Contents

Progenetix is an open data resource that provides curated individual cancer copy number variation (CNV) profiles along with associated metadata sourced from published oncogenomic studies and various data repositories. This vignette provides a comprehensive guide on accessing and utilizing metadata for samples or their corresponding individuals within the Progenetix database.

If your focus lies in cancer cell lines, you can access data from cancercelllines.org by setting the domain parameter to "https://cancercelllines.org" in pgxLoader function. This data repository originates from CNV profiling data of cell lines initially collected as part of Progenetix and currently includes additional types of genomic mutations.

1 Load library

library(pgxRpi)

1.1 pgxLoader function

This function loads various data from Progenetix database via the Beacon v2 API with some extensions (BeaconPlus).

The parameters of this function used in this tutorial:

  • type: A string specifying output data type. "individuals", "biosamples", "analyses", "filtering_terms", and "counts" are used in this tutorial.
  • filters: Identifiers used in public repositories, bio-ontology terms, or custom terms such as c("NCIT:C7376", "PMID:22824167"). When multiple filters are used, they are combined using AND logic when the parameter type is "individuals", "biosamples", or "analyses"; OR logic when the parameter type is "counts".
  • individual_id: Identifiers used in the query database for identifying individuals.
  • biosample_id: Identifiers used in the query database for identifying biosamples.
  • codematches: A logical value determining whether to exclude samples from child concepts of specified filters in the ontology tree. If TRUE, only samples exactly matching the specified filters will be included. Do not use this parameter when filters include ontology-irrelevant filters such as PMID and cohort identifiers. Default is FALSE.
  • limit: Integer to specify the number of returned profiles. Default is 0 (return all).
  • skip: Integer to specify the number of skipped profiles. E.g. if skip = 2, limit=500, the first 2*500=1000 profiles are skipped and the next 500 profiles are returned. Default is 0 (no skip).
  • dataset: A string specifying the dataset to query from the Beacon response. Default is NULL, which includes results from all datasets.
  • domain: A string specifying the domain of the query data resource. Default is "http://progenetix.org".
  • entry_point: A string specifying the entry point of the Beacon v2 API. Default is "beacon", resulting in the endpoint being "http://progenetix.org/beacon".
  • num_cores: An integer specifying the number of cores to use for parallel processing during Beacon v2 phenotypic/meta-data queries from multiple domains. Default is 1.

2 Retrieve biosamples information

2.1 Search by filters

Filters are a significant enhancement to the Beacon query API, providing a mechanism for specifying rules to select records based on their field values. To learn more about how to utilize filters in Progenetix, please refer to the documentation.

The following example demonstrates how to access all available filters in Progenetix:

all_filters <- pgxLoader(type="filtering_terms")
head(all_filters)
#>                           id                      label         type scopes
#> 1        EDAM:operation_3227        EDAM:operation_3227 ontologyTerm     NA
#> 2        EDAM:operation_3961        EDAM:operation_3961 ontologyTerm     NA
#> 3 labelSeg-based calibration labelSeg-based calibration alphanumeric     NA
#> 4                NCIT:C28076    Disease Grade Qualifier ontologyTerm     NA
#> 5                NCIT:C18000           Histologic Grade ontologyTerm     NA
#> 6                NCIT:C14158                 High Grade ontologyTerm     NA

The following query retrieves information about all retinoblastoma samples in Progenetix, utilizing a specific filter based on an NCIt code as a disease identifier.

