
Package ‘cydar’
April 11, 2018

Version 1.2.1

Date 2017-11-08

Title Using Mass Cytometry for Differential Abundance Analyses

Author Aaron Lun <alun@wehi.edu.au>

Maintainer Aaron Lun <alun@wehi.edu.au>

Depends BiocParallel, SummarizedExperiment

Imports viridis, methods, shiny, graphics, stats, grDevices,
S4Vectors, flowCore, Biobase, Rcpp

Suggests ncdfFlow, testthat, BiocGenerics, knitr, edgeR, limma,
glmnet, BiocStyle, flowStats

biocViews FlowCytometry, MultipleComparison, Proteomics, SingleCell

Description Identifies differentially abundant populations between
samples and groups in mass cytometry data. Provides methods for
counting cells into hyperspheres, controlling the spatial false
discovery rate, and visualizing changes in abundance in the
high-dimensional marker space.

License GPL-3

NeedsCompilation yes

VignetteBuilder knitr

LinkingTo Rcpp

SystemRequirements C++11

R topics documented:
countCells . 2
CyData-class . 4
CyData-getset . 5
CyData-subset . 7
diffIntDistr . 9
dnaGate . 10
expandRadius . 12
findFirstSphere . 13
intensityRanges . 15
interpretSpheres . 16
labelSpheres . 19

1

2 countCells

medIntensities . 20
multiIntHist . 21
neighborDistances . 23
normalizeBatch . 24
outlierGate . 27
packIndices . 28
pickBestMarkers . 29
Plot Cells . 31
poolCells . 32
prepareCellData . 34
recountCells . 35
spatialFDR . 37

Index 39

countCells Count cells in high-dimensional space

Description

Count the number of cells from each sample lying inside hyperspheres in high-dimensional space.

Usage

countCells(x, tol=0.5, BPPARAM=SerialParam(), downsample=10, filter=10, naive=FALSE)

Arguments

x A CyData object produced by prepareCellData.

tol A numeric scalar proportional to the hypersphere radius.

BPPARAM A BiocParallelParam object specifying how parallelization is to be performed.

downsample An integer scalar specifying the frequency with which cells are sampled to form
hyperspheres.

filter An integer scalar specifying the minimum count sum required to report a hyper-
sphere.

naive A logical scalar specifying whether a naive counting approach should be used.

Details

Consider that each cell defines a point in M-dimensional space (where M is the number of markers),
based on its marker intensities. This function constructs hyperspheres and counts the number of
cells from each sample lying within each hypersphere. In this manner, the distribution of cells
across the space can be quantified. For each hypersphere, cell counts for all samples are reported
along with the median intensity across the counted cells for each marker.

Each hypersphere is centered on a cell to ensure that only occupied spaces are counted. However,
for high-density spaces, this can result in many redundant hyperspheres. To reduce computational
work, only a subset of cells are used to define hyperspheres. The downsampling frequency is
specified by downsample, e.g., only every 10th cell is used to make a hypersphere by default.

Each hypersphere also has a radius of tol*sqrt(M) (this relationship avoids loss of counts as M
increases). tol can be interpreted as the acceptable amount of deviation in the intensity of a single

countCells 3

marker for a given subpopulation. The default value of 0.5 means that, for any one marker, cells
with +0.5 or -0.5 intensity will be counted into the same subpopulation. This value is sensible as
intensities are usually on a log-10 scale, such that a total of 10-fold variability in marker intensities
is tolerated.

The coordinates are reported as (weighted) medians across all cells in each hypersphere. This better
reflects the location of the hypersphere if the cells are not distributed around the centre. Each cell
is weighted inversely proportional to the total number of cells in the corresponding sample. This
ensures that large samples do not dominate the median calculation.

All hyperspheres with count sums below filter are removed by default. Such hyperspheres do not
have enough counts (and thus, information) for downstream analyses. Removing them reduces the
amount of memory required to form the output matrix.

The default setting of naive=FALSE will use a method similar to that described by Samusik et al.
(2016) to speed up the search. Here, the distance between the hypersphere and cluster centers is
first computed to decide which, if any, cells in the cluster should be considered for counting. If
naive=TRUE, a slower naive approach will be used where distances are computed between all pairs
of cells. This is generally only useful for testing.

