://github.com/GreallyLab/SMITE/issues git_url: https://git.bioconductor.org/packages/SMITE git_branch: RELEASE_3_20 git_last_commit: 47b8eb7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SMITE_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SMITE_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SMITE_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SMITE_1.34.0.tgz vignettes: vignettes/SMITE/inst/doc/SMITE.pdf vignetteTitles: SMITE Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SMITE/inst/doc/SMITE.R dependencyCount: 155 Package: smoothclust Version: 1.2.0 Depends: R (>= 4.4.0) Imports: SpatialExperiment, SummarizedExperiment, sparseMatrixStats, spdep, methods, utils Suggests: BiocStyle, knitr, STexampleData, scuttle, scran, scater, ggspavis, testthat License: MIT + file LICENSE Archs: x64 MD5sum: 0f0e9229aea3dfa58353ce1ac4c0e662 NeedsCompilation: no Title: smoothclust Description: Method for segmentation of spatial domains and spatially-aware clustering in spatial transcriptomics data. The method generates spatial domains with smooth boundaries by smoothing gene expression profiles across neighboring spatial locations, followed by unsupervised clustering. Spatial domains consisting of consistent mixtures of cell types may then be further investigated by applying cell type compositional analyses or differential analyses. biocViews: Spatial, SingleCell, Transcriptomics, GeneExpression, Clustering Author: Lukas M. Weber [aut, cre] () Maintainer: Lukas M. Weber URL: https://github.com/lmweber/smoothclust VignetteBuilder: knitr BugReports: https://github.com/lmweber/smoothclust/issues git_url: https://git.bioconductor.org/packages/smoothclust git_branch: RELEASE_3_20 git_last_commit: 3b38da4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/smoothclust_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/smoothclust_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/smoothclust_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/smoothclust_1.2.0.tgz vignettes: vignettes/smoothclust/inst/doc/smoothclust.html vignetteTitles: Smoothclust Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/smoothclust/inst/doc/smoothclust.R dependencyCount: 89 Package: SNAGEE Version: 1.46.0 Depends: R (>= 2.6.0), SNAGEEdata Suggests: ALL, hgu95av2.db Enhances: parallel License: Artistic-2.0 MD5sum: ca322a39ca0a32a55a45b53bfda91db9 NeedsCompilation: no Title: Signal-to-Noise applied to Gene Expression Experiments Description: Signal-to-Noise applied to Gene Expression Experiments. Signal-to-noise ratios can be used as a proxy for quality of gene expression studies and samples. The SNRs can be calculated on any gene expression data set as long as gene IDs are available, no access to the raw data files is necessary. This allows to flag problematic studies and samples in any public data set. biocViews: Microarray, OneChannel, TwoChannel, QualityControl Author: David Venet Maintainer: David Venet URL: http://bioconductor.org/ git_url: https://git.bioconductor.org/packages/SNAGEE git_branch: RELEASE_3_20 git_last_commit: dc2d7b4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SNAGEE_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SNAGEE_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SNAGEE_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SNAGEE_1.46.0.tgz vignettes: vignettes/SNAGEE/inst/doc/SNAGEE.pdf vignetteTitles: SNAGEE Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SNAGEE/inst/doc/SNAGEE.R suggestsMe: SNAGEEdata dependencyCount: 1 Package: snapcount Version: 1.18.0 Depends: R (>= 4.0.0) Imports: R6, httr, rlang, purrr, jsonlite, assertthat, data.table, Matrix, magrittr, methods, stringr, stats, IRanges, GenomicRanges, SummarizedExperiment Suggests: BiocManager, bit64, covr, knitcitations, knitr (>= 1.6), devtools, BiocStyle (>= 2.5.19), rmarkdown (>= 0.9.5), testthat (>= 2.1.0) License: MIT + file LICENSE MD5sum: b03544b9f4295e499bc16b54f5b607d9 NeedsCompilation: no Title: R/Bioconductor Package for interfacing with Snaptron for rapid querying of expression counts Description: snapcount is a client interface to the Snaptron webservices which support querying by gene name or genomic region. Results include raw expression counts derived from alignment of RNA-seq samples and/or various summarized measures of expression across one or more regions/genes per-sample (e.g. percent spliced in). biocViews: Coverage, GeneExpression, RNASeq, Sequencing, Software, DataImport Author: Rone Charles [aut, cre] Maintainer: Rone Charles URL: https://github.com/langmead-lab/snapcount VignetteBuilder: knitr BugReports: https://github.com/langmead-lab/snapcount/issues git_url: https://git.bioconductor.org/packages/snapcount git_branch: RELEASE_3_20 git_last_commit: a32cce4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/snapcount_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/snapcount_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/snapcount_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/snapcount_1.18.0.tgz vignettes: vignettes/snapcount/inst/doc/snapcount_vignette.html vignetteTitles: snapcount quick start guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/snapcount/inst/doc/snapcount_vignette.R dependencyCount: 47 Package: snifter Version: 1.16.0 Depends: R (>= 4.0.0) Imports: basilisk, reticulate, irlba, stats, assertthat Suggests: knitr, rmarkdown, BiocStyle, ggplot2, testthat (>= 3.0.0) License: GPL-3 Archs: x64 MD5sum: caef9a718d8c2b83f5ded7a99d64f4cf NeedsCompilation: no Title: R wrapper for the python openTSNE library Description: Provides an R wrapper for the implementation of FI-tSNE from the python package openTNSE. See Poličar et al. (2019) and the algorithm described by Linderman et al. (2018) . biocViews: DimensionReduction, Visualization, Software, SingleCell, Sequencing Author: Alan O'Callaghan [aut, cre], Aaron Lun [aut] Maintainer: Alan O'Callaghan URL: https://bioconductor.org/packages/snifter VignetteBuilder: knitr BugReports: https://github.com/Alanocallaghan/snifter/issues git_url: https://git.bioconductor.org/packages/snifter git_branch: RELEASE_3_20 git_last_commit: e1339c7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/snifter_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/snifter_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/snifter_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/snifter_1.16.0.tgz vignettes: vignettes/snifter/inst/doc/snifter.html vignetteTitles: Introduction to snifter hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/snifter/inst/doc/snifter.R suggestsMe: scater dependencyCount: 26 Package: snm Version: 1.54.0 Depends: R (>= 2.12.0) Imports: corpcor, lme4 (>= 1.0), splines License: LGPL MD5sum: fabb2d7c590c489183587ead5e6da8b1 NeedsCompilation: no Title: Supervised Normalization of Microarrays Description: SNM is a modeling strategy especially designed for normalizing high-throughput genomic data. The underlying premise of our approach is that your data is a function of what we refer to as study-specific variables. These variables are either biological variables that represent the target of the statistical analysis, or adjustment variables that represent factors arising from the experimental or biological setting the data is drawn from. The SNM approach aims to simultaneously model all study-specific variables in order to more accurately characterize the biological or clinical variables of interest. biocViews: Microarray, OneChannel, TwoChannel, MultiChannel, DifferentialExpression, ExonArray, GeneExpression, Transcription, MultipleComparison, Preprocessing, QualityControl Author: Brig Mecham and John D. Storey Maintainer: John D. Storey git_url: https://git.bioconductor.org/packages/snm git_branch: RELEASE_3_20 git_last_commit: 8920328 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/snm_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/snm_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/snm_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/snm_1.54.0.tgz vignettes: vignettes/snm/inst/doc/snm.pdf vignetteTitles: snm Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/snm/inst/doc/snm.R importsMe: ExpressionNormalizationWorkflow dependencyCount: 19 Package: SNPediaR Version: 1.32.0 Depends: R (>= 3.0.0) Imports: RCurl, jsonlite Suggests: BiocStyle, knitr, rmarkdown, testthat License: GPL-2 MD5sum: 158429720541b2c5e73d891b2393d308 NeedsCompilation: no Title: Query data from SNPedia Description: SNPediaR provides some tools for downloading and parsing data from the SNPedia web site . The implemented functions allow users to import the wiki text available in SNPedia pages and to extract the most relevant information out of them. If some information in the downloaded pages is not automatically processed by the library functions, users can easily implement their own parsers to access it in an efficient way. biocViews: SNP, VariantAnnotation Author: David Montaner [aut, cre] Maintainer: David Montaner URL: https://github.com/genometra/SNPediaR VignetteBuilder: knitr BugReports: https://github.com/genometra/SNPediaR/issues git_url: https://git.bioconductor.org/packages/SNPediaR git_branch: RELEASE_3_20 git_last_commit: 2e94f8a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SNPediaR_1.32.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SNPediaR_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SNPediaR_1.32.0.tgz vignettes: vignettes/SNPediaR/inst/doc/SNPediaR.html vignetteTitles: SNPediaR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SNPediaR/inst/doc/SNPediaR.R dependencyCount: 4 Package: SNPhood Version: 1.36.0 Depends: R (>= 3.5.0), GenomicRanges, Rsamtools, data.table, checkmate Imports: DESeq2, cluster, ggplot2, lattice, GenomeInfoDb (>= 1.34.8), BiocParallel, VariantAnnotation, BiocGenerics, IRanges, methods, SummarizedExperiment, RColorBrewer, Biostrings, grDevices, gridExtra, stats, grid, utils, reshape2, scales, S4Vectors Suggests: BiocStyle, knitr, pryr, rmarkdown, SNPhoodData, corrplot License: LGPL (>= 3) MD5sum: 220cd6947cc7137ce0e436cf3b042232 NeedsCompilation: no Title: SNPhood: Investigate, quantify and visualise the epigenomic neighbourhood of SNPs using NGS data Description: To date, thousands of single nucleotide polymorphisms (SNPs) have been found to be associated with complex traits and diseases. However, the vast majority of these disease-associated SNPs lie in the non-coding part of the genome, and are likely to affect regulatory elements, such as enhancers and promoters, rather than function of a protein. Thus, to understand the molecular mechanisms underlying genetic traits and diseases, it becomes increasingly important to study the effect of a SNP on nearby molecular traits such as chromatin environment or transcription factor (TF) binding. Towards this aim, we developed SNPhood, a user-friendly *Bioconductor* R package to investigate and visualize the local neighborhood of a set of SNPs of interest for NGS data such as chromatin marks or transcription factor binding sites from ChIP-Seq or RNA- Seq experiments. SNPhood comprises a set of easy-to-use functions to extract, normalize and summarize reads for a genomic region, perform various data quality checks, normalize read counts using additional input files, and to cluster and visualize the regions according to the binding pattern. The regions around each SNP can be binned in a user-defined fashion to allow for analysis of very broad patterns as well as a detailed investigation of specific binding shapes. Furthermore, SNPhood supports the integration with genotype information to investigate and visualize genotype-specific binding patterns. Finally, SNPhood can be employed for determining, investigating, and visualizing allele-specific binding patterns around the SNPs of interest. biocViews: Software Author: Christian Arnold [aut, cre], Pooja Bhat [aut], Judith Zaugg [aut] Maintainer: Christian Arnold URL: https://bioconductor.org/packages/SNPhood VignetteBuilder: knitr BugReports: mailto: git_url: https://git.bioconductor.org/packages/SNPhood git_branch: RELEASE_3_20 git_last_commit: 4e570b5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SNPhood_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SNPhood_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SNPhood_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SNPhood_1.36.0.tgz vignettes: vignettes/SNPhood/inst/doc/IntroductionToSNPhood.html, vignettes/SNPhood/inst/doc/workflow.html vignetteTitles: Introduction and Methodological Details, Workflow example hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SNPhood/inst/doc/IntroductionToSNPhood.R, vignettes/SNPhood/inst/doc/workflow.R dependencyCount: 112 Package: SNPRelate Version: 1.40.0 Depends: R (>= 2.15), gdsfmt (>= 1.8.3) Imports: methods LinkingTo: gdsfmt Suggests: parallel, Matrix, RUnit, knitr, markdown, rmarkdown, MASS, BiocGenerics Enhances: SeqArray (>= 1.12.0) License: GPL-3 MD5sum: 977eb0e7932e79f2569cd69aefa52784 NeedsCompilation: yes Title: Parallel Computing Toolset for Relatedness and Principal Component Analysis of SNP Data Description: Genome-wide association studies (GWAS) are widely used to investigate the genetic basis of diseases and traits, but they pose many computational challenges. We developed an R package SNPRelate to provide a binary format for single-nucleotide polymorphism (SNP) data in GWAS utilizing CoreArray Genomic Data Structure (GDS) data files. The GDS format offers the efficient operations specifically designed for integers with two bits, since a SNP could occupy only two bits. SNPRelate is also designed to accelerate two key computations on SNP data using parallel computing for multi-core symmetric multiprocessing computer architectures: Principal Component Analysis (PCA) and relatedness analysis using Identity-By-Descent measures. The SNP GDS format is also used by the GWASTools package with the support of S4 classes and generic functions. The extended GDS format is implemented in the SeqArray package to support the storage of single nucleotide variations (SNVs), insertion/deletion polymorphism (indel) and structural variation calls in whole-genome and whole-exome variant data. biocViews: Infrastructure, Genetics, StatisticalMethod, PrincipalComponent Author: Xiuwen Zheng [aut, cre, cph] (), Stephanie Gogarten [ctb], Cathy Laurie [ctb], Bruce Weir [ctb, ths] () Maintainer: Xiuwen Zheng URL: https://github.com/zhengxwen/SNPRelate VignetteBuilder: knitr BugReports: https://github.com/zhengxwen/SNPRelate/issues git_url: https://git.bioconductor.org/packages/SNPRelate git_branch: RELEASE_3_20 git_last_commit: 80684f3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SNPRelate_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SNPRelate_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SNPRelate_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SNPRelate_1.40.0.tgz vignettes: vignettes/SNPRelate/inst/doc/SNPRelate.html vignetteTitles: SNPRelate Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SNPRelate/inst/doc/SNPRelate.R dependsOnMe: RAIDS, SeqSQC importsMe: CNVRanger, GDSArray, GENESIS, gwasurvivr, VariantExperiment, EthSEQ, gwid, simplePHENOTYPES, snplinkage suggestsMe: GWASTools, HIBAG, SAIGEgds, SeqArray dependencyCount: 2 Package: snpStats Version: 1.56.0 Depends: R(>= 2.10.0), survival, Matrix, methods Imports: graphics, grDevices, stats, utils, BiocGenerics, zlibbioc Suggests: hexbin License: GPL-3 MD5sum: b473e5e0c8c7fa0ebc3353eb23acede3 NeedsCompilation: yes Title: SnpMatrix and XSnpMatrix classes and methods Description: Classes and statistical methods for large SNP association studies. This extends the earlier snpMatrix package, allowing for uncertainty in genotypes. biocViews: Microarray, SNP, GeneticVariability Author: David Clayton Maintainer: David Clayton git_url: https://git.bioconductor.org/packages/snpStats git_branch: RELEASE_3_20 git_last_commit: 92d244d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/snpStats_1.56.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/snpStats_1.56.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/snpStats_1.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/snpStats_1.56.0.tgz vignettes: vignettes/snpStats/inst/doc/data-input-vignette.pdf, vignettes/snpStats/inst/doc/differences.pdf, vignettes/snpStats/inst/doc/Fst-vignette.pdf, vignettes/snpStats/inst/doc/imputation-vignette.pdf, vignettes/snpStats/inst/doc/ld-vignette.pdf, vignettes/snpStats/inst/doc/pca-vignette.pdf, vignettes/snpStats/inst/doc/snpStats-vignette.pdf, vignettes/snpStats/inst/doc/tdt-vignette.pdf vignetteTitles: Data input, snpMatrix-differences, Fst, Imputation and meta-analysis, LD statistics, Principal components analysis, snpStats introduction, TDT tests hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/snpStats/inst/doc/data-input-vignette.R, vignettes/snpStats/inst/doc/Fst-vignette.R, vignettes/snpStats/inst/doc/imputation-vignette.R, vignettes/snpStats/inst/doc/ld-vignette.R, vignettes/snpStats/inst/doc/pca-vignette.R, vignettes/snpStats/inst/doc/snpStats-vignette.R, vignettes/snpStats/inst/doc/tdt-vignette.R dependsOnMe: MAGAR importsMe: cardelino, DExMA, GeneGeneInteR, gwascat, martini, RVS, scoreInvHap, GenomicTools.fileHandler, gpcp, GWASbyCluster, PhenotypeSimulator, TriadSim suggestsMe: crlmm, GenomicFiles, GWASTools, ldblock, omicRexposome, omicsPrint, VariantAnnotation, adjclust, dartR, dartR.base, dartR.popgen, genio, pegas, statgenGWAS dependencyCount: 12 Package: soGGi Version: 1.38.0 Depends: R (>= 3.5.0), BiocGenerics, SummarizedExperiment Imports: methods, reshape2, ggplot2, S4Vectors, IRanges, GenomeInfoDb, GenomicRanges, Biostrings, Rsamtools, GenomicAlignments, rtracklayer, preprocessCore, chipseq, BiocParallel Suggests: testthat, BiocStyle, knitr License: GPL (>= 3) MD5sum: 8400cc6bca42772adb6050fd6fd9b3bf NeedsCompilation: no Title: Visualise ChIP-seq, MNase-seq and motif occurrence as aggregate plots Summarised Over Grouped Genomic Intervals Description: The soGGi package provides a toolset to create genomic interval aggregate/summary plots of signal or motif occurence from BAM and bigWig files as well as PWM, rlelist, GRanges and GAlignments Bioconductor objects. soGGi allows for normalisation, transformation and arithmetic operation on and between summary plot objects as well as grouping and subsetting of plots by GRanges objects and user supplied metadata. Plots are created using the GGplot2 libary to allow user defined manipulation of the returned plot object. Coupled together, soGGi features a broad set of methods to visualise genomics data in the context of groups of genomic intervals such as genes, superenhancers and transcription factor binding events. biocViews: Sequencing, ChIPSeq, Coverage Author: Gopuraja Dharmalingam, Doug Barrows, Tom Carroll Maintainer: Tom Carroll VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/soGGi git_branch: RELEASE_3_20 git_last_commit: becbe5d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/soGGi_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/soGGi_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/soGGi_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/soGGi_1.38.0.tgz vignettes: vignettes/soGGi/inst/doc/soggi.pdf vignetteTitles: soggi hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/soGGi/inst/doc/soggi.R importsMe: profileplyr dependencyCount: 100 Package: SomaticSignatures Version: 2.42.0 Depends: R (>= 3.5.0), VariantAnnotation, GenomicRanges, NMF Imports: S4Vectors, IRanges, GenomeInfoDb, Biostrings, ggplot2, ggbio, reshape2, NMF, pcaMethods, Biobase, methods, proxy Suggests: testthat, knitr, parallel, BSgenome.Hsapiens.1000genomes.hs37d5, SomaticCancerAlterations, ggdendro, fastICA, sva License: MIT + file LICENSE MD5sum: 6ab3beb240433201b14846ada95b12f0 NeedsCompilation: no Title: Somatic Signatures Description: The SomaticSignatures package identifies mutational signatures of single nucleotide variants (SNVs). It provides a infrastructure related to the methodology described in Nik-Zainal (2012, Cell), with flexibility in the matrix decomposition algorithms. biocViews: Sequencing, SomaticMutation, Visualization, Clustering, GenomicVariation, StatisticalMethod Author: Julian Gehring Maintainer: Julian Gehring URL: https://github.com/juliangehring/SomaticSignatures VignetteBuilder: knitr BugReports: https://support.bioconductor.org git_url: https://git.bioconductor.org/packages/SomaticSignatures git_branch: RELEASE_3_20 git_last_commit: b9e158c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SomaticSignatures_2.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SomaticSignatures_2.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SomaticSignatures_2.42.0.tgz vignettes: vignettes/SomaticSignatures/inst/doc/SomaticSignatures-vignette.html vignetteTitles: SomaticSignatures hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SomaticSignatures/inst/doc/SomaticSignatures-vignette.R importsMe: YAPSA dependencyCount: 172 Package: SOMNiBUS Version: 1.14.2 Depends: R (>= 4.1.0) Imports: Matrix, mgcv, stats, VGAM, IRanges, GenomeInfoDb, GenomicRanges, rtracklayer, S4Vectors, BiocManager, annotatr, yaml, utils, bsseq, reshape2, data.table, ggplot2, tidyr, Suggests: BiocStyle, covr, devtools, dplyr, knitr, magick, rmarkdown, testthat, TxDb.Hsapiens.UCSC.hg38.knownGene, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, License: MIT + file LICENSE MD5sum: c30169a576375d1a7775854e3a76bfd9 NeedsCompilation: no Title: Smooth modeling of bisulfite sequencing Description: This package aims to analyse count-based methylation data on predefined genomic regions, such as those obtained by targeted sequencing, and thus to identify differentially methylated regions (DMRs) that are associated with phenotypes or traits. The method is built a rich flexible model that allows for the effects, on the methylation levels, of multiple covariates to vary smoothly along genomic regions. At the same time, this method also allows for sequencing errors and can adjust for variability in cell type mixture. biocViews: DNAMethylation, Regression, Epigenetics, DifferentialMethylation, Sequencing, FunctionalPrediction Author: Kaiqiong Zhao [aut], Kathleen Klein [cre], Audrey Lemaçon [ctb, ctr], Simon Laurin-Lemay [ctb, ctr], My Intelligent Machines Inc. [ctr], Celia Greenwood [ths, aut] Maintainer: Kathleen Klein URL: https://github.com/kaiqiong/SOMNiBUS VignetteBuilder: knitr BugReports: https://github.com/kaiqiong/SOMNiBUS/issues git_url: https://git.bioconductor.org/packages/SOMNiBUS git_branch: RELEASE_3_20 git_last_commit: 00bc0e3 git_last_commit_date: 2024-12-16 Date/Publication: 2024-12-19 source.ver: src/contrib/SOMNiBUS_1.14.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/SOMNiBUS_1.14.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SOMNiBUS_1.14.2.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SOMNiBUS_1.14.2.tgz vignettes: vignettes/SOMNiBUS/inst/doc/SOMNiBUS.html vignetteTitles: Analyzing Targeted Bisulfite Sequencing data with SOMNiBUS hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SOMNiBUS/inst/doc/SOMNiBUS.R dependencyCount: 143 Package: SpaceMarkers Version: 1.2.1 Depends: R (>= 4.4.0) Imports: matrixStats, matrixTests, rstatix, spatstat.explore, spatstat.geom, ape, hdf5r, jsonlite, Matrix, qvalue, stats, utils, methods Suggests: data.table, devtools, dplyr, ggplot2, hrbrthemes, knitr, RColorBrewer, cowplot, readbitmap, rjson, rmarkdown, BiocStyle, testthat (>= 3.0.0), viridis, CoGAPS Enhances: BiocParallel License: MIT + file LICENSE MD5sum: 8545c5e1ff4727fd96fa0b1f268d1174 NeedsCompilation: no Title: Spatial Interaction Markers Description: Spatial transcriptomic technologies have helped to resolve the connection between gene expression and the 2D orientation of tissues relative to each other. However, the limited single-cell resolution makes it difficult to highlight the most important molecular interactions in these tissues. SpaceMarkers, R/Bioconductor software, can help to find molecular interactions, by identifying genes associated with latent space interactions in spatial transcriptomics. biocViews: SingleCell, GeneExpression, Software, Spatial, Transcriptomics Author: Atul Deshpande [aut, cre] (), Ludmila Danilova [ctb], Dmitrijs Lvovs [ctb] () Maintainer: Atul Deshpande URL: https://github.com/DeshpandeLab/SpaceMarkers VignetteBuilder: knitr BugReports: https://github.com/DeshpandeLab/SpaceMarkers/issues git_url: https://git.bioconductor.org/packages/SpaceMarkers git_branch: RELEASE_3_20 git_last_commit: 46305b2 git_last_commit_date: 2024-10-31 Date/Publication: 2024-11-01 source.ver: src/contrib/SpaceMarkers_1.2.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/SpaceMarkers_1.2.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpaceMarkers_1.2.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpaceMarkers_1.2.1.tgz vignettes: vignettes/SpaceMarkers/inst/doc/SpaceMarkers_vignette.html vignetteTitles: Inferring Immune Interactions in Breast Cancer hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SpaceMarkers/inst/doc/SpaceMarkers_vignette.R dependencyCount: 93 Package: Spaniel Version: 1.20.0 Depends: R (>= 4.0) Imports: Seurat, SingleCellExperiment, SummarizedExperiment, dplyr, methods, ggplot2, scater (>= 1.13), scran, igraph, shiny, jpeg, magrittr, utils, S4Vectors, DropletUtils, jsonlite, png Suggests: knitr, rmarkdown, testthat, devtools License: MIT + file LICENSE Archs: x64 MD5sum: daa499182a0877097e8db020ebeb0ec9 NeedsCompilation: no Title: Spatial Transcriptomics Analysis Description: Spaniel includes a series of tools to aid the quality control and analysis of Spatial Transcriptomics data. Spaniel can import data from either the original Spatial Transcriptomics system or 10X Visium technology. The package contains functions to create a SingleCellExperiment Seurat object and provides a method of loading a histologial image into R. The spanielPlot function allows visualisation of metrics contained within the S4 object overlaid onto the image of the tissue. biocViews: SingleCell, RNASeq, QualityControl, Preprocessing, Normalization, Visualization, Transcriptomics, GeneExpression, Sequencing, Software, DataImport, DataRepresentation, Infrastructure, Coverage, Clustering Author: Rachel Queen [aut, cre] Maintainer: Rachel Queen VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Spaniel git_branch: RELEASE_3_20 git_last_commit: 74635a7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Spaniel_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Spaniel_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Spaniel_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Spaniel_1.20.0.tgz vignettes: vignettes/Spaniel/inst/doc/spaniel-vignette-tenX-import.html vignetteTitles: Spaniel 10X Visium hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Spaniel/inst/doc/spaniel-vignette-tenX-import.R dependencyCount: 215 Package: SpaNorm Version: 1.0.0 Depends: R (>= 4.4) Imports: edgeR, ggplot2, Matrix, matrixStats, methods, rlang, scran, SeuratObject, SingleCellExperiment, SpatialExperiment, stats, SummarizedExperiment, S4Vectors, utils Suggests: testthat (>= 3.0.0), knitr, rmarkdown, prettydoc, pkgdown, covr, BiocStyle, Seurat, patchwork, ggforce, ggnewscale License: GPL (>= 3) Archs: x64 MD5sum: ddd91b1dfca25d18d77e1a375babaa72 NeedsCompilation: no Title: Spatially-aware normalisation for spatial transcriptomics data Description: This package implements the spatially aware library size normalisation algorithm, SpaNorm. SpaNorm normalises out library size effects while retaining biology through the modelling of smooth functions for each effect. Normalisation is performed in a gene- and cell-/spot- specific manner, yielding library size adjusted data. biocViews: Software, GeneExpression, Transcriptomics, Spatial, CellBiology Author: Dharmesh D. Bhuva [aut, cre] (), Agus Salim [aut] (), Ahmed Mohamed [aut] () Maintainer: Dharmesh D. Bhuva URL: https://bhuvad.github.io/SpaNorm VignetteBuilder: knitr BugReports: https://github.com/bhuvad/SpaNorm/issues git_url: https://git.bioconductor.org/packages/SpaNorm git_branch: RELEASE_3_20 git_last_commit: e04495f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SpaNorm_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SpaNorm_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpaNorm_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpaNorm_1.0.0.tgz vignettes: vignettes/SpaNorm/inst/doc/SpaNorm.html vignetteTitles: SpaNorm hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SpaNorm/inst/doc/SpaNorm.R dependencyCount: 127 Package: sparrow Version: 1.12.0 Depends: R (>= 4.0) Imports: babelgene (>= 21.4), BiocGenerics, BiocParallel, BiocSet, checkmate, circlize, ComplexHeatmap (>= 2.0), data.table (>= 1.10.4), DelayedMatrixStats, edgeR (>= 3.18.1), ggplot2 (>= 2.2.0), graphics, grDevices, GSEABase, irlba, limma, Matrix, methods, plotly (>= 4.9.0), stats, utils, viridis Suggests: AnnotationDbi, BiasedUrn, Biobase (>= 2.24.0), BiocStyle, DESeq2, dplyr, dtplyr, fgsea, GSVA, GO.db, goseq, hexbin, magrittr, matrixStats, msigdbr (>= 7.4.1), KernSmooth, knitr, PANTHER.db (>= 1.0.3), R.utils, reactome.db, rmarkdown, SummarizedExperiment, statmod, stringr, testthat, webshot License: MIT + file LICENSE MD5sum: 7107632bd91242c5c921235ba727e279 NeedsCompilation: no Title: Take command of set enrichment analyses through a unified interface Description: Provides a unified interface to a variety of GSEA techniques from different bioconductor packages. Results are harmonized into a single object and can be interrogated uniformly for quick exploration and interpretation of results. Interactive exploration of GSEA results is enabled through a shiny app provided by a sparrow.shiny sibling package. biocViews: GeneSetEnrichment, Pathways Author: Steve Lianoglou [aut, cre] (), Arkadiusz Gladki [ctb], Aratus Informatics, LLC [fnd] (2023+), Denali Therapeutics [fnd] (2018-2022), Genentech [fnd] (2014 - 2017) Maintainer: Steve Lianoglou URL: https://github.com/lianos/sparrow VignetteBuilder: knitr BugReports: https://github.com/lianos/sparrow/issues git_url: https://git.bioconductor.org/packages/sparrow git_branch: RELEASE_3_20 git_last_commit: df6e04d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sparrow_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sparrow_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sparrow_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sparrow_1.12.0.tgz vignettes: vignettes/sparrow/inst/doc/sparrow.html vignetteTitles: Performing gene set enrichment analyses with sparrow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/sparrow/inst/doc/sparrow.R suggestsMe: gCrisprTools dependencyCount: 146 Package: SparseArray Version: 1.6.0 Depends: R (>= 4.3.0), methods, Matrix, BiocGenerics (>= 0.43.1), MatrixGenerics (>= 1.11.1), S4Vectors (>= 0.43.2), S4Arrays (>= 1.5.11) Imports: utils, stats, matrixStats, IRanges, XVector LinkingTo: S4Vectors, IRanges, XVector Suggests: HDF5Array, ExperimentHub, testthat, knitr, rmarkdown, BiocStyle License: Artistic-2.0 MD5sum: b57caafbc8b4ad3fa535a6b6180d0476 NeedsCompilation: yes Title: High-performance sparse data representation and manipulation in R Description: The SparseArray package provides array-like containers for efficient in-memory representation of multidimensional sparse data in R (arrays and matrices). The package defines the SparseArray virtual class and two concrete subclasses: COO_SparseArray and SVT_SparseArray. Each subclass uses its own internal representation of the nonzero multidimensional data: the "COO layout" and the "SVT layout", respectively. SVT_SparseArray objects mimic as much as possible the behavior of ordinary matrix and array objects in base R. In particular, they suppport most of the "standard matrix and array API" defined in base R and in the matrixStats package from CRAN. biocViews: Infrastructure, DataRepresentation Author: Hervé Pagès [aut, cre] (), Vince Carey [fnd] (), Rafael A. Irizarry [fnd] (), Jacques Serizay [ctb] () Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/SparseArray VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/SparseArray/issues git_url: https://git.bioconductor.org/packages/SparseArray git_branch: RELEASE_3_20 git_last_commit: c665d9e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SparseArray_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SparseArray_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SparseArray_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SparseArray_1.6.0.tgz vignettes: vignettes/SparseArray/inst/doc/SparseArray_objects.html vignetteTitles: SparseArray objects hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SparseArray/inst/doc/SparseArray_objects.R dependsOnMe: DelayedArray, DelayedRandomArray, HDF5Array, TileDBArray importsMe: alabaster.matrix, batchelor, beachmat, DelayedMatrixStats, DelayedTensor, dreamlet, DropletUtils, glmGamPoi, SCArray, scater, scuttle, TSCAN, scRNAseq, IDLFM suggestsMe: BiocGenerics, MatrixGenerics, S4Arrays, SummarizedExperiment dependencyCount: 20 Package: sparseMatrixStats Version: 1.18.0 Depends: MatrixGenerics (>= 1.5.3) Imports: Rcpp, Matrix, matrixStats (>= 0.60.0), methods LinkingTo: Rcpp Suggests: testthat (>= 2.1.0), knitr, bench, rmarkdown, BiocStyle License: MIT + file LICENSE MD5sum: 50096c9aa26a1cfd016375256c1c911a NeedsCompilation: yes Title: Summary Statistics for Rows and Columns of Sparse Matrices Description: High performance functions for row and column operations on sparse matrices. For example: col / rowMeans2, col / rowMedians, col / rowVars etc. Currently, the optimizations are limited to data in the column sparse format. This package is inspired by the matrixStats package by Henrik Bengtsson. biocViews: Infrastructure, Software, DataRepresentation Author: Constantin Ahlmann-Eltze [aut, cre] () Maintainer: Constantin Ahlmann-Eltze URL: https://github.com/const-ae/sparseMatrixStats SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/const-ae/sparseMatrixStats/issues git_url: https://git.bioconductor.org/packages/sparseMatrixStats git_branch: RELEASE_3_20 git_last_commit: 172c63e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sparseMatrixStats_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sparseMatrixStats_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sparseMatrixStats_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sparseMatrixStats_1.18.0.tgz vignettes: vignettes/sparseMatrixStats/inst/doc/sparseMatrixStats.html vignetteTitles: sparseMatrixStats hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/sparseMatrixStats/inst/doc/sparseMatrixStats.R importsMe: atena, ccImpute, concordexR, DelayedMatrixStats, dreamlet, GSVA, scone, SimBu, smartid, smoothclust, SPOTlight, adjclust, CRMetrics, GrabSVG, mombf, scBSP suggestsMe: APL, MatrixGenerics, miloR, scPCA, scrapper, scuttle, SpatialFeatureExperiment, StabMap, zinbwave, singleCellHaystack dependencyCount: 11 Package: sparsenetgls Version: 1.24.0 Depends: R (>= 4.0.0), Matrix, MASS Imports: methods, glmnet, huge, stats, graphics, utils Suggests: testthat, lme4, BiocStyle, knitr, rmarkdown, roxygen2 (>= 5.0.0) License: GPL-3 MD5sum: 6c4b26bf65d269e87001549230ddc640 NeedsCompilation: no Title: Using Gaussian graphical structue learning estimation in generalized least squared regression for multivariate normal regression Description: The package provides methods of combining the graph structure learning and generalized least squares regression to improve the regression estimation. The main function sparsenetgls() provides solutions for multivariate regression with Gaussian distributed dependant variables and explanatory variables utlizing multiple well-known graph structure learning approaches to estimating the precision matrix, and uses a penalized variance covariance matrix with a distance tuning parameter of the graph structure in deriving the sandwich estimators in generalized least squares (gls) regression. This package also provides functions for assessing a Gaussian graphical model which uses the penalized approach. It uses Receiver Operative Characteristics curve as a visualization tool in the assessment. biocViews: ImmunoOncology, GraphAndNetwork,Regression,Metabolomics,CopyNumberVariation,MassSpectrometry,Proteomics,Software,Visualization Author: Irene Zeng [aut, cre], Thomas Lumley [ctb] Maintainer: Irene Zeng SystemRequirements: GNU make VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/sparsenetgls git_branch: RELEASE_3_20 git_last_commit: 8d42088 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sparsenetgls_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sparsenetgls_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sparsenetgls_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sparsenetgls_1.24.0.tgz vignettes: vignettes/sparsenetgls/inst/doc/vignettes_sparsenetgls.html vignetteTitles: Introduction to sparsenetgls hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sparsenetgls/inst/doc/vignettes_sparsenetgls.R dependencyCount: 28 Package: SparseSignatures Version: 2.16.0 Depends: R (>= 4.1.0), NMF Imports: nnlasso, nnls, parallel, data.table, Biostrings, GenomicRanges, IRanges, BSgenome, GenomeInfoDb, ggplot2, gridExtra, reshape2, RhpcBLASctl Suggests: BiocGenerics, BSgenome.Hsapiens.1000genomes.hs37d5, BiocStyle, testthat, knitr, License: file LICENSE MD5sum: 5e5ff1f13735b1f3d65c5b5a6ab20289 NeedsCompilation: no Title: SparseSignatures Description: Point mutations occurring in a genome can be divided into 96 categories based on the base being mutated, the base it is mutated into and its two flanking bases. Therefore, for any patient, it is possible to represent all the point mutations occurring in that patient's tumor as a vector of length 96, where each element represents the count of mutations for a given category in the patient. A mutational signature represents the pattern of mutations produced by a mutagen or mutagenic process inside the cell. Each signature can also be represented by a vector of length 96, where each element represents the probability that this particular mutagenic process generates a mutation of the 96 above mentioned categories. In this R package, we provide a set of functions to extract and visualize the mutational signatures that best explain the mutation counts of a large number of patients. biocViews: BiomedicalInformatics, SomaticMutation Author: Daniele Ramazzotti [aut] (), Avantika Lal [aut], Keli Liu [ctb], Luca De Sano [cre, aut] (), Robert Tibshirani [ctb], Arend Sidow [aut] Maintainer: Luca De Sano URL: https://github.com/danro9685/SparseSignatures VignetteBuilder: knitr BugReports: https://github.com/danro9685/SparseSignatures git_url: https://git.bioconductor.org/packages/SparseSignatures git_branch: RELEASE_3_20 git_last_commit: ec01b20 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SparseSignatures_2.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SparseSignatures_2.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SparseSignatures_2.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SparseSignatures_2.16.0.tgz vignettes: vignettes/SparseSignatures/inst/doc/v1_introduction.html, vignettes/SparseSignatures/inst/doc/v2_using_the_package.html vignetteTitles: v1_introduction.html, v2_using_the_package.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SparseSignatures/inst/doc/v2_using_the_package.R dependencyCount: 105 Package: spaSim Version: 1.8.0 Depends: R (>= 4.2.0) Imports: ggplot2, methods, stats, dplyr, spatstat.geom, spatstat.random, SpatialExperiment, SummarizedExperiment, RANN Suggests: RefManageR, BiocStyle, knitr, testthat (>= 3.0.0), sessioninfo, rmarkdown, markdown License: Artistic-2.0 MD5sum: 4a3dbdeaaca0ec5a65d98a70385f7f5b NeedsCompilation: no Title: Spatial point data simulator for tissue images Description: A suite of functions for simulating spatial patterns of cells in tissue images. Output images are multitype point data in SingleCellExperiment format. Each point represents a cell, with its 2D locations and cell type. Potential cell patterns include background cells, tumour/immune cell clusters, immune rings, and blood/lymphatic vessels. biocViews: StatisticalMethod, Spatial, BiomedicalInformatics Author: Yuzhou Feng [aut, cre] (), Anna Trigos [aut] () Maintainer: Yuzhou Feng URL: https://trigosteam.github.io/spaSim/ VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/spaSim git_url: https://git.bioconductor.org/packages/spaSim git_branch: RELEASE_3_20 git_last_commit: 9b6eb9b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/spaSim_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/spaSim_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/spaSim_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/spaSim_1.8.0.tgz vignettes: vignettes/spaSim/inst/doc/vignette.html vignetteTitles: vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/spaSim/inst/doc/vignette.R dependencyCount: 95 Package: SpatialCPie Version: 1.22.0 Depends: R (>= 3.6) Imports: colorspace (>= 1.3-2), data.table (>= 1.12.2), digest (>= 0.6.21), dplyr (>= 0.7.6), ggforce (>= 0.3.0), ggiraph (>= 0.5.0), ggplot2 (>= 3.0.0), ggrepel (>= 0.8.0), grid (>= 3.5.1), igraph (>= 1.2.2), lpSolve (>= 5.6.13), methods (>= 3.5.0), purrr (>= 0.2.5), readr (>= 1.1.1), rlang (>= 0.2.2), shiny (>= 1.1.0), shinycssloaders (>= 0.2.0), shinyjs (>= 1.0), shinyWidgets (>= 0.4.8), stats (>= 3.6.0), SummarizedExperiment (>= 1.10.1), tibble (>= 1.4.2), tidyr (>= 0.8.1), tidyselect (>= 0.2.4), tools (>= 3.6.0), utils (>= 3.5.0), zeallot (>= 0.1.0) Suggests: BiocStyle (>= 2.8.2), jpeg (>= 0.1-8), knitr (>= 1.20), rmarkdown (>= 1.10), testthat (>= 2.0.0) License: MIT + file LICENSE MD5sum: 785298a0c75b8c788c20cd5de7733a3c NeedsCompilation: no Title: Cluster analysis of Spatial Transcriptomics data Description: SpatialCPie is an R package designed to facilitate cluster evaluation for spatial transcriptomics data by providing intuitive visualizations that display the relationships between clusters in order to guide the user during cluster identification and other downstream applications. The package is built around a shiny "gadget" to allow the exploration of the data with multiple plots in parallel and an interactive UI. The user can easily toggle between different cluster resolutions in order to choose the most appropriate visual cues. biocViews: Transcriptomics, Clustering, RNASeq, Software Author: Joseph Bergenstraahle [aut, cre] Maintainer: Joseph Bergenstraahle VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SpatialCPie git_branch: RELEASE_3_20 git_last_commit: 7688f5e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SpatialCPie_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SpatialCPie_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpatialCPie_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpatialCPie_1.22.0.tgz vignettes: vignettes/SpatialCPie/inst/doc/SpatialCPie.html vignetteTitles: SpatialCPie hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SpatialCPie/inst/doc/SpatialCPie.R dependencyCount: 122 Package: spatialDE Version: 1.12.0 Depends: R (>= 4.3) Imports: reticulate, basilisk (>= 1.9.10), checkmate, stats, SpatialExperiment, methods, SummarizedExperiment, Matrix, ggplot2, ggrepel, scales, gridExtra Suggests: knitr, BiocStyle, rmarkdown, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: af57deb100f4ad97c1591a3c2ddd2e11 NeedsCompilation: no Title: R wrapper for SpatialDE Description: SpatialDE is a method to find spatially variable genes (SVG) from spatial transcriptomics data. This package provides wrappers to use the Python SpatialDE library in R, using reticulate and basilisk. biocViews: Software, Transcriptomics Author: Davide Corso [aut] (), Milan Malfait [aut] (), Lambda Moses [aut] (), Gabriele Sales [cre] Maintainer: Gabriele Sales URL: https://github.com/sales-lab/spatialDE, https://bioconductor.org/packages/spatialDE/ VignetteBuilder: knitr BugReports: https://github.com/sales-lab/spatialDE/issues git_url: https://git.bioconductor.org/packages/spatialDE git_branch: RELEASE_3_20 git_last_commit: 8d3fc1f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/spatialDE_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/spatialDE_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/spatialDE_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/spatialDE_1.12.0.tgz vignettes: vignettes/spatialDE/inst/doc/spatialDE.html vignetteTitles: Introduction to spatialDE hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/spatialDE/inst/doc/spatialDE.R dependencyCount: 101 Package: SpatialDecon Version: 1.16.0 Depends: R (>= 4.0.0) Imports: grDevices, stats, utils, graphics, SeuratObject, Biobase, GeomxTools, repmis, methods, Matrix, logNormReg (>= 0.4) Suggests: testthat, knitr, rmarkdown, qpdf, Seurat License: MIT + file LICENSE Archs: x64 MD5sum: 1926c558a0c6dc9aed1ca4e2d84073e3 NeedsCompilation: no Title: Deconvolution of mixed cells from spatial and/or bulk gene expression data Description: Using spatial or bulk gene expression data, estimates abundance of mixed cell types within each observation. Based on "Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data", Danaher (2022). Designed for use with the NanoString GeoMx platform, but applicable to any gene expression data. biocViews: ImmunoOncology, FeatureExtraction, GeneExpression, Transcriptomics, Spatial Author: Maddy Griswold [cre, aut], Patrick Danaher [aut] Maintainer: Maddy Griswold VignetteBuilder: knitr BugReports: https://github.com/Nanostring-Biostats/SpatialDecon/issues git_url: https://git.bioconductor.org/packages/SpatialDecon git_branch: RELEASE_3_20 git_last_commit: a7da1d8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SpatialDecon_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SpatialDecon_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpatialDecon_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpatialDecon_1.16.0.tgz vignettes: vignettes/SpatialDecon/inst/doc/SpatialDecon_vignette.html, vignettes/SpatialDecon/inst/doc/SpatialDecon_vignette_NSCLC.html vignetteTitles: Use of SpatialDecon in a small GeoMx dataet, Use of SpatialDecon in a large GeoMx dataset with GeomxTools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SpatialDecon/inst/doc/SpatialDecon_vignette_NSCLC.R, vignettes/SpatialDecon/inst/doc/SpatialDecon_vignette.R suggestsMe: GeomxTools dependencyCount: 135 Package: SpatialExperiment Version: 1.16.0 Depends: methods, SingleCellExperiment Imports: rjson, grDevices, magick, utils, S4Vectors, SummarizedExperiment, BiocGenerics, BiocFileCache Suggests: knitr, rmarkdown, testthat, BiocStyle, BumpyMatrix, DropletUtils License: GPL-3 Archs: x64 MD5sum: dd52315d7fcca2045bb553d952a15573 NeedsCompilation: no Title: S4 Class for Spatially Resolved -omics Data Description: Defines an S4 class for storing data from spatial -omics experiments. The class extends SingleCellExperiment to support storage and retrieval of additional information from spot-based and molecule-based platforms, including spatial coordinates, images, and image metadata. A specialized constructor function is included for data from the 10x Genomics Visium platform. biocViews: DataRepresentation, DataImport, Infrastructure, ImmunoOncology, GeneExpression, Transcriptomics, SingleCell, Spatial Author: Dario Righelli [aut, cre], Davide Risso [aut], Helena L. Crowell [aut], Lukas M. Weber [aut], Nicholas J. Eagles [ctb] Maintainer: Dario Righelli URL: https://github.com/drighelli/SpatialExperiment VignetteBuilder: knitr BugReports: https://github.com/drighelli/SpatialExperiment/issues git_url: https://git.bioconductor.org/packages/SpatialExperiment git_branch: RELEASE_3_20 git_last_commit: 8798cb0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SpatialExperiment_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SpatialExperiment_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpatialExperiment_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpatialExperiment_1.16.0.tgz vignettes: vignettes/SpatialExperiment/inst/doc/SpatialExperiment.html vignetteTitles: Introduction to the SpatialExperiment class hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SpatialExperiment/inst/doc/SpatialExperiment.R dependsOnMe: alabaster.spatial, ExperimentSubset, imcRtools, SPIAT, tidySpatialExperiment, imcdatasets, MerfishData, MouseGastrulationData, spatialLIBD, STexampleData, TENxVisiumData, VectraPolarisData, WeberDivechaLCdata importsMe: Banksy, CatsCradle, concordexR, CTSV, cytomapper, DESpace, escheR, FLAMES, ggspavis, GSVA, hoodscanR, lisaClust, MoleculeExperiment, nnSVG, scider, smoothclust, SpaNorm, spaSim, spatialDE, SpatialFeatureExperiment, spatialSimGP, spicyR, spoon, SpotClean, SpotSweeper, standR, Statial, stJoincount, tpSVG, VisiumIO, Voyager, xenLite, HCATonsilData, SingleCellMultiModal, SubcellularSpatialData, TENxXeniumData, SpatialDDLS suggestsMe: GeomxTools, ggsc, SPOTlight dependencyCount: 72 Package: SpatialFeatureExperiment Version: 1.8.4 Depends: R (>= 4.2.0) Imports: Biobase, BiocGenerics, BiocNeighbors, BiocParallel, data.table, DropletUtils, EBImage, grDevices, lifecycle, Matrix, methods, rjson, rlang, S4Vectors, sf, sfheaders, SingleCellExperiment, SpatialExperiment, spatialreg, spdep (>= 1.1-7), SummarizedExperiment, stats, terra, utils, zeallot Suggests: arrow, BiocStyle, dplyr, knitr, RBioFormats, rhdf5, rmarkdown, scater, sfarrow, SFEData (>= 1.5.3), Seurat, SeuratObject, sparseMatrixStats, testthat (>= 3.0.0), tidyr, Voyager (>= 1.7.2), withr, xml2 License: Artistic-2.0 MD5sum: 2bde562a099567d14f8f49bf5f582809 NeedsCompilation: no Title: Integrating SpatialExperiment with Simple Features in sf Description: A new S4 class integrating Simple Features with the R package sf to bring geospatial data analysis methods based on vector data to spatial transcriptomics. Also implements management of spatial neighborhood graphs and geometric operations. This pakage builds upon SpatialExperiment and SingleCellExperiment, hence methods for these parent classes can still be used. biocViews: DataRepresentation, Transcriptomics, Spatial Author: Lambda Moses [aut, cre] (), Alik Huseynov [aut] (), Lior Pachter [aut, ths] () Maintainer: Lambda Moses URL: https://github.com/pachterlab/SpatialFeatureExperiment VignetteBuilder: knitr BugReports: https://github.com/pachterlab/SpatialFeatureExperiment/issues git_url: https://git.bioconductor.org/packages/SpatialFeatureExperiment git_branch: RELEASE_3_20 git_last_commit: 051b3da git_last_commit_date: 2024-12-13 Date/Publication: 2024-12-16 source.ver: src/contrib/SpatialFeatureExperiment_1.8.4.tar.gz win.binary.ver: bin/windows/contrib/4.4/SpatialFeatureExperiment_1.8.4.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpatialFeatureExperiment_1.8.4.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpatialFeatureExperiment_1.8.4.tgz vignettes: vignettes/SpatialFeatureExperiment/inst/doc/SFE.html vignetteTitles: Introduction to the SpatialFeatureExperiment class hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SpatialFeatureExperiment/inst/doc/SFE.R dependsOnMe: Voyager importsMe: TENxXeniumData suggestsMe: concordexR, xenLite, SFEData dependencyCount: 157 Package: spatialHeatmap Version: 2.12.1 Depends: R (>= 3.5.0) Imports: data.table, dplyr, edgeR, genefilter, ggplot2, grImport, grid, gridExtra, igraph, methods, Matrix, rsvg, shiny, grDevices, graphics, ggplotify, parallel, reshape2, stats, SummarizedExperiment, SingleCellExperiment, shinydashboard, S4Vectors, spsComps (>= 0.3.3.0), tibble, utils, xml2 Suggests: AnnotationDbi, av, BiocParallel, BiocFileCache, BiocGenerics, BiocStyle, BiocSingular, Biobase, cachem, DESeq2, dendextend, DT, dynamicTreeCut, flashClust, gplots, ggdendro, HDF5Array, htmltools, htmlwidgets, kableExtra, knitr, limma, magick, memoise, ExpressionAtlas, GEOquery, org.Hs.eg.db, org.Mm.eg.db, org.At.tair.db, org.Dr.eg.db, org.Dm.eg.db, pROC, plotly, rmarkdown, rols, rappdirs, RUnit, Rtsne, rhdf5, scater, scuttle, scran, shinyWidgets, shinyjs, shinyBS, sortable, Seurat, sparkline, spsUtil, uwot, UpSetR, visNetwork, WGCNA, xlsx, yaml License: Artistic-2.0 MD5sum: 38de87e32e4699066d6b663942add16a NeedsCompilation: no Title: spatialHeatmap: Visualizing Spatial Assays in Anatomical Images and Large-Scale Data Extensions Description: The spatialHeatmap package offers the primary functionality for visualizing cell-, tissue- and organ-specific assay data in spatial anatomical images. Additionally, it provides extended functionalities for large-scale data mining routines and co-visualizing bulk and single-cell data. A description of the project is available here: https://spatialheatmap.org. biocViews: Spatial, Visualization, Microarray, Sequencing, GeneExpression, DataRepresentation, Network, Clustering, GraphAndNetwork, CellBasedAssays, ATACSeq, DNASeq, TissueMicroarray, SingleCell, CellBiology, GeneTarget Author: Jianhai Zhang [aut, trl, cre], Le Zhang [aut], Jordan Hayes [aut], Brendan Gongol [aut], Alexander Borowsky [aut], Julia Bailey-Serres [aut], Thomas Girke [aut] Maintainer: Jianhai Zhang URL: https://spatialheatmap.org, https://github.com/jianhaizhang/spatialHeatmap VignetteBuilder: knitr BugReports: https://github.com/jianhaizhang/spatialHeatmap/issues git_url: https://git.bioconductor.org/packages/spatialHeatmap git_branch: RELEASE_3_20 git_last_commit: 381c17a git_last_commit_date: 2024-11-24 Date/Publication: 2024-11-25 source.ver: src/contrib/spatialHeatmap_2.12.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/spatialHeatmap_2.12.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/spatialHeatmap_2.12.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/spatialHeatmap_2.12.1.tgz vignettes: vignettes/spatialHeatmap/inst/doc/covisualize.html, vignettes/spatialHeatmap/inst/doc/custom_SVGs.html, vignettes/spatialHeatmap/inst/doc/spatialHeatmap.html vignetteTitles: (B) Co-visualizing Bulk and Single-cell Assay Data, (C) Creating Custom Annotated SVGs, (A) Visualizing Spatial Assays in Anatomical Images and Large-Scale Data Extensions hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/spatialHeatmap/inst/doc/covisualize.R, vignettes/spatialHeatmap/inst/doc/custom_SVGs.R, vignettes/spatialHeatmap/inst/doc/spatialHeatmap.R dependencyCount: 124 Package: SpatialOmicsOverlay Version: 1.6.0 Depends: R (>= 4.1.0) Imports: S4Vectors, Biobase, base64enc, EBImage, ggplot2, XML, scattermore, dplyr, pbapply, data.table, readxl, magick, grDevices, stringr, plotrix, GeomxTools, BiocFileCache, stats, utils, methods, ggtext, tools, RBioFormats Suggests: knitr, rmarkdown, testthat (>= 3.0.0), stringi, qpdf, pheatmap, viridis, cowplot, vdiffr, sf License: MIT MD5sum: 91bb3a6361147d347e342ad042c71d15 NeedsCompilation: no Title: Spatial Overlay for Omic Data from Nanostring GeoMx Data Description: Tools for NanoString Technologies GeoMx Technology. Package to easily graph on top of an OME-TIFF image. Plotting annotations can range from tissue segment to gene expression. biocViews: GeneExpression, Transcription, CellBasedAssays, DataImport, Transcriptomics, Proteomics, ProprietaryPlatforms, RNASeq, Spatial, DataRepresentation, Visualization Author: Maddy Griswold [cre, aut], Megan Vandenberg [ctb], Stephanie Zimmerman [ctb] Maintainer: Maddy Griswold VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SpatialOmicsOverlay git_branch: RELEASE_3_20 git_last_commit: f16323e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SpatialOmicsOverlay_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SpatialOmicsOverlay_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpatialOmicsOverlay_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpatialOmicsOverlay_1.6.0.tgz vignettes: vignettes/SpatialOmicsOverlay/inst/doc/SpatialOmicsOverlay.html vignetteTitles: Introduction to SpatialOmicsOverlay hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SpatialOmicsOverlay/inst/doc/SpatialOmicsOverlay.R dependencyCount: 159 Package: spatialSimGP Version: 1.0.0 Depends: R (>= 4.4) Imports: SpatialExperiment, MASS, SummarizedExperiment Suggests: testthat (>= 3.0.0), STexampleData, ggplot2, knitr License: MIT + file LICENSE MD5sum: 29f0efd7408868e2022f28f9cf811c56 NeedsCompilation: no Title: Simulate Spatial Transcriptomics Data with the Mean-variance Relationship Description: This packages simulates spatial transcriptomics data with the mean- variance relationship using a Gaussian Process model per gene. biocViews: Spatial, Transcriptomics, GeneExpression Author: Kinnary Shah [aut, cre] (), Boyi Guo [aut] (), Stephanie C. Hicks [aut] () Maintainer: Kinnary Shah URL: https://github.com/kinnaryshah/spatialSimGP VignetteBuilder: knitr BugReports: https://github.com/kinnaryshah/spatialSimGP/issues git_url: https://git.bioconductor.org/packages/spatialSimGP git_branch: RELEASE_3_20 git_last_commit: a5440d4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/spatialSimGP_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/spatialSimGP_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/spatialSimGP_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/spatialSimGP_1.0.0.tgz vignettes: vignettes/spatialSimGP/inst/doc/spatialSimGP.html vignetteTitles: spatialSimGP Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/spatialSimGP/inst/doc/spatialSimGP.R dependencyCount: 74 Package: spatzie Version: 1.12.0 Depends: R (>= 4.3) Imports: BiocGenerics, BSgenome, GenomeInfoDb, GenomicFeatures, GenomicInteractions, GenomicRanges, ggplot2, IRanges, MatrixGenerics, matrixStats, motifmatchr, S4Vectors, stats, SummarizedExperiment, TFBSTools, utils Suggests: BiocManager, Biostrings, knitr, pheatmap, rmarkdown, testthat, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg38.knownGene, TxDb.Mmusculus.UCSC.mm10.knownGene, TxDb.Mmusculus.UCSC.mm9.knownGene License: GPL-3 MD5sum: 858deff331d847d4d386ac460d68dbe9 NeedsCompilation: no Title: Identification of enriched motif pairs from chromatin interaction data Description: Identifies motifs that are significantly co-enriched from enhancer-promoter interaction data. While enhancer-promoter annotation is commonly used to define groups of interaction anchors, spatzie also supports co-enrichment analysis between preprocessed interaction anchors. Supports BEDPE interaction data derived from genome-wide assays such as HiC, ChIA-PET, and HiChIP. Can also be used to look for differentially enriched motif pairs between two interaction experiments. biocViews: DNA3DStructure, GeneRegulation, PeakDetection, Epigenetics, FunctionalGenomics, Classification, HiC, Transcription Author: Jennifer Hammelman [aut, cre, cph] (), Konstantin Krismer [aut] (), David Gifford [ths, cph] () Maintainer: Jennifer Hammelman URL: https://spatzie.mit.edu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/spatzie git_branch: RELEASE_3_20 git_last_commit: 945e41d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/spatzie_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/spatzie_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/spatzie_1.12.0.tgz vignettes: vignettes/spatzie/inst/doc/individual-steps.html, vignettes/spatzie/inst/doc/single-call.html vignetteTitles: YY1 ChIA-PET motif analysis (step-by-step), YY1 ChIA-PET motif analysis (single call) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 184 Package: speckle Version: 1.6.0 Depends: R (>= 4.2.0) Imports: limma, edgeR, SingleCellExperiment, Seurat, ggplot2, methods, stats, grDevices, graphics Suggests: BiocStyle, knitr, rmarkdown, statmod, CellBench, scater, patchwork, jsonlite, vdiffr, testthat (>= 3.0.0) License: GPL-3 MD5sum: 02df000664c70b6ee85aa74170cb6248 NeedsCompilation: no Title: Statistical methods for analysing single cell RNA-seq data Description: The speckle package contains functions for the analysis of single cell RNA-seq data. The speckle package currently contains functions to analyse differences in cell type proportions. There are also functions to estimate the parameters of the Beta distribution based on a given counts matrix, and a function to normalise a counts matrix to the median library size. There are plotting functions to visualise cell type proportions and the mean-variance relationship in cell type proportions and counts. As our research into specialised analyses of single cell data continues we anticipate that the package will be updated with new functions. biocViews: SingleCell, RNASeq, Regression, GeneExpression Author: Belinda Phipson [aut, cre] Maintainer: Belinda Phipson VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/speckle git_branch: RELEASE_3_20 git_last_commit: 5919895 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/speckle_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/speckle_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/speckle_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/speckle_1.6.0.tgz vignettes: vignettes/speckle/inst/doc/speckle.html vignetteTitles: speckle: statistical methods for analysing single cell RNA-seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/speckle/inst/doc/speckle.R dependencyCount: 176 Package: specL Version: 1.40.0 Depends: R (>= 4.1), DBI (>= 0.5), methods (>= 3.3), protViz (>= 0.7), RSQLite (>= 1.1), seqinr (>= 3.3) Suggests: BiocGenerics, BiocStyle (>= 2.2), knitr (>= 1.15), rmarkdown, RUnit (>= 0.4) License: GPL-3 MD5sum: eefcc88f521d4c3e655f177f357c1755 NeedsCompilation: no Title: specL - Prepare Peptide Spectrum Matches for Use in Targeted Proteomics Description: provides a functions for generating spectra libraries that can be used for MRM SRM MS workflows in proteomics. The package provides a BiblioSpec reader, a function which can add the protein information using a FASTA formatted amino acid file, and an export method for using the created library in the Spectronaut software. The package is developed, tested and used at the Functional Genomics Center Zurich . biocViews: MassSpectrometry, Proteomics Author: Christian Panse [aut, cre] (), Jonas Grossmann [aut] (), Christian Trachsel [aut], Witold E. Wolski [ctb] Maintainer: Christian Panse URL: http://bioconductor.org/packages/specL/ VignetteBuilder: knitr BugReports: https://github.com/fgcz/specL/issues git_url: https://git.bioconductor.org/packages/specL git_branch: RELEASE_3_20 git_last_commit: b50097e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/specL_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/specL_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/specL_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/specL_1.40.0.tgz vignettes: vignettes/specL/inst/doc/report.html, vignettes/specL/inst/doc/specL.html vignetteTitles: Automatic specL Workflow, Introduction to specL hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/specL/inst/doc/report.R, vignettes/specL/inst/doc/specL.R suggestsMe: msqc1, NestLink dependencyCount: 33 Package: SpeCond Version: 1.60.0 Depends: R (>= 2.10.0), mclust (>= 3.3.1), Biobase (>= 1.15.13), fields, hwriter (>= 1.1), RColorBrewer, methods License: LGPL (>=2) MD5sum: 4d69e75f9dba65f187a00c758b279777 NeedsCompilation: no Title: Condition specific detection from expression data Description: This package performs a gene expression data analysis to detect condition-specific genes. Such genes are significantly up- or down-regulated in a small number of conditions. It does so by fitting a mixture of normal distributions to the expression values. Conditions can be environmental conditions, different tissues, organs or any other sources that you wish to compare in terms of gene expression. biocViews: Microarray, DifferentialExpression, MultipleComparison, Clustering, ReportWriting Author: Florence Cavalli Maintainer: Florence Cavalli git_url: https://git.bioconductor.org/packages/SpeCond git_branch: RELEASE_3_20 git_last_commit: f57de9b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SpeCond_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SpeCond_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpeCond_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpeCond_1.60.0.tgz vignettes: vignettes/SpeCond/inst/doc/SpeCond.pdf vignetteTitles: SpeCond hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SpeCond/inst/doc/SpeCond.R dependencyCount: 17 Package: Spectra Version: 1.16.0 Depends: R (>= 4.0.0), S4Vectors, BiocParallel Imports: ProtGenerics (>= 1.37.1), methods, IRanges, MsCoreUtils (>= 1.7.5), graphics, grDevices, stats, tools, utils, fs, BiocGenerics, MetaboCoreUtils Suggests: testthat, knitr (>= 1.1.0), msdata (>= 0.19.3), roxygen2, BiocStyle (>= 2.5.19), mzR (>= 2.19.6), rhdf5 (>= 2.32.0), rmarkdown, vdiffr (>= 1.0.0), msentropy, patrick License: Artistic-2.0 MD5sum: cb974efa2343f87a21128ee11b972932 NeedsCompilation: no Title: Spectra Infrastructure for Mass Spectrometry Data Description: The Spectra package defines an efficient infrastructure for storing and handling mass spectrometry spectra and functionality to subset, process, visualize and compare spectra data. It provides different implementations (backends) to store mass spectrometry data. These comprise backends tuned for fast data access and processing and backends for very large data sets ensuring a small memory footprint. biocViews: Infrastructure, Proteomics, MassSpectrometry, Metabolomics Author: RforMassSpectrometry Package Maintainer [cre], Laurent Gatto [aut] (), Johannes Rainer [aut] (), Sebastian Gibb [aut] (), Philippine Louail [aut] (), Jan Stanstrup [ctb] (), Nir Shahaf [ctb], Mar Garcia-Aloy [ctb] () Maintainer: RforMassSpectrometry Package Maintainer URL: https://github.com/RforMassSpectrometry/Spectra VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/Spectra/issues git_url: https://git.bioconductor.org/packages/Spectra git_branch: RELEASE_3_20 git_last_commit: 8baf07c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Spectra_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Spectra_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Spectra_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Spectra_1.16.0.tgz vignettes: vignettes/Spectra/inst/doc/MsBackend.html, vignettes/Spectra/inst/doc/Spectra.html, vignettes/Spectra/inst/doc/Spectra-large-scale.html vignetteTitles: Creating new `MsBackend` class, Description and usage of Spectra object, Large-scale data handling and processing with Spectra hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Spectra/inst/doc/MsBackend.R, vignettes/Spectra/inst/doc/Spectra-large-scale.R, vignettes/Spectra/inst/doc/Spectra.R dependsOnMe: hdxmsqc, MetCirc, MsBackendMassbank, MsBackendMetaboLights, MsBackendMgf, MsBackendMsp, MsBackendRawFileReader, MsBackendSql importsMe: CompoundDb, MetaboAnnotation, MsExperiment, MsQuality, SpectraQL, xcms suggestsMe: koinar, MetNet, MsDataHub, PSMatch, RaMS dependencyCount: 28 Package: SpectralTAD Version: 1.22.0 Depends: R (>= 3.6) Imports: dplyr, PRIMME, cluster, Matrix, parallel, BiocParallel, magrittr, HiCcompare, GenomicRanges, utils Suggests: BiocCheck, BiocManager, BiocStyle, knitr, rmarkdown, microbenchmark, testthat, covr License: MIT + file LICENSE MD5sum: f5297d7ebd86a1eaec9b83d278a2ddcb NeedsCompilation: no Title: SpectralTAD: Hierarchical TAD detection using spectral clustering Description: SpectralTAD is an R package designed to identify Topologically Associated Domains (TADs) from Hi-C contact matrices. It uses a modified version of spectral clustering that uses a sliding window to quickly detect TADs. The function works on a range of different formats of contact matrices and returns a bed file of TAD coordinates. The method does not require users to adjust any parameters to work and gives them control over the number of hierarchical levels to be returned. biocViews: Software, HiC, Sequencing, FeatureExtraction, Clustering Author: Mikhail Dozmorov [aut, cre] (), Kellen Cresswell [aut], John Stansfield [aut] Maintainer: Mikhail Dozmorov URL: https://github.com/dozmorovlab/SpectralTAD VignetteBuilder: knitr BugReports: https://github.com/dozmorovlab/SpectralTAD/issues git_url: https://git.bioconductor.org/packages/SpectralTAD git_branch: RELEASE_3_20 git_last_commit: 895a52f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SpectralTAD_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SpectralTAD_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpectralTAD_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpectralTAD_1.22.0.tgz vignettes: vignettes/SpectralTAD/inst/doc/SpectralTAD.html vignetteTitles: SpectralTAD hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SpectralTAD/inst/doc/SpectralTAD.R suggestsMe: TADCompare dependencyCount: 88 Package: SpectraQL Version: 1.0.0 Depends: R (>= 4.4.0), ProtGenerics (>= 1.25.1) Imports: Spectra (>= 1.5.6), MsCoreUtils, methods Suggests: testthat, msdata (>= 0.19.3), roxygen2, rmarkdown, knitr, S4Vectors, BiocStyle, mzR License: Artistic-2.0 MD5sum: b3ec1a2add5ab132d6231d37b54abde8 NeedsCompilation: no Title: MassQL support for Spectra Description: The Mass Spec Query Language (MassQL) is a domain-specific language enabling to express a query and retrieve mass spectrometry (MS) data in a more natural and understandable way for MS users. It is inspired by SQL and is by design programming language agnostic. The SpectraQL package adds support for the MassQL query language to R, in particular to MS data represented by Spectra objects. Users can thus apply MassQL expressions to analyze and retrieve specific data from Spectra objects. biocViews: Infrastructure, Proteomics, MassSpectrometry, Metabolomics Author: Johannes Rainer [aut, cre] (), Andrea Vicini [aut], Sebastian Gibb [ctb] () Maintainer: Johannes Rainer URL: https://github.com/RforMassSpectrometry/SpectraQL VignetteBuilder: knitr BugReports: https://github.com/RforMassSpectrometry/SpectraQL/issues git_url: https://git.bioconductor.org/packages/SpectraQL git_branch: RELEASE_3_20 git_last_commit: 499aea1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SpectraQL_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SpectraQL_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpectraQL_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpectraQL_1.0.0.tgz vignettes: vignettes/SpectraQL/inst/doc/SpectraQL.html vignetteTitles: Mass Spec Query Language Support to the Spectra Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SpectraQL/inst/doc/SpectraQL.R dependencyCount: 29 Package: SPEM Version: 1.46.0 Depends: R (>= 2.15.1), Rsolnp, Biobase, methods License: GPL-2 MD5sum: 9a07117ec17b2565c419c992935962c2 NeedsCompilation: no Title: S-system parameter estimation method Description: This package can optimize the parameter in S-system models given time series data biocViews: Network, NetworkInference, Software Author: Xinyi YANG Developer, Jennifer E. DENT Developer and Christine NARDINI Supervisor Maintainer: Xinyi YANG git_url: https://git.bioconductor.org/packages/SPEM git_branch: RELEASE_3_20 git_last_commit: ecff551 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SPEM_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SPEM_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SPEM_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SPEM_1.46.0.tgz vignettes: vignettes/SPEM/inst/doc/SPEM-package.pdf vignetteTitles: Vignette for SPEM hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SPEM/inst/doc/SPEM-package.R importsMe: TMixClust dependencyCount: 9 Package: SPIA Version: 2.58.0 Depends: R (>= 2.14.0), graphics, KEGGgraph Imports: graphics Suggests: graph, Rgraphviz, hgu133plus2.db License: file LICENSE License_restricts_use: yes MD5sum: 1ac84aa5495b39db8d7007b0970bc4a3 NeedsCompilation: no Title: Signaling Pathway Impact Analysis (SPIA) using combined evidence of pathway over-representation and unusual signaling perturbations Description: This package implements the Signaling Pathway Impact Analysis (SPIA) which uses the information form a list of differentially expressed genes and their log fold changes together with signaling pathways topology, in order to identify the pathways most relevant to the condition under the study. biocViews: Microarray, GraphAndNetwork Author: Adi Laurentiu Tarca , Purvesh Kathri and Sorin Draghici Maintainer: Adi Laurentiu Tarca URL: http://bioinformatics.oxfordjournals.org/cgi/reprint/btn577v1 git_url: https://git.bioconductor.org/packages/SPIA git_branch: RELEASE_3_20 git_last_commit: 6d8dc02 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SPIA_2.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SPIA_2.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SPIA_2.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SPIA_2.58.0.tgz vignettes: vignettes/SPIA/inst/doc/SPIA.pdf vignetteTitles: SPIA hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SPIA/inst/doc/SPIA.R importsMe: EnrichmentBrowser suggestsMe: graphite, KEGGgraph dependencyCount: 14 Package: SPIAT Version: 1.8.0 Depends: R (>= 4.2.0), SpatialExperiment (>= 1.8.0) Imports: apcluster (>= 1.4.7), ggplot2 (>= 3.2.1), gridExtra (>= 2.3), gtools (>= 3.8.1), reshape2 (>= 1.4.3), dplyr (>= 0.8.3), RANN (>= 2.6.1), pracma (>= 2.2.5), dbscan (>= 1.1-5), mmand (>= 1.5.4), tibble (>= 2.1.3), grDevices, stats, utils, vroom, dittoSeq, spatstat.geom, methods, spatstat.explore, raster, sp, SummarizedExperiment, rlang Suggests: BiocStyle, plotly (>= 4.9.0), knitr, rmarkdown, pkgdown, testthat, graphics, alphahull, Rtsne, umap, ComplexHeatmap, elsa License: Artistic-2.0 + file LICENSE MD5sum: 3ab0f28822c6e3562763db99043222eb NeedsCompilation: no Title: Spatial Image Analysis of Tissues Description: SPIAT (**Sp**atial **I**mage **A**nalysis of **T**issues) is an R package with a suite of data processing, quality control, visualization and data analysis tools. SPIAT is compatible with data generated from single-cell spatial proteomics platforms (e.g. OPAL, CODEX, MIBI, cellprofiler). SPIAT reads spatial data in the form of X and Y coordinates of cells, marker intensities and cell phenotypes. SPIAT includes six analysis modules that allow visualization, calculation of cell colocalization, categorization of the immune microenvironment relative to tumor areas, analysis of cellular neighborhoods, and the quantification of spatial heterogeneity, providing a comprehensive toolkit for spatial data analysis. biocViews: BiomedicalInformatics, CellBiology, Spatial, Clustering, DataImport, ImmunoOncology, QualityControl, SingleCell, Software, Visualization Author: Anna Trigos [aut] (), Yuzhou Feng [aut, cre] (), Tianpei Yang [aut], Mabel Li [aut], John Zhu [aut], Volkan Ozcoban [aut], Maria Doyle [aut] Maintainer: Yuzhou Feng URL: https://trigosteam.github.io/SPIAT/ VignetteBuilder: knitr BugReports: https://github.com/trigosteam/SPIAT/issues git_url: https://git.bioconductor.org/packages/SPIAT git_branch: RELEASE_3_20 git_last_commit: 2b7ebac git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SPIAT_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SPIAT_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SPIAT_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SPIAT_1.8.0.tgz vignettes: vignettes/SPIAT/inst/doc/basic_analysis.html, vignettes/SPIAT/inst/doc/cell-colocalisation.html, vignettes/SPIAT/inst/doc/data_reading-formatting.html, vignettes/SPIAT/inst/doc/neighborhood.html, vignettes/SPIAT/inst/doc/quality-control_visualisation.html, vignettes/SPIAT/inst/doc/spatial-heterogeneity.html, vignettes/SPIAT/inst/doc/SPIAT.html, vignettes/SPIAT/inst/doc/tissue-structure.html vignetteTitles: Basic analyses with SPIAT, Quantifying cell colocalisation with SPIAT, Reading in data and data formatting in SPIAT, Identifying cellular neighborhood with SPIAT, Quality control and visualisation with SPIAT, Spatial heterogeneity with SPIAT, Overview of the SPIAT package, Characterising tissue structure with SPIAT hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SPIAT/inst/doc/basic_analysis.R, vignettes/SPIAT/inst/doc/cell-colocalisation.R, vignettes/SPIAT/inst/doc/data_reading-formatting.R, vignettes/SPIAT/inst/doc/neighborhood.R, vignettes/SPIAT/inst/doc/quality-control_visualisation.R, vignettes/SPIAT/inst/doc/spatial-heterogeneity.R, vignettes/SPIAT/inst/doc/SPIAT.R, vignettes/SPIAT/inst/doc/tissue-structure.R dependencyCount: 120 Package: spicyR Version: 1.18.0 Depends: R (>= 4.1) Imports: ggplot2, concaveman, BiocParallel, spatstat.explore, spatstat.geom, lmerTest, S4Vectors, methods, pheatmap, rlang, grDevices, stats, data.table, dplyr, tidyr, scam, SingleCellExperiment, SpatialExperiment, SummarizedExperiment, ggforce, ClassifyR, tibble, magrittr, cli, survival, ggthemes, ggh4x, coxme, ggnewscale Suggests: SpatialDatasets, BiocStyle, knitr, rmarkdown, pkgdown, imcRtools, testthat (>= 3.0.0) License: GPL (>=2) MD5sum: 649f74757f7202a610dc5895c2b4d349 NeedsCompilation: no Title: Spatial analysis of in situ cytometry data Description: The spicyR package provides a framework for performing inference on changes in spatial relationships between pairs of cell types for cell-resolution spatial omics technologies. spicyR consists of three primary steps: (i) summarizing the degree of spatial localization between pairs of cell types for each image; (ii) modelling the variability in localization summary statistics as a function of cell counts and (iii) testing for changes in spatial localizations associated with a response variable. biocViews: SingleCell, CellBasedAssays, Spatial Author: Nicolas Canete [aut], Ellis Patrick [aut, cre], Nicholas Robertson [ctb], Alex Qin [ctb], Farhan Ameen [ctb], Shreya Rao [ctb] Maintainer: Ellis Patrick URL: https://ellispatrick.github.io/spicyR/ https://github.com/SydneyBioX/spicyR, https://sydneybiox.github.io/spicyR/ VignetteBuilder: knitr BugReports: https://github.com/SydneyBioX/spicyR/issues git_url: https://git.bioconductor.org/packages/spicyR git_branch: RELEASE_3_20 git_last_commit: b703887 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/spicyR_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/spicyR_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/spicyR_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/spicyR_1.18.0.tgz vignettes: vignettes/spicyR/inst/doc/spicyR.html vignetteTitles: "Spatial Linear and Mixed-Effects Modelling with spicy" hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/spicyR/inst/doc/spicyR.R importsMe: lisaClust suggestsMe: Statial, spicyWorkflow dependencyCount: 185 Package: spikeLI Version: 2.66.0 Imports: graphics, grDevices, stats, utils License: GPL-2 MD5sum: ed4042921be4030d00fee6fee87a5a69 NeedsCompilation: no Title: Affymetrix Spike-in Langmuir Isotherm Data Analysis Tool Description: SpikeLI is a package that performs the analysis of the Affymetrix spike-in data using the Langmuir Isotherm. The aim of this package is to show the advantages of a physical-chemistry based analysis of the Affymetrix microarray data compared to the traditional methods. The spike-in (or Latin square) data for the HGU95 and HGU133 chipsets have been downloaded from the Affymetrix web site. The model used in the spikeLI package is described in details in E. Carlon and T. Heim, Physica A 362, 433 (2006). biocViews: Microarray, QualityControl Author: Delphine Baillon, Paul Leclercq , Sarah Ternisien, Thomas Heim, Enrico Carlon Maintainer: Enrico Carlon git_url: https://git.bioconductor.org/packages/spikeLI git_branch: RELEASE_3_20 git_last_commit: 2a5771c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/spikeLI_2.66.