
Package ‘cleanUpdTSeq’
January 27, 2025

Type Package

Title cleanUpdTSeq cleans up artifacts from polyadenylation sites from
oligo(dT)-mediated 3' end RNA sequending data

Description This package implements a Naive Bayes classifier for accurately
differentiating true polyadenylation sites (pA sites) from oligo(dT)-mediated
3' end sequencing such as PAS-Seq, PolyA-Seq and RNA-Seq by filtering out false
polyadenylation sites, mainly due to oligo(dT)-mediated internal priming
during reverse transcription. The classifer is highly accurate and outperforms
other heuristic methods.

Version 1.45.1

Date 2021-04-27

Author Sarah Sheppard, Haibo Liu, Jianhong Ou, Nathan Lawson, Lihua Julie Zhu

Maintainer Jianhong Ou <jou@morgridge.org>; Lihua Julie Zhu

<Julie.Zhu@umassmed.edu>

Depends R (>= 3.5.0), BSgenome.Drerio.UCSC.danRer7, methods

Imports BSgenome, GenomicRanges, seqinr, e1071, Biostrings,
GenomeInfoDb, IRanges, utils, stringr, stats, S4Vectors

Suggests BiocStyle, rmarkdown, knitr, RUnit, BiocGenerics (>= 0.1.0)

License GPL-2

biocViews Sequencing, 3' end sequencing, polyadenylation site,
internal priming

VignetteBuilder knitr

RoxygenNote 7.1.2

LazyData true

Encoding UTF-8

git_url https://git.bioconductor.org/packages/cleanUpdTSeq

git_branch devel

git_last_commit 0fa892c

git_last_commit_date 2025-01-03

Repository Bioconductor 3.21

Date/Publication 2025-01-27

1

2 BED6WithSeq2GRangesSeq

Contents
BED6WithSeq2GRangesSeq . 2
buildClassifier . 3
buildFeatureVector . 4
classifier . 6
cleanUpdTSeq . 7
data.NaiveBayes . 7
featureVector-class . 8
getContextSequences . 8
modelInfo-class . 9
naiveBayes-class . 10
PASclassifier-class . 10
predictTestSet . 10

Index 13

BED6WithSeq2GRangesSeq

Covert (extended) BED6 file to a GRanges object

Description

Convert to a GRanges object from a (extended) BED6 file with at least six columns: chrom, chrom-
Start, strEnd, name, score and strand, and optional upstream sequences (including pA sites) and
downstream sequences of pA sites

Usage

BED6WithSeq2GRangesSeq(
file,
skip = 1L,
withSeq = TRUE,
upstream.seq.ind = 7L,
downstream.seq.ind = 8L

)

Arguments

file A character(1) vector, representing a path to a extended BED file containing at
least six columns in the order of chrom, chromStart, strEnd, name, score and
strand. The strand information must be designated as "+", or "-". Optional
fields–upstream sequences (including pA sites) and downstream sequences of
pA sites–are allowed. For more details about the BED format, see https://genome.ucsc.edu/FAQ/FAQformat.html#format1.

skip A integer(1) vector, indicating how many rows (header lines) to skip when the
BED file is read into R.

withSeq A logical(1) vector, indicating that upstream and downstream sequences flank-
ing pA sites are included in the file

buildClassifier 3

upstream.seq.ind

An integer(1),vector delineating the column location of upstream sequences of
the putative pA site

downstream.seq.ind

An integer(1),vector delineating the column location of downstream sequences
of the putative pA site

Value

An object of GRanges

Author(s)

Haibo Liu, Lihua J. Zhu

Examples

testFile <- system.file("extdata", "test.bed",
package = "cleanUpdTSeq")

peaks <- BED6WithSeq2GRangesSeq(file = testFile,
skip = 1L, withSeq = TRUE)

buildClassifier Build a Naive Bayes Classifier

Description

Computes the conditional a-posterior probabilities of a categorical class variable given independent
predictor variables using the Bayes rule.

Usage

buildClassifier(
Ndata.NaiveBayes,
Pdata.NaiveBayes,
upstream = 40L,
downstream = 30L,
wordSize = 6L,
alphabet = c("ACGT")

)

Arguments

Ndata.NaiveBayes

A data.frame, containing features for the negative training data, described fur-
ther in data.NaiveBayes.

4 buildFeatureVector

Pdata.NaiveBayes

A data.frame, containing features for the positive training data, described further
in data.NaiveBayes.

upstream An integer(1) vector, length of upstream sequence to retrieve.

downstream An integer(1) vector, length of downstream sequence to retrieve.

wordSize An integer(1) vector, size of the kmer feature for the upstream sequence. word-
Size = 6 should always be used.

alphabet A character(1) vector, a string containing DNA bases. By default, "ACTG".

