%\VignetteIndexEntry{Vulcan: VirtUaL ChIP-Seq Analysis through Networks}
%\VignettePackage{vulcan}
%\VignetteEngine{utils::Sweave}

\documentclass{article}
\usepackage{fullpage}
\usepackage{hyperref}
\usepackage{authblk}
\usepackage[utf8]{inputenc}

\title{Using vulcan, a package that combines regulatory networks and ChIP-Seq
data to identify chromatin-binding cofactors}
\author[1]{Federico M. Giorgi}
\author[1]{Andrew N. Holding}
\author[1]{Florian Markowetz}
\affil[1]{Cancer Research UK, Cambridge Institute, Robinson Way, Cambridge
United Kingdom}
\date{\today}

\begin{document}
\SweaveOpts{concordance=TRUE}
\maketitle

%-----------
\section{Overview of VULCAN}\label{sec:overview}
Vulcan (VirtUaL ChIP-Seq Analysis through Networks) is a pipeline that combines
ChIP-Seq data and regulatory networks to obtain transcription factors that are
likely affected by a specific stimulus. In order to do so, our package combines
strategies from different BioConductor packages: \emph{DESeq} for data
normalization, \emph{ChIPpeakAnno} and \emph{DiffBind} for annotation and
definition of ChIP-Seq genomic peaks, \emph{csaw} to define optimal peak width
and \emph{viper} for applying a regulatory network over a differential binding
signature.
Usage of gene regulatory networks to analyze biological systems has witnessed
an exponential increase in the last decade, due to the ease of obtaining
genome-wide expression data (Margolin et al., 2005; Giorgi et al., 2013; Castro
et al., 2015). Recently, the VIPER approach to interrogate these network models
has been proposed to infer transcription factor activity using the expression
of a collection of their putative targets, i.e. their regulon (Alvarez et al.,
2016). In the VIPER algorithm, gene-level differential expression signatures
are obtained for either individual samples (relative to the mean of the dataset)
or between groups of samples, and regulons are tested for enrichment. Ideally,
TF regulons can be tested on promoter-level differential binding signatures
generated from ChIP-Seq experiments, in order to ascertain the global change
in promoter occupancy for gene sets. In our study, we propose an extension
of the VIPER algorithm to specifically analyze TF occupancy in ChIP-Seq
experiments. Our VULCAN algorithm uses ChIP-Seq data obtained for a given TF
to provide candidate coregulators of the response to a given stimulus.
The analysis is based on identifying differentially bound genes and testing
their enrichment in the regulon of potential co-regulatory factors.

%--------
\section{Citation}
Giorgi FM, Holding AN \& Markowetz F. Network Dynamics of early ER-alpha
promoter binding in response to estradiol. Genome Biology (Submitted).
%--------
\section{Installation of \emph{vulcan} package}
VULCAN requires the R-system (\url{http://www.r-project.org}), and the
\emph{vulcandata} package to run the examples.
After installing R, all required components can be obtained with:

<<echo=FALSE, results=hide>>=
set.seed(1)
@

<<echo=TRUE, results=hide, eval=FALSE>>=
source("http://bioconductor.org/biocLite.R")
biocLite("vulcandata")
biocLite("vulcan")
@

%----
\section{Getting started}
As first step, we have to load the vulcan package with:
<<echo=TRUE, results=hide>>=
library(vulcan)
@
Only to run the examples, a set of reduced BAM files can be accessed by loading
the \emph{vulcandata} package:
<<echo=TRUE, results=hide>>=
library(vulcandata)
@


%-------
\section{Running an example VULCAN pipeline}
\subsection{Generate a example annotation file}
<<echo=TRUE, results=hide>>=
# Generate an annotation file from the dummy ChIP-Seq dataset
vfile<-tempfile()
vulcandata::vulcansheet(vfile)
@

\subsection{Import ChIP-Seq information}
<<echo=TRUE, results=hide>>=
# Import BAM and BED information into a list object
# vobj<-vulcan.import(vfile)
vobj<-vulcandata::vulcanexample()
unlink(vfile)
@

\subsection{Annotate peaks}
<<echo=TRUE, results=hide>>=
# Annotate peaks to gene names
vobj<-vulcan.annotate(vobj,lborder=-10000,rborder=10000,method="sum")
@

\subsection{Peak abundance normalization}
<<echo=TRUE, results=hide>>=
# Normalize data for VULCAN analysis
vobj<-vulcan.normalize(vobj)
# Detect which conditions are present in our imported object
names(vobj$samples)
@

