## ---- echo=FALSE, results="hide", message=TRUE--------------------------- require(knitr) opts_chunk$set(error=FALSE, message=FALSE, warning=FALSE) ## ----style, echo=FALSE, results='asis'----------------------------------- BiocStyle::markdown() ## ----library, echo=FALSE------------------------------------------------- library(BASiCS) ## ----ExampleDataTest----------------------------------------------------- set.seed(1) Counts = Counts = matrix(rpois(50*40, 2), ncol = 40) rownames(Counts) <- c(paste0("Gene", 1:40), paste0("Spike", 1:10)) Tech = c(rep(FALSE,40),rep(TRUE,10)) set.seed(2) SpikeInput = rgamma(10,1,1) SpikeInfo <- data.frame("SpikeID" = paste0("Spike", 1:10), "SpikeInput" = SpikeInput) # No batch structure DataExample = newBASiCS_Data(Counts, Tech, SpikeInfo) # With batch structure DataExample = newBASiCS_Data(Counts, Tech, SpikeInfo, BatchInfo = rep(c(1,2), each = 20)) ## ----quick-start-MCMC---------------------------------------------------- Data <- makeExampleBASiCS_Data() Chain <- BASiCS_MCMC(Data = Data, N = 1000, Thin = 10, Burn = 500, PrintProgress = FALSE) ## ----LoadSingleData------------------------------------------------------ data(ChainSC) ## ----quick-start-HVGdetection, fig.height = 6, fig.width = 6------------- par(mfrow = c(2,2)) HVG <- BASiCS_DetectHVG(ChainSC, VarThreshold = 0.6, Plot = TRUE) LVG <- BASiCS_DetectLVG(ChainSC, VarThreshold = 0.2, Plot = TRUE) ## ----quick-start-HVGdetectionTable--------------------------------------- head(HVG$Table) head(LVG$Table) ## ----quick-start-HVGdetectionPlot---------------------------------------- SummarySC <- Summary(ChainSC) plot(SummarySC, Param = "mu", Param2 = "delta", log = "xy") with(HVG$Table[HVG$Table$HVG == TRUE,], points(Mu, Delta)) with(LVG$Table[LVG$Table$LVG == TRUE,], points(Mu, Delta)) ## ----quick-start-LoadBothData-------------------------------------------- data(ChainSC) data(ChainRNA) ## ----quick-start-TestDE, fig.width=10, fig.height=5---------------------- Test <- BASiCS_TestDE(Chain1 = ChainSC, Chain2 = ChainRNA, GroupLabel1 = "SC", GroupLabel2 = "PaS", EpsilonM = log2(1.5), EpsilonD = log2(1.5), EFDR_M = 0.10, EFDR_D = 0.10, Offset = TRUE, OffsetPlot = TRUE, Plot = TRUE) ## ----quick-start-DE------------------------------------------------------ head(Test$TableMean) head(Test$TableDisp) ## ----quick-start-TestDE-2, fig.width=10, fig.height=5-------------------- Test <- BASiCS_TestDE(Chain1 = ChainSC, Chain2 = ChainRNA, GroupLabel1 = "SC", GroupLabel2 = "PaS", EpsilonM = 0, EpsilonD = log2(1.5), EFDR_M = 0.10, EFDR_D = 0.10, Offset = TRUE, OffsetPlot = TRUE, Plot = TRUE) ## ----MCMCNotRun---------------------------------------------------------- Data <- makeExampleBASiCS_Data() Chain <- BASiCS_MCMC(Data, N = 1000, Thin = 10, Burn = 500, PrintProgress = FALSE, StoreChains = TRUE, StoreDir = tempdir(), RunName = "Example") ## ----LoadChainNotRun----------------------------------------------------- Chain <- BASiCS_LoadChain("Example", StoreDir = tempdir()) ## ----Traceplots, fig.height = 3, fig.width = 6--------------------------- plot(Chain, Param = "mu", Gene = 1, log = "y") plot(Chain, Param = "phi", Cell = 1) ## ----AccessChains-------------------------------------------------------- displayChainBASiCS(Chain, Param = "mu")[1:5,1:5] ## ----Summary------------------------------------------------------------- ChainSummary <- Summary(Chain) ## ----SummaryExample------------------------------------------------------ head(displaySummaryBASiCS(ChainSummary, Param = "mu")) ## ----OtherHPD, fig.width = 7, fig.height = 7----------------------------- par(mfrow = c(2,2)) plot(ChainSummary, Param = "mu", main = "All genes", log = "y") plot(ChainSummary, Param = "mu", Genes = 1:10, main = "First 10 genes") plot(ChainSummary, Param = "delta", main = "All genes") plot(ChainSummary, Param = "delta", Genes = c(2,5,10,50), main = "5 customized genes") ## ----Normalisation, fig.width = 7, fig.height = 3.5---------------------- par(mfrow = c(1,2)) plot(ChainSummary, Param = "phi") plot(ChainSummary, Param = "s", Cells = 1:5) ## ----DispVsExp, fig.width = 7, fig.height = 3.5-------------------------- par(mfrow = c(1,2)) plot(ChainSummary, Param = "mu", Param2 = "delta", log = "x", SmoothPlot = FALSE) plot(ChainSummary, Param = "mu", Param2 = "delta", log = "x", SmoothPlot = TRUE) ## ----DenoisedCounts------------------------------------------------------ DenoisedCounts = BASiCS_DenoisedCounts(Data = Data, Chain = Chain) DenoisedCounts[1:5, 1:5] ## ----DenoisedProp-------------------------------------------------------- DenoisedRates <- BASiCS_DenoisedRates(Data = Data, Chain = Chain, Propensities = FALSE) DenoisedRates[1:5, 1:5] ## ----DenoisedRates------------------------------------------------------- DenoisedProp = BASiCS_DenoisedRates(Data = Data, Chain = Chain, Propensities = TRUE) DenoisedProp[1:5, 1:5] ## ----SessionInfo--------------------------------------------------------- sessionInfo()