
The fastLiquidAssociation Package

Tina Gunderson

April 30, 2018

1 Introduction

The fastLiquidAssociation package is intended to provide more efficient tools for genome-wide application
of liquid association. The term liquid association (LA) was coined by K-C. Li in 2002 to describe a theory
of co-expression dynamics which “conceptualize[s] the internal evolution of co-expression pattern for a pair
of genes” [3]. He used the term “liquid” here (as opposed to “solid”) to convey the idea of a quantity which
examined the extent to which the co-expression or correlation of two genes X1 and X2 might be mediated
by the expression of a third gene X3, i.e. the degree to which the correlation of the two genes X1 and X2
might vary (e.g. go from contra- to co-expressed or vice-versa) based on the expression level of the third
gene (with the third gene’s expression functioning as a representation of the cellular state).

Building on Li’s work, Ho et al. proposed a modification to the liquid association statistic in order to
better capture more complex interdependencies between the variables, noting that, “[w]hen the conditional
means and variances [of X1 and X2] also depend on X3, then the three-product-moment measure, as derived
by Li for standardized variables, no longer precisely estimates the expected change of co-expression of X1
and X2 with respect to X3, but captures a larger set of interdependencies among the three variables” [1].

This software package provides an expansion of the functions available in the LiquidAssociation pack-
age. While the LiquidAssociation package refers to modified liquid association (MLA) as generalized liquid
association (GLA), the 2011 publication refers to it as modified liquid association. For the purposes of this
vignette, we will use the two terms interchangeably. The main function (fastMLA) reduces the processing

power and memory needed to calculate MLA values for a genome (

(
N

3

)
∗ 3, with N being the number of

genes in the genome, e.g. 1.079x1011 for 6000 genes) by using a pre-screening method to reduce the candidate
pool to triplets likely to have a high MLA value. It does this using matrix algebra to create an approximation
to the direct MLA estimate for all possible pairs of X1,X2|X3. Intuitively, we can picture MLA as the change
in correlation between X1 and X2 when X3 is at a high level of expression versus their correlation when X3
is at a low level of expression. This difference, ρdiff (ρdiff = ρhigh − ρlow), gives an approximation of the
relative magnitude of the MLA value for most triplet combinations (ρdiff values range from -2 to 2 compared

to MLA values which range from -
√
π/2 to

√
π/2). Figure 1 shows a comparison using the first 50 and the

first 250 genes of the Spellman et al. data set (available in the yeastCC package) [4] for all possible triplets

of |M̂LA| vs. |ρdiff | with lowess curves.
The package also incorporates functions to test for significance of the triplets returning a high MLA

value and provides a faster, more robust version of the MLA bootstrapping estimation procedure for use
with multicore systems.

2 Simple Usage

Here we present an example of package usage on a smaller data set. We start by loading the R package and
the example data. In this package, we use the yeast cell cycle gene expression data by Spellman [4]. The data
can be obtained through package yeastCC. The annotation package for the yeast experiment org.Sc.sgd.db
can be obtained through Bioconductor.

1

Figure 1: Comparison for all triplets possible using the first 50 and 250 genes of |M̂LA| vs. |ρdiff | with lowess curves

2.1 fastMLA

> library(fastLiquidAssociation)

> suppressMessages(library(yeastCC))

> suppressMessages(library(org.Sc.sgd.db))

> data(spYCCES)

> lae <- spYCCES[,-(1:4)]

> ### get rid of samples with high % NA elements

> lae <- lae[apply(is.na(exprs(lae)),1,sum) < ncol(lae)*0.3,]

> data <- t(exprs(lae))

> data <- data[,1:50]

> dim(data)

[1] 73 50

After removing genes with high missing percentage, for speed in this example, we reduce the data set to the
first 50 genes. A normal score transformation of the data as described in both Li and Ho et al.’s work [3] [1]

is performed within the fastMLA function. The top values are returned sorted by |M̂LA|.

> detectCores()

[1] 20

> example <- fastMLA(data=data,topn=50,nvec=1:5,rvalue=0.5,cut=4,threads=detectCores())

Allowing parallel execution with up to 20 working processes.

> example[1:5,]

X1 or X2 X2 or X1 X3 rhodiff MLA value

1 YAL041W YAL046C YAL004W -1.14880 -0.42498

2 YAL041W YAL042W YAL004W -1.22538 -0.40982

3 YAL014C YAL015C YAL004W -1.09253 -0.40199

4 YAL039C YAL045C YAL004W -1.03147 -0.39181

5 YAL025C YAL035W YAL002W 0.94254 0.39086

The arguments to the fastMLA function are a matrix of numerical data with genes as columns(data), the
number of results to return (topn), the column numbers of the genes to test (nvec), the |ρdiff | cutoff to use

2

Raw data

Preprocessing

fastMLA

mass.CNM
significance testing

Does the full CNM
model fit the

triplet data well?

