## ----knitr-options, echo = FALSE, message = FALSE, warning = FALSE--------- # To render an HTML version that works nicely with github and web pages, do: # rmarkdown::render("vignettes/splatter.Rmd", "all") knitr::opts_chunk$set(fig.align = 'center', fig.width = 6, fig.height = 5, dev = 'png') ## ----install, eval = FALSE------------------------------------------------- # source("https://bioconductor.org/biocLite.R") # biocLite("splatter") ## ----install-github, eval = FALSE------------------------------------------ # biocLite("Oshlack/splatter", dependencies = TRUE, # build_vignettes = TRUE) ## ----quickstart------------------------------------------------------------ # Load package library(splatter) # Load example data library(scater) data("sc_example_counts") # Estimate parameters from example data params <- splatEstimate(sc_example_counts) # Simulate data using estimated parameters sim <- splatSimulate(params) ## ----SplatParams----------------------------------------------------------- params <- newSplatParams() params ## ----getParam-------------------------------------------------------------- getParam(params, "nGenes") ## ----setParam-------------------------------------------------------------- params <- setParam(params, "nGenes", 5000) getParam(params, "nGenes") ## ----getParams-setParams--------------------------------------------------- # Set multiple parameters at once (using a list) params <- setParams(params, update = list(nGenes = 8000, mean.rate = 0.5)) # Extract multiple parameters as a list getParams(params, c("nGenes", "mean.rate", "mean.shape")) # Set multiple parameters at once (using additional arguments) params <- setParams(params, mean.shape = 0.5, de.prob = 0.2) params ## ----newSplatParams-set---------------------------------------------------- params <- newSplatParams(lib.loc = 12, lib.scale = 0.6) getParams(params, c("lib.loc", "lib.scale")) ## ----splatEstimate--------------------------------------------------------- # Check that sc_example counts is an integer matrix class(sc_example_counts) typeof(sc_example_counts) # Check the dimensions, each row is a gene, each column is a cell dim(sc_example_counts) # Show the first few entries sc_example_counts[1:5, 1:5] params <- splatEstimate(sc_example_counts) ## ----splatSimulate--------------------------------------------------------- sim <- splatSimulate(params, nGenes = 1000) sim ## ----SCE------------------------------------------------------------------- # Access the counts counts(sim)[1:5, 1:5] # Information about genes head(rowData(sim)) # Information about cells head(colData(sim)) # Gene by cell matrices names(assays(sim)) # Example of cell means matrix assays(sim)$CellMeans[1:5, 1:5] ## ----pca------------------------------------------------------------------- # Use scater to calculate logcounts sim <- normalise(sim) # Plot PCA plotPCA(sim) ## ----groups---------------------------------------------------------------- sim.groups <- splatSimulate(group.prob = c(0.5, 0.5), method = "groups", verbose = FALSE) sim.groups <- normalise(sim.groups) plotPCA(sim.groups, colour_by = "Group") ## ----paths----------------------------------------------------------------- sim.paths <- splatSimulate(method = "paths", verbose = FALSE) sim.paths <- normalise(sim.paths) plotPCA(sim.paths, colour_by = "Step") ## ----batches--------------------------------------------------------------- sim.batches <- splatSimulate(batchCells = c(50, 50), verbose = FALSE) sim.batches <- normalise(sim.batches) plotPCA(sim.batches, colour_by = "Batch") ## ----batch-groups---------------------------------------------------------- sim.groups <- splatSimulate(batchCells = c(50, 50), group.prob = c(0.5, 0.5), method = "groups", verbose = FALSE) sim.groups <- normalise(sim.groups) plotPCA(sim.groups, shape_by = "Batch", colour_by = "Group") ## ----listSims-------------------------------------------------------------- listSims() ## ----listSims-table-------------------------------------------------------- knitr::kable(listSims(print = FALSE)) ## ----lengths--------------------------------------------------------------- sim <- simpleSimulate(verbose = FALSE) sim <- addGeneLengths(sim) head(rowData(sim)) ## ----TPM------------------------------------------------------------------- tpm(sim) <- calculateTPM(sim, rowData(sim)$Length) tpm(sim)[1:5, 1:5] ## ----comparison------------------------------------------------------------ sim1 <- splatSimulate(nGenes = 1000, batchCells = 20, verbose = FALSE) sim2 <- simpleSimulate(nGenes = 1000, nCells = 20, verbose = FALSE) comparison <- compareSCEs(list(Splat = sim1, Simple = sim2)) names(comparison) names(comparison$Plots) ## ----comparison-means------------------------------------------------------ comparison$Plots$Means ## ----comparison-libsize-features------------------------------------------- library("ggplot2") ggplot(comparison$PhenoData, aes(x = total_counts, y = total_features, colour = Dataset)) + geom_point() ## ----difference------------------------------------------------------------ difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple") difference$Plots$Means ## ----difference-qq--------------------------------------------------------- difference$QQPlots$Means ## ----save-panels, eval = FALSE--------------------------------------------- # # This code is just an example and is not run # panel <- makeCompPanel(comparison) # cowplot::save_plot("comp_panel.png", panel, nrow = 4, ncol = 3) # # panel <- makeDiffPanel(difference) # cowplot::save_plot("diff_panel.png", panel, nrow = 3, ncol = 5) # # panel <- makeOverallPanel(comparison, difference) # cowplot::save_plot("overall_panel.png", panel, ncol = 4, nrow = 7) ## ----citation-------------------------------------------------------------- citation("splatter") ## ----sessionInfo----------------------------------------------------------- sessionInfo()