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/spikeLI_2.66.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/spikeLI_2.66.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/spikeLI_2.66.0.tgz vignettes: vignettes/spikeLI/inst/doc/spikeLI.pdf vignetteTitles: spikeLI hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 4 Package: spiky Version: 1.12.0 Depends: Rsamtools, GenomicRanges, R (>= 3.6.0) Imports: stats, scales, bamlss, methods, tools, IRanges, Biostrings, GenomicAlignments, BlandAltmanLeh, GenomeInfoDb, BSgenome, S4Vectors, graphics, ggplot2, utils Suggests: covr, testthat, rmarkdown, markdown, knitr, devtools, BSgenome.Mmusculus.UCSC.mm10.masked, BSgenome.Hsapiens.UCSC.hg38.masked, BiocManager License: GPL-2 MD5sum: fef6f93009bc9faef02d22ecb3d4ea08 NeedsCompilation: no Title: Spike-in calibration for cell-free MeDIP Description: spiky implements methods and model generation for cfMeDIP (cell-free methylated DNA immunoprecipitation) with spike-in controls. CfMeDIP is an enrichment protocol which avoids destructive conversion of scarce template, making it ideal as a "liquid biopsy," but creating certain challenges in comparing results across specimens, subjects, and experiments. The use of synthetic spike-in standard oligos allows diagnostics performed with cfMeDIP to quantitatively compare samples across subjects, experiments, and time points in both relative and absolute terms. biocViews: DifferentialMethylation, DNAMethylation, Normalization, Preprocessing, QualityControl, Sequencing Author: Samantha Wilson [aut], Lauren Harmon [aut], Tim Triche [aut, cre] Maintainer: Tim Triche URL: https://github.com/trichelab/spiky VignetteBuilder: knitr BugReports: https://github.com/trichelab/spiky/issues git_url: https://git.bioconductor.org/packages/spiky git_branch: RELEASE_3_20 git_last_commit: a179df8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/spiky_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/spiky_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/spiky_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/spiky_1.12.0.tgz vignettes: vignettes/spiky/inst/doc/spiky_vignette.html vignetteTitles: Spiky: Analysing cfMeDIP-seq data with spike-in controls hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/spiky/inst/doc/spiky_vignette.R dependencyCount: 94 Package: spillR Version: 1.2.0 Depends: R (>= 4.3.0), SummarizedExperiment, CATALYST Imports: dplyr, tibble, tidyselect, stats, ggplot2, tidyr, spatstat.univar, S4Vectors, parallel Suggests: knitr, rmarkdown, cowplot, testthat (>= 3.0.0), BiocStyle, hexbin License: LGPL-3 MD5sum: d2ea4ee02e32592d0833fc25efb858e1 NeedsCompilation: no Title: Spillover Compensation in Mass Cytometry Data Description: Channel interference in mass cytometry can cause spillover and may result in miscounting of protein markers. We develop a nonparametric finite mixture model and use the mixture components to estimate the probability of spillover. We implement our method using expectation-maximization to fit the mixture model. biocViews: FlowCytometry, ImmunoOncology, MassSpectrometry, Preprocessing, SingleCell, Software, StatisticalMethod, Visualization, Regression Author: Marco Guazzini [aut, cre] (), Alexander G. Reisach [aut] (), Sebastian Weichwald [aut] (), Christof Seiler [aut] () Maintainer: Marco Guazzini VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/spillR git_branch: RELEASE_3_20 git_last_commit: c134bfd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/spillR_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/spillR_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/spillR_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/spillR_1.2.0.tgz vignettes: vignettes/spillR/inst/doc/spillR-vignette.html vignetteTitles: spillR Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/spillR/inst/doc/spillR-vignette.R dependencyCount: 182 Package: spkTools Version: 1.62.0 Depends: R (>= 2.7.0), Biobase (>= 2.5.5) Imports: Biobase (>= 2.5.5), graphics, grDevices, gtools, methods, RColorBrewer, stats, utils Suggests: xtable License: GPL (>= 2) MD5sum: a1a83ff154c3c0c08103ed53c801919e NeedsCompilation: no Title: Methods for Spike-in Arrays Description: The package contains functions that can be used to compare expression measures on different array platforms. biocViews: Software, Technology, Microarray Author: Matthew N McCall , Rafael A Irizarry Maintainer: Matthew N McCall URL: http://bioconductor.org git_url: https://git.bioconductor.org/packages/spkTools git_branch: RELEASE_3_20 git_last_commit: 53d5aa3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/spkTools_1.62.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/spkTools_1.62.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/spkTools_1.62.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/spkTools_1.62.0.tgz vignettes: vignettes/spkTools/inst/doc/spkDoc.pdf vignetteTitles: spkTools: Spike-in Data Analysis and Visualization hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/spkTools/inst/doc/spkDoc.R dependencyCount: 9 Package: splatter Version: 1.30.0 Depends: R (>= 4.0), SingleCellExperiment Imports: BiocGenerics, BiocParallel, checkmate (>= 2.0.0), crayon, edgeR, fitdistrplus, grDevices, locfit, matrixStats, methods, rlang, S4Vectors, scuttle, stats, SummarizedExperiment, utils, withr Suggests: BASiCS (>= 1.7.10), BiocManager, BiocSingular, BiocStyle, Biostrings, covr, cowplot, GenomeInfoDb, GenomicRanges, ggplot2 (>= 3.4.0), igraph, IRanges, knitr, limSolve, lme4, magick, mfa, phenopath, preprocessCore, progress, pscl, rmarkdown, scales, scater (>= 1.15.16), scDD, scran, SparseDC, spelling, testthat, VariantAnnotation, zinbwave License: GPL-3 + file LICENSE MD5sum: 1438027116db29475e3f719975194e34 NeedsCompilation: no Title: Simple Simulation of Single-cell RNA Sequencing Data Description: Splatter is a package for the simulation of single-cell RNA sequencing count data. It provides a simple interface for creating complex simulations that are reproducible and well-documented. Parameters can be estimated from real data and functions are provided for comparing real and simulated datasets. biocViews: SingleCell, RNASeq, Transcriptomics, GeneExpression, Sequencing, Software, ImmunoOncology Author: Luke Zappia [aut, cre] (, lazappi), Belinda Phipson [aut] (, bphipson), Christina Azodi [ctb] (, azodichr), Alicia Oshlack [aut] () Maintainer: Luke Zappia URL: https://bioconductor.org/packages/splatter/, https://github.com/Oshlack/splatter, http://oshlacklab.com/splatter/ VignetteBuilder: knitr BugReports: https://github.com/Oshlack/splatter/issues git_url: https://git.bioconductor.org/packages/splatter git_branch: RELEASE_3_20 git_last_commit: ac20b07 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/splatter_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/splatter_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/splatter_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/splatter_1.30.0.tgz vignettes: vignettes/splatter/inst/doc/splat_params.html, vignettes/splatter/inst/doc/splatPop.html, vignettes/splatter/inst/doc/splatter.html vignetteTitles: Splat simulation parameters, splatPop simulation, An introduction to the Splatter package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/splatter/inst/doc/splat_params.R, vignettes/splatter/inst/doc/splatPop.R, vignettes/splatter/inst/doc/splatter.R importsMe: SCRIP suggestsMe: ccImpute, mastR, NewWave, scone, scPCA, smartid, scellpam dependencyCount: 63 Package: SpliceWiz Version: 1.8.0 Depends: R (>= 3.5.0), NxtIRFdata Imports: ompBAM, methods, stats, utils, tools, parallel, scales, magrittr, Rcpp (>= 1.0.5), data.table, fst, ggplot2, AnnotationHub, RSQLite, BiocFileCache, BiocGenerics, BiocParallel, Biostrings, BSgenome, DelayedArray, DelayedMatrixStats, genefilter, GenomeInfoDb, GenomicRanges, HDF5Array, htmltools, IRanges, patchwork, pheatmap, progress, plotly, R.utils, rhdf5, rtracklayer, SummarizedExperiment, S4Vectors, shiny, shinyFiles, shinyWidgets, shinydashboard, stringi, rhandsontable, DT, grDevices, heatmaply, matrixStats, RColorBrewer, rvest, httr LinkingTo: ompBAM, Rcpp, RcppProgress Suggests: knitr, rmarkdown, crayon, splines, testthat (>= 3.0.0), DESeq2, limma, DoubleExpSeq, edgeR, DBI, GO.db, AnnotationDbi, fgsea, Rsubread License: MIT + file LICENSE MD5sum: 610351969ab7832e2ab4fae3aa691736 NeedsCompilation: yes Title: interactive analysis and visualization of alternative splicing in R Description: The analysis and visualization of alternative splicing (AS) events from RNA sequencing data remains challenging. SpliceWiz is a user-friendly and performance-optimized R package for AS analysis, by processing alignment BAM files to quantify read counts across splice junctions, IRFinder-based intron retention quantitation, and supports novel splicing event identification. We introduce a novel visualization for AS using normalized coverage, thereby allowing visualization of differential AS across conditions. SpliceWiz features a shiny-based GUI facilitating interactive data exploration of results including gene ontology enrichment. It is performance optimized with multi-threaded processing of BAM files and a new COV file format for fast recall of sequencing coverage. Overall, SpliceWiz streamlines AS analysis, enabling reliable identification of functionally relevant AS events for further characterization. biocViews: Software, Transcriptomics, RNASeq, AlternativeSplicing, Coverage, DifferentialSplicing, DifferentialExpression, GUI, Sequencing Author: Alex Chit Hei Wong [aut, cre, cph], Ulf Schmitz [ctb], William Ritchie [cph] Maintainer: Alex Chit Hei Wong URL: https://github.com/alexchwong/SpliceWiz SystemRequirements: C++11, GNU make VignetteBuilder: knitr BugReports: https://support.bioconductor.org/ git_url: https://git.bioconductor.org/packages/SpliceWiz git_branch: RELEASE_3_20 git_last_commit: 12996a5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SpliceWiz_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SpliceWiz_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpliceWiz_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpliceWiz_1.8.0.tgz vignettes: vignettes/SpliceWiz/inst/doc/SW_Cookbook.html, vignettes/SpliceWiz/inst/doc/SW_QuickStart.html vignetteTitles: SpliceWiz: the cookbook, SpliceWiz: Quick Start hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SpliceWiz/inst/doc/SW_Cookbook.R, vignettes/SpliceWiz/inst/doc/SW_QuickStart.R dependencyCount: 193 Package: SplicingFactory Version: 1.14.0 Depends: R (>= 4.1) Imports: SummarizedExperiment, methods, stats Suggests: testthat, knitr, rmarkdown, ggplot2, tidyr License: GPL-3 + file LICENSE MD5sum: 5fb4a1d4f62f5b569978fb2582f3a9b4 NeedsCompilation: no Title: Splicing Diversity Analysis for Transcriptome Data Description: The SplicingFactory R package uses transcript-level expression values to analyze splicing diversity based on various statistical measures, like Shannon entropy or the Gini index. These measures can quantify transcript isoform diversity within samples or between conditions. Additionally, the package analyzes the isoform diversity data, looking for significant changes between conditions. biocViews: Transcriptomics, RNASeq, DifferentialSplicing, AlternativeSplicing, TranscriptomeVariant Author: Peter A. Szikora [aut], Tamas Por [aut], Endre Sebestyen [aut, cre] () Maintainer: Endre Sebestyen URL: https://github.com/esebesty/SplicingFactory VignetteBuilder: knitr BugReports: https://github.com/esebesty/SplicingFactory/issues git_url: https://git.bioconductor.org/packages/SplicingFactory git_branch: RELEASE_3_20 git_last_commit: 6ef102b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SplicingFactory_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SplicingFactory_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SplicingFactory_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SplicingFactory_1.14.0.tgz vignettes: vignettes/SplicingFactory/inst/doc/SplicingFactory.html vignetteTitles: SplicingFactory hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SplicingFactory/inst/doc/SplicingFactory.R dependencyCount: 36 Package: SplicingGraphs Version: 1.46.0 Depends: GenomicFeatures (>= 1.17.13), GenomicAlignments (>= 1.1.22), Rgraphviz (>= 2.3.7) Imports: methods, utils, graphics, igraph, BiocGenerics, S4Vectors (>= 0.17.5), BiocParallel, IRanges (>= 2.21.2), GenomeInfoDb, GenomicRanges (>= 1.23.21), Rsamtools, graph Suggests: igraph, Gviz, txdbmaker, TxDb.Hsapiens.UCSC.hg19.knownGene, RNAseqData.HNRNPC.bam.chr14, RUnit License: Artistic-2.0 MD5sum: 5c9b55ff8c3c07ae1739c5d29f9bdafd NeedsCompilation: no Title: Create, manipulate, visualize splicing graphs, and assign RNA-seq reads to them Description: This package allows the user to create, manipulate, and visualize splicing graphs and their bubbles based on a gene model for a given organism. Additionally it allows the user to assign RNA-seq reads to the edges of a set of splicing graphs, and to summarize them in different ways. biocViews: Genetics, Annotation, DataRepresentation, Visualization, Sequencing, RNASeq, GeneExpression, AlternativeSplicing, Transcription, ImmunoOncology Author: D. Bindreither, M. Carlson, M. Morgan, H. Pagès Maintainer: H. Pagès URL: https://bioconductor.org/packages/SplicingGraphs BugReports: https://github.com/Bioconductor/SplicingGraphs/issues git_url: https://git.bioconductor.org/packages/SplicingGraphs git_branch: RELEASE_3_20 git_last_commit: fbd614a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SplicingGraphs_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SplicingGraphs_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SplicingGraphs_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SplicingGraphs_1.46.0.tgz vignettes: vignettes/SplicingGraphs/inst/doc/SplicingGraphs.pdf vignetteTitles: Splicing graphs and RNA-seq data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SplicingGraphs/inst/doc/SplicingGraphs.R dependencyCount: 81 Package: splineTimeR Version: 1.34.0 Depends: R (>= 3.3), Biobase, igraph, limma, GSEABase, gtools, splines, GeneNet (>= 1.2.13), longitudinal (>= 1.1.12), FIs Suggests: knitr License: GPL-3 MD5sum: 31423c3cd6996cadd3237a0b500630b5 NeedsCompilation: no Title: Time-course differential gene expression data analysis using spline regression models followed by gene association network reconstruction Description: This package provides functions for differential gene expression analysis of gene expression time-course data. Natural cubic spline regression models are used. Identified genes may further be used for pathway enrichment analysis and/or the reconstruction of time dependent gene regulatory association networks. biocViews: GeneExpression, DifferentialExpression, TimeCourse, Regression, GeneSetEnrichment, NetworkEnrichment, NetworkInference, GraphAndNetwork Author: Agata Michna Maintainer: Herbert Braselmann , Martin Selmansberger VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/splineTimeR git_branch: RELEASE_3_20 git_last_commit: 85b3b1d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/splineTimeR_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/splineTimeR_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/splineTimeR_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/splineTimeR_1.34.0.tgz vignettes: vignettes/splineTimeR/inst/doc/splineTimeR.pdf vignetteTitles: splineTimeR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/splineTimeR/inst/doc/splineTimeR.R dependencyCount: 64 Package: SPLINTER Version: 1.32.0 Depends: R (>= 3.6.0), grDevices, stats Imports: graphics, ggplot2, seqLogo, Biostrings, pwalign, biomaRt, GenomicAlignments, GenomicRanges, GenomicFeatures, Gviz, IRanges, S4Vectors, GenomeInfoDb, utils, plyr,stringr, methods, BSgenome.Mmusculus.UCSC.mm9, googleVis Suggests: txdbmaker, BiocStyle, knitr, rmarkdown License: GPL-2 MD5sum: 16b64c57fa376c2bd1fe45c4c30fc810 NeedsCompilation: no Title: Splice Interpreter of Transcripts Description: Provides tools to analyze alternative splicing sites, interpret outcomes based on sequence information, select and design primers for site validiation and give visual representation of the event to guide downstream experiments. biocViews: ImmunoOncology, GeneExpression, RNASeq, Visualization, AlternativeSplicing Author: Diana Low [aut, cre] Maintainer: Diana Low URL: https://github.com/dianalow/SPLINTER/ VignetteBuilder: knitr BugReports: https://github.com/dianalow/SPLINTER/issues git_url: https://git.bioconductor.org/packages/SPLINTER git_branch: RELEASE_3_20 git_last_commit: 547f458 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SPLINTER_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SPLINTER_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SPLINTER_1.32.0.tgz vignettes: vignettes/SPLINTER/inst/doc/vignette.pdf vignetteTitles: SPLINTER hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SPLINTER/inst/doc/vignette.R dependencyCount: 162 Package: splots Version: 1.72.0 Imports: grid, RColorBrewer Suggests: BiocStyle, knitr, rmarkdown, assertthat, HD2013SGI, dplyr, ggplot2 License: LGPL MD5sum: 392b3bdf03e72c4ae1e0d619340917df NeedsCompilation: no Title: Visualization of high-throughput assays in microtitre plate or slide format Description: This package is here to support legacy usages of it, but it should not be used for new code development. It provides a single function, plotScreen, for visualising data in microtitre plate or slide format. As a better alternative for such functionality, please consider the platetools package on CRAN (https://cran.r-project.org/package=platetools and https://github.com/Swarchal/platetools), or ggplot2 (geom_raster, facet_wrap) as exemplified in the vignette of this package. biocViews: Visualization, Sequencing, MicrotitrePlateAssay Author: Wolfgang Huber, Oleg Sklyar Maintainer: Wolfgang Huber VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/splots git_branch: RELEASE_3_20 git_last_commit: a5f6eff git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/splots_1.72.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/splots_1.72.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/splots_1.72.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/splots_1.72.0.tgz vignettes: vignettes/splots/inst/doc/splots.html vignetteTitles: splots: visualization of data from assays in microtitre plate or slide format hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/splots/inst/doc/splots.R dependsOnMe: HD2013SGI dependencyCount: 2 Package: SPONGE Version: 1.28.0 Depends: R (>= 3.6) Imports: Biobase, stats, ppcor, logging, foreach, doRNG, data.table, MASS, expm, gRbase, glmnet, igraph, iterators, tidyverse, caret, dplyr, biomaRt, randomForest, ggridges, cvms, ComplexHeatmap, ggplot2, MetBrewer, rlang, tnet, ggpubr, stringr, tidyr Suggests: testthat, knitr, rmarkdown, visNetwork, ggrepel, gridExtra, digest, doParallel, bigmemory, GSVA License: GPL (>=3) MD5sum: 2133e52cd4046b2fa7e40988ac2cdc0c NeedsCompilation: no Title: Sparse Partial Correlations On Gene Expression Description: This package provides methods to efficiently detect competitive endogeneous RNA interactions between two genes. Such interactions are mediated by one or several miRNAs such that both gene and miRNA expression data for a larger number of samples is needed as input. The SPONGE package now also includes spongEffects: ceRNA modules offer patient-specific insights into the miRNA regulatory landscape. biocViews: GeneExpression, Transcription, GeneRegulation, NetworkInference, Transcriptomics, SystemsBiology, Regression, RandomForest, MachineLearning Author: Markus List [aut, cre] (), Markus Hoffmann [aut] (), Lena Strasser [aut] () Maintainer: Markus List VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SPONGE git_branch: RELEASE_3_20 git_last_commit: 65f0a74 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SPONGE_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SPONGE_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SPONGE_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SPONGE_1.28.0.tgz vignettes: vignettes/SPONGE/inst/doc/spongEffects.html, vignettes/SPONGE/inst/doc/SPONGE.html vignetteTitles: spongEffects vignette, SPONGE vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SPONGE/inst/doc/spongEffects.R, vignettes/SPONGE/inst/doc/SPONGE.R importsMe: miRspongeR suggestsMe: mirTarRnaSeq dependencyCount: 226 Package: spoon Version: 1.2.0 Depends: R (>= 4.4) Imports: SpatialExperiment, BRISC, nnSVG, BiocParallel, Matrix, methods, SummarizedExperiment, stats, utils, scuttle Suggests: testthat, STexampleData, knitr License: MIT + file LICENSE Archs: x64 MD5sum: dbeb4e68770bfb719dc68dcab0c96364 NeedsCompilation: no Title: Address the Mean-variance Relationship in Spatial Transcriptomics Data Description: This package addresses the mean-variance relationship in spatially resolved transcriptomics data. Precision weights are generated for individual observations using Empirical Bayes techniques. These weights are used to rescale the data and covariates, which are then used as input in spatially variable gene detection tools. biocViews: Spatial, SingleCell, Transcriptomics, GeneExpression, Preprocessing Author: Kinnary Shah [aut, cre] (), Boyi Guo [aut] (), Stephanie C. Hicks [aut] () Maintainer: Kinnary Shah URL: https://github.com/kinnaryshah/spoon VignetteBuilder: knitr BugReports: https://github.com/kinnaryshah/spoon/issues git_url: https://git.bioconductor.org/packages/spoon git_branch: RELEASE_3_20 git_last_commit: be9a398 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/spoon_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/spoon_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/spoon_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/spoon_1.2.0.tgz vignettes: vignettes/spoon/inst/doc/spoon.html vignetteTitles: spoon Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/spoon/inst/doc/spoon.R dependencyCount: 91 Package: SpotClean Version: 1.8.0 Depends: R (>= 4.2.0), Imports: stats, methods, utils, dplyr, S4Vectors, SummarizedExperiment, SpatialExperiment, Matrix, rhdf5, ggplot2, grid, readbitmap, rjson, tibble, viridis, grDevices, RColorBrewer, Seurat, rlang Suggests: testthat (>= 2.1.0), knitr, BiocStyle, rmarkdown, R.utils, spelling License: GPL-3 MD5sum: 9bd3112138af8c8398a05bd0befe71d6 NeedsCompilation: yes Title: SpotClean adjusts for spot swapping in spatial transcriptomics data Description: SpotClean is a computational method to adjust for spot swapping in spatial transcriptomics data. Recent spatial transcriptomics experiments utilize slides containing thousands of spots with spot-specific barcodes that bind mRNA. Ideally, unique molecular identifiers at a spot measure spot-specific expression, but this is often not the case due to bleed from nearby spots, an artifact we refer to as spot swapping. SpotClean is able to estimate the contamination rate in observed data and decontaminate the spot swapping effect, thus increase the sensitivity and precision of downstream analyses. biocViews: DataImport, RNASeq, Sequencing, GeneExpression, Spatial, SingleCell, Transcriptomics, Preprocessing Author: Zijian Ni [aut, cre] (), Christina Kendziorski [ctb] Maintainer: Zijian Ni URL: https://github.com/zijianni/SpotClean VignetteBuilder: knitr BugReports: https://github.com/zijianni/SpotClean/issues git_url: https://git.bioconductor.org/packages/SpotClean git_branch: RELEASE_3_20 git_last_commit: b4fab33 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SpotClean_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SpotClean_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpotClean_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpotClean_1.8.0.tgz vignettes: vignettes/SpotClean/inst/doc/SpotClean.html vignetteTitles: SpotClean hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SpotClean/inst/doc/SpotClean.R dependencyCount: 192 Package: SPOTlight Version: 1.10.0 Depends: R (>= 4.1) Imports: ggplot2, NMF, Matrix, matrixStats, nnls, SingleCellExperiment, sparseMatrixStats, stats Suggests: BiocStyle, colorBlindness, DelayedArray, DropletUtils, ExperimentHub, ggcorrplot, grDevices, grid, igraph, jpeg, knitr, methods, png, rmarkdown, scater, scatterpie, scran, SpatialExperiment, SummarizedExperiment, S4Vectors, TabulaMurisSenisData, TENxVisiumData, testthat License: GPL-3 MD5sum: 638290a97f214a906f347c6bb5a8c5dd NeedsCompilation: no Title: `SPOTlight`: Spatial Transcriptomics Deconvolution Description: `SPOTlight`provides a method to deconvolute spatial transcriptomics spots using a seeded NMF approach along with visualization tools to assess the results. Spatially resolved gene expression profiles are key to understand tissue organization and function. However, novel spatial transcriptomics (ST) profiling techniques lack single-cell resolution and require a combination with single-cell RNA sequencing (scRNA-seq) information to deconvolute the spatially indexed datasets. Leveraging the strengths of both data types, we developed SPOTlight, a computational tool that enables the integration of ST with scRNA-seq data to infer the location of cell types and states within a complex tissue. SPOTlight is centered around a seeded non-negative matrix factorization (NMF) regression, initialized using cell-type marker genes and non-negative least squares (NNLS) to subsequently deconvolute ST capture locations (spots). biocViews: SingleCell, Spatial, StatisticalMethod Author: Marc Elosua-Bayes [aut, cre], Helena L. Crowell [aut] Maintainer: Marc Elosua-Bayes URL: https://github.com/MarcElosua/SPOTlight VignetteBuilder: knitr BugReports: https://github.com/MarcElosua/SPOTlight/issues git_url: https://git.bioconductor.org/packages/SPOTlight git_branch: RELEASE_3_20 git_last_commit: 3588833 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SPOTlight_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SPOTlight_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SPOTlight_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SPOTlight_1.10.0.tgz vignettes: vignettes/SPOTlight/inst/doc/SPOTlight_kidney.html vignetteTitles: "SPOTlight" hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SPOTlight/inst/doc/SPOTlight_kidney.R dependencyCount: 82 Package: SpotSweeper Version: 1.2.0 Depends: R (>= 4.3.0) Imports: SpatialExperiment, SummarizedExperiment, BiocNeighbors, SingleCellExperiment, stats, escheR, MASS, ggplot2, spatialEco, grDevices Suggests: knitr, BiocStyle, rmarkdown, scuttle, STexampleData, ggpubr, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: 838fb68945064576dd29d556a42dcd64 NeedsCompilation: no Title: Spatially-aware quality control for spatial transcriptomics Description: Spatially-aware quality control (QC) software for both spot-level and artifact-level QC in spot-based spatial transcripomics, such as 10x Visium. These methods calculate local (nearest-neighbors) mean and variance of standard QC metrics (library size, unique genes, and mitochondrial percentage) to identify outliers spot and large technical artifacts. Scales linearly with the number of spots and is designed to be used with 'SpatialExperiment' objects. biocViews: Software, Spatial, Transcriptomics, QualityControl, GeneExpression, Author: Michael Totty [aut, cre] (), Boyi Guo [aut] () Maintainer: Michael Totty URL: https://github.com/MicTott/SpotSweeper VignetteBuilder: knitr BugReports: https://support.bioconductor.org/tag/SpotSweeper git_url: https://git.bioconductor.org/packages/SpotSweeper git_branch: RELEASE_3_20 git_last_commit: 5ae12ce git_last_commit_date: 2024-11-12 Date/Publication: 2024-11-13 source.ver: src/contrib/SpotSweeper_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SpotSweeper_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpotSweeper_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpotSweeper_1.2.0.tgz vignettes: vignettes/SpotSweeper/inst/doc/getting_started.html vignetteTitles: Getting Started with `SpotSweeper` hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SpotSweeper/inst/doc/getting_started.R dependencyCount: 101 Package: spqn Version: 1.18.0 Depends: R (>= 4.0), ggplot2, ggridges, SummarizedExperiment, BiocGenerics Imports: graphics, stats, utils, matrixStats Suggests: BiocStyle, knitr, rmarkdown, tools, spqnData (>= 0.99.3), RUnit License: Artistic-2.0 MD5sum: 9f6486af7313e8b6ceed1ffd6f91f0a3 NeedsCompilation: no Title: Spatial quantile normalization Description: The spqn package implements spatial quantile normalization (SpQN). This method was developed to remove a mean-correlation relationship in correlation matrices built from gene expression data. It can serve as pre-processing step prior to a co-expression analysis. biocViews: NetworkInference, GraphAndNetwork, Normalization Author: Yi Wang [cre, aut], Kasper Daniel Hansen [aut] Maintainer: Yi Wang URL: https://github.com/hansenlab/spqn VignetteBuilder: knitr BugReports: https://github.com/hansenlab/spqn/issues git_url: https://git.bioconductor.org/packages/spqn git_branch: RELEASE_3_20 git_last_commit: 42903a6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/spqn_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/spqn_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/spqn_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/spqn_1.18.0.tgz vignettes: vignettes/spqn/inst/doc/spqn.html vignetteTitles: spqn User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/spqn/inst/doc/spqn.R dependencyCount: 63 Package: SPsimSeq Version: 1.16.0 Depends: R (>= 4.0) Imports: stats, methods, SingleCellExperiment, fitdistrplus, graphics, edgeR, Hmisc, WGCNA, limma, mvtnorm, phyloseq, utils Suggests: knitr, rmarkdown, LSD, testthat, BiocStyle License: GPL-2 MD5sum: 2130ee7f20b6c1f9cd2d8cbcae5e49c8 NeedsCompilation: no Title: Semi-parametric simulation tool for bulk and single-cell RNA sequencing data Description: SPsimSeq uses a specially designed exponential family for density estimation to constructs the distribution of gene expression levels from a given real RNA sequencing data (single-cell or bulk), and subsequently simulates a new dataset from the estimated marginal distributions using Gaussian-copulas to retain the dependence between genes. It allows simulation of multiple groups and batches with any required sample size and library size. biocViews: GeneExpression, RNASeq, SingleCell, Sequencing, DNASeq Author: Alemu Takele Assefa [aut], Olivier Thas [ths], Joris Meys [cre], Stijn Hawinkel [aut] Maintainer: Joris Meys URL: https://github.com/CenterForStatistics-UGent/SPsimSeq VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SPsimSeq git_branch: RELEASE_3_20 git_last_commit: 890aab9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SPsimSeq_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SPsimSeq_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SPsimSeq_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SPsimSeq_1.16.0.tgz vignettes: vignettes/SPsimSeq/inst/doc/SPsimSeq.html vignetteTitles: Manual for the SPsimSeq package: semi-parametric simulation for bulk and single cell RNA-seq data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SPsimSeq/inst/doc/SPsimSeq.R importsMe: SurfR dependencyCount: 144 Package: SQLDataFrame Version: 1.20.0 Depends: DelayedArray, S4Vectors Imports: stats, utils, methods, BiocGenerics, RSQLite, duckdb, DBI Suggests: knitr, rmarkdown, BiocStyle, testthat License: LGPL (>= 3); File LICENSE MD5sum: 2448466a5203b92539fe0e1b7522379b NeedsCompilation: no Title: Representation of SQL tables in DataFrame metaphor Description: Implements bindings for SQL tables that are compatible with Bioconductor S4 data structures, namely the DataFrame and DelayedArray. This allows SQL-derived data to be easily used inside other Bioconductor objects (e.g., SummarizedExperiments) while keeping everything on disk. biocViews: DataRepresentation, Infrastructure, Software Author: Qian Liu [aut, cre] (), Aaron Lun [aut], Martin Morgan [aut] Maintainer: Qian Liu URL: https://github.com/Bioconductor/SQLDataFrame VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/SQLDataFrame/issues git_url: https://git.bioconductor.org/packages/SQLDataFrame git_branch: RELEASE_3_20 git_last_commit: 92c5fb4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SQLDataFrame_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SQLDataFrame_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SQLDataFrame_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SQLDataFrame_1.20.0.tgz vignettes: vignettes/SQLDataFrame/inst/doc/SQLDataFrame_userguide.html vignetteTitles: User guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SQLDataFrame/inst/doc/SQLDataFrame_userguide.R dependencyCount: 39 Package: squallms Version: 1.0.0 Depends: R (>= 3.5.0) Imports: xcms, MSnbase, MsExperiment, RaMS, dplyr, tidyr, tibble, ggplot2, shiny, plotly, data.table, caret, stats, graphics, utils, keys Suggests: knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: 470efd3eef6b7b699f8c4aaa234e688c NeedsCompilation: no Title: Speedy quality assurance via lasso labeling for LC-MS data Description: squallms is a Bioconductor R package that implements a "semi-labeled" approach to untargeted mass spectrometry data. It pulls in raw data from mass-spec files to calculate several metrics that are then used to label MS features in bulk as high or low quality. These metrics of peak quality are then passed to a simple logistic model that produces a fully-labeled dataset suitable for downstream analysis. biocViews: MassSpectrometry, Metabolomics, Proteomics, Lipidomics, ShinyApps, Classification, Clustering, FeatureExtraction, PrincipalComponent, Regression, Preprocessing, QualityControl, Visualization Author: William Kumler [aut, cre, cph] () Maintainer: William Kumler URL: https://github.com/wkumler/squallms VignetteBuilder: knitr BugReports: https://github.com/wkumler/squallms/issues git_url: https://git.bioconductor.org/packages/squallms git_branch: RELEASE_3_20 git_last_commit: 2140f95 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/squallms_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/squallms_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/squallms_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/squallms_1.0.0.tgz vignettes: vignettes/squallms/inst/doc/intro_to_squallms.html vignetteTitles: Introduction to squallms hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/squallms/inst/doc/intro_to_squallms.R dependencyCount: 186 Package: sRACIPE Version: 1.22.0 Depends: R (>= 3.6.0),SummarizedExperiment, methods, Rcpp Imports: ggplot2, reshape2, MASS, RColorBrewer, gridExtra,visNetwork, gplots, umap, htmlwidgets, S4Vectors, BiocGenerics, grDevices, stats, utils, graphics LinkingTo: Rcpp Suggests: knitr, BiocStyle, rmarkdown, tinytest, doFuture License: MIT + file LICENSE MD5sum: 44e5d2919a826491f03b1180974b4098 NeedsCompilation: yes Title: Systems biology tool to simulate gene regulatory circuits Description: sRACIPE implements a randomization-based method for gene circuit modeling. It allows us to study the effect of both the gene expression noise and the parametric variation on any gene regulatory circuit (GRC) using only its topology, and simulates an ensemble of models with random kinetic parameters at multiple noise levels. Statistical analysis of the generated gene expressions reveals the basin of attraction and stability of various phenotypic states and their changes associated with intrinsic and extrinsic noises. sRACIPE provides a holistic picture to evaluate the effects of both the stochastic nature of cellular processes and the parametric variation. biocViews: ResearchField, SystemsBiology, MathematicalBiology, GeneExpression, GeneRegulation, GeneTarget Author: Vivek Kohar [aut, cre] (), Mingyang Lu [aut] Maintainer: Vivek Kohar URL: https://vivekkohar.github.io/sRACIPE/, https://github.com/vivekkohar/sRACIPE, https://geneex.jax.org/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/sRACIPE git_branch: RELEASE_3_20 git_last_commit: 9d5538c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sRACIPE_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sRACIPE_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sRACIPE_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sRACIPE_1.22.0.tgz vignettes: vignettes/sRACIPE/inst/doc/sRACIPE.html vignetteTitles: A systems biology tool for gene regulatory circuit simulation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/sRACIPE/inst/doc/sRACIPE.R dependencyCount: 102 Package: SRAdb Version: 1.68.1 Depends: RSQLite, graph, RCurl Imports: R.utils Suggests: Rgraphviz License: Artistic-2.0 MD5sum: c9916406ab02023fcd0132b3301917a1 NeedsCompilation: no Title: A compilation of metadata from NCBI SRA and tools Description: The Sequence Read Archive (SRA) is the largest public repository of sequencing data from the next generation of sequencing platforms including Roche 454 GS System, Illumina Genome Analyzer, Applied Biosystems SOLiD System, Helicos Heliscope, and others. However, finding data of interest can be challenging using current tools. SRAdb is an attempt to make access to the metadata associated with submission, study, sample, experiment and run much more feasible. This is accomplished by parsing all the NCBI SRA metadata into a SQLite database that can be stored and queried locally. Fulltext search in the package make querying metadata very flexible and powerful. fastq and sra files can be downloaded for doing alignment locally. Beside ftp protocol, the SRAdb has funcitons supporting fastp protocol (ascp from Aspera Connect) for faster downloading large data files over long distance. The SQLite database is updated regularly as new data is added to SRA and can be downloaded at will for the most up-to-date metadata. biocViews: Infrastructure, Sequencing, DataImport Author: Jack Zhu and Sean Davis Maintainer: Jack Zhu BugReports: https://github.com/zhujack/SRAdb/issues/new git_url: https://git.bioconductor.org/packages/SRAdb git_branch: RELEASE_3_20 git_last_commit: d249629 git_last_commit_date: 2024-12-10 Date/Publication: 2024-12-12 source.ver: src/contrib/SRAdb_1.68.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/SRAdb_1.68.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SRAdb_1.68.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SRAdb_1.68.1.tgz vignettes: vignettes/SRAdb/inst/doc/SRAdb.pdf vignetteTitles: Using SRAdb to Query the Sequence Read Archive hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SRAdb/inst/doc/SRAdb.R suggestsMe: parathyroidSE dependencyCount: 29 Package: sscu Version: 2.36.0 Depends: R (>= 3.3) Imports: Biostrings (>= 2.36.4), seqinr (>= 3.1-3), BiocGenerics (>= 0.16.1) Suggests: knitr, rmarkdown License: GPL (>= 2) MD5sum: 6c8a2699eccbfa005a3f640275b8936d NeedsCompilation: no Title: Strength of Selected Codon Usage Description: The package calculates the indexes for selective stength in codon usage in bacteria species. (1) The package can calculate the strength of selected codon usage bias (sscu, also named as s_index) based on Paul Sharp's method. The method take into account of background mutation rate, and focus only on four pairs of codons with universal translational advantages in all bacterial species. Thus the sscu index is comparable among different species. (2) The package can detect the strength of translational accuracy selection by Akashi's test. The test tabulating all codons into four categories with the feature as conserved/variable amino acids and optimal/non-optimal codons. (3) Optimal codon lists (selected codons) can be calculated by either op_highly function (by using the highly expressed genes compared with all genes to identify optimal codons), or op_corre_CodonW/op_corre_NCprime function (by correlative method developed by Hershberg & Petrov). Users will have a list of optimal codons for further analysis, such as input to the Akashi's test. (4) The detailed codon usage information, such as RSCU value, number of optimal codons in the highly/all gene set, as well as the genomic gc3 value, can be calculate by the optimal_codon_statistics and genomic_gc3 function. (5) Furthermore, we added one test function low_frequency_op in the package. The function try to find the low frequency optimal codons, among all the optimal codons identified by the op_highly function. biocViews: Genetics, GeneExpression, WholeGenome Author: Yu Sun Maintainer: Yu Sun VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/sscu git_branch: RELEASE_3_20 git_last_commit: 7f90730 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sscu_2.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sscu_2.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sscu_2.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sscu_2.36.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 36 Package: sSeq Version: 1.44.0 Depends: R (>= 3.0), caTools, RColorBrewer License: GPL (>= 3) MD5sum: f53027265f3d855adb218783bdc23f3a NeedsCompilation: no Title: Shrinkage estimation of dispersion in Negative Binomial models for RNA-seq experiments with small sample size Description: The purpose of this package is to discover the genes that are differentially expressed between two conditions in RNA-seq experiments. Gene expression is measured in counts of transcripts and modeled with the Negative Binomial (NB) distribution using a shrinkage approach for dispersion estimation. The method of moment (MM) estimates for dispersion are shrunk towards an estimated target, which minimizes the average squared difference between the shrinkage estimates and the initial estimates. The exact per-gene probability under the NB model is calculated, and used to test the hypothesis that the expected expression of a gene in two conditions identically follow a NB distribution. biocViews: ImmunoOncology, RNASeq Author: Danni Yu , Wolfgang Huber and Olga Vitek Maintainer: Danni Yu git_url: https://git.bioconductor.org/packages/sSeq git_branch: RELEASE_3_20 git_last_commit: d3a8cc2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sSeq_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sSeq_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sSeq_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sSeq_1.44.0.tgz vignettes: vignettes/sSeq/inst/doc/sSeq.pdf vignetteTitles: sSeq hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sSeq/inst/doc/sSeq.R importsMe: MLSeq suggestsMe: NBLDA dependencyCount: 3 Package: ssize Version: 1.80.0 Depends: gdata, xtable License: LGPL MD5sum: 7655a80644294da2d9b1daffb06917b7 NeedsCompilation: no Title: Estimate Microarray Sample Size Description: Functions for computing and displaying sample size information for gene expression arrays. biocViews: Microarray, DifferentialExpression Author: Gregory R. Warnes, Peng Liu, and Fasheng Li Maintainer: Gregory R. Warnes git_url: https://git.bioconductor.org/packages/ssize git_branch: RELEASE_3_20 git_last_commit: 840e4b1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ssize_1.80.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ssize_1.80.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ssize_1.80.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ssize_1.80.0.tgz vignettes: vignettes/ssize/inst/doc/ssize.pdf vignetteTitles: Sample Size Estimation for Microarray Experiments Using the \code{ssize} package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ssize/inst/doc/ssize.R suggestsMe: maGUI dependencyCount: 6 Package: sSNAPPY Version: 1.10.0 Depends: R (>= 4.3.0), ggplot2 Imports: dplyr (>= 1.1), magrittr, rlang, stats, graphite, tibble, ggraph, igraph, reshape2, org.Hs.eg.db, SummarizedExperiment, edgeR, methods, ggforce, pheatmap, utils, stringr, gtools, tidyr Suggests: BiocManager, BiocStyle, colorspace, cowplot, DT, htmltools, knitr, pander, patchwork, rmarkdown, spelling, testthat (>= 3.0.0), tidyverse License: GPL-3 MD5sum: 19c4be1cf2891d0fe3497ebb4bfcbf2f NeedsCompilation: no Title: Single Sample directioNAl Pathway Perturbation analYsis Description: A single sample pathway perturbation testing method for RNA-seq data. The method propagates changes in gene expression down gene-set topologies to compute single-sample directional pathway perturbation scores that reflect potential direction of change. Perturbation scores can be used to test significance of pathway perturbation at both individual-sample and treatment levels. biocViews: Software, GeneExpression, GeneSetEnrichment, GeneSignaling Author: Wenjun Liu [aut, cre] (), Stephen Pederson [aut] () Maintainer: Wenjun Liu URL: https://wenjun-liu.github.io/sSNAPPY/ SystemRequirements: C++11 VignetteBuilder: knitr BugReports: https://github.com/Wenjun-Liu/sSNAPPY/issues git_url: https://git.bioconductor.org/packages/sSNAPPY git_branch: RELEASE_3_20 git_last_commit: 7e17b9e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sSNAPPY_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sSNAPPY_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sSNAPPY_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sSNAPPY_1.10.0.tgz vignettes: vignettes/sSNAPPY/inst/doc/sSNAPPY.html vignetteTitles: Single Sample Directional Pathway Perturbation Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sSNAPPY/inst/doc/sSNAPPY.R dependencyCount: 109 Package: ssPATHS Version: 1.20.0 Depends: R (>= 3.5.0), SummarizedExperiment Imports: ROCR, dml, MESS Suggests: ggplot2, testthat (>= 2.1.0) License: MIT + file LICENSE MD5sum: 01957efa93b77612a47d0955356653a0 NeedsCompilation: no Title: ssPATHS: Single Sample PATHway Score Description: This package generates pathway scores from expression data for single samples after training on a reference cohort. The score is generated by taking the expression of a gene set (pathway) from a reference cohort and performing linear discriminant analysis to distinguish samples in the cohort that have the pathway augmented and not. The separating hyperplane is then used to score new samples. biocViews: Software, GeneExpression, BiomedicalInformatics, RNASeq, Pathways, Transcriptomics, DimensionReduction, Classification Author: Natalie R. Davidson Maintainer: Natalie R. Davidson git_url: https://git.bioconductor.org/packages/ssPATHS git_branch: RELEASE_3_20 git_last_commit: 37a0886 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ssPATHS_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ssPATHS_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ssPATHS_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ssPATHS_1.20.0.tgz vignettes: vignettes/ssPATHS/inst/doc/ssPATHS.pdf vignetteTitles: Using ssPATHS hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ssPATHS/inst/doc/ssPATHS.R dependencyCount: 119 Package: ssrch Version: 1.22.0 Depends: R (>= 3.6), methods Imports: shiny, DT, utils Suggests: knitr, testthat, rmarkdown, BiocStyle License: Artistic-2.0 Archs: x64 MD5sum: 50c6e553985475d718389f6923691ef0 NeedsCompilation: no Title: a simple search engine Description: Demonstrate tokenization and a search gadget for collections of CSV files. biocViews: Infrastructure Author: Vince Carey Maintainer: VJ Carey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ssrch git_branch: RELEASE_3_20 git_last_commit: 20d97c4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ssrch_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ssrch_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ssrch_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ssrch_1.22.0.tgz vignettes: vignettes/ssrch/inst/doc/ssrch.html vignetteTitles: ssrch: small search engine hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ssrch/inst/doc/ssrch.R dependencyCount: 47 Package: ssviz Version: 1.40.0 Depends: R (>= 3.5.0), methods, Rsamtools, Biostrings, reshape, ggplot2, RColorBrewer, stats Suggests: knitr License: GPL-2 MD5sum: 5a9f304b4fdae1b67425470948684237 NeedsCompilation: no Title: A small RNA-seq visualizer and analysis toolkit Description: Small RNA sequencing viewer biocViews: ImmunoOncology, Sequencing,RNASeq,Visualization,MultipleComparison,Genetics Author: Diana Low Maintainer: Diana Low VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ssviz git_branch: RELEASE_3_20 git_last_commit: 4d570a8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ssviz_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ssviz_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ssviz_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ssviz_1.40.0.tgz vignettes: vignettes/ssviz/inst/doc/ssviz.pdf vignetteTitles: ssviz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ssviz/inst/doc/ssviz.R dependencyCount: 71 Package: StabMap Version: 1.0.0 Depends: R (>= 4.4.0), Imports: igraph, slam, BiocNeighbors, Matrix, MASS, abind, SummarizedExperiment, methods, MatrixGenerics, BiocGenerics, BiocSingular, BiocParallel Suggests: scran, scater, knitr, UpSetR, gridExtra, SingleCellMultiModal, BiocStyle, magrittr, testthat (>= 3.0.0), purrr, sparseMatrixStats License: GPL-2 MD5sum: d6f3b17a6b922b54b815d22481ed956f NeedsCompilation: no Title: Stabilised mosaic single cell data integration using unshared features Description: StabMap performs single cell mosaic data integration by first building a mosaic data topology, and for each reference dataset, traverses the topology to project and predict data onto a common embedding. Mosaic data should be provided in a list format, with all relevant features included in the data matrices within each list object. The output of stabMap is a joint low-dimensional embedding taking into account all available relevant features. Expression imputation can also be performed using the StabMap embedding and any of the original data matrices for given reference and query cell lists. biocViews: SingleCell, DimensionReduction, Software Author: Shila Ghazanfar [aut, cre, ctb], Aiden Jin [ctb], Nicholas Robertson [ctb] Maintainer: Shila Ghazanfar URL: https://sydneybiox.github.io/StabMap, https://sydneybiox.github.io/StabMap/ VignetteBuilder: knitr BugReports: https://github.com/sydneybiox/StabMap/issues git_url: https://git.bioconductor.org/packages/StabMap git_branch: RELEASE_3_20 git_last_commit: cdc1bee git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/StabMap_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/StabMap_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/StabMap_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/StabMap_1.0.0.tgz vignettes: vignettes/StabMap/inst/doc/stabMap_PBMC_Multiome.html vignetteTitles: Mosaic single cell data integration hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/StabMap/inst/doc/stabMap_PBMC_Multiome.R dependencyCount: 64 Package: stageR Version: 1.28.0 Depends: R (>= 3.4), SummarizedExperiment Imports: methods, stats Suggests: knitr, rmarkdown, BiocStyle, methods, Biobase, edgeR, limma, DEXSeq, testthat License: GNU General Public License version 3 MD5sum: 00122ad1bc1040fc4eb4e3430d9bb8ef NeedsCompilation: no Title: stageR: stage-wise analysis of high throughput gene expression data in R Description: The stageR package allows automated stage-wise analysis of high-throughput gene expression data. The method is published in Genome Biology at https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1277-0 biocViews: Software, StatisticalMethod Author: Koen Van den Berge and Lieven Clement Maintainer: Koen Van den Berge VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/stageR git_branch: RELEASE_3_20 git_last_commit: c43e0bc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/stageR_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/stageR_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/stageR_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/stageR_1.28.0.tgz vignettes: vignettes/stageR/inst/doc/stageRVignette.html vignetteTitles: stageR: stage-wise analysis of high-throughput gene expression data in R hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/stageR/inst/doc/stageRVignette.R dependsOnMe: rnaseqDTU suggestsMe: muscat, satuRn dependencyCount: 36 Package: standR Version: 1.10.0 Depends: R (>= 4.1) Imports: dplyr, SpatialExperiment (>= 1.5.2), SummarizedExperiment, SingleCellExperiment, edgeR, rlang, readr, tibble, ggplot2, tidyr, ruv, limma, patchwork, S4Vectors, Biobase, BiocGenerics, grDevices, stats, methods, ggalluvial, mclustcomp, RUVSeq Suggests: knitr, ExperimentHub, rmarkdown, scater, uwot, ggpubr, ggrepel, cluster, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: db56e912a06aba49932192a6206fcc55 NeedsCompilation: no Title: Spatial transcriptome analyses of Nanostring's DSP data in R Description: standR is an user-friendly R package providing functions to assist conducting good-practice analysis of Nanostring's GeoMX DSP data. All functions in the package are built based on the SpatialExperiment object, allowing integration into various spatial transcriptomics-related packages from Bioconductor. standR allows data inspection, quality control, normalization, batch correction and evaluation with informative visualizations. biocViews: Spatial, Transcriptomics, GeneExpression, DifferentialExpression, QualityControl, Normalization, ExperimentHubSoftware Author: Ning Liu [aut, cre] (), Dharmesh D Bhuva [aut] (), Ahmed Mohamed [aut] Maintainer: Ning Liu URL: https://github.com/DavisLaboratory/standR VignetteBuilder: knitr BugReports: https://github.com/DavisLaboratory/standR/issues git_url: https://git.bioconductor.org/packages/standR git_branch: RELEASE_3_20 git_last_commit: b966979 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/standR_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/standR_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/standR_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/standR_1.10.0.tgz vignettes: vignettes/standR/inst/doc/Quick_start.html vignetteTitles: standR_introduction hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/standR/inst/doc/Quick_start.R dependencyCount: 151 Package: STATegRa Version: 1.42.0 Depends: R (>= 2.10) Imports: Biobase, gridExtra, ggplot2, methods, stats, grid, MASS, calibrate, gplots, edgeR, limma, foreach, affy Suggests: RUnit, BiocGenerics, knitr (>= 1.6), rmarkdown, BiocStyle (>= 1.3), roxygen2, doSNOW License: GPL-2 MD5sum: 5bc7c8398540e93911f698c4e5c411ab NeedsCompilation: no Title: Classes and methods for multi-omics data integration Description: Classes and tools for multi-omics data integration. biocViews: Software, StatisticalMethod, Clustering, DimensionReduction, PrincipalComponent Author: STATegra Consortia Maintainer: David Gomez-Cabrero , Núria Planell VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/STATegRa git_branch: RELEASE_3_20 git_last_commit: d9a8dc2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/STATegRa_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/STATegRa_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/STATegRa_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/STATegRa_1.42.0.tgz vignettes: vignettes/STATegRa/inst/doc/STATegRa.html vignetteTitles: STATegRa User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/STATegRa/inst/doc/STATegRa.R dependencyCount: 56 Package: Statial Version: 1.8.0 Depends: R (>= 4.1.0) Imports: BiocParallel, spatstat.geom, concaveman, data.table, spatstat.explore, dplyr, tidyr, SingleCellExperiment, tibble, stringr, tidyselect, ggplot2, methods, stats, SummarizedExperiment, S4Vectors, plotly, purrr, ranger, magrittr, limma, SpatialExperiment, cluster, treekoR Suggests: BiocStyle, knitr, testthat (>= 3.0.0), ClassifyR, spicyR, ggsurvfit, lisaClust, survival License: GPL-3 MD5sum: 2ea52b3f2cf7b4b8a0968030fd9c9d7c NeedsCompilation: no Title: A package to identify changes in cell state relative to spatial associations Description: Statial is a suite of functions for identifying changes in cell state. The functionality provided by Statial provides robust quantification of cell type localisation which are invariant to changes in tissue structure. In addition to this Statial uncovers changes in marker expression associated with varying levels of localisation. These features can be used to explore how the structure and function of different cell types may be altered by the agents they are surrounded with. biocViews: SingleCell, Spatial, Classification Author: Farhan Ameen [aut, cre], Sourish Iyengar [aut], Shila Ghazanfar [aut], Ellis Patrick [aut] Maintainer: Farhan Ameen URL: https://sydneybiox.github.io/Statial https://github.com/SydneyBioX/Statial/issues VignetteBuilder: knitr BugReports: https://github.com/SydneyBioX/Statial/issues git_url: https://git.bioconductor.org/packages/Statial git_branch: RELEASE_3_20 git_last_commit: 1fea923 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Statial_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Statial_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Statial_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Statial_1.8.0.tgz vignettes: vignettes/Statial/inst/doc/Statial.html vignetteTitles: "Introduction to Statial" hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Statial/inst/doc/Statial.R suggestsMe: spicyWorkflow dependencyCount: 224 Package: statTarget Version: 1.36.0 Depends: R (>= 3.6.0) Imports: randomForest,plyr,pdist,ROC,utils,grDevices,graphics,rrcov,stats, pls,impute Suggests: testthat, BiocStyle, knitr, rmarkdown License: LGPL (>= 3) MD5sum: 24eb1ce2f644e9802d398f46eeb04612 NeedsCompilation: no Title: Statistical Analysis of Molecular Profiles Description: A streamlined tool provides a graphical user interface for quality control based signal drift correction (QC-RFSC), integration of data from multi-batch MS-based experiments, and the comprehensive statistical analysis in metabolomics and proteomics. biocViews: ImmunoOncology, Metabolomics, Proteomics, Machine Learning, Lipidomics, MassSpectrometry, QualityControl, Normalization, QC-RFSC, ComBat, DifferentialExpression, BatchEffect, Visualization, MultipleComparison,Preprocessing, Software Author: Hemi Luan Maintainer: Hemi Luan URL: https://stattarget.github.io VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/statTarget git_branch: RELEASE_3_20 git_last_commit: 26706b6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/statTarget_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/statTarget_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/statTarget_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/statTarget_1.36.0.tgz vignettes: vignettes/statTarget/inst/doc/Combat.html, vignettes/statTarget/inst/doc/pathway_analysis.html, vignettes/statTarget/inst/doc/statTarget.html vignetteTitles: QC_free approach with Combat method, statTarget2 for pathway analysis, statTarget2 On using the Graphical User Interface hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/statTarget/inst/doc/Combat.R, vignettes/statTarget/inst/doc/pathway_analysis.R, vignettes/statTarget/inst/doc/statTarget.R dependencyCount: 26 Package: stepNorm Version: 1.78.0 Depends: R (>= 1.8.0), marray, methods Imports: marray, MASS, methods, stats License: LGPL MD5sum: 9ef9c6ad62abc7dc28acf07af56173d0 NeedsCompilation: no Title: Stepwise normalization functions for cDNA microarrays Description: Stepwise normalization functions for cDNA microarray data. biocViews: Microarray, TwoChannel, Preprocessing Author: Yuanyuan Xiao , Yee Hwa (Jean) Yang Maintainer: Yuanyuan Xiao URL: http://www.biostat.ucsf.edu/jean/ git_url: https://git.bioconductor.org/packages/stepNorm git_branch: RELEASE_3_20 git_last_commit: bbabfa9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/stepNorm_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/stepNorm_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/stepNorm_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/stepNorm_1.78.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 9 Package: stJoincount Version: 1.8.0 Depends: R (>= 4.2.0) Imports: graphics, stats, dplyr, magrittr, sp, raster, spdep, ggplot2, pheatmap, grDevices, Seurat, SpatialExperiment, SummarizedExperiment Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: 94c4eeaaa629a3a0f2ddf84ed2f602bb NeedsCompilation: no Title: stJoincount - Join count statistic for quantifying spatial correlation between clusters Description: stJoincount facilitates the application of join count analysis to spatial transcriptomic data generated from the 10x Genomics Visium platform. This tool first converts a labeled spatial tissue map into a raster object, in which each spatial feature is represented by a pixel coded by label assignment. This process includes automatic calculation of optimal raster resolution and extent for the sample. A neighbors list is then created from the rasterized sample, in which adjacent and diagonal neighbors for each pixel are identified. After adding binary spatial weights to the neighbors list, a multi-categorical join count analysis is performed to tabulate "joins" between all possible combinations of label pairs. The function returns the observed join counts, the expected count under conditions of spatial randomness, and the variance calculated under non-free sampling. The z-score is then calculated as the difference between observed and expected counts, divided by the square root of the variance. biocViews: Transcriptomics, Clustering, Spatial, BiocViews, Software Author: Jiarong Song [cre, aut] (), Rania Bassiouni [aut], David Craig [aut] Maintainer: Jiarong Song URL: https://github.com/Nina-Song/stJoincount VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/stJoincount git_branch: RELEASE_3_20 git_last_commit: 8ee63ec git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/stJoincount_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/stJoincount_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/stJoincount_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/stJoincount_1.8.0.tgz vignettes: vignettes/stJoincount/inst/doc/stJoincount-vignette.html vignetteTitles: Introduction to stJoincount hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/stJoincount/inst/doc/stJoincount-vignette.R dependencyCount: 198 Package: strandCheckR Version: 1.24.0 Imports: dplyr, magrittr, GenomeInfoDb, GenomicAlignments, GenomicRanges, IRanges, Rsamtools, S4Vectors, grid, BiocGenerics, ggplot2, reshape2, stats, gridExtra, TxDb.Hsapiens.UCSC.hg38.knownGene, methods, stringr, rmarkdown Suggests: BiocStyle, knitr, testthat License: GPL (>= 2) MD5sum: 283cae7cd525c8d9709468b7e0e87378 NeedsCompilation: no Title: Calculate strandness information of a bam file Description: This package aims to quantify and remove putative double strand DNA from a strand-specific RNA sample. There are also options and methods to plot the positive/negative proportions of all sliding windows, which allow users to have an idea of how much the sample was contaminated and the appropriate threshold to be used for filtering. biocViews: RNASeq, Alignment, QualityControl, Coverage, ImmunoOncology Author: Thu-Hien To [aut, cre], Steve Pederson [aut] Maintainer: Thu-Hien To URL: https://github.com/UofABioinformaticsHub/strandCheckR VignetteBuilder: knitr BugReports: https://github.com/UofABioinformaticsHub/strandCheckR/issues git_url: https://git.bioconductor.org/packages/strandCheckR git_branch: RELEASE_3_20 git_last_commit: 71c3e8c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/strandCheckR_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/strandCheckR_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/strandCheckR_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/strandCheckR_1.24.0.tgz vignettes: vignettes/strandCheckR/inst/doc/strandCheckR.html vignetteTitles: An Introduction To strandCheckR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/strandCheckR/inst/doc/strandCheckR.R dependencyCount: 122 Package: Streamer Version: 1.52.0 Imports: methods, graph, RBGL, parallel, BiocGenerics Suggests: RUnit, Rsamtools (>= 1.5.53), GenomicAlignments, Rgraphviz License: Artistic-2.0 MD5sum: a8f1d72c63f0700f2bb954f4fd549238 NeedsCompilation: yes Title: Enabling stream processing of large files Description: Large data files can be difficult to work with in R, where data generally resides in memory. This package encourages a style of programming where data is 'streamed' from disk into R via a `producer' and through a series of `consumers' that, typically reduce the original data to a manageable size. The package provides useful Producer and Consumer stream components for operations such as data input, sampling, indexing, and transformation; see package?Streamer for details. biocViews: Infrastructure, DataImport Author: Martin Morgan, Nishant Gopalakrishnan Maintainer: Martin Morgan git_url: https://git.bioconductor.org/packages/Streamer git_branch: RELEASE_3_20 git_last_commit: ac06971 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Streamer_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Streamer_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Streamer_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Streamer_1.52.0.tgz vignettes: vignettes/Streamer/inst/doc/Streamer.pdf vignetteTitles: Streamer: A simple example hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Streamer/inst/doc/Streamer.R dependencyCount: 10 Package: STRINGdb Version: 2.18.0 Depends: R (>= 2.14.0) Imports: png, sqldf, plyr, igraph, httr, methods, RColorBrewer, gplots, hash, plotrix Suggests: RUnit, BiocGenerics License: GPL-2 MD5sum: 9b150c10f4fe0f8f195cd6cdd8e99d62 NeedsCompilation: no Title: STRINGdb - Protein-Protein Interaction Networks and Functional Enrichment Analysis Description: The STRINGdb package provides a R interface to the STRING protein-protein interactions database (https://string-db.org). biocViews: Network Author: Andrea Franceschini Maintainer: Damian Szklarczyk git_url: https://git.bioconductor.org/packages/STRINGdb git_branch: RELEASE_3_20 git_last_commit: 4005322 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/STRINGdb_2.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/STRINGdb_2.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/STRINGdb_2.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/STRINGdb_2.18.0.tgz vignettes: vignettes/STRINGdb/inst/doc/STRINGdb.pdf vignetteTitles: STRINGdb Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/STRINGdb/inst/doc/STRINGdb.R dependsOnMe: PPInfer importsMe: GeDi, IMMAN, netZooR, RITAN, TDbasedUFEadv, XINA, crosstalkr suggestsMe: epiNEM, GeneNetworkBuilder, martini, netSmooth, PCAN, protti dependencyCount: 50 Package: struct Version: 1.18.0 Depends: R (>= 4.0) Imports: methods,ontologyIndex, datasets, graphics, stats, utils, knitr, SummarizedExperiment, S4Vectors, rols Suggests: testthat, rstudioapi, rmarkdown, covr, BiocStyle, openxlsx, ggplot2, magick License: GPL-3 MD5sum: f3ff24c246719c62f81a273629f33ee3 NeedsCompilation: no Title: Statistics in R Using Class-based Templates Description: Defines and includes a set of class-based templates for developing and implementing data processing and analysis workflows, with a strong emphasis on statistics and machine learning. The templates can be used and where needed extended to 'wrap' tools and methods from other packages into a common standardised structure to allow for effective and fast integration. Model objects can be combined into sequences, and sequences nested in iterators using overloaded operators to simplify and improve readability of the code. Ontology lookup has been integrated and implemented to provide standardised definitions for methods, inputs and outputs wrapped using the class-based templates. biocViews: WorkflowStep Author: Gavin Rhys Lloyd [aut, cre], Ralf Johannes Maria Weber [aut] Maintainer: Gavin Rhys Lloyd VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/struct git_branch: RELEASE_3_20 git_last_commit: 9ebf2be git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/struct_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/struct_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/struct_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/struct_1.18.0.tgz vignettes: vignettes/struct/inst/doc/struct_templates_and_helper_functions.html vignetteTitles: Introduction to STRUCT - STatistics in R using Class-based Templates hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/struct/inst/doc/struct_templates_and_helper_functions.R dependsOnMe: MetMashR, structToolbox importsMe: metabolomicsWorkbenchR dependencyCount: 53 Package: Structstrings Version: 1.22.1 Depends: R (>= 4.0), S4Vectors (>= 0.27.12), IRanges (>= 2.23.9), Biostrings (>= 2.57.2) Imports: methods, BiocGenerics, XVector, stringr, stringi, crayon, grDevices LinkingTo: IRanges, S4Vectors Suggests: testthat, knitr, rmarkdown, tRNAscanImport, BiocStyle License: Artistic-2.0 MD5sum: e6cb7ce8c8ffe9974d25e90b294c4860 NeedsCompilation: yes Title: Implementation of the dot bracket annotations with Biostrings Description: The Structstrings package implements the widely used dot bracket annotation for storing base pairing information in structured RNA. Structstrings uses the infrastructure provided by the Biostrings package and derives the DotBracketString and related classes from the BString class. From these, base pair tables can be produced for in depth analysis. In addition, the loop indices of the base pairs can be retrieved as well. For better efficiency, information conversion is implemented in C, inspired to a large extend by the ViennaRNA package. biocViews: DataImport, DataRepresentation, Infrastructure, Sequencing, Software, Alignment, SequenceMatching Author: Felix G.M. Ernst [aut, cre] () Maintainer: Felix G.M. Ernst URL: https://github.com/FelixErnst/Structstrings VignetteBuilder: knitr BugReports: https://github.com/FelixErnst/Structstrings/issues git_url: https://git.bioconductor.org/packages/Structstrings git_branch: RELEASE_3_20 git_last_commit: a0bf081 git_last_commit_date: 2024-11-01 Date/Publication: 2024-11-03 source.ver: src/contrib/Structstrings_1.22.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/Structstrings_1.22.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Structstrings_1.22.