Value

An object of class "naiveBayes".

Author(s)

Jianhong Ou

See Also

naiveBayes

Examples

if (interactive()){
data(data.NaiveBayes)
classifier <- buildClassifier(data.NaiveBayes$Negative,

data.NaiveBayes$Positive)
}

buildFeatureVector build Feature Vector_2

Description

This function creates a data frame. Fields include peak name, upstream sequence, downstream
sequence, and features to be used in classifying the putative polyadenylation site.

Usage

buildFeatureVector(
peaks,
genome = Drerio,
upstream = 40L,
downstream = 30L,
wordSize = 6L,
alphabet = "ACGT",

buildFeatureVector 5

sampleType = c("TP", "TN", "unknown"),
replaceNAdistance = 30L,
method = c("NaiveBayes", "SVM"),
fetchSeq = FALSE,
return_sequences = FALSE

)

Arguments

peaks An object of GRanges that may contain the upstream and downstream sequence
information. This item is created by the function BED6WithSeq2GRangesSeq.

genome Name of the genome to get sequences from. To find out a list of available
genomes, please type BSgenome::available.genomes() in R.

upstream An integer(1) vector, length of upstream sequence to retrieve.

downstream An integer(1) vector, length of downstream sequence to retrieve.

wordSize An integer(1) vector, size of the kmer feature for the upstream sequence. word-
Size = 6 should always be used.

alphabet A character(1) vector, a string containing DNA bases. By default, "ACTG".

sampleType A character(1) vector, indicating type of sequences for building feature vectors.
Options are TP (true positive) and TN (true negative) for training data, or un-
known for test data.

replaceNAdistance

An integer(1) vector, specifying an number for avg.distanceA2PeakEnd, the av-
erage distance of As to the putative pA site, when there is no A in the down-
stream sequence.

method A character(1) vector, specifying a machine learning method to to use. Cur-
rently, only "NaiveBayes" is implemented.

fetchSeq A logical (1), indicating whether upstream and downstream sequences should
be retrieved from the BSgenome object at this step or not.

return_sequences

A logical(1) vector, indicating whether upstream and downstream sequences
should be included in the output

Value

An object of "featureVector"

Author(s)

Sarah Sheppard, Haibo Liu, Jianhong Ou, Nathan Lawson, Lihua J. Zhu

Examples

library(BSgenome.Drerio.UCSC.danRer7)
testFile <- system.file("extdata", "test.bed",

package = "cleanUpdTSeq")
peaks <- BED6WithSeq2GRangesSeq(file = testFile,

6 classifier

skip = 1L, withSeq = TRUE)
build the feature vector for the test set with sequence information
testSet.NaiveBayes = buildFeatureVector(peaks,

genome = Drerio,
upstream = 40L,
downstream = 30L,
wordSize = 6L,
alphabet = "ACGT",
sampleType = "unknown",
replaceNAdistance = 30,
method = "NaiveBayes",
fetchSeq = FALSE,
return_sequences = TRUE)

convert the test set to GRanges without upstream and downstream
sequence information
peaks <- BED6WithSeq2GRangesSeq(file = testFile,

skip = 1L, withSeq = FALSE)
#build the feature vector for the test set without sequence information
testSet.NaiveBayes = buildFeatureVector(peaks,

genome = Drerio,
upstream = 40L,
downstream = 30L,
wordSize = 6L,
alphabet = "ACGT",
sampleType = "unknown",
replaceNAdistance = 30,
method = "NaiveBayes",
fetchSeq = TRUE,
return_sequences = TRUE)

classifier NaiveBayes classifier

Description

An object of class "naiveBayes" generated from data.NaiveBayes

Usage

classifier

Format

An object of class "PASclassifier" including components:

cleanUpdTSeq 7

Examples

data(classifier)
names(classifier)

cleanUpdTSeq This package classifies putative polyadenylation sites.

Description

3’ends of transcripts have generally been poorly annotated. With the advent of deep sequencing,
many methods have been developed to identify 3’ends. The majority of these methods use an
oligodT primer which can bind to internal adenine-rich sequences, and lead to artifactual identifica-
tion of polyadenylation sites. Heuristic filtering methods rely on a certain number of As downstream
of a putative polyadenylation site to classify the site as true or oligodT primed. This package pro-
vides a robust method to classify putative polyadenylation sites using a Naive Bayes classifier.

