tRNA 1.0.0
The tRNA package allows tRNA sequences and structures to be accessed and used
for subsetting. In addition, it provides visualization tools to compare feature
parameters of multiple tRNA sets and correlate them to additional data. The
package expects a GRanges object with certain columns as input. The following
columns are a requirement: tRNA_length, tRNA_type, tRNA_anticodon,
tRNA_seq, tRNA_str, tRNA_CCA.end.
To work with the tRNA packages, tRNA information can be retrieved in a number of ways:
GRanges object can be constructed by hand containing the
required colums (see above)import.tRNAscanAsGRanges() from tRNAscanImport packageimport.tRNAdb() from tRNAdbImport packageFor this vignette a predefined GRanges object is loaded.
library(tRNA)
data("gr", package = "tRNA", envir = environment())To retrieve the sequences for individual tRNA structure elements
gettRNAstructureGRanges or gettRNAstructureSeqs can be used.
# just get the coordinates of the anticodonloop
gettRNAstructureGRanges(gr,
                        structure = "anticodonLoop")## $anticodonLoop
## IRanges object with 299 ranges and 0 metadata columns:
##           start       end     width
##       <integer> <integer> <integer>
##   TGG        31        37         7
##   TGC        32        38         7
##   CAA        31        37         7
##   AGA        31        37         7
##   TAA        31        37         7
##   ...       ...       ...       ...
##   CAT        32        38         7
##   GAA        31        37         7
##   TTA        31        37         7
##   TAC        32        38         7
##   CAT        32        38         7gettRNAstructureSeqs(gr,
                     joinFeatures = TRUE,
                     structure = "anticodonLoop")## $anticodonLoop
##   A DNAStringSet instance of length 299
##       width seq                                          names               
##   [1]     7 TTTGGGT                                      TGG
##   [2]     7 CTTGCAA                                      TGC
##   [3]     7 TTCAAGC                                      CAA
##   [4]     7 TTAGAAA                                      AGA
##   [5]     7 CTTAAGA                                      TAA
##   ...   ... ...
## [295]     7 CTCATAA                                      CAT
## [296]     7 TTGAAGA                                      GAA
## [297]     7 TTTTAGT                                      TTA
## [298]     7 TTTACAC                                      TAC
## [299]     7 GTCATGA                                      CATIn addition the sequences can be returned already joined to get a fully blank
padded set of sequences. The boundaries of the individual structures is returned
as metadata of the RNAStringSet object.
seqs <- gettRNAstructureSeqs(gr[1:10],
                             joinCompletely = TRUE)
seqs##   A DNAStringSet instance of length 10
##      width seq
##  [1]    85 GGGCGTGTGGTC-TAGT-GGTAT-GATTCTCG...----GCCTGGGTTCAATTCCCAGCTCGCCCC
##  [2]    85 GGGCACATGGCGCAGTT-GGT-AGCGCGCTTC...----GCATCGGTTCGATTCCGGTTGCGTCCA
##  [3]    85 GGTTGTTTGGCC-GAGC-GGTAA-GGCGCCTG...-GATGCAAGAGTTCGAATCTCTTAGCAACCA
##  [4]    85 GGCAACTTGGCC-GAGT-GGTAA-GGCGAAAG...GCCCGCGCAGGTTCGAGTCCTGCAGTTGTCG
##  [5]    85 GGAGGGTTGGCC-GAGT-GGTAA-GGCGGCAG...GTCCGCGCGAGTTCGAACCTCGCATCCTTCA
##  [6]    85 GCGGATTTAGCTCAGTT-GGG-AGAGCGCCAG...----GCCTGTGTTCGATCCACAGAATTCGCA
##  [7]    85 GGTCTCTTGGCC-CAGTTGGTAA-GGCACCGT...----ACAGCGGTTCGATCCCGCTAGAGACCA
##  [8]    85 GCGCAAGTGGTTTAGT--GGT-AAAATCCAAC...-----CCCCGGTTCGATTCCGGGCTTGCGCA
##  [9]    85 GGCAACTTGGCC-GAGT-GGTAA-GGCGAAAG...GCCCGCGCAGGTTCGAGTCCTGCAGTTGTCG
## [10]    85 GCTTCTATGGCC-AAGTTGGTAA-GGCGCCAC...----ACATCGGTTCAAATCCGATTGGAAGCA# getting the tRNA structure boundaries
metadata(seqs)[["tRNA_structures"]]## IRanges object with 15 ranges and 0 metadata columns:
