## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----warning=FALSE, message=FALSE, eval=FALSE--------------------------------- # if (!requireNamespace("BiocManager", quietly = TRUE)) { # install.packages("BiocManager") # } # BiocManager::install("CPSM") ## ----warning=FALSE, message=FALSE--------------------------------------------- library(CPSM) library(SummarizedExperiment) set.seed(7) # set seed data(Example_TCGA_LGG_FPKM_data, package = "CPSM") Example_TCGA_LGG_FPKM_data ## ----------------------------------------------------------------------------- data(Example_TCGA_LGG_FPKM_data, package = "CPSM") combined_df <- cbind( as.data.frame(colData(Example_TCGA_LGG_FPKM_data)) [, -ncol(colData(Example_TCGA_LGG_FPKM_data))], t(as.data.frame(assay( Example_TCGA_LGG_FPKM_data, "expression" ))) ) New_data <- data_process_f(combined_df, col_num = 20, surv_time = "OS.time") str(New_data[1:10]) ## ----------------------------------------------------------------------------- data(New_data, package = "CPSM") # Call the function result <- tr_test_f(data = New_data, fraction = 0.9) # Access the train and test data train_FPKM <- result$train_data str(train_FPKM[1:10]) test_FPKM <- result$test_data str(test_FPKM[1:10]) ## ----------------------------------------------------------------------------- # Step 3 - Data Normalization # Normalize the training and test data sets data(train_FPKM, package = "CPSM") data(test_FPKM, package = "CPSM") Result_N_data <- train_test_normalization_f( train_data = train_FPKM, test_data = test_FPKM, col_num = 21 ) # Access the Normalized train and test data Train_Clin <- Result_N_data$Train_Clin Test_Clin <- Result_N_data$Test_Clin Train_Norm_data <- Result_N_data$Train_Norm_data Test_Norm_data <- Result_N_data$Test_Norm_data str(Train_Clin[1:10]) str(Train_Norm_data[1:10]) ## ----warning=FALSE, message=FALSE, fig.width=7, fig.height=4------------------ # Step 4 - Lasso PI Score data(Train_Norm_data, package = "CPSM") data(Test_Norm_data, package = "CPSM") Result_PI <- Lasso_PI_scores_f( train_data = Train_Norm_data, test_data = Test_Norm_data, nfolds = 5, col_num = 21, surv_time = "OS_month", surv_event = "OS" ) Train_Lasso_key_variables <- Result_PI$Train_Lasso_key_variables Train_PI_data <- Result_PI$Train_PI_data Test_PI_data <- Result_PI$Test_PI_data str(Train_PI_data[1:10]) str(Test_PI_data[1:10]) plot(Result_PI$cvfit) ## ----warning=FALSE, message=FALSE--------------------------------------------- # Step 4b - Univariate Survival Significant Feature Selection. data(Train_Norm_data, package = "CPSM") data(Test_Norm_data, package = "CPSM") Result_Uni <- Univariate_sig_features_f( train_data = Train_Norm_data, test_data = Test_Norm_data, col_num = 21, surv_time = "OS_month", surv_event = "OS" ) Univariate_Suv_Sig_G_L <- Result_Uni$Univariate_Survival_Significant_genes_List Train_Uni_sig_data <- Result_Uni$Train_Uni_sig_data Test_Uni_sig_data <- Result_Uni$Test_Uni_sig_data Uni_Sur_Sig_clin_List <- Result_Uni$Univariate_Survival_Significant_clin_List Train_Uni_sig_clin_data <- Result_Uni$Train_Uni_sig_clin_data Test_Uni_sig_clin_data <- Result_Uni$Test_Uni_sig_clin_data str(Univariate_Suv_Sig_G_L[1:10]) ## ----warning=FALSE, message=FALSE, error = TRUE------------------------------- try({ data(Train_Clin, package = "CPSM") data(Test_Clin, package = "CPSM") data(Key_Clin_feature_list, package = "CPSM") Result_Model_Type1 <- MTLR_pred_model_f( train_clin_data = Train_Clin, test_clin_data = Test_Clin, Model_type = 1, train_features_data = Train_Clin, test_features_data = Test_Clin, Clin_Feature_List = Key_Clin_feature_list, surv_time = "OS_month", surv_event = "OS" ) survCurves_data <- Result_Model_Type1$survCurves_data mean_median_survival_tim_d <- Result_Model_Type1$mean_median_survival_time_data survival_result_bas_on_MTLR <- Result_Model_Type1$survival_result_based_on_MTLR