biosamples <- pgxLoader(type="biosamples", filters = "NCIT:C7541")
# data looks like this
biosamples[1:5,]
#>     biosample_id   individual_id biosample_status_id biosample_status_label
#> 1 pgxbs-kftvh1n1 pgxind-kftx2vtw         EFO:0009656      neoplastic sample
#> 2 pgxbs-kftvh1n3 pgxind-kftx2vty         EFO:0009656      neoplastic sample
#> 3 pgxbs-kftvh1n4 pgxind-kftx2vu0         EFO:0009656      neoplastic sample
#> 4 pgxbs-kftvh1n6 pgxind-kftx2vu2         EFO:0009656      neoplastic sample
#> 5 pgxbs-kftvh1n8 pgxind-kftx2vu4         EFO:0009656      neoplastic sample
#>   sample_origin_type_id sample_origin_type_label histological_diagnosis_id
#> 1           OBI:0001479   specimen from organism                NCIT:C7541
#> 2           OBI:0001479   specimen from organism                NCIT:C7541
#> 3           OBI:0001479   specimen from organism                NCIT:C7541
#> 4           OBI:0001479   specimen from organism                NCIT:C7541
#> 5           OBI:0001479   specimen from organism                NCIT:C7541
#>   histological_diagnosis_label sampled_tissue_id sampled_tissue_label
#> 1               Retinoblastoma    UBERON:0000966               retina
#> 2               Retinoblastoma    UBERON:0000966               retina
#> 3               Retinoblastoma    UBERON:0000966               retina
#> 4               Retinoblastoma    UBERON:0000966               retina
#> 5               Retinoblastoma    UBERON:0000966               retina
#>   pathological_stage_id pathological_stage_label tnm tumor_grade age_iso info
#> 1           NCIT:C92207            Stage Unknown  NA          NA    <NA>   NA
#> 2           NCIT:C92207            Stage Unknown  NA          NA    <NA>   NA
#> 3           NCIT:C92207            Stage Unknown  NA          NA    <NA>   NA
#> 4           NCIT:C92207            Stage Unknown  NA          NA    <NA>   NA
#> 5           NCIT:C92207            Stage Unknown  NA          NA    <NA>   NA
#>            notes icdo_morphology_id icdo_morphology_label icdo_topography_id
#> 1 Retinoblastoma    pgx:icdom-95103   Retinoblastoma, NOS    pgx:icdot-C69.2
#> 2 Retinoblastoma    pgx:icdom-95103   Retinoblastoma, NOS    pgx:icdot-C69.2
#> 3 Retinoblastoma    pgx:icdom-95103   Retinoblastoma, NOS    pgx:icdot-C69.2
#> 4 Retinoblastoma    pgx:icdom-95103   Retinoblastoma, NOS    pgx:icdot-C69.2
#> 5 Retinoblastoma    pgx:icdom-95103   Retinoblastoma, NOS    pgx:icdot-C69.2
#>   icdo_topography_label
#> 1                Retina
#> 2                Retina
#> 3                Retina
#> 4                Retina
#> 5                Retina
#>                                                                  external_references_description
#> 1 Zielinski B, Gratias S et al. (2005): Detection of chromosomal imbalances in retinoblastoma...
#> 2 Zielinski B, Gratias S et al. (2005): Detection of chromosomal imbalances in retinoblastoma...
#> 3 Zielinski B, Gratias S et al. (2005): Detection of chromosomal imbalances in retinoblastoma...
#> 4 Zielinski B, Gratias S et al. (2005): Detection of chromosomal imbalances in retinoblastoma...
#> 5 Zielinski B, Gratias S et al. (2005): Detection of chromosomal imbalances in retinoblastoma...
#>   external_references_id              external_references_reference
#> 1          PMID:15834944 https://europepmc.org/article/MED/15834944
#> 2          PMID:15834944 https://europepmc.org/article/MED/15834944