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Structstrings_1.22.1.tgz vignettes: vignettes/Structstrings/inst/doc/Structstrings.html vignetteTitles: Structstrings hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Structstrings/inst/doc/Structstrings.R dependsOnMe: tRNA, tRNAdbImport importsMe: tRNAscanImport dependencyCount: 33 Package: structToolbox Version: 1.18.0 Depends: R (>= 4.0), struct (>= 1.5.1) Imports: ggplot2, ggthemes, grid, gridExtra, methods, scales, sp, stats Suggests: agricolae, BiocFileCache, BiocStyle, car, covr, cowplot, e1071, emmeans, ggdendro, knitr, magick, nlme, openxlsx, pls, pmp, reshape2, ropls, rmarkdown, Rtsne, testthat, rappdirs License: GPL-3 MD5sum: afd1a6cef078298e385bf9281b1543bf NeedsCompilation: no Title: Data processing & analysis tools for Metabolomics and other omics Description: An extensive set of data (pre-)processing and analysis methods and tools for metabolomics and other omics, with a strong emphasis on statistics and machine learning. This toolbox allows the user to build extensive and standardised workflows for data analysis. The methods and tools have been implemented using class-based templates provided by the struct (Statistics in R Using Class-based Templates) package. The toolbox includes pre-processing methods (e.g. signal drift and batch correction, normalisation, missing value imputation and scaling), univariate (e.g. ttest, various forms of ANOVA, Kruskal–Wallis test and more) and multivariate statistical methods (e.g. PCA and PLS, including cross-validation and permutation testing) as well as machine learning methods (e.g. Support Vector Machines). The STATistics Ontology (STATO) has been integrated and implemented to provide standardised definitions for the different methods, inputs and outputs. biocViews: WorkflowStep, Metabolomics Author: Gavin Rhys Lloyd [aut, cre] (), Ralf Johannes Maria Weber [aut] Maintainer: Gavin Rhys Lloyd URL: https://github.com/computational-metabolomics/structToolbox, https://computational-metabolomics.github.io/structToolbox/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/structToolbox git_branch: RELEASE_3_20 git_last_commit: 6758b3b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/structToolbox_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/structToolbox_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/structToolbox_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/structToolbox_1.18.0.tgz vignettes: vignettes/structToolbox/inst/doc/data_analysis_omics_using_the_structtoolbox.html vignetteTitles: Data analysis of metabolomics and other omics datasets using the structToolbox hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/structToolbox/inst/doc/data_analysis_omics_using_the_structtoolbox.R suggestsMe: metabolomicsWorkbenchR, MetMashR dependencyCount: 79 Package: StructuralVariantAnnotation Version: 1.22.0 Depends: GenomicRanges, rtracklayer, VariantAnnotation, BiocGenerics, R (>= 4.1.0) Imports: assertthat, Biostrings, pwalign, stringr, dplyr, methods, rlang, GenomicFeatures, IRanges, S4Vectors, SummarizedExperiment, GenomeInfoDb, Suggests: ggplot2, devtools, testthat (>= 2.1.0), roxygen2, rmarkdown, tidyverse, knitr, ggbio, biovizBase, TxDb.Hsapiens.UCSC.hg19.knownGene, BSgenome.Hsapiens.UCSC.hg19, License: GPL-3 + file LICENSE MD5sum: 9072d77c242f802f7440da1838bf4a03 NeedsCompilation: no Title: Variant annotations for structural variants Description: StructuralVariantAnnotation provides a framework for analysis of structural variants within the Bioconductor ecosystem. This package contains contains useful helper functions for dealing with structural variants in VCF format. The packages contains functions for parsing VCFs from a number of popular callers as well as functions for dealing with breakpoints involving two separate genomic loci encoded as GRanges objects. biocViews: DataImport, Sequencing, Annotation, Genetics, VariantAnnotation Author: Daniel Cameron [aut, cre] (), Ruining Dong [aut] () Maintainer: Daniel Cameron VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/StructuralVariantAnnotation git_branch: RELEASE_3_20 git_last_commit: 8652050 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/StructuralVariantAnnotation_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/StructuralVariantAnnotation_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/StructuralVariantAnnotation_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/StructuralVariantAnnotation_1.22.0.tgz vignettes: vignettes/StructuralVariantAnnotation/inst/doc/vignettes.html vignetteTitles: Structural Variant Annotation Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/StructuralVariantAnnotation/inst/doc/vignettes.R dependsOnMe: svaNUMT, svaRetro suggestsMe: shiny.gosling dependencyCount: 92 Package: SubCellBarCode Version: 1.22.0 Depends: R (>= 3.6) Imports: Rtsne, scatterplot3d, caret, e1071, ggplot2, gridExtra, networkD3, ggrepel, graphics, stats, org.Hs.eg.db, AnnotationDbi Suggests: knitr, rmarkdown, BiocStyle License: GPL-2 MD5sum: 7284f839c7f0c486fd3f48bd199b0392 NeedsCompilation: no Title: SubCellBarCode: Integrated workflow for robust mapping and visualizing whole human spatial proteome Description: Mass-Spectrometry based spatial proteomics have enabled the proteome-wide mapping of protein subcellular localization (Orre et al. 2019, Molecular Cell). SubCellBarCode R package robustly classifies proteins into corresponding subcellular localization. biocViews: Proteomics, MassSpectrometry, Classification Author: Taner Arslan Maintainer: Taner Arslan VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/SubCellBarCode git_branch: RELEASE_3_20 git_last_commit: b3442ce git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SubCellBarCode_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SubCellBarCode_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SubCellBarCode_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SubCellBarCode_1.22.0.tgz vignettes: vignettes/SubCellBarCode/inst/doc/SubCellBarCode.html vignetteTitles: SubCellBarCode R Markdown vignettes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SubCellBarCode/inst/doc/SubCellBarCode.R dependencyCount: 138 Package: subSeq Version: 1.36.0 Depends: R (>= 3.2) Imports: data.table, dplyr, tidyr, ggplot2, magrittr, qvalue (>= 1.99), digest, Biobase Suggests: limma, edgeR, DESeq2, DEXSeq (>= 1.9.7), testthat, knitr License: MIT + file LICENSE Archs: x64 MD5sum: 4ebb7e76f3dab82e2cba34adeed4b8b7 NeedsCompilation: no Title: Subsampling of high-throughput sequencing count data Description: Subsampling of high throughput sequencing count data for use in experiment design and analysis. biocViews: ImmunoOncology, Sequencing, Transcription, RNASeq, GeneExpression, DifferentialExpression Author: David Robinson, John D. Storey, with contributions from Andrew J. Bass Maintainer: Andrew J. Bass , John D. Storey URL: http://github.com/StoreyLab/subSeq VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/subSeq git_branch: RELEASE_3_20 git_last_commit: 4231875 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/subSeq_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/subSeq_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/subSeq_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/subSeq_1.36.0.tgz vignettes: vignettes/subSeq/inst/doc/subSeq.pdf vignetteTitles: subSeq Example hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/subSeq/inst/doc/subSeq.R dependencyCount: 52 Package: SUITOR Version: 1.8.0 Depends: R (>= 4.2.0) Imports: stats, utils, graphics, ggplot2, BiocParallel Suggests: devtools, MutationalPatterns, RUnit, BiocManager, BiocGenerics, BiocStyle, knitr, rmarkdown License: GPL-2 MD5sum: 1780e3240f4b4d5644da6feb41eb5c45 NeedsCompilation: yes Title: Selecting the number of mutational signatures through cross-validation Description: An unsupervised cross-validation method to select the optimal number of mutational signatures. A data set of mutational counts is split into training and validation data.Signatures are estimated in the training data and then used to predict the mutations in the validation data. biocViews: Genetics, Software, SomaticMutation Author: DongHyuk Lee [aut], Bin Zhu [aut], Bill Wheeler [cre] Maintainer: Bill Wheeler VignetteBuilder: knitr BugReports: https://github.com/wheelerb/SUITOR/issues git_url: https://git.bioconductor.org/packages/SUITOR git_branch: RELEASE_3_20 git_last_commit: b028f76 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SUITOR_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SUITOR_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SUITOR_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SUITOR_1.8.0.tgz vignettes: vignettes/SUITOR/inst/doc/vignette.pdf vignetteTitles: SUITOR: selecting the number of mutational signatures hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SUITOR/inst/doc/vignette.R dependencyCount: 45 Package: SummarizedExperiment Version: 1.36.0 Depends: R (>= 4.0.0), methods, MatrixGenerics (>= 1.1.3), GenomicRanges (>= 1.55.2), Biobase Imports: utils, stats, tools, Matrix, BiocGenerics (>= 0.51.3), S4Vectors (>= 0.33.7), IRanges (>= 2.23.9), GenomeInfoDb (>= 1.13.1), S4Arrays (>= 1.1.1), DelayedArray (>= 0.31.12) Suggests: jsonlite, rhdf5, HDF5Array (>= 1.7.5), annotate, AnnotationDbi, GenomicFeatures, SparseArray, SingleCellExperiment, TxDb.Hsapiens.UCSC.hg19.knownGene, hgu95av2.db, airway (>= 1.15.1), BiocStyle, knitr, rmarkdown, RUnit, testthat, digest License: Artistic-2.0 MD5sum: c1925961cb5cec2af5f5ed843128b5cc NeedsCompilation: no Title: A container (S4 class) for matrix-like assays Description: The SummarizedExperiment container contains one or more assays, each represented by a matrix-like object of numeric or other mode. The rows typically represent genomic ranges of interest and the columns represent samples. biocViews: Genetics, Infrastructure, Sequencing, Annotation, Coverage, GenomeAnnotation Author: Martin Morgan [aut], Valerie Obenchain [aut], Jim Hester [aut], Hervé Pagès [aut, cre] Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/SummarizedExperiment VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/SummarizedExperiment/issues git_url: https://git.bioconductor.org/packages/SummarizedExperiment git_branch: RELEASE_3_20 git_last_commit: c84e08a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SummarizedExperiment_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SummarizedExperiment_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SummarizedExperiment_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SummarizedExperiment_1.36.0.tgz vignettes: vignettes/SummarizedExperiment/inst/doc/Extensions.html, vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html vignetteTitles: 2. Extending the SummarizedExperiment class, 1. SummarizedExperiment for Coordinating Experimental Assays,, Samples,, and Regions of Interest hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SummarizedExperiment/inst/doc/Extensions.R, vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.R dependsOnMe: AffiXcan, alabaster.se, AllelicImbalance, atena, bambu, betaHMM, BiocSklearn, BiSeq, bnbc, broadSeq, bsseq, CAGEfightR, celaref, clusterExperiment, CoreGx, coseq, csaw, CSSQ, DaMiRseq, deepSNV, DeMixT, DESeq2, DEXSeq, DiffBind, diffcoexp, diffHic, dinoR, divergence, DMCFB, DMCHMM, EnrichmentBrowser, epigenomix, evaluomeR, EventPointer, ExperimentSubset, ExpressionAtlas, extraChIPs, FEAST, FRASER, GenomicAlignments, GenomicFiles, GenomicSuperSignature, GRmetrics, GSEABenchmarkeR, HelloRanges, hermes, HERON, HiCDOC, hipathia, InteractionSet, IntEREst, iSEE, iSEEhex, iSEEhub, iSEEindex, ISLET, isomiRs, ivygapSE, lefser, lipidr, LoomExperiment, lute, made4, MatrixQCvis, MBASED, methodical, methrix, methylPipe, MetNet, MGnifyR, mia, miaViz, MICSQTL, minfi, moanin, mpra, MultiAssayExperiment, multistateQTL, NADfinder, NBAMSeq, NewWave, orthos, OUTRIDER, padma, phenomis, PhIPData, profileplyr, PRONE, qmtools, qsvaR, QTLExperiment, recount, recount3, RegEnrich, REMP, ROCpAI, rqt, runibic, Scale4C, scAnnotatR, scGPS, scone, screenCounter, scTreeViz, SDAMS, sechm, SeqGate, SEtools, SGSeq, signatureSearch, SingleCellExperiment, singleCellTK, SingleR, soGGi, spillR, spqn, ssPATHS, stageR, survtype, TENxIO, tidyCoverage, tidySummarizedExperiment, TissueEnrich, TREG, UMI4Cats, VanillaICE, VariantAnnotation, VariantExperiment, velociraptor, weitrix, yamss, zinbwave, airway, benchmarkfdrData2019, BioPlex, bodymapRat, celldex, curatedAdipoChIP, curatedAdipoRNA, curatedMetagenomicData, fission, GSVAdata, HDCytoData, HighlyReplicatedRNASeq, HMP16SData, MetaGxOvarian, MetaGxPancreas, MethylSeqData, MicrobiomeBenchmarkData, microbiomeDataSets, microRNAome, MouseGastrulationData, MouseThymusAgeing, ObMiTi, parathyroidSE, sampleClassifierData, scMultiome, spatialDmelxsim, spqnData, timecoursedata, tuberculosis, TumourMethData, DRomics, OncoSubtype, ordinalbayes importsMe: ADAM, ADImpute, aggregateBioVar, airpart, ALDEx2, animalcules, anota2seq, APAlyzer, apeglm, APL, appreci8R, ASICS, ASURAT, ATACseqTFEA, AUCell, autonomics, awst, Banksy, barcodetrackR, BASiCS, BASiCStan, batchelor, BatchQC, BayesSpace, bayNorm, BBCAnalyzer, beer, BERT, bettr, BioGA, BioNERO, biosigner, biotmle, biovizBase, biscuiteer, BiSeq, blacksheepr, BloodGen3Module, BUMHMM, BUScorrect, BUSseq, CaDrA, CAGEr, CATALYST, CatsCradle, CBEA, cBioPortalData, ccfindR, ccImpute, CDI, celda, CelliD, CellMixS, CellScore, CellTrails, censcyt, Cepo, CeTF, CHETAH, ChIPpeakAnno, ChromSCape, chromVAR, CiteFuse, CleanUpRNAseq, clustifyr, cmapR, CNVfilteR, CNVRanger, CoGAPS, comapr, combi, concordexR, condiments, consensusDE, consICA, CopyNumberPlots, corral, COTAN, countsimQC, CTexploreR, CTSV, CuratedAtlasQueryR, cydar, cypress, cytofQC, cytoKernel, cytomapper, cytoviewer, DAMEfinder, debCAM, debrowser, decompTumor2Sig, decontX, DEFormats, DEGreport, DELocal, deltaCaptureC, demuxSNP, DEP, DEScan2, DESpace, destiny, DEWSeq, diffcyt, DifferentialRegulation, diffUTR, Dino, DiscoRhythm, distinct, dittoSeq, DMRcate, DominoEffect, doppelgangR, doseR, dreamlet, DropletUtils, Dune, easyRNASeq, eisaR, ELMER, epigraHMM, EpiMix, epimutacions, epiregulon, epiregulon.extra, epistack, epivizrData, erma, escape, escheR, EWCE, fcScan, FeatSeekR, findIPs, FindIT2, fishpond, FLAMES, FuseSOM, GARS, gCrisprTools, gDNAx, gDRcore, gDRimport, gDRutils, gemma.R, GeneTonic, genomicInstability, GEOquery, GeoTcgaData, getDEE2, ggbio, ggsc, ggspavis, gINTomics, Glimma, glmGamPoi, glmSparseNet, GRaNIE, GreyListChIP, gscreend, GSVA, gwasurvivr, GWENA, HarmonizR, HiContacts, hoodscanR, hummingbird, HybridExpress, iasva, icetea, ideal, IFAA, IgGeneUsage, ILoReg, imcRtools, iNETgrate, infercnv, INSPEcT, iSEEde, iSEEfier, iSEEpathways, iSEEtree, iSEEu, IsoBayes, IsoformSwitchAnalyzeR, kmcut, LACE, lemur, limpca, lineagespot, lionessR, lisaClust, MADSEQ, MAI, mariner, marr, MAST, mastR, mbkmeans, MBQN, mCSEA, MEAL, MEAT, MEB, MetaboAnnotation, metabolomicsWorkbenchR, MetaNeighbor, metaseqR2, MethylAid, methyLImp2, methylscaper, methylumi, miaSim, MicrobiotaProcess, midasHLA, miloR, MinimumDistance, miRSM, missMethyl, MLInterfaces, MLSeq, mobileRNA, monaLisa, MoonlightR, mosdef, motifbreakR, motifmatchr, MPAC, MPRAnalyze, MsExperiment, MsFeatures, msgbsR, MSPrep, msqrob2, MuData, MultiDataSet, MultiRNAflow, multiWGCNA, mumosa, muscat, musicatk, MWASTools, NanoMethViz, Nebulosa, NetActivity, netSmooth, nipalsMCIA, nnSVG, NormalyzerDE, oligoClasses, omicRexposome, omicsPrint, omicsViewer, omXplore, oncomix, ontoProc, ORFik, OVESEG, PAIRADISE, pairedGSEA, pairkat, pcaExplorer, peco, PepSetTest, pgxRpi, PharmacoGx, phenopath, PhosR, pipeComp, Pirat, PIUMA, planttfhunter, plyxp, pmp, PolySTest, POMA, POWSC, proActiv, proDA, psichomics, PureCN, QFeatures, qsmooth, quantiseqr, R453Plus1Toolbox, RadioGx, raer, RaggedExperiment, RareVariantVis, RcisTarget, receptLoss, RegionalST, regionReport, regsplice, rgsepd, rifi, rifiComparative, Rmmquant, RNAAgeCalc, RNAsense, roar, RolDE, ropls, rScudo, RTCGAToolbox, RTN, saseR, satuRn, SBGNview, SC3, SCArray, SCArray.sat, scater, scBFA, scCB2, scDblFinder, scDD, scDDboost, scDesign3, scDiagnostics, scds, scHOT, scider, scmap, scMerge, scMET, scmeth, scMultiSim, SCnorm, scoreInvHap, scp, scPipe, scran, scReClassify, scRepertoire, scruff, scry, scTensor, scTGIF, scuttle, scviR, segmenter, seqCAT, sesame, SGCP, sigFeature, SigsPack, SimBu, simPIC, simpleSeg, SingleCellAlleleExperiment, singscore, slalom, slingshot, smartid, smoothclust, snapcount, SNPhood, Spaniel, SpaNorm, spaSim, SpatialCPie, spatialDE, SpatialExperiment, SpatialFeatureExperiment, spatialHeatmap, spatialSimGP, spatzie, SPIAT, spicyR, splatter, SpliceWiz, SplicingFactory, spoon, SpotClean, SpotSweeper, sSNAPPY, StabMap, standR, Statial, stJoincount, struct, StructuralVariantAnnotation, supersigs, SurfR, SVMDO, switchde, systemPipeR, systemPipeTools, TCGAbiolinks, TCGAutils, TCseq, tenXplore, tidybulk, tidySingleCellExperiment, tidySpatialExperiment, TOAST, tomoda, ToxicoGx, tpSVG, tradeSeq, TrajectoryUtils, transformGamPoi, transmogR, treeclimbR, TreeSummarizedExperiment, Trendy, tricycle, TSCAN, TTMap, TVTB, tximeta, UCell, VAExprs, VariantFiltering, VDJdive, vidger, VisiumIO, Voyager, wpm, xcms, xenLite, zellkonverter, zFPKM, zitools, BloodCancerMultiOmics2017, brgedata, CLLmethylation, COSMIC.67, curatedTCGAData, easierData, emtdata, FieldEffectCrc, FlowSorted.Blood.EPIC, FlowSorted.CordBloodCombined.450k, GSE13015, HCATonsilData, HiBED, HMP2Data, homosapienDEE2CellScore, IHWpaper, LegATo, MerfishData, MetaGxBreast, MetaScope, orthosData, scRNAseq, SingleCellMultiModal, spatialLIBD, TabulaMurisSenisData, TCGAWorkflowData, TENxXeniumData, ExpHunterSuite, fluentGenomics, SingscoreAMLMutations, TCGAWorkflow, DWLS, HeritSeq, imcExperiment, karyotapR, MetAlyzer, microbial, MOCHA, multimedia, PlasmaMutationDetector, PlasmaMutationDetector2, RCPA, RNAseqQC, SC.MEB, SCIntRuler, SCRIP, scROSHI, SpatialDDLS, treediff, VSOLassoBag suggestsMe: alabaster.mae, AlpsNMR, ANCOMBC, AnnotationHub, BindingSiteFinder, biobroom, BiocPkgTools, cageminer, CTdata, dar, dcanr, dce, dearseq, decoupleR, DelayedArray, easier, edgeR, EnMCB, epialleleR, epivizr, epivizrChart, esetVis, fobitools, funOmics, gDR, GENIE3, GenomicRanges, globalSeq, gsean, hca, HDF5Array, HPiP, Informeasure, InteractiveComplexHeatmap, interactiveDisplay, knowYourCG, MatrixGenerics, microSTASIS, MOFA2, MSnbase, pathwayPCA, philr, podkat, PSMatch, RiboProfiling, Rvisdiff, S4Vectors, scFeatureFilter, semisup, sketchR, sparrow, SPOTlight, svaNUMT, svaRetro, systemPipeShiny, TFutils, tidytof, updateObject, biotmleData, curatedAdipoArray, curatedTBData, dorothea, DuoClustering2018, gDRtestData, GSE103322, multiWGCNAdata, pRolocdata, RforProteomics, SBGNview.data, tissueTreg, CAGEWorkflow, Canek, clustree, conos, CytoSimplex, dyngen, file2meco, lfc, MiscMetabar, parafac4microbiome, polyRAD, RaceID, rliger, seqgendiff, Seurat, Signac, singleCellHaystack, speakeasyR, SuperCell, teal.slice, tidydr, volcano3D dependencyCount: 35 Package: Summix Version: 2.12.0 Depends: R (>= 4.3) Imports: dplyr, nloptr, magrittr, methods, tibble, tidyselect, BEDASSLE, scales, visNetwork, randomcoloR Suggests: rmarkdown, markdown, knitr, testthat (>= 3.0.0) License: MIT + file LICENSE Archs: x64 MD5sum: 7fe653455de7f81c916b60eab39de2d2 NeedsCompilation: no Title: Summix2: A suite of methods to estimate, adjust, and leverage substructure in genetic summary data Description: This package contains the Summix2 method for estimating and adjusting for substructure in genetic summary allele frequency data. The function summix() estimates reference group proportions using a mixture model. The adjAF() function produces adjusted allele frequencies for an observed group with reference group proportions matching a target individual or sample. The summix_local() function estimates local ancestry mixture proportions and performs selection scans in genetic summary data. biocViews: StatisticalMethod, WholeGenome, Genetics Author: Audrey Hendricks [cre], Price Adelle [aut], Stoneman Haley [aut] Maintainer: Audrey Hendricks VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/Summix/issues git_url: https://git.bioconductor.org/packages/Summix git_branch: RELEASE_3_20 git_last_commit: b6a1b50 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Summix_2.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Summix_2.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Summix_2.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Summix_2.12.0.tgz vignettes: vignettes/Summix/inst/doc/Summix.html vignetteTitles: Summix.html hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Summix/inst/doc/Summix.R dependencyCount: 75 Package: supersigs Version: 1.14.0 Depends: R (>= 4.1) Imports: assertthat, caret, dplyr, tidyr, rsample, methods, rlang, utils, Biostrings, stats, SummarizedExperiment Suggests: BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38, knitr, rmarkdown, ggplot2, testthat, VariantAnnotation License: GPL-3 MD5sum: d3254207082434d37928637038425006 NeedsCompilation: no Title: Supervised mutational signatures Description: Generate SuperSigs (supervised mutational signatures) from single nucleotide variants in the cancer genome. Functions included in the package allow the user to learn supervised mutational signatures from their data and apply them to new data. The methodology is based on the one described in Afsari (2021, ELife). biocViews: FeatureExtraction, Classification, Regression, Sequencing, WholeGenome, SomaticMutation Author: Albert Kuo [aut, cre] (), Yifan Zhang [aut], Bahman Afsari [aut], Cristian Tomasetti [aut] Maintainer: Albert Kuo URL: https://tomasettilab.github.io/supersigs/ VignetteBuilder: knitr BugReports: https://github.com/TomasettiLab/supersigs/issues git_url: https://git.bioconductor.org/packages/supersigs git_branch: RELEASE_3_20 git_last_commit: b6ed32b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/supersigs_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/supersigs_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/supersigs_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/supersigs_1.14.0.tgz vignettes: vignettes/supersigs/inst/doc/supersigs.html vignetteTitles: Using supersigs hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/supersigs/inst/doc/supersigs.R dependencyCount: 116 Package: surfaltr Version: 1.12.0 Depends: R (>= 4.0) Imports: dplyr (>= 1.0.6), biomaRt (>= 2.46.0), protr (>= 1.6-2), seqinr (>= 4.2-5), ggplot2 (>= 3.3.2), utils (>= 2.10.1), stringr (>= 1.4.0), Biostrings (>= 2.58.0),readr (>= 1.4.0), httr (>= 1.4.2), testthat(>= 3.0.0), xml2(>= 1.3.2), msa (>= 1.22.0), methods (>= 4.0.3) Suggests: knitr, rmarkdown, devtools, kableExtra License: MIT + file LICENSE MD5sum: 263c7833ebcf3511da69f39336453990 NeedsCompilation: no Title: Rapid Comparison of Surface Protein Isoform Membrane Topologies Through surfaltr Description: Cell surface proteins form a major fraction of the druggable proteome and can be used for tissue-specific delivery of oligonucleotide/cell-based therapeutics. Alternatively spliced surface protein isoforms have been shown to differ in their subcellular localization and/or their transmembrane (TM) topology. Surface proteins are hydrophobic and remain difficult to study thereby necessitating the use of TM topology prediction methods such as TMHMM and Phobius. However, there exists a need for bioinformatic approaches to streamline batch processing of isoforms for comparing and visualizing topologies. To address this gap, we have developed an R package, surfaltr. It pairs inputted isoforms, either known alternatively spliced or novel, with their APPRIS annotated principal counterparts, predicts their TM topologies using TMHMM or Phobius, and generates a customizable graphical output. Further, surfaltr facilitates the prioritization of biologically diverse isoform pairs through the incorporation of three different ranking metrics and through protein alignment functions. Citations for programs mentioned here can be found in the vignette. biocViews: Software, Visualization, DataRepresentation, SplicedAlignment, Alignment, MultipleSequenceAlignment, MultipleComparison Author: Pooja Gangras [aut, cre] (), Aditi Merchant [aut] Maintainer: Pooja Gangras VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/surfaltr git_branch: RELEASE_3_20 git_last_commit: e3bbe4e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/surfaltr_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/surfaltr_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/surfaltr_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/surfaltr_1.12.0.tgz vignettes: vignettes/surfaltr/inst/doc/surfaltr_vignette.html vignetteTitles: surfaltr_vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/surfaltr/inst/doc/surfaltr_vignette.R dependencyCount: 113 Package: SurfR Version: 1.2.6 Depends: R (>= 4.3.0) Imports: httr, BiocFileCache, SPsimSeq, DESeq2, edgeR, openxlsx, stringr, rhdf5, ggplot2, ggrepel, stats, magrittr, assertr, tidyr, dplyr, TCGAbiolinks, biomaRt, metaRNASeq, scales, venn, gridExtra, SummarizedExperiment, knitr, rjson, grDevices, graphics, utils Suggests: BiocStyle, testthat (>= 3.0.0) License: GPL-3 + file LICENSE MD5sum: 606a5a8f8f6228067f3edc5da4248edb NeedsCompilation: no Title: Surface Protein Prediction and Identification Description: Identify Surface Protein coding genes from a list of candidates. Systematically download data from GEO and TCGA or use your own data. Perform DGE on bulk RNAseq data. Perform Meta-analysis. Descriptive enrichment analysis and plots. biocViews: Software, Sequencing, RNASeq, GeneExpression, Transcription, DifferentialExpression, PrincipalComponent, GeneSetEnrichment, Pathways, BatchEffect, FunctionalGenomics, Visualization, DataImport, FunctionalPrediction, GenePrediction, GO Author: Aurora Maurizio [aut, cre] (), Anna Sofia Tascini [aut, ctb] () Maintainer: Aurora Maurizio URL: https://github.com/auroramaurizio/SurfR VignetteBuilder: knitr BugReports: https://github.com/auroramaurizio/SurfR/issues git_url: https://git.bioconductor.org/packages/SurfR git_branch: RELEASE_3_20 git_last_commit: 450f28c git_last_commit_date: 2024-12-27 Date/Publication: 2024-12-30 source.ver: src/contrib/SurfR_1.2.6.tar.gz win.binary.ver: bin/windows/contrib/4.4/SurfR_1.2.6.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SurfR_1.2.6.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SurfR_1.2.6.tgz vignettes: vignettes/SurfR/inst/doc/Intro_to_SurfR.html vignetteTitles: Introduction to SurfR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/SurfR/inst/doc/Intro_to_SurfR.R dependencyCount: 188 Package: survClust Version: 1.0.0 Depends: R (>= 3.5.0) Imports: Rcpp, MultiAssayExperiment, pdist, survival LinkingTo: Rcpp Suggests: knitr, testthat (>= 3.0.0), gplots, htmltools, BiocParallel License: MIT + file LICENSE MD5sum: ea7b5d530a1188fe7133b5be851ee739 NeedsCompilation: yes Title: Identification Of Clinically Relevant Genomic Subtypes Using Outcome Weighted Learning Description: survClust is an outcome weighted integrative clustering algorithm used to classify multi-omic samples on their available time to event information. The resulting clusters are cross-validated to avoid over overfitting and output classification of samples that are molecularly distinct and clinically meaningful. It takes in binary (mutation) as well as continuous data (other omic types). biocViews: Software, Clustering, Survival, Classification Author: Arshi Arora [aut, cre] () Maintainer: Arshi Arora URL: https://github.com/arorarshi/survClust VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/survClust git_url: https://git.bioconductor.org/packages/survClust git_branch: RELEASE_3_20 git_last_commit: bb5b1d7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/survClust_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/survClust_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/survClust_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/survClust_1.0.0.tgz vignettes: vignettes/survClust/inst/doc/survClust_vignette.html vignetteTitles: An introduction to survClust package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/survClust/inst/doc/survClust_vignette.R dependencyCount: 62 Package: survcomp Version: 1.56.0 Depends: survival, prodlim, R (>= 3.4) Imports: ipred, SuppDists, KernSmooth, survivalROC, bootstrap, grid, rmeta, stats, graphics Suggests: Hmisc, clinfun, xtable, Biobase, BiocManager License: Artistic-2.0 Archs: x64 MD5sum: d1c0e8e9725b9bff15c03e5911af86a9 NeedsCompilation: yes Title: Performance Assessment and Comparison for Survival Analysis Description: Assessment and Comparison for Performance of Risk Prediction (Survival) Models. biocViews: GeneExpression, DifferentialExpression, Visualization Author: Benjamin Haibe-Kains [aut, cre], Markus Schroeder [aut], Catharina Olsen [aut], Christos Sotiriou [aut], Gianluca Bontempi [aut], John Quackenbush [aut], Samuel Branders [aut], Zhaleh Safikhani [aut] Maintainer: Benjamin Haibe-Kains URL: http://www.pmgenomics.ca/bhklab/ git_url: https://git.bioconductor.org/packages/survcomp git_branch: RELEASE_3_20 git_last_commit: 1e00a05 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/survcomp_1.56.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/survcomp_1.56.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/survcomp_1.56.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/survcomp_1.56.0.tgz vignettes: vignettes/survcomp/inst/doc/survcomp.pdf vignetteTitles: SurvComp: a package for performance assessment and comparison for survival analysis hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/survcomp/inst/doc/survcomp.R importsMe: metaseqR2, Coxmos, FLORAL, pencal, plsRcox, SIGN suggestsMe: GSgalgoR, breastCancerMAINZ, breastCancerNKI, breastCancerTRANSBIG, breastCancerUNT, breastCancerUPP, breastCancerVDX dependencyCount: 39 Package: survtype Version: 1.22.0 Depends: SummarizedExperiment, pheatmap, survival, survminer, clustvarsel, stats, utils Suggests: maftools, scales, knitr, rmarkdown License: Artistic-2.0 MD5sum: 3a0e70ad72d6a9fe1752e6f8f05fe7cc NeedsCompilation: no Title: Subtype Identification with Survival Data Description: Subtypes are defined as groups of samples that have distinct molecular and clinical features. Genomic data can be analyzed for discovering patient subtypes, associated with clinical data, especially for survival information. This package is aimed to identify subtypes that are both clinically relevant and biologically meaningful. biocViews: Software, StatisticalMethod, GeneExpression, Survival, Clustering, Sequencing, Coverage Author: Dongmin Jung Maintainer: Dongmin Jung VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/survtype git_branch: RELEASE_3_20 git_last_commit: 80d1b72 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/survtype_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/survtype_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/survtype_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/survtype_1.22.0.tgz vignettes: vignettes/survtype/inst/doc/survtype.html vignetteTitles: survtype hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/survtype/inst/doc/survtype.R dependencyCount: 137 Package: sva Version: 3.54.0 Depends: R (>= 3.2), mgcv, genefilter, BiocParallel Imports: matrixStats, stats, graphics, utils, limma, edgeR Suggests: pamr, bladderbatch, BiocStyle, zebrafishRNASeq, testthat License: Artistic-2.0 MD5sum: e3f926939855e9fc04006b67a322eeb9 NeedsCompilation: yes Title: Surrogate Variable Analysis Description: The sva package contains functions for removing batch effects and other unwanted variation in high-throughput experiment. Specifically, the sva package contains functions for the identifying and building surrogate variables for high-dimensional data sets. Surrogate variables are covariates constructed directly from high-dimensional data (like gene expression/RNA sequencing/methylation/brain imaging data) that can be used in subsequent analyses to adjust for unknown, unmodeled, or latent sources of noise. The sva package can be used to remove artifacts in three ways: (1) identifying and estimating surrogate variables for unknown sources of variation in high-throughput experiments (Leek and Storey 2007 PLoS Genetics,2008 PNAS), (2) directly removing known batch effects using ComBat (Johnson et al. 2007 Biostatistics) and (3) removing batch effects with known control probes (Leek 2014 biorXiv). Removing batch effects and using surrogate variables in differential expression analysis have been shown to reduce dependence, stabilize error rate estimates, and improve reproducibility, see (Leek and Storey 2007 PLoS Genetics, 2008 PNAS or Leek et al. 2011 Nat. Reviews Genetics). biocViews: ImmunoOncology, Microarray, StatisticalMethod, Preprocessing, MultipleComparison, Sequencing, RNASeq, BatchEffect, Normalization Author: Jeffrey T. Leek , W. Evan Johnson , Hilary S. Parker , Elana J. Fertig , Andrew E. Jaffe , Yuqing Zhang , John D. Storey , Leonardo Collado Torres Maintainer: Jeffrey T. Leek , John D. Storey , W. Evan Johnson git_url: https://git.bioconductor.org/packages/sva git_branch: RELEASE_3_20 git_last_commit: 2e460b8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/sva_3.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/sva_3.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/sva_3.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/sva_3.54.0.tgz vignettes: vignettes/sva/inst/doc/sva.pdf vignetteTitles: sva tutorial hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/sva/inst/doc/sva.R dependsOnMe: DeMixT, IsoformSwitchAnalyzeR, SCAN.UPC, rnaseqGene, bapred, leapp, SmartSVA importsMe: ASSIGN, ballgown, BatchQC, BERT, BioNERO, bnbc, bnem, DaMiRseq, debrowser, DExMA, doppelgangR, edge, GEOexplorer, HarmonizR, KnowSeq, MatrixQCvis, MBECS, MSPrep, omicRexposome, PAA, pairedGSEA, POMA, qsmooth, qsvaR, SEtools, singleCellTK, trigger, DeSousa2013, ExpressionNormalizationWorkflow, causalBatch, cinaR, dSVA, oncoPredict, scITD, seqgendiff, TransProR suggestsMe: compcodeR, Harman, iasva, MAGeCKFlute, randRotation, RnBeads, scp, SomaticSignatures, TCGAbiolinks, tidybulk, curatedBladderData, curatedOvarianData, curatedTBData, FieldEffectCrc, CAGEWorkflow, DGEobj.utils, DRomics, SuperLearner dependencyCount: 71 Package: svaNUMT Version: 1.12.0 Depends: GenomicRanges, rtracklayer, VariantAnnotation, StructuralVariantAnnotation, BiocGenerics, Biostrings, R (>= 4.0) Imports: assertthat, stringr, dplyr, methods, rlang, GenomeInfoDb, S4Vectors, GenomicFeatures, pwalign Suggests: TxDb.Hsapiens.UCSC.hg19.knownGene, BSgenome.Hsapiens.UCSC.hg19, ggplot2, devtools, testthat (>= 2.1.0), roxygen2, knitr, readr, plyranges, circlize, IRanges, SummarizedExperiment, rmarkdown License: GPL-3 + file LICENSE MD5sum: 52fe243524484bd3036c694f0e38934d NeedsCompilation: no Title: NUMT detection from structural variant calls Description: svaNUMT contains functions for detecting NUMT events from structural variant calls. It takes structural variant calls in GRanges of breakend notation and identifies NUMTs by nuclear-mitochondrial breakend junctions. The main function reports candidate NUMTs if there is a pair of valid insertion sites found on the nuclear genome within a certain distance threshold. The candidate NUMTs are reported by events. biocViews: DataImport, Sequencing, Annotation, Genetics, VariantAnnotation Author: Ruining Dong [aut, cre] () Maintainer: Ruining Dong VignetteBuilder: knitr BugReports: https://github.com/PapenfussLab/svaNUMT/issues git_url: https://git.bioconductor.org/packages/svaNUMT git_branch: RELEASE_3_20 git_last_commit: 5163167 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/svaNUMT_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/svaNUMT_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/svaNUMT_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/svaNUMT_1.12.0.tgz vignettes: vignettes/svaNUMT/inst/doc/svaNUMT.html vignetteTitles: svaNUMT Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/svaNUMT/inst/doc/svaNUMT.R dependencyCount: 93 Package: svaRetro Version: 1.12.0 Depends: GenomicRanges, rtracklayer, BiocGenerics, StructuralVariantAnnotation, R (>= 4.0) Imports: VariantAnnotation, assertthat, Biostrings, stringr, dplyr, methods, rlang, GenomicFeatures, GenomeInfoDb, S4Vectors, utils Suggests: TxDb.Hsapiens.UCSC.hg19.knownGene, ggplot2, devtools, testthat (>= 2.1.0), roxygen2, knitr, BiocStyle, plyranges, circlize, tictoc, IRanges, stats, SummarizedExperiment, rmarkdown License: GPL-3 + file LICENSE MD5sum: 39b0fcccb2b528ff6053d46acbbacfda NeedsCompilation: no Title: Retrotransposed transcript detection from structural variants Description: svaRetro contains functions for detecting retrotransposed transcripts (RTs) from structural variant calls. It takes structural variant calls in GRanges of breakend notation and identifies RTs by exon-exon junctions and insertion sites. The candidate RTs are reported by events and annotated with information of the inserted transcripts. biocViews: DataImport, Sequencing, Annotation, Genetics, VariantAnnotation, Coverage, VariantDetection Author: Ruining Dong [aut, cre] () Maintainer: Ruining Dong VignetteBuilder: knitr BugReports: https://github.com/PapenfussLab/svaRetro/issues git_url: https://git.bioconductor.org/packages/svaRetro git_branch: RELEASE_3_20 git_last_commit: c34d9ce git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/svaRetro_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/svaRetro_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/svaRetro_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/svaRetro_1.12.0.tgz vignettes: vignettes/svaRetro/inst/doc/svaRetro.html vignetteTitles: svaRetro Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/svaRetro/inst/doc/svaRetro.R dependencyCount: 93 Package: SVMDO Version: 1.6.0 Depends: R(>= 4.4), shiny (>= 1.7.4) Imports: shinyFiles (>= 0.9.3), shinytitle (>= 0.1.0), golem (>= 0.3.5), nortest (>= 1.0-4), e1071 (>= 1.7-12), BSDA (>= 1.2.1), data.table (>= 1.14.6), sjmisc (>= 2.8.9), klaR (>= 1.7-1), caTools (>= 1.18.2), caret (>= 6.0-93), survival (>= 3.4-0), DT (>= 0.33.0), DOSE (>= 3.24.2), AnnotationDbi (>= 1.60.0), org.Hs.eg.db (>= 3.16.0), dplyr (>= 1.0.10), SummarizedExperiment (>= 1.28.0), grDevices, graphics, stats, utils Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 3.1.6) License: GPL-3 MD5sum: 82f1c21363960db074b2a7d67410b4f3 NeedsCompilation: no Title: Identification of Tumor-Discriminating mRNA Signatures via Support Vector Machines Supported by Disease Ontology Description: It is an easy-to-use GUI using disease information for detecting tumor/normal sample discriminating gene sets from differentially expressed genes. Our approach is based on an iterative algorithm filtering genes with disease ontology enrichment analysis and wilk and wilks lambda criterion connected to SVM classification model construction. Along with gene set extraction, SVMDO also provides individual prognostic marker detection. The algorithm is designed for FPKM and RPKM normalized RNA-Seq transcriptome datasets. biocViews: GeneSetEnrichment, DifferentialExpression, GUI, Classification, RNASeq, Transcriptomics, Survival Author: Mustafa Erhan Ozer [aut, cre] (), Pemra Ozbek Sarica [aut], Kazim Yalcin Arga [aut] Maintainer: Mustafa Erhan Ozer VignetteBuilder: knitr BugReports: https://github.com/robogeno/SVMDO/issues git_url: https://git.bioconductor.org/packages/SVMDO git_branch: RELEASE_3_20 git_last_commit: 1f89469 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SVMDO_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SVMDO_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SVMDO_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SVMDO_1.6.0.tgz vignettes: vignettes/SVMDO/inst/doc/SVMDO_guide.html vignetteTitles: SVMDO-Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SVMDO/inst/doc/SVMDO_guide.R dependencyCount: 200 Package: SWATH2stats Version: 1.36.0 Depends: R(>= 2.10.0) Imports: data.table, reshape2, ggplot2, stats, grDevices, graphics, utils, biomaRt, methods Suggests: testthat, knitr, rmarkdown Enhances: MSstats, PECA, aLFQ License: GPL-3 Archs: x64 MD5sum: 39357a6c5cf510962679418ecc1d4e95 NeedsCompilation: no Title: Transform and Filter SWATH Data for Statistical Packages Description: This package is intended to transform SWATH data from the OpenSWATH software into a format readable by other statistics packages while performing filtering, annotation and FDR estimation. biocViews: Proteomics, Annotation, ExperimentalDesign, Preprocessing, MassSpectrometry, ImmunoOncology Author: Peter Blattmann [aut, cre] Moritz Heusel [aut] Ruedi Aebersold [aut] Maintainer: Peter Blattmann URL: https://peterblattmann.github.io/SWATH2stats/ VignetteBuilder: knitr BugReports: https://github.com/peterblattmann/SWATH2stats git_url: https://git.bioconductor.org/packages/SWATH2stats git_branch: RELEASE_3_20 git_last_commit: 0378c99 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SWATH2stats_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SWATH2stats_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SWATH2stats_1.36.0.tgz vignettes: vignettes/SWATH2stats/inst/doc/SWATH2stats_example_script.pdf, vignettes/SWATH2stats/inst/doc/SWATH2stats_vignette.pdf vignetteTitles: SWATH2stats example script, SWATH2stats package Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SWATH2stats/inst/doc/SWATH2stats_example_script.R, vignettes/SWATH2stats/inst/doc/SWATH2stats_vignette.R dependencyCount: 90 Package: SwathXtend Version: 2.28.0 Depends: e1071, openxlsx, VennDiagram, lattice License: GPL-2 Archs: x64 MD5sum: 81247ec78a84f9b29b5a3c995d80305a NeedsCompilation: no Title: SWATH extended library generation and statistical data analysis Description: Contains utility functions for integrating spectral libraries for SWATH and statistical data analysis for SWATH generated data. biocViews: Software Author: J WU and D Pascovici Maintainer: Jemma Wu git_url: https://git.bioconductor.org/packages/SwathXtend git_branch: RELEASE_3_20 git_last_commit: 2e33937 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SwathXtend_2.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SwathXtend_2.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SwathXtend_2.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SwathXtend_2.28.0.tgz vignettes: vignettes/SwathXtend/inst/doc/SwathXtend_vignette.pdf vignetteTitles: SwathXtend hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SwathXtend/inst/doc/SwathXtend_vignette.R dependencyCount: 21 Package: swfdr Version: 1.32.0 Depends: R (>= 3.4) Imports: methods, splines, stats4, stats Suggests: dplyr, ggplot2, BiocStyle, knitr, qvalue, reshape2, rmarkdown, testthat License: GPL (>= 3) MD5sum: df5515b6f5248314e0bf2b3d9796a675 NeedsCompilation: no Title: Estimation of the science-wise false discovery rate and the false discovery rate conditional on covariates Description: This package allows users to estimate the science-wise false discovery rate from Jager and Leek, "Empirical estimates suggest most published medical research is true," 2013, Biostatistics, using an EM approach due to the presence of rounding and censoring. It also allows users to estimate the false discovery rate conditional on covariates, using a regression framework, as per Boca and Leek, "A direct approach to estimating false discovery rates conditional on covariates," 2018, PeerJ. biocViews: MultipleComparison, StatisticalMethod, Software Author: Jeffrey T. Leek, Leah Jager, Simina M. Boca, Tomasz Konopka Maintainer: Simina M. Boca , Jeffrey T. Leek URL: https://github.com/leekgroup/swfdr VignetteBuilder: knitr BugReports: https://github.com/leekgroup/swfdr/issues git_url: https://git.bioconductor.org/packages/swfdr git_branch: RELEASE_3_20 git_last_commit: 14086a6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/swfdr_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/swfdr_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/swfdr_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/swfdr_1.32.0.tgz vignettes: vignettes/swfdr/inst/doc/swfdrQ.pdf, vignettes/swfdr/inst/doc/swfdrTutorial.pdf vignetteTitles: Computing covariate-adjusted q-values, Tutorial for swfdr package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/swfdr/inst/doc/swfdrQ.R, vignettes/swfdr/inst/doc/swfdrTutorial.R dependencyCount: 4 Package: switchBox Version: 1.42.0 Depends: R (>= 2.13.1), pROC, gplots License: GPL-2 Archs: x64 MD5sum: 40863cfc22c022ed150b48004f33ac0b NeedsCompilation: yes Title: Utilities to train and validate classifiers based on pair switching using the K-Top-Scoring-Pair (KTSP) algorithm Description: The package offer different classifiers based on comparisons of pair of features (TSP), using various decision rules (e.g., majority wins principle). biocViews: Software, StatisticalMethod, Classification Author: Bahman Afsari , Luigi Marchionni , Wikum Dinalankara Maintainer: Bahman Afsari , Luigi Marchionni , Wikum Dinalankara git_url: https://git.bioconductor.org/packages/switchBox git_branch: RELEASE_3_20 git_last_commit: 174dd0f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/switchBox_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/switchBox_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/switchBox_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/switchBox_1.42.0.tgz vignettes: vignettes/switchBox/inst/doc/switchBox.pdf vignetteTitles: Working with the switchBox package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/switchBox/inst/doc/switchBox.R suggestsMe: multiclassPairs dependencyCount: 11 Package: switchde Version: 1.32.0 Depends: R (>= 3.4), SingleCellExperiment Imports: SummarizedExperiment, dplyr, ggplot2, methods, stats Suggests: knitr, rmarkdown, BiocStyle, testthat, numDeriv, tidyr License: GPL (>= 2) MD5sum: 4319e9c79cdf7e5bfa480360966646dc NeedsCompilation: no Title: Switch-like differential expression across single-cell trajectories Description: Inference and detection of switch-like differential expression across single-cell RNA-seq trajectories. biocViews: ImmunoOncology, Software, Transcriptomics, GeneExpression, RNASeq, Regression, DifferentialExpression, SingleCell Author: Kieran Campbell [aut, cre] Maintainer: Kieran Campbell URL: https://github.com/kieranrcampbell/switchde VignetteBuilder: knitr BugReports: https://github.com/kieranrcampbell/switchde git_url: https://git.bioconductor.org/packages/switchde git_branch: RELEASE_3_20 git_last_commit: 09301d4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/switchde_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/switchde_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/switchde_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/switchde_1.32.0.tgz vignettes: vignettes/switchde/inst/doc/switchde_vignette.html vignetteTitles: An overview of the switchde package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/switchde/inst/doc/switchde_vignette.R dependencyCount: 66 Package: synapsis Version: 1.12.0 Depends: R (>= 4.1) Imports: EBImage, stats, utils, graphics Suggests: knitr, rmarkdown, testthat (>= 3.0.0), ggplot2, tidyverse, BiocStyle License: MIT + file LICENSE MD5sum: e54d1506f16b37444a3553ec38c4f4a8 NeedsCompilation: no Title: An R package to automate the analysis of double-strand break repair during meiosis Description: Synapsis is a Bioconductor software package for automated (unbiased and reproducible) analysis of meiotic immunofluorescence datasets. The primary functions of the software can i) identify cells in meiotic prophase that are labelled by a synaptonemal complex axis or central element protein, ii) isolate individual synaptonemal complexes and measure their physical length, iii) quantify foci and co-localise them with synaptonemal complexes, iv) measure interference between synaptonemal complex-associated foci. The software has applications that extend to multiple species and to the analysis of other proteins that label meiotic prophase chromosomes. The software converts meiotic immunofluorescence images into R data frames that are compatible with machine learning methods. Given a set of microscopy images of meiotic spread slides, synapsis crops images around individual single cells, counts colocalising foci on strands on a per cell basis, and measures the distance between foci on any given strand. biocViews: Software, SingleCell Author: Lucy McNeill [aut, cre, cph] (), Wayne Crismani [rev, ctb] () Maintainer: Lucy McNeill VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/synapsis git_branch: RELEASE_3_20 git_last_commit: ac3151c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/synapsis_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/synapsis_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/synapsis_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/synapsis_1.12.0.tgz vignettes: vignettes/synapsis/inst/doc/synapsis_tutorial.html vignetteTitles: Using-synapsis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/synapsis/inst/doc/synapsis_tutorial.R dependencyCount: 45 Package: synapter Version: 2.30.0 Depends: R (>= 3.1.0), methods, MSnbase (>= 2.1.2) Imports: RColorBrewer, lattice, qvalue, multtest, utils, tools, Biobase, Biostrings, cleaver (>= 1.3.3), readr (>= 0.2), rmarkdown (>= 1.0) Suggests: synapterdata (>= 1.13.2), xtable, testthat (>= 0.8), BRAIN, BiocStyle, knitr License: GPL-2 MD5sum: a98619ff1d4662fcadb83e7b2370b934 NeedsCompilation: no Title: Label-free data analysis pipeline for optimal identification and quantitation Description: The synapter package provides functionality to reanalyse label-free proteomics data acquired on a Synapt G2 mass spectrometer. One or several runs, possibly processed with additional ion mobility separation to increase identification accuracy can be combined to other quantitation files to maximise identification and quantitation accuracy. biocViews: ImmunoOncology, MassSpectrometry, Proteomics, QualityControl Author: Laurent Gatto, Nick J. Bond, Pavel V. Shliaha and Sebastian Gibb. Maintainer: Laurent Gatto Sebastian Gibb URL: https://lgatto.github.io/synapter/ VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/synapter git_branch: RELEASE_3_20 git_last_commit: 8e5133c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/synapter_2.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/synapter_2.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/synapter_2.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/synapter_2.30.0.tgz vignettes: vignettes/synapter/inst/doc/fragmentmatching.html, vignettes/synapter/inst/doc/synapter2.html, vignettes/synapter/inst/doc/synapter.html vignetteTitles: Fragment matching using 'synapter', Synapter2 and synergise2, Combining HDMSe/MSe data using 'synapter' to optimise identification and quantitation hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/synapter/inst/doc/fragmentmatching.R, vignettes/synapter/inst/doc/synapter2.R, vignettes/synapter/inst/doc/synapter.R dependsOnMe: synapterdata dependencyCount: 151 Package: synergyfinder Version: 3.14.0 Depends: R (>= 4.0.0) Imports: drc (>= 3.0-1), reshape2 (>= 1.4.4), tidyverse (>= 1.3.0), dplyr (>= 1.0.3), tidyr (>= 1.1.2), purrr (>= 0.3.4), furrr (>= 0.2.2), ggplot2 (>= 3.3.3), ggforce (>= 0.3.2), grid (>= 4.0.2), vegan (>= 2.5-7), gstat (>= 2.0-6), sp (>= 1.4-5), methods (>= 4.0.2), SpatialExtremes (>= 2.0-9), ggrepel (>= 0.9.1), kriging (>= 1.1), plotly (>= 4.9.3), stringr (>= 1.4.0), future (>= 1.21.0), mice (>= 3.13.0), lattice (>= 0.20-41), nleqslv (>= 3.3.2), stats (>= 4.0.2), graphics (>= 4.0.2), grDevices (>= 4.0.2), magrittr (>= 2.0.1), pbapply (>= 1.4-3), metR (>= 0.9.1) Suggests: knitr, rmarkdown License: Mozilla Public License 2.0 MD5sum: 6e3bef765805bc8dc28f55ae23b26747 NeedsCompilation: no Title: Calculate and Visualize Synergy Scores for Drug Combinations Description: Efficient implementations for analyzing pre-clinical multiple drug combination datasets. It provides efficient implementations for 1.the popular synergy scoring models, including HSA, Loewe, Bliss, and ZIP to quantify the degree of drug combination synergy; 2. higher order drug combination data analysis and synergy landscape visualization for unlimited number of drugs in a combination; 3. statistical analysis of drug combination synergy and sensitivity with confidence intervals and p-values; 4. synergy barometer for harmonizing multiple synergy scoring methods to provide a consensus metric of synergy; 5. evaluation of synergy and sensitivity simultaneously to provide an unbiased interpretation of the clinical potential of the drug combinations. Based on this package, we also provide a web application (http://www.synergyfinder.org) for users who prefer graphical user interface. biocViews: Software, StatisticalMethod Author: Shuyu Zheng [aut, cre], Jing Tang [aut] Maintainer: Shuyu Zheng URL: http://www.synergyfinder.org VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/synergyfinder git_branch: RELEASE_3_20 git_last_commit: 655c2fc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/synergyfinder_3.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/synergyfinder_3.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/synergyfinder_3.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/synergyfinder_3.14.0.tgz vignettes: vignettes/synergyfinder/inst/doc/User_tutorual_of_the_SynergyFinder_plus.html vignetteTitles: User tutorial of the SynergyFinder Plus hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/synergyfinder/inst/doc/User_tutorual_of_the_SynergyFinder_plus.R dependencyCount: 205 Package: SynExtend Version: 1.18.0 Depends: R (>= 4.4.0), DECIPHER (>= 2.28.0) Imports: methods, Biostrings, S4Vectors, IRanges, utils, stats, parallel, graphics, grDevices, RSQLite, DBI Suggests: BiocStyle, knitr, igraph, markdown, rmarkdown License: GPL-3 MD5sum: eb6add489f08d6f63e015f582a5ac59b NeedsCompilation: yes Title: Tools for Working With Synteny Objects Description: Shared order between genomic sequences provide a great deal of information. Synteny objects produced by the R package DECIPHER provides quantitative information about that shared order. SynExtend provides tools for extracting information from Synteny objects. biocViews: Genetics, Clustering, ComparativeGenomics, DataImport Author: Nicholas Cooley [aut, cre] (), Aidan Lakshman [aut, ctb] (), Adelle Fernando [ctb], Erik Wright [aut] Maintainer: Nicholas Cooley URL: https://github.com/npcooley/SynExtend VignetteBuilder: knitr BugReports: https://github.com/npcooley/SynExtend/issues/new/ git_url: https://git.bioconductor.org/packages/SynExtend git_branch: RELEASE_3_20 git_last_commit: 75461e3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SynExtend_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SynExtend_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SynExtend_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SynExtend_1.18.0.tgz vignettes: vignettes/SynExtend/inst/doc/UsingSynExtend.html vignetteTitles: UsingSynExtend hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SynExtend/inst/doc/UsingSynExtend.R dependencyCount: 43 Package: synlet Version: 2.6.0 Depends: R (>= 3.5.0) Imports: data.table, ggplot2, grDevices, magrittr, methods, patchwork, RankProd, RColorBrewer, stats, utils Suggests: BiocStyle, knitr, testthat, rmarkdown License: GPL-3 MD5sum: 070bb69d84f70bd96a82cc605068381b NeedsCompilation: no Title: Hits Selection for Synthetic Lethal RNAi Screen Data Description: Select hits from synthetic lethal RNAi screen data. For example, there are two identical celllines except one gene is knocked-down in one cellline. The interest is to find genes that lead to stronger lethal effect when they are knocked-down further by siRNA. Quality control and various visualisation tools are implemented. Four different algorithms could be used to pick up the interesting hits. This package is designed based on 384 wells plates, but may apply to other platforms with proper configuration. biocViews: ImmunoOncology, CellBasedAssays, QualityControl, Preprocessing, Visualization, FeatureExtraction Author: Chunxuan Shao [aut, cre] Maintainer: Chunxuan Shao VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/synlet git_branch: RELEASE_3_20 git_last_commit: faf1790 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/synlet_2.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/synlet_2.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/synlet_2.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/synlet_2.6.0.tgz vignettes: vignettes/synlet/inst/doc/synlet-vignette.html vignetteTitles: A working Demo for synlet hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/synlet/inst/doc/synlet-vignette.R dependencyCount: 40 Package: SynMut Version: 1.22.0 Imports: seqinr, methods, Biostrings, stringr, BiocGenerics Suggests: BiocManager, knitr, rmarkdown, testthat, devtools, prettydoc, glue License: GPL-2 Archs: x64 MD5sum: 0b5f7e13d2845a7a0a7e73be5b21c640 NeedsCompilation: no Title: SynMut: Designing Synonymously Mutated Sequences with Different Genomic Signatures Description: There are increasing demands on designing virus mutants with specific dinucleotide or codon composition. This tool can take both dinucleotide preference and/or codon usage bias into account while designing mutants. It is a powerful tool for in silico designs of DNA sequence mutants. biocViews: SequenceMatching, ExperimentalDesign, Preprocessing Author: Haogao Gu [aut, cre], Leo L.M. Poon [led] Maintainer: Haogao Gu URL: https://github.com/Koohoko/SynMut VignetteBuilder: knitr BugReports: https://github.com/Koohoko/SynMut/issues git_url: https://git.bioconductor.org/packages/SynMut git_branch: RELEASE_3_20 git_last_commit: 30b8575 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/SynMut_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/SynMut_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SynMut_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SynMut_1.22.0.tgz vignettes: vignettes/SynMut/inst/doc/SynMut.html vignetteTitles: SynMut: Designing Synonymous Mutants for DNA Sequences hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/SynMut/inst/doc/SynMut.R dependencyCount: 44 Package: syntenet Version: 1.8.1 Depends: R (>= 4.2) Imports: Rcpp (>= 1.0.8), BiocParallel, GenomicRanges, rlang, Biostrings, rtracklayer, utils, methods, igraph, stats, grDevices, RColorBrewer, pheatmap, ggplot2, ggnetwork, intergraph LinkingTo: Rcpp, testthat Suggests: BiocStyle, ggtree, labdsv, covr, knitr, rmarkdown, testthat (>= 3.0.0), xml2, networkD3 License: GPL-3 MD5sum: 056edddd87df6d53f0277cb1f6902cd8 NeedsCompilation: yes Title: Inference And Analysis Of Synteny Networks Description: syntenet can be used to infer synteny networks from whole-genome protein sequences and analyze them. Anchor pairs are detected with the MCScanX algorithm, which was ported to this package with the Rcpp framework for R and C++ integration. Anchor pairs from synteny analyses are treated as an undirected unweighted graph (i.e., a synteny network), and users can perform: i. network clustering; ii. phylogenomic profiling (by identifying which species contain which clusters) and; iii. microsynteny-based phylogeny reconstruction with maximum likelihood. biocViews: Software, NetworkInference, FunctionalGenomics, ComparativeGenomics, Phylogenetics, SystemsBiology, GraphAndNetwork, WholeGenome, Network Author: Fabrício Almeida-Silva [aut, cre] (), Tao Zhao [aut] (), Kristian K Ullrich [aut] (), Yves Van de Peer [aut] () Maintainer: Fabrício Almeida-Silva URL: https://github.com/almeidasilvaf/syntenet VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/syntenet git_url: https://git.bioconductor.org/packages/syntenet git_branch: RELEASE_3_20 git_last_commit: cd01200 git_last_commit_date: 2024-12-18 Date/Publication: 2024-12-19 source.ver: src/contrib/syntenet_1.8.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/syntenet_1.8.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/syntenet_1.8.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/syntenet_1.8.1.tgz vignettes: vignettes/syntenet/inst/doc/syntenet.html vignetteTitles: Inference and Analysis of Synteny Networks hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/syntenet/inst/doc/syntenet.R importsMe: doubletrouble dependencyCount: 109 Package: systemPipeR Version: 2.12.0 Depends: Rsamtools (>= 1.31.2), Biostrings, ShortRead (>= 1.37.1), methods Imports: GenomicRanges, SummarizedExperiment, ggplot2, yaml, stringr, magrittr, S4Vectors, crayon, BiocGenerics, htmlwidgets Suggests: BiocStyle, knitr, rmarkdown, systemPipeRdata, GenomicAlignments, grid, dplyr, testthat, rjson, annotate, AnnotationDbi, kableExtra, GO.db, GenomeInfoDb, DT, rtracklayer, limma, edgeR, DESeq2, IRanges, batchtools, GenomicFeatures, txdbmaker, VariantAnnotation (>= 1.25.11) License: Artistic-2.0 MD5sum: cc9cef185e84097abc4a6bb73036a50d NeedsCompilation: no Title: systemPipeR: Workflow Environment for Data Analysis and Report Generation Description: systemPipeR is a multipurpose data analysis workflow environment that unifies R with command-line tools. It enables scientists to analyze many types of large- or small-scale data on local or distributed computer systems with a high level of reproducibility, scalability and portability. At its core is a command-line interface (CLI) that adopts the Common Workflow Language (CWL). This design allows users to choose for each analysis step the optimal R or command-line software. It supports both end-to-end and partial execution of workflows with built-in restart functionalities. Efficient management of complex analysis tasks is accomplished by a flexible workflow control container class. Handling of large numbers of input samples and experimental designs is facilitated by consistent sample annotation mechanisms. As a multi-purpose workflow toolkit, systemPipeR enables users to run existing workflows, customize them or design entirely new ones while taking advantage of widely adopted data structures within the Bioconductor ecosystem. Another important core functionality is the generation of reproducible scientific analysis and technical reports. For result interpretation, systemPipeR offers a wide range of plotting functionality, while an associated Shiny App offers many useful functionalities for interactive result exploration. The vignettes linked from this page include (1) a general introduction, (2) a description of technical details, and (3) a collection of workflow templates. biocViews: Genetics, Infrastructure, DataImport, Sequencing, RNASeq, RiboSeq, ChIPSeq, MethylSeq, SNP, GeneExpression, Coverage, GeneSetEnrichment, Alignment, QualityControl, ImmunoOncology, ReportWriting, WorkflowStep, WorkflowManagement Author: Thomas Girke Maintainer: Thomas Girke URL: https://systempipe.org/, https://github.com/tgirke/systemPipeR SystemRequirements: systemPipeR can be used to run external command-line software (e.g. short read aligners), but the corresponding tool needs to be installed on a system. VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/systemPipeR git_branch: RELEASE_3_20 git_last_commit: 1895b29 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/systemPipeR_2.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/systemPipeR_2.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/systemPipeR_2.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/systemPipeR_2.12.0.tgz vignettes: vignettes/systemPipeR/inst/doc/systemPipeR.html, vignettes/systemPipeR/inst/doc/systemPipeR_workflows.html vignetteTitles: Overview, systemPipeR: Workflow Templates hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/systemPipeR/inst/doc/systemPipeR.R, vignettes/systemPipeR/inst/doc/systemPipeR_workflows.R importsMe: DiffBind suggestsMe: systemPipeShiny, systemPipeTools, systemPipeRdata dependencyCount: 109 Package: systemPipeShiny Version: 1.16.0 Depends: R (>= 4.0.0), shiny (>= 1.6.0), spsUtil (>= 0.2.2), spsComps (>= 0.3.3), drawer (>= 0.2) Imports: DT, assertthat, bsplus, crayon, dplyr, ggplot2, htmltools, glue, magrittr, methods, plotly, rlang, rstudioapi, shinyAce, shinyFiles, shinyWidgets, shinydashboard, shinydashboardPlus (>= 2.0.0), shinyjqui, shinyjs, shinytoastr, stringr, stats, styler, tibble, utils, vroom (>= 1.3.1), yaml, R6, RSQLite, openssl Suggests: testthat, BiocStyle, knitr, rmarkdown, systemPipeR (>= 2.2.0), systemPipeRdata (>= 2.0.0), rhandsontable, zip, callr, pushbar, fs, readr, R.utils, DESeq2, SummarizedExperiment, glmpca, pheatmap, grid, ape, Rtsne, UpSetR, tidyr, esquisse (>= 1.1.0), cicerone License: GPL (>= 3) MD5sum: dc9a1d1a008674c8a9fc3f716810a73f NeedsCompilation: no Title: systemPipeShiny: An Interactive Framework for Workflow Management and Visualization Description: systemPipeShiny (SPS) extends the widely used systemPipeR (SPR) workflow environment with a versatile graphical user interface provided by a Shiny App. This allows non-R users, such as experimentalists, to run many systemPipeR’s workflow designs, control, and visualization functionalities interactively without requiring knowledge of R. Most importantly, SPS has been designed as a general purpose framework for interacting with other R packages in an intuitive manner. Like most Shiny Apps, SPS can be used on both local computers as well as centralized server-based deployments that can be accessed remotely as a public web service for using SPR’s functionalities with community and/or private data. The framework can integrate many core packages from the R/Bioconductor ecosystem. Examples of SPS’ current functionalities include: (a) interactive creation of experimental designs and metadata using an easy to use tabular editor or file uploader; (b) visualization of workflow topologies combined with auto-generation of R Markdown preview for interactively designed workflows; (d) access to a wide range of data processing routines; (e) and an extendable set of visualization functionalities. Complex visual results can be managed on a 'Canvas Workbench’ allowing users to organize and to compare plots in an efficient manner combined with a session snapshot feature to continue work at a later time. The present suite of pre-configured visualization examples. The modular design of SPR makes it easy to design custom functions without any knowledge of Shiny, as well as extending the environment in the future with contributions from the community. biocViews: ShinyApps, Infrastructure, DataImport, Sequencing, QualityControl, ReportWriting, ExperimentalDesign, Clustering Author: Le Zhang [aut, cre], Daniela Cassol [aut], Ponmathi Ramasamy [aut], Jianhai Zhang [aut], Gordon Mosher [aut], Thomas Girke [aut] Maintainer: Le Zhang URL: https://systempipe.org/sps, https://github.com/systemPipeR/systemPipeShiny VignetteBuilder: knitr BugReports: https://github.com/systemPipeR/systemPipeShiny/issues git_url: https://git.bioconductor.org/packages/systemPipeShiny git_branch: RELEASE_3_20 git_last_commit: d1179e2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/systemPipeShiny_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/systemPipeShiny_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/systemPipeShiny_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/systemPipeShiny_1.16.0.tgz vignettes: vignettes/systemPipeShiny/inst/doc/systemPipeShiny.html vignetteTitles: systemPipeShiny hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/systemPipeShiny/inst/doc/systemPipeShiny.R dependencyCount: 120 Package: systemPipeTools Version: 1.14.0 Imports: DESeq2, GGally, Rtsne, SummarizedExperiment, ape, dplyr, ggplot2, ggrepel, ggtree, glmpca, pheatmap, plotly, tibble, magrittr, DT, stats Suggests: systemPipeR, knitr, BiocStyle, rmarkdown, testthat (>= 3.0.0), BiocGenerics, Biostrings, methods License: Artistic-2.0 MD5sum: 6a14f23733dc113d07a860f495035ebf NeedsCompilation: no Title: Tools for data visualization Description: systemPipeTools package extends the widely used systemPipeR (SPR) workflow environment with an enhanced toolkit for data visualization, including utilities to automate the data visualizaton for analysis of differentially expressed genes (DEGs). systemPipeTools provides data transformation and data exploration functions via scatterplots, hierarchical clustering heatMaps, principal component analysis, multidimensional scaling, generalized principal components, t-Distributed Stochastic Neighbor embedding (t-SNE), and MA and volcano plots. All these utilities can be integrated with the modular design of the systemPipeR environment that allows users to easily substitute any of these features and/or custom with alternatives. biocViews: Infrastructure, DataImport, Sequencing, QualityControl, ReportWriting, ExperimentalDesign, Clustering, DifferentialExpression, MultidimensionalScaling, PrincipalComponent Author: Daniela Cassol [aut, cre], Ponmathi Ramasamy [aut], Le Zhang [aut], Thomas Girke [aut] Maintainer: Daniela Cassol VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/systemPipeTools git_branch: RELEASE_3_20 git_last_commit: eb8f7d2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/systemPipeTools_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/systemPipeTools_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/systemPipeTools_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/systemPipeTools_1.14.0.tgz vignettes: vignettes/systemPipeTools/inst/doc/systemPipeTools.html vignetteTitles: systemPipeTools: Data Visualizations hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/systemPipeTools/inst/doc/systemPipeTools.R dependencyCount: 132 Package: tadar Version: 1.4.0 Depends: GenomicRanges, ggplot2, R (>= 4.4.0) Imports: BiocGenerics, GenomeInfoDb, Gviz, IRanges, MatrixGenerics, methods, rlang, Rsamtools, S4Vectors, stats, VariantAnnotation Suggests: BiocStyle, covr, knitr, limma, rmarkdown, testthat (>= 3.0.0), tidyverse License: GPL-3 Archs: x64 MD5sum: 2befd08cefb1a79c02ba456de5d8ef2a NeedsCompilation: no Title: Transcriptome Analysis of Differential Allelic Representation Description: This package provides functions to standardise the analysis of Differential Allelic Representation (DAR). DAR compromises the integrity of Differential Expression analysis results as it can bias expression, influencing the classification of genes (or transcripts) as being differentially expressed. DAR analysis results in an easy-to-interpret value between 0 and 1 for each genetic feature of interest, where 0 represents identical allelic representation and 1 represents complete diversity. This metric can be used to identify features prone to false-positive calls in Differential Expression analysis, and can be leveraged with statistical methods to alleviate the impact of such artefacts on RNA-seq data. biocViews: Sequencing, RNASeq, SNP, GenomicVariation, VariantAnnotation, DifferentialExpression Author: Lachlan Baer [aut, cre] (), Stevie Pederson [aut] () Maintainer: Lachlan Baer URL: https://github.com/baerlachlan/tadar VignetteBuilder: knitr BugReports: https://github.com/baerlachlan/tadar/issues git_url: https://git.bioconductor.org/packages/tadar git_branch: RELEASE_3_20 git_last_commit: f0369d3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tadar_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tadar_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tadar_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tadar_1.4.0.tgz vignettes: vignettes/tadar/inst/doc/dar.html vignetteTitles: DAR analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tadar/inst/doc/dar.R dependencyCount: 157 Package: TADCompare Version: 1.16.0 Depends: R (>= 4.0) Imports: dplyr, PRIMME, cluster, Matrix, magrittr, HiCcompare, ggplot2, tidyr, ggpubr, RColorBrewer, reshape2, cowplot Suggests: BiocStyle, knitr, rmarkdown, microbenchmark, testthat, covr, pheatmap, SpectralTAD, magick, qpdf License: MIT + file LICENSE MD5sum: e29de1e58e0c613f54bf3766dc171b12 NeedsCompilation: no Title: TADCompare: Identification and characterization of differential TADs Description: TADCompare is an R package designed to identify and characterize differential Topologically Associated Domains (TADs) between multiple Hi-C contact matrices. It contains functions for finding differential TADs between two datasets, finding differential TADs over time and identifying consensus TADs across multiple matrices. It takes all of the main types of HiC input and returns simple, comprehensive, easy to analyze results. biocViews: Software, HiC, Sequencing, FeatureExtraction, Clustering Author: Mikhail Dozmorov [aut, cre] (), Kellen Cresswell [aut] Maintainer: Mikhail Dozmorov URL: https://github.com/dozmorovlab/TADCompare VignetteBuilder: knitr BugReports: https://github.com/dozmorovlab/TADCompare/issues git_url: https://git.bioconductor.org/packages/TADCompare git_branch: RELEASE_3_20 git_last_commit: 1993e3f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TADCompare_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TADCompare_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TADCompare_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TADCompare_1.16.0.tgz vignettes: vignettes/TADCompare/inst/doc/Input_Data.html, vignettes/TADCompare/inst/doc/Ontology_Analysis.html, vignettes/TADCompare/inst/doc/TADCompare.html vignetteTitles: Input data formats, Gene Ontology Enrichment Analysis, TAD comparison between two conditions hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/TADCompare/inst/doc/Input_Data.R, vignettes/TADCompare/inst/doc/Ontology_Analysis.R, vignettes/TADCompare/inst/doc/TADCompare.R dependencyCount: 123 Package: tanggle Version: 1.12.0 Depends: R (>= 4.1), ggplot2 (>= 2.2.0), ggtree Imports: ape (>= 5.0), phangorn (>= 2.5), utils, methods Suggests: tinytest, BiocStyle, ggimage, knitr, rmarkdown License: Artistic-2.0 MD5sum: 9e7144ca413bc859d0ff745b16baabf1 NeedsCompilation: no Title: Visualization of Phylogenetic Networks Description: Offers functions for plotting split (or implicit) networks (unrooted, undirected) and explicit networks (rooted, directed) with reticulations extending. 'ggtree' and using functions from 'ape' and 'phangorn'. It extends the 'ggtree' package [@Yu2017] to allow the visualization of phylogenetic networks using the 'ggplot2' syntax. It offers an alternative to the plot functions already available in 'ape' Paradis and Schliep (2019) and 'phangorn' Schliep (2011) . biocViews: Software, Visualization, Phylogenetics, Alignment, Clustering, MultipleSequenceAlignment, DataImport Author: Klaus Schliep [aut, cre] (), Marta Vidal-Garcia [aut], Claudia Solis-Lemus [aut] (), Leann Biancani [aut], Eren Ada [aut], L. Francisco Henao Diaz [aut], Guangchuang Yu [ctb] Maintainer: Klaus Schliep URL: https://klausvigo.github.io/tanggle, https://github.com/KlausVigo/tanggle VignetteBuilder: knitr BugReports: https://github.com/KlausVigo/tanggle/issues git_url: https://git.bioconductor.org/packages/tanggle git_branch: RELEASE_3_20 git_last_commit: ab99f4f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tanggle_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tanggle_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tanggle_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tanggle_1.12.0.tgz vignettes: vignettes/tanggle/inst/doc/tanggle_vignette_espanol.html, vignettes/tanggle/inst/doc/tanggle_vignette.html vignetteTitles: ***tanggle***: Visualización de redes filogenéticas con *ggplot2*, ***tanggle***: Visualization of phylogenetic networks in a *ggplot2* framework hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tanggle/inst/doc/tanggle_vignette_espanol.R, vignettes/tanggle/inst/doc/tanggle_vignette.R dependencyCount: 64 Package: TAPseq Version: 1.18.0 Depends: R (>= 4.0.0) Imports: methods, GenomicAlignments, GenomicRanges, IRanges, BiocGenerics, S4Vectors (>= 0.20.1), GenomeInfoDb, BSgenome, GenomicFeatures, Biostrings, dplyr, tidyr, BiocParallel Suggests: testthat, BSgenome.Hsapiens.UCSC.hg38, knitr, rmarkdown, ggplot2, Seurat, glmnet, cowplot, Matrix, rtracklayer, BiocStyle License: MIT + file LICENSE Archs: x64 MD5sum: 5e66107f5a03eecda7bfddb3a6a750b8 NeedsCompilation: no Title: Targeted scRNA-seq primer design for TAP-seq Description: Design primers for targeted single-cell RNA-seq used by TAP-seq. Create sequence templates for target gene panels and design gene-specific primers using Primer3. Potential off-targets can be estimated with BLAST. Requires working installations of Primer3 and BLASTn. biocViews: SingleCell, Sequencing, Technology, CRISPR, PooledScreens Author: Andreas R. Gschwind [aut, cre] (), Lars Velten [aut] (), Lars M. Steinmetz [aut] Maintainer: Andreas R. Gschwind URL: https://github.com/argschwind/TAPseq SystemRequirements: Primer3 (>= 2.5.0), BLAST+ (>=2.6.0) VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TAPseq git_branch: RELEASE_3_20 git_last_commit: 31dd01e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TAPseq_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TAPseq_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TAPseq_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TAPseq_1.18.0.tgz vignettes: vignettes/TAPseq/inst/doc/tapseq_primer_design.html, vignettes/TAPseq/inst/doc/tapseq_target_genes.html vignetteTitles: TAP-seq primer design workflow, Select target genes for TAP-seq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/TAPseq/inst/doc/tapseq_primer_design.R, vignettes/TAPseq/inst/doc/tapseq_target_genes.R dependencyCount: 91 Package: target Version: 1.20.0 Depends: R (>= 3.6) Imports: BiocGenerics, GenomicRanges, IRanges, matrixStats, methods, stats, graphics, shiny Suggests: testthat (>= 2.1.0), knitr, rmarkdown, shinytest, shinyBS, covr License: GPL-3 MD5sum: 35ca55252ec0cc3a5da05590a8ccb559 NeedsCompilation: no Title: Predict Combined Function of Transcription Factors Description: Implement the BETA algorithm for infering direct target genes from DNA-binding and perturbation expression data Wang et al. (2013) . Extend the algorithm to predict the combined function of two DNA-binding elements from comprable binding and expression data. biocViews: Software, StatisticalMethod, Transcription Author: Mahmoud Ahmed [aut, cre] Maintainer: Mahmoud Ahmed URL: https://github.com/MahShaaban/target VignetteBuilder: knitr BugReports: https://github.com/MahShaaban/target/issues git_url: https://git.bioconductor.org/packages/target git_branch: RELEASE_3_20 git_last_commit: 48991a9 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/target_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/target_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/target_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/target_1.20.0.tgz vignettes: vignettes/target/inst/doc/extend-target.html, vignettes/target/inst/doc/target.html vignetteTitles: Using target to predict combined binding, Using the target package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/target/inst/doc/extend-target.R, vignettes/target/inst/doc/target.R dependencyCount: 52 Package: TargetDecoy Version: 1.12.0 Depends: R (>= 4.1) Imports: ggplot2, ggpubr, methods, miniUI, mzID, mzR, shiny, stats Suggests: BiocStyle, knitr, msdata, sessioninfo, rmarkdown, gridExtra, testthat (>= 3.0.0), covr License: Artistic-2.0 MD5sum: 7d744a8c777e75469e6a56a03a09e55e NeedsCompilation: no Title: Diagnostic Plots to Evaluate the Target Decoy Approach Description: A first step in the data analysis of Mass Spectrometry (MS) based proteomics data is to identify peptides and proteins. With this respect the huge number of experimental mass spectra typically have to be assigned to theoretical peptides derived from a sequence database. Search engines are used for this purpose. These tools compare each of the observed spectra to all candidate theoretical spectra derived from the sequence data base and calculate a score for each comparison. The observed spectrum is then assigned to the theoretical peptide with the best score, which is also referred to as the peptide to spectrum match (PSM). It is of course crucial for the downstream analysis to evaluate the quality of these matches. Therefore False Discovery Rate (FDR) control is used to return a reliable list PSMs. The FDR, however, requires a good characterisation of the score distribution of PSMs that are matched to the wrong peptide (bad target hits). In proteomics, the target decoy approach (TDA) is typically used for this purpose. The TDA method matches the spectra to a database of real (targets) and nonsense peptides (decoys). A popular approach to generate these decoys is to reverse the target database. Hence, all the PSMs that match to a decoy are known to be bad hits and the distribution of their scores are used to estimate the distribution of the bad scoring target PSMs. A crucial assumption of the TDA is that the decoy PSM hits have similar properties as bad target hits so that the decoy PSM scores are a good simulation of the target PSM scores. Users, however, typically do not evaluate these assumptions. To this end we developed TargetDecoy to generate diagnostic plots to evaluate the quality of the target decoy method. biocViews: MassSpectrometry, Proteomics, QualityControl, Software, Visualization Author: Elke Debrie [aut, cre], Lieven Clement [aut] (), Milan Malfait [aut] () Maintainer: Elke Debrie URL: https://www.bioconductor.org/packages/TargetDecoy, https://statomics.github.io/TargetDecoy/, https://github.com/statOmics/TargetDecoy/ VignetteBuilder: knitr BugReports: https://github.com/statOmics/TargetDecoy/issues git_url: https://git.bioconductor.org/packages/TargetDecoy git_branch: RELEASE_3_20 git_last_commit: 8f73970 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TargetDecoy_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TargetDecoy_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TargetDecoy_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TargetDecoy_1.12.0.tgz vignettes: vignettes/TargetDecoy/inst/doc/TargetDecoy.html vignetteTitles: Introduction to TargetDecoy hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TargetDecoy/inst/doc/TargetDecoy.R dependencyCount: 113 Package: TargetScore Version: 1.44.0 Depends: pracma, Matrix Suggests: TargetScoreData, gplots, Biobase, GEOquery License: GPL-2 MD5sum: 9bbc21c6a5d206ba977b0c4cdd9a7bfe NeedsCompilation: no Title: TargetScore: Infer microRNA targets using microRNA-overexpression data and sequence information Description: Infer the posterior distributions of microRNA targets by probabilistically modelling the likelihood microRNA-overexpression fold-changes and sequence-based scores. Variaitonal Bayesian Gaussian mixture model (VB-GMM) is applied to log fold-changes and sequence scores to obtain the posteriors of latent variable being the miRNA targets. The final targetScore is computed as the sigmoid-transformed fold-change weighted by the averaged posteriors of target components over all of the features. biocViews: miRNA Author: Yue Li Maintainer: Yue Li URL: http://www.cs.utoronto.ca/~yueli/software.html git_url: https://git.bioconductor.org/packages/TargetScore git_branch: RELEASE_3_20 git_last_commit: db2d9ef git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TargetScore_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TargetScore_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TargetScore_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TargetScore_1.44.0.tgz vignettes: vignettes/TargetScore/inst/doc/TargetScore.pdf vignetteTitles: TargetScore: Infer microRNA targets using microRNA-overexpression data and sequence information hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TargetScore/inst/doc/TargetScore.R suggestsMe: TargetScoreData dependencyCount: 9 Package: TargetSearch Version: 2.8.0 Imports: graphics, grDevices, methods, ncdf4, stats, utils, assertthat Suggests: TargetSearchData, BiocStyle, knitr, tinytest License: GPL (>= 2) MD5sum: d0d868cbde6b3ca682569e3541ccc4aa NeedsCompilation: yes Title: A package for the analysis of GC-MS metabolite profiling data Description: This packages provides a flexible, fast and accurate method for targeted pre-processing of GC-MS data. The user provides a (often very large) set of GC chromatograms and a metabolite library of targets. The package will automatically search those targets in the chromatograms resulting in a data matrix that can be used for further data analysis. biocViews: MassSpectrometry, Preprocessing, DecisionTree, ImmunoOncology Author: Alvaro Cuadros-Inostroza [aut, cre], Jan Lisec [aut], Henning Redestig [aut], Matt Hannah [aut] Maintainer: Alvaro Cuadros-Inostroza URL: https://github.com/acinostroza/TargetSearch VignetteBuilder: knitr BugReports: https://github.com/acinostroza/TargetSearch/issues git_url: https://git.bioconductor.org/packages/TargetSearch git_branch: RELEASE_3_20 git_last_commit: 13190f7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TargetSearch_2.