If markerData(x)$used is not all TRUE, only the specified markers will be used in the distance
calculations. Median coordinates will not be calculated for any discarded markers, instead being
reported as NA in the utput intensities. Note that the used field should not be set directly –
prepareCellData must be run again to change the set of used markers.

Users can also increase speed by setting BPPARAM to use multiple cores. Neither this or naive will
not affect the final results, only the speed with which they are obtained.

Value

A CyData object containing the following information:

counts An integer matrix of counts for each hypersphere (row) and sample (column) in the Assays
slot.

intensities: A numeric matrix of median intensities for each hypersphere (row) and marker
(column), stored in the intensities slot.

cellAssignments: A list of integer vectors specifying the cells belonging in each group. This is
stored in a compressed format, see packIndices for details.

sample.id: An integer vector containing an integer ID for each sample. This corresponds to values
in cellData(x)$sample.id, to ensure that they can be properly interpreted regardless of
column subsetting or combining.

totals: An integer vector specifying the total number of cells in each sample, stored as a field in
the colData slot.

tol: An integer scalar equal to tol, stored in the metadata slot.

center.cell: An integer vector specifying the column of cellIntensities containing the centre
of each hypersphere, stored as a field in the rowData slot.

Any existing rowData, intensities and assays are discarded. All other slots are left unchanged
from the values supplied in x.

Author(s)

Aaron Lun

4 CyData-class

References

Samusik N, Good Z, Spitzer MH et al. (2016). Automated mapping of phenotype space with
single-cell data. Nat. Methods 13:493-496

See Also

prepareCellData, packIndices

Examples

example(prepareCellData, echo=FALSE)
downsample <- 10L
tol <- 0.5

cnt <- countCells(cd, filter=1, downsample=downsample, tol=tol)
cnt

CyData-class CyData class and methods

Description

An overview of the CyData class and applicable methods.

Usage

CyData(markerData, intensities=NULL, cellAssignments=NULL,
cellIntensities=NULL, cellData=NULL, assays=NULL, ...)

Arguments

markerData A DataFrame where each row corresponds to a marker, and is named according
to that marker.

intensities A numeric matrix of median intensities for each group of cells (row) and each
marker (column).

cellAssignments

A list of integer vectors specifying which cells are assigned to each group.
cellIntensities

A numeric matrix of intensities for each marker (row) and in each cell (column).

cellData A DataFrame containing information about each cell in each row.

assays, ... Arguments to be passed to the SummarizedExperiment constructor.

Details

The CyData class is designed to store the cell counts for each group of cells (e.g., hyperspheres,
clusters), along with the median intensities for each group. It inherits from the SummarizedExperi-
ment class and contains the additional slots:

markerData A DataFrame containing information about each marker in each row. The row names
are used as the marker names.

CyData-getset 5

intensities A numeric matrix where each row corresponds to a group of cells and each column
corresponds to a marker. Each matrix entry contains the average (usually median) intensity
across all cells in a group for a particular marker.

cellAssignments A list of integer vectors containing column indices of cellIntensities. Each
vector corresponds to a group and specifies the cells that were assigned to that group.

cellIntensities A numeric matrix containing intensities for each marker in each individual cell in
the experiment. Each column represents a cell while each row represents a marker. This
column-major setup is more amenable to fast processing later.

cellData A DataFrame containing information about each cell in each row.

The above constructor will set intensities and assays to a matrix with no rows, if not specified.
It will also set cellIntensities to a matrix with no columns and cellData to an empty list by
default.

Value

A CyData object containing the specified information.

Author(s)

Aaron Lun

Examples

A minimal example.
my.markers <- DataFrame(row.names=LETTERS)
cyd.minimal <- CyData(markerData=my.markers)

Adding extra detail.
counts <- matrix(rpois(1000, 10), ncol=10)
medians <- matrix(rgamma(1000, 1, 1), ncol=10)
cell.int <- matrix(rgamma(10000, 1, 1), nrow=10)
marker.data <- DataFrame(row.names=LETTERS[1:10])
cell.data <- DataFrame(sample.id=sample(10, 1000, replace=TRUE))
cyd <- CyData(assay=counts, markerData=marker.data, cellData=cell.data,

intensities=medians, cellIntensities=cell.int)

CyData-getset CyData getters and setters

Description

Methods to get and set data slots in the CyData object.