#> 3          PMID:15834944 https://europepmc.org/article/MED/15834944
#> 4          PMID:15834944 https://europepmc.org/article/MED/15834944
#> 5          PMID:15834944 https://europepmc.org/article/MED/15834944
#>   analysis_info                cohorts_id                     cohorts_label
#> 1            NA pgx:cohort-2021progenetix Version at Progenetix Update 2021
#> 2            NA pgx:cohort-2021progenetix Version at Progenetix Update 2021
#> 3            NA pgx:cohort-2021progenetix Version at Progenetix Update 2021
#> 4            NA pgx:cohort-2021progenetix Version at Progenetix Update 2021
#> 5            NA pgx:cohort-2021progenetix Version at Progenetix Update 2021
#>   geo_location_geometry_coordinates geo_location_geometry_type
#> 1                        8.69,49.41                      Point
#> 2                        8.69,49.41                      Point
#> 3                        8.69,49.41                      Point
#> 4                        8.69,49.41                      Point
#> 5                        8.69,49.41                      Point
#>   geo_location_properties_iso3166alpha3 geo_location_properties_city
#> 1                                   DEU                   Heidelberg
#> 2                                   DEU                   Heidelberg
#> 3                                   DEU                   Heidelberg
#> 4                                   DEU                   Heidelberg
#> 5                                   DEU                   Heidelberg
#>   geo_location_properties_country geo_location_properties_label
#> 1                         Germany           Heidelberg, Germany
#> 2                         Germany           Heidelberg, Germany
#> 3                         Germany           Heidelberg, Germany
#> 4                         Germany           Heidelberg, Germany
#> 5                         Germany           Heidelberg, Germany
#>   geo_location_properties_latitude geo_location_properties_longitude
#> 1                            49.41                              8.69
#> 2                            49.41                              8.69
#> 3                            49.41                              8.69
#> 4                            49.41                              8.69
#> 5                            49.41                              8.69
#>   geo_location_properties_precision geo_location_type
#> 1                              city           Feature
#> 2                              city           Feature
#> 3                              city           Feature
#> 4                              city           Feature
#> 5                              city           Feature
#>                      updated analysis_info_experiment_id
#> 1 2020-09-10 17:44:29.148000                        <NA>
#> 2 2020-09-10 17:44:29.150000                        <NA>
#> 3 2020-09-10 17:44:29.151000                        <NA>
#> 4 2020-09-10 17:44:29.152000                        <NA>
#> 5 2020-09-10 17:44:29.154000                        <NA>
#>   analysis_info_platform_id analysis_info_series_id geo_location
#> 1                      <NA>                    <NA>           NA
#> 2                      <NA>                    <NA>           NA
#> 3                      <NA>                    <NA>           NA
#> 4                      <NA>                    <NA>           NA
#> 5                      <NA>                    <NA>           NA