Author(s)

Sarah Sheppard, Haibo Liu, Jianhong Ou, Nathan Lawson, Lihua Julie Zhu

data.NaiveBayes Training Data

Description

A RData containing negative and positive training data

Usage

data.NaiveBayes

Format

A list with 2 data frame, "Negative" and "Positive". Negative has 9219 observations on the follow-
ing 4120 variables. And Positive is a data frame with 22770 observations on the following 4120
variables. The format is:

list("Negative") ’data.frame’: 9219 obs. of 4120 variables:

list("Positive") ’data.frame’: 22770 obs. of 4120 variables:

Both of them have same structure.

list("y") a numeric vector

list("n.A.Downstream") a numeric vector

8 getContextSequences

list("n.C.Downstream") a numeric vector

list("n.T.Downstream") a numeric vector

list("n.G.Downstream") a numeric vector

list("avg.distanceA2PeakEnd") a numeric vector

list("dimer") a numeric vector

: such as AA, AC, AG, AT, CA, ... etc. a numeric vector

list("heximer") a factor with levels 0 1

: such as AAAAAA, ACGTAC, ... etc. a factor with levels 0 1

list("upstream.seq") a vector of sequence string

list("downstream.seq") a vector of sequence string

Examples

library(BSgenome.Drerio.UCSC.danRer7)
data(data.NaiveBayes)
head(str(data.NaiveBayes$Negative))
head(str(data.NaiveBayes$Positive))

featureVector-class Class "featureVector"

Description

An object of class "featureVector" represents the output of buildFeatureVector

Objects from the Class

Objects can be created by calls of the form new("featureVector", data, info).

getContextSequences Retrieve upstream and downstream sequences

Description

Retrieve upstream and downstream sequences of pA sites from a BSgenome object based on a
GRanges object

Usage

getContextSequences(peaks, upstream = 40L, downstream = 30L, genome)

modelInfo-class 9

Arguments

peaks An object of GRanges representing pA sites

upstream An integer(1) vector, length of upstream sequence of pA sites, including pA site.

downstream An integer(1) vector, length of downstream sequences of pA sites

genome An object of BSgenome.

Value

A data.frame containing sequences upstream and downstream pA sites:

upstream.seq sequence upstream pA site, including pA site

downstream.seq sequence downstream pA site

Author(s)

Haibo Liu

Examples

library(BSgenome.Drerio.UCSC.danRer7)
testFile <- system.file("extdata", "test.bed",

package = "cleanUpdTSeq")
peaks <- BED6WithSeq2GRangesSeq(file = testFile,

skip = 1L, withSeq = FALSE)
peaks_seq <- getContextSequences(peaks,

upstream = 40L,
downstream = 30L,
genome = Drerio)

modelInfo-class Class "modelInfo"

Description

An object of class "modelInfo" represents the information of sequence to use in the analysis

Objects from the Class

Objects can be created by calls of the form new("modelInfo", upstream, downstream, wordSize,
alphabet).

10 predictTestSet

naiveBayes-class Class "naiveBayes"

Description

An object of class "naiveBayes" represents the conditional a-posterior probabilities of a categorical
class variable given independent predictor variables using the Bayes rule.

Objects from the Class

Objects can be created by calls of the form new("naiveBayes", apriori, tables, levels, call).

PASclassifier-class Class "PASclassifier"

Description

An object of class "PASclassifier" represents the output of buildClassifier

Objects from the Class

Objects can be created by calls of the form new("PASclassifier", classifier, info).

Examples

data(classifier)
classifier$info$upstream
classifier$info$wordSize
classifier$info$alphabet

predictTestSet predict authenticity of putative pA sites

Description

classify putative pA sites into true and false bins.

predictTestSet 11

Usage

predictTestSet(
Ndata.NaiveBayes = NULL,
Pdata.NaiveBayes = NULL,
testSet.NaiveBayes,
classifier = NULL,
outputFile = "test-predNaiveBayes.tsv",
assignmentCutoff = 0.5,
return_sequences = FALSE

)

Arguments

Ndata.NaiveBayes

A data.frame, containing features for the negative training data, which is built
using the function buildFeatureVector. It is described further indata.NaiveBayes.