Usage

S4 method for signature 'CyData'
markerData(x)
S4 replacement method for signature 'CyData'
markerData(x) <- value

S4 method for signature 'CyData'

6 CyData-getset

intensities(x)
S4 replacement method for signature 'CyData'
intensities(x) <- value

S4 method for signature 'CyData'
cellAssignments(x)
S4 replacement method for signature 'CyData'
cellAssignments(x) <- value

S4 method for signature 'CyData'
cellIntensities(x)
S4 replacement method for signature 'CyData'
cellIntensities(x) <- value

S4 method for signature 'CyData'
cellData(x)
S4 replacement method for signature 'CyData'
cellData(x) <- value

S4 method for signature 'CyData'
nmarkers(x)
S4 method for signature 'CyData'
ncells(x)

S4 method for signature 'CyData'
markernames(object)
S4 replacement method for signature 'CyData'
markernames(object) <- value

S4 method for signature 'CyData'
sampleNames(object)
S4 replacement method for signature 'CyData'
sampleNames(object) <- value

Arguments

x, object A CyData object.

value For markernames and sampleNames, a character vector specifying the names of
the markers and samples, respectively. Otherwise, an appropriate object to use
to replace the corresponding slot of x.

Details

markerData, intensities, cellAssignments, cellIntensities and cellData are methods to
get or set the slots in a CyData object. general, setting should not be performed unless adding
annotation for particular markers or cells (or if you really know what you’re doing). Caution is
especially advised when using cellIntensities<- and/or cellData<-, as several methods in this
package rely on a particular ordering of cells.

Several convenience functions are also provided. nmarkers will return the number of markers,
while ncells will return the number of cells. markernames will return the marker names (i.e., the
row names of markerData), while sampleNames will return the sample names (i.e., the column
names of object). The respective replacement functions will modify these names.

CyData-subset 7

Value

For the setters, a new CyData object will be generated with modified entries for the appropriate
slots. For the getters, an object of the class corresponding to each slot will be returned. nmarkers
and ncells will return integer scalars, while markerNames and sampleNames will return character
vectors.

Author(s)

Aaron Lun

Examples

example(CyData) # Mocking up an object.

nmarkers(cyd)
markernames(cyd)
sampleNames(cyd)

markerData(cyd)
markerData(cyd)$stuff <- runif(nmarkers(cyd))
markerData(cyd)

head(intensities(cyd))
cellIntensities(cyd)[,1:10]

CyData-subset Subsetting and combining CyData

Description

Methods to subset and combine objects of the CyData class.

Usage

S4 method for signature 'CyData,ANY,ANY'
x[i, j, ..., drop=TRUE]
S4 replacement method for signature 'CyData,ANY,ANY,CyData'
x[i, j] <- value
S4 method for signature 'CyData'
subset(x, i, j)

S4 method for signature 'CyData'
rbind(..., deparse.level=1)
S4 method for signature 'CyData'
c(x, ..., recursive=FALSE)
S4 method for signature 'CyData'
cbind(..., deparse.level=1)

8 CyData-subset

Arguments

x A CyData object.

i, j A vector of subscripts, indicating the rows and columns to be subsetted for i
and j, respectively. Rows correspond to cell-groups while columns correspond
to samples.

... For cbind, ... contains CyData objects to be combined column-wise. For
rbind and c, ... contains CyData objects to be combined row-wise. For c,
any objects are additional to that already specified in x. For other methods, this
argument is ignored.

drop A logical scalar, ignored.

value A CyData object to replace the entries in the specified i and j.

deparse.level, recursive

Addition arguments, ignored.

Details

Subsetting of CyData objects consider groups of cells (e.g., clusters, hyperspheres) as the rows, and
samples as the columns. Only the rows of intensities are affected during row-wise subsetting.
Marker and cell information in markerData, cellData and cellIntensities is not modified.