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TargetSearch_2.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TargetSearch_2.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TargetSearch_2.8.0.tgz vignettes: vignettes/TargetSearch/inst/doc/RICorrection.pdf, vignettes/TargetSearch/inst/doc/TargetSearch.pdf vignetteTitles: RI correction extra, The TargetSearch Package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TargetSearch/inst/doc/RetentionIndexCorrection.R, vignettes/TargetSearch/inst/doc/RICorrection.R, vignettes/TargetSearch/inst/doc/TargetSearch.R dependencyCount: 8 Package: TCC Version: 1.46.0 Depends: R (>= 3.0), methods, DESeq2, edgeR, ROC Suggests: RUnit, BiocGenerics License: GPL-2 MD5sum: dd5ee19edca147016b7bb36a0172e65c NeedsCompilation: no Title: TCC: Differential expression analysis for tag count data with robust normalization strategies Description: This package provides a series of functions for performing differential expression analysis from RNA-seq count data using robust normalization strategy (called DEGES). The basic idea of DEGES is that potential differentially expressed genes or transcripts (DEGs) among compared samples should be removed before data normalization to obtain a well-ranked gene list where true DEGs are top-ranked and non-DEGs are bottom ranked. This can be done by performing a multi-step normalization strategy (called DEGES for DEG elimination strategy). A major characteristic of TCC is to provide the robust normalization methods for several kinds of count data (two-group with or without replicates, multi-group/multi-factor, and so on) by virtue of the use of combinations of functions in depended packages. biocViews: ImmunoOncology, Sequencing, DifferentialExpression, RNASeq Author: Jianqiang Sun, Tomoaki Nishiyama, Kentaro Shimizu, and Koji Kadota Maintainer: Jianqiang Sun , Tomoaki Nishiyama git_url: https://git.bioconductor.org/packages/TCC git_branch: RELEASE_3_20 git_last_commit: 3ade550 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TCC_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TCC_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TCC_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TCC_1.46.0.tgz vignettes: vignettes/TCC/inst/doc/TCC.pdf vignetteTitles: TCC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TCC/inst/doc/TCC.R suggestsMe: compcodeR dependencyCount: 85 Package: TCGAbiolinks Version: 2.34.0 Depends: R (>= 4.0) Imports: downloader (>= 0.4), grDevices, biomaRt, dplyr, graphics, tibble, GenomicRanges, XML (>= 3.98.0), data.table, jsonlite (>= 1.0.0), plyr, knitr, methods, ggplot2, stringr (>= 1.0.0), IRanges, rvest (>= 0.3.0), stats, utils, S4Vectors, R.utils, SummarizedExperiment (>= 1.4.0), TCGAbiolinksGUI.data (>= 1.15.1), readr, tools, tidyr, purrr, xml2, httr (>= 1.2.1) Suggests: jpeg, png, BiocStyle, rmarkdown, devtools, maftools, parmigene, c3net, minet, Biobase, affy, testthat, sesame, AnnotationHub, ExperimentHub, pathview, clusterProfiler, Seurat, ComplexHeatmap, circlize, ConsensusClusterPlus, igraph, supraHex, limma, edgeR, sva, EDASeq, survminer, genefilter, gridExtra, survival, doParallel, parallel, ggrepel (>= 0.6.3), scales, grid, DT License: GPL (>= 3) MD5sum: 76e1f792f8f2f2479f4d521ce22c34a5 NeedsCompilation: no Title: TCGAbiolinks: An R/Bioconductor package for integrative analysis with GDC data Description: The aim of TCGAbiolinks is : i) facilitate the GDC open-access data retrieval, ii) prepare the data using the appropriate pre-processing strategies, iii) provide the means to carry out different standard analyses and iv) to easily reproduce earlier research results. In more detail, the package provides multiple methods for analysis (e.g., differential expression analysis, identifying differentially methylated regions) and methods for visualization (e.g., survival plots, volcano plots, starburst plots) in order to easily develop complete analysis pipelines. biocViews: DNAMethylation, DifferentialMethylation, GeneRegulation, GeneExpression, MethylationArray, DifferentialExpression, Pathways, Network, Sequencing, Survival, Software Author: Antonio Colaprico, Tiago Chedraoui Silva, Catharina Olsen, Luciano Garofano, Davide Garolini, Claudia Cava, Thais Sabedot, Tathiane Malta, Stefano M. Pagnotta, Isabella Castiglioni, Michele Ceccarelli, Gianluca Bontempi, Houtan Noushmehr Maintainer: Tiago Chedraoui Silva , Antonio Colaprico URL: https://github.com/BioinformaticsFMRP/TCGAbiolinks VignetteBuilder: knitr BugReports: https://github.com/BioinformaticsFMRP/TCGAbiolinks/issues git_url: https://git.bioconductor.org/packages/TCGAbiolinks git_branch: RELEASE_3_20 git_last_commit: 32384fa git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TCGAbiolinks_2.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TCGAbiolinks_2.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TCGAbiolinks_2.34.0.tgz vignettes: vignettes/TCGAbiolinks/inst/doc/analysis.html, vignettes/TCGAbiolinks/inst/doc/casestudy.html, vignettes/TCGAbiolinks/inst/doc/classifiers.html, vignettes/TCGAbiolinks/inst/doc/clinical.html, vignettes/TCGAbiolinks/inst/doc/download_prepare.html, vignettes/TCGAbiolinks/inst/doc/extension.html, vignettes/TCGAbiolinks/inst/doc/index.html, vignettes/TCGAbiolinks/inst/doc/mutation.html, vignettes/TCGAbiolinks/inst/doc/query.html, vignettes/TCGAbiolinks/inst/doc/stemness_score.html, vignettes/TCGAbiolinks/inst/doc/subtypes.html vignetteTitles: 7. Analyzing and visualizing TCGA data, 8. Case Studies, 10. Classifiers, "4. Clinical data", "3. Downloading and preparing files for analysis", "10. TCGAbiolinks_Extension", "1. Introduction", "5. Mutation data", "2. Searching GDC database", 11. Stemness score, 6. Compilation of TCGA molecular subtypes hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TCGAbiolinks/inst/doc/analysis.R, vignettes/TCGAbiolinks/inst/doc/casestudy.R, vignettes/TCGAbiolinks/inst/doc/classifiers.R, vignettes/TCGAbiolinks/inst/doc/clinical.R, vignettes/TCGAbiolinks/inst/doc/download_prepare.R, vignettes/TCGAbiolinks/inst/doc/extension.R, vignettes/TCGAbiolinks/inst/doc/index.R, vignettes/TCGAbiolinks/inst/doc/mutation.R, vignettes/TCGAbiolinks/inst/doc/query.R, vignettes/TCGAbiolinks/inst/doc/stemness_score.R, vignettes/TCGAbiolinks/inst/doc/subtypes.R importsMe: ELMER, MoonlightR, SurfR, SingscoreAMLMutations, TCGAWorkflow, CureAuxSP, oncoPredict suggestsMe: GeoTcgaData, iNETgrate, musicatk dependencyCount: 114 Package: TCGAutils Version: 1.26.0 Depends: R (>= 4.2.0) Imports: AnnotationDbi, BiocGenerics, BiocBaseUtils, GenomeInfoDb, GenomicFeatures, GenomicRanges, GenomicDataCommons, IRanges, methods, MultiAssayExperiment, RaggedExperiment (>= 1.5.7), rvest, S4Vectors, stats, stringr, SummarizedExperiment, utils, xml2 Suggests: AnnotationHub, BiocStyle, curatedTCGAData, ComplexHeatmap, devtools, dplyr, httr, IlluminaHumanMethylation450kanno.ilmn12.hg19, impute, knitr, magrittr, mirbase.db, org.Hs.eg.db, RColorBrewer, readr, rmarkdown, RTCGAToolbox (>= 2.17.4), rtracklayer, R.utils, testthat, TxDb.Hsapiens.UCSC.hg18.knownGene, TxDb.Hsapiens.UCSC.hg19.knownGene License: Artistic-2.0 MD5sum: ca884d60032295841410c8b3d5afd8d1 NeedsCompilation: no Title: TCGA utility functions for data management Description: A suite of helper functions for checking and manipulating TCGA data including data obtained from the curatedTCGAData experiment package. These functions aim to simplify and make working with TCGA data more manageable. Exported functions include those that import data from flat files into Bioconductor objects, convert row annotations, and identifier translation via the GDC API. biocViews: Software, WorkflowStep, Preprocessing, DataImport Author: Marcel Ramos [aut, cre] (), Lucas Schiffer [aut], Sean Davis [ctb], Levi Waldron [aut] Maintainer: Marcel Ramos VignetteBuilder: knitr BugReports: https://github.com/waldronlab/TCGAutils/issues git_url: https://git.bioconductor.org/packages/TCGAutils git_branch: RELEASE_3_20 git_last_commit: c887e1a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TCGAutils_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TCGAutils_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TCGAutils_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TCGAutils_1.26.0.tgz vignettes: vignettes/TCGAutils/inst/doc/TCGAutils.html vignetteTitles: TCGAutils Essentials hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TCGAutils/inst/doc/TCGAutils.R importsMe: cBioPortalData, glmSparseNet, RTCGAToolbox, terraTCGAdata, TumourMethData suggestsMe: CNVRanger, dce, curatedTCGAData dependencyCount: 105 Package: TCseq Version: 1.30.0 Depends: R (>= 3.4) Imports: edgeR, BiocGenerics, reshape2, GenomicRanges, IRanges, SummarizedExperiment, GenomicAlignments, Rsamtools, e1071, cluster, ggplot2, grid, grDevices, stats, utils, methods, locfit Suggests: testthat License: GPL (>= 2) MD5sum: 1d475ecc4e2b6536dd0c7ac0740a4aa2 NeedsCompilation: no Title: Time course sequencing data analysis Description: Quantitative and differential analysis of epigenomic and transcriptomic time course sequencing data, clustering analysis and visualization of the temporal patterns of time course data. biocViews: Epigenetics, TimeCourse, Sequencing, ChIPSeq, RNASeq, DifferentialExpression, Clustering, Visualization Author: Mengjun Wu , Lei Gu Maintainer: Mengjun Wu git_url: https://git.bioconductor.org/packages/TCseq git_branch: RELEASE_3_20 git_last_commit: 5e582cc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TCseq_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TCseq_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TCseq_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TCseq_1.30.0.tgz vignettes: vignettes/TCseq/inst/doc/TCseq.pdf vignetteTitles: TCseq Vignette hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TCseq/inst/doc/TCseq.R dependencyCount: 90 Package: TDbasedUFE Version: 1.6.0 Imports: GenomicRanges, rTensor, readr, methods, MOFAdata, tximport, tximportData, graphics, stats, utils, shiny Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0) License: GPL-3 MD5sum: c4aa77cf0d230a62932048868d3317c3 NeedsCompilation: no Title: Tensor Decomposition Based Unsupervised Feature Extraction Description: This is a comprehensive package to perform Tensor decomposition based unsupervised feature extraction. It can perform unsupervised feature extraction. It uses tensor decomposition. It is applicable to gene expression, DNA methylation, and histone modification etc. It can perform multiomics analysis. It is also potentially applicable to single cell omics data sets. biocViews: GeneExpression, FeatureExtraction, MethylationArray, SingleCell Author: Y-h. Taguchi [aut, cre] () Maintainer: Y-h. Taguchi URL: https://github.com/tagtag/TDbasedUFE VignetteBuilder: knitr BugReports: https://github.com/tagtag/TDbasedUFE/issues git_url: https://git.bioconductor.org/packages/TDbasedUFE git_branch: RELEASE_3_20 git_last_commit: 05bd526 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TDbasedUFE_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TDbasedUFE_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TDbasedUFE_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TDbasedUFE_1.6.0.tgz vignettes: vignettes/TDbasedUFE/inst/doc/QuickStart.html, vignettes/TDbasedUFE/inst/doc/TDbasedUFE.html vignetteTitles: QuickStart, TDbasedUFE hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TDbasedUFE/inst/doc/QuickStart.R, vignettes/TDbasedUFE/inst/doc/TDbasedUFE.R importsMe: TDbasedUFEadv dependencyCount: 72 Package: TDbasedUFEadv Version: 1.6.0 Imports: TDbasedUFE, Biobase, GenomicRanges, utils, rTensor, methods, graphics, RTCGA, stats, enrichplot, DOSE, STRINGdb, enrichR, hash, shiny Suggests: knitr, rmarkdown, testthat (>= 3.0.0), RTCGA.rnaseq, RTCGA.clinical, BiocStyle, MOFAdata License: GPL-3 MD5sum: c05ba77ef7e6572f3039df8041a12d5e NeedsCompilation: no Title: Advanced package of tensor decomposition based unsupervised feature extraction Description: This is an advanced version of TDbasedUFE, which is a comprehensive package to perform Tensor decomposition based unsupervised feature extraction. In contrast to TDbasedUFE which can perform simple the feature selection and the multiomics analyses, this package can perform more complicated and advanced features, but they are not so popularly required. Only users who require more specific features can make use of its functionality. biocViews: GeneExpression, FeatureExtraction, MethylationArray, SingleCell, Software Author: Y-h. Taguchi [aut, cre] () Maintainer: Y-h. Taguchi URL: https://github.com/tagtag/TDbasedUFEadv VignetteBuilder: knitr BugReports: https://github.com/tagtag/TDbasedUFEadv/issues git_url: https://git.bioconductor.org/packages/TDbasedUFEadv git_branch: RELEASE_3_20 git_last_commit: 474a702 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TDbasedUFEadv_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TDbasedUFEadv_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TDbasedUFEadv_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TDbasedUFEadv_1.5.0.tgz vignettes: vignettes/TDbasedUFEadv/inst/doc/Enrichment.html, vignettes/TDbasedUFEadv/inst/doc/Explanation_of_TDbasedUFEadv.html, vignettes/TDbasedUFEadv/inst/doc/How_to_use_TDbasedUFEadv.html vignetteTitles: Enrichment, Explanation of TDbasedUFEadv, How to use TDbasedUFEadv hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TDbasedUFEadv/inst/doc/Enrichment.R, vignettes/TDbasedUFEadv/inst/doc/Explanation_of_TDbasedUFEadv.R, vignettes/TDbasedUFEadv/inst/doc/How_to_use_TDbasedUFEadv.R dependencyCount: 218 Package: TEKRABber Version: 1.10.0 Depends: R (>= 4.3) Imports: apeglm, biomaRt, dplyr, doParallel, DESeq2, foreach, GenomeInfoDb, magrittr, Rcpp (>= 1.0.7), rtracklayer, SCBN, stats, utils LinkingTo: Rcpp Suggests: BiocStyle, bslib, ggplot2, ggpubr, plotly, rmarkdown, shiny, knitr, testthat (>= 3.0.0) License: LGPL (>=3) Archs: x64 MD5sum: 06eae4ec275e8f28223fa119009b3dc6 NeedsCompilation: yes Title: An R package estimates the correlations of orthologs and transposable elements between two species Description: TEKRABber is made to provide a user-friendly pipeline for comparing orthologs and transposable elements (TEs) between two species. It considers the orthology confidence between two species from BioMart to normalize expression counts and detect differentially expressed orthologs/TEs. Then it provides one to one correlation analysis for desired orthologs and TEs. There is also an app function to have a first insight on the result. Users can prepare orthologs/TEs RNA-seq expression data by their own preference to run TEKRABber following the data structure mentioned in the vignettes. biocViews: DifferentialExpression, Normalization, Transcription, GeneExpression Author: Yao-Chung Chen [aut, cre] (), Katja Nowick [aut] () Maintainer: Yao-Chung Chen URL: https://github.com/ferygood/TEKRABber VignetteBuilder: knitr BugReports: https://github.com/ferygood/TEKRABber/issues git_url: https://git.bioconductor.org/packages/TEKRABber git_branch: RELEASE_3_20 git_last_commit: 1d0ff0a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TEKRABber_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TEKRABber_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TEKRABber_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TEKRABber_1.10.0.tgz vignettes: vignettes/TEKRABber/inst/doc/TEKRABber.html vignetteTitles: TEKRABber hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TEKRABber/inst/doc/TEKRABber.R dependencyCount: 132 Package: TENxIO Version: 1.8.2 Depends: R (>= 4.2.0), SingleCellExperiment, SummarizedExperiment Imports: BiocBaseUtils, BiocGenerics, BiocIO, GenomeInfoDb, GenomicRanges, HDF5Array, Matrix, MatrixGenerics, methods, RCurl, readr, rhdf5, R.utils, S4Vectors, utils Suggests: BiocStyle, DropletTestFiles, ExperimentHub, knitr, RaggedExperiment (>= 1.29.5), rmarkdown, Rsamtools, tinytest License: Artistic-2.0 MD5sum: 8027724c72c85449e233d2451fef72af NeedsCompilation: no Title: Import methods for 10X Genomics files Description: Provides a structured S4 approach to importing data files from the 10X pipelines. It mainly supports Single Cell Multiome ATAC + Gene Expression data among other data types. The main Bioconductor data representations used are SingleCellExperiment and RaggedExperiment. biocViews: Software, Infrastructure, DataImport, SingleCell Author: Marcel Ramos [aut, cre] () Maintainer: Marcel Ramos URL: https://github.com/waldronlab/TENxIO VignetteBuilder: knitr BugReports: https://github.com/waldronlab/TENxIO/issues git_url: https://git.bioconductor.org/packages/TENxIO git_branch: RELEASE_3_20 git_last_commit: a9f5ff9 git_last_commit_date: 2024-11-13 Date/Publication: 2024-11-13 source.ver: src/contrib/TENxIO_1.8.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/TENxIO_1.8.2.zip vignettes: vignettes/TENxIO/inst/doc/TENxIO.html vignetteTitles: TENxIO Quick Start Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TENxIO/inst/doc/TENxIO.R dependsOnMe: VisiumIO importsMe: xenLite dependencyCount: 71 Package: tenXplore Version: 1.28.0 Depends: R (>= 4.0), shiny Imports: methods, ontoProc (>= 0.99.7), SummarizedExperiment, AnnotationDbi, matrixStats, org.Mm.eg.db, stats, utils, BiocFileCache Suggests: org.Hs.eg.db, testthat, knitr, rmarkdown, BiocStyle License: Artistic-2.0 MD5sum: 683f80423aaf423f134f0d20050ce418 NeedsCompilation: no Title: ontological exploration of scRNA-seq of 1.3 million mouse neurons from 10x genomics Description: Perform ontological exploration of scRNA-seq of 1.3 million mouse neurons from 10x genomics. biocViews: ImmunoOncology, DimensionReduction, PrincipalComponent, Transcriptomics, SingleCell Author: Vince Carey Maintainer: VJ Carey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/tenXplore git_branch: RELEASE_3_20 git_last_commit: 2c96348 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tenXplore_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tenXplore_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tenXplore_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tenXplore_1.28.0.tgz vignettes: vignettes/tenXplore/inst/doc/tenXplore.html vignetteTitles: tenXplore: ontology for scRNA-seq,, applied to 10x 1.3 million neurons hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tenXplore/inst/doc/tenXplore.R dependencyCount: 122 Package: TEQC Version: 4.28.0 Depends: methods, BiocGenerics (>= 0.1.0), IRanges (>= 1.13.5), Rsamtools, hwriter Imports: Biobase (>= 2.15.1) License: GPL (>= 2) MD5sum: 60434b2b1bef39f9c4d9392c9e24ab4a NeedsCompilation: no Title: Quality control for target capture experiments Description: Target capture experiments combine hybridization-based (in solution or on microarrays) capture and enrichment of genomic regions of interest (e.g. the exome) with high throughput sequencing of the captured DNA fragments. This package provides functionalities for assessing and visualizing the quality of the target enrichment process, like specificity and sensitivity of the capture, per-target read coverage and so on. biocViews: QualityControl, Microarray, Sequencing, Genetics Author: M. Hummel, S. Bonnin, E. Lowy, G. Roma Maintainer: Sarah Bonnin git_url: https://git.bioconductor.org/packages/TEQC git_branch: RELEASE_3_20 git_last_commit: 10faa27 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TEQC_4.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TEQC_4.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TEQC_4.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TEQC_4.28.0.tgz vignettes: vignettes/TEQC/inst/doc/TEQC.pdf vignetteTitles: TEQC hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TEQC/inst/doc/TEQC.R dependencyCount: 41 Package: ternarynet Version: 1.50.0 Depends: R (>= 4.0) Imports: utils, igraph, methods, graphics, stats, BiocParallel Suggests: testthat Enhances: Rmpi, snow License: GPL (>= 2) MD5sum: 7078cae2daf1530cfdfaebb85b7aada7 NeedsCompilation: yes Title: Ternary Network Estimation Description: Gene-regulatory network (GRN) modeling seeks to infer dependencies between genes and thereby provide insight into the regulatory relationships that exist within a cell. This package provides a computational Bayesian approach to GRN estimation from perturbation experiments using a ternary network model, in which gene expression is discretized into one of 3 states: up, unchanged, or down). The ternarynet package includes a parallel implementation of the replica exchange Monte Carlo algorithm for fitting network models, using MPI. biocViews: Software, CellBiology, GraphAndNetwork, Network, Bayesian Author: Matthew N. McCall , Anthony Almudevar , David Burton , Harry Stern Maintainer: McCall N. Matthew git_url: https://git.bioconductor.org/packages/ternarynet git_branch: RELEASE_3_20 git_last_commit: 7c8c037 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ternarynet_1.50.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ternarynet_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ternarynet_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ternarynet_1.50.0.tgz vignettes: vignettes/ternarynet/inst/doc/ternarynet.pdf vignetteTitles: ternarynet: A Computational Bayesian Approach to Ternary Network Estimation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ternarynet/inst/doc/ternarynet.R dependencyCount: 26 Package: terraTCGAdata Version: 1.10.0 Depends: AnVILGCP, MultiAssayExperiment Imports: AnVIL, BiocFileCache, dplyr, GenomicRanges, methods, RaggedExperiment, readr, S4Vectors, stats, tidyr, TCGAutils, utils Suggests: AnVILBase, knitr, rmarkdown, BiocStyle, withr, testthat (>= 3.0.0) License: Artistic-2.0 MD5sum: ae543b0934e758b48fb1924aca28a519 NeedsCompilation: no Title: OpenAccess TCGA Data on Terra as MultiAssayExperiment Description: Leverage the existing open access TCGA data on Terra with well-established Bioconductor infrastructure. Make use of the Terra data model without learning its complexities. With a few functions, you can copy / download and generate a MultiAssayExperiment from the TCGA example workspaces provided by Terra. biocViews: Software, Infrastructure, DataImport Author: Marcel Ramos [aut, cre] () Maintainer: Marcel Ramos URL: https://github.com/waldronlab/terraTCGAdata VignetteBuilder: knitr BugReports: https://github.com/waldronlab/terraTCGAdata/issues git_url: https://git.bioconductor.org/packages/terraTCGAdata git_branch: RELEASE_3_20 git_last_commit: 5658d40 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/terraTCGAdata_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/terraTCGAdata_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/terraTCGAdata_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/terraTCGAdata_1.10.0.tgz vignettes: vignettes/terraTCGAdata/inst/doc/terraTCGAdata.html vignetteTitles: Obtain Terra TCGA data as MultiAssayExperiment hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/terraTCGAdata/inst/doc/terraTCGAdata.R dependencyCount: 142 Package: TFARM Version: 1.28.0 Depends: R (>= 3.5.0) Imports: arules, fields, GenomicRanges, graphics, stringr, methods, stats, gplots Suggests: BiocStyle, knitr, plyr License: Artistic-2.0 MD5sum: 6dced9e6abf5b4abd26d88cb913ef4b7 NeedsCompilation: no Title: Transcription Factors Association Rules Miner Description: It searches for relevant associations of transcription factors with a transcription factor target, in specific genomic regions. It also allows to evaluate the Importance Index distribution of transcription factors (and combinations of transcription factors) in association rules. biocViews: BiologicalQuestion, Infrastructure, StatisticalMethod, Transcription Author: Liuba Nausicaa Martino, Alice Parodi, Gaia Ceddia, Piercesare Secchi, Stefano Campaner, Marco Masseroli Maintainer: Liuba Nausicaa Martino VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TFARM git_branch: RELEASE_3_20 git_last_commit: c2ae440 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TFARM_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TFARM_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TFARM_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TFARM_1.28.0.tgz vignettes: vignettes/TFARM/inst/doc/TFARM.pdf vignetteTitles: Transcription Factor Association Rule Miner hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TFARM/inst/doc/TFARM.R dependencyCount: 48 Package: TFBSTools Version: 1.44.0 Depends: R (>= 3.2.2) Imports: Biobase(>= 2.28), Biostrings(>= 2.36.4), pwalign, BiocGenerics(>= 0.14.0), BiocParallel(>= 1.2.21), BSgenome(>= 1.36.3), caTools(>= 1.17.1), CNEr(>= 1.4.0), DirichletMultinomial(>= 1.10.0), GenomeInfoDb(>= 1.6.1), GenomicRanges(>= 1.20.6), gtools(>= 3.5.0), grid, IRanges(>= 2.2.7), methods, DBI (>= 0.6), RSQLite(>= 1.0.0), rtracklayer(>= 1.28.10), seqLogo(>= 1.34.0), S4Vectors(>= 0.9.25), TFMPvalue(>= 0.0.5), XML(>= 3.98-1.3), XVector(>= 0.8.0), parallel Suggests: BiocStyle(>= 1.7.7), JASPAR2014(>= 1.4.0), knitr(>= 1.11), testthat, JASPAR2016(>= 1.0.0), JASPAR2018(>= 1.0.0), rmarkdown License: GPL-2 Archs: x64 MD5sum: 6a911dc2eaa79f199041039488ed7271 NeedsCompilation: yes Title: Software Package for Transcription Factor Binding Site (TFBS) Analysis Description: TFBSTools is a package for the analysis and manipulation of transcription factor binding sites. It includes matrices conversion between Position Frequency Matirx (PFM), Position Weight Matirx (PWM) and Information Content Matrix (ICM). It can also scan putative TFBS from sequence/alignment, query JASPAR database and provides a wrapper of de novo motif discovery software. biocViews: MotifAnnotation, GeneRegulation, MotifDiscovery, Transcription, Alignment Author: Ge Tan [aut, cre] Maintainer: Ge Tan URL: https://github.com/ge11232002/TFBSTools VignetteBuilder: knitr BugReports: https://github.com/ge11232002/TFBSTools/issues git_url: https://git.bioconductor.org/packages/TFBSTools git_branch: RELEASE_3_20 git_last_commit: 9bb14be git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TFBSTools_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TFBSTools_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TFBSTools_1.44.0.tgz vignettes: vignettes/TFBSTools/inst/doc/TFBSTools.html vignetteTitles: Transcription factor binding site (TFBS) analysis with the "TFBSTools" package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TFBSTools/inst/doc/TFBSTools.R importsMe: ATACseqTFEA, chromVAR, esATAC, MatrixRider, monaLisa, motifmatchr, motifStack, primirTSS, spatzie suggestsMe: enhancerHomologSearch, GRaNIE, MAGAR, pageRank, universalmotif, JASPAR2018, JASPAR2020, JASPAR2022, CAGEWorkflow, Signac dependencyCount: 125 Package: TFEA.ChIP Version: 1.26.0 Depends: R (>= 3.5) Imports: GenomicRanges, IRanges, biomaRt, GenomicFeatures, grDevices, dplyr, stats, utils, R.utils, methods, org.Hs.eg.db Suggests: knitr, rmarkdown, S4Vectors, plotly, scales, tidyr, ggplot2, DESeq2, BiocGenerics, ggrepel, rcompanion, TxDb.Hsapiens.UCSC.hg19.knownGene, RUnit License: Artistic-2.0 MD5sum: e6bf364a3389c915a5027ea027ca8c39 NeedsCompilation: no Title: Analyze Transcription Factor Enrichment Description: Package to analize transcription factor enrichment in a gene set using data from ChIP-Seq experiments. biocViews: Transcription, GeneRegulation, GeneSetEnrichment, Transcriptomics, Sequencing, ChIPSeq, RNASeq, ImmunoOncology Author: Laura Puente Santamaría, Luis del Peso Maintainer: Laura Puente Santamaría VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TFEA.ChIP git_branch: RELEASE_3_20 git_last_commit: f84b8b0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TFEA.ChIP_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TFEA.ChIP_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TFEA.ChIP_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TFEA.ChIP_1.26.0.tgz vignettes: vignettes/TFEA.ChIP/inst/doc/TFEA.ChIP.html vignetteTitles: TFEA.ChIP: a tool kit for transcription factor enrichment hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TFEA.ChIP/inst/doc/TFEA.ChIP.R dependencyCount: 105 Package: TFHAZ Version: 1.28.0 Depends: R (>= 3.5.0) Imports: GenomicRanges, S4Vectors, grDevices, graphics, stats, utils, IRanges, methods, ORFik Suggests: BiocStyle, knitr, rmarkdown License: Artistic-2.0 MD5sum: 29a6535d42b79a71321cff6eafe5bf4c NeedsCompilation: no Title: Transcription Factor High Accumulation Zones Description: It finds trascription factor (TF) high accumulation DNA zones, i.e., regions along the genome where there is a high presence of different transcription factors. Starting from a dataset containing the genomic positions of TF binding regions, for each base of the selected chromosome the accumulation of TFs is computed. Three different types of accumulation (TF, region and base accumulation) are available, together with the possibility of considering, in the single base accumulation computing, the TFs present not only in that single base, but also in its neighborhood, within a window of a given width. Two different methods for the search of TF high accumulation DNA zones, called "binding regions" and "overlaps", are available. In addition, some functions are provided in order to analyze, visualize and compare results obtained with different input parameters. biocViews: Software, BiologicalQuestion, Transcription, ChIPSeq, Coverage Author: Alberto Marchesi, Silvia Cascianelli, Marco Masseroli Maintainer: Gaia Ceddia VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TFHAZ git_branch: RELEASE_3_20 git_last_commit: 4ad925d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TFHAZ_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TFHAZ_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TFHAZ_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TFHAZ_1.28.0.tgz vignettes: vignettes/TFHAZ/inst/doc/TFHAZ.html vignetteTitles: TFHAZ hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TFHAZ/inst/doc/TFHAZ.R dependencyCount: 140 Package: TFutils Version: 1.26.0 Depends: R (>= 4.1.0) Imports: methods, dplyr, magrittr, miniUI, shiny, Rsamtools, GSEABase, rjson, BiocFileCache, DT, httr, readxl, AnnotationDbi, org.Hs.eg.db, utils Suggests: knitr, data.table, testthat, AnnotationFilter, Biobase, GenomicFeatures, GenomicRanges, Gviz, IRanges, S4Vectors, EnsDb.Hsapiens.v75, BiocParallel, BiocStyle, GO.db, GenomicFiles, GenomeInfoDb, SummarizedExperiment, UpSetR, ggplot2, png, gwascat, MotifDb, motifStack, RColorBrewer, rmarkdown License: Artistic-2.0 MD5sum: f8019e25c3516fae7eaa121adfb3d215 NeedsCompilation: no Title: TFutils Description: This package helps users to work with TF metadata from various sources. Significant catalogs of TFs and classifications thereof are made available. Tools for working with motif scans are also provided. biocViews: Transcriptomics Author: Vincent Carey [aut, cre], Shweta Gopaulakrishnan [aut] Maintainer: Vincent Carey VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TFutils git_branch: RELEASE_3_20 git_last_commit: bb00dc3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TFutils_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TFutils_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TFutils_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TFutils_1.26.0.tgz vignettes: vignettes/TFutils/inst/doc/fimo16.html, vignettes/TFutils/inst/doc/TFutils.html vignetteTitles: A note on fimo16, TFutils -- representing TFBS and TF target sets hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TFutils/inst/doc/fimo16.R, vignettes/TFutils/inst/doc/TFutils.R dependencyCount: 115 Package: tidybulk Version: 1.18.0 Depends: R (>= 4.4.0), ttservice (>= 0.3.6) Imports: tibble, readr, dplyr (>= 1.1.0), magrittr, tidyr, stringi, stringr, rlang, purrr, tidyselect, preprocessCore, stats, parallel, utils, lifecycle, scales, SummarizedExperiment, GenomicRanges, methods, S4Vectors, crayon, Matrix Suggests: BiocStyle, testthat, vctrs, AnnotationDbi, BiocManager, Rsubread, e1071, edgeR, limma, org.Hs.eg.db, org.Mm.eg.db, sva, GGally, knitr, qpdf, covr, Seurat, KernSmooth, Rtsne, ggplot2, widyr, clusterProfiler, msigdbr, DESeq2, broom, survival, boot, betareg, tidyHeatmap, pasilla, ggrepel, devtools, functional, survminer, tidySummarizedExperiment, markdown, uwot, matrixStats, igraph, EGSEA, IRanges, here, glmmSeq, pbapply, pbmcapply, lme4, glmmTMB, MASS, pkgconfig License: GPL-3 Archs: x64 MD5sum: 541de0cbf7fbb2350db6e6980aea09dc NeedsCompilation: no Title: Brings transcriptomics to the tidyverse Description: This is a collection of utility functions that allow to perform exploration of and calculations to RNA sequencing data, in a modular, pipe-friendly and tidy fashion. biocViews: AssayDomain, Infrastructure, RNASeq, DifferentialExpression, GeneExpression, Normalization, Clustering, QualityControl, Sequencing, Transcription, Transcriptomics Author: Stefano Mangiola [aut, cre], Maria Doyle [ctb] Maintainer: Stefano Mangiola URL: https://github.com/stemangiola/tidybulk VignetteBuilder: knitr BugReports: https://github.com/stemangiola/tidybulk/issues git_url: https://git.bioconductor.org/packages/tidybulk git_branch: RELEASE_3_20 git_last_commit: 1f836b7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tidybulk_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tidybulk_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tidybulk_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tidybulk_1.18.0.tgz vignettes: vignettes/tidybulk/inst/doc/introduction.html vignetteTitles: Overview of the tidybulk package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tidybulk/inst/doc/introduction.R importsMe: tidyomics dependencyCount: 109 Package: tidyCoverage Version: 1.2.0 Depends: R (>= 4.3.0), SummarizedExperiment Imports: S4Vectors, IRanges, GenomicRanges, GenomeInfoDb, BiocParallel, BiocIO, rtracklayer, methods, tidyr, ggplot2, dplyr, fansi, pillar, rlang, scales, cli, purrr, vctrs, stats Suggests: tidySummarizedExperiment, plyranges, TxDb.Hsapiens.UCSC.hg19.knownGene, AnnotationHub, GenomicFeatures, BiocStyle, hues, knitr, rmarkdown, sessioninfo, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: 96101741eac2f891b86dd0ac830711d1 NeedsCompilation: no Title: Extract and aggregate genomic coverage over features of interest Description: `tidyCoverage` framework enables tidy manipulation of collections of genomic tracks and features using `tidySummarizedExperiment` methods. It facilitates the extraction, aggregation and visualization of genomic coverage over individual or thousands of genomic loci, relying on `CoverageExperiment` and `AggregatedCoverage` classes. This accelerates the integration of genomic track data in genomic analysis workflows. biocViews: Software, Sequencing, Coverage, Author: Jacques Serizay [aut, cre] Maintainer: Jacques Serizay URL: https://github.com/js2264/tidyCoverage VignetteBuilder: knitr BugReports: https://github.com/js2264/tidyCoverage/issues git_url: https://git.bioconductor.org/packages/tidyCoverage git_branch: RELEASE_3_20 git_last_commit: cd53efe git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tidyCoverage_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tidyCoverage_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tidyCoverage_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tidyCoverage_1.2.0.tgz vignettes: vignettes/tidyCoverage/inst/doc/tidyCoverage.html vignetteTitles: Introduction to tidyCoverage hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/tidyCoverage/inst/doc/tidyCoverage.R dependencyCount: 91 Package: tidyFlowCore Version: 1.0.0 Depends: R (>= 4.3) Imports: Biobase, dplyr, flowCore, ggplot2, methods, purrr, rlang, stats, stringr, tibble, tidyr Suggests: BiocStyle, HDCytoData, knitr, RefManageR, rmarkdown, sessioninfo, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: 0baac8dd29cd2db4d57ec8c32a3ef9f9 NeedsCompilation: no Title: tidyFlowCore: Bringing flowCore to the tidyverse Description: tidyFlowCore bridges the gap between flow cytometry analysis using the flowCore Bioconductor package and the tidy data principles advocated by the tidyverse. It provides a suite of dplyr-, ggplot2-, and tidyr-like verbs specifically designed for working with flowFrame and flowSet objects as if they were tibbles; however, your data remain flowCore data structures under this layer of abstraction. tidyFlowCore enables intuitive and streamlined analysis workflows that can leverage both the Bioconductor and tidyverse ecosystems for cytometry data. biocViews: SingleCell, FlowCytometry, Infrastructure Author: Timothy Keyes [cre] (), Kara Davis [rth, own], Garry Nolan [rth, own] Maintainer: Timothy Keyes URL: https://github.com/keyes-timothy/tidyFlowCore, https://keyes-timothy.github.io/tidyFlowCore/ VignetteBuilder: knitr BugReports: https://github.com/keyes-timothy/tidyFlowCore/issues git_url: https://git.bioconductor.org/packages/tidyFlowCore git_branch: RELEASE_3_20 git_last_commit: 09bdfe8 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tidyFlowCore_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tidyFlowCore_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tidyFlowCore_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tidyFlowCore_1.0.0.tgz vignettes: vignettes/tidyFlowCore/inst/doc/tidyFlowCore.html vignetteTitles: tidyFlowCore hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/tidyFlowCore/inst/doc/tidyFlowCore.R dependencyCount: 55 Package: tidyomics Version: 1.2.0 Depends: R (>= 4.2) Imports: tidySummarizedExperiment, tidySingleCellExperiment, tidyseurat, tidybulk, plyranges, nullranges, purrr, rlang, stringr, cli, utils Suggests: tidyr, dplyr, tibble, ggplot2, mockr (>= 0.2.0), knitr (>= 1.41), rmarkdown (>= 2.20), testthat (>= 3.1.6) License: MIT + file LICENSE Archs: x64 MD5sum: 59f073a0b34a0ba4046cf86cb98cb70f NeedsCompilation: no Title: Easily install and load the tidyomics ecosystem Description: The tidyomics ecosystem is a set of packages for ’omic data analysis that work together in harmony; they share common data representations and API design, consistent with the tidyverse ecosystem. The tidyomics package is designed to make it easy to install and load core packages from the tidyomics ecosystem with a single command. biocViews: AssayDomain, Infrastructure, RNASeq, DifferentialExpression, GeneExpression, Normalization, Clustering, QualityControl, Sequencing, Transcription, Transcriptomics Author: Stefano Mangiola [aut, cre] (), Michael Love [aut] (), William Hutchison [aut] () Maintainer: Stefano Mangiola URL: https://github.com/tidyomics/tidyomics VignetteBuilder: knitr BugReports: https://github.com/tidyomics/tidyomics/issues git_url: https://git.bioconductor.org/packages/tidyomics git_branch: RELEASE_3_20 git_last_commit: 4c9f253 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tidyomics_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tidyomics_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tidyomics_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tidyomics_1.2.0.tgz vignettes: vignettes/tidyomics/inst/doc/loading-tidyomics.html vignetteTitles: Loading the tidyomics ecosystem hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/tidyomics/inst/doc/loading-tidyomics.R dependencyCount: 207 Package: tidysbml Version: 1.0.0 Depends: R (>= 4.4.0) Imports: xml2, methods Suggests: rmarkdown, knitr, BiocStyle, biomaRt, RCy3, testthat (>= 3.0.0) License: CC BY 4.0 MD5sum: 772b32a8717e0a1f51e75bfe73cd600b NeedsCompilation: no Title: Extract SBML's data into dataframes Description: Starting from one SBML file, it extracts information from each listOfCompartments, listOfSpecies and listOfReactions element by saving them into data frames. Each table provides one row for each entity (i.e. either compartment, species, reaction or speciesReference) and one set of columns for the attributes, one column for the content of the 'notes' subelement and one set of columns for the content of the 'annotation' subelement. biocViews: GraphAndNetwork, Network, Pathways, Software Author: Veronica Paparozzi [aut, cre] (), Christine Nardini [aut] () Maintainer: Veronica Paparozzi URL: https://github.com/veronicapaparozzi/tidysbml VignetteBuilder: knitr BugReports: https://github.com/veronicapaparozzi/tidysbml/issues git_url: https://git.bioconductor.org/packages/tidysbml git_branch: RELEASE_3_20 git_last_commit: b3d7da1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tidysbml_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tidysbml_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tidysbml_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tidysbml_1.0.0.tgz vignettes: vignettes/tidysbml/inst/doc/tidysbml-introduction.html vignetteTitles: Introduction to the tidysbml package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tidysbml/inst/doc/tidysbml-introduction.R dependencyCount: 5 Package: tidySingleCellExperiment Version: 1.16.0 Depends: R (>= 4.4.0), SingleCellExperiment Imports: dplyr, tidyr, ttservice (>= 0.4.0), SummarizedExperiment, tibble, ggplot2, magrittr, rlang, purrr, pkgconfig, lifecycle, methods, utils, S4Vectors, tidyselect, ellipsis, vctrs, pillar, stringr, cli, fansi, Matrix, stats Suggests: BiocStyle, testthat, knitr, markdown, rmarkdown, SingleCellSignalR, SingleR, scater, scran, tidyHeatmap, igraph, GGally, uwot, celldex, dittoSeq, plotly License: GPL-3 MD5sum: d4789a8d368dbd07c161f290251c9051 NeedsCompilation: no Title: Brings SingleCellExperiment to the Tidyverse Description: 'tidySingleCellExperiment' is an adapter that abstracts the 'SingleCellExperiment' container in the form of a 'tibble'. This allows *tidy* data manipulation, nesting, and plotting. For example, a 'tidySingleCellExperiment' is directly compatible with functions from 'tidyverse' packages `dplyr` and `tidyr`, as well as plotting with `ggplot2` and `plotly`. In addition, the package provides various utility functions specific to single-cell omics data analysis (e.g., aggregation of cell-level data to pseudobulks). biocViews: AssayDomain, Infrastructure, RNASeq, DifferentialExpression, SingleCell, GeneExpression, Normalization, Clustering, QualityControl, Sequencing Author: Stefano Mangiola [aut, cre] () Maintainer: Stefano Mangiola URL: https://github.com/stemangiola/tidySingleCellExperiment VignetteBuilder: knitr BugReports: https://github.com/stemangiola/tidySingleCellExperiment/issues git_url: https://git.bioconductor.org/packages/tidySingleCellExperiment git_branch: RELEASE_3_20 git_last_commit: 1ed84a3 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tidySingleCellExperiment_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tidySingleCellExperiment_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tidySingleCellExperiment_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tidySingleCellExperiment_1.16.0.tgz vignettes: vignettes/tidySingleCellExperiment/inst/doc/introduction.html vignetteTitles: Overview of the tidySingleCellExperiment package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tidySingleCellExperiment/inst/doc/introduction.R dependsOnMe: tidySpatialExperiment importsMe: tidyomics suggestsMe: CuratedAtlasQueryR, sccomp, spicyWorkflow dependencyCount: 100 Package: tidySpatialExperiment Version: 1.2.0 Depends: R (>= 4.3.0), SpatialExperiment, tidySingleCellExperiment Imports: ttservice, SummarizedExperiment, SingleCellExperiment, BiocGenerics, Matrix, S4Vectors, methods, utils, pkgconfig, tibble, dplyr, tidyr, ggplot2, plotly, rlang, purrr, stringr, vctrs, tidyselect, pillar, cli, fansi, lifecycle, magick, tidygate (>= 1.0.13), shiny Suggests: BiocStyle, testthat, knitr, markdown, scater, igraph, cowplot, DropletUtils, tidySummarizedExperiment License: GPL (>= 3) MD5sum: b44123484c7c4f4e920b18585084098c NeedsCompilation: no Title: SpatialExperiment with tidy principles Description: tidySpatialExperiment provides a bridge between the SpatialExperiment package and the tidyverse ecosystem. It creates an invisible layer that allows you to interact with a SpatialExperiment object as if it were a tibble; enabling the use of functions from dplyr, tidyr, ggplot2 and plotly. But, underneath, your data remains a SpatialExperiment object. biocViews: Infrastructure, RNASeq, GeneExpression, Sequencing, Spatial, Transcriptomics, SingleCell Author: William Hutchison [aut, cre] (), Stefano Mangiola [aut] Maintainer: William Hutchison URL: https://github.com/william-hutchison/tidySpatialExperiment, https://william-hutchison.github.io/tidySpatialExperiment/ VignetteBuilder: knitr BugReports: https://github.com/william-hutchison/tidySpatialExperiment/issues git_url: https://git.bioconductor.org/packages/tidySpatialExperiment git_branch: RELEASE_3_20 git_last_commit: 43d7567 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tidySpatialExperiment_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tidySpatialExperiment_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tidySpatialExperiment_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tidySpatialExperiment_1.2.0.tgz vignettes: vignettes/tidySpatialExperiment/inst/doc/overview.html vignetteTitles: Overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tidySpatialExperiment/inst/doc/overview.R dependencyCount: 121 Package: tidySummarizedExperiment Version: 1.16.0 Depends: R (>= 4.3.0), SummarizedExperiment, ttservice (>= 0.4.0) Imports: dplyr, tibble (>= 3.0.4), magrittr, tidyr, ggplot2, rlang, purrr, lifecycle, methods, utils, S4Vectors, tidyselect, ellipsis, vctrs, pillar, stringr, cli, fansi, stats, pkgconfig Suggests: BiocStyle, testthat, knitr, markdown, rmarkdown, plotly License: GPL-3 MD5sum: 5c41c06e535eaf3c387dccd53e64e008 NeedsCompilation: no Title: Brings SummarizedExperiment to the Tidyverse Description: The tidySummarizedExperiment package provides a set of tools for creating and manipulating tidy data representations of SummarizedExperiment objects. SummarizedExperiment is a widely used data structure in bioinformatics for storing high-throughput genomic data, such as gene expression or DNA sequencing data. The tidySummarizedExperiment package introduces a tidy framework for working with SummarizedExperiment objects. It allows users to convert their data into a tidy format, where each observation is a row and each variable is a column. This tidy representation simplifies data manipulation, integration with other tidyverse packages, and enables seamless integration with the broader ecosystem of tidy tools for data analysis. biocViews: AssayDomain, Infrastructure, RNASeq, DifferentialExpression, GeneExpression, Normalization, Clustering, QualityControl, Sequencing, Transcription, Transcriptomics Author: Stefano Mangiola [aut, cre] Maintainer: Stefano Mangiola URL: https://github.com/stemangiola/tidySummarizedExperiment VignetteBuilder: knitr BugReports: https://github.com/stemangiola/tidySummarizedExperiment/issues git_url: https://git.bioconductor.org/packages/tidySummarizedExperiment git_branch: RELEASE_3_20 git_last_commit: b22a7bb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tidySummarizedExperiment_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tidySummarizedExperiment_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tidySummarizedExperiment_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tidySummarizedExperiment_1.16.0.tgz vignettes: vignettes/tidySummarizedExperiment/inst/doc/introduction.html vignetteTitles: Overview of the tidySummarizedExperiment package hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tidySummarizedExperiment/inst/doc/introduction.R importsMe: tidyomics suggestsMe: nullranges, tidybulk, tidyCoverage, tidySpatialExperiment dependencyCount: 99 Package: tidytof Version: 1.0.0 Depends: R (>= 4.3) Imports: doParallel, dplyr, flowCore, foreach, ggplot2, ggraph, glmnet, methods, parallel, purrr, readr, recipes, rlang, stringr, survival, tidygraph, tidyr, tidyselect, yardstick, Rcpp, tibble, stats, utils, RcppHNSW LinkingTo: Rcpp Suggests: ConsensusClusterPlus, Biobase, broom, covr, diffcyt, emdist, FlowSOM, forcats, ggrepel, HDCytoData, knitr, markdown, philentropy, rmarkdown, Rtsne, statmod, SummarizedExperiment, testthat (>= 3.0.0), lmerTest, lme4, ggridges, spelling, scattermore, preprocessCore, SingleCellExperiment, Seurat, SeuratObject, embed, rsample, BiocGenerics License: MIT + file LICENSE MD5sum: d305e4dcfc65ceb6cca503201099dace NeedsCompilation: yes Title: Analyze High-dimensional Cytometry Data Using Tidy Data Principles Description: This package implements an interactive, scientific analysis pipeline for high-dimensional cytometry data built using tidy data principles. It is specifically designed to play well with both the tidyverse and Bioconductor software ecosystems, with functionality for reading/writing data files, data cleaning, preprocessing, clustering, visualization, modeling, and other quality-of-life functions. tidytof implements a "grammar" of high-dimensional cytometry data analysis. biocViews: SingleCell, FlowCytometry Author: Timothy Keyes [cre] (), Kara Davis [rth, own], Garry Nolan [rth, own] Maintainer: Timothy Keyes URL: https://keyes-timothy.github.io/tidytof, https://keyes-timothy.github.io/tidytof/ VignetteBuilder: knitr BugReports: https://github.com/keyes-timothy/tidytof/issues git_url: https://git.bioconductor.org/packages/tidytof git_branch: RELEASE_3_20 git_last_commit: 953e93b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tidytof_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tidytof_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tidytof_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tidytof_1.0.0.tgz vignettes: vignettes/tidytof/inst/doc/clustering.html, vignettes/tidytof/inst/doc/contributing-to-tidytof.html, vignettes/tidytof/inst/doc/differential-discovery-analysis.html, vignettes/tidytof/inst/doc/dimensionality-reduction.html, vignettes/tidytof/inst/doc/downsampling.html, vignettes/tidytof/inst/doc/feature-extraction.html, vignettes/tidytof/inst/doc/modeling.html, vignettes/tidytof/inst/doc/preprocessing.html, vignettes/tidytof/inst/doc/quality-control.html, vignettes/tidytof/inst/doc/reading-and-writing-data.html, vignettes/tidytof/inst/doc/tidytof.html vignetteTitles: 07. Clustering and metaclustering, 11. How to contribute code, 08. Differential discovery analysis, 06. Dimensionality reduction, 05. Downsampling, 09. Feature extraction, 10. Modeling, 04. Preprocessing, 03. Quality control, 02. Reading and writing data, 01. Getting started with tidytof hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/tidytof/inst/doc/clustering.R, vignettes/tidytof/inst/doc/contributing-to-tidytof.R, vignettes/tidytof/inst/doc/differential-discovery-analysis.R, vignettes/tidytof/inst/doc/dimensionality-reduction.R, vignettes/tidytof/inst/doc/downsampling.R, vignettes/tidytof/inst/doc/feature-extraction.R, vignettes/tidytof/inst/doc/modeling.R, vignettes/tidytof/inst/doc/preprocessing.R, vignettes/tidytof/inst/doc/quality-control.R, vignettes/tidytof/inst/doc/reading-and-writing-data.R, vignettes/tidytof/inst/doc/tidytof.R dependencyCount: 116 Package: tigre Version: 1.60.0 Depends: R (>= 2.11.0), BiocGenerics, Biobase Imports: methods, AnnotationDbi, gplots, graphics, grDevices, stats, utils, annotate, DBI, RSQLite Suggests: drosgenome1.db, puma, lumi, BiocStyle, BiocManager License: AGPL-3 MD5sum: 6440f9f077076a9606e5470ad8456d7d NeedsCompilation: yes Title: Transcription factor Inference through Gaussian process Reconstruction of Expression Description: The tigre package implements our methodology of Gaussian process differential equation models for analysis of gene expression time series from single input motif networks. The package can be used for inferring unobserved transcription factor (TF) protein concentrations from expression measurements of known target genes, or for ranking candidate targets of a TF. biocViews: Microarray, TimeCourse, GeneExpression, Transcription, GeneRegulation, NetworkInference, Bayesian Author: Antti Honkela, Pei Gao, Jonatan Ropponen, Miika-Petteri Matikainen, Magnus Rattray, Neil D. Lawrence Maintainer: Antti Honkela URL: https://github.com/ahonkela/tigre BugReports: https://github.com/ahonkela/tigre/issues git_url: https://git.bioconductor.org/packages/tigre git_branch: RELEASE_3_20 git_last_commit: 7036488 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tigre_1.60.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tigre_1.60.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tigre_1.60.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tigre_1.60.0.tgz vignettes: vignettes/tigre/inst/doc/tigre.pdf vignetteTitles: tigre User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tigre/inst/doc/tigre.R dependencyCount: 53 Package: TileDBArray Version: 1.16.0 Depends: SparseArray (>= 1.5.20), DelayedArray (>= 0.31.7) Imports: methods, tiledb, S4Vectors Suggests: knitr, Matrix, rmarkdown, BiocStyle, BiocParallel, testthat License: MIT + file LICENSE MD5sum: 4dc4bd304d350bd324cc751f646244ba NeedsCompilation: no Title: Using TileDB as a DelayedArray Backend Description: Implements a DelayedArray backend for reading and writing dense or sparse arrays in the TileDB format. The resulting TileDBArrays are compatible with all Bioconductor pipelines that can accept DelayedArray instances. biocViews: DataRepresentation, Infrastructure, Software Author: Aaron Lun [aut, cre], Genentech, Inc. [cph] Maintainer: Aaron Lun URL: https://github.com/LTLA/TileDBArray VignetteBuilder: knitr BugReports: https://github.com/LTLA/TileDBArray git_url: https://git.bioconductor.org/packages/TileDBArray git_branch: RELEASE_3_20 git_last_commit: f71c41f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TileDBArray_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TileDBArray_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TileDBArray_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TileDBArray_1.16.0.tgz vignettes: vignettes/TileDBArray/inst/doc/userguide.html vignetteTitles: User guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/TileDBArray/inst/doc/userguide.R dependencyCount: 34 Package: tilingArray Version: 1.84.0 Depends: R (>= 2.11.0), Biobase, methods, pixmap Imports: strucchange, affy, vsn, genefilter, RColorBrewer, grid, stats4 License: Artistic-2.0 MD5sum: cc6bb59da38ff62ab1eb6522e255bd22 NeedsCompilation: yes Title: Transcript mapping with high-density oligonucleotide tiling arrays Description: The package provides functionality that can be useful for the analysis of high-density tiling microarray data (such as from Affymetrix genechips) for measuring transcript abundance and architecture. The main functionalities of the package are: 1. the class 'segmentation' for representing partitionings of a linear series of data; 2. the function 'segment' for fitting piecewise constant models using a dynamic programming algorithm that is both fast and exact; 3. the function 'confint' for calculating confidence intervals using the strucchange package; 4. the function 'plotAlongChrom' for generating pretty plots; 5. the function 'normalizeByReference' for probe-sequence dependent response adjustment from a (set of) reference hybridizations. biocViews: Microarray, OneChannel, Preprocessing, Visualization Author: Wolfgang Huber, Zhenyu Xu, Joern Toedling with contributions from Matt Ritchie Maintainer: Zhenyu Xu git_url: https://git.bioconductor.org/packages/tilingArray git_branch: RELEASE_3_20 git_last_commit: 486240d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tilingArray_1.84.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tilingArray_1.84.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tilingArray_1.84.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tilingArray_1.84.0.tgz vignettes: vignettes/tilingArray/inst/doc/assessNorm.pdf, vignettes/tilingArray/inst/doc/costMatrix.pdf, vignettes/tilingArray/inst/doc/findsegments.pdf, vignettes/tilingArray/inst/doc/plotAlongChrom.pdf, vignettes/tilingArray/inst/doc/segmentation.pdf vignetteTitles: Normalisation with the normalizeByReference function in the tilingArray package, Supplement. Calculation of the cost matrix, Introduction to using the segment function to fit a piecewise constant curve, Introduction to the plotAlongChrom function, Segmentation demo hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tilingArray/inst/doc/findsegments.R, vignettes/tilingArray/inst/doc/plotAlongChrom.R dependsOnMe: davidTiling importsMe: ADaCGH2 dependencyCount: 86 Package: timecourse Version: 1.78.0 Depends: R (>= 2.1.1), MASS, methods Imports: Biobase, graphics, limma (>= 1.8.6), MASS, marray, methods, stats License: LGPL MD5sum: e1b47aacb78e70b3d78bc8920b527635 NeedsCompilation: no Title: Statistical Analysis for Developmental Microarray Time Course Data Description: Functions for data analysis and graphical displays for developmental microarray time course data. biocViews: Microarray, TimeCourse, DifferentialExpression Author: Yu Chuan Tai Maintainer: Yu Chuan Tai URL: http://www.bioconductor.org git_url: https://git.bioconductor.org/packages/timecourse git_branch: RELEASE_3_20 git_last_commit: 9484e8c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/timecourse_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/timecourse_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/timecourse_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/timecourse_1.78.0.tgz vignettes: vignettes/timecourse/inst/doc/timecourse.pdf vignetteTitles: timecourse manual hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/timecourse/inst/doc/timecourse.R dependencyCount: 11 Package: timeOmics Version: 1.18.0 Depends: mixOmics, R (>= 4.0) Imports: dplyr, tidyr, tibble, purrr, magrittr, ggplot2, stringr, ggrepel, lmtest, plyr, checkmate Suggests: BiocStyle, knitr, rmarkdown, testthat, snow, tidyverse, igraph, gplots License: GPL-3 MD5sum: 051c5b8a48e338b1dfe161fe9ced080a NeedsCompilation: no Title: Time-Course Multi-Omics data integration Description: timeOmics is a generic data-driven framework to integrate multi-Omics longitudinal data measured on the same biological samples and select key temporal features with strong associations within the same sample group. The main steps of timeOmics are: 1. Plaform and time-specific normalization and filtering steps; 2. Modelling each biological into one time expression profile; 3. Clustering features with the same expression profile over time; 4. Post-hoc validation step. biocViews: Clustering,FeatureExtraction,TimeCourse,DimensionReduction,Software, Sequencing, Microarray, Metabolomics, Metagenomics, Proteomics, Classification, Regression, ImmunoOncology, GenePrediction, MultipleComparison Author: Antoine Bodein [aut, cre], Olivier Chapleur [aut], Kim-Anh Le Cao [aut], Arnaud Droit [aut] Maintainer: Antoine Bodein VignetteBuilder: knitr BugReports: https://github.com/abodein/timeOmics/issues git_url: https://git.bioconductor.org/packages/timeOmics git_branch: RELEASE_3_20 git_last_commit: 6e61c3e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/timeOmics_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/timeOmics_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/timeOmics_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/timeOmics_1.18.0.tgz vignettes: vignettes/timeOmics/inst/doc/vignette.html vignetteTitles: timeOmics hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/timeOmics/inst/doc/vignette.R dependencyCount: 95 Package: timescape Version: 1.30.0 Depends: R (>= 3.3) Imports: htmlwidgets (>= 0.5), jsonlite (>= 0.9.19), stringr (>= 1.0.0), dplyr (>= 0.4.3), gtools (>= 3.5.0) Suggests: knitr, rmarkdown License: GPL-3 MD5sum: 1272e4ab325b69c4a073637bca02efad NeedsCompilation: no Title: Patient Clonal Timescapes Description: TimeScape is an automated tool for navigating temporal clonal evolution data. The key attributes of this implementation involve the enumeration of clones, their evolutionary relationships and their shifting dynamics over time. TimeScape requires two inputs: (i) the clonal phylogeny and (ii) the clonal prevalences. Optionally, TimeScape accepts a data table of targeted mutations observed in each clone and their allele prevalences over time. The output is the TimeScape plot showing clonal prevalence vertically, time horizontally, and the plot height optionally encoding tumour volume during tumour-shrinking events. At each sampling time point (denoted by a faint white line), the height of each clone accurately reflects its proportionate prevalence. These prevalences form the anchors for bezier curves that visually represent the dynamic transitions between time points. biocViews: Visualization, BiomedicalInformatics Author: Maia Smith [aut, cre] Maintainer: Maia Smith VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/timescape git_branch: RELEASE_3_20 git_last_commit: 4bdc73c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/timescape_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/timescape_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/timescape_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/timescape_1.30.0.tgz vignettes: vignettes/timescape/inst/doc/timescape_vignette.html vignetteTitles: TimeScape vignette hasREADME: TRUE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/timescape/inst/doc/timescape_vignette.R dependencyCount: 47 Package: TIN Version: 1.38.0 Depends: R (>= 2.12.0), data.table, impute, aroma.affymetrix Imports: WGCNA, squash, stringr Suggests: knitr, aroma.light, affxparser, RUnit, BiocGenerics License: Artistic-2.0 Archs: x64 MD5sum: f63cd84da454fa397ab8936a2dbded8d NeedsCompilation: no Title: Transcriptome instability analysis Description: The TIN package implements a set of tools for transcriptome instability analysis based on exon expression profiles. Deviating exon usage is studied in the context of splicing factors to analyse to what degree transcriptome instability is correlated to splicing factor expression. In the transcriptome instability correlation analysis, the data is compared to both random permutations of alternative splicing scores and expression of random gene sets. biocViews: ExonArray, Microarray, GeneExpression, AlternativeSplicing, Genetics, DifferentialSplicing Author: Bjarne Johannessen, Anita Sveen and Rolf I. Skotheim Maintainer: Bjarne Johannessen VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TIN git_branch: RELEASE_3_20 git_last_commit: 418fc7d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TIN_1.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TIN_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TIN_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TIN_1.38.0.tgz vignettes: vignettes/TIN/inst/doc/TIN.pdf vignetteTitles: Introduction to the TIN package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TIN/inst/doc/TIN.R dependencyCount: 134 Package: TissueEnrich Version: 1.26.0 Depends: R (>= 3.5), ggplot2 (>= 2.2.1), SummarizedExperiment (>= 1.6.5), GSEABase (>= 1.38.2) Imports: dplyr (>= 0.7.3), tidyr (>= 0.8.0), stats Suggests: knitr, rmarkdown, testthat License: MIT + file LICENSE Archs: x64 MD5sum: a5e44caa8db0d86ab6657533fb022638 NeedsCompilation: no Title: Tissue-specific gene enrichment analysis Description: The TissueEnrich package is used to calculate enrichment of tissue-specific genes in a set of input genes. For example, the user can input the most highly expressed genes from RNA-Seq data, or gene co-expression modules to determine which tissue-specific genes are enriched in those datasets. Tissue-specific genes were defined by processing RNA-Seq data from the Human Protein Atlas (HPA) (Uhlén et al. 2015), GTEx (Ardlie et al. 2015), and mouse ENCODE (Shen et al. 2012) using the algorithm from the HPA (Uhlén et al. 2015).The hypergeometric test is being used to determine if the tissue-specific genes are enriched among the input genes. Along with tissue-specific gene enrichment, the TissueEnrich package can also be used to define tissue-specific genes from expression datasets provided by the user, which can then be used to calculate tissue-specific gene enrichments. biocViews: GeneSetEnrichment, GeneExpression, Sequencing Author: Ashish Jain [aut, cre], Geetu Tuteja [aut] Maintainer: Ashish Jain VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TissueEnrich git_branch: RELEASE_3_20 git_last_commit: 2cc2ac0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TissueEnrich_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TissueEnrich_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TissueEnrich_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TissueEnrich_1.26.0.tgz vignettes: vignettes/TissueEnrich/inst/doc/TissueEnrich.html vignetteTitles: TissueEnrich hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/TissueEnrich/inst/doc/TissueEnrich.R dependencyCount: 88 Package: TitanCNA Version: 1.44.0 Depends: R (>= 3.5.1) Imports: BiocGenerics (>= 0.31.6), IRanges (>= 2.6.1), GenomicRanges (>= 1.24.3), VariantAnnotation (>= 1.18.7), foreach (>= 1.4.3), GenomeInfoDb (>= 1.8.7), data.table (>= 1.10.4), dplyr (>= 0.5.0), License: GPL-3 MD5sum: b3089ac06d09aa847f7baabaad759821 NeedsCompilation: yes Title: Subclonal copy number and LOH prediction from whole genome sequencing of tumours Description: Hidden Markov model to segment and predict regions of subclonal copy number alterations (CNA) and loss of heterozygosity (LOH), and estimate cellular prevalence of clonal clusters in tumour whole genome sequencing data. biocViews: Sequencing, WholeGenome, DNASeq, ExomeSeq, StatisticalMethod, CopyNumberVariation, HiddenMarkovModel, Genetics, GenomicVariation, ImmunoOncology Author: Gavin Ha Maintainer: Gavin Ha URL: https://github.com/gavinha/TitanCNA git_url: https://git.bioconductor.org/packages/TitanCNA git_branch: RELEASE_3_20 git_last_commit: 3826ddb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TitanCNA_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TitanCNA_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TitanCNA_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TitanCNA_1.44.0.tgz vignettes: vignettes/TitanCNA/inst/doc/TitanCNA.pdf hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TitanCNA/inst/doc/TitanCNA.R dependencyCount: 91 Package: tkWidgets Version: 1.84.0 Depends: R (>= 2.0.0), methods, widgetTools (>= 1.1.7), DynDoc (>= 1.3.0), tools Suggests: Biobase, hgu95av2 License: Artistic-2.0 Archs: x64 MD5sum: 4dab35f753e3ecc76300812082567cf0 NeedsCompilation: no Title: R based tk widgets Description: Widgets to provide user interfaces. tcltk should have been installed for the widgets to run. biocViews: Infrastructure Author: J. Zhang Maintainer: J. Zhang git_url: https://git.bioconductor.org/packages/tkWidgets git_branch: RELEASE_3_20 git_last_commit: 6318391 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tkWidgets_1.84.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tkWidgets_1.84.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tkWidgets_1.84.