BatchQC 2.3.5
This data set is from protein expression data captured for 39 proteins. It has two batches and two conditions corresponding to case and control.
library(BatchQC)
data(protein_data)
data(protein_sample_info)
se_object <- BatchQC::summarized_experiment(protein_data, protein_sample_info)
This data set is from signature data captured when activating different growth pathway genes in human mammary epithelial cells (GEO accession: GSE73628). This data consists of three batches and ten different conditions corresponding to control and nine different pathways
data(signature_data)
data(batch_indicator)
se_object <- BatchQC::summarized_experiment(signature_data, batch_indicator)
This data set is from bladder cancer data. This dataset has 57 bladder samples with 5 batches and 3 covariate levels (cancer, biopsy, control). Batch 1 contains only cancer, 2 has cancer and controls, 3 has only controls, 4 contains only biopsy, and 5 contains cancer and biopsy. This data set is from the bladderbatch package which must be installed to use this data example set (Leek JT (2023). bladderbatch: Bladder gene expression data illustrating batch effects. R package version 1.38.0).
if (!requireNamespace("bladderbatch", quietly = TRUE))
BiocManager::install("bladderbatch")
se_object <- BatchQC::bladder_data_upload()
## R Under development (unstable) (2025-03-13 r87965)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BatchQC_2.3.5 BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] RColorBrewer_1.1-3 ggdendro_0.2.0
## [3] jsonlite_1.9.1 umap_0.2.10.0
## [5] magrittr_2.0.3 magick_2.8.5
## [7] NCmisc_1.2.0 farver_2.1.2
## [9] rmarkdown_2.29 vctrs_0.6.5
## [11] memoise_2.0.1 EBSeq_2.5.2
## [13] askpass_1.2.1 tinytex_0.56
## [15] htmltools_0.5.8.1 S4Arrays_1.7.3
## [17] BiocNeighbors_2.1.3 SparseArray_1.7.7
## [19] sass_0.4.9 KernSmooth_2.23-26
## [21] bslib_0.9.0 htmlwidgets_1.6.4
## [23] plyr_1.8.9 testthat_3.2.3
## [25] plotly_4.10.4 cachem_1.1.0
## [27] igraph_2.1.4 mime_0.13
## [29] lifecycle_1.0.4 pkgconfig_2.0.3
## [31] rsvd_1.0.5 Matrix_1.7-3
## [33] R6_2.6.1 fastmap_1.2.0
## [35] GenomeInfoDbData_1.2.14 MatrixGenerics_1.19.1
## [37] shiny_1.10.0 digest_0.6.37
## [39] colorspace_2.1-1 ggnewscale_0.5.1
## [41] AnnotationDbi_1.69.0 S4Vectors_0.45.4
## [43] DESeq2_1.47.5 RSpectra_0.16-2
## [45] dqrng_0.4.1 irlba_2.3.5.1
## [47] crosstalk_1.2.1 GenomicRanges_1.59.1
## [49] RSQLite_2.3.9 beachmat_2.23.7
## [51] labeling_0.4.3 httr_1.4.7
## [53] abind_1.4-8 mgcv_1.9-1
## [55] compiler_4.6.0 withr_3.0.2
## [57] bit64_4.6.0-1 BiocParallel_1.41.2
## [59] DBI_1.2.3 gplots_3.2.0
## [61] MASS_7.3-65 openssl_2.3.2
## [63] DelayedArray_0.33.6 bluster_1.17.0
## [65] gtools_3.9.5 caTools_1.18.3
## [67] tools_4.6.0 httpuv_1.6.15
## [69] glue_1.8.0 nlme_3.1-167
## [71] promises_1.3.2 grid_4.6.0
## [73] cluster_2.1.8.1 reshape2_1.4.4
## [75] generics_0.1.3 sva_3.55.0
## [77] gtable_0.3.6 tidyr_1.3.1
## [79] data.table_1.17.0 utf8_1.2.4
## [81] BiocSingular_1.23.0 ScaledMatrix_1.15.0
## [83] metapod_1.15.0 XVector_0.47.2
## [85] BiocGenerics_0.53.6 pillar_1.10.1
## [87] stringr_1.5.1 limma_3.63.10
## [89] genefilter_1.89.0 later_1.4.1
## [91] splines_4.6.0 dplyr_1.1.4
## [93] lattice_0.22-6 survival_3.8-3
## [95] reader_1.0.6 bit_4.6.0
## [97] annotate_1.85.0 tidyselect_1.2.1
## [99] SingleCellExperiment_1.29.2 locfit_1.5-9.12
## [101] Biostrings_2.75.4 scuttle_1.17.0
## [103] knitr_1.50 bookdown_0.42
## [105] blockmodeling_1.1.5 IRanges_2.41.3
## [107] edgeR_4.5.9 SummarizedExperiment_1.37.0
## [109] stats4_4.6.0 xfun_0.51
## [111] Biobase_2.67.0 statmod_1.5.0
## [113] brio_1.1.5 matrixStats_1.5.0
## [115] pheatmap_1.0.12 stringi_1.8.4
## [117] UCSC.utils_1.3.1 lazyeval_0.2.2
## [119] yaml_2.3.10 evaluate_1.0.3
## [121] codetools_0.2-20 RcppEigen_0.3.4.0.2
## [123] tibble_3.2.1 BiocManager_1.30.25
## [125] cli_3.6.4 reticulate_1.41.0.1
## [127] shinythemes_1.2.0 xtable_1.8-4
## [129] munsell_0.5.1 jquerylib_0.1.4
## [131] Rcpp_1.0.14 GenomeInfoDb_1.43.4
## [133] tidyverse_2.0.0 png_0.1-8
## [135] XML_3.99-0.18 parallel_4.6.0
## [137] ggplot2_3.5.1 blob_1.2.4
## [139] scran_1.35.0 bitops_1.0-9
## [141] viridisLite_0.4.2 scales_1.3.0
## [143] purrr_1.0.4 crayon_1.5.3
## [145] rlang_1.1.5 KEGGREST_1.47.0
## [147] shinyjs_2.1.0