##                           start       end     width
##                       <integer> <integer> <integer>
##   acceptorStem.prime5         1         7         7
##               Dprime5         8         9         2
##          DStem.prime5        10        13         4
##                 Dloop        14        23        10
##          DStem.prime3        24        27         4
##                   ...       ...       ...       ...
##          TStem.prime5        61        65         5
##                 Tloop        66        72         7
##          TStem.prime3        73        77         5
##   acceptorStem.prime3        78        84         7
##         discriminator        85        85         1Be aware, that gettRNAstructureGRanges and gettRNAstructureSeqs might not be
working as expected, if the tRNA sequences in questions are armless or deviate a
lot from the canonical tRNA model. It was thouroughly tested using human
mitochondrial tRNA and other tRNAs missing certain features. However, for fringe
cases this might not be the case. Please report these cases, if you find them,
with an example.
The structure information can be queried for subsetting using the function
hasAccpeptorStem() as an example. Please have a look at?hasAccpeptorStem for
all available subsetting functions.
gr[hasAcceptorStem(gr, unpaired = TRUE)]
# mismatches and bulged are subsets of unpaired
gr[hasAcceptorStem(gr, mismatches = TRUE)]
gr[hasAcceptorStem(gr, bulged = TRUE)]
# combination of different structure parameters
gr[hasAcceptorStem(gr, mismatches = TRUE) & 
     hasDloop(gr, length = 8)]To get an overview of tRNA feature and compare different datasets,
gettRNAFeaturePlots can be used. It accepts a named GRangesList as input.
Internally it will calculate a list of features values based on the functions
mentioned above and the data contained in the mcols of the GRanges objects.
The results can be retrieved without generating plots using gettRNASummary.
# load tRNA data for E. coli and H. sapiens
data("gr_eco", package = "tRNA", envir = environment())
data("gr_human", package = "tRNA", envir = environment())
# get summary plots
grl <- GRangesList(Sce = gr,
                   Hsa = gr_human,
                   Eco = gr_eco)
plots <- gettRNAFeaturePlots(grl)plots$length
Figure 1: tRNA length
plots$tRNAscan_score
Figure 2: tRNAscan-SE scores
plots$gc
Figure 3: tRNA GC content
plots$tRNAscan_intron
Figure 4: tRNAs with introns
plots$variableLoop_length
Figure 5: Length of the variable loop
To check whether features correlate with additional scores, optional arguments
can be added to gettRNAFeaturePlots or used from the score column of the
GRanges objects. For the first option provided a list of scores with the same
dimensions as the GRangesList object as argument scores and for the latter
set plotScore = TRUE.
# score column will be used
plots <- gettRNAFeaturePlots(grl,
                             plotScores = TRUE)plots <- gettRNAFeaturePlots(grl,
                             scores = list(runif(length(grl[[1]]),0,100),
                                           runif(length(grl[[2]]),0,100),
                                           runif(length(grl[[3]]),0,100)))plots$length
Figure 6: tRNA length and score correlation
plots$variableLoop_length
Figure 7: variable loop length and score correlation
The plots can be of course modified manually and changed to suit your needs.
plots$length$layers <- plots$length$layers[c(-1,-2)]
plots$length + ggplot2::geom_boxplot()
Figure 8: Customized plot switching out the point and violin plot into a boxplot
The colours of the plots can be customized directly on creation with the following options.
options("tRNA_colour_palette")## $tRNA_colour_palette
## [1] "Set1"options("tRNA_colour_yes")## $tRNA_colour_yes
## [1] "green"options("tRNA_colour_no")## $tRNA_colour_no
## [1] "red"To retrieve detailed information on the base pairing gettRNABasePairing() or
getBasePairing() can be used depending on the input type. The DotBracket
annotation is expected with pairs of <>{}[]() (Please note the orientation.