(part of mass.CNM)

combine results from
fastboots.GLA
and mass.CNM

calculate ad-

justed p-values

Does the simple
CNM model fit the
triplet data well?

(part of mass.CNM)

fastboots.GLA
perform robust
estimation and
bootstrapping

gene set analysis

specify set of
“interesting triplets”

|ρdiff | > rvalue and in top N=topn by |M̂LA| per gene

no

no yes
yes

Any reduction of data set e.g. non-specific filtering

Use fastMLA results to specify set

Figure 2: Process map for data processing, testing, and gene set analysis using all components of the fastLiquidAsso-
ciation package

3

(rvalue), the cut argument to pass to the GLA function from the LiquidAssociation package, and the number
of processors available to use for increasing the speed of calculation for correlation values (threads)(for a fuller
discussion of this argument please see the WGCNA package documentation, for a discussion of parallelization
please see the section in this vignette entitled ”Parallelization of the Direct Estimate”). The cut argument
will depend on the number of observations in the data. Based on data from Ho et al. [1], the number of
observations per bin should be in the 15-30 range for maximum specificity. The cut argument is equal to the
number of bins plus one. Hence in this example, as we have 73 observations, we chose to se the cut value
at 4. The maximum rvalue is theoretically 2 (as ρdiff = |ρhigh − ρlow| and -1 ≤ ρX1,X2 ≤ 1). The default
value is set at 0.5 or 25% of the realizable correlation difference, however |ρdiff | a.k.a. rvalue was set at 1.1
in our example above for speed purposes. Caution should be used when determining the rvalue. Too high a
value risks missing those triplets whose MLA values are not fully reflected by the more simplistic correlation,
while too low a value approaches testing all possible triplets and forfeits any increase in testing efficiency. 1

2.2 Functions of the Conditional Normal Model

Two options for calculating significance are included in this package, mass.CNM which relies on estimation
of parameters from a conditional normal model and fastboots.GLA which uses a more robust direct estimate
method. Both functions return unadjusted p-values. The CNM model is written as:

X3 ∼ N(µ3, σ
2
3)

X1, X2|X3 ∼ N(
(
µ1
µ2

)
,Σ).

where Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
. The mean vector (µ1, µ2) and variance matrix Σ depend on the level of X3

as written below:

µ1 = β1X3,

µ2 = β2X3,

log σ2
1 = α3 + β3X3,

log σ2
2 = α4 + β4X3,

log [1 + ρ

1− ρ] = α5 + β5X3.

> #from our example with fastMLA

> CNMcalc <- mass.CNM(data=data,GLA.mat=example,nback=5)

> CNMcalc

$`top p-values`

X1 or X2 X2 or X1 X3 rhodiff MLA value estimates san.se wald p value

1 YAL011W YAL017W YAL005C 0.79 0.30 0.70 0.17 17.14 0

2 YAL040C YAL048C YAL005C 0.87 0.31 0.67 0.20 10.87 0

3 YAL031C YAL036C YAL002W -0.78 -0.31 -0.79 0.24 10.42 0

4 YAL028W YAL041W YAL004W 0.94 0.30 1.22 0.38 10.03 0

5 YAL041W YAL046C YAL004W -1.15 -0.42 -1.55 0.50 9.51 0

model

1 F

2 F

3 F

4 F

5 F

1The fastMLA function incorporates the more efficient correlation calculation of the cor function in the WGCNA package [2].

4

$`bootstrap triplets`

NULL

In our original subset of the data, there are no triplets not returning sensible values, so to demonstrate
what is returned when sensible values are not returned for either model, we change the dataset used to the
full 5721 genes in the yeastCC data set and use a matrix which specifically contains triplets not returning
sensible values.

