Package 'cellity'

October 15, 2018

Type Package

Title Quality Control for Single-Cell RNA-seq Data

Version 1.8.0

Date 2016-02-22

Author Tomislav Illicic, Davis McCarthy

Maintainer Tomislav Ilicic <ti243@cam.ac.uk>

Description A support vector machine approach to identifying and filtering low quality cells from single-cell RNA-seq datasets.

License GPL (≥ 2)

Depends R (>= 3.3)

Imports AnnotationDbi, e1071, ggplot2, graphics, grDevices, grid, mvoutlier, org.Hs.eg.db, org.Mm.eg.db, robustbase, stats, topGO, utils

Suggests BiocStyle, caret, knitr, testthat, rmarkdown

VignetteBuilder knitr

LazyData true

biocViews RNASeq, QualityControl, Preprocessing, Normalization, Visualization, DimensionReduction, Transcriptomics, GeneExpression, Sequencing, Software, SupportVectorMachine

RoxygenNote 5.0.1

git_url https://git.bioconductor.org/packages/cellity

git_branch RELEASE_3_7

git_last_commit f661732

git_last_commit_date 2018-04-30

Date/Publication 2018-10-15

R topics documented:

cellity-package	. 2
assess_cell_quality_PCA	. 2
assess_cell_quality_SVM	. 3
extract_features	. 4
extra_human_genes	. 5

15

extra_mouse_genes	5
feature_generation	6
feature_info	6
mES1_features	7
mES1_labels	7
multiplot	8
normalise_by_factor	8
param_mES_all	9
param_mES_common	9
plot_pca	10
sample_counts	11
sample_stats	11
simple_cap	12
sum_prop	12
training_mES_features	13
training_mES_labels	13
uni.plot	14

Index

cellity-package

Quality Control for Single-Cell RNA-seq Data

Description

cellity provides a support vector machine and PCA approaches to identifying and filtering low quality cells from single-cell RNA-seq datasets.

assess_cell_quality_PCA

ASSESS CELL QUALITY USING PCA AND OUTLIER DETECTION

Description

ASSESS CELL QUALITY USING PCA AND OUTLIER DETECTION

Usage

```
assess_cell_quality_PCA(features, file = "")
```

Arguments

features	Input dataset containing features (cell x features)
file	Output_file where plot is saved

Details

This function applies PCA on features and uses outlier detection to determine which cells are low and which are high quality

assess_cell_quality_SVM

Value

Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively)

Examples

```
data(training_mES_features)
training_mES_features_all <- training_mES_features[[1]]
training_quality_PCA_allF <- assess_cell_quality_PCA(training_mES_features_all)</pre>
```

assess_cell_quality_SVM

Assess quality of a cell - SVM version

Description

Assess quality of a cell - SVM version

Usage

```
assess_cell_quality_SVM(training_set_features, training_set_labels,
    ensemble_param, test_set_features)
```

Arguments

training_set_features A training set containing features (cells x features) for prediction training_set_labels Annotation of each individual cell if high or low quality (1 or 0 respectively) ensemble_param Dataframe of parameters for SVM test_set_features Dataset to predict containing features (cells x features)

Details

This function takes a traning set + annotation to predict a test set. It requires that hyper-parameters have been optimised.

Value

Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively) data.frame with decision on quality of cells

Examples

```
data(param_mES_all)
data(training_mES_features)
data(training_mES_labels)
data(mES1_features)
data(mES1_labels)
mES1_features_all <- mES1_features[[1]]
training_mES_features_all <- training_mES_features[[1]]
mES1_quality_SVM <- assess_cell_quality_SVM( training_mES_features_all,
training_mES_labels[,2], param_mES_all, mES1_features_all)</pre>
```

extract_features

Description

Extracts biological and technical features for given dataset

Usage

```
extract_features(counts_nm, read_metrics, prefix = "", output_dir = "",
  common_features = NULL, GO_terms = NULL, extra_genes = NULL,
  organism = "mouse")
```

Arguments

counts_nm	Gene expression counts dataframe (genes x cells). Either normalised by library size or TPM values
read_metrics	Dataframe with mapping statistics produced by python pipeline
prefix	Prefix of outputfiles
output_dir	Output directory of files
common_features	S
	Subset of features that are applicable within one species, but across cell types
GO_terms	DataFrame with gene ontology term IDs, that will be used in feature extraction
extra_genes	Additional genes used for feature extraction
organism	The target organism to generate the features for

Details

This function takes a combination of gene counts and mapping statistics to extract biological and technical features, which than can be used for quality data analysis

Value

a list with two elements, one providing all features, and one providing common features.

Examples

```
data(sample_counts)
data(sample_stats)
sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts))
sample_features <- extract_features(sample_counts_nm, sample_stats)</pre>
```

extra_human_genes Additional human genes that are used in feature extraction

Description

This list contains human genes that are used for feature extraction of biological features

Usage

extra_human_genes

Format

a list containing vectors of genes. Name indicates which GO category.

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

extra_mouse_genes Additional mouse genes that are used in feature extraction

Description

This list contains mouse genes that are used for feature extraction of biological features

Usage

extra_mouse_genes

Format

a list containing vectors of genes. Name indicates which GO category.

