--- title: "2. CytoMethIC Oncology" shorttitle: "2. CytoMethIC Oncology" date: "`r BiocStyle::doc_date()`" package: CytoMethIC output: BiocStyle::html_document fig_width: 6 fig_height: 5 vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{2. CytoMethIC Oncology} %\VignetteEncoding{UTF-8} --- `CytoMethIC-Oncology` is a collection machine learning models for oncology. This includes CNS tumor classification, pan-cancer classification, cell of origin classification, and subtype classification models. # MODELS Models available are listed below: ```{r cyto-model, result="asis", echo=FALSE, message=FALSE} library(knitr) library(CytoMethIC) kable(cmi_models[ cmi_models$PredictionGroup == "2. Oncology", c("EHID", "ModelID", "PredictionLabel")], caption = "CytoMethIC Oncology Models" ) ``` One can access the model using the EHID above in `ExperimentHub()[["EHID"]]`. More models (if EHID is NA) are available in the following [Github Repo](https://github.com/zhou-lab/CytoMethIC_models/tree/main/models). You can directly download them and load with `readRDS()`. Some examples using either approach are below. # CANCER TYPE The below snippet shows a demonstration of the model abstraction working on random forest and support vector models from CytoMethIC models on ExperimentHub. ```{r cyto4, message=FALSE} ## for missing data library(sesame) library(CytoMethIC) betas = imputeBetas(sesameDataGet("HM450.1.TCGA.PAAD")$betas) model = ExperimentHub()[["EH8395"]] # Random forest model cmi_predict(betas, model) model = ExperimentHub()[["EH8396"]] # SVM model cmi_predict(betas, model) model = ExperimentHub()[["EH8422"]] # Cancer subtype cmi_predict(sesameDataGet("HM450.1.TCGA.PAAD")$betas, model) ``` # CELL-OF-ORIGIN The below snippet shows a demonstration of the cmi_predict function working to predict the cell of origin of the cancer. ```{r cyto7, message=FALSE} model = ExperimentHub()[["EH8423"]] cmi_predict(sesameDataGet("HM450.1.TCGA.PAAD")$betas, model) ``` ```{r} sessionInfo() ```