## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( message = FALSE, digits = 3, collapse = TRUE, comment = "#>", fig.align = "center", fig.width = 8 ) options(digits = 3) ## ----------------------------------------------------------------------------- library(dar) data("metaHIV_phy") set.seed(1234) metaHIV_phy ## ----------------------------------------------------------------------------- # Recipe Initialization rec <- recipe(metaHIV_phy, var_info = "RiskGroup2", tax_info = "Species") rec ## ----------------------------------------------------------------------------- # Summary Stats by levels phy_qc(rec) # Adding prepro steps rec <- rec |> step_subset_taxa(tax_level = "Kingdom", taxa = c("Bacteria", "Archaea")) |> step_filter_by_prevalence() rec ## ----------------------------------------------------------------------------- # DA steps definition rec <- rec |> step_wilcox() |> # step_ancom() |> step_aldex() |> step_deseq() |> step_corncob(filter_discriminant = FALSE) |> step_metagenomeseq(rm_zeros = 0.01) |> step_maaslin(min_prevalence = 0) |> step_lefse() rec ## ----------------------------------------------------------------------------- # Execute in parallel da_results <- prep(rec, parallel = TRUE) da_results ## ----------------------------------------------------------------------------- # Default DA taxa results results <- bake(da_results) |> cool() results ## ----------------------------------------------------------------------------- # Intersection plot intersection_plt(da_results, ordered_by = "degree", font_size = 1) ## ----------------------------------------------------------------------------- # Exclusion plot exclusion_plt(da_results) ## ----------------------------------------------------------------------------- # Correlation heatmap corr_heatmap(da_results, font_size = 10) ## ----------------------------------------------------------------------------- # Mutual plot mutual_plt( da_results, count_cutoff = length(steps_ids(da_results, type = "da")), top_n = 24 ) ## ----------------------------------------------------------------------------- # Define consensus strategy da_results <- bake(da_results) da_results ## ----------------------------------------------------------------------------- # Extract results for bake id 1 f_results <- cool(da_results, bake = 1) f_results ## ----------------------------------------------------------------------------- # Ids for Bacteroide and Provotella species ids <- f_results |> dplyr::filter(stringr::str_detect(taxa, "Bacteroi.*|Prevote.*")) |> dplyr::pull(taxa_id) # Abundance plot as boxplot abundance_plt(da_results, taxa_ids = ids, type = "boxplot") # Abundance plot as heatmap abundance_plt(da_results, type = "heatmap", transform = "compositional") ## ----------------------------------------------------------------------------- devtools::session_info()