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

feature_generation Helper Function to create all features

Description

Helper Function to create all features

Usage

```
feature_generation(counts_nm, read_metrics, G0_terms, extra_genes, organism)
```

Arguments

counts_nm	Gene expression counts dataframe (genes x cells). Either normalised by library size or TPM values
read_metrics	Dataframe with mapping statistics produced by python pipeline
GO_terms	DataFrame with gene ontology term IDs, that will be used in feature extraction
extra_genes	Additional genes used for feature extraction
organism	The target organism to generate the features for

Value

Returns the entire set of features in a data.frame

feature_info	Information which genes and GO categories should be included as fea- tures. Also defines which features are cell-type independent (common features)
	features)

Description

This list contains metadata information that is used to extract features from in the function extract_features

Usage

feature_info

Format

a list with 2 elements (GO_terms,common_features).

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

mES1_features

Source

Wellcome Trust Sanger Institute

mES1_features	Real test dataset containing all and common features from the paper
	(<i>mES1</i>)

Description

This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification.

Usage

mES1_features

Format

a list with 2 elements (all_features, common_features).

Value

NULL, but makes available a list with 2 dataframes

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

mES1_labels

Real test dataset containing annotation of cells

Description

This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality

Usage

mES1_labels

Format

a dataframe with 2 columns (cell_names, label).

Value

NULL, but makes available a dataframe with cell annotations

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

multiplot

Internal multiplot function to combine plots onto a grid

Description

Internal multiplot function to combine plots onto a grid

Usage

```
multiplot(..., plotlist = NULL, file, cols = 6, layout = NULL)
```

Arguments

	individual plots to combine into a single plot
plotlist	a vector with names of plots to use in the plot
file	string giving filename to which pdf of plots is to be saved
cols	integer giving number of columns for the plot
layout	matrix defining the layout for the plots

Value

a plot object

normalise_by_factor Internal function to normalize by library size

Description

Internal function to normalize by library size

Usage

```
normalise_by_factor(counts, norm_factor)
```

Arguments

counts	matrix of counts
norm_factor	vector of normalisation factors

Value

a matrix with normalized gene counts

8

param_mES_all

Examples

```
data(sample_counts)
data(sample_stats)
sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts))</pre>
```

param_mES_all Parameters used for SVM classification

Description

This data frame has 3 columns: gamma, cost, class.weights and is optimised for all features and our training data

Usage

param_mES_all

Format

a dataframe with 3 columns (gamma, cost, class.weights).

Value

NULL, but makes available a dataframe with parameters

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

param_mES_common Parameters used for SVM classification

Description

This data frame has 3 columns: gamma, cost, class.weights and is optimised for common features and our training data

Usage

param_mES_common

Format

a dataframe with 3 columns (gamma, cost, class.weights).

Value

NULL, but makes available a dataframe with parameters

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

plot_pca	Plots PCA of all features. Colors high and low quality cells based on
	outlier detection.

Description

Plots PCA of all features. Colors high and low quality cells based on outlier detection.

Usage

```
plot_pca(features, annot, pca, col, output_file)
```

Arguments

features	Input dataset containing features (cell x features)
annot	Matrix annotation of each cell
рса	PCA of features
col	color code indicating what color high and what low quality cells
output_file	where plot is stored

Details

This function plots PCA of all features + most informative features

Value

Plots of PCA

sample_counts Sample gene expression data containing 40 cells

Description

This data frame contains genes (rows) and cells (columns) showing raw read counts

Usage

sample_counts

Format

a dataframe with genes x cells

Value

NULL, but makes available a dataframe with raw read counts

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

sample_stats Sample read statistics data containing 40 cells

Description

This data frame contains read metrics (columns) and cells (rows)

Usage

sample_stats

Format

a dataframe with cells x metrics

Value

NULL, but makes available a dataframe with read statistics

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

simple_cap

Description

Converts all first letters to capital letters

Usage

simple_cap(x)

Arguments

x string

Value

a character vector in title case

sum_prop

Sums up normalised values of genes to groups.

Description

Supports TPM and proportion of mapped reads.

Usage

```
sum_prop(counts, genes_interest)
```

Arguments

counts Normalised gene expression count matrix genes_interest dataframe of genes of interest to merge

Value

a vector of sums per group

training_mES_features Original training dataset containing all and common features from the paper (training mES)

Description

This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification.

Usage

training_mES_features

Format

a list with 2 elements (all_features, common_features).

Value

NULL, but makes available a list with 2 dataframes

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

training_mES_labels Original training dataset containing annotation of cells

Description

This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality

Usage

training_mES_labels

Format

a dataframe with 2 columns (cell_names, label).

Value

NULL, but makes available a dataframe with cell annotations

uni.plot

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

uni.plot	Internal function to detect outliers from the mvoultier pacakge Modi-
	fied slightly so that plots are not printed

Description

Internal function to detect outliers from the mvoultier pacakge Modified slightly so that plots are not printed

Usage

uni.plot(x, symb = FALSE, quan = 1/2, alpha = 0.025)

Arguments

х	A matrix containing counts
symb	Symbols
quan	quan
alpha	alpha

Value

a list of outlier indicators

14

Index

assess_cell_quality_PCA, 2
assess_cell_quality_SVM, 3
cellity-package, 2
extra_human_genes, 5

extra_mouse_genes, 5
extract_features, 4

 $\begin{array}{l} \text{feature_generation, 6} \\ \text{feature_info, 6} \end{array}$

mES1_features,7
mES1_labels,7
multiplot,8

normalise_by_factor, 8

param_mES_all, 9
param_mES_common, 9
plot_pca, 10

sample_counts, 11
sample_stats, 11
simple_cap, 12
sum_prop, 12

training_mES_features, 13
training_mES_labels, 13

uni.plot, 14