> fulldata <- t(exprs(lae))

> load(system.file('data','testmat.RData',package='fastLiquidAssociation'))

> notsense <- testmat

> CNMother <- mass.CNM(data=fulldata,GLA.mat=notsense,nback=5)

> CNMother

$`top p-values`

X1 or X2 X2 or X1 X3 rhodiff MLA value estimates san.se wald p value

1 YOL120C YOL143C YDR495C 1.2710 0.5376 1.5562 0.4030 14.9116 0.0001

2 YHR129C YPR045C YDR495C 1.4467 0.5474 2.4887 0.6495 14.6822 0.0001

3 YIR043C YLR375W YDR495C 1.3415 0.5358 1.7832 0.5269 11.4531 0.0007

4 YIR004W YOR291W YDR495C -1.4788 -0.5662 -2.1373 0.6774 9.9541 0.0016

5 YCRX15W YDR257C YDR495C -1.3919 -0.5435 -2.1025 0.6693 9.8679 0.0017

model

1 F

2 F

3 F

4 F

5 F

$`bootstrap triplets`

X1 or X2 X2 or X1 X3 rhodiff GLA value estimates

[1,] "YKR032W" "YNR021W" "YDR294C" "1.2808" "0.4567" "22.1364"

[2,] "YBR012C" "YDL191W" "YDR346C" "1.4023" "0.4298" "-10211.647"

san.se wald p value model

[1,] "20.0702" "1.2165" "0.27" "S"

[2,] "15288623.7058" "0" "0.9995" "S"

In the above example, we apply the mass.CNM function to the results of fastMLA to test for significance
using both of the conditional normal model-based approaches laid out in Ho et al. [1]. The mass.CNM
function accepts three arguments: data, GLA.mat, and nback. data is the same matrix used as data in the
fastMLA function, the GLA.mat is the returned matrix from a call to the fastMLA function, and nback
is the number of results to return, sorted by p-value, then by size of the Wald statistic. The main parameter
of interest in the CNM for significance testing using liquid association is b5.

The mass.CNM incorporates a two step process, first testing the triplets against the full CNM model
and then for any triplets which do not return sensible values (sensible being defined as any triplet for which
the p-value or SE estimate=0, SE estimate >10, or any β5 statistics returned “NaN”, “NA”, or “Inf”), it tests
them against the simple model. The full CNM model uses all parameter value (i.e. estimates the parameters
of the model above using all five equations), while the simple model only uses the last three.

The mass.CNM output is a list with two components, one a data frame with nback rows which list the
information from fastMLA (the triplet, the triplet’s GLA and ρdiff values), the β5 values estimated in the
model (the estimate for β5, its SE, the Wald statistic, and p-value), and the model (full or simple) which
was used to calculate the values and the second a list of any triplets who did not return sensible values for
either model. For any triplets that do not return a sensible value using one of the two models, the more
robust direct estimate method is available as the fastboots.GLA function. 2

2The above example may produce a warning message “In sqrt(diag(object$valpha)) : NaNs produced”. This is normal
behavior when one or both of the CNM models cannot fit at least one of the triplets.

5

2.3 Parallelization of the Direct Estimate

As mentioned before, for triplets that when tested with the full or simple models did not return sensible
values, a direct estimator is available. The fastboots.GLA function makes use of the increased processing
power that has become more widely available, both on standard desktops and servers. It is an updated and
parallelized version of the getsGLA function available in the LiquidAssociation package. As the standard
error in the direct estimate relies on bootstrapping and the significance calculations can require a large
number of iterations, we sought a more efficient method to increase efficiency.

Parallelization has as its basis the idea that large problems (e.g. a high number of calculations) can be
split into smaller problems that are being run at the same time, rather than sequentially. Parallelization of
processes makes sense when each process itself takes significantly longer to complete than to allocate.
In the below example, we use the detectCores function from the parallel package to detect the number
of CPU cores. On systems where more processors are available, e.g. servers for supercomputing which
normally have multiple nodes of several processors each, it is possible to set a larger number of cores than
the detectCores function may detect.

fastboots.GLA is intended to be used with the results of a call to mass.CNM, specifically the output
labelled bootstrap triplets. The fastboots.GLA function is intended for use on multicore systems in order
to make use of possible parallelization. While it can be used on a single core system, there would be no speed
benefit over the getsGLA function available in the LiquidAssociation package, though the fastboots.GLA
function does resolve an error in the getsGLA function that can be caused by data redundancy. In the
below example, we are using a six core system.

> #determine number of processors for multicore systems

> clust <- makeCluster(detectCores())

> registerDoParallel(clust)

> boottrips <- CNMother[[2]]

> dim(boottrips)

[1] 2 10

Below we an example of processing speed with the fastboots.GLA function. Using the getsGLA function
from the LiquidAssociation package, the triplet had the following values: 3

user system elapsed sGLA p value
30.85 0.01 30.92 5.25 0.00000

> #We take the results for the single triplet and put it in matrix format

> example.boots <- boottrips[1, , drop = FALSE]

> dim(example.boots)

[1] 1 10

> set.seed(1)

> system.time(GLAnew <- fastboots.GLA(tripmat=example.boots,data=fulldata,

+ clust=clust, boots=30, perm=500, cut=4))

user system elapsed

1.500 0.012 15.657

> GLAnew

X1 or X2 X2 or X1 X3 rhodiff MLA value MLA stat boots p-value

1 YKR032W YNR021W YDR294C 1.2808 0.4567 5.25085 0

3The original getsGLA code is not called here as it sometimes produces an error due to non-unique cut values with higher
numbers of permutations.

