--- title: "Multi-Tissue Analysis" author: "Michael T. Zimmermann" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Enrichment Vignette} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- In this vignette, we will analyze a gene expression dataset with samples from multiple tissues. We will: *download a public dataset *identify the genes expressed in two tissues *run enrichment analysis, cognizant of each tissues' expression profile *visualize network-based relationships between the tissues' expression profiles # Enrichment to Identify Tissue-Specific Patterns We will use data from BgeeDB normal-tissue expression. In research, we will typically want to compare normal to one or more treatment or disease groups. Thus, consider this as an illustrative example. ```{r bgee1, echo=TRUE, eval=FALSE, warning=FALSE, fig.width = 7, fig.height = 7, fig.align='center'} library(RITANdata) library(RITAN) library(BgeeDB) bgee <- Bgee$new(species = "Homo_sapiens", dataType = "rna_seq", release = "13.2") data <- getData(bgee) e <- formatData(bgee, data[[1]], callType = "present", stats = "rpkm") # str(sampleNames(e)) # str(featureNames(e)) # str(phenoData(e)) # table(phenoData(e)@data$Anatomical.entity.name) ## -------------------- - ## Get expression in two tissues tmp <- exprs(e)[ , phenoData(e)@data$Anatomical.entity.name == "heart" ] i <- apply( tmp, 1, function(x){ any(is.na(x)) }) expr_heart <- tmp[ !i, ] tmp <- exprs(e)[ , phenoData(e)@data$Anatomical.entity.name == "skeletal muscle tissue" ] i <- apply( tmp, 1, function(x){ any(is.na(x)) }) expr_skele <- tmp[ !i, ] library(venn) venn::venn( list(Heart = rownames(expr_heart), Skeletal = rownames(expr_skele) ), cexil= 1, cexsn = 1, zcolor = "style" ) ## -------------------- - library(biomaRt) ensembl <- useMart("ensembl", dataset = "hsapiens_gene_ensembl" ) map_heart <- getBM( attributes=c('ensembl_gene_id','ensembl_transcript_id','hgnc_symbol'), filters = 'ensembl_gene_id', values = rownames(expr_heart), mart = ensembl ) map_skele <- getBM( attributes=c('ensembl_gene_id','ensembl_transcript_id','hgnc_symbol'), filters = 'ensembl_gene_id', values = rownames(expr_skele), mart = ensembl ) ## -------------------- - ## Enrichment Within Each Tissue to do... ## -------------------- - ## Network Interactions Within Each Tissue to do... ## -------------------- - ## Similarities and Differences Between Tissues to do... ```