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tkWidgets_1.84.0.tgz vignettes: vignettes/tkWidgets/inst/doc/importWizard.pdf, vignettes/tkWidgets/inst/doc/tkWidgets.pdf vignetteTitles: tkWidgets importWizard, tkWidgets contents hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tkWidgets/inst/doc/importWizard.R, vignettes/tkWidgets/inst/doc/tkWidgets.R importsMe: Mfuzz, OLINgui suggestsMe: affy, annotate, Biobase, genefilter, marray dependencyCount: 6 Package: tLOH Version: 1.14.0 Depends: R (>= 4.2) Imports: scales, stats, utils, ggplot2, data.table, purrr, dplyr, VariantAnnotation, GenomicRanges, MatrixGenerics, bestNormalize, depmixS4, naniar, stringr Suggests: knitr, rmarkdown License: MIT + file LICENSE MD5sum: 99855940a5a855cc39bc937ef6f50f53 NeedsCompilation: no Title: Assessment of evidence for LOH in spatial transcriptomics pre-processed data using Bayes factor calculations Description: tLOH, or transcriptomicsLOH, assesses evidence for loss of heterozygosity (LOH) in pre-processed spatial transcriptomics data. This tool requires spatial transcriptomics cluster and allele count information at likely heterozygous single-nucleotide polymorphism (SNP) positions in VCF format. Bayes factors are calculated at each SNP to determine likelihood of potential loss of heterozygosity event. Two plotting functions are included to visualize allele fraction and aggregated Bayes factor per chromosome. Data generated with the 10X Genomics Visium Spatial Gene Expression platform must be pre-processed to obtain an individual sample VCF with columns for each cluster. Required fields are allele depth (AD) with counts for reference/alternative alleles and read depth (DP). biocViews: CopyNumberVariation, Transcription, SNP, GeneExpression, Transcriptomics Author: Michelle Webb [cre, aut], David Craig [aut] Maintainer: Michelle Webb URL: https://github.com/USCDTG/tLOH VignetteBuilder: knitr BugReports: https://github.com/USCDTG/tLOH/issues git_url: https://git.bioconductor.org/packages/tLOH git_branch: RELEASE_3_20 git_last_commit: e205786 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tLOH_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tLOH_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tLOH_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tLOH_1.14.0.tgz vignettes: vignettes/tLOH/inst/doc/tLOH_vignette.html vignetteTitles: tLOH hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/tLOH/inst/doc/tLOH_vignette.R dependencyCount: 165 Package: TMixClust Version: 1.28.0 Depends: R (>= 3.4) Imports: gss, mvtnorm, stats, zoo, cluster, utils, BiocParallel, flexclust, grDevices, graphics, Biobase, SPEM Suggests: rmarkdown, knitr, BiocStyle, testthat License: GPL (>=2) MD5sum: ebab6e8362666c78cde53e6dcbf29a23 NeedsCompilation: no Title: Time Series Clustering of Gene Expression with Gaussian Mixed-Effects Models and Smoothing Splines Description: Implementation of a clustering method for time series gene expression data based on mixed-effects models with Gaussian variables and non-parametric cubic splines estimation. The method can robustly account for the high levels of noise present in typical gene expression time series datasets. biocViews: Software, StatisticalMethod, Clustering, TimeCourse, GeneExpression Author: Monica Golumbeanu Maintainer: Monica Golumbeanu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TMixClust git_branch: RELEASE_3_20 git_last_commit: bafe30b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TMixClust_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TMixClust_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TMixClust_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TMixClust_1.28.0.tgz vignettes: vignettes/TMixClust/inst/doc/TMixClust.pdf vignetteTitles: Clustering time series gene expression data with TMixClust hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TMixClust/inst/doc/TMixClust.R dependencyCount: 31 Package: TMSig Version: 1.0.0 Depends: R (>= 4.4.0), limma Imports: circlize, ComplexHeatmap, data.table, grDevices, grid, GSEABase, Matrix, methods, stats, utils Suggests: BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0) License: GPL (>= 3) MD5sum: ebfbc13d259a7ab298ed4a808ba69aae NeedsCompilation: no Title: Tools for Molecular Signatures Description: The TMSig package contains tools to prepare, analyze, and visualize named lists of sets, with an emphasis on molecular signatures (such as gene or kinase sets). It includes fast, memory efficient functions to construct sparse incidence and similarity matrices and filter, cluster, invert, and decompose sets. Additionally, bubble heatmaps can be created to visualize the results of any differential or molecular signatures analysis. biocViews: Clustering, GeneSetEnrichment, GraphAndNetwork, Pathways, Visualization Author: Tyler Sagendorf [aut, cre] (), Di Wu [ctb], Gordon Smyth [ctb] Maintainer: Tyler Sagendorf URL: https://github.com/EMSL-Computing/TMSig VignetteBuilder: knitr BugReports: https://github.com/EMSL-Computing/TMSig/issues git_url: https://git.bioconductor.org/packages/TMSig git_branch: RELEASE_3_20 git_last_commit: b96e046 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TMSig_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TMSig_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TMSig_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TMSig_1.0.0.tgz vignettes: vignettes/TMSig/inst/doc/TMSig.html vignetteTitles: An Introduction to TMSig hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TMSig/inst/doc/TMSig.R dependencyCount: 73 Package: TnT Version: 1.28.0 Depends: R (>= 3.4), GenomicRanges Imports: methods, stats, utils, grDevices, htmlwidgets, jsonlite, data.table, Biobase, GenomeInfoDb, IRanges, S4Vectors, knitr Suggests: GenomicFeatures, shiny, BiocManager, rmarkdown, testthat License: AGPL-3 MD5sum: 0b42f4d15542b2a0a4d9e7f7db95c9bd NeedsCompilation: no Title: Interactive Visualization for Genomic Features Description: A R interface to the TnT javascript library (https://github.com/ tntvis) to provide interactive and flexible visualization of track-based genomic data. biocViews: Infrastructure, Visualization Author: Jialin Ma [cre, aut], Miguel Pignatelli [aut], Toby Hocking [aut] Maintainer: Jialin Ma URL: https://github.com/Marlin-Na/TnT VignetteBuilder: knitr BugReports: https://github.com/Marlin-Na/TnT/issues git_url: https://git.bioconductor.org/packages/TnT git_branch: RELEASE_3_20 git_last_commit: c99c249 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TnT_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TnT_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TnT_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TnT_1.28.0.tgz vignettes: vignettes/TnT/inst/doc/introduction.html vignetteTitles: Introduction to TnT hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TnT/inst/doc/introduction.R dependencyCount: 50 Package: TOAST Version: 1.20.0 Depends: R (>= 3.6), EpiDISH, limma, nnls, quadprog Imports: stats, methods, SummarizedExperiment, corpcor, doParallel, parallel, ggplot2, tidyr, GGally Suggests: BiocStyle, knitr, rmarkdown, gplots, matrixStats, Matrix License: GPL-2 MD5sum: c912d3bf2b4154775188ab78f35dc5b7 NeedsCompilation: no Title: Tools for the analysis of heterogeneous tissues Description: This package is devoted to analyzing high-throughput data (e.g. gene expression microarray, DNA methylation microarray, RNA-seq) from complex tissues. Current functionalities include 1. detect cell-type specific or cross-cell type differential signals 2. tree-based differential analysis 3. improve variable selection in reference-free deconvolution 4. partial reference-free deconvolution with prior knowledge. biocViews: DNAMethylation, GeneExpression, DifferentialExpression, DifferentialMethylation, Microarray, GeneTarget, Epigenetics, MethylationArray Author: Ziyi Li and Weiwei Zhang and Luxiao Chen and Hao Wu Maintainer: Ziyi Li VignetteBuilder: knitr BugReports: https://github.com/ziyili20/TOAST/issues git_url: https://git.bioconductor.org/packages/TOAST git_branch: RELEASE_3_20 git_last_commit: a33fcef git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TOAST_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TOAST_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TOAST_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TOAST_1.20.0.tgz vignettes: vignettes/TOAST/inst/doc/TOAST.html vignetteTitles: The TOAST User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TOAST/inst/doc/TOAST.R importsMe: MICSQTL, RegionalST dependencyCount: 94 Package: tomoda Version: 1.16.0 Depends: R (>= 4.0.0) Imports: methods, stats, grDevices, reshape2, Rtsne, umap, RColorBrewer, ggplot2, ggrepel, SummarizedExperiment Suggests: knitr, rmarkdown, BiocStyle, testthat License: MIT + file LICENSE Archs: x64 MD5sum: 75962e098028f25bf9ff184650535c5b NeedsCompilation: no Title: Tomo-seq data analysis Description: This package provides many easy-to-use methods to analyze and visualize tomo-seq data. The tomo-seq technique is based on cryosectioning of tissue and performing RNA-seq on consecutive sections. (Reference: Kruse F, Junker JP, van Oudenaarden A, Bakkers J. Tomo-seq: A method to obtain genome-wide expression data with spatial resolution. Methods Cell Biol. 2016;135:299-307. doi:10.1016/bs.mcb.2016.01.006) The main purpose of the package is to find zones with similar transcriptional profiles and spatially expressed genes in a tomo-seq sample. Several visulization functions are available to create easy-to-modify plots. biocViews: GeneExpression, Sequencing, RNASeq, Transcriptomics, Spatial, Clustering, Visualization Author: Wendao Liu [aut, cre] () Maintainer: Wendao Liu URL: https://github.com/liuwd15/tomoda VignetteBuilder: knitr BugReports: https://github.com/liuwd15/tomoda/issues git_url: https://git.bioconductor.org/packages/tomoda git_branch: RELEASE_3_20 git_last_commit: e25d34f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tomoda_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tomoda_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tomoda_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tomoda_1.16.0.tgz vignettes: vignettes/tomoda/inst/doc/tomoda.html vignetteTitles: tomoda hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/tomoda/inst/doc/tomoda.R dependencyCount: 78 Package: tomoseqr Version: 1.10.0 Depends: R (>= 4.2) Imports: grDevices, graphics, animation, tibble, dplyr, stringr, purrr, methods, shiny, BiocFileCache, readr, tools, plotly, ggplot2 Suggests: rmarkdown, knitr, BiocStyle, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: 103b5393aaa6ab1dc037f20f36ae9d5f NeedsCompilation: no Title: R Package for Analyzing Tomo-seq Data Description: `tomoseqr` is an R package for analyzing Tomo-seq data. Tomo-seq is a genome-wide RNA tomography method that combines combining high-throughput RNA sequencing with cryosectioning for spatially resolved transcriptomics. `tomoseqr` reconstructs 3D expression patterns from tomo-seq data and visualizes the reconstructed 3D expression patterns. biocViews: GeneExpression, Sequencing, RNASeq, Transcriptomics, Spatial, Visualization, Software Author: Ryosuke Matsuzawa [aut, cre] () Maintainer: Ryosuke Matsuzawa VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/tomoseqr git_branch: RELEASE_3_20 git_last_commit: 31b254b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tomoseqr_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tomoseqr_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tomoseqr_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tomoseqr_1.10.0.tgz vignettes: vignettes/tomoseqr/inst/doc/tomoseqr.html vignetteTitles: tomoseqr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/tomoseqr/inst/doc/tomoseqr.R dependencyCount: 102 Package: TOP Version: 1.6.0 Depends: R (>= 3.5.0) Imports: assertthat, caret, ClassifyR, directPA, doParallel, dplyr, ggnewscale, ggplot2, ggraph, ggrepel, ggthemes, glmnet, Hmisc, igraph, latex2exp, limma, magrittr, methods, plotly, pROC, purrr, reshape2, stats, stringr, survival, tibble, tidygraph, tidyr, statmod Suggests: knitr, rmarkdown, BiocStyle, Biobase, curatedOvarianData, ggbeeswarm, ggsci, survminer, tidyverse License: GPL-3 MD5sum: 637187784f8b187f173cd3e6b9fab5aa NeedsCompilation: no Title: TOP Constructs Transferable Model Across Gene Expression Platforms Description: TOP constructs a transferable model across gene expression platforms for prospective experiments. Such a transferable model can be trained to make predictions on independent validation data with an accuracy that is similar to a re-substituted model. The TOP procedure also has the flexibility to be adapted to suit the most common clinical response variables, including linear response, binomial and Cox PH models. biocViews: Software, Survival, GeneExpression Author: Harry Robertson [aut, cre] (), Nicholas Robertson [aut] Maintainer: Harry Robertson URL: https://github.com/Harry25R/TOP VignetteBuilder: knitr BugReports: https://github.com/Harry25R/TOP/issues git_url: https://git.bioconductor.org/packages/TOP git_branch: RELEASE_3_20 git_last_commit: 0420c26 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TOP_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TOP_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TOP_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TOP_1.6.0.tgz vignettes: vignettes/TOP/inst/doc/BuildingATOPModel.html vignetteTitles: "Introduction to TOP" hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TOP/inst/doc/BuildingATOPModel.R dependencyCount: 218 Package: topconfects Version: 1.22.0 Depends: R (>= 3.6.0) Imports: methods, utils, stats, assertthat, ggplot2 Suggests: limma, edgeR, statmod, DESeq2, ashr, NBPSeq, dplyr, testthat, reshape2, tidyr, readr, org.At.tair.db, AnnotationDbi, knitr, rmarkdown, BiocStyle License: LGPL-2.1 | file LICENSE MD5sum: 5274ff47d2961095b6046e34ac3f135e NeedsCompilation: no Title: Top Confident Effect Sizes Description: Rank results by confident effect sizes, while maintaining False Discovery Rate and False Coverage-statement Rate control. Topconfects is an alternative presentation of TREAT results with improved usability, eliminating p-values and instead providing confidence bounds. The main application is differential gene expression analysis, providing genes ranked in order of confident log2 fold change, but it can be applied to any collection of effect sizes with associated standard errors. biocViews: GeneExpression, DifferentialExpression, Transcriptomics, RNASeq, mRNAMicroarray, Regression, MultipleComparison Author: Paul Harrison [aut, cre] () Maintainer: Paul Harrison URL: https://github.com/pfh/topconfects VignetteBuilder: knitr BugReports: https://github.com/pfh/topconfects/issues git_url: https://git.bioconductor.org/packages/topconfects git_branch: RELEASE_3_20 git_last_commit: a5f673c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/topconfects_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/topconfects_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/topconfects_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/topconfects_1.22.0.tgz vignettes: vignettes/topconfects/inst/doc/an_overview.html, vignettes/topconfects/inst/doc/fold_change.html vignetteTitles: An overview of topconfects, Confident fold change hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/topconfects/inst/doc/an_overview.R, vignettes/topconfects/inst/doc/fold_change.R importsMe: GeoTcgaData, weitrix dependencyCount: 37 Package: topdownr Version: 1.28.0 Depends: R (>= 3.5), methods, BiocGenerics (>= 0.20.0), ProtGenerics (>= 1.10.0), Biostrings (>= 2.42.1), S4Vectors (>= 0.12.2) Imports: grDevices, stats, tools, utils, Biobase, Matrix (>= 1.4-2), MSnbase (>= 2.3.10), PSMatch (>= 1.6.0), ggplot2 (>= 2.2.1), mzR (>= 2.27.5) Suggests: topdownrdata (>= 0.2), knitr, rmarkdown, ranger, testthat, BiocStyle, xml2 License: GPL (>= 3) MD5sum: e0a33bb1c0b72675e6de935c8455124b NeedsCompilation: no Title: Investigation of Fragmentation Conditions in Top-Down Proteomics Description: The topdownr package allows automatic and systemic investigation of fragment conditions. It creates Thermo Orbitrap Fusion Lumos method files to test hundreds of fragmentation conditions. Additionally it provides functions to analyse and process the generated MS data and determine the best conditions to maximise overall fragment coverage. biocViews: ImmunoOncology, Infrastructure, Proteomics, MassSpectrometry, Coverage Author: Sebastian Gibb [aut, cre] (), Pavel Shliaha [aut] (), Ole Nørregaard Jensen [aut] () Maintainer: Sebastian Gibb URL: https://github.com/sgibb/topdownr/ VignetteBuilder: knitr BugReports: https://github.com/sgibb/topdownr/issues/ git_url: https://git.bioconductor.org/packages/topdownr git_branch: RELEASE_3_20 git_last_commit: 542b527 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/topdownr_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/topdownr_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/topdownr_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/topdownr_1.28.0.tgz vignettes: vignettes/topdownr/inst/doc/analysis.html, vignettes/topdownr/inst/doc/data-generation.html vignetteTitles: Fragmentation Analysis with topdownr, Data Generation for topdownr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/topdownr/inst/doc/analysis.R, vignettes/topdownr/inst/doc/data-generation.R dependsOnMe: topdownrdata dependencyCount: 138 Package: topGO Version: 2.58.0 Depends: R (>= 2.10.0), methods, BiocGenerics (>= 0.13.6), graph (>= 1.14.0), Biobase (>= 2.0.0), GO.db (>= 2.3.0), AnnotationDbi (>= 1.7.19), SparseM (>= 0.73) Imports: lattice, matrixStats, DBI Suggests: ALL, hgu95av2.db, hgu133a.db, genefilter, xtable, multtest, Rgraphviz, globaltest License: LGPL MD5sum: 72cfe77fe47fae85d8d1ee82dc417140 NeedsCompilation: no Title: Enrichment Analysis for Gene Ontology Description: topGO package provides tools for testing GO terms while accounting for the topology of the GO graph. Different test statistics and different methods for eliminating local similarities and dependencies between GO terms can be implemented and applied. biocViews: Microarray, Visualization Author: Adrian Alexa, Jorg Rahnenfuhrer Maintainer: Adrian Alexa git_url: https://git.bioconductor.org/packages/topGO git_branch: RELEASE_3_20 git_last_commit: fdfc42c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/topGO_2.58.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/topGO_2.58.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/topGO_2.58.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/topGO_2.58.0.tgz vignettes: vignettes/topGO/inst/doc/topGO.pdf vignetteTitles: topGO hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/topGO/inst/doc/topGO.R dependsOnMe: BgeeDB, compEpiTools, EGSEA, ideal, moanin, tRanslatome, maEndToEnd importsMe: APL, cellity, consICA, GRaNIE, mosdef, OmaDB, pcaExplorer, transcriptogramer, ExpHunterSuite suggestsMe: fenr, FGNet, GeDi, geva, IntramiRExploreR, miRNAtap dependencyCount: 51 Package: ToxicoGx Version: 2.10.0 Depends: R (>= 4.1), CoreGx Imports: SummarizedExperiment, BiocGenerics, S4Vectors, Biobase, BiocParallel, ggplot2, tibble, dplyr, caTools, downloader, magrittr, methods, reshape2, tidyr, data.table, assertthat, scales, graphics, grDevices, parallel, stats, utils, limma, jsonlite Suggests: rmarkdown, testthat, BiocStyle, knitr, tinytex, devtools, PharmacoGx, xtable, markdown License: MIT + file LICENSE MD5sum: 3676baa7b45579fdbd24f9c3a9fafbe7 NeedsCompilation: no Title: Analysis of Large-Scale Toxico-Genomic Data Description: Contains a set of functions to perform large-scale analysis of toxicogenomic data, providing a standardized data structure to hold information relevant to annotation, visualization and statistical analysis of toxicogenomic data. biocViews: GeneExpression, Pharmacogenetics, Pharmacogenomics, Software Author: Sisira Nair [aut], Esther Yoo [aut], Christopher Eeles [aut], Amy Tang [aut], Nehme El-Hachem [aut], Petr Smirnov [aut], Jermiah Joseph [aut], Benjamin Haibe-Kains [aut, cre] Maintainer: Benjamin Haibe-Kains VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ToxicoGx git_branch: RELEASE_3_20 git_last_commit: 1bf04e4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ToxicoGx_2.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ToxicoGx_2.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ToxicoGx_2.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ToxicoGx_2.10.0.tgz vignettes: vignettes/ToxicoGx/inst/doc/toxicoGxCaseStudies.html vignetteTitles: ToxicoGx: An R Platform for Integrated Toxicogenomics Data Analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/ToxicoGx/inst/doc/toxicoGxCaseStudies.R dependencyCount: 145 Package: TPP2D Version: 1.22.0 Depends: R (>= 3.6.0), stats, utils, dplyr, methods Imports: ggplot2, tidyr, foreach, doParallel, openxlsx, stringr, RCurl, parallel, MASS, BiocParallel, limma Suggests: knitr, testthat, rmarkdown, BiocStyle License: GPL-3 MD5sum: dcb01b04448cdf8ad8f2444a7d961716 NeedsCompilation: no Title: Detection of ligand-protein interactions from 2D thermal profiles (DLPTP) Description: Detection of ligand-protein interactions from 2D thermal profiles (DLPTP), Performs an FDR-controlled analysis of 2D-TPP experiments by functional analysis of dose-response curves across temperatures. biocViews: Software, Proteomics, DataImport Author: Nils Kurzawa [aut, cre], Holger Franken [aut], Simon Anders [aut], Wolfgang Huber [aut], Mikhail M. Savitski [aut] Maintainer: Nils Kurzawa URL: http://bioconductor.org/packages/TPP2D VignetteBuilder: knitr BugReports: https://support.bioconductor.org/ git_url: https://git.bioconductor.org/packages/TPP2D git_branch: RELEASE_3_20 git_last_commit: e24f71d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TPP2D_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TPP2D_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TPP2D_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TPP2D_1.22.0.tgz vignettes: vignettes/TPP2D/inst/doc/TPP2D.html vignetteTitles: Introduction to TPP2D for 2D-TPP analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TPP2D/inst/doc/TPP2D.R dependencyCount: 63 Package: TPP Version: 3.34.0 Depends: R (>= 3.4), Biobase, dplyr, magrittr, tidyr Imports: biobroom, broom, data.table, doParallel, foreach, futile.logger, ggplot2, grDevices, gridExtra, grid, knitr, limma, MASS, mefa, nls2, openxlsx (>= 2.4.0), parallel, plyr, purrr, RColorBrewer, RCurl, reshape2, rmarkdown, splines, stats, stringr, tibble, utils, VennDiagram, VGAM Suggests: BiocStyle, testthat License: Artistic-2.0 MD5sum: 4ac7e43263f1a1c5e6040a0a12a651f4 NeedsCompilation: no Title: Analyze thermal proteome profiling (TPP) experiments Description: Analyze thermal proteome profiling (TPP) experiments with varying temperatures (TR) or compound concentrations (CCR). biocViews: ImmunoOncology, Proteomics, MassSpectrometry Author: Dorothee Childs, Nils Kurzawa, Holger Franken, Carola Doce, Mikhail Savitski and Wolfgang Huber Maintainer: Dorothee Childs VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TPP git_branch: RELEASE_3_20 git_last_commit: 55ca4d4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TPP_3.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TPP_3.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TPP_3.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TPP_3.34.0.tgz vignettes: vignettes/TPP/inst/doc/NPARC_analysis_of_TPP_TR_data.pdf, vignettes/TPP/inst/doc/TPP_introduction_1D.pdf, vignettes/TPP/inst/doc/TPP_introduction_2D.pdf vignetteTitles: TPP_introduction_NPARC, TPP_introduction_1D, TPP_introduction_2D hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TPP/inst/doc/NPARC_analysis_of_TPP_TR_data.R, vignettes/TPP/inst/doc/TPP_introduction_1D.R, vignettes/TPP/inst/doc/TPP_introduction_2D.R suggestsMe: Rtpca dependencyCount: 96 Package: tpSVG Version: 1.2.0 Depends: mgcv, R (>= 4.4) Imports: stats, BiocParallel, MatrixGenerics, methods, SingleCellExperiment, SummarizedExperiment, SpatialExperiment Suggests: BiocStyle, knitr, nnSVG, rmarkdown, scran, scuttle, STexampleData, escheR, ggpubr, colorspace, BumpyMatrix, sessioninfo, testthat (>= 3.0.0) License: MIT + file LICENSE MD5sum: ddf3de53aea89392cfe8e6f0b8231cc2 NeedsCompilation: no Title: Thin plate models to detect spatially variable genes Description: The goal of `tpSVG` is to detect and visualize spatial variation in the gene expression for spatially resolved transcriptomics data analysis. Specifically, `tpSVG` introduces a family of count-based models, with generalizable parametric assumptions such as Poisson distribution or negative binomial distribution. In addition, comparing to currently available count-based model for spatially resolved data analysis, the `tpSVG` models improves computational time, and hence greatly improves the applicability of count-based models in SRT data analysis. biocViews: Spatial, Transcriptomics, GeneExpression, Software, StatisticalMethod, DimensionReduction, Regression, Preprocessing Author: Boyi Guo [aut, cre] (), Lukas M. Weber [ctb] (), Stephanie C. Hicks [aut] () Maintainer: Boyi Guo URL: https://github.com/boyiguo1/tpSVG VignetteBuilder: knitr BugReports: https://github.com/boyiguo1/tpSVG/issues git_url: https://git.bioconductor.org/packages/tpSVG git_branch: RELEASE_3_20 git_last_commit: 840cd95 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tpSVG_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tpSVG_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tpSVG_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tpSVG_1.2.0.tgz vignettes: vignettes/tpSVG/inst/doc/intro_to_tpSVG.html vignetteTitles: intro_to_tpSVG hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/tpSVG/inst/doc/intro_to_tpSVG.R dependencyCount: 85 Package: tracktables Version: 1.40.0 Depends: R (>= 3.5.0) Imports: IRanges, GenomicRanges, XVector, Rsamtools, XML, tractor.base, stringr, RColorBrewer, methods Suggests: knitr, BiocStyle License: GPL (>= 3) MD5sum: f9df323cc6a53fd11d9e7ec57d245426 NeedsCompilation: no Title: Build IGV tracks and HTML reports Description: Methods to create complex IGV genome browser sessions and dynamic IGV reports in HTML pages. biocViews: Sequencing, ReportWriting Author: Tom Carroll, Sanjay Khadayate, Anne Pajon, Ziwei Liang Maintainer: Tom Carroll VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/tracktables git_branch: RELEASE_3_20 git_last_commit: 849c1ab git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tracktables_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tracktables_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tracktables_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tracktables_1.40.0.tgz vignettes: vignettes/tracktables/inst/doc/tracktables.pdf vignetteTitles: Creating IGV HTML reports with tracktables hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tracktables/inst/doc/tracktables.R dependencyCount: 55 Package: trackViewer Version: 1.42.0 Depends: R (>= 3.5.0), grDevices, methods, GenomicRanges, grid Imports: GenomeInfoDb, GenomicAlignments, GenomicFeatures, Gviz, Rsamtools, S4Vectors, rtracklayer, BiocGenerics, scales, tools, IRanges, AnnotationDbi, grImport, htmlwidgets, InteractionSet, utils, rhdf5, strawr, txdbmaker Suggests: biomaRt, TxDb.Hsapiens.UCSC.hg19.knownGene, RUnit, org.Hs.eg.db, BiocStyle, knitr, VariantAnnotation, httr, htmltools, rmarkdown, motifStack License: GPL (>= 2) MD5sum: 3287391dbe336650a318e360bf192258 NeedsCompilation: no Title: A R/Bioconductor package with web interface for drawing elegant interactive tracks or lollipop plot to facilitate integrated analysis of multi-omics data Description: Visualize mapped reads along with annotation as track layers for NGS dataset such as ChIP-seq, RNA-seq, miRNA-seq, DNA-seq, SNPs and methylation data. biocViews: Visualization Author: Jianhong Ou [aut, cre] (), Julie Lihua Zhu [aut] Maintainer: Jianhong Ou VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/trackViewer git_branch: RELEASE_3_20 git_last_commit: 0438f5e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/trackViewer_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/trackViewer_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/trackViewer_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/trackViewer_1.42.0.tgz vignettes: vignettes/trackViewer/inst/doc/changeTracksStyles.html, vignettes/trackViewer/inst/doc/dandelionPlot.html, vignettes/trackViewer/inst/doc/lollipopPlot.html, vignettes/trackViewer/inst/doc/plotInteractionData.html, vignettes/trackViewer/inst/doc/trackViewer.html vignetteTitles: trackViewer Vignette: change the track styles, trackViewer Vignette: dandelionPlot, trackViewer Vignette: lollipopPlot, trackViewer Vignette: plot interaction data, trackViewer Vignette: overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/trackViewer/inst/doc/changeTracksStyles.R, vignettes/trackViewer/inst/doc/dandelionPlot.R, vignettes/trackViewer/inst/doc/lollipopPlot.R, vignettes/trackViewer/inst/doc/plotInteractionData.R, vignettes/trackViewer/inst/doc/trackViewer.R importsMe: geomeTriD, NADfinder suggestsMe: ATACseqQC, ChIPpeakAnno dependencyCount: 164 Package: tradeSeq Version: 1.20.0 Depends: R (>= 3.6) Imports: mgcv, edgeR, SingleCellExperiment, SummarizedExperiment, slingshot, magrittr, RColorBrewer, BiocParallel, Biobase, pbapply, igraph, ggplot2, princurve, methods, S4Vectors, tibble, Matrix, TrajectoryUtils, viridis, matrixStats, MASS Suggests: knitr, rmarkdown, testthat, covr, clusterExperiment, DelayedMatrixStats License: MIT + file LICENSE MD5sum: ea65f3a3d11bc27c09659c3817221e1f NeedsCompilation: no Title: trajectory-based differential expression analysis for sequencing data Description: tradeSeq provides a flexible method for fitting regression models that can be used to find genes that are differentially expressed along one or multiple lineages in a trajectory. Based on the fitted models, it uses a variety of tests suited to answer different questions of interest, e.g. the discovery of genes for which expression is associated with pseudotime, or which are differentially expressed (in a specific region) along the trajectory. It fits a negative binomial generalized additive model (GAM) for each gene, and performs inference on the parameters of the GAM. biocViews: Clustering, Regression, TimeCourse, DifferentialExpression, GeneExpression, RNASeq, Sequencing, Software, SingleCell, Transcriptomics, MultipleComparison, Visualization Author: Koen Van den Berge [aut], Hector Roux de Bezieux [aut, cre] (), Kelly Street [aut, ctb], Lieven Clement [aut, ctb], Sandrine Dudoit [ctb] Maintainer: Hector Roux de Bezieux URL: https://statomics.github.io/tradeSeq/index.html VignetteBuilder: knitr BugReports: https://github.com/statOmics/tradeSeq/issues git_url: https://git.bioconductor.org/packages/tradeSeq git_branch: RELEASE_3_20 git_last_commit: 9b5e265 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tradeSeq_1.20.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tradeSeq_1.20.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tradeSeq_1.20.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tradeSeq_1.20.0.tgz vignettes: vignettes/tradeSeq/inst/doc/fitGAM.html, vignettes/tradeSeq/inst/doc/Monocle.html, vignettes/tradeSeq/inst/doc/multipleConditions.html, vignettes/tradeSeq/inst/doc/tradeSeq.html vignetteTitles: More details on working with fitGAM, Monocle + tradeSeq, Differential expression across conditions, The tradeSeq workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/tradeSeq/inst/doc/fitGAM.R, vignettes/tradeSeq/inst/doc/Monocle.R, vignettes/tradeSeq/inst/doc/tradeSeq.R dependencyCount: 85 Package: TrajectoryGeometry Version: 1.14.0 Depends: R (>= 4.1) Imports: pracma, rgl, ggplot2, stats, methods Suggests: dplyr, knitr, RColorBrewer, rmarkdown License: MIT + file LICENSE MD5sum: a3f57410d5856a776942e0ff6ad94529 NeedsCompilation: no Title: This Package Discovers Directionality in Time and Pseudo-times Series of Gene Expression Patterns Description: Given a time series or pseudo-times series of gene expression data, we might wish to know: Do the changes in gene expression in these data exhibit directionality? Are there turning points in this directionality. Do different subsets of the data move in different directions? This package uses spherical geometry to probe these sorts of questions. In particular, if we are looking at (say) the first n dimensions of the PCA of gene expression, directionality can be detected as the clustering of points on the (n-1)-dimensional sphere. biocViews: BiologicalQuestion, StatisticalMethod, GeneExpression, SingleCell Author: Michael Shapiro [aut, cre] () Maintainer: Michael Shapiro VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TrajectoryGeometry git_branch: RELEASE_3_20 git_last_commit: 7d23ba2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TrajectoryGeometry_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TrajectoryGeometry_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TrajectoryGeometry_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TrajectoryGeometry_1.14.0.tgz vignettes: vignettes/TrajectoryGeometry/inst/doc/SingleCellTrajectoryAnalysis.html, vignettes/TrajectoryGeometry/inst/doc/TrajectoryGeometry.html vignetteTitles: SingleCellTrajectoryAnalysis, TrajectoryGeometry hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/TrajectoryGeometry/inst/doc/SingleCellTrajectoryAnalysis.R, vignettes/TrajectoryGeometry/inst/doc/TrajectoryGeometry.R dependencyCount: 60 Package: TrajectoryUtils Version: 1.14.0 Depends: SingleCellExperiment Imports: methods, stats, Matrix, igraph, S4Vectors, SummarizedExperiment Suggests: BiocNeighbors, DelayedArray, DelayedMatrixStats, BiocParallel, testthat, knitr, BiocStyle, rmarkdown License: GPL-3 MD5sum: b11dcc19508bac859068d2b9a1a777f7 NeedsCompilation: no Title: Single-Cell Trajectory Analysis Utilities Description: Implements low-level utilities for single-cell trajectory analysis, primarily intended for re-use inside higher-level packages. Include a function to create a cluster-level minimum spanning tree and data structures to hold pseudotime inference results. biocViews: GeneExpression, SingleCell Author: Aaron Lun [aut, cre], Kelly Street [aut] Maintainer: Aaron Lun URL: https://bioconductor.org/packages/TrajectoryUtils VignetteBuilder: knitr BugReports: https://github.com/LTLA/TrajectoryUtils/issues git_url: https://git.bioconductor.org/packages/TrajectoryUtils git_branch: RELEASE_3_20 git_last_commit: 7c53267 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TrajectoryUtils_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TrajectoryUtils_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TrajectoryUtils_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TrajectoryUtils_1.14.0.tgz vignettes: vignettes/TrajectoryUtils/inst/doc/overview.html vignetteTitles: Trajectory utilities hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TrajectoryUtils/inst/doc/overview.R dependsOnMe: slingshot, TSCAN importsMe: condiments, singleCellTK, tradeSeq dependencyCount: 46 Package: transcriptogramer Version: 1.28.0 Depends: R (>= 3.4), methods Imports: biomaRt, data.table, doSNOW, foreach, ggplot2, graphics, grDevices, igraph, limma, parallel, progress, RedeR, snow, stats, tidyr, topGO Suggests: BiocStyle, knitr, rmarkdown, RUnit, BiocGenerics License: GPL (>= 2) MD5sum: 2f7f7d83e608fb6bc81873a9c8ca7c8b NeedsCompilation: no Title: Transcriptional analysis based on transcriptograms Description: R package for transcriptional analysis based on transcriptograms, a method to analyze transcriptomes that projects expression values on a set of ordered proteins, arranged such that the probability that gene products participate in the same metabolic pathway exponentially decreases with the increase of the distance between two proteins of the ordering. Transcriptograms are, hence, genome wide gene expression profiles that provide a global view for the cellular metabolism, while indicating gene sets whose expressions are altered. biocViews: Software, Network, Visualization, SystemsBiology, GeneExpression, GeneSetEnrichment, GraphAndNetwork, Clustering, DifferentialExpression, Microarray, RNASeq, Transcription, ImmunoOncology Author: Diego Morais [aut, cre], Rodrigo Dalmolin [aut] Maintainer: Diego Morais URL: https://github.com/arthurvinx/transcriptogramer SystemRequirements: Java Runtime Environment (>= 6) VignetteBuilder: knitr BugReports: https://github.com/arthurvinx/transcriptogramer/issues git_url: https://git.bioconductor.org/packages/transcriptogramer git_branch: RELEASE_3_20 git_last_commit: 35f19ee git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/transcriptogramer_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/transcriptogramer_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/transcriptogramer_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/transcriptogramer_1.28.0.tgz vignettes: vignettes/transcriptogramer/inst/doc/transcriptogramer.html vignetteTitles: The transcriptogramer user's guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/transcriptogramer/inst/doc/transcriptogramer.R dependencyCount: 102 Package: transcriptR Version: 1.34.0 Depends: R (>= 3.5.0), methods Imports: BiocGenerics, caret, chipseq, e1071, GenomicAlignments, GenomicRanges, GenomicFeatures, GenomeInfoDb, ggplot2, graphics, grDevices, IRanges (>= 2.11.15), pROC, reshape2, Rsamtools, rtracklayer, S4Vectors, stats, utils Suggests: BiocStyle, knitr, rmarkdown, TxDb.Hsapiens.UCSC.hg19.knownGene, testthat License: GPL-3 MD5sum: c2f448fb6e65d2b2993795655d79272f NeedsCompilation: no Title: An Integrative Tool for ChIP- And RNA-Seq Based Primary Transcripts Detection and Quantification Description: The differences in the RNA types being sequenced have an impact on the resulting sequencing profiles. mRNA-seq data is enriched with reads derived from exons, while GRO-, nucRNA- and chrRNA-seq demonstrate a substantial broader coverage of both exonic and intronic regions. The presence of intronic reads in GRO-seq type of data makes it possible to use it to computationally identify and quantify all de novo continuous regions of transcription distributed across the genome. This type of data, however, is more challenging to interpret and less common practice compared to mRNA-seq. One of the challenges for primary transcript detection concerns the simultaneous transcription of closely spaced genes, which needs to be properly divided into individually transcribed units. The R package transcriptR combines RNA-seq data with ChIP-seq data of histone modifications that mark active Transcription Start Sites (TSSs), such as, H3K4me3 or H3K9/14Ac to overcome this challenge. The advantage of this approach over the use of, for example, gene annotations is that this approach is data driven and therefore able to deal also with novel and case specific events. Furthermore, the integration of ChIP- and RNA-seq data allows the identification all known and novel active transcription start sites within a given sample. biocViews: ImmunoOncology, Transcription, Software, Sequencing, RNASeq, Coverage Author: Armen R. Karapetyan Maintainer: Armen R. Karapetyan VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/transcriptR git_branch: RELEASE_3_20 git_last_commit: 9f6196d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/transcriptR_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/transcriptR_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/transcriptR_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/transcriptR_1.34.0.tgz vignettes: vignettes/transcriptR/inst/doc/transcriptR.html vignetteTitles: transcriptR: an integrative tool for ChIP- and RNA-seq based primary transcripts detection and quantification hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/transcriptR/inst/doc/transcriptR.R dependencyCount: 151 Package: transformGamPoi Version: 1.12.0 Imports: glmGamPoi, DelayedArray, Matrix, MatrixGenerics, SummarizedExperiment, HDF5Array, methods, utils, Rcpp LinkingTo: Rcpp Suggests: testthat, TENxPBMCData, scran, knitr, rmarkdown, BiocStyle License: GPL-3 MD5sum: 5186c6b39f3d58d7a86be0807a59ce4e NeedsCompilation: yes Title: Variance Stabilizing Transformation for Gamma-Poisson Models Description: Variance-stabilizing transformations help with the analysis of heteroskedastic data (i.e., data where the variance is not constant, like count data). This package provide two types of variance stabilizing transformations: (1) methods based on the delta method (e.g., 'acosh', 'log(x+1)'), (2) model residual based (Pearson and randomized quantile residuals). biocViews: SingleCell, Normalization, Preprocessing, Regression Author: Constantin Ahlmann-Eltze [aut, cre] () Maintainer: Constantin Ahlmann-Eltze URL: https://github.com/const-ae/transformGamPoi VignetteBuilder: knitr BugReports: https://github.com/const-ae/transformGamPoi/issues git_url: https://git.bioconductor.org/packages/transformGamPoi git_branch: RELEASE_3_20 git_last_commit: 417e94e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/transformGamPoi_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/transformGamPoi_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/transformGamPoi_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/transformGamPoi_1.12.0.tgz vignettes: vignettes/transformGamPoi/inst/doc/transformGamPoi.html vignetteTitles: glmGamPoi Quickstart hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/transformGamPoi/inst/doc/transformGamPoi.R dependencyCount: 54 Package: transite Version: 1.24.0 Depends: R (>= 3.5) Imports: BiocGenerics (>= 0.26.0), Biostrings (>= 2.48.0), dplyr (>= 0.7.6), GenomicRanges (>= 1.32.6), ggplot2 (>= 3.0.0), grDevices, gridExtra (>= 2.3), methods, parallel, Rcpp (>= 1.0.4.8), scales (>= 1.0.0), stats, TFMPvalue (>= 0.0.8), utils LinkingTo: Rcpp (>= 1.0.4.8) Suggests: knitr (>= 1.20), rmarkdown (>= 1.10), roxygen2 (>= 6.1.0), testthat (>= 2.1.0) License: MIT + file LICENSE MD5sum: bf4806708f88dd36f55e12337f207d90 NeedsCompilation: yes Title: RNA-binding protein motif analysis Description: transite is a computational method that allows comprehensive analysis of the regulatory role of RNA-binding proteins in various cellular processes by leveraging preexisting gene expression data and current knowledge of binding preferences of RNA-binding proteins. biocViews: GeneExpression, Transcription, DifferentialExpression, Microarray, mRNAMicroarray, Genetics, GeneSetEnrichment Author: Konstantin Krismer [aut, cre, cph] (), Anna Gattinger [aut] (), Michael Yaffe [ths, cph] (), Ian Cannell [ths] () Maintainer: Konstantin Krismer URL: https://transite.mit.edu SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/transite git_branch: RELEASE_3_20 git_last_commit: 4870f6b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/transite_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/transite_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/transite_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/transite_1.24.0.tgz vignettes: vignettes/transite/inst/doc/spma.html vignetteTitles: Spectrum Motif Analysis (SPMA) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/transite/inst/doc/spma.R dependencyCount: 62 Package: tRanslatome Version: 1.44.0 Depends: R (>= 2.15.0), methods, limma, anota, DESeq2, edgeR, RankProd, topGO, org.Hs.eg.db, GOSemSim, Heatplus, gplots, plotrix, Biobase License: GPL-3 MD5sum: 74c6e18af8084fe233af48116b8ce0d5 NeedsCompilation: no Title: Comparison between multiple levels of gene expression Description: Detection of differentially expressed genes (DEGs) from the comparison of two biological conditions (treated vs. untreated, diseased vs. normal, mutant vs. wild-type) among different levels of gene expression (transcriptome ,translatome, proteome), using several statistical methods: Rank Product, Translational Efficiency, t-test, Limma, ANOTA, DESeq, edgeR. Possibility to plot the results with scatterplots, histograms, MA plots, standard deviation (SD) plots, coefficient of variation (CV) plots. Detection of significantly enriched post-transcriptional regulatory factors (RBPs, miRNAs, etc) and Gene Ontology terms in the lists of DEGs previously identified for the two expression levels. Comparison of GO terms enriched only in one of the levels or in both. Calculation of the semantic similarity score between the lists of enriched GO terms coming from the two expression levels. Visual examination and comparison of the enriched terms with heatmaps, radar plots and barplots. biocViews: CellBiology, GeneRegulation, Regulation, GeneExpression, DifferentialExpression, Microarray, HighThroughputSequencing, QualityControl, GO, MultipleComparisons, Bioinformatics Author: Toma Tebaldi, Erik Dassi, Galena Kostoska Maintainer: Toma Tebaldi , Erik Dassi git_url: https://git.bioconductor.org/packages/tRanslatome git_branch: RELEASE_3_20 git_last_commit: a6ed0a0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tRanslatome_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tRanslatome_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tRanslatome_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tRanslatome_1.44.0.tgz vignettes: vignettes/tRanslatome/inst/doc/tRanslatome_package.pdf vignetteTitles: tRanslatome hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tRanslatome/inst/doc/tRanslatome_package.R dependencyCount: 122 Package: transmogR Version: 1.2.0 Depends: Biostrings, GenomicRanges Imports: BSgenome, dplyr, GenomeInfoDb, GenomicFeatures, ggplot2 (>= 3.5.0), IRanges, jsonlite, matrixStats, methods, parallel, rlang, scales, stats, S4Vectors, SummarizedExperiment, VariantAnnotation, vroom Suggests: BiocStyle, BSgenome.Hsapiens.UCSC.hg38, ComplexUpset, extraChIPs, InteractionSet, knitr, rmarkdown, rtracklayer, testthat (>= 3.0.0) License: GPL-3 MD5sum: 2d6335a477d4abb86dbea222cf38fe74 NeedsCompilation: no Title: Modify a set of reference sequences using a set of variants Description: transmogR provides the tools needed to crate a new reference genome or reference transcriptome, using a set of variants. Variants can be any combination of SNPs, Insertions and Deletions. The intended use-case is to enable creation of variant-modified reference transcriptomes for incorporation into transcriptomic pseudo-alignment workflows, such as salmon. biocViews: Alignment, GenomicVariation, Sequencing, TranscriptomeVariant Author: Stevie Pederson [aut, cre] () Maintainer: Stevie Pederson URL: https://github.com/smped/transmogR VignetteBuilder: knitr BugReports: https://github.com/smped/transmogR/issues git_url: https://git.bioconductor.org/packages/transmogR git_branch: RELEASE_3_20 git_last_commit: a83ed92 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/transmogR_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/transmogR_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/transmogR_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/transmogR_1.2.0.tgz vignettes: vignettes/transmogR/inst/doc/creating_a_new_reference.html vignetteTitles: Creating a Variant-Modified Reference hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/transmogR/inst/doc/creating_a_new_reference.R dependencyCount: 107 Package: transomics2cytoscape Version: 1.16.0 Imports: RCy3, KEGGREST, dplyr, purrr, tibble, pbapply Suggests: testthat, roxygen2, knitr, BiocStyle, rmarkdown License: Artistic-2.0 MD5sum: cb6bf8cc64f438a03e2058a3082437ee NeedsCompilation: no Title: A tool set for 3D Trans-Omic network visualization with Cytoscape Description: transomics2cytoscape generates a file for 3D transomics visualization by providing input that specifies the IDs of multiple KEGG pathway layers, their corresponding Z-axis heights, and an input that represents the edges between the pathway layers. The edges are used, for example, to describe the relationships between kinase on a pathway and enzyme on another pathway. This package automates creation of a transomics network as shown in the figure in Yugi.2014 (https://doi.org/10.1016/j.celrep.2014.07.021) using Cytoscape automation (https://doi.org/10.1186/s13059-019-1758-4). biocViews: Network, Software, Pathways, DataImport, KEGG Author: Kozo Nishida [aut, cre] (), Katsuyuki Yugi [aut] () Maintainer: Kozo Nishida SystemRequirements: Cytoscape >= 3.10.0 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/transomics2cytoscape git_branch: RELEASE_3_20 git_last_commit: d09c932 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/transomics2cytoscape_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/transomics2cytoscape_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/transomics2cytoscape_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/transomics2cytoscape_1.16.0.tgz vignettes: vignettes/transomics2cytoscape/inst/doc/transomics2cytoscape.html vignetteTitles: transomics2cytoscape hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/transomics2cytoscape/inst/doc/transomics2cytoscape.R dependencyCount: 70 Package: traseR Version: 1.36.0 Depends: R (>= 3.5.0), GenomicRanges, IRanges, BSgenome.Hsapiens.UCSC.hg19 Suggests: BiocStyle,RUnit, BiocGenerics License: GPL MD5sum: d2588680c4fd2ec7dc9c8095ed3fa139 NeedsCompilation: no Title: GWAS trait-associated SNP enrichment analyses in genomic intervals Description: traseR performs GWAS trait-associated SNP enrichment analyses in genomic intervals using different hypothesis testing approaches, also provides various functionalities to explore and visualize the results. biocViews: Genetics,Sequencing, Coverage, Alignment, QualityControl, DataImport Author: Li Chen, Zhaohui S.Qin Maintainer: li chen git_url: https://git.bioconductor.org/packages/traseR git_branch: RELEASE_3_20 git_last_commit: bbb3e26 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/traseR_1.36.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/traseR_1.36.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/traseR_1.36.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/traseR_1.36.0.tgz vignettes: vignettes/traseR/inst/doc/traseR.pdf vignetteTitles: Perform GWAS trait-associated SNP enrichment analyses in genomic intervals hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/traseR/inst/doc/traseR.R dependencyCount: 60 Package: TreeAndLeaf Version: 1.18.0 Depends: R(>= 4.0) Imports: RedeR(>= 1.40.4), igraph, ape Suggests: knitr, rmarkdown, BiocStyle, RUnit, BiocGenerics, stringr, geneplast, ggtree, ggplot2, dplyr, dendextend, RColorBrewer License: Artistic-2.0 MD5sum: 5c6bb392e15eafc4ec4c3fab3cd9d85b NeedsCompilation: no Title: Displaying binary trees with focus on dendrogram leaves Description: The TreeAndLeaf package combines unrooted and force-directed graph algorithms in order to layout binary trees, aiming to represent multiple layers of information onto dendrogram leaves. biocViews: Infrastructure, GraphAndNetwork, Software, Network, Visualization, DataRepresentation Author: Leonardo W. Kume, Luis E. A. Rizzardi, Milena A. Cardoso, Mauro A. A. Castro Maintainer: Milena A. Cardoso VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TreeAndLeaf git_branch: RELEASE_3_20 git_last_commit: 99ac956 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TreeAndLeaf_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TreeAndLeaf_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TreeAndLeaf_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TreeAndLeaf_1.18.0.tgz vignettes: vignettes/TreeAndLeaf/inst/doc/TreeAndLeaf.html vignetteTitles: TreeAndLeaf: an graph layout to dendrograms. hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TreeAndLeaf/inst/doc/TreeAndLeaf.R suggestsMe: RedeR dependencyCount: 31 Package: treeclimbR Version: 1.2.0 Depends: R (>= 4.4.0) Imports: TreeSummarizedExperiment (>= 1.99.0), edgeR, methods, SummarizedExperiment, S4Vectors, dirmult, dplyr, tibble, tidyr, ape, diffcyt, ggnewscale, ggplot2 (>= 3.4.0), viridis, ggtree, stats, utils, rlang Suggests: knitr, rmarkdown, scales, testthat (>= 3.0.0), BiocStyle License: Artistic-2.0 Archs: x64 MD5sum: 45a0a13d84ae8f136cc00d4a565015f1 NeedsCompilation: no Title: An algorithm to find optimal signal levels in a tree Description: The arrangement of hypotheses in a hierarchical structure appears in many research fields and often indicates different resolutions at which data can be viewed. This raises the question of which resolution level the signal should best be interpreted on. treeclimbR provides a flexible method to select optimal resolution levels (potentially different levels in different parts of the tree), rather than cutting the tree at an arbitrary level. treeclimbR uses a tuning parameter to generate candidate resolutions and from these selects the optimal one. biocViews: StatisticalMethod, CellBasedAssays Author: Ruizhu Huang [aut] (), Charlotte Soneson [aut, cre] () Maintainer: Charlotte Soneson URL: https://github.com/csoneson/treeclimbR VignetteBuilder: knitr BugReports: https://github.com/csoneson/treeclimbR/issues git_url: https://git.bioconductor.org/packages/treeclimbR git_branch: RELEASE_3_20 git_last_commit: edd2e08 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/treeclimbR_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/treeclimbR_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/treeclimbR_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/treeclimbR_1.2.0.tgz vignettes: vignettes/treeclimbR/inst/doc/treeclimbR.html vignetteTitles: treeclimbR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/treeclimbR/inst/doc/treeclimbR.R dependencyCount: 168 Package: treeio Version: 1.30.0 Depends: R (>= 3.6.0) Imports: ape, dplyr, jsonlite, magrittr, methods, rlang, stats, tibble, tidytree (>= 0.4.5), utils, yulab.utils (>= 0.1.6) Suggests: Biostrings, cli, ggplot2, ggtree, igraph, knitr, rmarkdown, phangorn, prettydoc, purrr, testthat, tidyr, vroom, xml2, yaml License: Artistic-2.0 Archs: x64 MD5sum: ccf737f20029fdf856c800fc831686ba NeedsCompilation: no Title: Base Classes and Functions for Phylogenetic Tree Input and Output Description: 'treeio' is an R package to make it easier to import and store phylogenetic tree with associated data; and to link external data from different sources to phylogeny. It also supports exporting phylogenetic tree with heterogeneous associated data to a single tree file and can be served as a platform for merging tree with associated data and converting file formats. biocViews: Software, Annotation, Clustering, DataImport, DataRepresentation, Alignment, MultipleSequenceAlignment, Phylogenetics Author: Guangchuang Yu [aut, cre] (), Tommy Tsan-Yuk Lam [ctb, ths], Shuangbin Xu [ctb] (), Bradley Jones [ctb], Casey Dunn [ctb], Tyler Bradley [ctb], Konstantinos Geles [ctb] Maintainer: Guangchuang Yu URL: https://yulab-smu.top/contribution-tree-data/ VignetteBuilder: knitr BugReports: https://github.com/YuLab-SMU/treeio/issues git_url: https://git.bioconductor.org/packages/treeio git_branch: RELEASE_3_20 git_last_commit: c824ca4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/treeio_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/treeio_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/treeio_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/treeio_1.30.0.tgz vignettes: vignettes/treeio/inst/doc/treeio.html vignetteTitles: treeio hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/treeio/inst/doc/treeio.R importsMe: ggtree, MicrobiotaProcess, TreeSummarizedExperiment, geneplast.data, BioVizSeq, EvoPhylo, RevGadgets, shinyTempSignal suggestsMe: ggtreeDendro, ggtreeExtra, rfaRm, FossilSim, idiogramFISH, MetaNet, nosoi dependencyCount: 39 Package: treekoR Version: 1.14.0 Depends: R (>= 4.1) Imports: stats, utils, tidyr, dplyr, data.table, ggiraph, ggplot2, hopach, ape, ggtree, patchwork, SingleCellExperiment, diffcyt, edgeR, lme4, multcomp Suggests: knitr, rmarkdown, BiocStyle, CATALYST, testthat (>= 3.0.0) License: GPL-3 MD5sum: 7f15a7694060c880fe93a8f511ebf0ad NeedsCompilation: no Title: Cytometry Cluster Hierarchy and Cellular-to-phenotype Associations Description: treekoR is a novel framework that aims to utilise the hierarchical nature of single cell cytometry data to find robust and interpretable associations between cell subsets and patient clinical end points. These associations are aimed to recapitulate the nested proportions prevalent in workflows inovlving manual gating, which are often overlooked in workflows using automatic clustering to identify cell populations. We developed treekoR to: Derive a hierarchical tree structure of cell clusters; quantify a cell types as a proportion relative to all cells in a sample (%total), and, as the proportion relative to a parent population (%parent); perform significance testing using the calculated proportions; and provide an interactive html visualisation to help highlight key results. biocViews: Clustering, DifferentialExpression, FlowCytometry, ImmunoOncology, MassSpectrometry, SingleCell, Software, StatisticalMethod, Visualization Author: Adam Chan [aut, cre], Ellis Patrick [ctb] Maintainer: Adam Chan VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/treekoR git_branch: RELEASE_3_20 git_last_commit: ddac7bd git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/treekoR_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/treekoR_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/treekoR_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/treekoR_1.14.0.tgz vignettes: vignettes/treekoR/inst/doc/vignette.html vignetteTitles: vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/treekoR/inst/doc/vignette.R importsMe: Statial suggestsMe: spicyWorkflow dependencyCount: 180 Package: TreeSummarizedExperiment Version: 2.14.0 Depends: R(>= 3.6.0), SingleCellExperiment, S4Vectors (>= 0.23.18), Biostrings Imports: methods, BiocGenerics, utils, ape, rlang, dplyr, SummarizedExperiment, BiocParallel, IRanges, treeio Suggests: ggtree, ggplot2, BiocStyle, knitr, rmarkdown, testthat License: GPL (>=2) MD5sum: bd46085b0be9cc8e40959bf6cb91e9e5 NeedsCompilation: no Title: TreeSummarizedExperiment: a S4 Class for Data with Tree Structures Description: TreeSummarizedExperiment has extended SingleCellExperiment to include hierarchical information on the rows or columns of the rectangular data. biocViews: DataRepresentation, Infrastructure Author: Ruizhu Huang [aut, cre] (), Felix G.M. Ernst [ctb] () Maintainer: Ruizhu Huang VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TreeSummarizedExperiment git_branch: RELEASE_3_20 git_last_commit: 99bc934 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TreeSummarizedExperiment_2.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TreeSummarizedExperiment_2.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TreeSummarizedExperiment_2.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TreeSummarizedExperiment_2.14.0.tgz vignettes: vignettes/TreeSummarizedExperiment/inst/doc/Introduction_to_treeSummarizedExperiment.html, vignettes/TreeSummarizedExperiment/inst/doc/The_combination_of_multiple_TSEs.html vignetteTitles: 1. Introduction to TreeSE, 2. Combine TSEs hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TreeSummarizedExperiment/inst/doc/Introduction_to_treeSummarizedExperiment.R, vignettes/TreeSummarizedExperiment/inst/doc/The_combination_of_multiple_TSEs.R dependsOnMe: ExperimentSubset, HoloFoodR, MGnifyR, mia, miaSim, miaViz, curatedMetagenomicData, MicrobiomeBenchmarkData, microbiomeDataSets importsMe: CBEA, iSEEtree, microSTASIS, PLSDAbatch, treeclimbR suggestsMe: ANCOMBC, dar, philr, LegATo, file2meco, parafac4microbiome dependencyCount: 76 Package: TREG Version: 1.10.0 Depends: R (>= 4.2), SummarizedExperiment Imports: Matrix, purrr, rafalib Suggests: BiocFileCache, BiocStyle, dplyr, ggplot2, knitr, pheatmap, sessioninfo, RefManageR, rmarkdown, testthat (>= 3.0.0), tibble, tidyr, SingleCellExperiment License: Artistic-2.0 MD5sum: 871bb50be403533bc358bbf9c96e0df4 NeedsCompilation: no Title: Tools for finding Total RNA Expression Genes in single nucleus RNA-seq data Description: RNA abundance and cell size parameters could improve RNA-seq deconvolution algorithms to more accurately estimate cell type proportions given the different cell type transcription activity levels. A Total RNA Expression Gene (TREG) can facilitate estimating total RNA content using single molecule fluorescent in situ hybridization (smFISH). We developed a data-driven approach using a measure of expression invariance to find candidate TREGs in postmortem human brain single nucleus RNA-seq. This R package implements the method for identifying candidate TREGs from snRNA-seq data. biocViews: Software, SingleCell, RNASeq, GeneExpression, Transcriptomics, Transcription, Sequencing Author: Louise Huuki-Myers [aut, cre] (), Leonardo Collado-Torres [ctb] () Maintainer: Louise Huuki-Myers URL: https://github.com/LieberInstitute/TREG, http://research.libd.org/TREG/ VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/TREG git_url: https://git.bioconductor.org/packages/TREG git_branch: RELEASE_3_20 git_last_commit: 790710a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TREG_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TREG_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TREG_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TREG_1.10.0.tgz vignettes: vignettes/TREG/inst/doc/finding_Total_RNA_Expression_Genes.html vignetteTitles: How to find Total RNA Expression Genes (TREGs) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TREG/inst/doc/finding_Total_RNA_Expression_Genes.R dependencyCount: 45 Package: Trendy Version: 1.28.0 Depends: R (>= 3.4) Imports: stats, utils, graphics, grDevices, segmented, gplots, parallel, magrittr, BiocParallel, DT, S4Vectors, SummarizedExperiment, methods, shiny, shinyFiles Suggests: BiocStyle, knitr, rmarkdown, devtools License: GPL-3 Archs: x64 MD5sum: 1be4ac1ab9b1041edb1d7af06bb1d02d NeedsCompilation: no Title: Breakpoint analysis of time-course expression data Description: Trendy implements segmented (or breakpoint) regression models to estimate breakpoints which represent changes in expression for each feature/gene in high throughput data with ordered conditions. biocViews: TimeCourse, RNASeq, Regression, ImmunoOncology Author: Rhonda Bacher and Ning Leng Maintainer: Rhonda Bacher URL: https://github.com/rhondabacher/Trendy VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Trendy git_branch: RELEASE_3_20 git_last_commit: b4996f5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Trendy_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Trendy_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Trendy_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Trendy_1.28.0.tgz vignettes: vignettes/Trendy/inst/doc/Trendy_vignette.pdf vignetteTitles: Trendy Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Trendy/inst/doc/Trendy_vignette.R dependencyCount: 98 Package: TRESS Version: 1.12.0 Depends: R (>= 4.1.0), parallel, S4Vectors Imports: utils, rtracklayer, Matrix, matrixStats, stats, methods, graphics, GenomicRanges, GenomicFeatures, IRanges, Rsamtools, AnnotationDbi Suggests: knitr, rmarkdown,BiocStyle License: GPL-3 + file LICENSE MD5sum: ad975d7de228c509578fe53447f39858 NeedsCompilation: no Title: Toolbox for mRNA epigenetics sequencing analysis Description: This package is devoted to analyzing MeRIP-seq data. Current functionalities include 1. detect transcriptome wide m6A methylation regions 2. detect transcriptome wide differential m6A methylation regions. biocViews: Epigenetics, RNASeq, PeakDetection, DifferentialMethylation Author: Zhenxing Guo [aut, cre], Hao Wu [ctb] Maintainer: Zhenxing Guo VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TRESS git_branch: RELEASE_3_20 git_last_commit: 947099a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TRESS_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TRESS_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TRESS_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TRESS_1.12.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE importsMe: magpie dependencyCount: 77 Package: tricycle Version: 1.14.0 Depends: R (>= 4.0), SingleCellExperiment Imports: methods, circular, ggplot2, ggnewscale, AnnotationDbi, scater, GenomicRanges, IRanges, S4Vectors, scattermore, dplyr, RColorBrewer, grDevices, stats, SummarizedExperiment, utils Suggests: testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown, CircStats, cowplot, htmltools, Seurat, org.Hs.eg.db, org.Mm.eg.db License: GPL-3 MD5sum: 15ce99cc65cd81d70f2665e9be4d0e1f NeedsCompilation: no Title: tricycle: Transferable Representation and Inference of cell cycle Description: The package contains functions to infer and visualize cell cycle process using Single Cell RNASeq data. It exploits the idea of transfer learning, projecting new data to the previous learned biologically interpretable space. We provide a pre-learned cell cycle space, which could be used to infer cell cycle time of human and mouse single cell samples. In addition, we also offer functions to visualize cell cycle time on different embeddings and functions to build new reference. biocViews: SingleCell, Software, Transcriptomics, RNASeq, Transcription, BiologicalQuestion, DimensionReduction, ImmunoOncology Author: Shijie Zheng [aut, cre] Maintainer: Shijie Zheng URL: https://github.com/hansenlab/tricycle VignetteBuilder: knitr BugReports: https://github.com/hansenlab/tricycle/issues git_url: https://git.bioconductor.org/packages/tricycle git_branch: RELEASE_3_20 git_last_commit: 23fefef git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tricycle_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tricycle_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tricycle_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tricycle_1.14.0.tgz vignettes: vignettes/tricycle/inst/doc/tricycle.html vignetteTitles: tricycle: Transferable Representation and Inference of Cell Cycle hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tricycle/inst/doc/tricycle.R dependencyCount: 126 Package: trigger Version: 1.52.0 Depends: R (>= 2.14.0), corpcor, qtl Imports: qvalue, methods, graphics, sva License: GPL-3 MD5sum: 3dc2d7cb59a817fd8e4b495da591cd5b NeedsCompilation: yes Title: Transcriptional Regulatory Inference from Genetics of Gene ExpRession Description: This R package provides tools for the statistical analysis of integrative genomic data that involve some combination of: genotypes, high-dimensional intermediate traits (e.g., gene expression, protein abundance), and higher-order traits (phenotypes). The package includes functions to: (1) construct global linkage maps between genetic markers and gene expression; (2) analyze multiple-locus linkage (epistasis) for gene expression; (3) quantify the proportion of genome-wide variation explained by each locus and identify eQTL hotspots; (4) estimate pair-wise causal gene regulatory probabilities and construct gene regulatory networks; and (5) identify causal genes for a quantitative trait of interest. biocViews: GeneExpression, SNP, GeneticVariability, Microarray, Genetics Author: Lin S. Chen , Dipen P. Sangurdekar and John D. Storey Maintainer: John D. Storey git_url: https://git.bioconductor.org/packages/trigger git_branch: RELEASE_3_20 git_last_commit: c0e31cf git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/trigger_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/trigger_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/trigger_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/trigger_1.52.0.tgz vignettes: vignettes/trigger/inst/doc/trigger.pdf vignetteTitles: Trigger Tutorial hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/trigger/inst/doc/trigger.R dependencyCount: 97 Package: trio Version: 3.44.0 Depends: R (>= 3.0.1) Imports: grDevices, graphics, methods, stats, survival, utils, siggenes, LogicReg (>= 1.6.1) Suggests: haplo.stats, mcbiopi, splines, logicFS (>= 1.28.1), KernSmooth, VariantAnnotation License: LGPL-2 MD5sum: 83111e31722700dfda35078c2f1e0881 NeedsCompilation: no Title: Testing of SNPs and SNP Interactions in Case-Parent Trio Studies Description: Testing SNPs and SNP interactions with a genotypic TDT. This package furthermore contains functions for computing pairwise values of LD measures and for identifying LD blocks, as well as functions for setting up matched case pseudo-control genotype data for case-parent trios in order to run trio logic regression, for imputing missing genotypes in trios, for simulating case-parent trios with disease risk dependent on SNP interaction, and for power and sample size calculation in trio data. biocViews: SNP, GeneticVariability, Microarray, Genetics Author: Holger Schwender, Qing Li, Philipp Berger, Christoph Neumann, Margaret Taub, Ingo Ruczinski Maintainer: Holger Schwender git_url: https://git.bioconductor.org/packages/trio git_branch: RELEASE_3_20 git_last_commit: 92429cc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/trio_3.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/trio_3.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/trio_3.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/trio_3.44.0.tgz vignettes: vignettes/trio/inst/doc/trio.pdf vignetteTitles: Trio Logic Regression and genotypic TDT hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/trio/inst/doc/trio.R dependencyCount: 18 Package: triplex Version: 1.46.0 Depends: R (>= 2.15.0), S4Vectors (>= 0.5.14), IRanges (>= 2.5.27), XVector (>= 0.11.6), Biostrings (>= 2.39.10) Imports: methods, grid, GenomicRanges LinkingTo: S4Vectors, IRanges, XVector, Biostrings Suggests: rgl (>= 0.93.932), BSgenome.Celegans.UCSC.ce10, rtracklayer License: BSD_2_clause + file LICENSE MD5sum: f79045e31ca1fd2b14b293bc7ee4d348 NeedsCompilation: yes Title: Search and visualize intramolecular triplex-forming sequences in DNA Description: This package provides functions for identification and visualization of potential intramolecular triplex patterns in DNA sequence. The main functionality is to detect the positions of subsequences capable of folding into an intramolecular triplex (H-DNA) in a much larger sequence. The potential H-DNA (triplexes) should be made of as many cannonical nucleotide triplets as possible. The package includes visualization showing the exact base-pairing in 1D, 2D or 3D. biocViews: SequenceMatching, GeneRegulation Author: Jiri Hon, Matej Lexa, Tomas Martinek and Kamil Rajdl with contributions from Daniel Kopecek Maintainer: Jiri Hon URL: http://www.fi.muni.cz/~lexa/triplex/ git_url: https://git.bioconductor.org/packages/triplex git_branch: RELEASE_3_20 git_last_commit: dbe6777 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/triplex_1.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/triplex_1.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/triplex_1.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/triplex_1.46.0.tgz vignettes: vignettes/triplex/inst/doc/triplex.pdf vignetteTitles: Triplex User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/triplex/inst/doc/triplex.R dependencyCount: 27 Package: tripr Version: 1.12.0 Depends: shiny (>= 1.6.0), shinyBS Imports: shinyjs, shinyFiles, plyr, data.table, DT, stringr, stringdist, plot3D, gridExtra, RColorBrewer, plotly, dplyr, config (>= 0.3.1), golem (>= 0.3.1), methods, grDevices, graphics, stats, utils, vegan Suggests: BiocGenerics, shinycssloaders, tidyverse, BiocManager, Biostrings, xtable, rlist, motifStack, knitr, rmarkdown, testthat (>= 3.0.0), fs, BiocStyle, RefManageR, biocthis, pryr Enhances: parallel License: MIT + file LICENSE MD5sum: 053e834fb2828c7529f0466945850a65 NeedsCompilation: no Title: T-cell Receptor/Immunoglobulin Profiler (TRIP) Description: TRIP is a software framework that provides analytics services on antigen receptor (B cell receptor immunoglobulin, BcR IG | T cell receptor, TR) gene sequence data. It is a web application written in R Shiny. It takes as input the output files of the IMGT/HighV-Quest tool. Users can select to analyze the data from each of the input samples separately, or the combined data files from all samples and visualize the results accordingly. biocViews: BatchEffect, MultipleComparison, GeneExpression, ImmunoOncology, TargetedResequencing Author: Maria Th. Kotouza [aut], Katerina Gemenetzi [aut], Chrysi Galigalidou [aut], Elisavet Vlachonikola [aut], Nikolaos Pechlivanis [cre], Andreas Agathangelidis [aut], Raphael Sandaltzopoulos [aut], Pericles A. Mitkas [aut], Kostas Stamatopoulos [aut], Anastasia Chatzidimitriou [aut], Fotis E. Psomopoulos [aut], Iason Ofeidis [aut], Aspasia Orfanou [aut] Maintainer: Nikolaos Pechlivanis URL: https://github.com/BiodataAnalysisGroup/tripr VignetteBuilder: knitr BugReports: https://github.com/BiodataAnalysisGroup/tripr/issues git_url: https://git.bioconductor.org/packages/tripr git_branch: RELEASE_3_20 git_last_commit: ce39e9d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tripr_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tripr_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tripr_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tripr_1.12.0.tgz vignettes: vignettes/tripr/inst/doc/tripr_guide.html vignetteTitles: tripr User Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/tripr/inst/doc/tripr_guide.R dependencyCount: 103 Package: tRNA Version: 1.24.0 Depends: R (>= 3.5), GenomicRanges, Structstrings Imports: stringr, S4Vectors, methods, BiocGenerics, IRanges, XVector, Biostrings, Modstrings, ggplot2, scales Suggests: knitr, rmarkdown, testthat, BiocStyle, tRNAscanImport License: GPL-3 + file LICENSE MD5sum: 7661d1f0f9f4fe017b3f01dd093849ba NeedsCompilation: no Title: Analyzing tRNA sequences and structures Description: The tRNA package allows tRNA sequences and structures to be accessed and used for subsetting. In addition, it provides visualization tools to compare feature parameters of multiple tRNA sets and correlate them to additional data. The tRNA package uses GRanges objects as inputs requiring only few additional column data sets. biocViews: Software, Visualization Author: Felix GM Ernst [aut, cre] () Maintainer: Felix GM Ernst VignetteBuilder: knitr BugReports: https://github.com/FelixErnst/tRNA/issues git_url: https://git.bioconductor.org/packages/tRNA git_branch: RELEASE_3_20 git_last_commit: ef1c582 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tRNA_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tRNA_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tRNA_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tRNA_1.24.0.tgz vignettes: vignettes/tRNA/inst/doc/tRNA.html vignetteTitles: tRNA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/tRNA/inst/doc/tRNA.R dependsOnMe: tRNAdbImport, tRNAscanImport dependencyCount: 59 Package: tRNAdbImport Version: 1.24.0 Depends: R (>= 3.6), GenomicRanges, Modstrings, Structstrings, tRNA Imports: Biostrings, stringr, httr2, xml2, S4Vectors, methods, IRanges, utils Suggests: BiocGenerics, knitr, rmarkdown, testthat, httptest, BiocStyle, rtracklayer License: GPL-3 + file LICENSE MD5sum: 05c490998d3a1d2a552747d44958b6a0 NeedsCompilation: no Title: Importing from tRNAdb and mitotRNAdb as GRanges objects Description: tRNAdbImport imports the entries of the tRNAdb and mtRNAdb (http://trna.bioinf.uni-leipzig.de) as GRanges object. biocViews: Software, Visualization, DataImport Author: Felix G.M. Ernst [aut, cre] () Maintainer: Felix G.M. Ernst VignetteBuilder: knitr BugReports: https://github.com/FelixErnst/tRNAdbImport/issues git_url: https://git.bioconductor.org/packages/tRNAdbImport git_branch: RELEASE_3_20 git_last_commit: bea2977 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tRNAdbImport_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tRNAdbImport_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tRNAdbImport_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tRNAdbImport_1.24.0.tgz vignettes: vignettes/tRNAdbImport/inst/doc/tRNAdbImport.html vignetteTitles: tRNAdbImport hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/tRNAdbImport/inst/doc/tRNAdbImport.R importsMe: EpiTxDb dependencyCount: 63 Package: tRNAscanImport Version: 1.26.0 Depends: R (>= 3.5), GenomicRanges, tRNA Imports: methods, stringr, BiocGenerics, Biostrings, Structstrings, S4Vectors, IRanges, XVector, GenomeInfoDb, rtracklayer, BSgenome, Rsamtools Suggests: BiocStyle, knitr, rmarkdown, testthat, ggplot2, BSgenome.Scerevisiae.UCSC.sacCer3 License: GPL-3 + file LICENSE MD5sum: 0fd1ac0528a87f31893b2436bb053d05 NeedsCompilation: no Title: Importing a tRNAscan-SE result file as GRanges object Description: The package imports the result of tRNAscan-SE as a GRanges object. biocViews: Software, DataImport, WorkflowStep, Preprocessing, Visualization Author: Felix G.M. Ernst [aut, cre] () Maintainer: Felix G.M. Ernst URL: https://github.com/FelixErnst/tRNAscanImport VignetteBuilder: knitr BugReports: https://github.com/FelixErnst/tRNAscanImport/issues git_url: https://git.bioconductor.org/packages/tRNAscanImport git_branch: RELEASE_3_20 git_last_commit: 874ef84 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tRNAscanImport_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tRNAscanImport_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tRNAscanImport_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tRNAscanImport_1.26.0.tgz vignettes: vignettes/tRNAscanImport/inst/doc/tRNAscanImport.html vignetteTitles: tRNAscanImport hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/tRNAscanImport/inst/doc/tRNAscanImport.R suggestsMe: Structstrings, tRNA dependencyCount: 90 Package: TRONCO Version: 2.38.0 Depends: R (>= 4.1.0), Imports: bnlearn, Rgraphviz, gtools, parallel, foreach, doParallel, iterators, RColorBrewer, circlize, igraph, grid, gridExtra, xtable, gtable, scales, R.matlab, grDevices, graphics, stats, utils, methods Suggests: BiocGenerics, BiocStyle, testthat, knitr, rWikiPathways, magick License: GPL-3 MD5sum: 6c77921cf34dca7158964df2d35b8fd4 NeedsCompilation: no Title: TRONCO, an R package for TRanslational ONCOlogy Description: The TRONCO (TRanslational ONCOlogy) R package collects algorithms to infer progression models via the approach of Suppes-Bayes Causal Network, both from an ensemble of tumors (cross-sectional samples) and within an individual patient (multi-region or single-cell samples). The package provides parallel implementation of algorithms that process binary matrices where each row represents a tumor sample and each column a single-nucleotide or a structural variant driving the progression; a 0/1 value models the absence/presence of that alteration in the sample. The tool can import data from plain, MAF or GISTIC format files, and can fetch it from the cBioPortal for cancer genomics. Functions for data manipulation and visualization are provided, as well as functions to import/export such data to other bioinformatics tools for, e.g, clustering or detection of mutually exclusive alterations. Inferred models can be visualized and tested for their confidence via bootstrap and cross-validation. TRONCO is used for the implementation of the Pipeline for Cancer Inference (PICNIC). biocViews: BiomedicalInformatics, Bayesian, GraphAndNetwork, SomaticMutation, NetworkInference, Network, Clustering, DataImport, SingleCell, ImmunoOncology Author: Marco Antoniotti [ctb], Giulio Caravagna [aut], Luca De Sano [cre, aut] (), Alex Graudenzi [aut], Giancarlo Mauri [ctb], Bud Mishra [ctb], Daniele Ramazzotti [aut] () Maintainer: Luca De Sano URL: https://sites.google.com/site/troncopackage/ VignetteBuilder: knitr BugReports: https://github.com/BIMIB-DISCo/TRONCO git_url: https://git.bioconductor.org/packages/TRONCO git_branch: RELEASE_3_20 git_last_commit: e8e3abe git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TRONCO_2.38.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TRONCO_2.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TRONCO_2.