The data contains many columns representing different aspects of sample information.

2.2 Search by biosample id and individual id

In the Beacon v2 specification, biosample id and individual id are unique identifiers for biosamples and their corresponding individuals, respectively. These identifiers can be obtained through metadata searches using filters as described above or by querying the Progenetix search interface, which provides access to the IDs used in the Progenetix database.

biosamples_2 <- pgxLoader(type="biosamples", biosample_id = "pgxbs-kftvki7h",individual_id = "pgxind-kftx6ltu")

biosamples_2
#>     biosample_id   individual_id biosample_status_id biosample_status_label
#> 1 pgxbs-kftvki7h pgxind-kftx6ltd         EFO:0009656      neoplastic sample
#> 2 pgxbs-kftvki7v pgxind-kftx6ltu         EFO:0009656      neoplastic sample
#>   sample_origin_type_id sample_origin_type_label histological_diagnosis_id
#> 1           OBI:0001479   specimen from organism                NCIT:C3512
#> 2           OBI:0001479   specimen from organism                NCIT:C3512
#>   histological_diagnosis_label sampled_tissue_id sampled_tissue_label
#> 1          Lung Adenocarcinoma    UBERON:0002048                 lung
#> 2          Lung Adenocarcinoma    UBERON:0002048                 lung
#>   pathological_stage_id pathological_stage_label
#> 1           NCIT:C27976                 Stage Ib
#> 2           NCIT:C27977               Stage IIIa
#>                                tnm_id
#> 1 NCIT:C48706,NCIT:C48714,NCIT:C48724
#> 2 NCIT:C48706,NCIT:C48714,NCIT:C48728
#>                                            tnm_label tumor_grade age_iso info
#> 1 N1 Stage Finding,N3 Stage Finding,T2 Stage Finding          NA    P56Y   NA
#> 2 N1 Stage Finding,N3 Stage Finding,T3 Stage Finding          NA    P75Y   NA
#>                   notes icdo_morphology_id icdo_morphology_label
#> 1 adenocarcinoma [lung]    pgx:icdom-81403   Adenocarcinoma, NOS
#> 2 adenocarcinoma [lung]    pgx:icdom-81403   Adenocarcinoma, NOS
#>   icdo_topography_id icdo_topography_label
#> 1    pgx:icdot-C34.9             Lung, NOS
#> 2    pgx:icdot-C34.9             Lung, NOS
#>                                                     external_references_description
#> 1 Kang JU, Koo SH et al. (2009): Identification of novel candidate target genes,...
#> 2 Kang JU, Koo SH et al. (2009): Identification of novel candidate target genes,...
#>   external_references_id              external_references_reference
#> 1          PMID:19607727 https://europepmc.org/article/MED/19607727
#> 2          PMID:19607727 https://europepmc.org/article/MED/19607727
#>   analysis_info_experiment_id analysis_info_platform_id analysis_info_series_id
#> 1               geo:GSM417055               geo:GPL8690            geo:GSE16597
#> 2               geo:GSM417063               geo:GPL8690            geo:GSE16597
#>                                                                              cohorts_id
#> 1 pgx:cohort-arraymap,pgx:cohort-2021progenetix,pgx:cohort-carriocordo2021heterogeneity
#> 2                                         pgx:cohort-arraymap,pgx:cohort-2021progenetix
#>                                                                                                                  cohorts_label
#> 1 arrayMap collection,Version at Progenetix Update 2021,Carrio-Cordo and Baudis - Genomic Heterogeneity in Cancer Types (2021)
#> 2                                                                        arrayMap collection,Version at Progenetix Update 2021
#>   geo_location_geometry_coordinates geo_location_geometry_type
#> 1                      -74.01,40.71                      Point
#> 2                      -74.01,40.71                      Point
#>   geo_location_properties_iso3166alpha3 geo_location_properties_city
#> 1                                   USA                New York City
#> 2                                   USA                New York City
#>   geo_location_properties_country geo_location_properties_label
#> 1        United States of America  New York City, United States
#> 2        United States of America  New York City, United States
#>   geo_location_properties_latitude geo_location_properties_longitude
#> 1                            40.71                            -74.01
#> 2                            40.71                            -74.01
#>   geo_location_properties_precision geo_location_type
#> 1                              city           Feature
#> 2                              city           Feature
#>                      updated
#> 1 2020-09-10 17:46:45.105000
#> 2 2020-09-10 17:46:45.115000

It’s also possible to query by a combination of filters, biosample id, and individual id.

2.3 Access a subset of samples

By default, it returns all related samples (limit=0). You can access a subset of them via the parameter limit and skip. For example, if you want to access the first 10 samples , you can set limit = 10, skip = 0.

biosamples_3 <- pgxLoader(type="biosamples", filters = "NCIT:C7541",skip=0, limit = 10)
# Dimension: Number of samples * features
print(dim(biosamples))
#> [1] 256  42
print(dim(biosamples_3))
#> [1] 10 38

2.4 Parameter codematches use

Some filters, such as NCIt codes, are hierarchical. As a result, retrieved samples may include not only the specified filters but also their child terms.

unique(biosamples$histological_diagnosis_id)
#> [1] "NCIT:C7541" "NCIT:C8714" "NCIT:C8713"

Setting codematches as TRUE allows this function to only return biosamples that exactly match the specified filter, excluding child terms.

biosamples_4 <- pgxLoader(type="biosamples", filters = "NCIT:C7541",codematches = TRUE)
unique(biosamples_4$histological_diagnosis_id)
#> [1] "NCIT:C7541"

2.5 Query from multiple data resources

You can query data from multiple resources via the Beacon v2 API by setting the domain and entry_point parameters accordingly. To speed up the process, use the num_cores parameter to enable parallel processing across different domains.