6

> #the matrix conversion is not needed for the 2 line result

> set.seed(1)

> system.time(GLAtwo <- fastboots.GLA(tripmat=boottrips,data=fulldata,

+ clust=clust, boots=30, perm=500, cut=4))

user system elapsed

1.544 0.020 12.275

> GLAtwo

X1 or X2 X2 or X1 X3 rhodiff MLA value MLA stat boots p-value

1 YKR032W YNR021W YDR294C 1.2808 0.4567 5.250850 0.00000000

2 YBR012C YDL191W YDR346C 1.4023 0.4298 2.748675 0.02414487

> #close the cluster

> stopCluster(clust)

tripmat here is the list of triplets where a direct estimate is needed. The data is the numeric matrix of data
used in both the fastMLA and mass.CNM functions. clust is a cluster of CPU cores to use in paralleliza-
tion, created by a call to the makeCluster function from package parallel. The boots argument specifies the
number of bootstrap iterations for estimating the bootstrap standard error. The perm argument specifies the
number of iterations to calculate the permuted p-value. Given that the results of the permutations depend
on random number generation, for reproduciblity here we use the set.seed option. The cut option is used to
determine the number of “buckets” to used in the estimation procedure.

Because the normalization of the data matrix is incorporated into the fastboots.GLA function, the full
time decrease is not apparent until the number of iterations significantly exceeds the time to normalize the
data matrix or the number of triplets to test increases. This is partially displayed in the example, where
even the calculation of two triplets has a lower processing time than the single triplet run serially.

3 Further Applications

In this section, we cover further applications available with the results of the fastLiquidAssociation package.
Using the GOstats package in conjunction with the results from either the fastMLA, the mass.CNM, or
fastboots.GLA we can specify our set of interesting genes and perform GO analysis. We show an example
here using the genes in the X3 position of the results from fastMLA to define our list of interesting genes
and a p-value cutoff of 0.05 for the BP ontology. Only categories containing a minimum of five genes are
displayed.

> library(GOstats)

> library("org.Sc.sgd.db")

> ##X3 genes

> topX3 <- unique(example[,3])

> hyp.cutoff <- 0.05

> ####

> params <- new("GOHyperGParams", geneIds=topX3,universeGeneIds=colnames(data),

+ annotation="org.Sc.sgd.db",ontology="BP",pvalueCutoff=hyp.cutoff,conditional=TRUE,

+ testDirection="over")

> GOout <- hyperGTest(params)

> summary(GOout,categorySize=5)

GOBPID Pvalue OddsRatio ExpCount Count Size

1 GO:0034613 0.02451434 15.85714 0.8333333 3 10

2 GO:0043933 0.03307123 13.50000 0.9166667 3 11

3 GO:0033036 0.04324699 11.66667 1.0000000 3 12

7

Term

1 cellular protein localization

2 protein-containing complex subunit organization

3 macromolecule localization

Because we used open reading frame (ORF) IDs in order to use the GOstats package with yeast data, we
can the following to unpack the associated gene names.

> ###extracts GO list elements of summary(hyperGtestobj)<cutoff

> ###converts ORFids to Gene names and returns under GO list element

> ##for ontology BP

> GOids <- summary(GOout,categorySize=5)$GOBPID

> check <- GOout@goDag@nodeData@data

> subset <- check[GOids]

> terms <- summary(GOout,categorySize=5)$Term

> test <- sapply(subset,function(m) m[1])

> orflist <- lapply(test,function(x) intersect(x,topX3))

> ##creates mapping of ORFids to gene names

> x <- org.Sc.sgdGENENAME

> mappedgenes <- mappedkeys(x)

> xx <- as.list(x[mappedgenes])

> mapid <- names(xx)

> ##creates list of GO ids

> genename1 <- lapply(orflist,function(x) xx[match(x,mapid)])

> ###

> ### if reduced num of terms desired run for statement below ##

> # for(i in 1:length(genename1)){

> # if (length(genename1[[i]])>10) genename1[[i]] <- genename1[[i]][1:10]