Error_mat_for_Model <- Result_Model_Type1$Error_mat_for_Model }) ## ----warning=FALSE, message=FALSE, error = TRUE------------------------------- try({ data(Train_Clin, package = "CPSM") data(Test_Clin, package = "CPSM") data(Train_PI_data, package = "CPSM") data(Test_PI_data, package = "CPSM") data(Key_PI_list, package = "CPSM") Result_Model_Type2 <- MTLR_pred_model_f( train_clin_data = Train_Clin, test_clin_data = Test_Clin, Model_type = 2, train_features_data = Train_PI_data, test_features_data = Test_PI_data, Clin_Feature_List = Key_PI_list, surv_time = "OS_month", surv_event = "OS" ) survCurves_data <- Result_Model_Type2$survCurves_data mean_median_surviv_tim_da <- Result_Model_Type2$mean_median_survival_time_data survival_result_b_on_MTLR <- Result_Model_Type2$survival_result_based_on_MTLR Error_mat_for_Model <- Result_Model_Type2$Error_mat_for_Model }) ## ----warning=FALSE, message=FALSE, error = TRUE------------------------------- try({ data(Train_Clin, package = "CPSM") data(Test_Clin, package = "CPSM") data(Train_PI_data, package = "CPSM") data(Test_PI_data, package = "CPSM") data(Key_Clin_features_with_PI_list, package = "CPSM") Result_Model_Type3 <- MTLR_pred_model_f( train_clin_data = Train_Clin, test_clin_data = Test_Clin, Model_type = 3, train_features_data = Train_PI_data, test_features_data = Test_PI_data, Clin_Feature_List = Key_Clin_features_with_PI_list, surv_time = "OS_month", surv_event = "OS" ) survCurves_data <- Result_Model_Type3$survCurves_data mean_median_surv_tim_da <- Result_Model_Type3$mean_median_survival_time_data survival_result_b_on_MTLR <- Result_Model_Type3$survival_result_based_on_MTLR Error_mat_for_Model <- Result_Model_Type3$Error_mat_for_Model }) ## ----warning=FALSE, message=FALSE, error = TRUE------------------------------- try({ data(Train_Clin, package = "CPSM") data(Test_Clin, package = "CPSM") data(Train_Uni_sig_data, package = "CPSM") data(Test_Uni_sig_data, package = "CPSM") data(Key_univariate_features_with_Clin_list, package = "CPSM") Result_Model_Type5 <- MTLR_pred_model_f( train_clin_data = Train_Clin, test_clin_data = Test_Clin, Model_type = 4, train_features_data = Train_Uni_sig_data, test_features_data = Test_Uni_sig_data, Clin_Feature_List = Key_univariate_features_with_Clin_list, surv_time = "OS_month", surv_event = "OS" ) survCurves_data <- Result_Model_Type5$survCurves_data mean_median_surv_tim_da <- Result_Model_Type5$mean_median_survival_time_data survival_result_b_on_MTLR <- Result_Model_Type5$survival_result_based_on_MTLR Error_mat_for_Model <- Result_Model_Type5$Error_mat_for_Model }) ## ----warning=FALSE, message=FALSE, error = TRUE , fig.width=7, fig.height=4---- try({ # Create Survival curves/plots for individual patients data(survCurves_data, package = "CPSM") plots <- surv_curve_plots_f( Surv_curve_data = survCurves_data, selected_sample = "TCGA-TQ-A7RQ-01" ) # Print the plots print(plots$all_patients_plot) print(plots$highlighted_patient_plot) }) ## ----warning=FALSE, message=FALSE, error = TRUE , fig.width=7, fig.height=4---- try({ data(mean_median_survival_time_data, package = "CPSM") plots_2 <- mean_median_surv_barplot_f( surv_mean_med_data = mean_median_survival_time_data, selected_sample = "TCGA-TQ-A7RQ-01" ) # Print the plots print(plots_2$mean_med_all_pat) print(plots_2$highlighted_selected_pat) }) ## ----warning=FALSE, message=FALSE, error = TRUE, fig.width=7, fig.height=6---- try({ data(Train_Data_Nomogram_input, package = "CPSM") data(feature_list_for_Nomogram, package = "CPSM") Result_Nomogram <- Nomogram_generate_f( data = Train_Data_Nomogram_input, Feature_List = feature_list_for_Nomogram, surv_time = "OS_month", surv_event = "OS" ) C_index_mat <- Result_Nomogram$C_index_mat }) ## ----------------------------------------------------------------------------- sessionInfo()