For <> the orientation is variable, since the tRNAscan files use the ><
annotation by default).
head(gettRNABasePairing(gr)[[1]])head(getBasePairing(gr[1]$tRNA_str)[[1]])The loop ids for the structure elements can be retrieved with gettRNALoopIDs()
or getLoopIDs(). Please not that pseudoloops are currently not correctly
reflected in the output of these functions.
gettRNALoopIDs(gr)[[1]]##  [1]  1  2  3  4  5  5  6  6  6  7  8  9  9  9  9  9  9  9  9  9  9  9  8  7
## [25]  6 10 11 12 13 14 14 14 14 14 14 14 14 14 13 12 11 10  6  6  6  6 15 16
## [49] 17 18 19 19 19 19 19 19 19 19 19 18 17 16 15  6  5  5  4  3  2  1  0getLoopIDs(gr[1]$tRNA_str)## $`1`
##  [1]  1  2  3  4  5  5  6  6  6  7  8  9  9  9  9  9  9  9  9  9  9  9  8  7
## [25]  6 10 11 12 13 14 14 14 14 14 14 14 14 14 13 12 11 10  6  6  6  6 15 16
## [49] 17 18 19 19 19 19 19 19 19 19 19 18 17 16 15  6  5  5  4  3  2  1  0sessionInfo()## R version 3.5.1 Patched (2018-07-12 r74967)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.5 LTS
## 
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.8-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.8-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
## [1] tRNA_1.0.0           GenomicRanges_1.34.0 GenomeInfoDb_1.18.0 
## [4] IRanges_2.16.0       S4Vectors_0.20.0     BiocGenerics_0.28.0 
## [7] BiocStyle_2.10.0    
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_0.12.19               assertive.properties_0.0-4
##  [3] assertive.types_0.0-3      assertive.data.us_0.0-2   
##  [5] Biostrings_2.50.0          assertthat_0.2.0          
##  [7] rprojroot_1.3-2            digest_0.6.18             
##  [9] R6_2.3.0                   plyr_1.8.4                
## [11] backports_1.1.2            evaluate_0.12             
## [13] assertive.code_0.0-3       ggplot2_3.1.0             
## [15] highr_0.7                  pillar_1.3.0              
## [17] assertive.strings_0.0-3    zlibbioc_1.28.0           
## [19] rlang_0.3.0.1              lazyeval_0.2.1            
## [21] assertive_0.3-5            assertive.data_0.0-1      
## [23] rmarkdown_1.10             labeling_0.3              
## [25] stringr_1.3.1              RCurl_1.95-4.11           
## [27] munsell_0.5.0              compiler_3.5.1            
## [29] xfun_0.4                   pkgconfig_2.0.2           
## [31] htmltools_0.3.6            tidyselect_0.2.5          
## [33] tibble_1.4.2               GenomeInfoDbData_1.2.0    
## [35] bookdown_0.7               assertive.sets_0.0-3      
## [37] codetools_0.2-15           crayon_1.3.4              
## [39] dplyr_0.7.7                withr_2.1.2               
## [41] bitops_1.0-6               grid_3.5.1                
## [43] jsonlite_1.5               assertive.base_0.0-7      
## [45] gtable_0.2.0               magrittr_1.5              
## [47] assertive.models_0.0-2     scales_1.0.0              
## [49] stringi_1.2.4              XVector_0.22.0            
## [51] assertive.matrices_0.0-1   bindrcpp_0.2.2            
## [53] assertive.reflection_0.0-4 assertive.datetimes_0.0-2 
## [55] RColorBrewer_1.1-2         tools_3.5.1               
## [57] glue_1.3.0                 purrr_0.2.5               
## [59] assertive.numbers_0.0-2    yaml_2.2.0                
## [61] colorspace_1.3-2           BiocManager_1.30.3        
## [63] assertive.files_0.0-2      assertive.data.uk_0.0-2   
## [65] knitr_1.20                 bindr_0.1.1