## ----doinit,message=FALSE, eval=FALSE----------------------------------------- # library(scviR) # library(ggplot2) # library(reshape2) # adref = getCiteseq5k10kPbmcs() # adref ## ----dogetv, eval=FALSE------------------------------------------------------- # vae = getCiteseqTutvae() ## ----lkclv, eval=FALSE-------------------------------------------------------- # class(vae) ## ----some, eval=FALSE--------------------------------------------------------- # vae$is_trained # cat(vae$`_model_summary_string`) # vae$adata ## ----lkmod, eval=FALSE-------------------------------------------------------- # vae$module ## ----lkelb, eval=FALSE-------------------------------------------------------- # h = vae$history # npts = nrow(h$elbo_train) # plot(seq_len(npts), as.numeric(h$elbo_train[[1]]), ylim=c(1200,1400), # type="l", col="blue", main="Negative ELBO over training epochs", # ylab="neg. ELBO", xlab="epoch") # graphics::legend(300, 1360, lty=1, col=c("blue", "orange"), legend=c("training", "validation")) # graphics::lines(seq_len(npts), as.numeric(h$elbo_validation[[1]]), type="l", col="orange") ## ----getn, eval=FALSE--------------------------------------------------------- # NE = vae$get_normalized_expression(n_samples=25L, # return_mean=TRUE, # transform_batch=c("PBMC10k", "PBMC5k") # ) ## ----getdenoise, eval=FALSE--------------------------------------------------- # denoised = getTotalVINormalized5k10k() # vapply(denoised, dim, integer(2)) ## ----lkn, eval=FALSE---------------------------------------------------------- # utils::head(colnames(denoised$rna_nmlzd)) # utils::head(colnames(denoised$prot_nmlzd)) ## ----getproj, fig.height=6, eval=FALSE---------------------------------------- # full = getTotalVI5k10kAdata() # # class distribution # cllabs = full$obs$leiden_totalVI # blabs = full$obs$batch # table(cllabs) # um = full$obsm$get("X_umap") # dd = data.frame(umap1=um[,1], umap2=um[,2], clust=factor(cllabs), batch=blabs) # ggplot(dd, aes(x=umap1, y=umap2, colour=clust)) + geom_point(size=.05) + # guides(color = guide_legend(override.aes = list(size = 4))) ## ----getba, eval=FALSE-------------------------------------------------------- # ggplot(dd, aes(x=umap1, y=umap2, colour=factor(batch))) + geom_point(size=.05) ## ----lknn,fig.width=8, eval=FALSE--------------------------------------------- # pro4 = denoised$prot_nmlzd[,1:4] # names(pro4) = gsub("_.*", "", names(pro4)) # wprot = cbind(dd, pro4) # mm = melt(wprot, id.vars=c("clust", "batch", "umap1", "umap2")) # utils::head(mm,3) # ggplot(mm, aes(x=umap1, y=umap2, colour=log1p(value))) + # geom_point(size=.1) + facet_grid(.~variable) ## ----lkmod2, eval=FALSE------------------------------------------------------- # vae$module ## ----lksess------------------------------------------------------------------- sessionInfo()