\subsection{Load an ARACNe network}
We will use a regulon object as specified in the \emph{viper} package, named
"network"
<<echo=TRUE, results=hide>>=
load(system.file("extdata","network.rda",package="vulcandata",mustWork=TRUE))
@

\subsection{Run VULCAN}
Once we have prepared 1) the ChIP-Seq annotated and normalized object and 2)
a gene regulatory network, we can run the VULCAN pipeline.
We can reduce the minimum regulon size, since in the \emph{vulcandata} example
only one chromosome was used, and the networks would otherwise have too few
hits. We can then visualize the output using the msviper plotting function
<<echo=TRUE, results=hide, fig=TRUE>>=
vobj_analysis<-vulcan(vobj,network=network,contrast=c("t90","t0"),minsize=5)
plot(vobj_analysis$msviper,mrs=7)
@


%-------
\section{More convenience tools for ChIP-Seq functional data analysis}

\subsection{Gene Set Enrichment Analysis}
VULCAN contains a GSEA (Subramanian et al., 2005) implementation that can fit
a Pareto tail distribution for p-value estimation. In the following example,
we generate an artificial signature of 1000 genes with normally-distributed
positive expression. The gene set that is evaluated is composed by 50 genes
randomly picked from one of the tails
<<echo=TRUE, results=hide>>=
reflist<-setNames(-sort(rnorm(1000)),paste0("gene",1:1000))
set<-paste0("gene",sample(1:200,50))
obj<-gsea(reflist,set,method="pareto")
obj$p.value
@
The GSEA object can be plotted
<<echo=TRUE, results=hide, fig=TRUE>>=
plot_gsea(obj)
@

\subsection{Rank Enrichment Analysis}
Rank Enrichment Analysis (REA Calculates) enrichment of groups of objects over
a vector of values associated to a population of objects using a linear
algebraic matrix multiplication.
<<echo=TRUE, results=hide>>=
signatures<-setNames(-sort(rnorm(1000)),paste0("gene",1:1000))
set1<-paste0("gene",sample(1:200,50))
set2<-paste0("gene",sample(1:1000,50))
groups<-list(set1=set1,set2=set2)
obj<-rea(signatures=signatures,groups=groups)
obj
@


\subsection{Convenience functions}
The function \emph{kmgformat} will convert thousand numbers to K, millions to M,
billions to G, trillions to T, quadrillions to P. The function \emph{val2col}
converts a distribution of numbers to a distribution of colors.
<<echo=TRUE, results=hide, fig=TRUE>>=
par(mfrow=c(1,2))
# Thousands
set.seed(1)
a<-runif(1000,0,1e4)
plot(a,yaxt="n")
kmg<-kmgformat(pretty(a))
axis(2,at=pretty(a),labels=kmg)

# Millions to Billions
set.seed(1)
a<-runif(1000,0,1e9)
plot(a,yaxt="n",pch=20,col=val2col(a))
kmg<-kmgformat(pretty(a))
axis(2,at=pretty(a),labels=kmg)
@


%-----------
\begin{thebibliography}{99}
\bibitem{Alvarez2013} Alvarez, M.J., Shen, Y., Giorgi, F.M., Lachmann, A.,
Ding, B.B., Ye, B.H., \& Califano, A. (2016). Functional characterization
of somatic mutations in cancer using network-based inference of protein
activity. Nature Genetics.
\bibitem{Margolin2005} Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C.,
Stolovitzky, G., Dalla Favera, R., \& Califano, A. (2006). ARACNE: an algorithm
for the reconstruction of gene regulatory networks in a mammalian cellular
context. BMC bioinformatics, 7(1), S7.
\bibitem{Castro2015} Castro, M.A., de Santiago, I., Campbell, T.M.,
Vaughn, C., Hickey, T.E., Ross, E., Tilley, W.D., Markowetz, F.,
Ponder, B.A. \& Meyer, K.B., 2015. Regulators of genetic risk of breast cancer
identified by integrative network analysis. Nature genetics.
\bibitem{Giorgi2013} Giorgi, F.M., Del Fabbro, C., \& Licausi, F. (2013).
Comparative study of RNA-seq-and microarray-derived coexpression networks in
Arabidopsis thaliana. Bioinformatics, 29(6), 717-724.
\bibitem{Subramanian2005} Subramanian, A., Tamayo, P., Mootha, V.K.,
Mukherjee, S., Ebert, B.L., Gillette, M.A. \& Mesirov, J.P. (2005).
Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proceedings of the National Academy
of Sciences, 102(43), 15545-15550.
\end{thebibliography}
%----------
\end{document}