> # }

> ## for full list use below

> genelist <- lapply(genename1,function(x) paste(x,collapse=", "))

> ugenes <- unlist(genelist)

> names <- sapply(names(ugenes), function(x) unlist(strsplit(x, split='.', fixed=TRUE))[1])

> umat <- matrix(ugenes)

> umat <- cbind(terms,umat)

> rownames(umat) <- names

> colnames(umat) <- c("GO description","Associated genes")

> umat

GO description Associated genes

GO:0034613 "cellular protein localization" "SSA1, VPS8, TFC3"

GO:0043933 "protein-containing complex subunit organization" "SSA1, EFB1, VPS8"

GO:0033036 "macromolecule localization" "SSA1, VPS8, TFC3"

4 References

References

[1] Yen-Yi Ho, Giovanni Parmigiani, Thomas A Louis, and Leslie M Cope. Modeling liquid association.
Biometrics, 67(1):133–141, 2011.

[2] Peter Langfelder and Steve Horvath. Wgcna: an r package for weighted correlation network analysis.
BMC bioinformatics, 9(1):559, 2008.

[3] Ker-Chau Li. Genome-wide coexpression dynamics: theory and application. Proceedings of the National
Academy of Sciences, 99(26):16875–16880, 2002.

8

[4] Paul T Spellman, Gavin Sherlock, Michael Q Zhang, Vishwanath R Iyer, Kirk Anders, Michael B Eisen,
Patrick O Brown, David Botstein, and Bruce Futcher. Comprehensive identification of cell cycle–regulated
genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular biology of the cell,
9(12):3273–3297, 1998.

5 Session Information

R version 3.5.0 (2018-04-23)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.4 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.7-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.7-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] GO.db_3.6.0 GOstats_2.46.0

[3] graph_1.58.0 Category_2.46.0

[5] Matrix_1.2-14 fastLiquidAssociation_1.16.0

[7] Hmisc_4.1-1 ggplot2_2.2.1

[9] Formula_1.2-2 survival_2.42-3

[11] lattice_0.20-35 doParallel_1.0.11

[13] iterators_1.0.9 foreach_1.4.4

[15] LiquidAssociation_1.34.0 org.Sc.sgd.db_3.6.0

[17] AnnotationDbi_1.42.0 IRanges_2.14.0

[19] S4Vectors_0.18.0 yeastCC_1.19.0

[21] Biobase_2.40.0 BiocGenerics_0.26.0

[23] geepack_1.2-1 preprocessCore_1.42.0

[25] impute_1.54.0 WGCNA_1.63

[27] fastcluster_1.1.24 dynamicTreeCut_1.63-1

loaded via a namespace (and not attached):

[1] bit64_0.9-7 splines_3.5.0 latticeExtra_0.6-28

[4] RBGL_1.56.0 blob_1.1.1 fit.models_0.5-14

[7] robustbase_0.93-0 pillar_1.2.2 RSQLite_2.1.0

[10] backports_1.1.2 digest_0.6.15 RColorBrewer_1.1-2

[13] checkmate_1.8.5 colorspace_1.3-2 htmltools_0.3.6

[16] plyr_1.8.4 GSEABase_1.42.0 pcaPP_1.9-73

[19] XML_3.98-1.11 pkgconfig_2.0.1 genefilter_1.62.0

[22] xtable_1.8-2 mvtnorm_1.0-7 scales_0.5.0

[25] annotate_1.58.0 htmlTable_1.11.2 tibble_1.4.2

9

[28] nnet_7.3-12 lazyeval_0.2.1 magrittr_1.5

[31] memoise_1.1.0 MASS_7.3-50 foreign_0.8-70

[34] tools_3.5.0 data.table_1.10.4-3 matrixStats_0.53.1

[37] stringr_1.3.0 munsell_0.4.3 cluster_2.0.7-1

[40] compiler_3.5.0 rlang_0.2.0 RCurl_1.95-4.10

[43] grid_3.5.0 rstudioapi_0.7 AnnotationForge_1.22.0

[46] htmlwidgets_1.2 robust_0.4-18 bitops_1.0-6

[49] base64enc_0.1-3 gtable_0.2.0 codetools_0.2-15

[52] DBI_0.8 rrcov_1.4-3 gridExtra_2.3

[55] knitr_1.20 bit_1.1-12 Rgraphviz_2.24.0

[58] stringi_1.1.7 Rcpp_0.12.16 rpart_4.1-13

[61] acepack_1.4.1 DEoptimR_1.0-8

10