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TRONCO_2.38.0.tgz vignettes: vignettes/TRONCO/inst/doc/f1_introduction.html, vignettes/TRONCO/inst/doc/f2_loading_data.html, vignettes/TRONCO/inst/doc/f3_data_visualization.html, vignettes/TRONCO/inst/doc/f4_data_manipulation.html, vignettes/TRONCO/inst/doc/f5_model_inference.html, vignettes/TRONCO/inst/doc/f6_post_reconstruction.html, vignettes/TRONCO/inst/doc/f7_import_export.html vignetteTitles: f1_introduction.html, Loading data, Data visualization, Data manipulation, Model inference, Post reconstruction, Import/export from other tools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TRONCO/inst/doc/f1_introduction.R, vignettes/TRONCO/inst/doc/f2_loading_data.R, vignettes/TRONCO/inst/doc/f3_data_visualization.R, vignettes/TRONCO/inst/doc/f4_data_manipulation.R, vignettes/TRONCO/inst/doc/f5_model_inference.R, vignettes/TRONCO/inst/doc/f6_post_reconstruction.R, vignettes/TRONCO/inst/doc/f7_import_export.R dependencyCount: 47 Package: TSAR Version: 1.4.0 Depends: R (>= 4.3.0) Imports: dplyr (>= 1.0.7), ggplot2 (>= 3.3.5), ggpubr (>= 0.4.0), magrittr (>= 2.0.3), mgcv (>= 1.8.38), readxl (>= 1.4.0), stringr (>= 1.4.0), tidyr (>= 1.1.4), utils (>= 4.3.1), shiny (>= 1.7.4.1), plotly (>= 4.10.2), shinyjs (>= 2.1.0), jsonlite (>= 1.8.7), rhandsontable (>= 0.3.8), openxlsx (>= 4.2.5.2), shinyWidgets (>= 0.7.6), minpack.lm (>= 1.2.3) Suggests: knitr, rmarkdown, testthat (>= 3.0.0) License: AGPL-3 MD5sum: 841c30e0dfaafc18f334079e604b927b NeedsCompilation: no Title: Thermal Shift Analysis in R Description: This package automates analysis workflow for Thermal Shift Analysis (TSA) data. Processing, analyzing, and visualizing data through both shiny applications and command lines. Package aims to simplify data analysis and offer front to end workflow, from raw data to multiple trial analysis. biocViews: Software, ShinyApps, Visualization, qPCR Author: Xinlin Gao [aut, cre] (), William M. McFadden [aut, fnd] (), Stefan G. Sarafianos [fnd, aut, ths] () Maintainer: Xinlin Gao VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TSAR git_branch: RELEASE_3_20 git_last_commit: 5d98ac1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TSAR_1.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TSAR_1.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TSAR_1.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TSAR_1.4.0.tgz vignettes: vignettes/TSAR/inst/doc/FAQ_assistance.html, vignettes/TSAR/inst/doc/TSAR_Package_Structure.html, vignettes/TSAR/inst/doc/TSAR_Workflow_by_Command.html, vignettes/TSAR/inst/doc/TSAR_Workflow_by_Shiny.html vignetteTitles: Frequently Asked Questions, TSAR Package Structure, TSAR Workflow by Command, TSAR Workflow by Shiny hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TSAR/inst/doc/FAQ_assistance.R, vignettes/TSAR/inst/doc/TSAR_Package_Structure.R, vignettes/TSAR/inst/doc/TSAR_Workflow_by_Command.R, vignettes/TSAR/inst/doc/TSAR_Workflow_by_Shiny.R dependencyCount: 128 Package: TSCAN Version: 1.44.0 Depends: R (>= 4.4.0), SingleCellExperiment, TrajectoryUtils Imports: ggplot2, shiny, plyr, grid, fastICA, igraph, combinat, mgcv, mclust, gplots, methods, stats, Matrix, SummarizedExperiment, SparseArray (>= 1.5.23), DelayedArray (>= 0.31.9), S4Vectors Suggests: knitr, testthat, scuttle, scran, metapod, BiocParallel, BiocNeighbors, batchelor License: GPL(>=2) Archs: x64 MD5sum: 83c3b6fdbf6d1bb0c5d656fe23e6a049 NeedsCompilation: no Title: Tools for Single-Cell Analysis Description: Provides methods to perform trajectory analysis based on a minimum spanning tree constructed from cluster centroids. Computes pseudotemporal cell orderings by mapping cells in each cluster (or new cells) to the closest edge in the tree. Uses linear modelling to identify differentially expressed genes along each path through the tree. Several plotting and interactive visualization functions are also implemented. biocViews: GeneExpression, Visualization, GUI Author: Zhicheng Ji [aut, cre], Hongkai Ji [aut], Aaron Lun [ctb] Maintainer: Zhicheng Ji VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/TSCAN git_branch: RELEASE_3_20 git_last_commit: 677c4f2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TSCAN_1.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TSCAN_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TSCAN_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TSCAN_1.44.0.tgz vignettes: vignettes/TSCAN/inst/doc/TSCAN.pdf vignetteTitles: TSCAN: Tools for Single-Cell ANalysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TSCAN/inst/doc/TSCAN.R importsMe: FEAST, singleCellTK, DIscBIO suggestsMe: condiments dependencyCount: 95 Package: ttgsea Version: 1.14.0 Depends: keras Imports: tm, text2vec, tokenizers, textstem, stopwords, data.table, purrr, DiagrammeR, stats Suggests: fgsea, knitr, testthat, reticulate, rmarkdown License: Artistic-2.0 MD5sum: 71966a32afcb3d6e8c8d7c27faaedb39 NeedsCompilation: no Title: Tokenizing Text of Gene Set Enrichment Analysis Description: Functional enrichment analysis methods such as gene set enrichment analysis (GSEA) have been widely used for analyzing gene expression data. GSEA is a powerful method to infer results of gene expression data at a level of gene sets by calculating enrichment scores for predefined sets of genes. GSEA depends on the availability and accuracy of gene sets. There are overlaps between terms of gene sets or categories because multiple terms may exist for a single biological process, and it can thus lead to redundancy within enriched terms. In other words, the sets of related terms are overlapping. Using deep learning, this pakage is aimed to predict enrichment scores for unique tokens or words from text in names of gene sets to resolve this overlapping set issue. Furthermore, we can coin a new term by combining tokens and find its enrichment score by predicting such a combined tokens. biocViews: Software, GeneExpression, GeneSetEnrichment Author: Dongmin Jung [cre, aut] () Maintainer: Dongmin Jung VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ttgsea git_branch: RELEASE_3_20 git_last_commit: 1eda37a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ttgsea_1.14.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ttgsea_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ttgsea_1.14.0.tgz vignettes: vignettes/ttgsea/inst/doc/ttgsea.html vignetteTitles: ttgsea hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ttgsea/inst/doc/ttgsea.R importsMe: DeepPINCS, GenProSeq dependencyCount: 125 Package: TTMap Version: 1.28.0 Depends: rgl, colorRamps Imports: grDevices,graphics,stats,utils, methods, SummarizedExperiment, Biobase Suggests: BiocStyle, airway License: GPL-2 MD5sum: a1e721f30241ac80a7cbb95440a99f5a NeedsCompilation: no Title: Two-Tier Mapper: a clustering tool based on topological data analysis Description: TTMap is a clustering method that groups together samples with the same deviation in comparison to a control group. It is specially useful when the data is small. It is parameter free. biocViews: Software, Microarray, DifferentialExpression, MultipleComparison, Clustering, Classification Author: Rachel Jeitziner Maintainer: Rachel Jeitziner git_url: https://git.bioconductor.org/packages/TTMap git_branch: RELEASE_3_20 git_last_commit: 7fefb65 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TTMap_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TTMap_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TTMap_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TTMap_1.28.0.tgz vignettes: vignettes/TTMap/inst/doc/TTMap.pdf vignetteTitles: Manual for the TTMap library hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TTMap/inst/doc/TTMap.R dependencyCount: 63 Package: TurboNorm Version: 1.54.0 Depends: R (>= 2.12.0), convert, limma (>= 1.7.0), marray Imports: stats, grDevices, affy, lattice Suggests: BiocStyle, affydata, hgu95av2cdf License: LGPL Archs: x64 MD5sum: 5baa780a371fb0fda681b73cb0ae58ba NeedsCompilation: yes Title: A fast scatterplot smoother suitable for microarray normalization Description: A fast scatterplot smoother based on B-splines with second-order difference penalty. Functions for microarray normalization of single-colour data i.e. Affymetrix/Illumina and two-colour data supplied as marray MarrayRaw-objects or limma RGList-objects are available. biocViews: Microarray, OneChannel, TwoChannel, Preprocessing, DNAMethylation, CpGIsland, MethylationArray, Normalization Author: Maarten van Iterson and Chantal van Leeuwen Maintainer: Maarten van Iterson URL: http://www.humgen.nl/MicroarrayAnalysisGroup.html git_url: https://git.bioconductor.org/packages/TurboNorm git_branch: RELEASE_3_20 git_last_commit: 6360d1d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TurboNorm_1.54.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/TurboNorm_1.54.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TurboNorm_1.54.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TurboNorm_1.54.0.tgz vignettes: vignettes/TurboNorm/inst/doc/turbonorm.pdf vignetteTitles: TurboNorm Overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TurboNorm/inst/doc/turbonorm.R dependencyCount: 18 Package: TVTB Version: 1.32.0 Depends: R (>= 3.4), methods, utils, stats Imports: AnnotationFilter, BiocGenerics (>= 0.25.1), BiocParallel, Biostrings, ensembldb, GenomeInfoDb, GenomicRanges, GGally, ggplot2, Gviz, limma, IRanges (>= 2.21.6), reshape2, Rsamtools, S4Vectors (>= 0.25.14), SummarizedExperiment, VariantAnnotation (>= 1.19.9) Suggests: EnsDb.Hsapiens.v75 (>= 0.99.7), shiny (>= 0.13.2.9005), DT (>= 0.1.67), rtracklayer, BiocStyle (>= 2.5.19), knitr (>= 1.12), rmarkdown, testthat, covr, pander License: Artistic-2.0 MD5sum: 4a894a5b07664da57bec0755d610513d NeedsCompilation: no Title: TVTB: The VCF Tool Box Description: The package provides S4 classes and methods to filter, summarise and visualise genetic variation data stored in VCF files. In particular, the package extends the FilterRules class (S4Vectors package) to define news classes of filter rules applicable to the various slots of VCF objects. Functionalities are integrated and demonstrated in a Shiny web-application, the Shiny Variant Explorer (tSVE). biocViews: Software, Genetics, GeneticVariability, GenomicVariation, DataRepresentation, GUI, Genetics, DNASeq, WholeGenome, Visualization, MultipleComparison, DataImport, VariantAnnotation, Sequencing, Coverage, Alignment, SequenceMatching Author: Kevin Rue-Albrecht [aut, cre] Maintainer: Kevin Rue-Albrecht URL: https://github.com/kevinrue/TVTB VignetteBuilder: knitr BugReports: https://github.com/kevinrue/TVTB/issues git_url: https://git.bioconductor.org/packages/TVTB git_branch: RELEASE_3_20 git_last_commit: 362272d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/TVTB_1.32.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TVTB_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TVTB_1.32.0.tgz vignettes: vignettes/TVTB/inst/doc/Introduction.html, vignettes/TVTB/inst/doc/tSVE.html, vignettes/TVTB/inst/doc/VcfFilterRules.html vignetteTitles: Introduction to TVTB, The Shiny Variant Explorer, VCF filter rules hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/TVTB/inst/doc/Introduction.R, vignettes/TVTB/inst/doc/tSVE.R, vignettes/TVTB/inst/doc/VcfFilterRules.R dependencyCount: 165 Package: tweeDEseq Version: 1.52.0 Depends: R (>= 4.3.0) Imports: Rcpp (>= 1.0.10), MASS, limma, edgeR, parallel, cqn, grDevices, graphics, stats, utils LinkingTo: Rcpp Suggests: tweeDEseqCountData, xtable License: GPL (>= 2) MD5sum: ff5a78e57b13d4e38bdf925b89a7b238 NeedsCompilation: yes Title: RNA-seq data analysis using the Poisson-Tweedie family of distributions Description: Differential expression analysis of RNA-seq using the Poisson-Tweedie (PT) family of distributions. PT distributions are described by a mean, a dispersion and a shape parameter and include Poisson and NB distributions, among others, as particular cases. An important feature of this family is that, while the Negative Binomial (NB) distribution only allows a quadratic mean-variance relationship, the PT distributions generalizes this relationship to any orde. biocViews: ImmunoOncology, StatisticalMethod, DifferentialExpression, Sequencing, RNASeq, DNASeq Author: Dolors Pelegri-Siso [aut, cre] (), Juan R. Gonzalez [aut] (), Mikel Esnaola [aut], Robert Castelo [aut] Maintainer: Dolors Pelegri-Siso URL: https://github.com/isglobal-brge/tweeDEseq/ BugReports: https://github.com/isglobal-brge/tweeDEseq/issues git_url: https://git.bioconductor.org/packages/tweeDEseq git_branch: RELEASE_3_20 git_last_commit: 3bd4d3a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tweeDEseq_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tweeDEseq_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tweeDEseq_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tweeDEseq_1.52.0.tgz vignettes: vignettes/tweeDEseq/inst/doc/tweeDEseq.pdf vignetteTitles: tweeDEseq: analysis of RNA-seq data using the Poisson-Tweedie family of distributions hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tweeDEseq/inst/doc/tweeDEseq.R importsMe: ptmixed dependencyCount: 23 Package: twilight Version: 1.82.0 Depends: R (>= 2.10), splines (>= 2.2.0), stats (>= 2.2.0), Biobase(>= 1.12.0) Imports: Biobase, graphics, grDevices, stats Suggests: golubEsets (>= 1.4.2), vsn (>= 1.7.2) License: GPL (>= 2) MD5sum: 75f8082dc238fcb07aa7a6793303681f NeedsCompilation: yes Title: Estimation of local false discovery rate Description: In a typical microarray setting with gene expression data observed under two conditions, the local false discovery rate describes the probability that a gene is not differentially expressed between the two conditions given its corrresponding observed score or p-value level. The resulting curve of p-values versus local false discovery rate offers an insight into the twilight zone between clear differential and clear non-differential gene expression. Package 'twilight' contains two main functions: Function twilight.pval performs a two-condition test on differences in means for a given input matrix or expression set and computes permutation based p-values. Function twilight performs a stochastic downhill search to estimate local false discovery rates and effect size distributions. The package further provides means to filter for permutations that describe the null distribution correctly. Using filtered permutations, the influence of hidden confounders could be diminished. biocViews: Microarray, DifferentialExpression, MultipleComparison Author: Stefanie Scheid Maintainer: Stefanie Scheid URL: http://compdiag.molgen.mpg.de/software/twilight.shtml git_url: https://git.bioconductor.org/packages/twilight git_branch: RELEASE_3_20 git_last_commit: 6542be1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/twilight_1.82.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/twilight_1.82.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/twilight_1.82.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/twilight_1.82.0.tgz vignettes: vignettes/twilight/inst/doc/tr_2004_01.pdf vignetteTitles: Estimation of Local False Discovery Rates hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/twilight/inst/doc/tr_2004_01.R dependsOnMe: OrderedList dependencyCount: 8 Package: twoddpcr Version: 1.30.0 Depends: R (>= 3.4) Imports: class, ggplot2, hexbin, methods, scales, shiny, stats, utils, RColorBrewer, S4Vectors Suggests: devtools, knitr, reshape2, rmarkdown, testthat, BiocStyle License: GPL-3 MD5sum: abc589fb8cc635143ba88bcf487d295b NeedsCompilation: no Title: Classify 2-d Droplet Digital PCR (ddPCR) data and quantify the number of starting molecules Description: The twoddpcr package takes Droplet Digital PCR (ddPCR) droplet amplitude data from Bio-Rad's QuantaSoft and can classify the droplets. A summary of the positive/negative droplet counts can be generated, which can then be used to estimate the number of molecules using the Poisson distribution. This is the first open source package that facilitates the automatic classification of general two channel ddPCR data. Previous work includes 'definetherain' (Jones et al., 2014) and 'ddpcRquant' (Trypsteen et al., 2015) which both handle one channel ddPCR experiments only. The 'ddpcr' package available on CRAN (Attali et al., 2016) supports automatic gating of a specific class of two channel ddPCR experiments only. biocViews: ddPCR, Software, Classification Author: Anthony Chiu [aut, cre] Maintainer: Anthony Chiu URL: http://github.com/CRUKMI-ComputationalBiology/twoddpcr/ VignetteBuilder: knitr BugReports: http://github.com/CRUKMI-ComputationalBiology/twoddpcr/issues/ git_url: https://git.bioconductor.org/packages/twoddpcr git_branch: RELEASE_3_20 git_last_commit: f941add git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/twoddpcr_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/twoddpcr_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/twoddpcr_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/twoddpcr_1.30.0.tgz vignettes: vignettes/twoddpcr/inst/doc/twoddpcr.html vignetteTitles: twoddpcr: A package for Droplet Digital PCR analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/twoddpcr/inst/doc/twoddpcr.R dependencyCount: 64 Package: txcutr Version: 1.12.0 Depends: R (>= 4.1.0) Imports: AnnotationDbi, GenomicFeatures, txdbmaker, IRanges, GenomicRanges, BiocGenerics, Biostrings, S4Vectors, rtracklayer, BiocParallel, stats, methods, utils Suggests: RefManageR, BiocStyle, knitr, sessioninfo, rmarkdown, testthat (>= 3.0.0), TxDb.Scerevisiae.UCSC.sacCer3.sgdGene, BSgenome.Scerevisiae.UCSC.sacCer3 License: GPL-3 MD5sum: 0a905e26a0a6785cb4917b6ff9435613 NeedsCompilation: no Title: Transcriptome CUTteR Description: Various mRNA sequencing library preparation methods generate sequencing reads specifically from the transcript ends. Analyses that focus on quantification of isoform usage from such data can be aided by using truncated versions of transcriptome annotations, both at the alignment or pseudo-alignment stage, as well as in downstream analysis. This package implements some convenience methods for readily generating such truncated annotations and their corresponding sequences. biocViews: Alignment, Annotation, RNASeq, Sequencing, Transcriptomics Author: Mervin Fansler [aut, cre] () Maintainer: Mervin Fansler VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/txcutr git_branch: RELEASE_3_20 git_last_commit: 34b2634 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/txcutr_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/txcutr_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/txcutr_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/txcutr_1.12.0.tgz vignettes: vignettes/txcutr/inst/doc/intro.html vignetteTitles: Introduction to txcutr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/txcutr/inst/doc/intro.R dependencyCount: 102 Package: txdbmaker Version: 1.2.1 Depends: BiocGenerics, S4Vectors, GenomeInfoDb (>= 1.39.9), GenomicRanges, GenomicFeatures Imports: methods, utils, stats, tools, httr, rjson, DBI, RSQLite (>= 2.0), IRanges, UCSC.utils, AnnotationDbi, Biobase, BiocIO, rtracklayer, biomaRt (>= 2.59.1) Suggests: RMariaDB, mirbase.db, ensembldb, RUnit, BiocStyle, knitr License: Artistic-2.0 MD5sum: e0382f68da2f58d5139e1debbd447f34 NeedsCompilation: no Title: Tools for making TxDb objects from genomic annotations Description: A set of tools for making TxDb objects from genomic annotations from various sources (e.g. UCSC, Ensembl, and GFF files). These tools allow the user to download the genomic locations of transcripts, exons, and CDS, for a given assembly, and to import them in a TxDb object. TxDb objects are implemented in the GenomicFeatures package, together with flexible methods for extracting the desired features in convenient formats. biocViews: Infrastructure, DataImport, Annotation, GenomeAnnotation, GenomeAssembly, Genetics, Sequencing Author: H. Pagès [aut, cre], M. Carlson [aut], P. Aboyoun [aut], S. Falcon [aut], M. Morgan [aut], M. Lawrence [ctb], J. MacDonald [ctb], M. Ramos [ctb], S. Saini [ctb], L. Shepherd [ctb] Maintainer: H. Pagès URL: https://bioconductor.org/packages/txdbmaker VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/txdbmaker/issues git_url: https://git.bioconductor.org/packages/txdbmaker git_branch: RELEASE_3_20 git_last_commit: 84ec338 git_last_commit_date: 2024-11-21 Date/Publication: 2024-11-25 source.ver: src/contrib/txdbmaker_1.2.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/txdbmaker_1.2.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/txdbmaker_1.2.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/txdbmaker_1.2.1.tgz vignettes: vignettes/txdbmaker/inst/doc/txdbmaker.html vignetteTitles: Making TxDb Objects hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/txdbmaker/inst/doc/txdbmaker.R dependsOnMe: mygene importsMe: ASpli, BgeeCall, crisprDesign, crisprViz, customProDB, DegNorm, EpiTxDb, FLAMES, GenomicPlot, IntEREst, metaseqR2, ORFik, OrganismDbi, OUTRIDER, proActiv, proBAMr, QuasR, RCAS, recoup, Rhisat2, RiboDiPA, ribosomeProfilingQC, RNAmodR, scanMiRApp, scruff, sitadela, trackViewer, txcutr, tximeta, geneLenDataBase suggestsMe: AnnotationHub, bumphunter, BUSpaRse, DEXSeq, doubletrouble, eisaR, GenomicFeatures, GenomicRanges, raer, recount, SplicingGraphs, SPLINTER, systemPipeR dependencyCount: 101 Package: tximeta Version: 1.24.0 Imports: SummarizedExperiment, tximport, jsonlite, S4Vectors, IRanges, GenomicRanges, AnnotationDbi, GenomicFeatures, txdbmaker, ensembldb, BiocFileCache, AnnotationHub, Biostrings, tibble, GenomeInfoDb, tools, utils, methods, Matrix Suggests: knitr, rmarkdown, testthat, tximportData, org.Dm.eg.db, DESeq2, fishpond, edgeR, limma, devtools License: GPL-2 MD5sum: bd4f17024e7ddfe3c007e5726deef378 NeedsCompilation: no Title: Transcript Quantification Import with Automatic Metadata Description: Transcript quantification import from Salmon and other quantifiers with automatic attachment of transcript ranges and release information, and other associated metadata. De novo transcriptomes can be linked to the appropriate sources with linkedTxomes and shared for computational reproducibility. biocViews: Annotation, GenomeAnnotation, DataImport, Preprocessing, RNASeq, SingleCell, Transcriptomics, Transcription, GeneExpression, FunctionalGenomics, ReproducibleResearch, ReportWriting, ImmunoOncology Author: Michael Love [aut, cre], Charlotte Soneson [aut, ctb], Peter Hickey [aut, ctb], Rob Patro [aut, ctb], NIH NHGRI [fnd], CZI [fnd] Maintainer: Michael Love URL: https://github.com/thelovelab/tximeta VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/tximeta git_branch: RELEASE_3_20 git_last_commit: 9a98a8d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tximeta_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tximeta_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tximeta_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tximeta_1.24.0.tgz vignettes: vignettes/tximeta/inst/doc/tximeta.html vignetteTitles: Transcript quantification import with automatic metadata hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tximeta/inst/doc/tximeta.R dependsOnMe: rnaseqGene importsMe: IsoformSwitchAnalyzeR suggestsMe: DESeq2, fishpond, fluentGenomics dependencyCount: 110 Package: tximport Version: 1.34.0 Imports: utils, stats, methods Suggests: knitr, rmarkdown, testthat, tximportData, TxDb.Hsapiens.UCSC.hg19.knownGene, readr (>= 0.2.2), arrow, limma, edgeR, DESeq2 (>= 1.11.6), rhdf5, jsonlite, matrixStats, Matrix, eds License: LGPL (>=2) MD5sum: 52012454226f0012bdbfd86f71ed2343 NeedsCompilation: no Title: Import and summarize transcript-level estimates for transcript- and gene-level analysis Description: Imports transcript-level abundance, estimated counts and transcript lengths, and summarizes into matrices for use with downstream gene-level analysis packages. Average transcript length, weighted by sample-specific transcript abundance estimates, is provided as a matrix which can be used as an offset for different expression of gene-level counts. biocViews: DataImport, Preprocessing, RNASeq, Transcriptomics, Transcription, GeneExpression, ImmunoOncology Author: Michael Love [cre,aut], Charlotte Soneson [aut], Mark Robinson [aut], Rob Patro [ctb], Andrew Parker Morgan [ctb], Ryan C. Thompson [ctb], Matt Shirley [ctb], Avi Srivastava [ctb] Maintainer: Michael Love URL: https://github.com/thelovelab/tximport VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/tximport git_branch: RELEASE_3_20 git_last_commit: 5c72fee git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/tximport_1.34.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/tximport_1.34.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/tximport_1.34.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/tximport_1.34.0.tgz vignettes: vignettes/tximport/inst/doc/tximport.html vignetteTitles: Importing transcript abundance datasets with tximport hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/tximport/inst/doc/tximport.R importsMe: alevinQC, BgeeCall, CleanUpRNAseq, DifferentialRegulation, EventPointer, IsoformSwitchAnalyzeR, singleCellTK, TDbasedUFE, tximeta, ExpHunterSuite, seeker suggestsMe: BANDITS, DESeq2, variancePartition dependencyCount: 3 Package: UCell Version: 2.10.1 Depends: R(>= 4.3.0) Imports: methods, data.table(>= 1.13.6), Matrix, stats, BiocParallel, BiocNeighbors, SingleCellExperiment, SummarizedExperiment Suggests: scater, scRNAseq, reshape2, patchwork, ggplot2, BiocStyle, Seurat(>= 5.0.0), SeuratObject(>= 5.0.0), knitr, rmarkdown License: GPL-3 + file LICENSE MD5sum: cc478a720dd4686878be30ca05aa0aed NeedsCompilation: no Title: Rank-based signature enrichment analysis for single-cell data Description: UCell is a package for evaluating gene signatures in single-cell datasets. UCell signature scores, based on the Mann-Whitney U statistic, are robust to dataset size and heterogeneity, and their calculation demands less computing time and memory than other available methods, enabling the processing of large datasets in a few minutes even on machines with limited computing power. UCell can be applied to any single-cell data matrix, and includes functions to directly interact with SingleCellExperiment and Seurat objects. biocViews: SingleCell, GeneSetEnrichment, Transcriptomics, GeneExpression, CellBasedAssays Author: Massimo Andreatta [aut, cre] (), Santiago Carmona [aut] () Maintainer: Massimo Andreatta URL: https://github.com/carmonalab/UCell VignetteBuilder: knitr BugReports: https://github.com/carmonalab/UCell/issues git_url: https://git.bioconductor.org/packages/UCell git_branch: RELEASE_3_20 git_last_commit: 6f88c1f git_last_commit_date: 2024-10-31 Date/Publication: 2024-10-31 source.ver: src/contrib/UCell_2.10.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/UCell_2.10.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/UCell_2.10.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/UCell_2.10.1.tgz vignettes: vignettes/UCell/inst/doc/UCell_sce.html, vignettes/UCell/inst/doc/UCell_Seurat.html, vignettes/UCell/inst/doc/UCell_vignette_basic.html vignetteTitles: 2. Using UCell with SingleCellExperiment, 3. Using UCell with Seurat, 1. Gene signature scoring with UCell hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/UCell/inst/doc/UCell_sce.R, vignettes/UCell/inst/doc/UCell_Seurat.R, vignettes/UCell/inst/doc/UCell_vignette_basic.R importsMe: escape, scGate suggestsMe: SCpubr dependencyCount: 51 Package: UCSC.utils Version: 1.2.0 Imports: methods, stats, httr, jsonlite, S4Vectors Suggests: DBI, RMariaDB, GenomeInfoDb, testthat, knitr, rmarkdown, BiocStyle License: Artistic-2.0 Archs: x64 MD5sum: ab12a0427231a9578aba56dc73049730 NeedsCompilation: no Title: Low-level utilities to retrieve data from the UCSC Genome Browser Description: A set of low-level utilities to retrieve data from the UCSC Genome Browser. Most functions in the package access the data via the UCSC REST API but some of them query the UCSC MySQL server directly. Note that the primary purpose of the package is to support higher-level functionalities implemented in downstream packages like GenomeInfoDb or txdbmaker. biocViews: Infrastructure, GenomeAssembly, Annotation, GenomeAnnotation, DataImport Author: Hervé Pagès [aut, cre] Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/UCSC.utils VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/UCSC.utils/issues git_url: https://git.bioconductor.org/packages/UCSC.utils git_branch: RELEASE_3_20 git_last_commit: d77d73e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/UCSC.utils_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/UCSC.utils_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/UCSC.utils_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/UCSC.utils_1.2.0.tgz vignettes: vignettes/UCSC.utils/inst/doc/UCSC.utils.html vignetteTitles: The UCSC.utils package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/UCSC.utils/inst/doc/UCSC.utils.R importsMe: GenomeInfoDb, txdbmaker dependencyCount: 16 Package: Ularcirc Version: 1.24.0 Depends: R (>= 3.4.0) Imports: AnnotationHub, AnnotationDbi, BiocGenerics, Biostrings, BSgenome, data.table (>= 1.9.4), DT, GenomicFeatures, GenomeInfoDb, GenomeInfoDbData, GenomicAlignments, GenomicRanges, ggplot2, ggrepel, gsubfn, mirbase.db, moments, Organism.dplyr, plotgardener, R.utils, S4Vectors, shiny, shinydashboard, shinyFiles, shinyjs, yaml Suggests: BSgenome.Hsapiens.UCSC.hg38, BiocStyle, httpuv, knitr, org.Hs.eg.db, rmarkdown, TxDb.Hsapiens.UCSC.hg38.knownGene License: file LICENSE MD5sum: 4a5c0c8939991b46d98ae2f52b06fc1b NeedsCompilation: no Title: Shiny app for canonical and back splicing analysis (i.e. circular and mRNA analysis) Description: Ularcirc reads in STAR aligned splice junction files and provides visualisation and analysis tools for splicing analysis. Users can assess backsplice junctions and forward canonical junctions. biocViews: DataRepresentation,Visualization, Genetics, Sequencing, Annotation, Coverage, AlternativeSplicing, DifferentialSplicing Author: David Humphreys [aut, cre] Maintainer: David Humphreys VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Ularcirc git_branch: RELEASE_3_20 git_last_commit: 11e14cc git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Ularcirc_1.24.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Ularcirc_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Ularcirc_1.24.0.tgz vignettes: vignettes/Ularcirc/inst/doc/Ularcirc.html vignetteTitles: Ularcirc hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/Ularcirc/inst/doc/Ularcirc.R dependencyCount: 161 Package: UMI4Cats Version: 1.16.0 Depends: R (>= 4.0.0), SummarizedExperiment Imports: magick, cowplot, scales, GenomicRanges, ShortRead, zoo, ggplot2, reshape2, regioneR, IRanges, S4Vectors, magrittr, dplyr, BSgenome, Biostrings, DESeq2, R.utils, Rsamtools, stringr, Rbowtie2, methods, GenomeInfoDb, GenomicAlignments, RColorBrewer, utils, grDevices, stats, org.Hs.eg.db, annotate, TxDb.Hsapiens.UCSC.hg19.knownGene, rlang, GenomicFeatures, BiocFileCache, rappdirs, fda, BiocGenerics Suggests: knitr, rmarkdown, BiocStyle, BSgenome.Hsapiens.UCSC.hg19, tidyr, testthat License: Artistic-2.0 MD5sum: a61dba7091223da967bf03c427f81fe4 NeedsCompilation: no Title: UMI4Cats: Processing, analysis and visualization of UMI-4C chromatin contact data Description: UMI-4C is a technique that allows characterization of 3D chromatin interactions with a bait of interest, taking advantage of a sonication step to produce unique molecular identifiers (UMIs) that help remove duplication bias, thus allowing a better differential comparsion of chromatin interactions between conditions. This package allows processing of UMI-4C data, starting from FastQ files provided by the sequencing facility. It provides two statistical methods for detecting differential contacts and includes a visualization function to plot integrated information from a UMI-4C assay. biocViews: QualityControl, Preprocessing, Alignment, Normalization, Visualization, Sequencing, Coverage Author: Mireia Ramos-Rodriguez [aut, cre] (), Marc Subirana-Granes [aut], Lorenzo Pasquali [aut] Maintainer: Mireia Ramos-Rodriguez URL: https://github.com/Pasquali-lab/UMI4Cats VignetteBuilder: knitr BugReports: https://github.com/Pasquali-lab/UMI4Cats/issues git_url: https://git.bioconductor.org/packages/UMI4Cats git_branch: RELEASE_3_20 git_last_commit: d4dd5a4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/UMI4Cats_1.16.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/UMI4Cats_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/UMI4Cats_1.16.0.tgz vignettes: vignettes/UMI4Cats/inst/doc/UMI4Cats.html vignetteTitles: Analyzing UMI-4C data with UMI4Cats hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/UMI4Cats/inst/doc/UMI4Cats.R dependencyCount: 151 Package: uncoverappLib Version: 1.16.0 Imports: markdown, shiny, shinyjs, shinyBS, shinyWidgets,shinycssloaders, DT, Gviz, Homo.sapiens, openxlsx, condformat, stringr, org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg38.knownGene, BiocFileCache,rappdirs, TxDb.Hsapiens.UCSC.hg19.knownGene, rlist, utils,S4Vectors, EnsDb.Hsapiens.v75, EnsDb.Hsapiens.v86, OrganismDbi, processx, Rsamtools, GenomicRanges Suggests: BiocStyle, knitr, testthat, rmarkdown, dplyr License: MIT + file LICENSE Archs: x64 MD5sum: 4e0a3240f0c1fda8a2010f0db9f3c721 NeedsCompilation: no Title: Interactive graphical application for clinical assessment of sequence coverage at the base-pair level Description: a Shiny application containing a suite of graphical and statistical tools to support clinical assessment of low coverage regions.It displays three web pages each providing a different analysis module: Coverage analysis, calculate AF by allele frequency app and binomial distribution. uncoverAPP provides a statisticl summary of coverage given target file or genes name. biocViews: Software, Visualization, Annotation, Coverage Author: Emanuela Iovino [cre, aut], Tommaso Pippucci [aut] Maintainer: Emanuela Iovino URL: https://github.com/Manuelaio/uncoverappLib VignetteBuilder: knitr BugReports: https://github.com/Manuelaio/uncoverappLib/issues git_url: https://git.bioconductor.org/packages/uncoverappLib git_branch: RELEASE_3_20 git_last_commit: 9d5ff73 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/uncoverappLib_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/uncoverappLib_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/uncoverappLib_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/uncoverappLib_1.16.0.tgz vignettes: vignettes/uncoverappLib/inst/doc/uncoverappLib.html vignetteTitles: uncoverappLib hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/uncoverappLib/inst/doc/uncoverappLib.R dependencyCount: 189 Package: UNDO Version: 1.48.0 Depends: R (>= 2.15.2), methods, BiocGenerics, Biobase Imports: MASS, boot, nnls, stats, utils License: GPL-2 Archs: x64 MD5sum: de9d4e4fc46f7474d274b53a4b9fd200 NeedsCompilation: no Title: Unsupervised Deconvolution of Tumor-Stromal Mixed Expressions Description: UNDO is an R package for unsupervised deconvolution of tumor and stromal mixed expression data. It detects marker genes and deconvolutes the mixing expression data without any prior knowledge. biocViews: Software Author: Niya Wang Maintainer: Niya Wang git_url: https://git.bioconductor.org/packages/UNDO git_branch: RELEASE_3_20 git_last_commit: 353461e git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/UNDO_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/UNDO_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/UNDO_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/UNDO_1.48.0.tgz vignettes: vignettes/UNDO/inst/doc/UNDO-vignette.pdf vignetteTitles: UNDO Usage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/UNDO/inst/doc/UNDO-vignette.R dependencyCount: 10 Package: unifiedWMWqPCR Version: 1.42.0 Depends: methods Imports: BiocGenerics, limma, stats, graphics License: GPL (>=2) MD5sum: ae72e34d44270475ef2b483734894719 NeedsCompilation: no Title: Unified Wilcoxon-Mann Whitney Test for testing differential expression in qPCR data Description: This packages implements the unified Wilcoxon-Mann-Whitney Test for qPCR data. This modified test allows for testing differential expression in qPCR data. biocViews: DifferentialExpression, GeneExpression, MicrotitrePlateAssay, MultipleComparison, QualityControl, Software, Visualization, qPCR Author: Jan R. De Neve & Joris Meys Maintainer: Joris Meys git_url: https://git.bioconductor.org/packages/unifiedWMWqPCR git_branch: RELEASE_3_20 git_last_commit: 7c669b1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/unifiedWMWqPCR_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/unifiedWMWqPCR_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/unifiedWMWqPCR_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/unifiedWMWqPCR_1.42.0.tgz vignettes: vignettes/unifiedWMWqPCR/inst/doc/unifiedWMWqPCR.pdf vignetteTitles: Using unifiedWMWqPCR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/unifiedWMWqPCR/inst/doc/unifiedWMWqPCR.R dependencyCount: 8 Package: UniProt.ws Version: 2.46.1 Depends: BiocGenerics, methods, RSQLite, utils Imports: AnnotationDbi, BiocFileCache, BiocBaseUtils, httr, httpcache, jsonlite, progress, rjsoncons Suggests: BiocStyle, knitr, rmarkdown, RUnit License: Artistic-2.0 MD5sum: e2284ab0ce239683e6c2e2ec1d86695a NeedsCompilation: no Title: R Interface to UniProt Web Services Description: The Universal Protein Resource (UniProt) is a comprehensive resource for protein sequence and annotation data. This package provides a collection of functions for retrieving, processing, and re-packaging UniProt web services. The package makes use of UniProt's modernized REST API and allows mapping of identifiers accross different databases. biocViews: Annotation, Infrastructure, GO, KEGG, BioCarta Author: Marc Carlson [aut], Csaba Ortutay [ctb], Marcel Ramos [aut, cre] () Maintainer: Marcel Ramos URL: https://github.com/Bioconductor/UniProt.ws VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/UniProt.ws/issues git_url: https://git.bioconductor.org/packages/UniProt.ws git_branch: RELEASE_3_20 git_last_commit: 87f026f git_last_commit_date: 2024-11-05 Date/Publication: 2024-11-06 source.ver: src/contrib/UniProt.ws_2.46.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/UniProt.ws_2.46.1.zip mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/UniProt.ws_2.46.1.tgz vignettes: vignettes/UniProt.ws/inst/doc/UniProt.ws.html vignetteTitles: UniProt.ws: A package for retrieving data from the UniProt web service hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/UniProt.ws/inst/doc/UniProt.ws.R importsMe: dagLogo, drugTargetInteractions, ginmappeR, immunogenViewer suggestsMe: autonomics, cleaver, qPLEXanalyzer dependencyCount: 68 Package: Uniquorn Version: 2.26.0 Depends: R (>= 3.5) Imports: stringr, R.utils, WriteXLS, stats, doParallel, foreach, GenomicRanges, IRanges, VariantAnnotation, data.table Suggests: testthat, knitr, rmarkdown, BiocGenerics License: Artistic-2.0 MD5sum: 55300f5e8b47cb80f27b9eddf671a8b4 NeedsCompilation: no Title: Identification of cancer cell lines based on their weighted mutational/ variational fingerprint Description: 'Uniquorn' enables users to identify cancer cell lines. Cancer cell line misidentification and cross-contamination reprents a significant challenge for cancer researchers. The identification is vital and in the frame of this package based on the locations/ loci of somatic and germline mutations/ variations. The input format is vcf/ vcf.gz and the files have to contain a single cancer cell line sample (i.e. a single member/genotype/gt column in the vcf file). biocViews: ImmunoOncology, StatisticalMethod, WholeGenome, ExomeSeq Author: Raik Otto Maintainer: 'Raik Otto' VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/Uniquorn git_branch: RELEASE_3_20 git_last_commit: 3db46ef git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Uniquorn_2.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Uniquorn_2.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Uniquorn_2.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Uniquorn_2.26.0.tgz vignettes: vignettes/Uniquorn/inst/doc/Uniquorn.html vignetteTitles: Uniquorn vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 90 Package: universalmotif Version: 1.24.2 Depends: R (>= 3.5.0) Imports: methods, stats, utils, MASS, ggplot2, yaml, IRanges, Rcpp, Biostrings, BiocGenerics, S4Vectors, rlang, grid, MatrixGenerics LinkingTo: Rcpp, RcppThread Suggests: spelling, knitr, bookdown, TFBSTools, rmarkdown, MotifDb, testthat, BiocParallel, seqLogo, motifStack, dplyr, ape, ggtree, processx, ggseqlogo, cowplot, GenomicRanges, ggbio Enhances: PWMEnrich, rGADEM License: GPL-3 MD5sum: 9dd2f232418ad787ebf6d53f83cb4d5f NeedsCompilation: yes Title: Import, Modify, and Export Motifs with R Description: Allows for importing most common motif types into R for use by functions provided by other Bioconductor motif-related packages. Motifs can be exported into most major motif formats from various classes as defined by other Bioconductor packages. A suite of motif and sequence manipulation and analysis functions are included, including enrichment, comparison, P-value calculation, shuffling, trimming, higher-order motifs, and others. biocViews: MotifAnnotation, MotifDiscovery, DataImport, GeneRegulation Author: Benjamin Jean-Marie Tremblay [aut, cre] (), Spencer Nystrom [ctb] () Maintainer: Benjamin Jean-Marie Tremblay URL: https://bioconductor.org/packages/universalmotif/ VignetteBuilder: knitr BugReports: https://github.com/bjmt/universalmotif/issues git_url: https://git.bioconductor.org/packages/universalmotif git_branch: RELEASE_3_20 git_last_commit: accbd5f git_last_commit_date: 2024-11-11 Date/Publication: 2024-11-11 source.ver: src/contrib/universalmotif_1.24.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/universalmotif_1.24.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/universalmotif_1.24.2.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/universalmotif_1.24.2.tgz vignettes: vignettes/universalmotif/inst/doc/Introduction.pdf, vignettes/universalmotif/inst/doc/IntroductionToSequenceMotifs.pdf, vignettes/universalmotif/inst/doc/MotifComparisonAndPvalues.pdf, vignettes/universalmotif/inst/doc/MotifManipulation.pdf, vignettes/universalmotif/inst/doc/SequenceSearches.pdf vignetteTitles: Introduction to "universalmotif", Introduction to sequence motifs, Motif comparisons and P-values, Motif import,, export,, and manipulation, Sequence manipulation and scanning hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/universalmotif/inst/doc/Introduction.R, vignettes/universalmotif/inst/doc/IntroductionToSequenceMotifs.R, vignettes/universalmotif/inst/doc/MotifComparisonAndPvalues.R, vignettes/universalmotif/inst/doc/MotifManipulation.R, vignettes/universalmotif/inst/doc/SequenceSearches.R importsMe: ChIPpeakAnno, circRNAprofiler, memes, motifTestR dependencyCount: 59 Package: updateObject Version: 1.10.0 Depends: R (>= 4.2.0), methods, BiocGenerics (>= 0.51.1), S4Vectors Imports: utils, digest Suggests: GenomicRanges, SummarizedExperiment, InteractionSet, SingleCellExperiment, MultiAssayExperiment, BiSeq, testthat, knitr, rmarkdown, BiocStyle License: Artistic-2.0 MD5sum: 86c72e4e2732b9d7ca541898464d0fff NeedsCompilation: no Title: Find/fix old serialized S4 instances Description: A set of tools built around updateObject() to work with old serialized S4 instances. The package is primarily useful to package maintainers who want to update the serialized S4 instances included in their package. This is still work-in-progress. biocViews: Infrastructure, DataRepresentation Author: Hervé Pagès [aut, cre] Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/updateObject SystemRequirements: git VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/updateObject/issues git_url: https://git.bioconductor.org/packages/updateObject git_branch: RELEASE_3_20 git_last_commit: ee0c950 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/updateObject_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/updateObject_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/updateObject_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/updateObject_1.10.0.tgz vignettes: vignettes/updateObject/inst/doc/updateObject.html vignetteTitles: A quick introduction to the updateObject package hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/updateObject/inst/doc/updateObject.R dependencyCount: 8 Package: UPDhmm Version: 1.2.0 Depends: R (>= 4.3.0) Imports: HMM, utils, VariantAnnotation, GenomicRanges, S4Vectors, IRanges, stats Suggests: knitr, testthat (>= 2.1.0), BiocStyle, rmarkdown, markdown, karyoploteR, regioneR, dplyr License: MIT + file LICENSE MD5sum: 0c02f01bfb84fea6abe640011d94321e NeedsCompilation: no Title: Detecting Uniparental Disomy through NGS trio data Description: Uniparental disomy (UPD) is a genetic condition where an individual inherits both copies of a chromosome or part of it from one parent, rather than one copy from each parent. This package contains a HMM for detecting UPDs through HTS (High Throughput Sequencing) data from trio assays. By analyzing the genotypes in the trio, the model infers a hidden state (normal, father isodisomy, mother isodisomy, father heterodisomy and mother heterodisomy). biocViews: Software, HiddenMarkovModel, Genetics Author: Marta Sevilla [aut, cre] (), Carlos Ruiz-Arenas [aut] () Maintainer: Marta Sevilla URL: https://github.com/martasevilla/UPDhmm VignetteBuilder: knitr BugReports: https://github.com/martasevilla/UPDhmm/issues git_url: https://git.bioconductor.org/packages/UPDhmm git_branch: RELEASE_3_20 git_last_commit: 0ca2a87 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/UPDhmm_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/UPDhmm_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/UPDhmm_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/UPDhmm_1.2.0.tgz vignettes: vignettes/UPDhmm/inst/doc/UPDhmm.html vignetteTitles: Detection of UPDs in HTS data hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/UPDhmm/inst/doc/UPDhmm.R dependencyCount: 80 Package: uSORT Version: 1.32.0 Depends: R (>= 3.3.0), tcltk Imports: igraph, Matrix, RANN, RSpectra, VGAM, gplots, parallel, plyr, methods, cluster, Biobase, fpc, BiocGenerics, monocle, grDevices, graphics, stats, utils Suggests: knitr, RUnit, testthat, ggplot2 License: Artistic-2.0 MD5sum: 53d1a0d6245f450da73f7bcf7eb7a733 NeedsCompilation: no Title: uSORT: A self-refining ordering pipeline for gene selection Description: This package is designed to uncover the intrinsic cell progression path from single-cell RNA-seq data. It incorporates data pre-processing, preliminary PCA gene selection, preliminary cell ordering, feature selection, refined cell ordering, and post-analysis interpretation and visualization. biocViews: ImmunoOncology, RNASeq, GUI, CellBiology, DNASeq Author: Mai Chan Lau, Hao Chen, Jinmiao Chen Maintainer: Hao Chen VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/uSORT git_branch: RELEASE_3_20 git_last_commit: 8111152 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/uSORT_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/uSORT_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/uSORT_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/uSORT_1.32.0.tgz vignettes: vignettes/uSORT/inst/doc/uSORT_quick_start.html vignetteTitles: Quick Start hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/uSORT/inst/doc/uSORT_quick_start.R dependencyCount: 96 Package: VAExprs Version: 1.12.0 Depends: keras, mclust Imports: SingleCellExperiment, SummarizedExperiment, tensorflow, scater, CatEncoders, DeepPINCS, purrr, DiagrammeR, stats Suggests: SC3, knitr, testthat, reticulate, rmarkdown License: Artistic-2.0 MD5sum: 21f2c80e58e4fcece263dde33e380f1a NeedsCompilation: no Title: Generating Samples of Gene Expression Data with Variational Autoencoders Description: A fundamental problem in biomedical research is the low number of observations, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. By augmenting a few real observations with artificially generated samples, their analysis could lead to more robust and higher reproducible. One possible solution to the problem is the use of generative models, which are statistical models of data that attempt to capture the entire probability distribution from the observations. Using the variational autoencoder (VAE), a well-known deep generative model, this package is aimed to generate samples with gene expression data, especially for single-cell RNA-seq data. Furthermore, the VAE can use conditioning to produce specific cell types or subpopulations. The conditional VAE (CVAE) allows us to create targeted samples rather than completely random ones. biocViews: Software, GeneExpression, SingleCell Author: Dongmin Jung [cre, aut] () Maintainer: Dongmin Jung VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/VAExprs git_branch: RELEASE_3_20 git_last_commit: 49846fb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VAExprs_1.12.0.tar.gz mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VAExprs_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VAExprs_1.12.0.tgz vignettes: vignettes/VAExprs/inst/doc/VAExprs.html vignetteTitles: VAExprs hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/VAExprs/inst/doc/VAExprs.R suggestsMe: GenProSeq dependencyCount: 211 Package: VanillaICE Version: 1.68.0 Depends: R (>= 3.5.0), BiocGenerics (>= 0.13.6), GenomicRanges (>= 1.27.6), SummarizedExperiment (>= 1.5.3) Imports: MatrixGenerics, Biobase, S4Vectors (>= 0.23.18), IRanges (>= 1.14.0), oligoClasses (>= 1.31.1), foreach, matrixStats, data.table, grid, lattice, methods, GenomeInfoDb (>= 1.11.4), crlmm, tools, stats, utils, BSgenome.Hsapiens.UCSC.hg18 Suggests: RUnit, human610quadv1bCrlmm Enhances: doMC, doMPI, doSNOW, doParallel, doRedis License: LGPL-2 MD5sum: 9130d891ab83de99a24d612d3d5e6e31 NeedsCompilation: yes Title: A Hidden Markov Model for high throughput genotyping arrays Description: Hidden Markov Models for characterizing chromosomal alteration in high throughput SNP arrays. biocViews: CopyNumberVariation Author: Robert Scharpf [aut, cre] Maintainer: Robert Scharpf git_url: https://git.bioconductor.org/packages/VanillaICE git_branch: RELEASE_3_20 git_last_commit: 6cd3c1d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VanillaICE_1.68.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/VanillaICE_1.68.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VanillaICE_1.68.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VanillaICE_1.68.0.tgz vignettes: vignettes/VanillaICE/inst/doc/crlmmDownstream.pdf, vignettes/VanillaICE/inst/doc/VanillaICE.pdf vignetteTitles: crlmmDownstream, VanillaICE Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/VanillaICE/inst/doc/crlmmDownstream.R, vignettes/VanillaICE/inst/doc/VanillaICE.R dependsOnMe: MinimumDistance suggestsMe: oligoClasses dependencyCount: 95 Package: VarCon Version: 1.14.0 Depends: Biostrings, BSgenome, GenomicRanges, R (>= 4.1) Imports: methods, stats, IRanges, shiny, shinycssloaders, shinyFiles, ggplot2 Suggests: testthat, knitr, rmarkdown License: GPL-3 MD5sum: c76771827e1a75ae9f21264daaa49662 NeedsCompilation: no Title: VarCon: an R package for retrieving neighboring nucleotides of an SNV Description: VarCon is an R package which converts the positional information from the annotation of an single nucleotide variation (SNV) (either referring to the coding sequence or the reference genomic sequence). It retrieves the genomic reference sequence around the position of the single nucleotide variation. To asses, whether the SNV could potentially influence binding of splicing regulatory proteins VarCon calcualtes the HEXplorer score as an estimation. Besides, VarCon additionally reports splice site strengths of splice sites within the retrieved genomic sequence and any changes due to the SNV. biocViews: FunctionalGenomics, AlternativeSplicing Author: Johannes Ptok [aut, cre] Maintainer: Johannes Ptok VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/VarCon git_branch: RELEASE_3_20 git_last_commit: 6834560 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VarCon_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/VarCon_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VarCon_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VarCon_1.14.0.tgz vignettes: vignettes/VarCon/inst/doc/VarCon.html vignetteTitles: Analysing SNVs with VarCon hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/VarCon/inst/doc/VarCon.R dependencyCount: 107 Package: variancePartition Version: 1.36.2 Depends: R (>= 4.3.0), ggplot2, limma (>= 3.62.1), BiocParallel Imports: MASS, pbkrtest (>= 0.4-4), lmerTest, Matrix (>= 1.4.0), iterators, gplots, corpcor, matrixStats, RhpcBLASctl, reshape2, remaCor (>= 0.0.15), fANCOVA, aod, scales, Rdpack, rlang, lme4 (>= 1.1.33), grDevices, graphics, Biobase, methods, utils, stats Suggests: BiocStyle, knitr, pander, rmarkdown, edgeR, dendextend, tximport, tximportData, ballgown, DESeq2, RUnit, cowplot, Rfast, zenith, statmod, BiocGenerics, r2glmm, readr License: GPL-2 MD5sum: 62e7d3308e7ace9f711bc4903e7edd02 NeedsCompilation: no Title: Quantify and interpret drivers of variation in multilevel gene expression experiments Description: Quantify and interpret multiple sources of biological and technical variation in gene expression experiments. Uses a linear mixed model to quantify variation in gene expression attributable to individual, tissue, time point, or technical variables. Includes dream differential expression analysis for repeated measures. biocViews: RNASeq, GeneExpression, GeneSetEnrichment, DifferentialExpression, BatchEffect, QualityControl, Regression, Epigenetics, FunctionalGenomics, Transcriptomics, Normalization, Preprocessing, Microarray, ImmunoOncology, Software Author: Gabriel Hoffman [aut, cre] () Maintainer: Gabriel E. Hoffman URL: http://bioconductor.org/packages/variancePartition, https://DiseaseNeuroGenomics.github.io/variancePartition VignetteBuilder: knitr BugReports: https://github.com/DiseaseNeuroGenomics/variancePartition/issues git_url: https://git.bioconductor.org/packages/variancePartition git_branch: RELEASE_3_20 git_last_commit: 7cb9912 git_last_commit_date: 2024-11-08 Date/Publication: 2024-11-08 source.ver: src/contrib/variancePartition_1.36.2.tar.gz win.binary.ver: bin/windows/contrib/4.4/variancePartition_1.36.2.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/variancePartition_1.36.2.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/variancePartition_1.36.2.tgz vignettes: vignettes/variancePartition/inst/doc/additional_visualization.html, vignettes/variancePartition/inst/doc/dream.html, vignettes/variancePartition/inst/doc/errors.html, vignettes/variancePartition/inst/doc/FAQ.html, vignettes/variancePartition/inst/doc/mvtests.html, vignettes/variancePartition/inst/doc/rnd_effects.html, vignettes/variancePartition/inst/doc/variancePartition.html vignetteTitles: 2) Additional visualizations, 4) dream: differential expression testing with repeated measures designs, 5) Error handling, 6) Frequently asked questions, 7) Multivariate tests, 3) Theory and practice of random effects and REML, 1) Variance partitioning analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/variancePartition/inst/doc/additional_visualization.R, vignettes/variancePartition/inst/doc/dream.R, vignettes/variancePartition/inst/doc/errors.R, vignettes/variancePartition/inst/doc/FAQ.R, vignettes/variancePartition/inst/doc/mvtests.R, vignettes/variancePartition/inst/doc/rnd_effects.R, vignettes/variancePartition/inst/doc/variancePartition.R dependsOnMe: dreamlet importsMe: muscat, zenith suggestsMe: GRaNIE dependencyCount: 94 Package: VariantAnnotation Version: 1.52.0 Depends: R (>= 4.0.0), methods, BiocGenerics (>= 0.37.0), MatrixGenerics, GenomeInfoDb (>= 1.15.2), GenomicRanges (>= 1.41.5), SummarizedExperiment (>= 1.19.5), Rsamtools (>= 2.19.1) Imports: utils, DBI, zlibbioc, Biobase, S4Vectors (>= 0.27.12), IRanges (>= 2.23.9), XVector (>= 0.29.2), Biostrings (>= 2.57.2), AnnotationDbi (>= 1.27.9), rtracklayer (>= 1.39.7), BSgenome (>= 1.47.3), GenomicFeatures (>= 1.31.3) LinkingTo: S4Vectors, IRanges, XVector, Biostrings, Rhtslib (>= 2.99.0) Suggests: RUnit, AnnotationHub, BSgenome.Hsapiens.UCSC.hg19, TxDb.Hsapiens.UCSC.hg19.knownGene, SNPlocs.Hsapiens.dbSNP144.GRCh37, SIFT.Hsapiens.dbSNP132, SIFT.Hsapiens.dbSNP137, PolyPhen.Hsapiens.dbSNP131, snpStats, ggplot2, BiocStyle, knitr, magick, jsonlite, httr, rjsoncons License: Artistic-2.0 MD5sum: dd78ea409fc16978cf2d87763e3b808e NeedsCompilation: yes Title: Annotation of Genetic Variants Description: Annotate variants, compute amino acid coding changes, predict coding outcomes. biocViews: DataImport, Sequencing, SNP, Annotation, Genetics, VariantAnnotation Author: Valerie Oberchain [aut], Martin Morgan [aut], Michael Lawrence [aut], Stephanie Gogarten [ctb], Bioconductor Package Maintainer [cre] Maintainer: Bioconductor Package Maintainer SystemRequirements: GNU make VignetteBuilder: knitr Video: https://www.youtube.com/watch?v=Ro0lHQ_J--I&list=UUqaMSQd_h-2EDGsU6WDiX0Q git_url: https://git.bioconductor.org/packages/VariantAnnotation git_branch: RELEASE_3_20 git_last_commit: 054eb39 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VariantAnnotation_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/VariantAnnotation_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VariantAnnotation_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VariantAnnotation_1.52.0.tgz vignettes: vignettes/VariantAnnotation/inst/doc/ensemblVEP.html, vignettes/VariantAnnotation/inst/doc/filterVcf.html, vignettes/VariantAnnotation/inst/doc/VariantAnnotation.html vignetteTitles: ensemblVEP: using the REST API with Bioconductor, 2. Using filterVcf to Select Variants from VCF Files, 1. Introduction to VariantAnnotation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/VariantAnnotation/inst/doc/ensemblVEP.R, vignettes/VariantAnnotation/inst/doc/filterVcf.R, vignettes/VariantAnnotation/inst/doc/VariantAnnotation.R dependsOnMe: alabaster.vcf, CNVrd2, deepSNV, demuxSNP, HelloRanges, myvariant, PureCN, R453Plus1Toolbox, RareVariantVis, seqCAT, signeR, SomaticSignatures, StructuralVariantAnnotation, svaNUMT, VariantFiltering, VariantTools, PolyPhen.Hsapiens.dbSNP131, SIFT.Hsapiens.dbSNP132, SIFT.Hsapiens.dbSNP137, VariantToolsData, annotation, sequencing, variants, PlasmaMutationDetector, PlasmaMutationDetector2 importsMe: AllelicImbalance, APAlyzer, appreci8R, BadRegionFinder, BBCAnalyzer, biovizBase, biscuiteer, cardelino, CNVfilteR, CopyNumberPlots, crisprDesign, customProDB, DAMEfinder, decompTumor2Sig, DominoEffect, fcScan, GA4GHclient, GenomicFiles, GenVisR, ggbio, gmapR, gwascat, gwasurvivr, icetea, igvR, karyoploteR, katdetectr, lineagespot, MADSEQ, motifbreakR, MungeSumstats, musicatk, MutationalPatterns, ProteoDisco, RAIDS, scoreInvHap, SigsPack, SNPhood, svaRetro, tadar, TitanCNA, tLOH, transmogR, TVTB, Uniquorn, UPDhmm, VCFArray, YAPSA, ZygosityPredictor, COSMIC.67, gpcp suggestsMe: alabaster.files, AnnotationHub, BiocParallel, cellbaseR, CrispRVariants, epialleleR, GenomicDataCommons, GenomicRanges, GenomicScores, GWASTools, igvShiny, ldblock, omicsPrint, podkat, RVS, SeqArray, shiny.gosling, splatter, supersigs, systemPipeR, trackViewer, trio, vtpnet, AshkenazimSonChr21, GeuvadisTranscriptExpr, ldsep, polyRAD, SNPassoc, updog dependencyCount: 78 Package: VariantExperiment Version: 1.20.0 Depends: R (>= 3.6.0), S4Vectors (>= 0.21.24), SummarizedExperiment (>= 1.13.0), GenomicRanges, Imports: GDSArray (>= 1.11.1), DelayedDataFrame (>= 1.6.0), tools, utils, stats, methods, gdsfmt, SNPRelate, SeqArray, DelayedArray, Biostrings, IRanges Suggests: testthat, knitr, rmarkdown, markdown, BiocStyle License: GPL-3 MD5sum: c4c1b7d10f9226bb6a48853b1645385b NeedsCompilation: no Title: A RangedSummarizedExperiment Container for VCF/GDS Data with GDS Backend Description: VariantExperiment is a Bioconductor package for saving data in VCF/GDS format into RangedSummarizedExperiment object. The high-throughput genetic/genomic data are saved in GDSArray objects. The annotation data for features/samples are saved in DelayedDataFrame format with mono-dimensional GDSArray in each column. The on-disk representation of both assay data and annotation data achieves on-disk reading and processing and saves memory space significantly. The interface of RangedSummarizedExperiment data format enables easy and common manipulations for high-throughput genetic/genomic data with common SummarizedExperiment metaphor in R and Bioconductor. biocViews: Infrastructure, DataRepresentation, Sequencing, Annotation, GenomeAnnotation, GenotypingArray Author: Qian Liu [aut, cre], Hervé Pagès [aut], Martin Morgan [aut] Maintainer: Qian Liu URL: https://github.com/Bioconductor/VariantExperiment VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/VariantExperiment/issues git_url: https://git.bioconductor.org/packages/VariantExperiment git_branch: RELEASE_3_20 git_last_commit: dc5092d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VariantExperiment_1.20.0.tar.gz vignettes: vignettes/VariantExperiment/inst/doc/VariantExperiment-class.html vignetteTitles: VariantExperiment-class hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/VariantExperiment/inst/doc/VariantExperiment-class.R dependencyCount: 43 Package: VariantFiltering Version: 1.42.0 Depends: R (>= 3.5.0), methods, BiocGenerics (>= 0.25.1), VariantAnnotation (>= 1.13.29) Imports: utils, stats, Biobase, S4Vectors (>= 0.9.25), IRanges (>= 2.3.23), RBGL, graph, AnnotationDbi, BiocParallel, Biostrings (>= 2.33.11), GenomeInfoDb (>= 1.3.6), GenomicRanges (>= 1.19.13), SummarizedExperiment, GenomicFeatures, Rsamtools (>= 1.17.8), BSgenome, GenomicScores (>= 1.0.0), Gviz, shiny, shinythemes, shinyjs, DT, shinyTree LinkingTo: S4Vectors, IRanges, XVector, Biostrings Suggests: RUnit, BiocStyle, org.Hs.eg.db, BSgenome.Hsapiens.1000genomes.hs37d5, TxDb.Hsapiens.UCSC.hg19.knownGene, SNPlocs.Hsapiens.dbSNP144.GRCh37, MafDb.1Kgenomes.phase1.hs37d5, phastCons100way.UCSC.hg19, PolyPhen.Hsapiens.dbSNP131, SIFT.Hsapiens.dbSNP137 License: Artistic-2.0 MD5sum: 476ffb544e139f8c781219772ca94edb NeedsCompilation: yes Title: Filtering of coding and non-coding genetic variants Description: Filter genetic variants using different criteria such as inheritance model, amino acid change consequence, minor allele frequencies across human populations, splice site strength, conservation, etc. biocViews: Genetics, Homo_sapiens, Annotation, SNP, Sequencing, HighThroughputSequencing Author: Robert Castelo [aut, cre], Dei Martinez Elurbe [ctb], Pau Puigdevall [ctb], Joan Fernandez [ctb] Maintainer: Robert Castelo URL: https://github.com/rcastelo/VariantFiltering BugReports: https://github.com/rcastelo/VariantFiltering/issues git_url: https://git.bioconductor.org/packages/VariantFiltering git_branch: RELEASE_3_20 git_last_commit: 33be390 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VariantFiltering_1.42.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/VariantFiltering_1.42.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VariantFiltering_1.42.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VariantFiltering_1.42.0.tgz vignettes: vignettes/VariantFiltering/inst/doc/usingVariantFiltering.pdf vignetteTitles: VariantFiltering: filter coding and non-coding genetic variants hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/VariantFiltering/inst/doc/usingVariantFiltering.R dependencyCount: 179 Package: VariantTools Version: 1.48.0 Depends: R (>= 3.5.0), S4Vectors (>= 0.17.33), IRanges (>= 2.13.12), GenomicRanges (>= 1.31.8), VariantAnnotation (>= 1.11.16), methods Imports: Rsamtools (>= 1.31.2), BiocGenerics, Biostrings, parallel, GenomicFeatures (>= 1.31.3), Matrix, rtracklayer (>= 1.39.7), BiocParallel, GenomeInfoDb, BSgenome, Biobase Suggests: RUnit, LungCancerLines (>= 0.0.6), RBGL, graph, gmapR (>= 1.21.3), TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db License: Artistic-2.0 Archs: x64 MD5sum: f6c19154d3f135e8a0eaf32f6c0bc12c NeedsCompilation: no Title: Tools for Exploratory Analysis of Variant Calls Description: Explore, diagnose, and compare variant calls using filters. biocViews: Genetics, GeneticVariability, Sequencing Author: Michael Lawrence, Jeremiah Degenhardt, Robert Gentleman Maintainer: Michael Lawrence git_url: https://git.bioconductor.org/packages/VariantTools git_branch: RELEASE_3_20 git_last_commit: 74e757f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VariantTools_1.48.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/VariantTools_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VariantTools_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VariantTools_1.48.0.tgz vignettes: vignettes/VariantTools/inst/doc/tutorial.pdf, vignettes/VariantTools/inst/doc/VariantTools.pdf vignetteTitles: tutorial.pdf, Introduction to VariantTools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/VariantTools/inst/doc/VariantTools.R suggestsMe: VariantToolsData dependencyCount: 79 Package: VaSP Version: 1.18.0 Depends: R (>= 4.0), ballgown Imports: IRanges, GenomicRanges, S4Vectors, parallel, matrixStats, GenomicAlignments, GenomeInfoDb, Rsamtools, cluster, stats, graphics, methods Suggests: knitr, rmarkdown License: GPL (>= 2.0) MD5sum: 7adc829474be248c6792bf9d210a7bd7 NeedsCompilation: no Title: Quantification and Visualization of Variations of Splicing in Population Description: Discovery of genome-wide variable alternative splicing events from short-read RNA-seq data and visualizations of gene splicing information for publication-quality multi-panel figures in a population. (Warning: The visualizing function is removed due to the dependent package Sushi deprecated. If you want to use it, please change back to an older version.) biocViews: RNASeq, AlternativeSplicing, DifferentialSplicing, StatisticalMethod, Visualization, Preprocessing, Clustering, DifferentialExpression, KEGG, ImmunoOncology Author: Huihui Yu [aut, cre] (), Qian Du [aut] (), Chi Zhang [aut] () Maintainer: Huihui Yu URL: https://github.com/yuhuihui2011/VaSP VignetteBuilder: knitr BugReports: https://github.com/yuhuihui2011/VaSP/issues git_url: https://git.bioconductor.org/packages/VaSP git_branch: RELEASE_3_20 git_last_commit: a50d9a5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VaSP_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/VaSP_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VaSP_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VaSP_1.18.0.tgz vignettes: vignettes/VaSP/inst/doc/VaSP.html vignetteTitles: user guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/VaSP/inst/doc/VaSP.R dependencyCount: 91 Package: vbmp Version: 1.74.0 Depends: R (>= 2.10) Suggests: Biobase (>= 2.5.5), statmod License: GPL (>= 2) MD5sum: 8e3b858522daf1a1e68a7aad26421977 NeedsCompilation: no Title: Variational Bayesian Multinomial Probit Regression Description: Variational Bayesian Multinomial Probit Regression with Gaussian Process Priors. It estimates class membership posterior probability employing variational and sparse approximation to the full posterior. This software also incorporates feature weighting by means of Automatic Relevance Determination. biocViews: Classification Author: Nicola Lama , Mark Girolami Maintainer: Nicola Lama URL: http://bioinformatics.oxfordjournals.org/cgi/content/short/btm535v1 git_url: https://git.bioconductor.org/packages/vbmp git_branch: RELEASE_3_20 git_last_commit: 70c53a1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/vbmp_1.74.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/vbmp_1.74.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/vbmp_1.74.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/vbmp_1.74.0.tgz vignettes: vignettes/vbmp/inst/doc/vbmp.pdf vignetteTitles: vbmp Tutorial hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/vbmp/inst/doc/vbmp.R dependencyCount: 0 Package: VCFArray Version: 1.22.0 Depends: R (>= 3.6), methods, BiocGenerics, DelayedArray (>= 0.7.28) Imports: tools, GenomicRanges, VariantAnnotation (>= 1.29.3), GenomicFiles (>= 1.17.3), S4Vectors (>= 0.19.19), Rsamtools Suggests: SeqArray, BiocStyle, BiocManager, testthat, knitr, rmarkdown License: GPL-3 MD5sum: dfa387127317ca8b0b0faafef76804e6 NeedsCompilation: no Title: Representing on-disk / remote VCF files as array-like objects Description: VCFArray extends the DelayedArray to represent VCF data entries as array-like objects with on-disk / remote VCF file as backend. Data entries from VCF files, including info fields, FORMAT fields, and the fixed columns (REF, ALT, QUAL, FILTER) could be converted into VCFArray instances with different dimensions. biocViews: Infrastructure, DataRepresentation, Sequencing, VariantAnnotation Author: Qian Liu [aut, cre], Martin Morgan [aut] Maintainer: Qian Liu URL: https://github.com/Liubuntu/VCFArray VignetteBuilder: knitr BugReports: https://github.com/Liubuntu/VCFArray/issues git_url: https://git.bioconductor.org/packages/VCFArray git_branch: RELEASE_3_20 git_last_commit: 0a5b6e0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VCFArray_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/VCFArray_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VCFArray_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VCFArray_1.22.0.tgz vignettes: vignettes/VCFArray/inst/doc/VCFArray.html vignetteTitles: VCFArray: DelayedArray objects with on-disk/remote VCF backend hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/VCFArray/inst/doc/VCFArray.R dependencyCount: 80 Package: VDJdive Version: 1.8.0 Depends: R (>= 4.2) Imports: BiocParallel, cowplot, ggplot2, gridExtra, IRanges, Matrix, methods, RColorBrewer, Rcpp, S4Vectors, SingleCellExperiment, stats, SummarizedExperiment, utils LinkingTo: Rcpp Suggests: breakaway, covr, knitr, rmarkdown, testthat, BiocStyle License: Artistic-2.0 Archs: x64 MD5sum: e36bca9c91ac3f6a9499e622ee72c775 NeedsCompilation: yes Title: Analysis Tools for 10X V(D)J Data Description: This package provides functions for handling and analyzing immune receptor repertoire data, such as produced by the CellRanger V(D)J pipeline. This includes reading the data into R, merging it with paired single-cell data, quantifying clonotype abundances, calculating diversity metrics, and producing common plots. It implements the E-M Algorithm for clonotype assignment, along with other methods, which makes use of ambiguous cells for improved quantification. biocViews: Software, ImmunoOncology, SingleCell, Annotation, RNASeq, TargetedResequencing Author: Kelly Street [aut, cre] (), Mercedeh Movassagh [aut] (), Jill Lundell [aut] (), Jared Brown [ctb], Linglin Huang [ctb], Mingzhi Ye [ctb] Maintainer: Kelly Street URL: https://github.com/kstreet13/VDJdive VignetteBuilder: knitr BugReports: https://github.com/kstreet13/VDJdive/issues git_url: https://git.bioconductor.org/packages/VDJdive git_branch: RELEASE_3_20 git_last_commit: 9ac23a6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VDJdive_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/VDJdive_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VDJdive_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VDJdive_1.8.0.tgz vignettes: vignettes/VDJdive/inst/doc/workflow.html vignetteTitles: VDJdive Workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/VDJdive/inst/doc/workflow.R dependencyCount: 76 Package: VegaMC Version: 3.44.0 Depends: R (>= 2.10.0), biomaRt, Biobase Imports: methods License: GPL-2 MD5sum: 56d81745f2bcce03cfbd36035be34587 NeedsCompilation: yes Title: VegaMC: A Package Implementing a Variational Piecewise Smooth Model for Identification of Driver Chromosomal Imbalances in Cancer Description: This package enables the detection of driver chromosomal imbalances including loss of heterozygosity (LOH) from array comparative genomic hybridization (aCGH) data. VegaMC performs a joint segmentation of a dataset and uses a statistical framework to distinguish between driver and passenger mutation. VegaMC has been implemented so that it can be immediately integrated with the output produced by PennCNV tool. In addition, VegaMC produces in output two web pages that allows a rapid navigation between both the detected regions and the altered genes. In the web page that summarizes the altered genes, the link to the respective Ensembl gene web page is reported. biocViews: aCGH, CopyNumberVariation Author: S. Morganella and M. Ceccarelli Maintainer: Sandro Morganella git_url: https://git.bioconductor.org/packages/VegaMC git_branch: RELEASE_3_20 git_last_commit: 8e15c09 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VegaMC_3.44.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/VegaMC_3.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VegaMC_3.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VegaMC_3.44.0.tgz vignettes: vignettes/VegaMC/inst/doc/VegaMC.pdf vignetteTitles: VegaMC hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/VegaMC/inst/doc/VegaMC.R dependencyCount: 69 Package: velociraptor Version: 1.16.0 Depends: SummarizedExperiment Imports: methods, stats, Matrix, BiocGenerics, reticulate, S4Vectors, DelayedArray, basilisk, zellkonverter, scuttle, SingleCellExperiment, BiocParallel, BiocSingular Suggests: BiocStyle, testthat, knitr, rmarkdown, pkgdown, scran, scater, scRNAseq, Rtsne, graphics, grDevices, ggplot2, cowplot, GGally, patchwork, metR License: MIT + file LICENSE MD5sum: fd40fd69025725daf863b9c0bcfe46b6 NeedsCompilation: no Title: Toolkit for Single-Cell Velocity Description: This package provides Bioconductor-friendly wrappers for RNA velocity calculations in single-cell RNA-seq data. We use the basilisk package to manage Conda environments, and the zellkonverter package to convert data structures between SingleCellExperiment (R) and AnnData (Python). The information produced by the velocity methods is stored in the various components of the SingleCellExperiment class. biocViews: SingleCell, GeneExpression, Sequencing, Coverage Author: Kevin Rue-Albrecht [aut, cre] (), Aaron Lun [aut] (), Charlotte Soneson [aut] (), Michael Stadler [aut] () Maintainer: Kevin Rue-Albrecht URL: https://github.com/kevinrue/velociraptor VignetteBuilder: knitr BugReports: https://github.com/kevinrue/velociraptor/issues git_url: https://git.bioconductor.org/packages/velociraptor git_branch: RELEASE_3_20 git_last_commit: ce32b2f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/velociraptor_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/velociraptor_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/velociraptor_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/velociraptor_1.16.0.tgz vignettes: vignettes/velociraptor/inst/doc/velociraptor.html vignetteTitles: User's guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/velociraptor/inst/doc/velociraptor.R dependencyCount: 69 Package: veloviz Version: 1.12.0 Depends: R (>= 4.1) Imports: Rcpp, Matrix, igraph, mgcv, RSpectra, grDevices, graphics, stats LinkingTo: Rcpp Suggests: knitr, rmarkdown, testthat License: GPL-3 Archs: x64 MD5sum: a8ffce477dd8f292384581007676310a NeedsCompilation: yes Title: VeloViz: RNA-velocity informed 2D embeddings for visualizing cell state trajectories Description: VeloViz uses each cell’s current observed and predicted future transcriptional states inferred from RNA velocity analysis to build a nearest neighbor graph between cells in the population. Edges are then pruned based on a cosine correlation threshold and/or a distance threshold and the resulting graph is visualized using a force-directed graph layout algorithm. VeloViz can help ensure that relationships between cell states are reflected in the 2D embedding, allowing for more reliable representation of underlying cellular trajectories. biocViews: Transcriptomics, Visualization, GeneExpression, Sequencing, RNASeq, DimensionReduction Author: Lyla Atta [aut, cre] (), Jean Fan [aut] (), Arpan Sahoo [aut] () Maintainer: Lyla Atta VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/veloviz git_branch: RELEASE_3_20 git_last_commit: 5aa52fb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/veloviz_1.