Pdata.NaiveBayes

A data.frame, containing features for the positive training data, which is built us-
ing the function buildFeatureVector. It is described further indata.NaiveBayes.

testSet.NaiveBayes

An object of featureVector for test data built for Naive Bayes analysis using
the function buildFeatureVector.

classifier An object of class PASclassifier.
outputFile A character(1) vector, file name for outputting prediction results. The prediction

output is written to the file, tab separated.
assignmentCutoff

A numeric(1) vector, specifying the cutoff for classifying a putative pA site into
a true or false pA class. It should be any number between 0 and 1. For example,
assignmentCutoff = 0.5 will assign an putative pA site with prob_true_pA > 0.5
to the True class (1), and any putative pA site with prob_true_pA < = 0.5 as
False (0).

return_sequences

A logical(1) vector, indicating whether upstream and downstream sequences
should be included in the output

Value

A data.frame including all info as described below. The upstream and downstream sequence used
in assessing the putative pA site might be included when return_sequences = TRUE.

peak_name the name of the putative pA site (originally from the 4th field in the bed file).
prob_fake_pA the probability that the putative pA site is false
prob_true_pA the probability that the putative pA site is true
pred_class the predicted class of the putative pA site, based on the assignment cutoff. 0 =

Falsee/oligo(dT) internally primed, 1 = True
upstream_seq the upstream sequence of the putative pA site used in the analysis
downstream_seq the downstream sequence of the putative pA site used in the analysis.

12 predictTestSet

Author(s)

Sarah Sheppard, Haibo Liu, Jianhong Ou, Nathan Lawson, Lihua J. Zhu

References

Sheppard S, Lawson ND, Zhu LJ. Accurate identification of polyadenylation sites from 3’ end deep
sequencing using a naive Bayes classifier. Bioinformatics. 2013;29(20):2564-2571.

Examples

library(BSgenome.Drerio.UCSC.danRer7)
testFile <- system.file("extdata", "test.bed",

package = "cleanUpdTSeq")
convert the test set to GRanges without upstream and downstream sequence
information
peaks <- BED6WithSeq2GRangesSeq(file = testFile,

skip = 1L, withSeq = TRUE)
build the feature vector for the test set without sequence information
testSet.NaiveBayes = buildFeatureVector(peaks,

genome = Drerio,
upstream = 40L,
downstream = 30L,
wordSize = 6L,
alphabet = c("ACGT"),
sampleType = "unknown",
replaceNAdistance = 30,
method = "NaiveBayes",
fetchSeq = TRUE,
return_sequences = TRUE)

data(data.NaiveBayes)
sample the test data for code testing, DO NOT do this for real data
samp <- c(1:22, sample(23:4118, 50), 4119, 4120)
Ndata.NaiveBayes <- data.NaiveBayes$Negative[, samp]
Pdata.NaiveBayes <- data.NaiveBayes$Positive[, samp]
testSet.NaiveBayes@data <- testSet.NaiveBayes@data[, samp[-1]-1]

test_out <- predictTestSet(Ndata.NaiveBayes,
Pdata.NaiveBayes,
testSet.NaiveBayes,
outputFile = tempfile(),
assignmentCutoff = 0.5)

Index

∗ classes
featureVector-class, 8
modelInfo-class, 9
naiveBayes-class, 10
PASclassifier-class, 10

∗ datasets
classifier, 6
data.NaiveBayes, 7

$,PASclassifier-method
(PASclassifier-class), 10

$,featureVector-method
(featureVector-class), 8

$,modelInfo-method (modelInfo-class), 9
$,naiveBayes-method (naiveBayes-class),

10
$<-,PASclassifier-method

(PASclassifier-class), 10
$<-,featureVector-method

(featureVector-class), 8
$<-,modelInfo-method (modelInfo-class),

9
$<-,naiveBayes-method

(naiveBayes-class), 10

BED6WithSeq2GRangesSeq, 2, 5
buildClassifier, 3, 10
buildFeatureVector, 4, 8, 11

classifier, 6
cleanUpdTSeq, 7
cleanUpdTSeq-package (cleanUpdTSeq), 7

data.NaiveBayes, 3, 4, 7, 11

featureVector, 5, 11
featureVector (featureVector-class), 8
featureVector-class, 8

getContextSequences, 8

modelInfo (modelInfo-class), 9

modelInfo-class, 9

naiveBayes, 4
naiveBayes (naiveBayes-class), 10
naiveBayes-class, 10

PASclassifier, 6, 11
PASclassifier (PASclassifier-class), 10
PASclassifier-class, 10
predictTestSet, 10

13

	BED6WithSeq2GRangesSeq
	buildClassifier
	buildFeatureVector
	classifier
	cleanUpdTSeq
	data.NaiveBayes
	featureVector-class
	getContextSequences
	modelInfo-class
	naiveBayes-class
	PASclassifier-class
	predictTestSet
	Index