biosamples_5 <- pgxLoader(type="biosamples",filters = "NCIT:C7541",domain=c("progenetix.org","cancercelllines.org"), entry_point="beacon") # both resources use the same entry point

biosamples_5[["cancercelllines.org"]][1:2,1:10]
#>       biosample_id     individual_id biosample_status_id biosample_status_label
#> 1 cellzbs-75b73A5d cellzind-bB32Bb4d         EFO:0001639       cancer cell line
#> 2 cellzbs-7D8289ed cellzind-bcBE35Aa         EFO:0001639       cancer cell line
#>   sample_origin_type_id sample_origin_type_label histological_diagnosis_id
#> 1           OBI:0001479   specimen from organism               NCIT:C42596
#> 2           OBI:0001479   specimen from organism                NCIT:C7541
#>   histological_diagnosis_label sampled_tissue_id sampled_tissue_label
#> 1      Sporadic retinoblastoma    UBERON:0000966               retina
#> 2               Retinoblastoma    UBERON:0000966               retina

3 Retrieve individuals information

If you want to query details of individuals (e.g. clinical data) where the samples of interest come from, set the parameter type to “individuals” and follow the same steps as above.

individuals <- pgxLoader(type="individuals",individual_id = "pgxind-kftx26ml",filters="NCIT:C7541")
# data looks like this
tail(individuals,2)
#>       individual_id      sex_id sex_label age_iso histological_diagnosis_id
#> 254 pgxind-m3io67j5 NCIT:C16576    female    <NA>                NCIT:C7541
#> 255 pgxind-kftx26ml NCIT:C20197      male    <NA>                NCIT:C3493
#>     histological_diagnosis_label followup_time followup_state_id
#> 254               Retinoblastoma          <NA>       EFO:0030039
#> 255 Squamous Cell Lung Carcinoma          <NA>       EFO:0030039
#>     followup_state_label diseases_notes                  info
#> 254   no followup status           <NA>                  <NA>
#> 255   no followup status           <NA> PGX_IND_AdSqLu-bjo-01
#>                        updated info_legacy_ids info_provenance
#> 254 2024-11-19T03:41:20.977857            <NA>            <NA>
#> 255 2018-09-26 09:50:52.800000            <NA>            <NA>

4 Retrieve analyses information

If you want to know more details about data analyses, set the parameter type to “analyses”. The other steps are the same, except the parameter codematches is not available because analyses data do not include filter information, even though it can be searched by filters.

analyses <- pgxLoader(type="analyses",biosample_id = c("pgxbs-kftvik5i","pgxbs-kftvik96"))

analyses
#>      analysis_id   biosample_id   individual_id calling_pipeline
#> 1 pgxcs-kftw8qme pgxbs-kftvik5i pgxind-kftx4963       progenetix
#> 2 pgxcs-kftw8rrh pgxbs-kftvik96 pgxind-kftx49ao       progenetix
#>   analysis_info_experiment_id analysis_info_experiment_title
#> 1               geo:GSM115217                      GSM115217
#> 2               geo:GSM120460                      GSM120460
#>   analysis_info_operation_id   analysis_info_operation_label
#> 1        EDAM:operation_3961 Copy number variation detection
#> 2        EDAM:operation_3961 Copy number variation detection
#>   analysis_info_series_id platform_id                            platform_label
#> 1             geo:GSE5051 geo:GPL2826             VUMC MACF human 30K oligo v31
#> 2             geo:GSE5359 geo:GPL3960 MPIMG Homo sapiens 44K aCGH3_MPIMG_BERLIN
#>                      updated
#> 1 2024-11-20T07:24:51.839782
#> 2 2024-11-20T07:24:53.496612

5 Retrieve the number of results for a specific filter

To retrieve the number of results for a specific filter in Progenetix, set the type parameter to "counts". You can query different Beacon v2 resources by setting the domain and entry_point parameters accordingly.

pgxLoader(type="counts",filters = "NCIT:C7541")
#>       filter      entity count
#> 1 NCIT:C7541 individuals   254
#> 2 NCIT:C7541  biosamples   256
#> 3 NCIT:C7541    analyses   276

6 Visualization of survival data

Suppose you want to investigate whether there are survival differences associated with a particular disease, for example, between younger and older patients, or based on other variables. You can query and visualize the relevant information using the pgxMetaplot function.