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/veloviz_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/veloviz_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/veloviz_1.12.0.tgz vignettes: vignettes/veloviz/inst/doc/vignette.html vignetteTitles: Visualizing cell cycle trajectory in MERFISH data using VeloViz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/veloviz/inst/doc/vignette.R dependencyCount: 23 Package: VennDetail Version: 1.22.0 Imports: utils, grDevices, stats, methods, dplyr, purrr, tibble, magrittr, ggplot2, UpSetR, VennDiagram, grid, futile.logger Suggests: knitr, rmarkdown, testthat, markdown License: GPL-2 Archs: x64 MD5sum: b33219812581c7f136ca5fb0fad9f585 NeedsCompilation: no Title: A package for visualization and extract details Description: A set of functions to generate high-resolution Venn,Vennpie plot,extract and combine details of these subsets with user datasets in data frame is available. biocViews: DataRepresentation,GraphAndNetwork Author: Kai Guo, Brett McGregor Maintainer: Kai Guo URL: https://github.com/guokai8/VennDetail VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/VennDetail git_branch: RELEASE_3_20 git_last_commit: 7a17508 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VennDetail_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/VennDetail_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VennDetail_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VennDetail_1.22.0.tgz vignettes: vignettes/VennDetail/inst/doc/VennDetail.html vignetteTitles: VennDetail hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/VennDetail/inst/doc/VennDetail.R dependencyCount: 48 Package: VERSO Version: 1.16.0 Depends: R (>= 4.1.0) Imports: utils, data.tree, ape, parallel, Rfast, stats Suggests: BiocGenerics, BiocStyle, testthat, knitr License: file LICENSE MD5sum: 6a867220991a119efc8c402960fd85c7 NeedsCompilation: no Title: Viral Evolution ReconStructiOn (VERSO) Description: Mutations that rapidly accumulate in viral genomes during a pandemic can be used to track the evolution of the virus and, accordingly, unravel the viral infection network. To this extent, sequencing samples of the virus can be employed to estimate models from genomic epidemiology and may serve, for instance, to estimate the proportion of undetected infected people by uncovering cryptic transmissions, as well as to predict likely trends in the number of infected, hospitalized, dead and recovered people. VERSO is an algorithmic framework that processes variants profiles from viral samples to produce phylogenetic models of viral evolution. The approach solves a Boolean Matrix Factorization problem with phylogenetic constraints, by maximizing a log-likelihood function. VERSO includes two separate and subsequent steps; in this package we provide an R implementation of VERSO STEP 1. biocViews: BiomedicalInformatics, Sequencing, SomaticMutation Author: Daniele Ramazzotti [aut] (), Fabrizio Angaroni [aut], Davide Maspero [cre, aut], Alex Graudenzi [aut], Luca De Sano [aut] () Maintainer: Davide Maspero URL: https://github.com/BIMIB-DISCo/VERSO VignetteBuilder: knitr BugReports: https://github.com/BIMIB-DISCo/VERSO git_url: https://git.bioconductor.org/packages/VERSO git_branch: RELEASE_3_20 git_last_commit: 3d998f7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VERSO_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/VERSO_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VERSO_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VERSO_1.16.0.tgz vignettes: vignettes/VERSO/inst/doc/v1_introduction.html, vignettes/VERSO/inst/doc/v2_running_VERSO.html vignetteTitles: Introduction, Running VERSO hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/VERSO/inst/doc/v1_introduction.R, vignettes/VERSO/inst/doc/v2_running_VERSO.R dependencyCount: 21 Package: vidger Version: 1.26.0 Depends: R (>= 3.5) Imports: Biobase, DESeq2, edgeR, GGally, ggplot2, ggrepel, knitr, RColorBrewer, rmarkdown, scales, stats, SummarizedExperiment, tidyr, utils Suggests: BiocStyle, testthat License: GPL-3 | file LICENSE MD5sum: d459258deb55f30911ad22bd309917c9 NeedsCompilation: no Title: Create rapid visualizations of RNAseq data in R Description: The aim of vidger is to rapidly generate information-rich visualizations for the interpretation of differential gene expression results from three widely-used tools: Cuffdiff, DESeq2, and edgeR. biocViews: ImmunoOncology, Visualization, RNASeq, DifferentialExpression, GeneExpression, ImmunoOncology Author: Brandon Monier [aut, cre], Adam McDermaid [aut], Jing Zhao [aut], Qin Ma [aut, fnd] Maintainer: Brandon Monier URL: https://github.com/btmonier/vidger, https://bioconductor.org/packages/release/bioc/html/vidger.html VignetteBuilder: knitr BugReports: https://github.com/btmonier/vidger/issues git_url: https://git.bioconductor.org/packages/vidger git_branch: RELEASE_3_20 git_last_commit: ddbe59c git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/vidger_1.26.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/vidger_1.26.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/vidger_1.26.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/vidger_1.26.0.tgz vignettes: vignettes/vidger/inst/doc/vidger.html vignetteTitles: Visualizing RNA-seq data with ViDGER hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/vidger/inst/doc/vidger.R dependencyCount: 114 Package: viper Version: 1.40.0 Depends: R (>= 2.14.0), Biobase, methods Imports: mixtools, stats, parallel, e1071, KernSmooth Suggests: bcellViper License: file LICENSE MD5sum: 03f5022274388eca503bcf1f54ede7da NeedsCompilation: no Title: Virtual Inference of Protein-activity by Enriched Regulon analysis Description: Inference of protein activity from gene expression data, including the VIPER and msVIPER algorithms biocViews: SystemsBiology, NetworkEnrichment, GeneExpression, FunctionalPrediction, GeneRegulation Author: Mariano J Alvarez Maintainer: Mariano J Alvarez git_url: https://git.bioconductor.org/packages/viper git_branch: RELEASE_3_20 git_last_commit: e859341 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/viper_1.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/viper_1.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/viper_1.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/viper_1.40.0.tgz vignettes: vignettes/viper/inst/doc/viper.pdf vignetteTitles: Using VIPER hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/viper/inst/doc/viper.R dependsOnMe: vulcan, aracne.networks importsMe: diggit, RTN, diggitdata suggestsMe: decoupleR, easier, MOMA, dorothea, vulcandata dependencyCount: 89 Package: VisiumIO Version: 1.2.0 Depends: R (>= 4.4.0), TENxIO Imports: BiocBaseUtils, BiocGenerics, BiocIO (>= 1.15.1), jsonlite, methods, S4Vectors, SingleCellExperiment, SpatialExperiment, SummarizedExperiment Suggests: arrow, BiocStyle, knitr, rmarkdown, tinytest License: Artistic-2.0 MD5sum: 8481b7a76d9f43e7c7f2285a189cd152 NeedsCompilation: no Title: Import Visium data from the 10X Space Ranger pipeline Description: The package allows users to readily import spatial data obtained from either the 10X website or from the Space Ranger pipeline. Supported formats include tar.gz, h5, and mtx files. Multiple files can be imported at once with *List type of functions. The package represents data mainly as SpatialExperiment objects. biocViews: Software, Infrastructure, DataImport, SingleCell, Spatial Author: Marcel Ramos [aut, cre] (), Dario Righelli [aut, ctb], Helena Crowell [aut, ctb] Maintainer: Marcel Ramos URL: https://github.com/waldronlab/VisiumIO VignetteBuilder: knitr BugReports: https://github.com/waldronlab/VisiumIO/issues git_url: https://git.bioconductor.org/packages/VisiumIO git_branch: RELEASE_3_20 git_last_commit: 6f8771a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VisiumIO_1.2.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/VisiumIO_1.2.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VisiumIO_1.2.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VisiumIO_1.2.0.tgz vignettes: vignettes/VisiumIO/inst/doc/VisiumIO.html vignetteTitles: VisiumIO Quick Start Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/VisiumIO/inst/doc/VisiumIO.R dependencyCount: 92 Package: vissE Version: 1.14.0 Depends: R (>= 4.1) Imports: igraph, methods, plyr, ggplot2, scico, RColorBrewer, tm, ggwordcloud, GSEABase, reshape2, grDevices, ggforce, msigdb, ggrepel, textstem, tidygraph, stats, scales, ggraph Suggests: testthat, org.Hs.eg.db, org.Mm.eg.db, patchwork, singscore, knitr, rmarkdown, prettydoc, BiocStyle, pkgdown, covr License: GPL-3 Archs: x64 MD5sum: 07e33163eb61ab6d823b565a43e3475a NeedsCompilation: no Title: Visualising Set Enrichment Analysis Results Description: This package enables the interpretation and analysis of results from a gene set enrichment analysis using network-based and text-mining approaches. Most enrichment analyses result in large lists of significant gene sets that are difficult to interpret. Tools in this package help build a similarity-based network of significant gene sets from a gene set enrichment analysis that can then be investigated for their biological function using text-mining approaches. biocViews: Software, GeneExpression, GeneSetEnrichment, NetworkEnrichment, Network Author: Dharmesh D. Bhuva [aut, cre] (), Ahmed Mohamed [ctb] Maintainer: Dharmesh D. Bhuva URL: https://davislaboratory.github.io/vissE VignetteBuilder: knitr BugReports: https://github.com/DavisLaboratory/vissE/issues git_url: https://git.bioconductor.org/packages/vissE git_branch: RELEASE_3_20 git_last_commit: 5182005 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/vissE_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/vissE_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/vissE_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/vissE_1.14.0.tgz vignettes: vignettes/vissE/inst/doc/vissE.html vignetteTitles: vissE hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/vissE/inst/doc/vissE.R suggestsMe: msigdb dependencyCount: 143 Package: Voyager Version: 1.8.1 Depends: R (>= 4.2.0), SpatialFeatureExperiment (>= 1.7.3) Imports: BiocParallel, bluster, DelayedArray, ggnewscale, ggplot2 (>= 3.4.0), grDevices, grid, lifecycle, Matrix, matrixStats, memuse, methods, patchwork, rlang, RSpectra, S4Vectors, scales, scico, sf, SingleCellExperiment, SpatialExperiment, spdep, stats, SummarizedExperiment, terra, utils, zeallot Suggests: arrow, automap, BiocSingular, BiocStyle, cowplot, data.table, EBImage, ExperimentHub, ggh4x, gstat, hexbin, knitr, pheatmap, RBioFormats, rhdf5, rmarkdown, scater, scattermore, scran, sfarrow, SFEData, testthat (>= 3.0.0), vdiffr, xml2 License: Artistic-2.0 Archs: x64 MD5sum: 9b6f91a4b44f8820daaad795059eb572 NeedsCompilation: no Title: From geospatial to spatial omics Description: SpatialFeatureExperiment (SFE) is a new S4 class for working with spatial single-cell genomics data. The voyager package implements basic exploratory spatial data analysis (ESDA) methods for SFE. Univariate methods include univariate global spatial ESDA methods such as Moran's I, permutation testing for Moran's I, and correlograms. Bivariate methods include Lee's L and cross variogram. Multivariate methods include MULTISPATI PCA and multivariate local Geary's C recently developed by Anselin. The Voyager package also implements plotting functions to plot SFE data and ESDA results. biocViews: GeneExpression, Spatial, Transcriptomics, Visualization Author: Lambda Moses [aut, cre] (), Alik Huseynov [aut] (), Kayla Jackson [aut] (), Laura Luebbert [aut] (), Lior Pachter [aut, rev] () Maintainer: Lambda Moses URL: https://github.com/pachterlab/voyager VignetteBuilder: knitr BugReports: https://github.com/pachterlab/voyager/issues git_url: https://git.bioconductor.org/packages/Voyager git_branch: RELEASE_3_20 git_last_commit: 51fa68b git_last_commit_date: 2024-10-31 Date/Publication: 2024-11-01 source.ver: src/contrib/Voyager_1.8.1.tar.gz win.binary.ver: bin/windows/contrib/4.4/Voyager_1.8.1.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Voyager_1.8.1.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Voyager_1.8.1.tgz vignettes: vignettes/Voyager/inst/doc/overview.html vignetteTitles: Functionality overview hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Voyager/inst/doc/overview.R suggestsMe: SpatialFeatureExperiment dependencyCount: 178 Package: VplotR Version: 1.16.0 Depends: R (>= 4.0), GenomicRanges, IRanges, ggplot2 Imports: cowplot, magrittr, GenomeInfoDb, GenomicAlignments, RColorBrewer, zoo, Rsamtools, S4Vectors, parallel, reshape2, methods, graphics, stats Suggests: GenomicFeatures, TxDb.Scerevisiae.UCSC.sacCer3.sgdGene, testthat, covr, knitr, rmarkdown, pkgdown License: GPL (>= 3) MD5sum: 6158b3c841b45bf9e09ebb91b183ef19 NeedsCompilation: no Title: Set of tools to make V-plots and compute footprint profiles Description: The pattern of digestion and protection from DNA nucleases such as DNAse I, micrococcal nuclease, and Tn5 transposase can be used to infer the location of associated proteins. This package contains useful functions to analyze patterns of paired-end sequencing fragment density. VplotR facilitates the generation of V-plots and footprint profiles over single or aggregated genomic loci of interest. biocViews: NucleosomePositioning, Coverage, Sequencing, BiologicalQuestion, ATACSeq, Alignment Author: Jacques Serizay [aut, cre] () Maintainer: Jacques Serizay URL: https://github.com/js2264/VplotR VignetteBuilder: knitr BugReports: https://github.com/js2264/VplotR/issues git_url: https://git.bioconductor.org/packages/VplotR git_branch: RELEASE_3_20 git_last_commit: cdb105d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/VplotR_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/VplotR_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/VplotR_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/VplotR_1.16.0.tgz vignettes: vignettes/VplotR/inst/doc/VplotR.html vignetteTitles: VplotR hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/VplotR/inst/doc/VplotR.R dependencyCount: 84 Package: vsclust Version: 1.8.0 Depends: R (>= 4.2.0) Imports: matrixStats, limma, parallel, shiny, qvalue, grDevices, stats, MultiAssayExperiment, graphics LinkingTo: Rcpp Suggests: knitr, yaml, testthat (>= 3.0.0), rmarkdown, BiocStyle, clusterProfiler License: GPL-2 Archs: x64 MD5sum: 5c1a8e08525ed6e692ef423a14d5e9e9 NeedsCompilation: yes Title: Feature-based variance-sensitive quantitative clustering Description: Feature-based variance-sensitive clustering of omics data. Optimizes cluster assignment by taking into account individual feature variance. Includes several modules for statistical testing, clustering and enrichment analysis. biocViews: Clustering, Annotation, PrincipalComponent, DifferentialExpression, Visualization, Proteomics, Metabolomics Author: Veit Schwaemmle [aut, cre] Maintainer: Veit Schwaemmle VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/vsclust git_branch: RELEASE_3_20 git_last_commit: dd29629 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/vsclust_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/vsclust_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/vsclust_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/vsclust_1.8.0.tgz vignettes: vignettes/vsclust/inst/doc/Integrate_With_Bioconductor_Objects.html, vignettes/vsclust/inst/doc/Run_VSClust_Workflow.html vignetteTitles: VSClust on Bioconductor object, VSClust workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/vsclust/inst/doc/Integrate_With_Bioconductor_Objects.R, vignettes/vsclust/inst/doc/Run_VSClust_Workflow.R dependencyCount: 98 Package: vsn Version: 3.74.0 Depends: R (>= 4.0.0), methods, Biobase Imports: affy, limma, lattice, ggplot2 Suggests: affydata, hgu95av2cdf, BiocStyle, knitr, rmarkdown, dplyr, testthat License: Artistic-2.0 MD5sum: dbffe4c2a84f437962fd43c987bd35b4 NeedsCompilation: yes Title: Variance stabilization and calibration for microarray data Description: The package implements a method for normalising microarray intensities from single- and multiple-color arrays. It can also be used for data from other technologies, as long as they have similar format. The method uses a robust variant of the maximum-likelihood estimator for an additive-multiplicative error model and affine calibration. The model incorporates data calibration step (a.k.a. normalization), a model for the dependence of the variance on the mean intensity and a variance stabilizing data transformation. Differences between transformed intensities are analogous to "normalized log-ratios". However, in contrast to the latter, their variance is independent of the mean, and they are usually more sensitive and specific in detecting differential transcription. biocViews: Microarray, OneChannel, TwoChannel, Preprocessing Author: Wolfgang Huber, with contributions from Anja von Heydebreck. Many comments and suggestions by users are acknowledged, among them Dennis Kostka, David Kreil, Hans-Ulrich Klein, Robert Gentleman, Deepayan Sarkar and Gordon Smyth Maintainer: Wolfgang Huber URL: http://www.r-project.org, http://www.ebi.ac.uk/huber VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/vsn git_branch: RELEASE_3_20 git_last_commit: d2b686d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/vsn_3.74.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/vsn_3.74.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/vsn_3.74.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/vsn_3.74.0.tgz vignettes: vignettes/vsn/inst/doc/C-likelihoodcomputations.pdf, vignettes/vsn/inst/doc/D-convergence.pdf, vignettes/vsn/inst/doc/A-vsn.html vignetteTitles: Likelihood Calculations for vsn, Verifying and assessing the performance with simulated data, Introduction to vsn (HTML version) hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/vsn/inst/doc/A-vsn.R, vignettes/vsn/inst/doc/C-likelihoodcomputations.R dependsOnMe: webbioc, rnaseqGene importsMe: arrayQualityMetrics, autonomics, bnem, DEP, Doscheda, MatrixQCvis, metaseqR2, MSnbase, NormalyzerDE, PRONE, pvca, tilingArray, ExpressionNormalizationWorkflow, lfproQC suggestsMe: adSplit, beadarray, DAPAR, DESeq2, ggbio, GlobalAncova, globaltest, limma, lumi, MsCoreUtils, PAA, QFeatures, qmtools, ribosomeProfilingQC, scp, twilight, estrogen, wrMisc dependencyCount: 44 Package: vtpnet Version: 0.46.0 Depends: R (>= 3.0.0), graph, GenomicRanges, gwascat, doParallel, foreach Suggests: MotifDb, VariantAnnotation, Rgraphviz License: Artistic-2.0 MD5sum: 7610d60696d5680e3776f07cf0d644fc NeedsCompilation: no Title: variant-transcription factor-phenotype networks Description: variant-transcription factor-phenotype networks, inspired by Maurano et al., Science (2012), PMID 22955828 biocViews: Network Author: VJ Carey Maintainer: VJ Carey git_url: https://git.bioconductor.org/packages/vtpnet git_branch: RELEASE_3_20 git_last_commit: de242f0 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/vtpnet_0.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/vtpnet_0.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/vtpnet_0.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/vtpnet_0.46.0.tgz vignettes: vignettes/vtpnet/inst/doc/vtpnet.pdf vignetteTitles: vtpnet: variant-transcription factor-network tools hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/vtpnet/inst/doc/vtpnet.R dependencyCount: 114 Package: vulcan Version: 1.28.0 Depends: R (>= 4.0), ChIPpeakAnno,TxDb.Hsapiens.UCSC.hg19.knownGene, zoo, GenomicRanges, S4Vectors, viper, DiffBind, locfit Imports: wordcloud, csaw, gplots, stats, utils, caTools, graphics, DESeq2, Biobase Suggests: vulcandata License: LGPL-3 MD5sum: 2fc8872a1ee68ebf6b7df05b194d7f0b NeedsCompilation: no Title: VirtUaL ChIP-Seq data Analysis using Networks Description: Vulcan (VirtUaL ChIP-Seq Analysis through Networks) is a package that interrogates gene regulatory networks to infer cofactors significantly enriched in a differential binding signature coming from ChIP-Seq data. In order to do so, our package combines strategies from different BioConductor packages: DESeq for data normalization, ChIPpeakAnno and DiffBind for annotation and definition of ChIP-Seq genomic peaks, csaw to define optimal peak width and viper for applying a regulatory network over a differential binding signature. biocViews: SystemsBiology, NetworkEnrichment, GeneExpression, ChIPSeq Author: Federico M. Giorgi, Andrew N. Holding, Florian Markowetz Maintainer: Federico M. Giorgi git_url: https://git.bioconductor.org/packages/vulcan git_branch: RELEASE_3_20 git_last_commit: 58e0f0f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/vulcan_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/vulcan_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/vulcan_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/vulcan_1.28.0.tgz vignettes: vignettes/vulcan/inst/doc/vulcan.pdf vignetteTitles: Vulcan: VirtUaL ChIP-Seq Analysis through Networks hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/vulcan/inst/doc/vulcan.R dependencyCount: 201 Package: waddR Version: 1.20.0 Depends: R (>= 3.6.0) Imports: Rcpp (>= 1.0.1), arm (>= 1.10-1), eva, BiocFileCache (>= 2.6.0), BiocParallel, SingleCellExperiment, parallel, methods, stats LinkingTo: Rcpp, RcppArmadillo, Suggests: knitr, devtools, testthat, roxygen2, rprojroot, rmarkdown, scater License: MIT + file LICENSE MD5sum: 3bb00eacd4724bb28f8e73592e5daf3a NeedsCompilation: yes Title: Statistical tests for detecting differential distributions based on the 2-Wasserstein distance Description: The package offers statistical tests based on the 2-Wasserstein distance for detecting and characterizing differences between two distributions given in the form of samples. Functions for calculating the 2-Wasserstein distance and testing for differential distributions are provided, as well as a specifically tailored test for differential expression in single-cell RNA sequencing data. biocViews: Software, StatisticalMethod, SingleCell, DifferentialExpression Author: Roman Schefzik [aut], Julian Flesch [cre] Maintainer: Julian Flesch URL: https://github.com/goncalves-lab/waddR.git VignetteBuilder: knitr BugReports: https://github.com/goncalves-lab/waddR/issues git_url: https://git.bioconductor.org/packages/waddR git_branch: RELEASE_3_20 git_last_commit: 11837fb git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/waddR_1.20.0.tar.gz vignettes: vignettes/waddR/inst/doc/waddR.html, vignettes/waddR/inst/doc/wasserstein_metric.html, vignettes/waddR/inst/doc/wasserstein_singlecell.html, vignettes/waddR/inst/doc/wasserstein_test.html vignetteTitles: waddR, wasserstein_metric, wasserstein_singlecell, wasserstein_test hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/waddR/inst/doc/waddR.R, vignettes/waddR/inst/doc/wasserstein_metric.R, vignettes/waddR/inst/doc/wasserstein_singlecell.R, vignettes/waddR/inst/doc/wasserstein_test.R dependencyCount: 104 Package: wateRmelon Version: 2.12.0 Depends: R (>= 3.5.0), Biobase, limma, methods, matrixStats, methylumi, lumi, ROC, IlluminaHumanMethylation450kanno.ilmn12.hg19, illuminaio Imports: Biobase Suggests: RPMM, IlluminaHumanMethylationEPICanno.ilm10b2.hg19, BiocStyle, knitr, rmarkdown, IlluminaHumanMethylationEPICmanifest, irlba, FlowSorted.Blood.EPIC, FlowSorted.Blood.450k, preprocessCore Enhances: minfi License: GPL-3 MD5sum: 3044edac0be669399cdb295bb084c4f2 NeedsCompilation: no Title: Illumina DNA methylation array normalization and metrics Description: 15 flavours of betas and three performance metrics, with methods for objects produced by methylumi and minfi packages. biocViews: DNAMethylation, Microarray, TwoChannel, Preprocessing, QualityControl Author: Leo C Schalkwyk [cre, aut], Tyler J Gorrie-Stone [aut], Ruth Pidsley [aut], Chloe CY Wong [aut], Nizar Touleimat [ctb], Matthieu Defrance [ctb], Andrew Teschendorff [ctb], Jovana Maksimovic [ctb], Louis Y El Khoury [ctb], Yucheng Wang [ctb], Alexandria Andrayas [ctb] Maintainer: Leo C Schalkwyk VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/wateRmelon git_branch: RELEASE_3_20 git_last_commit: 3f299e1 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/wateRmelon_2.12.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/wateRmelon_2.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/wateRmelon_2.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/wateRmelon_2.12.0.tgz vignettes: vignettes/wateRmelon/inst/doc/wateRmelon.html vignetteTitles: wateRmelon User's Guide hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/wateRmelon/inst/doc/wateRmelon.R dependsOnMe: bigmelon, skewr importsMe: ChAMP, MEAT suggestsMe: RnBeads dependencyCount: 172 Package: wavClusteR Version: 2.40.0 Depends: R (>= 3.2), GenomicRanges (>= 1.31.8), Rsamtools Imports: methods, BiocGenerics, S4Vectors (>= 0.17.25), IRanges (>= 2.13.12), Biostrings (>= 2.47.6), foreach, GenomicFeatures (>= 1.31.3), ggplot2, Hmisc, mclust, rtracklayer (>= 1.39.7), seqinr, stringr Suggests: BiocStyle, knitr, rmarkdown, BSgenome.Hsapiens.UCSC.hg19 Enhances: doMC License: GPL-2 MD5sum: 92908cb5bab0691bc0d767fe5c000dbc NeedsCompilation: no Title: Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data Description: The package provides an integrated pipeline for the analysis of PAR-CLIP data. PAR-CLIP-induced transitions are first discriminated from sequencing errors, SNPs and additional non-experimental sources by a non- parametric mixture model. The protein binding sites (clusters) are then resolved at high resolution and cluster statistics are estimated using a rigorous Bayesian framework. Post-processing of the results, data export for UCSC genome browser visualization and motif search analysis are provided. In addition, the package allows to integrate RNA-Seq data to estimate the False Discovery Rate of cluster detection. Key functions support parallel multicore computing. Note: while wavClusteR was designed for PAR-CLIP data analysis, it can be applied to the analysis of other NGS data obtained from experimental procedures that induce nucleotide substitutions (e.g. BisSeq). biocViews: ImmunoOncology, Sequencing, Technology, RIPSeq, RNASeq, Bayesian Author: Federico Comoglio and Cem Sievers Maintainer: Federico Comoglio VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/wavClusteR git_branch: RELEASE_3_20 git_last_commit: 0b0bf23 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/wavClusteR_2.40.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/wavClusteR_2.40.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/wavClusteR_2.40.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/wavClusteR_2.40.0.tgz vignettes: vignettes/wavClusteR/inst/doc/wavCluster_vignette.html vignetteTitles: wavClusteR: a workflow for PAR-CLIP data analysis hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/wavClusteR/inst/doc/wavCluster_vignette.R dependencyCount: 138 Package: weaver Version: 1.72.0 Depends: R (>= 2.5.0), digest, tools, utils, codetools Suggests: codetools License: GPL-2 MD5sum: 15bf2732731e607cd0d341e870d2aaa4 NeedsCompilation: no Title: Tools and extensions for processing Sweave documents Description: This package provides enhancements on the Sweave() function in the base package. In particular a facility for caching code chunk results is included. biocViews: Infrastructure Author: Seth Falcon Maintainer: Seth Falcon git_url: https://git.bioconductor.org/packages/weaver git_branch: RELEASE_3_20 git_last_commit: 1bfca23 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/weaver_1.72.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/weaver_1.72.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/weaver_1.72.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/weaver_1.72.0.tgz vignettes: vignettes/weaver/inst/doc/weaver_howTo.pdf vignetteTitles: Using weaver to process Sweave documents hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/weaver/inst/doc/weaver_howTo.R dependencyCount: 4 Package: webbioc Version: 1.78.0 Depends: R (>= 1.8.0), Biobase, affy, multtest, annaffy, vsn, gcrma, qvalue Imports: multtest, qvalue, stats, utils, BiocManager License: GPL (>= 2) MD5sum: d6783454c4d55a9364bbcd1dedefefce NeedsCompilation: no Title: Bioconductor Web Interface Description: An integrated web interface for doing microarray analysis using several of the Bioconductor packages. It is intended to be deployed as a centralized bioinformatics resource for use by many users. (Currently only Affymetrix oligonucleotide analysis is supported.) biocViews: Infrastructure, Microarray, OneChannel, DifferentialExpression Author: Colin A. Smith Maintainer: Colin A. Smith URL: http://www.bioconductor.org/ SystemRequirements: Unix, Perl (>= 5.6.0), Netpbm git_url: https://git.bioconductor.org/packages/webbioc git_branch: RELEASE_3_20 git_last_commit: 22457f6 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/webbioc_1.78.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/webbioc_1.78.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/webbioc_1.78.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/webbioc_1.78.0.tgz vignettes: vignettes/webbioc/inst/doc/demoscript.pdf, vignettes/webbioc/inst/doc/webbioc.pdf vignetteTitles: webbioc Demo Script, webbioc Overview hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependencyCount: 86 Package: weitrix Version: 1.18.0 Depends: R (>= 3.6), SummarizedExperiment Imports: methods, utils, stats, grDevices, assertthat, S4Vectors, DelayedArray, DelayedMatrixStats, BiocParallel, BiocGenerics, limma, topconfects, dplyr, purrr, ggplot2, rlang, scales, reshape2, splines, Ckmeans.1d.dp, glm2, RhpcBLASctl Suggests: knitr, rmarkdown, BiocStyle, tidyverse, airway, edgeR, EnsDb.Hsapiens.v86, org.Sc.sgd.db, AnnotationDbi, ComplexHeatmap, patchwork, testthat (>= 2.1.0) License: LGPL-2.1 | file LICENSE MD5sum: 13edf3fff909f635ca5c7f9ce03f2cce NeedsCompilation: no Title: Tools for matrices with precision weights, test and explore weighted or sparse data Description: Data type and tools for working with matrices having precision weights and missing data. This package provides a common representation and tools that can be used with many types of high-throughput data. The meaning of the weights is compatible with usage in the base R function "lm" and the package "limma". Calibrate weights to account for known predictors of precision. Find rows with excess variability. Perform differential testing and find rows with the largest confident differences. Find PCA-like components of variation even with many missing values, rotated so that individual components may be meaningfully interpreted. DelayedArray matrices and BiocParallel are supported. biocViews: Software, DataRepresentation, DimensionReduction, GeneExpression, Transcriptomics, RNASeq, SingleCell, Regression Author: Paul Harrison [aut, cre] () Maintainer: Paul Harrison VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/weitrix git_branch: RELEASE_3_20 git_last_commit: f49e1f4 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/weitrix_1.18.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/weitrix_1.18.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/weitrix_1.18.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/weitrix_1.18.0.tgz vignettes: vignettes/weitrix/inst/doc/V1_overview.html, vignettes/weitrix/inst/doc/V2_tail_length.html, vignettes/weitrix/inst/doc/V3_shift.html, vignettes/weitrix/inst/doc/V4_airway.html, vignettes/weitrix/inst/doc/V5_slam_seq.html vignetteTitles: 1. Concepts and practical details, 2. poly(A) tail length example, 3. Alternative polyadenylation, 4. RNA-Seq expression example, 5. Proportions data example with SLAM-Seq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/weitrix/inst/doc/V2_tail_length.R, vignettes/weitrix/inst/doc/V3_shift.R, vignettes/weitrix/inst/doc/V4_airway.R, vignettes/weitrix/inst/doc/V5_slam_seq.R dependencyCount: 92 Package: widgetTools Version: 1.84.0 Depends: R (>= 2.4.0), methods, utils, tcltk Suggests: Biobase License: LGPL Archs: x64 MD5sum: 83e16ec98e823d13ae3f359047fda205 NeedsCompilation: no Title: Creates an interactive tcltk widget Description: This packages contains tools to support the construction of tcltk widgets biocViews: Infrastructure Author: Jianhua Zhang Maintainer: Jianhua Zhang git_url: https://git.bioconductor.org/packages/widgetTools git_branch: RELEASE_3_20 git_last_commit: 28b9e8b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/widgetTools_1.84.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/widgetTools_1.84.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/widgetTools_1.84.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/widgetTools_1.84.0.tgz vignettes: vignettes/widgetTools/inst/doc/widgetTools.pdf vignetteTitles: widgetTools Introduction hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/widgetTools/inst/doc/widgetTools.R dependsOnMe: tkWidgets importsMe: OLINgui, SeqFeatR suggestsMe: affy dependencyCount: 3 Package: wiggleplotr Version: 1.30.0 Depends: R (>= 3.6) Imports: dplyr, ggplot2 (>= 2.2.0), GenomicRanges, rtracklayer, cowplot, assertthat, purrr, S4Vectors, IRanges, GenomeInfoDb Suggests: knitr, rmarkdown, biomaRt, GenomicFeatures, testthat, ensembldb, EnsDb.Hsapiens.v86, org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg38.knownGene, AnnotationDbi, AnnotationFilter License: Apache License 2.0 Archs: x64 MD5sum: 99582d2550bfa201b05f20898b1f7519 NeedsCompilation: no Title: Make read coverage plots from BigWig files Description: Tools to visualise read coverage from sequencing experiments together with genomic annotations (genes, transcripts, peaks). Introns of long transcripts can be rescaled to a fixed length for better visualisation of exonic read coverage. biocViews: ImmunoOncology, Coverage, RNASeq, ChIPSeq, Sequencing, Visualization, GeneExpression, Transcription, AlternativeSplicing Author: Kaur Alasoo [aut, cre] Maintainer: Kaur Alasoo VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/wiggleplotr git_branch: RELEASE_3_20 git_last_commit: 6164878 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/wiggleplotr_1.30.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/wiggleplotr_1.30.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/wiggleplotr_1.30.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/wiggleplotr_1.30.0.tgz vignettes: vignettes/wiggleplotr/inst/doc/wiggleplotr.html vignetteTitles: Introduction to wiggleplotr hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/wiggleplotr/inst/doc/wiggleplotr.R importsMe: factR suggestsMe: MARVEL dependencyCount: 90 Package: wpm Version: 1.16.0 Depends: R (>= 4.1.0) Imports: utils, methods, cli, Biobase, SummarizedExperiment, config, golem, shiny, DT, ggplot2, dplyr, rlang, stringr, shinydashboard, shinyWidgets, shinycustomloader, RColorBrewer, logging Suggests: MSnbase, testthat, BiocStyle, knitr, rmarkdown License: Artistic-2.0 MD5sum: 6283bd8b65b3a3937f44d7f2d8d1d96e NeedsCompilation: no Title: Well Plate Maker Description: The Well-Plate Maker (WPM) is a shiny application deployed as an R package. Functions for a command-line/script use are also available. The WPM allows users to generate well plate maps to carry out their experiments while improving the handling of batch effects. In particular, it helps controlling the "plate effect" thanks to its ability to randomize samples over multiple well plates. The algorithm for placing the samples is inspired by the backtracking algorithm: the samples are placed at random while respecting specific spatial constraints. biocViews: GUI, Proteomics, MassSpectrometry, BatchEffect, ExperimentalDesign Author: Helene Borges [aut, cre], Thomas Burger [aut] Maintainer: Helene Borges URL: https://github.com/HelBor/wpm, https://bioconductor.org/packages/release/bioc/html/wpm.html VignetteBuilder: knitr BugReports: https://github.com/HelBor/wpm/issues git_url: https://git.bioconductor.org/packages/wpm git_branch: RELEASE_3_20 git_last_commit: 1e6fd72 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/wpm_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/wpm_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/wpm_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/wpm_1.16.0.tgz vignettes: vignettes/wpm/inst/doc/wpm_vignette.html vignetteTitles: How to use Well Plate Maker hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/wpm/inst/doc/wpm_vignette.R dependencyCount: 107 Package: wppi Version: 1.14.0 Depends: R(>= 4.1) Imports: dplyr, igraph, logger, methods, magrittr, Matrix, OmnipathR(>= 2.99.8), progress, purrr, rlang, RCurl, stats, tibble, tidyr Suggests: knitr, testthat, rmarkdown License: MIT + file LICENSE MD5sum: 50536f6d414ee0272f3804880f4c8aca NeedsCompilation: no Title: Weighting protein-protein interactions Description: Protein-protein interaction data is essential for omics data analysis and modeling. Database knowledge is general, not specific for cell type, physiological condition or any other context determining which connections are functional and contribute to the signaling. Functional annotations such as Gene Ontology and Human Phenotype Ontology might help to evaluate the relevance of interactions. This package predicts functional relevance of protein-protein interactions based on functional annotations such as Human Protein Ontology and Gene Ontology, and prioritizes genes based on network topology, functional scores and a path search algorithm. biocViews: GraphAndNetwork, Network, Pathways, Software, GeneSignaling, GeneTarget, SystemsBiology, Transcriptomics, Annotation Author: Ana Galhoz [cre, aut] (), Denes Turei [aut] (), Michael P. Menden [aut] (), Albert Krewinkel [ctb, cph] (pagebreak Lua filter) Maintainer: Ana Galhoz URL: https://github.com/AnaGalhoz37/wppi VignetteBuilder: knitr BugReports: https://github.com/AnaGalhoz37/wppi/issues git_url: https://git.bioconductor.org/packages/wppi git_branch: RELEASE_3_20 git_last_commit: 240f65a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/wppi_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/wppi_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/wppi_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/wppi_1.14.0.tgz vignettes: vignettes/wppi/inst/doc/wppi_workflow.html vignetteTitles: WPPI workflow hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/wppi/inst/doc/wppi_workflow.R dependencyCount: 92 Package: Wrench Version: 1.24.0 Depends: R (>= 3.5.0) Imports: limma, matrixStats, locfit, stats, graphics Suggests: knitr, rmarkdown, metagenomeSeq, DESeq2, edgeR License: Artistic-2.0 MD5sum: a766c7f09aefdfa4c5178fc67e85d975 NeedsCompilation: no Title: Wrench normalization for sparse count data Description: Wrench is a package for normalization sparse genomic count data, like that arising from 16s metagenomic surveys. biocViews: Normalization, Sequencing, Software Author: Senthil Kumar Muthiah [aut], Hector Corrada Bravo [aut, cre] Maintainer: Hector Corrada Bravo URL: https://github.com/HCBravoLab/Wrench VignetteBuilder: knitr BugReports: https://github.com/HCBravoLab/Wrench/issues git_url: https://git.bioconductor.org/packages/Wrench git_branch: RELEASE_3_20 git_last_commit: e72ed95 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Wrench_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Wrench_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Wrench_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Wrench_1.24.0.tgz vignettes: vignettes/Wrench/inst/doc/vignette.html vignetteTitles: Wrench hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Wrench/inst/doc/vignette.R dependencyCount: 11 Package: xcms Version: 4.4.0 Depends: R (>= 4.0.0), BiocParallel (>= 1.8.0) Imports: MSnbase (>= 2.29.3), mzR (>= 2.25.3), methods, Biobase, BiocGenerics, ProtGenerics (>= 1.37.1), lattice, MassSpecWavelet (>= 1.66.0), S4Vectors, IRanges, SummarizedExperiment, MsCoreUtils (>= 1.15.5), MsFeatures, MsExperiment (>= 1.5.4), Spectra (>= 1.15.7), progress, RColorBrewer, MetaboCoreUtils (>= 1.11.2) Suggests: BiocStyle, caTools, knitr (>= 1.1.0), faahKO, msdata (>= 0.25.1), ncdf4, testthat (>= 3.1.9), pander, rmarkdown, MALDIquant, pheatmap, RANN, multtest, MsBackendMgf, signal, mgcv Enhances: Rgraphviz, rgl License: GPL (>= 2) + file LICENSE MD5sum: caedc8f009885cab5b270bbba406f782 NeedsCompilation: yes Title: LC-MS and GC-MS Data Analysis Description: Framework for processing and visualization of chromatographically separated and single-spectra mass spectral data. Imports from AIA/ANDI NetCDF, mzXML, mzData and mzML files. Preprocesses data for high-throughput, untargeted analyte profiling. biocViews: ImmunoOncology, MassSpectrometry, Metabolomics Author: Colin A. Smith [aut], Ralf Tautenhahn [aut], Steffen Neumann [aut, cre] (), Paul Benton [aut], Christopher Conley [aut], Johannes Rainer [aut] (), Michael Witting [ctb], William Kumler [aut] (), Philippine Louail [aut] (), Pablo Vangeenderhuysen [ctb] (), Carl Brunius [ctb] () Maintainer: Steffen Neumann URL: https://github.com/sneumann/xcms VignetteBuilder: knitr BugReports: https://github.com/sneumann/xcms/issues/new git_url: https://git.bioconductor.org/packages/xcms git_branch: RELEASE_3_20 git_last_commit: 324bb46 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/xcms_4.4.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/xcms_4.4.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/xcms_4.4.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/xcms_4.4.0.tgz vignettes: vignettes/xcms/inst/doc/LC-MS-feature-grouping.html, vignettes/xcms/inst/doc/xcms-direct-injection.html, vignettes/xcms/inst/doc/xcms.html, vignettes/xcms/inst/doc/xcms-lcms-ms.html vignetteTitles: LC-MS feature grouping, Grouping FTICR-MS data with xcms, LC-MS data preprocessing and analysis with xcms, LC-MS/MS data analysis with xcms hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/xcms/inst/doc/LC-MS-feature-grouping.R, vignettes/xcms/inst/doc/xcms-direct-injection.R, vignettes/xcms/inst/doc/xcms-lcms-ms.R, vignettes/xcms/inst/doc/xcms.R dependsOnMe: CAMERA, flagme, IPO, LOBSTAHS, metaMS, ncGTW, faahKO, PtH2O2lipids importsMe: CAMERA, cliqueMS, cosmiq, squallms suggestsMe: CluMSID, msPurity, RMassBank, msdata, mtbls2, RforProteomics, CorrectOverloadedPeaks, enviGCMS, isatabr, LCMSQA, MetabolomicsBasics, RAMClustR dependencyCount: 146 Package: xcore Version: 1.10.0 Depends: R (>= 4.2) Imports: DelayedArray (>= 0.18.0), edgeR (>= 3.34.1), foreach (>= 1.5.1), GenomicRanges (>= 1.44.0), glmnet (>= 4.1.2), IRanges (>= 2.26.0), iterators (>= 1.0.13), magrittr (>= 2.0.1), Matrix (>= 1.3.4), methods (>= 4.1.1), MultiAssayExperiment (>= 1.18.0), stats, S4Vectors (>= 0.30.0), utils Suggests: AnnotationHub (>= 3.0.2), BiocGenerics (>= 0.38.0), BiocParallel (>= 1.28), BiocStyle (>= 2.20.2), data.table (>= 1.14.0), devtools (>= 2.4.2), doParallel (>= 1.0.16), ExperimentHub (>= 2.2.0), knitr (>= 1.37), pheatmap (>= 1.0.12), proxy (>= 0.4.26), ridge (>= 3.0), rmarkdown (>= 2.11), rtracklayer (>= 1.52.0), testthat (>= 3.0.0), usethis (>= 2.0.1), xcoredata License: GPL-2 MD5sum: 1f25b26360120ca184ece31f704c8daa NeedsCompilation: no Title: xcore expression regulators inference Description: xcore is an R package for transcription factor activity modeling based on known molecular signatures and user's gene expression data. Accompanying xcoredata package provides a collection of molecular signatures, constructed from publicly available ChiP-seq experiments. xcore use ridge regression to model changes in expression as a linear combination of molecular signatures and find their unknown activities. Obtained, estimates can be further tested for significance to select molecular signatures with the highest predicted effect on the observed expression changes. biocViews: GeneExpression, GeneRegulation, Epigenetics, Regression, Sequencing Author: Maciej Migdał [aut, cre] (), Bogumił Kaczkowski [aut] () Maintainer: Maciej Migdał VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/xcore git_branch: RELEASE_3_20 git_last_commit: 71f2388 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/xcore_1.10.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/xcore_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/xcore_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/xcore_1.10.0.tgz vignettes: vignettes/xcore/inst/doc/xcore_vignette.html vignetteTitles: xcore vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/xcore/inst/doc/xcore_vignette.R suggestsMe: xcoredata dependencyCount: 71 Package: XDE Version: 2.52.0 Depends: R (>= 2.10.0), Biobase (>= 2.5.5) Imports: BiocGenerics, genefilter, graphics, grDevices, gtools, methods, stats, utils, mvtnorm, RColorBrewer, GeneMeta, siggenes Suggests: MASS, RUnit Enhances: coda License: LGPL-2 MD5sum: fe568ba86902936804b630a579e8c5c0 NeedsCompilation: yes Title: XDE: a Bayesian hierarchical model for cross-study analysis of differential gene expression Description: Multi-level model for cross-study detection of differential gene expression. biocViews: Microarray, DifferentialExpression Author: R.B. Scharpf, G. Parmigiani, A.B. Nobel, and H. Tjelmeland Maintainer: Robert Scharpf git_url: https://git.bioconductor.org/packages/XDE git_branch: RELEASE_3_20 git_last_commit: c5ffb8a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/XDE_2.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/XDE_2.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/XDE_2.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/XDE_2.52.0.tgz vignettes: vignettes/XDE/inst/doc/XdeParameterClass.pdf, vignettes/XDE/inst/doc/XDE.pdf vignetteTitles: XdeParameterClass Vignette, XDE Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/XDE/inst/doc/XdeParameterClass.R, vignettes/XDE/inst/doc/XDE.R dependencyCount: 64 Package: xenLite Version: 1.0.0 Depends: R (>= 4.1) Imports: SpatialExperiment, BiocFileCache, Matrix, S4Vectors, SummarizedExperiment, methods, utils, EBImage, shiny, HDF5Array, arrow, ggplot2, SingleCellExperiment, TENxIO, dplyr, graphics, stats Suggests: knitr, testthat, BiocStyle, yesno, terra, SpatialFeatureExperiment, SFEData, tiff License: Artistic-2.0 MD5sum: 5660f5e80fbd23c85fa3bf39fe7abb50 NeedsCompilation: no Title: Simple classes and methods for managing Xenium datasets Description: Define a relatively light class for managing Xenium data using Bioconductor. Address use of parquet for coordinates, SpatialExperiment for assay and sample data. Address serialization and use of cloud storage. biocViews: Infrastructure Author: Vincent Carey [aut, cre] () Maintainer: Vincent Carey URL: https://github.com/vjcitn/xenLite VignetteBuilder: knitr BugReports: https://github.com/vjcitn/xenLite/issues git_url: https://git.bioconductor.org/packages/xenLite git_branch: RELEASE_3_20 git_last_commit: f59dc8b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/xenLite_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/xenLite_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/xenLite_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/xenLite_1.0.0.tgz vignettes: vignettes/xenLite/inst/doc/xenLite.html vignetteTitles: xenLite: exploration of a class for Xenium demonstration data hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/xenLite/inst/doc/xenLite.R dependencyCount: 138 Package: Xeva Version: 1.22.0 Depends: R (>= 3.6) Imports: methods, stats, utils, BBmisc, Biobase, grDevices, ggplot2, scales, ComplexHeatmap, parallel, doParallel, Rmisc, grid, nlme, PharmacoGx, downloader Suggests: BiocStyle, knitr, rmarkdown License: GPL-3 MD5sum: 190d7a6b0353ecc5d58ca13191f7e8f3 NeedsCompilation: no Title: Analysis of patient-derived xenograft (PDX) data Description: The Xeva package provides efficient and powerful functions for patient-drived xenograft (PDX) based pharmacogenomic data analysis. This package contains a set of functions to perform analysis of patient-derived xenograft data. This package was developed by the BHKLab, for further information please see our documentation. biocViews: GeneExpression, Pharmacogenetics, Pharmacogenomics, Software, Classification Author: Arvind Mer [aut], Benjamin Haibe-Kains [aut, cre] Maintainer: Benjamin Haibe-Kains VignetteBuilder: knitr BugReports: https://github.com/bhklab/Xeva/issues git_url: https://git.bioconductor.org/packages/Xeva git_branch: RELEASE_3_20 git_last_commit: cbbd80b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/Xeva_1.22.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/Xeva_1.22.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/Xeva_1.22.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/Xeva_1.22.0.tgz vignettes: vignettes/Xeva/inst/doc/Xeva.pdf vignetteTitles: The Xeva User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/Xeva/inst/doc/Xeva.R dependencyCount: 169 Package: XINA Version: 1.24.0 Depends: R (>= 3.5) Imports: mclust, plyr, alluvial, ggplot2, igraph, gridExtra, tools, grDevices, graphics, utils, STRINGdb Suggests: knitr, rmarkdown License: GPL-3 MD5sum: 6e59c3086e76875d4422a3379a3db929 NeedsCompilation: no Title: Multiplexes Isobaric Mass Tagged-based Kinetics Data for Network Analysis Description: The aim of XINA is to determine which proteins exhibit similar patterns within and across experimental conditions, since proteins with co-abundance patterns may have common molecular functions. XINA imports multiple datasets, tags dataset in silico, and combines the data for subsequent subgrouping into multiple clusters. The result is a single output depicting the variation across all conditions. XINA, not only extracts coabundance profiles within and across experiments, but also incorporates protein-protein interaction databases and integrative resources such as KEGG to infer interactors and molecular functions, respectively, and produces intuitive graphical outputs. biocViews: SystemsBiology, Proteomics, RNASeq, Network Author: Lang Ho Lee and Sasha A. Singh Maintainer: Lang Ho Lee and Sasha A. Singh VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/XINA git_branch: RELEASE_3_20 git_last_commit: 3d8b7d2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/XINA_1.24.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/XINA_1.24.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/XINA_1.24.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/XINA_1.24.0.tgz vignettes: vignettes/XINA/inst/doc/xina_user_code.html vignetteTitles: xina_user_code hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/XINA/inst/doc/xina_user_code.R dependencyCount: 72 Package: xmapbridge Version: 1.64.0 Depends: R (>= 2.0), methods Suggests: RUnit, RColorBrewer License: LGPL-3 MD5sum: e7eb4c88f4e7e8b2dd65ffe8acc7014e NeedsCompilation: no Title: Export plotting files to the xmapBridge for visualisation in X:Map Description: xmapBridge can plot graphs in the X:Map genome browser. This package exports plotting files in a suitable format. biocViews: Annotation, ReportWriting, Visualization Author: Tim Yates and Crispin J Miller Maintainer: Chris Wirth URL: http://xmap.picr.man.ac.uk, http://www.bioconductor.org git_url: https://git.bioconductor.org/packages/xmapbridge git_branch: RELEASE_3_20 git_last_commit: 99caa39 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/xmapbridge_1.64.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/xmapbridge_1.64.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/xmapbridge_1.64.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/xmapbridge_1.64.0.tgz vignettes: vignettes/xmapbridge/inst/doc/xmapbridge.pdf vignetteTitles: xmapbridge primer hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/xmapbridge/inst/doc/xmapbridge.R dependencyCount: 1 Package: XNAString Version: 1.14.0 Depends: R (>= 4.1) Imports: utils, Biostrings, pwalign, BSgenome, data.table, GenomicRanges, IRanges, methods, Rcpp, stringi, S4Vectors, future.apply, stringr, formattable, stats LinkingTo: Rcpp Suggests: BiocStyle, knitr, rmarkdown, markdown, testthat, BSgenome.Hsapiens.UCSC.hg38, pander License: GPL-2 MD5sum: 9227299ff22cd0c02824cd16fcfca7b1 NeedsCompilation: yes Title: Efficient Manipulation of Modified Oligonucleotide Sequences Description: The XNAString package allows for description of base sequences and associated chemical modifications in a single object. XNAString is able to capture single stranded, as well as double stranded molecules. Chemical modifications are represented as independent strings associated with different features of the molecules (base sequence, sugar sequence, backbone sequence, modifications) and can be read or written to a HELM notation. It also enables secondary structure prediction using RNAfold from ViennaRNA. XNAString is designed to be efficient representation of nucleic-acid based therapeutics, therefore it stores information about target sequences and provides interface for matching and alignment functions from Biostrings and pwalign packages. biocViews: SequenceMatching, Alignment, Sequencing, Genetics Author: Anna Górska [aut], Marianna Plucinska [aut, cre], Lykke Pedersen [aut], Lukasz Kielpinski [aut], Disa Tehler [aut], Peter H. Hagedorn [aut] Maintainer: Marianna Plucinska VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/XNAString git_branch: RELEASE_3_20 git_last_commit: e12cdd2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/XNAString_1.14.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/XNAString_1.14.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/XNAString_1.14.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/XNAString_1.14.0.tgz vignettes: vignettes/XNAString/inst/doc/XNAString_vignette.html vignetteTitles: XNAString classes and functionalities hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/XNAString/inst/doc/XNAString_vignette.R dependencyCount: 95 Package: XVector Version: 0.46.0 Depends: R (>= 4.0.0), methods, BiocGenerics (>= 0.37.0), S4Vectors (>= 0.27.12), IRanges (>= 2.23.9) Imports: methods, utils, tools, zlibbioc, BiocGenerics, S4Vectors, IRanges LinkingTo: S4Vectors, IRanges Suggests: Biostrings, drosophila2probe, RUnit License: Artistic-2.0 MD5sum: 038527773e20903db8e40a7cfa44ab27 NeedsCompilation: yes Title: Foundation of external vector representation and manipulation in Bioconductor Description: Provides memory efficient S4 classes for storing sequences "externally" (e.g. behind an R external pointer, or on disk). biocViews: Infrastructure, DataRepresentation Author: Hervé Pagès and Patrick Aboyoun Maintainer: Hervé Pagès URL: https://bioconductor.org/packages/XVector BugReports: https://github.com/Bioconductor/XVector/issues git_url: https://git.bioconductor.org/packages/XVector git_branch: RELEASE_3_20 git_last_commit: 1c8f81d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/XVector_0.46.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/XVector_0.46.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/XVector_0.46.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/XVector_0.46.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE dependsOnMe: Biostrings, triplex importsMe: BSgenome, ChIPsim, CNEr, compEpiTools, crisprScore, dada2, DECIPHER, gcrma, GenomAutomorphism, GenomicFeatures, GenomicRanges, Gviz, HiLDA, IONiseR, IsoformSwitchAnalyzeR, kebabs, MatrixRider, Modstrings, monaLisa, ProteoDisco, R453Plus1Toolbox, ribosomeProfilingQC, Rsamtools, rtracklayer, SparseArray, Structstrings, TFBSTools, tracktables, tRNA, tRNAscanImport, VariantAnnotation, simMP suggestsMe: IRanges, musicatk linksToMe: Biostrings, CNEr, DECIPHER, kebabs, MatrixRider, pwalign, Rsamtools, rtracklayer, ShortRead, SparseArray, triplex, VariantAnnotation, VariantFiltering dependencyCount: 10 Package: yamss Version: 1.32.0 Depends: R (>= 4.3.0), methods, BiocGenerics (>= 0.15.3), SummarizedExperiment Imports: IRanges, stats, S4Vectors, EBImage, Matrix, mzR, data.table, grDevices, limma Suggests: BiocStyle, knitr, rmarkdown, digest, mtbls2, testthat License: Artistic-2.0 Archs: x64 MD5sum: 181c1a5cf080d93476fd59b643e70424 NeedsCompilation: no Title: Tools for high-throughput metabolomics Description: Tools to analyze and visualize high-throughput metabolomics data aquired using chromatography-mass spectrometry. These tools preprocess data in a way that enables reliable and powerful differential analysis. At the core of these methods is a peak detection phase that pools information across all samples simultaneously. This is in contrast to other methods that detect peaks in a sample-by-sample basis. biocViews: MassSpectrometry, Metabolomics, PeakDetection, Software Author: Leslie Myint [cre, aut] (), Kasper Daniel Hansen [aut] Maintainer: Leslie Myint URL: https://github.com/hansenlab/yamss VignetteBuilder: knitr BugReports: https://github.com/hansenlab/yamss/issues git_url: https://git.bioconductor.org/packages/yamss git_branch: RELEASE_3_20 git_last_commit: f394c05 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/yamss_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/yamss_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/yamss_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/yamss_1.32.0.tgz vignettes: vignettes/yamss/inst/doc/yamss.html vignetteTitles: yamss User's Guide hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/yamss/inst/doc/yamss.R dependencyCount: 76 Package: YAPSA Version: 1.32.0 Depends: R (>= 4.0.0), GenomicRanges, ggplot2, grid Imports: limSolve, SomaticSignatures, VariantAnnotation, GenomeInfoDb, reshape2, gridExtra, corrplot, dendextend, GetoptLong, circlize, gtrellis, doParallel, parallel, PMCMRplus, ggbeeswarm, ComplexHeatmap, KEGGREST, grDevices, Biostrings, BSgenome.Hsapiens.UCSC.hg19, magrittr, pracma, dplyr, utils Suggests: testthat, BiocStyle, knitr, rmarkdown License: GPL-3 MD5sum: 92dfb8587ec502a082056070b49d2d2c NeedsCompilation: no Title: Yet Another Package for Signature Analysis Description: This package provides functions and routines for supervised analyses of mutational signatures (i.e., the signatures have to be known, cf. L. Alexandrov et al., Nature 2013 and L. Alexandrov et al., Bioaxiv 2018). In particular, the family of functions LCD (LCD = linear combination decomposition) can use optimal signature-specific cutoffs which takes care of different detectability of the different signatures. Moreover, the package provides different sets of mutational signatures, including the COSMIC and PCAWG SNV signatures and the PCAWG Indel signatures; the latter infering that with YAPSA, the concept of supervised analysis of mutational signatures is extended to Indel signatures. YAPSA also provides confidence intervals as computed by profile likelihoods and can perform signature analysis on a stratified mutational catalogue (SMC = stratify mutational catalogue) in order to analyze enrichment and depletion patterns for the signatures in different strata. biocViews: Sequencing, DNASeq, SomaticMutation, Visualization, Clustering, GenomicVariation, StatisticalMethod, BiologicalQuestion Author: Daniel Huebschmann [aut], Lea Jopp-Saile [aut], Carolin Andresen [aut], Zuguang Gu [aut, cre], Matthias Schlesner [aut] Maintainer: Zuguang Gu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/YAPSA git_branch: RELEASE_3_20 git_last_commit: e3cceb2 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/YAPSA_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/YAPSA_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/YAPSA_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/YAPSA_1.32.0.tgz vignettes: vignettes/YAPSA/inst/doc/vignette_confidenceIntervals.html, vignettes/YAPSA/inst/doc/vignette_exomes.html, vignettes/YAPSA/inst/doc/vignette_signature_specific_cutoffs.html, vignettes/YAPSA/inst/doc/vignettes_Indel.html, vignettes/YAPSA/inst/doc/vignette_stratifiedAnalysis.html, vignettes/YAPSA/inst/doc/YAPSA.html vignetteTitles: 3. Confidence Intervals, 6. Usage of YAPSA for WES data, 2. Signature-specific cutoffs, 5. Indel signature analysis, 4. Stratified Analysis of Mutational Signatures, 1. Usage of YAPSA hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/YAPSA/inst/doc/vignette_confidenceIntervals.R, vignettes/YAPSA/inst/doc/vignette_exomes.R, vignettes/YAPSA/inst/doc/vignette_signature_specific_cutoffs.R, vignettes/YAPSA/inst/doc/vignettes_Indel.R, vignettes/YAPSA/inst/doc/vignette_stratifiedAnalysis.R, vignettes/YAPSA/inst/doc/YAPSA.R dependencyCount: 199 Package: yarn Version: 1.32.0 Depends: Biobase Imports: biomaRt, downloader, edgeR, gplots, graphics, limma, matrixStats, preprocessCore, readr, RColorBrewer, stats, quantro Suggests: knitr, rmarkdown, testthat (>= 0.8) License: Artistic-2.0 Archs: x64 MD5sum: 2c103371278e4ba17ebd22de0f45d5c3 NeedsCompilation: no Title: YARN: Robust Multi-Condition RNA-Seq Preprocessing and Normalization Description: Expedite large RNA-Seq analyses using a combination of previously developed tools. YARN is meant to make it easier for the user in performing basic mis-annotation quality control, filtering, and condition-aware normalization. YARN leverages many Bioconductor tools and statistical techniques to account for the large heterogeneity and sparsity found in very large RNA-seq experiments. biocViews: Software, QualityControl, GeneExpression, Sequencing, Preprocessing, Normalization, Annotation, Visualization, Clustering Author: Joseph N Paulson [aut, cre], Cho-Yi Chen [aut], Camila Lopes-Ramos [aut], Marieke Kuijjer [aut], John Platig [aut], Abhijeet Sonawane [aut], Maud Fagny [aut], Kimberly Glass [aut], John Quackenbush [aut] Maintainer: Joseph N Paulson VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/yarn git_branch: RELEASE_3_20 git_last_commit: d68f23a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/yarn_1.32.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/yarn_1.32.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/yarn_1.32.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/yarn_1.32.0.tgz vignettes: vignettes/yarn/inst/doc/yarn.pdf vignetteTitles: YARN: Robust Multi-Tissue RNA-Seq Preprocessing and Normalization hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/yarn/inst/doc/yarn.R dependsOnMe: netZooR dependencyCount: 167 Package: zellkonverter Version: 1.16.0 Imports: basilisk, cli, DelayedArray, Matrix, methods, reticulate, S4Vectors, SingleCellExperiment (>= 1.11.6), SummarizedExperiment, utils Suggests: anndata, BiocFileCache, BiocStyle, covr, HDF5Array, knitr, pkgload, rhdf5 (>= 2.45.1), rmarkdown, scRNAseq, spelling, testthat, withr License: MIT + file LICENSE MD5sum: 34d82f13141a2b95f51a9492a693f86a NeedsCompilation: no Title: Conversion Between scRNA-seq Objects Description: Provides methods to convert between Python AnnData objects and SingleCellExperiment objects. These are primarily intended for use by downstream Bioconductor packages that wrap Python methods for single-cell data analysis. It also includes functions to read and write H5AD files used for saving AnnData objects to disk. biocViews: SingleCell, DataImport, DataRepresentation Author: Luke Zappia [aut, cre] (), Aaron Lun [aut] (), Jack Kamm [ctb] (), Robrecht Cannoodt [ctb] (, rcannood), Gabriel Hoffman [ctb] (, GabrielHoffman) Maintainer: Luke Zappia URL: https://github.com/theislab/zellkonverter VignetteBuilder: knitr BugReports: https://github.com/theislab/zellkonverter/issues git_url: https://git.bioconductor.org/packages/zellkonverter git_branch: RELEASE_3_20 git_last_commit: d492566 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/zellkonverter_1.16.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/zellkonverter_1.16.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/zellkonverter_1.16.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/zellkonverter_1.16.0.tgz vignettes: vignettes/zellkonverter/inst/doc/zellkonverter.html vignetteTitles: Converting to/from AnnData to SingleCellExperiments hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/zellkonverter/inst/doc/zellkonverter.R dependsOnMe: scATAC.Explorer, OSCA.intro importsMe: BgeeDB, singleCellTK, velociraptor suggestsMe: cellxgenedp, CuratedAtlasQueryR, GloScope, HDF5Array, HCATonsilData dependencyCount: 52 Package: zenith Version: 1.8.0 Depends: R (>= 4.2.0), limma, methods Imports: variancePartition (>= 1.26.0), EnrichmentBrowser (>= 2.22.0), GSEABase (>= 1.54.0), msigdbr (>= 7.5.1), Rfast, ggplot2, tidyr, reshape2, progress, utils, Rdpack, stats Suggests: BiocStyle, BiocGenerics, knitr, pander, rmarkdown, tweeDEseqCountData, edgeR, kableExtra, RUnit License: Artistic-2.0 MD5sum: 65211ac331b8038c97aca4f4f8508a56 NeedsCompilation: no Title: Gene set analysis following differential expression using linear (mixed) modeling with dream Description: Zenith performs gene set analysis on the result of differential expression using linear (mixed) modeling with dream by considering the correlation between gene expression traits. This package implements the camera method from the limma package proposed by Wu and Smyth (2012). Zenith is a simple extension of camera to be compatible with linear mixed models implemented in variancePartition::dream(). biocViews: RNASeq, GeneExpression, GeneSetEnrichment, DifferentialExpression, BatchEffect, QualityControl, Regression, Epigenetics, FunctionalGenomics, Transcriptomics, Normalization, Preprocessing, Microarray, ImmunoOncology, Software Author: Gabriel Hoffman [aut, cre] Maintainer: Gabriel Hoffman URL: https://DiseaseNeuroGenomics.github.io/zenith VignetteBuilder: knitr BugReports: https://github.com/DiseaseNeuroGenomics/zenith/issues git_url: https://git.bioconductor.org/packages/zenith git_branch: RELEASE_3_20 git_last_commit: e960abc git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-06 source.ver: src/contrib/zenith_1.8.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/zenith_1.8.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/zenith_1.8.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/zenith_1.8.0.tgz vignettes: vignettes/zenith/inst/doc/loading_genesets.html, vignettes/zenith/inst/doc/zenith.html vignetteTitles: Example usage of zenith on GEUVAIDIS RNA-seq, Example usage of zenith on RNA-seq hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/zenith/inst/doc/loading_genesets.R, vignettes/zenith/inst/doc/zenith.R importsMe: dreamlet suggestsMe: variancePartition dependencyCount: 164 Package: zFPKM Version: 1.28.0 Depends: R (>= 3.4.0) Imports: checkmate, dplyr, ggplot2, tidyr, SummarizedExperiment Suggests: knitr, limma, edgeR, GEOquery, stringr, printr, rmarkdown License: GPL-3 | file LICENSE MD5sum: 23e8817a9278e74bb04290d4ab9f56f9 NeedsCompilation: no Title: A suite of functions to facilitate zFPKM transformations Description: Perform the zFPKM transform on RNA-seq FPKM data. This algorithm is based on the publication by Hart et al., 2013 (Pubmed ID 24215113). Reference recommends using zFPKM > -3 to select expressed genes. Validated with encode open/closed chromosome data. Works well for gene level data using FPKM or TPM. Does not appear to calibrate well for transcript level data. biocViews: ImmunoOncology, RNASeq, FeatureExtraction, Software, GeneExpression Author: Ron Ammar [aut, cre], John Thompson [aut] Maintainer: Ron Ammar URL: https://github.com/ronammar/zFPKM/ VignetteBuilder: knitr BugReports: https://github.com/ronammar/zFPKM/issues git_url: https://git.bioconductor.org/packages/zFPKM git_branch: RELEASE_3_20 git_last_commit: 88fadec git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/zFPKM_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/zFPKM_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/zFPKM_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/zFPKM_1.28.0.tgz vignettes: vignettes/zFPKM/inst/doc/zFPKM.html vignetteTitles: Introduction to zFPKM Transformation hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/zFPKM/inst/doc/zFPKM.R suggestsMe: DGEobj.utils dependencyCount: 72 Package: zinbwave Version: 1.28.0 Depends: R (>= 3.4), methods, SummarizedExperiment, SingleCellExperiment Imports: BiocParallel, softImpute, stats, genefilter, edgeR, Matrix Suggests: knitr, rmarkdown, testthat, matrixStats, magrittr, scRNAseq, ggplot2, biomaRt, BiocStyle, Rtsne, DESeq2, sparseMatrixStats License: Artistic-2.0 MD5sum: 5d06238e82140e84ab57b0f0800d96bf NeedsCompilation: no Title: Zero-Inflated Negative Binomial Model for RNA-Seq Data Description: Implements a general and flexible zero-inflated negative binomial model that can be used to provide a low-dimensional representations of single-cell RNA-seq data. The model accounts for zero inflation (dropouts), over-dispersion, and the count nature of the data. The model also accounts for the difference in library sizes and optionally for batch effects and/or other covariates, avoiding the need for pre-normalize the data. biocViews: ImmunoOncology, DimensionReduction, GeneExpression, RNASeq, Software, Transcriptomics, Sequencing, SingleCell Author: Davide Risso [aut, cre, cph], Svetlana Gribkova [aut], Fanny Perraudeau [aut], Jean-Philippe Vert [aut], Clara Bagatin [aut] Maintainer: Davide Risso VignetteBuilder: knitr BugReports: https://github.com/drisso/zinbwave/issues git_url: https://git.bioconductor.org/packages/zinbwave git_branch: RELEASE_3_20 git_last_commit: c0ec346 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/zinbwave_1.28.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/zinbwave_1.28.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/zinbwave_1.28.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/zinbwave_1.28.0.tgz vignettes: vignettes/zinbwave/inst/doc/intro.html vignetteTitles: zinbwave Vignette hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/zinbwave/inst/doc/intro.R importsMe: clusterExperiment, scBFA, singleCellTK, SpatialDDLS suggestsMe: MAST, splatter dependencyCount: 77 Package: zitools Version: 1.0.0 Depends: R (>= 4.4.0), methods Imports: phyloseq, pscl, ggplot2, MatrixGenerics, SummarizedExperiment, stats, VGAM, matrixStats, tidyr, tibble, dplyr, DESeq2, reshape2, RColorBrewer, magrittr, BiocGenerics, graphics, utils Suggests: knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0), tidyverse, microbiome License: BSD_3_clause + file LICENSE Archs: x64 MD5sum: eb9b1c5201f609132929b2a323dc9c1a NeedsCompilation: no Title: Analysis of zero-inflated count data Description: zitools allows for zero inflated count data analysis by either using down-weighting of excess zeros or by replacing an appropriate proportion of excess zeros with NA. Through overloading frequently used statistical functions (such as mean, median, standard deviation), plotting functions (such as boxplots or heatmap) or differential abundance tests, it allows a wide range of downstream analyses for zero-inflated data in a less biased manner. This becomes applicable in the context of microbiome analyses, where the data is often overdispersed and zero-inflated, therefore making data analysis extremly challenging. biocViews: Software, StatisticalMethod, Microbiome Author: Carlotta Meyring [aut, cre] () Maintainer: Carlotta Meyring URL: https://github.com/kreutz-lab/zitools VignetteBuilder: knitr BugReports: https://github.com/kreutz-lab/zitools/issues git_url: https://git.bioconductor.org/packages/zitools git_branch: RELEASE_3_20 git_last_commit: 64fc513 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/zitools_1.0.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/zitools_1.0.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/zitools_1.0.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/zitools_1.0.0.tgz vignettes: vignettes/zitools/inst/doc/zitools_tutorial.pdf vignetteTitles: An Introduction to zitools hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/zitools/inst/doc/zitools_tutorial.R dependencyCount: 108 Package: zlibbioc Version: 1.52.0 Suggests: BiocStyle, knitr License: Artistic-2.0 + file LICENSE Archs: x64 MD5sum: a8a1ac34bfefde2d1ec682600be874a1 NeedsCompilation: yes Title: An R packaged zlib-1.2.5 Description: This package uses the source code of zlib-1.2.5 to create libraries for systems that do not have these available via other means (most Linux and Mac users should have system-level access to zlib, and no direct need for this package). See the vignette for instructions on use. biocViews: Infrastructure Author: Martin Morgan Maintainer: Bioconductor Package Maintainer URL: https://bioconductor.org/packages/zlibbioc VignetteBuilder: knitr BugReports: https://github.com/Bioconductor/zlibbioc/issues PackageStatus: Deprecated git_url: https://git.bioconductor.org/packages/zlibbioc git_branch: RELEASE_3_20 git_last_commit: 88140a7 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/zlibbioc_1.52.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/zlibbioc_1.52.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/zlibbioc_1.52.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/zlibbioc_1.52.0.tgz vignettes: vignettes/zlibbioc/inst/doc/UsingZlibbioc.html vignetteTitles: Using zlibbioc C libraries hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Rfiles: vignettes/zlibbioc/inst/doc/UsingZlibbioc.R importsMe: affy, affyio, affyPLM, bamsignals, CellBarcode, ChemmineOB, GrafGen, HiCDOC, MADSEQ, makecdfenv, NanoMethViz, oligo, qckitfastq, Rhtslib, Rsamtools, rtracklayer, scMitoMut, screenCounter, snpStats, VariantAnnotation, XVector, jackalope linksToMe: bamsignals, ChemmineOB, csaw, diffHic, maftools, methylKit, Rfastp, Rhtslib, scPipe, seqTools, jackalope dependencyCount: 0 Package: ZygosityPredictor Version: 1.6.0 Depends: R (>= 4.3.0) Imports: GenomicAlignments, GenomicRanges, Rsamtools, IRanges, VariantAnnotation, DelayedArray, dplyr, stringr, purrr, tibble, methods, knitr, igraph, readr, stats, magrittr, rlang Suggests: rmarkdown, testthat, BiocStyle License: GPL-2 MD5sum: ea68947d05bf3b8ba399155f1fbf4c08 NeedsCompilation: no Title: Package for prediction of zygosity for variants/genes in NGS data Description: The ZygosityPredictor allows to predict how many copies of a gene are affected by small variants. In addition to the basic calculations of the affected copy number of a variant, the Zygosity-Predictor can integrate the influence of several variants on a gene and ultimately make a statement if and how many wild-type copies of the gene are left. This information proves to be of particular use in the context of translational medicine. For example, in cancer genomes, the Zygosity-Predictor can address whether unmutated copies of tumor-suppressor genes are present. Beyond this, it is possible to make this statement for all genes of an organism. The Zygosity-Predictor was primarily developed to handle SNVs and INDELs (later addressed as small-variants) of somatic and germline origin. In order not to overlook severe effects outside of the small-variant context, it has been extended with the assessment of large scale deletions, which cause losses of whole genes or parts of them. biocViews: BiomedicalInformatics, FunctionalPrediction, SomaticMutation, GenePrediction Author: Marco Rheinnecker [aut, cre] (), Marc Ruebsam [aut], Daniel Huebschmann [aut], Martina Froehlich [aut], Barbara Hutter [aut] Maintainer: Marco Rheinnecker VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/ZygosityPredictor git_branch: RELEASE_3_20 git_last_commit: e80865b git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 source.ver: src/contrib/ZygosityPredictor_1.6.0.tar.gz win.binary.ver: bin/windows/contrib/4.4/ZygosityPredictor_1.6.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/ZygosityPredictor_1.6.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ZygosityPredictor_1.6.0.tgz vignettes: vignettes/ZygosityPredictor/inst/doc/Usage.html vignetteTitles: Usage hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Rfiles: vignettes/ZygosityPredictor/inst/doc/Usage.R dependencyCount: 103 Package: bgx Version: 1.72.0 Depends: R (>= 2.0.1), Biobase, affy (>= 1.5.0), gcrma (>= 2.4.1) Imports: Rcpp (>= 0.11.0) LinkingTo: Rcpp Suggests: affydata, hgu95av2cdf License: GPL-2 NeedsCompilation: yes Title: Bayesian Gene eXpression Description: Bayesian integrated analysis of Affymetrix GeneChips biocViews: Microarray, DifferentialExpression Author: Ernest Turro, Graeme Ambler, Anne-Mette K Hein Maintainer: Ernest Turro git_url: https://git.bioconductor.org/packages/bgx git_branch: RELEASE_3_20 git_last_commit: d996f1a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 win.binary.ver: bin/windows/contrib/4.4/bgx_1.72.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/bgx_1.72.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/bgx_1.72.