## ----echo=FALSE, results="hide", message=FALSE-------------------------------- knitr::opts_chunk$set(error = FALSE, message = FALSE, warning = FALSE) library(BiocStyle) ## ----eval = FALSE------------------------------------------------------------- # if (!requireNamespace("BiocManager", quietly = TRUE)) { # install.packages("BiocManager") # } # if (!requireNamespace("slinghot", quietly = TRUE)) { # BiocManager::install("slingshot") # } ## ----message=FALSE, warning=FALSE--------------------------------------------- library(dandelionR) library(scRepertoire) library(scater) data(sce_vdj) ## ----------------------------------------------------------------------------- set.seed(123) ## ----------------------------------------------------------------------------- sce_vdj <- setupVdjPseudobulk(sce_vdj, already.productive = FALSE, allowed_chain_status = c( "Single pair", "Extra pair", "Extra pair-exception", "Orphan VDJ", "Orphan VDJ-exception" ) ) plotUMAP(sce_vdj, color_by = "anno_lvl_2_final_clean") ## ----warning = FALSE---------------------------------------------------------- library(miloR) milo_object <- Milo(sce_vdj) milo_object <- buildGraph(milo_object, k = 30, d = 20, reduced.dim = "X_scvi") milo_object <- makeNhoods(milo_object, reduced_dims = "X_scvi", d = 20, prop = 0.3 ) ## ----warning = FALSE---------------------------------------------------------- milo_object <- miloUmap(milo_object, n_neighbors = 30) ## ----------------------------------------------------------------------------- plotUMAP(milo_object, color_by = "anno_lvl_2_final_clean", dimred = "UMAP_knngraph" ) ## ----------------------------------------------------------------------------- pb.milo <- vdjPseudobulk(milo_object, mode_option = "abT", col_to_take = "anno_lvl_2_final_clean" ) ## ----------------------------------------------------------------------------- pb.milo ## ----------------------------------------------------------------------------- pb.milo <- runPCA(pb.milo, assay.type = "Feature_space", ncomponents = 20) plotPCA(pb.milo, color_by = "anno_lvl_2_final_clean") ## ----------------------------------------------------------------------------- library(slingshot) ## ----------------------------------------------------------------------------- table(colData(pb.milo)[["anno_lvl_2_final_clean"]]) ## ----------------------------------------------------------------------------- pb.milo <- slingshot(pb.milo, clusterLabels = colData(pb.milo)[["anno_lvl_2_final_clean"]], reducedDim = "PCA", start.clus = "faDP(P)_T", end.clus = c("faCD4+T", "faCD8+T")) ## ----------------------------------------------------------------------------- library(fields) # make a color palette from blue to red colors <- colorRampPalette(rev(c("#d7191c", "#fdae61", "#ffffbf", "#abd9e9", "#2c7bb6")))(50) plot(reducedDims(pb.milo)$PCA, col = colors[cut(pb.milo$slingPseudotime_1, breaks = 50)], pch = 16, asp = 1) lines(SlingshotDataSet(pb.milo), lwd = 2, col = "black") image.plot( legend.only = TRUE, zlim = range(pb.milo$slingPseudotime_1, na.rm = TRUE), col = colors, legend.lab = "Pseudotime" ) ## ----------------------------------------------------------------------------- plot(reducedDims(pb.milo)$PCA, col = colors[cut(pb.milo$slingPseudotime_2, breaks = 50)], pch = 16, asp = 1) lines(SlingshotDataSet(pb.milo), lwd = 2, col = "black") image.plot( legend.only = TRUE, zlim = range(pb.milo$slingPseudotime_2, na.rm = TRUE), col = colors, legend.lab = "Pseudotime" ) ## ----------------------------------------------------------------------------- cdata <- projectPseudotimeToCell(milo_object, pb.milo, value_key = c("slingPseudotime_1", "slingPseudotime_2")) ## ----message=FALSE------------------------------------------------------------ pal <- colorRampPalette(rev((RColorBrewer::brewer.pal(9, "RdYlBu"))))(255) plotUMAP(cdata, color_by = "anno_lvl_2_final_clean", dimred = "UMAP_knngraph") plotUMAP(cdata, color_by = "slingPseudotime_1", dimred = "UMAP_knngraph") + scale_color_gradientn(colors = pal) plotUMAP(cdata, color_by = "slingPseudotime_2", dimred = "UMAP_knngraph") + scale_color_gradientn(colors = pal) ## ----warning = FALSE---------------------------------------------------------- sessionInfo()