A similar principle applies when combining different CyData objects, i.e., rows are groups of cells
and columns are samples. Values of markerData and cellIntensities should be identical in the
objects to be combined. Furthermore, for cbind, values of intensities should also be identical.
Note that c is a synonym for rbind.

When replacing entries with [<-, markerData, cellData and cellIntensities should be identi-
cal in x and value. Column replacement also requires intensities and cellAssignments to be
the same. Simultaneous row and column replacement is not allowed as this will introduce inconsis-
tencies into the sample ID annotation.

Value

A CyData object with different rows or columns, depending on whether subsetting or merging was
performed.

Author(s)

Aaron Lun

Examples

example(CyData) # Mocking up an object.

cyd[1:5,]
cyd[,6:10]
rbind(cyd, cyd)
cbind(cyd, cyd)

diffIntDistr 9

diffIntDistr Compute differences in intensity distributions

Description

Calculate the difference in the intensity distributions between samples across multiple batches.

Usage

diffIntDistr(..., markers=NULL, npts=200)

Arguments

... One or more lists of intensity matrices or ncdfFlowSet objects, like x in ?prepareCellData.
These can be named, otherwise default names will be assigned.

markers A character vector specifying which markers should have their differences com-
puted. All markers that are present in all objects will be used by default.

npts An integer scalar specifying the number of points for computing differences.

Details

The difference between two intensity distributions is defined as half of the area between their prob-
ability density functions. For each intensity distribution, the density function is approximated by
binning events into a grid of length npts. The absolute difference in the proportion of events is
computed for each bin; summed across all bins; multiplied by the width of each bin; and halved.
The final value ranges from 0 to 1 and represents the proportion of probability mass that differs
between the distributions.

The differences for each marker are returned in the form of a symmetric matrix. Each row/column
is a sample, named as a combination of the batch and sample names. Samples are ordered according
to the specified order of batches in ... and the order of samples in each batch. Each entry of the
matrix contains the difference between the corresponding samples.

If multiple objects are specified in ..., they are assumed to represent different batches of samples.
The differences between samples in the same or different batches are useful for evaluating the effects
of inter-batch normalization, as shown in the example below. If normalization was successful,
differences between batches should be similar to the differences within batches. However, this
diagnostic is only applicable if the batches are not confounded by biological factors - otherwise, if
such factors were present, inter-batch differences should be larger.

Value

A list is returned with two objects:

index: An integer matrix specifying which entries of each matrix correspond to differences be-
tween samples in the same batch. These are numbered according to the specified order of the
batches in Between-batch differences have values of 0.

difference: A named list of symmetric numeric matrices, with one for each marker. Each row
and column represents a sample and is named accordingly. Each entry of the matrix contains
the difference between intensity distributions for the two samples corresponding to the row
and column.

10 dnaGate

Author(s)

Aaron Lun

See Also

normalizeBatch

Examples

example(normalizeBatch)

original <- do.call(diffIntDistr, all.x)
par(mfrow=c(5,4), mar=c(2.1, 2.1, 2.1, 1.1))
for (m in names(original$difference)) {

current <- original$difference[[m]] * 100
is.inter <- original$index==0L
is.intra <- !is.inter & lower.tri(original$index)
boxplot(list(Inter=current[is.inter], Intra=current[is.intra]), main=m)

}

par(mfrow=c(5,4), mar=c(2.1, 2.1, 2.1, 1.1))
fixed <- do.call(diffIntDistr, corrected)
for (m in names(fixed$difference)) {

current <- fixed$difference[[m]] * 100
is.inter <- fixed$index==0L
is.intra <- !is.inter & lower.tri(fixed$index)
boxplot(list(Inter=current[is.inter], Intra=current[is.intra]), main=m)

}

dnaGate Gate events based on DNA channels

Description

Construct a gate to remove debris and doublets, based on the two DNA (iridium) channels used in
most mass cytometry experiments.

Usage

dnaGate(x, name1, name2, tol=0.5, nmads=3, type=c("both", "lower"),
shoulder=FALSE, rank=1, ...)