6.1 pgxMetaplot function

This function generates a survival plot using metadata of individuals obtained by the pgxLoader function.

The parameters of this function:

  • data: The data frame returned by the pgxLoader function, containing survival data for individuals. The survival state is represented by Experimental Factor Ontology in the “followup_state_id” column, and the survival time is represented in ISO 8601 duration format in the “followup_time” column.
  • group_id: A string specifying which column is used for grouping in the Kaplan-Meier plot.
  • condition: A string for splitting individuals into younger and older groups, following the ISO 8601 duration format. Only used if group_id is “age_iso”.
  • return_data: A logical value determining whether to return the metadata used for plotting. Default is FALSE.
  • ...: Other parameters relevant to KM plot. These include pval, pval.coord, pval.method, conf.int, linetype, and palette (see ggsurvplot function from survminer package)

6.1.1 Example usage

# query metadata of individuals with lung adenocarcinoma
luad_inds <- pgxLoader(type="individuals",filters="NCIT:C3512")
# use 70 years old as the splitting condition
pgxMetaplot(data=luad_inds, group_id="age_iso", condition="P70Y", pval=TRUE)

It’s noted that not all individuals have available survival data. If you set return_data to TRUE, the function will return the metadata of individuals used for the plot.

7 Session Info

#> R Under development (unstable) (2025-01-20 r87609)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.2 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB              LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: America/New_York
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] pgxRpi_1.3.3     BiocStyle_2.35.0
#> 
#> loaded via a namespace (and not attached):
#>  [1] gtable_0.3.6        xfun_0.50           bslib_0.9.0        
#>  [4] ggplot2_3.5.1       rstatix_0.7.2       lattice_0.22-6     
#>  [7] vctrs_0.6.5         tools_4.5.0         generics_0.1.3     
#> [10] curl_6.2.0          parallel_4.5.0      tibble_3.2.1       
#> [13] pkgconfig_2.0.3     Matrix_1.7-2        data.table_1.16.4  
#> [16] lifecycle_1.0.4     farver_2.1.2        compiler_4.5.0     
#> [19] tinytex_0.54        munsell_0.5.1       codetools_0.2-20   
#> [22] carData_3.0-5       htmltools_0.5.8.1   sass_0.4.9         
#> [25] yaml_2.3.10         Formula_1.2-5       pillar_1.10.1      
#> [28] car_3.1-3           ggpubr_0.6.0        jquerylib_0.1.4    
#> [31] tidyr_1.3.1         cachem_1.1.0        survminer_0.5.0    
#> [34] magick_2.8.5        abind_1.4-8         km.ci_0.5-6        
#> [37] parallelly_1.42.0   tidyselect_1.2.1    digest_0.6.37      
#> [40] future_1.34.0       dplyr_1.1.4         purrr_1.0.4        
#> [43] bookdown_0.42       listenv_0.9.1       labeling_0.4.3     
#> [46] splines_4.5.0       fastmap_1.2.0       grid_4.5.0         
#> [49] colorspace_2.1-1    cli_3.6.4           magrittr_2.0.3     
#> [52] survival_3.8-3      broom_1.0.7         future.apply_1.11.3
#> [55] withr_3.0.2         scales_1.3.0        backports_1.5.0    
#> [58] lubridate_1.9.4     timechange_0.3.0    rmarkdown_2.29     
#> [61] httr_1.4.7          globals_0.16.3      gridExtra_2.3      
#> [64] ggsignif_0.6.4      zoo_1.8-12          evaluate_1.0.3     
#> [67] knitr_1.49          KMsurv_0.1-5        survMisc_0.5.6     
#> [70] rlang_1.1.5         Rcpp_1.0.14         xtable_1.8-4       
#> [73] glue_1.8.0          BiocManager_1.30.25 attempt_0.3.1      
#> [76] jsonlite_1.8.9      R6_2.6.0