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Package: brainflowprobes Version: 1.20.0 Depends: R (>= 3.6.0) Imports: Biostrings (>= 2.52.0), BSgenome.Hsapiens.UCSC.hg19 (>= 1.4.0), bumphunter (>= 1.26.0), cowplot (>= 1.0.0), derfinder (>= 1.18.1), derfinderPlot (>= 1.18.1), GenomicRanges (>= 1.36.0), ggplot2 (>= 3.1.1), RColorBrewer (>= 1.1), utils, grDevices, GenomicState (>= 0.99.7) Suggests: BiocStyle, knitr, RefManageR, rmarkdown, sessioninfo, testthat (>= 2.1.0), covr License: Artistic-2.0 NeedsCompilation: no Title: Plots and annotation for choosing BrainFlow target probe sequence Description: Use these functions to characterize genomic regions for BrainFlow target probe design. biocViews: Coverage, Visualization, ExperimentalDesign, Transcriptomics, FlowCytometry, GeneTarget Author: Amanda Price [aut, cre] (), Leonardo Collado-Torres [ctb] () Maintainer: Amanda Price URL: https://github.com/LieberInstitute/brainflowprobes VignetteBuilder: knitr BugReports: https://support.bioconductor.org/t/brainflowprobes PackageStatus: Deprecated git_url: https://git.bioconductor.org/packages/brainflowprobes git_branch: RELEASE_3_20 git_last_commit: 9dae052 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 win.binary.ver: bin/windows/contrib/4.4/brainflowprobes_1.20.0.zip hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Package: GraphPAC Version: 1.48.0 Depends: R(>= 2.15),iPAC, igraph, TSP, RMallow Suggests: RUnit, BiocGenerics License: GPL-2 NeedsCompilation: no Title: Identification of Mutational Clusters in Proteins via a Graph Theoretical Approach. Description: Identifies mutational clusters of amino acids in a protein while utilizing the proteins tertiary structure via a graph theoretical model. biocViews: Clustering, Proteomics Author: Gregory Ryslik, Hongyu Zhao Maintainer: Gregory Ryslik git_url: https://git.bioconductor.org/packages/GraphPAC git_branch: RELEASE_3_20 git_last_commit: 088775d git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 win.binary.ver: bin/windows/contrib/4.4/GraphPAC_1.48.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/GraphPAC_1.48.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/GraphPAC_1.48.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: iPAC Version: 1.50.0 Depends: R(>= 2.15), scatterplot3d, Biostrings, pwalign, multtest Imports: grDevices, graphics, stats, gdata License: GPL-2 NeedsCompilation: no Title: Identification of Protein Amino acid Clustering Description: iPAC is a novel tool to identify somatic amino acid mutation clustering within proteins while taking into account protein structure. biocViews: Clustering, Proteomics Author: Gregory Ryslik, Hongyu Zhao Maintainer: Gregory Ryslik git_url: https://git.bioconductor.org/packages/iPAC git_branch: RELEASE_3_20 git_last_commit: e91511a git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 win.binary.ver: bin/windows/contrib/4.4/iPAC_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/iPAC_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/iPAC_1.50.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: QuartPAC Version: 1.38.0 Depends: iPAC, GraphPAC, SpacePAC, data.table Imports: Biostrings, pwalign Suggests: RUnit, BiocGenerics, rgl License: GPL-2 NeedsCompilation: no Title: Identification of mutational clusters in protein quaternary structures Description: Identifies clustering of somatic mutations in proteins over the entire quaternary structure. biocViews: Clustering, Proteomics, SomaticMutation Author: Gregory Ryslik, Yuwei Cheng, Hongyu Zhao Maintainer: Gregory Ryslik git_url: https://git.bioconductor.org/packages/QuartPAC git_branch: RELEASE_3_20 git_last_commit: 5ccb61f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 win.binary.ver: bin/windows/contrib/4.4/QuartPAC_1.38.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/QuartPAC_1.38.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: single Version: 1.10.0 Depends: R (>= 4.0) Imports: Biostrings, BiocGenerics, dplyr, GenomicAlignments,IRanges, methods, reshape2, rlang, Rsamtools, stats, stringr, tidyr, utils Suggests: BiocStyle, knitr, rmarkdown License: MIT + file LICENSE NeedsCompilation: no Title: Accurate consensus sequence from nanopore reads of a gene library Description: Accurate consensus sequence from nanopore reads of a DNA gene library. SINGLe corrects for systematic errors in nanopore sequencing reads of gene libraries and it retrieves true consensus sequences of variants identified by a barcode, needing only a few reads per variant. More information in preprint doi: https://doi.org/10.1101/2020.03.25.007146. biocViews: Software, Sequencing Author: Rocio Espada [aut, cre] () Maintainer: Rocio Espada VignetteBuilder: knitr PackageStatus: Deprecated git_url: https://git.bioconductor.org/packages/single git_branch: RELEASE_3_20 git_last_commit: 00b3c6f git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 win.binary.ver: bin/windows/contrib/4.4/single_1.10.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/single_1.10.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/single_1.10.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Package: SpacePAC Version: 1.44.0 Depends: R(>= 2.15),iPAC Suggests: RUnit, BiocGenerics, rgl License: GPL-2 NeedsCompilation: no Title: Identification of Mutational Clusters in 3D Protein Space via Simulation. Description: Identifies clustering of somatic mutations in proteins via a simulation approach while considering the protein's tertiary structure. biocViews: Clustering, Proteomics Author: Gregory Ryslik, Hongyu Zhao Maintainer: Gregory Ryslik git_url: https://git.bioconductor.org/packages/SpacePAC git_branch: RELEASE_3_20 git_last_commit: f6b8076 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 win.binary.ver: bin/windows/contrib/4.4/SpacePAC_1.44.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/SpacePAC_1.44.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/SpacePAC_1.44.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: TransView Version: 1.50.0 Depends: methods, GenomicRanges Imports: BiocGenerics, S4Vectors (>= 0.9.25), IRanges, zlibbioc, gplots LinkingTo: Rhtslib (>= 1.99.1) Suggests: RUnit, pasillaBamSubset, BiocManager License: GPL-3 Archs: x64 NeedsCompilation: yes Title: Read density map construction and accession. Visualization of ChIPSeq and RNASeq data sets Description: This package provides efficient tools to generate, access and display read densities of sequencing based data sets such as from RNA-Seq and ChIP-Seq. biocViews: ImmunoOncology, DNAMethylation, GeneExpression, Transcription, Microarray, Sequencing, Sequencing, ChIPSeq, RNASeq, MethylSeq, DataImport, Visualization, Clustering, MultipleComparison Author: Julius Muller Maintainer: Julius Muller URL: http://bioconductor.org/packages/release/bioc/html/TransView.html SystemRequirements: GNU make git_url: https://git.bioconductor.org/packages/TransView git_branch: RELEASE_3_20 git_last_commit: 59648ff git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 win.binary.ver: bin/windows/contrib/4.4/TransView_1.50.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TransView_1.50.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TransView_1.50.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: traviz Version: 1.12.0 Depends: R (>= 4.0) Imports: ggplot2, viridis, mgcv, SingleCellExperiment, slingshot, princurve, Biobase, methods, RColorBrewer, SummarizedExperiment, grDevices, graphics, rgl Suggests: scater, dplyr, testthat (>= 3.0.0), covr, S4Vectors, rmarkdown, knitr License: MIT + file LICENSE NeedsCompilation: no Title: Trajectory functions for visualization and interpretation. Description: traviz provides a suite of functions to plot trajectory related objects from Bioconductor packages. It allows plotting trajectories in reduced dimension, as well as averge gene expression smoothers as a function of pseudotime. Asides from general utility functions, traviz also allows plotting trajectories estimated by Slingshot, as well as smoothers estimated by tradeSeq. Furthermore, it allows for visualization of Slingshot trajectories using ggplot2. biocViews: GeneExpression, RNASeq, Sequencing, Software, SingleCell, Transcriptomics, Visualization Author: Hector Roux de Bezieux [aut, ctb], Kelly Street [aut, ctb], Koen Van den Berge [aut, cre] Maintainer: Koen Van den Berge VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/traviz git_branch: RELEASE_3_20 git_last_commit: 003c3e5 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 win.binary.ver: bin/windows/contrib/4.4/traviz_1.12.0.zip mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/traviz_1.12.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/traviz_1.12.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Package: coMET Version: 1.38.0 Depends: R (>= 4.1.0), grid, utils, biomaRt, Gviz, psych Imports: hash,grDevices, gridExtra, rtracklayer, IRanges, S4Vectors, GenomicRanges, stats, corrplot Suggests: BiocStyle, knitr, RUnit, BiocGenerics, showtext License: GPL (>= 2) MD5sum: 84cf5f4f3cd44603021aae09823cb1e5 NeedsCompilation: no Title: coMET: visualisation of regional epigenome-wide association scan (EWAS) results and DNA co-methylation patterns Description: Visualisation of EWAS results in a genomic region. In addition to phenotype-association P-values, coMET also generates plots of co-methylation patterns and provides a series of annotation tracks. It can be used to other omic-wide association scans as lon:g as the data can be translated to genomic level and for any species. biocViews: Software, DifferentialMethylation, Visualization, Sequencing, Genetics, FunctionalGenomics, Microarray, MethylationArray, MethylSeq, ChIPSeq, DNASeq, RiboSeq, RNASeq, ExomeSeq, DNAMethylation, GenomeWideAssociation, MotifAnnotation Author: Tiphaine C. Martin [aut,cre], Thomas Hardiman [aut], Idil Yet [aut], Pei-Chien Tsai [aut], Jordana T. Bell [aut] Maintainer: Tiphaine Martin URL: http://epigen.kcl.ac.uk/comet VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/coMET git_branch: RELEASE_3_20 git_last_commit: 59f6013 git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-20 mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/coMET_1.38.0.tgz mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/coMET_1.38.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Package: DeProViR Version: 1.2.0 Depends: keras Imports: caret, data.table, dplyr, fmsb, ggplot2, grDevices, pROC, PRROC, readr, stats, BiocFileCache, utils Suggests: rmarkdown, tensorflow, BiocStyle, RUnit, knitr, BiocGenerics License: MIT+ file LICENSE MD5sum: 5d0c5b0a72bde4e38a84bfe2f5130a55 NeedsCompilation: no Title: A Deep-Learning Framework Based on Pre-trained Sequence Embeddings for Predicting Host-Viral Protein-Protein Interactions Description: Emerging infectious diseases, exemplified by the zoonotic COVID-19 pandemic caused by SARS-CoV-2, are grave global threats. Understanding protein-protein interactions (PPIs) between host and viral proteins is essential for therapeutic targets and insights into pathogen replication and immune evasion. While experimental methods like yeast two-hybrid screening and mass spectrometry provide valuable insights, they are hindered by experimental noise and costs, yielding incomplete interaction maps. Computational models, notably DeProViR, predict PPIs from amino acid sequences, incorporating semantic information with GloVe embeddings. DeProViR employs a Siamese neural network, integrating convolutional and Bi-LSTM networks to enhance accuracy. It overcomes the limitations of feature engineering, offering an efficient means to predict host-virus interactions, which holds promise for antiviral therapies and advancing our understanding of infectious diseases. biocViews: Proteomics, SystemsBiology, NetworkInference, NeuralNetwork, Network Author: Matineh Rahmatbakhsh [aut, trl, cre] Maintainer: Matineh Rahmatbakhsh URL: https://github.com/mrbakhsh/DeProViR VignetteBuilder: knitr BugReports: https://github.com/mrbakhsh/DeProViR/issues git_url: https://git.bioconductor.org/packages/DeProViR git_branch: RELEASE_3_20 git_last_commit: dd7b396 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/DeProViR_1.2.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Package: MethReg Version: 1.15.0 Depends: R (>= 4.0) Imports: dplyr, plyr, GenomicRanges, SummarizedExperiment, DelayedArray, ggplot2, ggpubr, tibble, tidyr, S4Vectors, sesameData, sesame, AnnotationHub, ExperimentHub, stringr, readr, methods, stats, Matrix, MASS, rlang, pscl, IRanges, sfsmisc, progress, utils, openxlsx, JASPAR2024, RSQLite, TFBSTools Suggests: rmarkdown, BiocStyle, testthat (>= 2.1.0), parallel, R.utils, doParallel, reshape2, motifmatchr, matrixStats, biomaRt, dorothea, viper, stageR, BiocFileCache, png, htmltools, knitr, jpeg, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Hsapiens.UCSC.hg19, data.table, downloader License: GPL-3 MD5sum: 806a3a0f58b026b89ffa8ac2567e74b0 NeedsCompilation: no Title: Assessing the regulatory potential of DNA methylation regions or sites on gene transcription Description: Epigenome-wide association studies (EWAS) detects a large number of DNA methylation differences, often hundreds of differentially methylated regions and thousands of CpGs, that are significantly associated with a disease, many are located in non-coding regions. Therefore, there is a critical need to better understand the functional impact of these CpG methylations and to further prioritize the significant changes. MethReg is an R package for integrative modeling of DNA methylation, target gene expression and transcription factor binding sites data, to systematically identify and rank functional CpG methylations. MethReg evaluates, prioritizes and annotates CpG sites with high regulatory potential using matched methylation and gene expression data, along with external TF-target interaction databases based on manually curation, ChIP-seq experiments or gene regulatory network analysis. biocViews: MethylationArray, Regression, GeneExpression, Epigenetics, GeneTarget, Transcription Author: Tiago Silva [aut, cre] (), Lily Wang [aut] Maintainer: Tiago Silva VignetteBuilder: knitr BugReports: https://github.com/TransBioInfoLab/MethReg/issues/ git_url: https://git.bioconductor.org/packages/MethReg git_branch: devel git_last_commit: aeb2a7e git_last_commit_date: 2024-04-30 Date/Publication: 2024-10-21 mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/MethReg_1.15.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: NeuCA Version: 1.12.0 Depends: R(>= 3.5.0), keras, limma, e1071, SingleCellExperiment, kableExtra Suggests: BiocStyle, knitr, rmarkdown, networkD3 License: GPL-2 MD5sum: c4eef152330693f2cb438a8b1d7b998d NeedsCompilation: no Title: NEUral network-based single-Cell Annotation tool Description: NeuCA is is a neural-network based method for scRNA-seq data annotation. It can automatically adjust its classification strategy depending on cell type correlations, to accurately annotate cell. NeuCA can automatically utilize the structure information of the cell types through a hierarchical tree to improve the annotation accuracy. It is especially helpful when the data contain closely correlated cell types. biocViews: SingleCell, Software, Classification, NeuralNetwork, RNASeq, Transcriptomics, DataRepresentation, Transcription, Sequencing, Preprocessing, GeneExpression, DataImport Author: Ziyi Li [aut], Hao Feng [aut, cre] Maintainer: Hao Feng VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/NeuCA git_branch: RELEASE_3_20 git_last_commit: ddacc83 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/NeuCA_1.12.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Package: TypeInfo Version: 1.72.0 Depends: methods Suggests: Biobase License: BSD_2_clause MD5sum: 3dbce78837a51f301af0e1c67560e396 NeedsCompilation: no Title: Optional Type Specification Prototype Description: A prototype for a mechanism for specifying the types of parameters and the return value for an R function. This is meta-information that can be used to generate stubs for servers and various interfaces to these functions. Additionally, the arguments in a call to a typed function can be validated using the type specifications. We allow types to be specified as either i) by class name using either inheritance - is(x, className), or strict instance of - class(x) %in% className, or ii) a dynamic test given as an R expression which is evaluated at run-time. More precise information and interesting tests can be done via ii), but it is harder to use this information as meta-data as it requires more effort to interpret it and it is of course run-time information. It is typically more meaningful. biocViews: Infrastructure Author: Duncan Temple Lang Robert Gentleman () Maintainer: Duncan Temple Lang git_url: https://git.bioconductor.org/packages/TypeInfo git_branch: RELEASE_3_20 git_last_commit: 6e0b776 git_last_commit_date: 2024-10-29 Date/Publication: 2024-10-29 mac.binary.big-sur-x86_64.ver: bin/macosx/big-sur-x86_64/contrib/4.4/TypeInfo_1.72.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Package: BEARscc Version: 1.25.0 Depends: R (>= 3.5.0) Imports: ggplot2, SingleCellExperiment, data.table, stats, utils, graphics, compiler Suggests: testthat, cowplot, knitr, rmarkdown, BiocStyle, NMF License: GPL-3 MD5sum: 7c983852fb180c31a1eabc7dd57aa8fc NeedsCompilation: no Title: BEARscc (Bayesian ERCC Assesstment of Robustness of Single Cell Clusters) Description: BEARscc is a noise estimation and injection tool that is designed to assess putative single-cell RNA-seq clusters in the context of experimental noise estimated by ERCC spike-in controls. biocViews: ImmunoOncology, SingleCell, Clustering, Transcriptomics Author: David T. Severson Maintainer: Benjamin Schuster-Boeckler VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/BEARscc git_branch: devel git_last_commit: ca08839 git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/BEARscc_1.25.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: biodbExpasy Version: 1.9.0 Depends: R (>= 4.1) Imports: biodb (>= 1.3.1), R6, stringr, chk Suggests: roxygen2, BiocStyle, testthat (>= 2.0.0), devtools, knitr, rmarkdown, covr, lgr License: AGPL-3 MD5sum: 888f4a20749a03a68940008e0854943d NeedsCompilation: no Title: biodbExpasy, a library for connecting to Expasy ENZYME database. Description: The biodbExpasy library provides access to Expasy ENZYME database, using biodb package framework. It allows to retrieve entries by their accession number. Web services can be accessed for searching the database by name or comments. biocViews: Software, Infrastructure, DataImport Author: Pierrick Roger [aut, cre] () Maintainer: Pierrick Roger VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/biodbExpasy git_branch: devel git_last_commit: 25fc0fc git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biodbExpasy_1.9.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: biodbKegg Version: 1.11.0 Depends: R (>= 4.1) Imports: R6, biodb (>= 1.4.2), chk, lifecycle Suggests: BiocStyle, roxygen2, devtools, testthat (>= 2.0.0), knitr, rmarkdown, igraph, magick, lgr License: AGPL-3 MD5sum: e18c078ddfc1709ab997019b38a60ae3 NeedsCompilation: no Title: biodbKegg, a library for connecting to the KEGG Database Description: The biodbKegg library is an extension of the biodb framework package that provides access to the KEGG databases Compound, Enzyme, Genes, Module, Orthology and Reaction. It allows to retrieve entries by their accession numbers. Web services like "find", "list" and "findExactMass" are also available. Some functions for navigating along the pathways have also been implemented. biocViews: Software, Infrastructure, DataImport, Pathways, KEGG Author: Pierrick Roger [aut, cre] () Maintainer: Pierrick Roger URL: https://github.com/pkrog/biodbKegg VignetteBuilder: knitr BugReports: https://github.com/pkrog/biodbKegg/issues git_url: https://git.bioconductor.org/packages/biodbKegg git_branch: devel git_last_commit: 2d13b73 git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/biodbKegg_1.11.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: consensusOV Version: 1.28.0 Depends: R (>= 3.6) Imports: Biobase, GSVA (>= 1.50.0), gdata, genefu, limma, matrixStats, randomForest, stats, utils, methods, BiocParallel Suggests: BiocStyle, ggplot2, knitr, rmarkdown, magick License: Artistic-2.0 MD5sum: 3dbcc6c053367e46048eb0e6a7d4b774 NeedsCompilation: no Title: Gene expression-based subtype classification for high-grade serous ovarian cancer Description: This package implements four major subtype classifiers for high-grade serous (HGS) ovarian cancer as described by Helland et al. (PLoS One, 2011), Bentink et al. (PLoS One, 2012), Verhaak et al. (J Clin Invest, 2013), and Konecny et al. (J Natl Cancer Inst, 2014). In addition, the package implements a consensus classifier, which consolidates and improves on the robustness of the proposed subtype classifiers, thereby providing reliable stratification of patients with HGS ovarian tumors of clearly defined subtype. biocViews: Classification, Clustering, DifferentialExpression, GeneExpression, Microarray, Transcriptomics Author: Gregory M Chen [aut], Lavanya Kannan [aut], Ludwig Geistlinger [aut], Victor Kofia [aut], Levi Waldron [aut], Christopher Eeles [ctb], Benjamin Haibe-Kains [aut, cre] Maintainer: Benjamin Haibe-Kains URL: http://www.pmgenomics.ca/bhklab/software/consensusOV VignetteBuilder: knitr BugReports: https://github.com/bhklab/consensusOV/issues git_url: https://git.bioconductor.org/packages/consensusOV git_branch: RELEASE_3_20 git_last_commit: 393ac3e git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-08 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/consensusOV_1.28.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: crossmeta Version: 1.31.0 Depends: R (>= 4.0) Imports: affy (>= 1.52.0), affxparser (>= 1.46.0), AnnotationDbi (>= 1.36.2), Biobase (>= 2.34.0), BiocGenerics (>= 0.20.0), BiocManager (>= 1.30.4), DT (>= 0.2), DBI (>= 1.0.0), data.table (>= 1.10.4), edgeR, fdrtool (>= 1.2.15), GEOquery (>= 2.40.0), limma (>= 3.30.13), matrixStats (>= 0.51.0), metaMA (>= 3.1.2), miniUI (>= 0.1.1), methods, oligo (>= 1.38.0), reader(>= 1.0.6), RCurl (>= 1.95.4.11), RSQLite (>= 2.1.1), stringr (>= 1.2.0), sva (>= 3.22.0), shiny (>= 1.0.0), shinyjs (>= 2.0.0), shinyBS (>= 0.61), shinyWidgets (>= 0.5.3), shinypanel (>= 0.1.0), tibble, XML (>= 3.98.1.17), readxl (>= 1.3.1) Suggests: knitr, rmarkdown, lydata, org.Hs.eg.db, testthat License: MIT + file LICENSE MD5sum: f2e89eda6b5226a8a41a20115d6c0dbf NeedsCompilation: no Title: Cross Platform Meta-Analysis of Microarray Data Description: Implements cross-platform and cross-species meta-analyses of Affymentrix, Illumina, and Agilent microarray data. This package automates common tasks such as downloading, normalizing, and annotating raw GEO data. The user then selects control and treatment samples in order to perform differential expression analyses for all comparisons. After analysing each contrast seperately, the user can select tissue sources for each contrast and specify any tissue sources that should be grouped for the subsequent meta-analyses. biocViews: GeneExpression, Transcription, DifferentialExpression, Microarray, TissueMicroarray, OneChannel, Annotation, BatchEffect, Preprocessing, GUI Author: Alex Pickering Maintainer: Alex Pickering URL: https://github.com/alexvpickering/crossmeta SystemRequirements: libxml2: libxml2-dev (deb), libxml2-devel (rpm) libcurl: libcurl4-openssl-dev (deb), libcurl-devel (rpm) openssl: libssl-dev (deb), openssl-devel (rpm), libssl_dev (csw), openssl@1.1 (brew) VignetteBuilder: knitr BugReports: https://github.com/alexvpickering/crossmeta/issues git_url: https://git.bioconductor.org/packages/crossmeta git_branch: devel git_last_commit: ba40297 git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/crossmeta_1.31.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Package: CyTOFpower Version: 1.12.0 Depends: R (>= 4.1) Imports: CytoGLMM, diffcyt, DT, dplyr, ggplot2, magrittr, methods, rlang, stats, shiny, shinyFeedback, shinyjs, shinyMatrix, SummarizedExperiment, tibble, tidyr Suggests: testthat (>= 3.0.0), BiocStyle, knitr License: LGPL-3 MD5sum: 8239f0fa593c681360ab4b6c7d4b71e1 NeedsCompilation: no Title: Power analysis for CyTOF experiments Description: This package is a tool to predict the power of CyTOF experiments in the context of differential state analyses. The package provides a shiny app with two options to predict the power of an experiment: i. generation of in-sicilico CyTOF data, using users input ii. browsing in a grid of parameters for which the power was already precomputed. biocViews: FlowCytometry, SingleCell, CellBiology, StatisticalMethod, Software Author: Anne-Maud Ferreira [cre, aut] (), Catherine Blish [aut], Susan Holmes [aut] Maintainer: Anne-Maud Ferreira VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/CyTOFpower git_branch: RELEASE_3_20 git_last_commit: c9ab31f git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-08 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/CyTOFpower_1.12.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: genefu Version: 2.37.0 Depends: R (>= 4.1), survcomp, biomaRt, iC10, AIMS Imports: amap, impute, mclust, limma, graphics, stats, utils Suggests: GeneMeta, breastCancerVDX, breastCancerMAINZ, breastCancerTRANSBIG, breastCancerUPP, breastCancerUNT, breastCancerNKI, rmeta, Biobase, xtable, knitr, caret, survival, BiocStyle, magick, rmarkdown License: Artistic-2.0 MD5sum: 8dc18c9d4743fb780d616d864f18fb88 NeedsCompilation: no Title: Computation of Gene Expression-Based Signatures in Breast Cancer Description: This package contains functions implementing various tasks usually required by gene expression analysis, especially in breast cancer studies: gene mapping between different microarray platforms, identification of molecular subtypes, implementation of published gene signatures, gene selection, and survival analysis. biocViews: DifferentialExpression, GeneExpression, Visualization, Clustering, Classification Author: Deena M.A. Gendoo [aut], Natchar Ratanasirigulchai [aut], Markus S. Schroeder [aut], Laia Pare [aut], Joel S Parker [aut], Aleix Prat [aut], Nikta Feizi [ctb], Christopher Eeles [ctb], Benjamin Haibe-Kains [aut, cre] Maintainer: Benjamin Haibe-Kains URL: http://www.pmgenomics.ca/bhklab/software/genefu VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/genefu git_branch: devel git_last_commit: 83765c0 git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/genefu_2.37.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: microbiomeMarker Version: 1.11.0 Depends: R (>= 4.1.0) Imports: dplyr, phyloseq, magrittr, purrr, MASS, utils, ggplot2, tibble, rlang, stats, coin, ggtree, tidytree, methods, IRanges, tidyr, patchwork, ggsignif, metagenomeSeq, DESeq2, edgeR, BiocGenerics, Biostrings, yaml, biomformat, S4Vectors, Biobase, ComplexHeatmap, ANCOMBC, caret, limma, ALDEx2, multtest, plotROC, vegan, pROC, BiocParallel Suggests: testthat, covr, glmnet, Matrix, kernlab, e1071, ranger, knitr, rmarkdown, BiocStyle, withr License: GPL-3 MD5sum: e8ab332ff33dd55ef15479e6117024c0 NeedsCompilation: no Title: microbiome biomarker analysis toolkit Description: To date, a number of methods have been developed for microbiome marker discovery based on metagenomic profiles, e.g. LEfSe. However, all of these methods have its own advantages and disadvantages, and none of them is considered standard or universal. Moreover, different programs or softwares may be development using different programming languages, even in different operating systems. Here, we have developed an all-in-one R package microbiomeMarker that integrates commonly used differential analysis methods as well as three machine learning-based approaches, including Logistic regression, Random forest, and Support vector machine, to facilitate the identification of microbiome markers. biocViews: Metagenomics, Microbiome, DifferentialExpression Author: Yang Cao [aut, cre] Maintainer: Yang Cao URL: https://github.com/yiluheihei/microbiomeMarker VignetteBuilder: knitr BugReports: https://github.com/yiluheihei/microbiomeMarker/issues git_url: https://git.bioconductor.org/packages/microbiomeMarker git_branch: devel git_last_commit: 0197460 git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/microbiomeMarker_1.11.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: PanViz Version: 1.7.0 Depends: R (>= 4.2.0) Imports: tidyr, stringr, dplyr, tibble, magrittr, futile.logger, utils, easycsv, rentrez, igraph, RColorBrewer, data.table, colorspace, grDevices, rlang, methods Suggests: testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown, networkD3, License: Artistic-2.0 MD5sum: 677a53368358164c65961691ceb643d3 NeedsCompilation: no Title: Integrating Multi-Omic Network Data With Summay-Level GWAS Data Description: This pacakge integrates data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) with summary-level genome-wide association (GWAS) data, such as that provided by the GWAS Catalog or GWAS Central databases, or a user's own study or dataset, in order to produce biological networks, termed IMONs (Integrated Multi-Omic Networks). IMONs can be used to analyse trait-specific polymorphic data within the context of biochemical and metabolic reaction networks, providing greater biological interpretability for GWAS data. biocViews: GenomeWideAssociation, Reactome, Metabolomics, SNP, GraphAndNetwork, Network, KEGG Author: Luca Anholt [cre, aut] Maintainer: Luca Anholt URL: https://github.com/LucaAnholt/PanViz VignetteBuilder: knitr BugReports: https://github.com/LucaAnholt/PanViz/issues git_url: https://git.bioconductor.org/packages/PanViz git_branch: devel git_last_commit: e40b683 git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PanViz_1.7.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: FALSE Package: pareg Version: 1.9.0 Depends: R (>= 4.2), tensorflow (>= 2.2.0), tfprobability (>= 0.10.0) Imports: stats, tidyr, purrr, future, doFuture, foreach, doRNG, tibble, glue, tidygraph, igraph, proxy, dplyr, magrittr, ggplot2, ggraph, rlang, progress, Matrix, keras, nloptr, ggrepel, methods, DOSE, stringr, reticulate, logger, hms, devtools, basilisk Suggests: knitr, rmarkdown, testthat (>= 2.1.0), BiocStyle, formatR, plotROC, PRROC, mgsa, topGO, msigdbr, betareg, fgsea, ComplexHeatmap, GGally, ggsignif, circlize, enrichplot, ggnewscale, tidyverse, cowplot, ggfittext, simplifyEnrichment, GSEABenchmarkeR, BiocParallel, ggupset, latex2exp, org.Hs.eg.db, GO.db License: GPL-3 MD5sum: 66ec5b74bc043ccdc992ce6dd1d27253 NeedsCompilation: no Title: Pathway enrichment using a regularized regression approach Description: Compute pathway enrichment scores while accounting for term-term relations. This package uses a regularized multiple linear regression to regress differential expression p-values obtained from multi-condition experiments on a pathway membership matrix. By doing so, it is able to incorporate additional biological knowledge into the enrichment analysis and to estimate pathway enrichment scores more robustly. biocViews: Software, StatisticalMethod, GraphAndNetwork, Regression, GeneExpression, DifferentialExpression, NetworkEnrichment, Network Author: Kim Philipp Jablonski [aut, cre] () Maintainer: Kim Philipp Jablonski URL: https://github.com/cbg-ethz/pareg VignetteBuilder: knitr BugReports: https://github.com/cbg-ethz/pareg/issues git_url: https://git.bioconductor.org/packages/pareg git_branch: devel git_last_commit: c9db169 git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/pareg_1.9.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: PDATK Version: 1.14.0 Depends: R (>= 4.1), SummarizedExperiment Imports: data.table, MultiAssayExperiment, ConsensusClusterPlus, igraph, ggplotify, matrixStats, RColorBrewer, clusterRepro, CoreGx, caret, survminer, methods, S4Vectors, BiocGenerics, survival, stats, plyr, dplyr, MatrixGenerics, BiocParallel, rlang, piano, scales, survcomp, genefu, ggplot2, switchBox, reportROC, pROC, verification, utils Suggests: testthat (>= 3.0.0), msigdbr, BiocStyle, rmarkdown, knitr, HDF5Array License: MIT + file LICENSE MD5sum: ca0f10cd4ba85ac11ffb7793e10b61f0 NeedsCompilation: no Title: Pancreatic Ductal Adenocarcinoma Tool-Kit Description: Pancreatic ductal adenocarcinoma (PDA) has a relatively poor prognosis and is one of the most lethal cancers. Molecular classification of gene expression profiles holds the potential to identify meaningful subtypes which can inform therapeutic strategy in the clinical setting. The Pancreatic Cancer Adenocarcinoma Tool-Kit (PDATK) provides an S4 class-based interface for performing unsupervised subtype discovery, cross-cohort meta-clustering, gene-expression-based classification, and subsequent survival analysis to identify prognostically useful subtypes in pancreatic cancer and beyond. Two novel methods, Consensus Subtypes in Pancreatic Cancer (CSPC) and Pancreatic Cancer Overall Survival Predictor (PCOSP) are included for consensus-based meta-clustering and overall-survival prediction, respectively. Additionally, four published subtype classifiers and three published prognostic gene signatures are included to allow users to easily recreate published results, apply existing classifiers to new data, and benchmark the relative performance of new methods. The use of existing Bioconductor classes as input to all PDATK classes and methods enables integration with existing Bioconductor datasets, including the 21 pancreatic cancer patient cohorts available in the MetaGxPancreas data package. PDATK has been used to replicate results from Sandhu et al (2019) [https://doi.org/10.1200/cci.18.00102] and an additional paper is in the works using CSPC to validate subtypes from the included published classifiers, both of which use the data available in MetaGxPancreas. The inclusion of subtype centroids and prognostic gene signatures from these and other publications will enable researchers and clinicians to classify novel patient gene expression data, allowing the direct clinical application of the classifiers included in PDATK. Overall, PDATK provides a rich set of tools to identify and validate useful prognostic and molecular subtypes based on gene-expression data, benchmark new classifiers against existing ones, and apply discovered classifiers on novel patient data to inform clinical decision making. biocViews: GeneExpression, Pharmacogenetics, Pharmacogenomics, Software, Classification, Survival, Clustering, GenePrediction Author: Vandana Sandhu [aut], Heewon Seo [aut], Christopher Eeles [aut], Neha Rohatgi [ctb], Benjamin Haibe-Kains [aut, cre] Maintainer: Benjamin Haibe-Kains VignetteBuilder: knitr BugReports: https://github.com/bhklab/PDATK/issues git_url: https://git.bioconductor.org/packages/PDATK git_branch: RELEASE_3_20 git_last_commit: f8889fc git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-08 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/PDATK_1.14.0.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Package: psygenet2r Version: 1.37.1 Depends: R (>= 3.4) Imports: stringr, RCurl, igraph, ggplot2, reshape2, grid, parallel, biomaRt, BgeeDB, topGO, Biobase, labeling, GO.db Suggests: testthat, knitr, rmarkdown, BiocStyle License: MIT + file LICENSE MD5sum: e9059fc9f2139d1a84ab47da14b833a3 NeedsCompilation: no Title: psygenet2r - An R package for querying PsyGeNET and to perform comorbidity studies in psychiatric disorders Description: Package to retrieve data from PsyGeNET database (www.psygenet.org) and to perform comorbidity studies with PsyGeNET's and user's data. biocViews: Software, BiomedicalInformatics, Genetics, Infrastructure, DataImport, DataRepresentation Author: Alba Gutierrez-Sacristan [aut, cre], Carles Hernandez-Ferrer [aut], Jaun R. Gonzalez [aut], Laura I. Furlong [aut] Maintainer: Alba Gutierrez-Sacristan VignetteBuilder: knitr PackageStatus: Deprecated git_url: https://git.bioconductor.org/packages/psygenet2r git_branch: devel git_last_commit: 20b9d14 git_last_commit_date: 2024-08-12 Date/Publication: 2024-09-16 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/psygenet2r_1.37.1.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Package: rDGIdb Version: 1.31.0 Imports: jsonlite,httr,methods,graphics Suggests: BiocStyle,knitr,testthat License: MIT + file LICENSE MD5sum: 80d943138685b3a177099ed9d0d77734 NeedsCompilation: no Title: R Wrapper for DGIdb Description: The rDGIdb package provides a wrapper for the Drug Gene Interaction Database (DGIdb). For simplicity, the wrapper query function and output resembles the user interface and results format provided on the DGIdb website (https://www.dgidb.org/). biocViews: Software,ResearchField,Pharmacogenetics,Pharmacogenomics, FunctionalGenomics,WorkflowStep,Annotation Author: Thomas Thurnherr, Franziska Singer, Daniel J. Stekhoven, and Niko Beerenwinkel Maintainer: Lars Bosshard VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/rDGIdb git_branch: devel git_last_commit: 15c07ad git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/rDGIdb_1.31.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Package: ReactomeContentService4R Version: 1.13.0 Imports: httr, jsonlite, utils, magick (>= 2.5.1), data.table, doParallel, foreach, parallel Suggests: pdftools, testthat, knitr, rmarkdown License: Apache License (>= 2.0) | file LICENSE MD5sum: ce6f835719aaa521106f7e5e65918664 NeedsCompilation: no Title: Interface for the Reactome Content Service Description: Reactome is a free, open-source, open access, curated and peer-reviewed knowledgebase of bio-molecular pathways. This package is to interact with the Reactome Content Service API. Pre-built functions would allow users to retrieve data and images that consist of proteins, pathways, and other molecules related to a specific gene or entity in Reactome. biocViews: DataImport, Pathways, Reactome Author: Chi-Lam Poon [aut, cre] (), Reactome [cph] Maintainer: Chi-Lam Poon URL: https://github.com/reactome/ReactomeContentService4R VignetteBuilder: knitr BugReports: https://github.com/reactome/ReactomeContentService4R/issues git_url: https://git.bioconductor.org/packages/ReactomeContentService4R git_branch: devel git_last_commit: c21c04e git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ReactomeContentService4R_1.13.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: TRUE Package: ReactomeGraph4R Version: 1.14.0 Depends: R (>= 4.1) Imports: neo4r, utils, getPass, jsonlite, purrr, magrittr, data.table, rlang, ReactomeContentService4R, doParallel, parallel, foreach Suggests: knitr, rmarkdown, testthat, stringr, networkD3, visNetwork, wesanderson License: Apache License (>= 2) MD5sum: 1d2c4ecc0e7f245df462aaedfcbee7fa NeedsCompilation: no Title: Interface for the Reactome Graph Database Description: Pathways, reactions, and biological entities in Reactome knowledge are systematically represented as an ordered network. Instances are represented as nodes and relationships between instances as edges; they are all stored in the Reactome Graph Database. This package serves as an interface to query the interconnected data from a local Neo4j database, with the aim of minimizing the usage of Neo4j Cypher queries. biocViews: DataImport, Pathways, Reactome, Network, GraphAndNetwork Author: Chi-Lam Poon [aut, cre] (), Reactome [cph] Maintainer: Chi-Lam Poon URL: https://github.com/reactome/ReactomeGraph4R VignetteBuilder: knitr BugReports: https://github.com/reactome/ReactomeGraph4R/issues git_url: https://git.bioconductor.org/packages/ReactomeGraph4R git_branch: RELEASE_3_20 git_last_commit: 300fdfa git_last_commit_date: 2024-10-29 Date/Publication: 2024-11-08 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ReactomeGraph4R_1.14.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: signifinder Version: 1.7.0 Depends: R (>= 4.3.0) Imports: AnnotationDbi, BiocGenerics, ComplexHeatmap, consensusOV, cowplot, DGEobj.utils, dplyr, ensembldb, ggplot2, ggridges, GSVA, IRanges, magrittr, matrixStats, maxstat, methods, openair, org.Hs.eg.db, patchwork, RColorBrewer, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg38.knownGene, sparrow, SpatialExperiment, stats, SummarizedExperiment, survival, survminer, viridis Suggests: BiocStyle, edgeR, grid, kableExtra, knitr, limma, testthat (>= 3.0.0) License: AGPL-3 MD5sum: ae22524b15b4abc77eede161445fe22f NeedsCompilation: no Title: Collection and implementation of public transcriptional cancer signatures Description: signifinder is an R package for computing and exploring a compendium of tumor signatures. It allows to compute a variety of signatures, based on gene expression values, and return single-sample scores. Currently, signifinder contains more than 60 distinct signatures collected from the literature, relating to multiple tumors and multiple cancer processes. biocViews: GeneExpression, GeneTarget, ImmunoOncology, BiomedicalInformatics, RNASeq, Microarray, ReportWriting, Visualization, SingleCell, Spatial, GeneSignaling Author: Stefania Pirrotta [cre, aut] (), Enrica Calura [aut] () Maintainer: Stefania Pirrotta URL: https://github.com/CaluraLab/signifinder VignetteBuilder: knitr BugReports: https://github.com/CaluraLab/signifinder/issues git_url: https://git.bioconductor.org/packages/signifinder git_branch: devel git_last_commit: ab19d3b git_last_commit_date: 2024-04-30 Date/Publication: 2024-08-05 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/signifinder_1.7.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: srnadiff Version: 1.25.0 Depends: R (>= 3.6) Imports: Rcpp (>= 0.12.8), stats, methods, devtools, S4Vectors, GenomeInfoDb, rtracklayer, SummarizedExperiment, IRanges, GenomicRanges, DESeq2, edgeR, Rsamtools, GenomicFeatures, GenomicAlignments, grDevices, Gviz, BiocParallel, BiocManager, BiocStyle LinkingTo: Rcpp Suggests: knitr, rmarkdown, testthat, BiocManager, BiocStyle License: GPL-3 MD5sum: c2d58b305f9724301f3b7e4c0af0248c NeedsCompilation: yes Title: Finding differentially expressed unannotated genomic regions from RNA-seq data Description: srnadiff is a package that finds differently expressed regions from RNA-seq data at base-resolution level without relying on existing annotation. To do so, the package implements the identify-then-annotate methodology that builds on the idea of combining two pipelines approachs differential expressed regions detection and differential expression quantification. It reads BAM files as input, and outputs a list differentially regions, together with the adjusted p-values. biocViews: ImmunoOncology, GeneExpression, Coverage, SmallRNA, Epigenetics, StatisticalMethod, Preprocessing, DifferentialExpression Author: Zytnicki Matthias [aut, cre], Gonzalez Ignacio [aut] Maintainer: Zytnicki Matthias SystemRequirements: C++11 VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/srnadiff git_branch: devel git_last_commit: 7519e6e git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/srnadiff_1.25.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: STdeconvolve Version: 1.9.0 Depends: R (>= 4.1) Imports: topicmodels, BiocParallel, Matrix, methods, mgcv, ggplot2, scatterpie, viridis, slam, stats, clue, liger, reshape2, graphics, grDevices, utils Suggests: knitr, BiocStyle, rmarkdown, testthat, rcmdcheck, gplots, gridExtra, hash, dplyr, parallel License: GPL-3 MD5sum: 12c9b0c851af3b2cbc3b5a2bb0589971 NeedsCompilation: no Title: Reference-free Cell-Type Deconvolution of Multi-Cellular Spatially Resolved Transcriptomics Data Description: STdeconvolve as an unsupervised, reference-free approach to infer latent cell-type proportions and transcriptional profiles within multi-cellular spatially-resolved pixels from spatial transcriptomics (ST) datasets. STdeconvolve builds on latent Dirichlet allocation (LDA), a generative statistical model commonly used in natural language processing for discovering latent topics in collections of documents. In the context of natural language processing, given a count matrix of words in documents, LDA infers the distribution of words for each topic and the distribution of topics in each document. In the context of ST data, given a count matrix of gene expression in multi-cellular ST pixels, STdeconvolve applies LDA to infer the putative transcriptional profile for each cell-type and the proportional representation of each cell-type in each multi-cellular ST pixel. biocViews: Transcriptomics, Visualization, RNASeq, Bayesian, Spatial, Software, GeneExpression Author: Brendan Miller [aut, cre] (), Jean Fan [aut] () Maintainer: Brendan Miller URL: https://jef.works/STdeconvolve/ VignetteBuilder: knitr BugReports: https://github.com/JEFworks-Lab/STdeconvolve/issues git_url: https://git.bioconductor.org/packages/STdeconvolve git_branch: devel git_last_commit: 2b5edb8 git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/STdeconvolve_1.9.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: supraHex Version: 1.43.0 Depends: R (>= 3.6), hexbin Imports: ape, MASS, grDevices, graphics, stats, readr, tibble, tidyr, dplyr, stringr, purrr, magrittr, igraph, methods License: GPL-2 MD5sum: 84571e73c9bf68665cfc5b2d57e2f81e NeedsCompilation: no Title: supraHex: a supra-hexagonal map for analysing tabular omics data Description: A supra-hexagonal map is a giant hexagon on a 2-dimensional grid seamlessly consisting of smaller hexagons. It is supposed to train, analyse and visualise a high-dimensional omics input data. The supraHex is able to carry out gene clustering/meta-clustering and sample correlation, plus intuitive visualisations to facilitate exploratory analysis. More importantly, it allows for overlaying additional data onto the trained map to explore relations between input and additional data. So with supraHex, it is also possible to carry out multilayer omics data comparisons. Newly added utilities are advanced heatmap visualisation and tree-based analysis of sample relationships. Uniquely to this package, users can ultrafastly understand any tabular omics data, both scientifically and artistically, especially in a sample-specific fashion but without loss of information on large genes. biocViews: Software, Clustering, Visualization, GeneExpression Author: Hai Fang and Julian Gough Maintainer: Hai Fang URL: http://suprahex.r-forge.r-project.org git_url: https://git.bioconductor.org/packages/supraHex git_branch: devel git_last_commit: 7c4793e git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/supraHex_1.43.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: TBSignatureProfiler Version: 1.17.1 Depends: R (>= 4.2.0) Imports: ASSIGN (>= 1.23.1), BiocParallel, ComplexHeatmap, DESeq2, DT, edgeR, gdata, ggplot2, GSVA (>= 1.51.3), magrittr, methods, RColorBrewer, reshape2, rlang, ROCit, S4Vectors, singscore, stats, SummarizedExperiment Suggests: BiocStyle, caret, circlize, class, covr, dplyr, e1071, glmnet, HGNChelper, impute, knitr, lintr, MASS, plyr, pROC, randomForest, rmarkdown, shiny, spelling, sva, testthat License: MIT + file LICENSE MD5sum: 5dabddbc2b7efcca991f7ee9bd589dcf NeedsCompilation: no Title: Profile RNA-Seq Data Using TB Pathway Signatures Description: Gene signatures of TB progression, TB disease, and other TB disease states have been validated and published previously. This package aggregates known signatures and provides computational tools to enlist their usage on other datasets. The TBSignatureProfiler makes it easy to profile RNA-Seq data using these signatures and includes common signature profiling tools including ASSIGN, GSVA, and ssGSEA. Original models for some gene signatures are also available. A shiny app provides some functionality alongside for detailed command line accessibility. biocViews: GeneExpression, DifferentialExpression Author: Aubrey R. Odom [aut, cre, dtm] (), David Jenkins [aut, org] (), Xutao Wang [aut], Yue Zhao [ctb] (), Christian Love [ctb], W. Evan Johnson [aut] Maintainer: Aubrey R. Odom URL: https://github.com/wejlab/TBSignatureProfiler https://wejlab.github.io/TBSignatureProfiler-docs/ VignetteBuilder: knitr BugReports: https://github.com/wejlab/TBSignatureProfiler/issues git_url: https://git.bioconductor.org/packages/TBSignatureProfiler git_branch: devel git_last_commit: d4c61d3 git_last_commit_date: 2024-05-07 Date/Publication: 2024-05-18 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/TBSignatureProfiler_1.17.1.tgz hasREADME: FALSE hasNEWS: FALSE hasINSTALL: FALSE hasLICENSE: TRUE Package: ViSEAGO Version: 1.19.0 Depends: R (>= 3.6) Imports: data.table, AnnotationDbi, AnnotationForge, biomaRt, dendextend, DiagrammeR, DT, dynamicTreeCut, fgsea, GOSemSim, ggplot2, GO.db, grDevices, heatmaply, htmlwidgets, igraph, methods, plotly, processx, topGO, RColorBrewer, R.utils, scales, stats, UpSetR, utils Suggests: htmltools, org.Mm.eg.db, limma, Rgraphviz, BiocStyle, knitr, rmarkdown, corrplot, remotes, BiocManager License: GPL-3 bioconductor.org MD5sum: ab722d882a6646d6aa35cda4c94791ec NeedsCompilation: no Title: ViSEAGO: a Bioconductor package for clustering biological functions using Gene Ontology and semantic similarity Description: The main objective of ViSEAGO package is to carry out a data mining of biological functions and establish links between genes involved in the study. We developed ViSEAGO in R to facilitate functional Gene Ontology (GO) analysis of complex experimental design with multiple comparisons of interest. It allows to study large-scale datasets together and visualize GO profiles to capture biological knowledge. The acronym stands for three major concepts of the analysis: Visualization, Semantic similarity and Enrichment Analysis of Gene Ontology. It provides access to the last current GO annotations, which are retrieved from one of NCBI EntrezGene, Ensembl or Uniprot databases for several species. Using available R packages and novel developments, ViSEAGO extends classical functional GO analysis to focus on functional coherence by aggregating closely related biological themes while studying multiple datasets at once. It provides both a synthetic and detailed view using interactive functionalities respecting the GO graph structure and ensuring functional coherence supplied by semantic similarity. ViSEAGO has been successfully applied on several datasets from different species with a variety of biological questions. Results can be easily shared between bioinformaticians and biologists, enhancing reporting capabilities while maintaining reproducibility. biocViews: Software, Annotation, GO, GeneSetEnrichment, MultipleComparison, Clustering, Visualization Author: Aurelien Brionne [aut, cre], Amelie Juanchich [aut], Christelle hennequet-antier [aut] Maintainer: Aurelien Brionne URL: https://www.bioconductor.org/packages/release/bioc/html/ViSEAGO.html, https://forgemia.inra.fr/UMR-BOA/ViSEAGO VignetteBuilder: knitr BugReports: https://forgemia.inra.fr/UMR-BOA/ViSEAGO/issues git_url: https://git.bioconductor.org/packages/ViSEAGO git_branch: devel git_last_commit: f2c9bdb git_last_commit_date: 2024-04-30 Date/Publication: 2024-05-04 mac.binary.big-sur-arm64.ver: bin/macosx/big-sur-arm64/contrib/4.4/ViSEAGO_1.19.0.tgz hasREADME: FALSE hasNEWS: TRUE hasINSTALL: FALSE hasLICENSE: FALSE Package: HTqPCR Version: 1.60.0 Depends: Biobase, RColorBrewer, limma Imports: affy, Biobase, gplots, graphics, grDevices, limma, methods, RColorBrewer, stats, stats4, utils Suggests: statmod License: Artistic-2.0 Title: Automated analysis of high-throughput qPCR data Description: Analysis of Ct values from high throughput quantitative real-time PCR (qPCR) assays across multiple conditions or replicates. The input data can be from spatially-defined formats such ABI TaqMan Low Density Arrays or OpenArray; LightCycler from Roche Applied Science; the CFX plates from Bio-Rad Laboratories; conventional 96- or 384-well plates; or microfluidic devices such as the Dynamic Arrays from Fluidigm Corporation. HTqPCR handles data loading, quality assessment, normalization, visualization and parametric or non-parametric testing for statistical significance in Ct values between features (e.g. genes, microRNAs). biocViews: MicrotitrePlateAssay, DifferentialExpression, GeneExpression, DataImport, QualityControl, Preprocessing, Visualization, MultipleComparison, qPCR Author: Heidi Dvinge, Paul Bertone Maintainer: Heidi Dvinge URL: http://www.ebi.ac.uk/bertone/software PackageStatus: Deprecated Package: RNAinteract Version: 1.54.0 Depends: R (>= 2.12.0), Imports: RColorBrewer, ICS, ICSNP, cellHTS2, geneplotter, gplots, grid, hwriter, lattice, latticeExtra, limma, methods, splots (>= 1.13.12), abind, locfit, Biobase License: Artistic-2.0 Title: Estimate Pairwise Interactions from multidimensional features Description: RNAinteract estimates genetic interactions from multi-dimensional read-outs like features extracted from images. The screen is assumed to be performed in multi-well plates or similar designs. Starting from a list of features (e.g. cell number, area, fluorescence intensity) per well, genetic interactions are estimated. The packages provides functions for reporting interacting gene pairs, plotting heatmaps and double RNAi plots. An HTML report can be written for quality control and analysis. biocViews: ImmunoOncology, CellBasedAssays, QualityControl, Preprocessing, Visualization Author: Bernd Fischer [aut], Wolfgang Huber [ctb], Mike Smith [cre] Maintainer: Mike Smith PackageStatus: Deprecated Package: staRank Version: 1.48.0 Depends: methods, cellHTS2, R (>= 2.10) License: GPL Title: Stability Ranking Description: Detecting all relevant variables from a data set is challenging, especially when only few samples are available and data is noisy. Stability ranking provides improved variable rankings of increased robustness using resampling or subsampling. biocViews: ImmunoOncology, MultipleComparison, CellBiology, CellBasedAssays, MicrotitrePlateAssay Author: Juliane Siebourg, Niko Beerenwinkel Maintainer: Juliane Siebourg Package: Risa Version: 1.48.1 Depends: R (>= 2.0.9), Biobase (>= 2.4.0), methods, Rcpp (>= 0.9.13), biocViews, affy Imports: xcms Suggests: faahKO (>= 1.2.11) License: LGPL Title: Converting experimental metadata from ISA-tab into Bioconductor data structures Description: The Investigation / Study / Assay (ISA) tab-delimited format is a general purpose framework with which to collect and communicate complex metadata (i.e. sample characteristics, technologies used, type of measurements made) from experiments employing a combination of technologies, spanning from traditional approaches to high-throughput techniques. Risa allows to access metadata/data in ISA-Tab format and build Bioconductor data structures. Currently, data generated from microarray, flow cytometry and metabolomics-based (i.e. mass spectrometry) assays are supported. The package is extendable and efforts are undergoing to support metadata associated to proteomics assays. biocViews: Annotation, DataImport, MassSpectrometry Author: Alejandra Gonzalez-Beltran, Audrey Kauffmann, Steffen Neumann, Gabriella Rustici, ISA Team Maintainer: Alejandra Gonzalez-Beltran URL: http://www.isa-tools.org/ BugReports: https://github.com/ISA-tools/Risa/issues PackageStatus: Deprecated Package: HTSeqGenie Version: 4.36.0 Depends: R (>= 3.0.0), gmapR (>= 1.8.0), ShortRead (>= 1.19.13), VariantAnnotation (>= 1.8.3) Imports: BiocGenerics (>= 0.2.0), S4Vectors (>= 0.9.25), IRanges (>= 1.21.39), GenomicRanges (>= 1.23.21), Rsamtools (>= 1.8.5), Biostrings (>= 2.24.1), pwalign, chipseq (>= 1.6.1), hwriter (>= 1.3.0), Cairo (>= 1.5.5), GenomicFeatures (>= 1.9.31), BiocParallel, parallel, tools, rtracklayer (>= 1.17.19), GenomicAlignments, VariantTools (>= 1.7.7), GenomeInfoDb, SummarizedExperiment, methods Suggests: TxDb.Hsapiens.UCSC.hg19.knownGene, LungCancerLines, org.Hs.eg.db, RUnit License: Artistic-2.0 Title: A NGS analysis pipeline. Description: Libraries to perform NGS analysis. Author: Gregoire Pau, Jens Reeder Maintainer: Jens Reeder Package: nondetects Version: 2.36.0 Depends: R (>= 3.2), Biobase (>= 2.22.0) Imports: limma, mvtnorm, utils, methods, arm, HTqPCR (>= 1.16.0) Suggests: knitr, rmarkdown, BiocStyle (>= 1.0.0), RUnit, BiocGenerics (>= 0.8.0) License: GPL-3 Title: Non-detects in qPCR data Description: Methods to model and impute non-detects in the results of qPCR experiments. biocViews: Software, AssayDomain, GeneExpression, Technology, qPCR, WorkflowStep, Preprocessing Author: Matthew N. McCall , Valeriia Sherina Maintainer: Valeriia Sherina VignetteBuilder: knitr Package: polyester Version: 1.42.0 Depends: R (>= 3.0.0) Imports: Biostrings (>= 2.32.0), IRanges, S4Vectors, logspline, limma, zlibbioc Suggests: knitr, ballgown, markdown License: Artistic-2.0 Title: Simulate RNA-seq reads Description: This package can be used to simulate RNA-seq reads from differential expression experiments with replicates. The reads can then be aligned and used to perform comparisons of methods for differential expression. biocViews: Sequencing, DifferentialExpression Author: Alyssa C. Frazee, Andrew E. Jaffe, Rory Kirchner, Jeffrey T. Leek Maintainer: Jack Fu , Jeff Leek VignetteBuilder: knitr PackageStatus: Deprecated Package: paxtoolsr Version: 1.40.0 Depends: R (>= 3.2), rJava (>= 0.9-8), methods, XML Imports: utils, httr, igraph, plyr, rjson, R.utils, jsonlite, readr, rappdirs Suggests: testthat, knitr, BiocStyle, formatR, rmarkdown, RColorBrewer, foreach, doSNOW, parallel, org.Hs.eg.db, clusterProfiler License: LGPL-3 Title: Access Pathways from Multiple Databases Through BioPAX and Pathway Commons Description: The package provides a set of R functions for interacting with BioPAX OWL files using Paxtools and the querying Pathway Commons (PC) molecular interaction database. Pathway Commons is a project by the Memorial Sloan-Kettering Cancer Center (MSKCC), Dana-Farber Cancer Institute (DFCI), and the University of Toronto. Pathway Commons databases include: BIND, BioGRID, CORUM, CTD, DIP, DrugBank, HPRD, HumanCyc, IntAct, KEGG, MirTarBase, Panther, PhosphoSitePlus, Reactome, RECON, TRANSFAC. biocViews: GeneSetEnrichment, GraphAndNetwork, Pathways, Software, SystemsBiology, NetworkEnrichment, Network, Reactome, KEGG Author: Augustin Luna [aut, cre] Maintainer: Augustin Luna URL: https://github.com/BioPAX/paxtoolsr SystemRequirements: Java (>= 1.6) VignetteBuilder: knitr Package: gespeR Version: 1.38.0 Depends: methods, graphics, ggplot2, R(>= 2.10) Imports: Matrix, glmnet, cellHTS2, Biobase, biomaRt, doParallel, parallel, foreach, reshape2, dplyr Suggests: knitr License: GPL-3 Title: Gene-Specific Phenotype EstimatoR Description: Estimates gene-specific phenotypes from off-target confounded RNAi screens. The phenotype of each siRNA is modeled based on on-targeted and off-targeted genes, using a regularized linear regression model. biocViews: ImmunoOncology, CellBasedAssays, Preprocessing, GeneTarget, Regression, Visualization Author: Fabian Schmich Maintainer: Fabian Schmich URL: http://www.cbg.ethz.ch/software/gespeR VignetteBuilder: knitr Package: Pi Version: 2.18.0 Depends: igraph, dnet, ggplot2, graphics Imports: Matrix, GenomicRanges, GenomeInfoDb, supraHex, scales, grDevices, ggrepel, ROCR, randomForest, glmnet, lattice, caret, plot3D, stats, methods, MASS, IRanges, BiocGenerics, dplyr, tidyr, ggnetwork, osfr, RCircos, purrr, readr, tibble Suggests: foreach, doParallel, BiocStyle, knitr, rmarkdown, png, GGally, gridExtra, ggforce, fgsea, RColorBrewer, ggpubr, rtracklayer, ggbio, Gviz, data.tree, jsonlite License: GPL-3 Title: Leveraging Genetic Evidence to Prioritise Drug Targets at the Gene and Pathway Level Description: Priority index or Pi is developed as a genomic-led target prioritisation system. It integrates functional genomic predictors, knowledge of network connectivity and immune ontologies to prioritise potential drug targets at the gene and pathway level. biocViews: Software, Genetics, GraphAndNetwork, Pathways, GeneExpression, GeneTarget, GenomeWideAssociation, LinkageDisequilibrium, Network, HiC Author: Hai Fang, the ULTRA-DD Consortium, Julian C Knight Maintainer: Hai Fang URL: http://pi314.r-forge.r-project.org VignetteBuilder: knitr BugReports: https://github.com/hfang-bristol/Pi/issues PackageStatus: Deprecated Package: RGMQL Version: 1.26.0 Depends: R(>= 3.4.2), RGMQLlib Imports: httr, rJava, GenomicRanges, rtracklayer, data.table, utils, plyr, xml2, methods, S4Vectors, dplyr, stats, glue, BiocGenerics Suggests: BiocStyle, knitr, rmarkdown License: Artistic-2.0 Title: GenoMetric Query Language for R/Bioconductor Description: This package brings the GenoMetric Query Language (GMQL) functionalities into the R environment. GMQL is a high-level, declarative language to manage heterogeneous genomic datasets for biomedical purposes, using simple queries to process genomic regions and their metadata and properties. GMQL adopts algorithms efficiently designed for big data using cloud-computing technologies (like Apache Hadoop and Spark) allowing GMQL to run on modern infrastructures, in order to achieve scalability and high performance. It allows to create, manipulate and extract genomic data from different data sources both locally and remotely. Our RGMQL functions allow complex queries and processing leveraging on the R idiomatic paradigm. The RGMQL package also provides a rich set of ancillary classes that allow sophisticated input/output management and sorting, such as: ASC, DESC, BAG, MIN, MAX, SUM, AVG, MEDIAN, STD, Q1, Q2, Q3 (and many others). Note that many RGMQL functions are not directly executed in R environment, but are deferred until real execution is issued. biocViews: Software, Infrastructure, DataImport, Network, ImmunoOncology, SingleCell Author: Simone Pallotta [aut, cre], Marco Masseroli [aut] Maintainer: Simone Pallotta URL: http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/ VignetteBuilder: knitr Package: SummarizedBenchmark Version: 2.24.0 Depends: R (>= 3.6), tidyr, SummarizedExperiment, S4Vectors, BiocGenerics, methods, UpSetR, rlang, stringr, utils, BiocParallel, ggplot2, mclust, dplyr, digest, sessioninfo, crayon, tibble Suggests: iCOBRA, BiocStyle, rmarkdown, knitr, magrittr, IHW, qvalue, testthat, DESeq2, edgeR, limma, tximport, readr, scRNAseq, splatter, scater, rnaseqcomp, biomaRt License: GPL (>= 3) Title: Classes and methods for performing benchmark comparisons Description: This package defines the BenchDesign and SummarizedBenchmark classes for building, executing, and evaluating benchmark experiments of computational methods. The SummarizedBenchmark class extends the RangedSummarizedExperiment object, and is designed to provide infrastructure to store and compare the results of applying different methods to a shared data set. This class provides an integrated interface to store metadata such as method parameters and software versions as well as ground truths (when these are available) and evaluation metrics. biocViews: Software, Infrastructure Author: Alejandro Reyes [aut] (), Patrick Kimes [aut, cre] () Maintainer: Patrick Kimes URL: https://github.com/areyesq89/SummarizedBenchmark, http://bioconductor.org/packages/SummarizedBenchmark/ VignetteBuilder: knitr BugReports: https://github.com/areyesq89/SummarizedBenchmark/issues PackageStatus: Deprecated Package: RandomWalkRestartMH Version: 1.26.0 Depends: R(>= 3.5.0) Imports: igraph, Matrix, dnet, methods Suggests: BiocStyle, knitr, rmarkdown, testthat License: GPL (>= 2) NeedsCompilation: no Title: Random walk with restart on multiplex and heterogeneous Networks Description: This package performs Random Walk with Restart on multiplex and heterogeneous networks. It is described in the following article: "Random Walk With Restart On Multiplex And Heterogeneous Biological Networks" . biocViews: GenePrediction, NetworkInference, SomaticMutation, BiomedicalInformatics, MathematicalBiology, SystemsBiology, GraphAndNetwork, Pathways, BioCarta, KEGG, Reactome, Network Author: Alberto Valdeolivas [cre, aut, ctb] () Maintainer: Alberto Valdeolivas URL: https://github.com/alberto-valdeolivas/RandomWalkRestartMH VignetteBuilder: knitr BugReports: https://github.com/alberto-valdeolivas/RandomWalkRestartMH/issues PackageStatus: Deprecated Package: BiocOncoTK Version: 1.26.0 Depends: R (>= 3.6.0), methods, utils Imports: ComplexHeatmap, S4Vectors, bigrquery, shiny, stats, httr, rjson, dplyr, magrittr, grid, DT, GenomicRanges, IRanges, ggplot2, SummarizedExperiment, DBI, GenomicFeatures, curatedTCGAData, scales, ggpubr, plyr, car, graph, Rgraphviz, MASS, grDevices Suggests: knitr, dbplyr, org.Hs.eg.db, MultiAssayExperiment, BiocStyle, ontoProc, ontologyPlot, pogos, GenomeInfoDb, restfulSE (>= 1.3.7), BiocFileCache, TxDb.Hsapiens.UCSC.hg19.knownGene, Biobase, TxDb.Hsapiens.UCSC.hg18.knownGene, reshape2, testthat, AnnotationDbi, FDb.InfiniumMethylation.hg19, EnsDb.Hsapiens.v75, rmarkdown, rhdf5client, AnnotationHub License: Artistic-2.0 Title: Bioconductor components for general cancer genomics Description: Provide a central interface to various tools for genome-scale analysis of cancer studies. biocViews: CopyNumberVariation, CpGIsland, DNAMethylation, GeneExpression, GeneticVariability, SNP, Transcription, ImmunoOncology Author: Vince Carey Maintainer: VJ Carey VignetteBuilder: knitr PackageStatus: Deprecated Package: nanotatoR Version: 1.22.0 Depends: R (>= 4.1), Imports: hash(>= 2.2.6), openxlsx(>= 4.0.17), rentrez(>= 1.1.0), stats, rlang, stringr, knitr, testthat, utils, AnnotationDbi, httr, GenomicRanges, tidyverse, VarfromPDB, org.Hs.eg.db, curl, dplyr, XML, XML2R Suggests: rmarkdown, yaml License: file LICENSE Title: Next generation structural variant annotation and classification Description: Whole genome sequencing (WGS) has successfully been used to identify single-nucleotide variants (SNV), small insertions and deletions (INDELs) and, more recently, small copy number variants (CNVs). However, due to utilization of short reads, it is not well suited for identification of structural variants (SV). Optical mapping (OM) from Bionano Genomics, utilizes long fluorescently labeled megabase size DNA molecules for de novo genome assembly and identification of SVs with a much higher sensitivity than WGS. Nevertheless, currently available SV annotation tools have limited number of functions. NanotatoR is an R package written to provide a set of annotations for SVs identified by OM. It uses Database of Genomic Variants (DGV), Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources (DECIPHER) as well as a subset (154 samples) of 1000 Genome Project to calculate the population frequencies of the SVs (an optional internal cohort SV frequency calculation is also available). NanotatoR creates a primary gene list (PG) from NCBI databases based on proband’s phenotype specific keywords and compares the list to the set of genes overlapping/near SVs. The output is given in an Excel file format, which is subdivided into multiple sheets based on SV type (e.g., INDELs, Inversions, Translocations). Users then have a choice to filter SVs using the provided annotations for de novo (if parental samples are available) or inherited rare variants. biocViews: Software, WorkflowStep, GenomeAssembly, VariantAnnotation Maintainer: Surajit Bhattacharya URL: https://github.com/VilainLab/nanotatoR VignetteBuilder: knitr BugReports: https://github.com/VilainLab/nanotatoR/issues PackageStatus: Deprecated Package: DIAlignR Version: 2.14.0 Depends: methods, stats, R (>= 4.0) Imports: zoo (>= 1.8-3), data.table, magrittr, dplyr, tidyr, rlang, mzR (>= 2.18), signal, bit64, reticulate, ggplot2, RSQLite, DBI, ape, phangorn, pracma, RMSNumpress, Rcpp LinkingTo: Rcpp, RcppEigen Suggests: knitr, akima, lattice, scales, gridExtra, latticeExtra, rmarkdown, BiocStyle, BiocParallel, testthat (>= 2.1.0) License: GPL-3 Title: Dynamic Programming Based Alignment of MS2 Chromatograms Description: To obtain unbiased proteome coverage from a biological sample, mass-spectrometer is operated in Data Independent Acquisition (DIA) mode. Alignment of these DIA runs establishes consistency and less missing values in complete data-matrix. This package implements dynamic programming with affine gap penalty based approach for pair-wise alignment of analytes. A hybrid approach of global alignment (through MS2 features) and local alignment (with MS2 chromatograms) is implemented in this tool. biocViews: MassSpectrometry, Metabolomics, Proteomics, Alignment, Software Author: Shubham Gupta [aut, cre] (), Hannes Rost [aut] (), Justin Sing [aut] Maintainer: Shubham Gupta SystemRequirements: C++14 VignetteBuilder: knitr BugReports: https://github.com/shubham1637/DIAlignR/issues Package: netDx Version: 1.18.0 Depends: R (>= 3.6) Imports: ROCR,pracma,ggplot2,glmnet,igraph,reshape2, parallel,stats,utils,MultiAssayExperiment,graphics,grDevices, methods,BiocFileCache,GenomicRanges, bigmemory,doParallel,foreach, combinat,rappdirs,GenomeInfoDb,S4Vectors, IRanges,RColorBrewer,Rtsne,httr,plotrix Suggests: curatedTCGAData, rmarkdown, testthat, knitr, BiocStyle, RCy3, clusterExperiment, netSmooth, scater License: MIT + file LICENSE Title: Network-based patient classifier Description: netDx is a general-purpose algorithm to build a patient classifier from heterogenous patient data. The method converts data into patient similarity networks at the level of features. Feature selection identifies features of predictive value to each class. Methods are provided for versatile predictor design and performance evaluation using standard measures. netDx natively groups molecular data into pathway-level features and connects with Cytoscape for network visualization of pathway themes. For method details see: Pai et al. (2019). netDx: interpretable patient classification using integrated patient similarity networks. Molecular Systems Biology. 15, e8497 biocViews: Classification, BiomedicalInformatics, Network, SystemsBiology Author: Shraddha Pai [aut, cre] (), Philipp Weber [aut], Ahmad Shah [aut], Luca Giudice [aut], Shirley Hui [aut], Anne Nøhr [ctb], Indy Ng [ctb], Ruth Isserlin [aut], Hussam Kaka [aut], Gary Bader [aut] Maintainer: Shraddha Pai URL: http://netdx.org VignetteBuilder: knitr Package: BRGenomics Version: 1.18.0 Depends: R (>= 4.0), rtracklayer, GenomeInfoDb, S4Vectors Imports: GenomicRanges, parallel, IRanges, stats, Rsamtools, GenomicAlignments, DESeq2, SummarizedExperiment, utils, methods Suggests: BiocStyle, knitr, rmarkdown, testthat, apeglm, remotes, ggplot2, reshape2, Biostrings License: Artistic-2.0 Title: Tools for the Efficient Analysis of High-Resolution Genomics Data Description: This package provides useful and efficient utilites for the analysis of high-resolution genomic data using standard Bioconductor methods and classes. BRGenomics is feature-rich and simplifies a number of post-alignment processing steps and data handling. Emphasis is on efficient analysis of multiple datasets, with support for normalization and blacklisting. Included are functions for: spike-in normalizing data; generating basepair-resolution readcounts and coverage data (e.g. for heatmaps); importing and processing bam files (e.g. for conversion to bigWig files); generating metaplots/metaprofiles (bootstrapped mean profiles) with confidence intervals; conveniently calling DESeq2 without using sample-blind estimates of genewise dispersion; among other features. biocViews: Software, DataImport, Sequencing, Coverage, RNASeq, ATACSeq, ChIPSeq, Transcription, GeneRegulation, GeneExpression, Normalization Author: Mike DeBerardine [aut, cre] Maintainer: Mike DeBerardine URL: https://mdeber.github.io VignetteBuilder: knitr BugReports: https://github.com/mdeber/BRGenomics/issues PackageStatus: Deprecated Package: CellaRepertorium Version: 1.16.0 Depends: R (>= 4.0) Imports: dplyr, tibble, stringr, Biostrings, Rcpp, reshape2, methods, rlang (>= 0.3), purrr, Matrix, S4Vectors, BiocGenerics, tidyr, forcats, progress, stats, utils, generics, glue LinkingTo: Rcpp Suggests: testthat, readr, knitr, rmarkdown, ggplot2, BiocStyle, ggdendro, broom, lme4, RColorBrewer, SingleCellExperiment, scater, broom.mixed, cowplot, igraph, ggraph License: GPL-3 NeedsCompilation: yes Title: Data structures, clustering and testing for single cell immune receptor repertoires (scRNAseq RepSeq/AIRR-seq) Description: Methods to cluster and analyze high-throughput single cell immune cell repertoires, especially from the 10X Genomics VDJ solution. Contains an R interface to CD-HIT (Li and Godzik 2006). Methods to visualize and analyze paired heavy-light chain data. Tests for specific expansion, as well as omnibus oligoclonality under hypergeometric models. biocViews: RNASeq, Transcriptomics, SingleCell, TargetedResequencing, Technology, ImmunoOncology, Clustering Author: Andrew McDavid [aut, cre], Yu Gu [aut], Erik VonKaenel [aut], Aaron Wagner [aut], Thomas Lin Pedersen [ctb] Maintainer: Andrew McDavid URL: https://github.com/amcdavid/CellaRepertorium VignetteBuilder: knitr BugReports: https://github.com/amcdavid/CellaRepertorium/issues PackageStatus: Deprecated Package: MQmetrics Version: 1.14.0 Imports: ggplot2, readr, magrittr, dplyr, purrr, reshape2, gridExtra, utils, stringr, ggpubr, stats, cowplot, RColorBrewer, tidyr, scales, grid, rlang, ggforce, grDevices, gtable, plyr, knitr, rmarkdown, ggrepel, gghalves, tools Suggests: testthat (>= 3.0.0), BiocStyle License: GPL-3 Title: Quality Control of Protemics Data Description: The package MQmetrics (MaxQuant metrics) provides a workflow to analyze the quality and reproducibility of your proteomics mass spectrometry analysis from MaxQuant.Input data are extracted from several MaxQuant output tables and produces a pdf report. It includes several visualization tools to check numerous parameters regarding the quality of the runs. It also includes two functions to visualize the iRT peptides from Biognosys in case they were spiked in the samples. biocViews: Infrastructure, Proteomics, MassSpectrometry, QualityControl, DataImport Author: Alvaro Sanchez-Villalba [aut, cre], Thomas Stehrer [aut], Marek Vrbacky [aut] Maintainer: Alvaro Sanchez-Villalba VignetteBuilder: knitr PackageStatus: Deprecated Package: netOmics Version: 1.12.0 Depends: R (>= 4.1) Imports: dplyr, ggplot2, igraph, magrittr, minet, purrr, tibble, tidyr, AnnotationDbi, GO.db, gprofiler2, methods, Matrix, stats Suggests: mixOmics, timeOmics, tidyverse, BiocStyle, testthat, covr, rmarkdown, knitr License: GPL-3 Title: Multi-Omics (time-course) network-based integration and interpretation Description: netOmics is a multi-omics networks builder and explorer. It uses a combination of network inference algorithms and and knowledge-based graphs to build multi-layered networks. The package can be combined with timeOmics to incorporate time-course expression data and build sub-networks from multi-omics kinetic clusters. Finally, from the generated multi-omics networks, propagation analyses allow the identification of missing biological functions (1), multi-omics mechanisms (2) and molecules between kinetic clusters (3). This helps to resolve complex regulatory mechanisms. biocViews: GraphAndNetwork, Software, TimeCourse, WorkflowStep, SystemsBiology, NetworkInference, Network Author: Antoine Bodein [aut, cre] Maintainer: Antoine Bodein URL: https://github.com/abodein/netOmics VignetteBuilder: knitr BugReports: https://github.com/abodein/netOmics/issues PackageStatus: Deprecated Package: ATACCoGAPS Version: 1.8.0 Depends: R (>= 4.2.0), CoGAPS (>= 3.5.13) Imports: gtools, GenomicRanges, projectR, TFBSTools, GeneOverlap, msigdbr, tidyverse, gplots, motifmatchr, chromVAR, GenomicFeatures, IRanges, fgsea, rGREAT, JASPAR2016, Homo.sapiens, Mus.musculus, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Mmusculus.UCSC.mm10, stringr, dplyr Suggests: knitr, viridis License: Artistic-2.0 Title: Analysis Tools for scATACseq Data with CoGAPS Description: Provides tools for running the CoGAPS algorithm (Fertig et al, 2010) on single-cell ATAC sequencing data and analysis of the results. Can be used to perform analyses at the level of genes, motifs, TFs, or pathways. Additionally provides tools for transfer learning and data integration with single-cell RNA sequencing data. biocViews: Software, ResearchField, Epigenetics, SingleCell, Transcription, Bayesian, Clustering, DimensionReduction Author: Rossin Erbe [aut, cre] () Maintainer: Rossin Erbe VignetteBuilder: knitr BugReports: https://github.com/FertigLab/ATACCoGAPS/issues PackageStatus: Deprecated Package: BiocHail Version: 1.6.0 Depends: R (>= 4.3.0), graphics, stats, utils Imports: reticulate, basilisk, BiocFileCache, methods, dplyr, BiocGenerics Suggests: knitr, testthat, BiocStyle, ggplot2, DT License: Artistic-2.0 Title: basilisk and hail Description: Use hail via basilisk when appropriate, or via reticulate. This package can be used in terra.bio to interact with UK Biobank resources processed by hail.is. biocViews: Infrastructure Author: Vincent Carey [aut, cre] () Maintainer: Vincent Carey URL: https://github.com/vjcitn/BiocHail VignetteBuilder: knitr BugReports: https://github.com/vjcitn/BiocHail/issues