Arguments

x A flowFrame object like that constructed by poolCells.

name1, name2 Strings containing the names of the two DNA channels.

tol A numeric scalar quantifying the maximum distance from the equality line.

nmads A numeric scalar specifying the number of median absolute deviations (MADs)
beyond which an event can be considered an outlier.

type A string specifying the type of gating to be performed.

dnaGate 11

shoulder A logical scalar indicating whether the function should attempt to detect shoul-
ders.

rank An integer scalar specifying the peak corresponding to singlets. By default, the
largest mode is treated as the singlet peak.

... Additional arguments to pass to density, to fine-tune identification of local
minima.

Details

For each DNA channel, the rankth-largest local mode is identified and is assumed to correspond to
singlets. Local minima of density that neighbour the chosen mode are identified. To remove debris,
the lower bound is set to the largest local minima that is smaller than the chosen mode. To remove
doublets, the upper bound is set to the smallest local minima that is larger than the chosen mode.

We also consider an alternative lower bound at nmads MADs below the chosen mode. (Here, the
MAD is computed using only values below the mode, to avoid potential inflation due to a doublet
peak.) If this alternative is larger than the largest local minima below the mode, it is used as the
lower bound instead. This avoids using a poor lower bound when there are no obvious minima in
the distribution. Similarly, an alternative upper bound is defined at nmads MADs above the median,
and is used if it is smaller than the smallest local minima above the mode.

For some data sets, there may not be any clear bimodality in the intensity distribution, e.g., if the
mean shift is dominated by noise. If shoulder=TRUE, the function will attempt to identify the
doublet peak as a “shoulder” off the singlet peak. Alternatively, if there is no evidence for separate
singlet/doublet peaks, it may not be feasible (or desirable) to try to distinguish them. In such
cases, users can set type="lower", whereby the upper bound is set to an arbitrarily large value and
effectively ignored during gating.

To simultaneously gate on both DNA channels, we fit a line to the paired intensities for all events,
i.e., the “equality line”. Two perpendicular lines passing through the paired lower/upper bounds are
constructed. Two parallel lines that are tol away from the equality line are also defined. The box
defined by these four lines is used to construct a polygonGate object, within which all events are
retained.

The value of tol represents the maximum Euclidean distance of any event from the equality line
in the two-dimensional space. Any event more the tol from the line is removed as the two iridium
isotopes have not been evenly captured. This may be indicative of a problem with the TOF detector
for this event.

Value

A polygonGate object, defined to retain singlet events.

Author(s)

Aaron Lun

See Also

polygonGate, poolCells, density

Examples

set.seed(200)

Mocking up some data with clear bimodality:

12 expandRadius

library(flowCore)
singlets <- rnorm(20000, 2, 0.2)
dna1 <- matrix(rnorm(40000, singlets, 0.1), ncol=2)
doublets <- rnorm(10000, 3, 0.2)
dna2 <- matrix(rnorm(20000, doublets, 0.1), ncol=2)
dna.int <- rbind(dna1, dna2)
colnames(dna.int) <- c("Ir191", "Ir193")
ff <- flowFrame(dna.int)

Defining the gate:
dgate <- dnaGate(ff, "Ir191", "Ir193")
smoothScatter(dna.int[,1], dna.int[,2])
polygon(dgate@boundaries[,1], dgate@boundaries[,2], border="red")

Mocking up some data with no obvious bimodality:
singlets <- rnorm(20000, 2, 0.2)
dna1 <- matrix(rnorm(40000, singlets, 0.1), ncol=2)
doublets <- rnorm(10000, 2.5, 0.2) # <- less separation between modes
dna2 <- matrix(rnorm(20000, doublets, 0.1), ncol=2)
dna.int <- rbind(dna1, dna2)
colnames(dna.int) <- c("Ir191", "Ir193")
ff <- flowFrame(dna.int)

Defining the gate:
dgate <- dnaGate(ff, "Ir191", "Ir193", shoulder=TRUE)
smoothScatter(dna.int[,1], dna.int[,2])
polygon(dgate@boundaries[,1], dgate@boundaries[,2], border="red")

expandRadius Expand the hypersphere radius

Description

Expands the hypersphere radius to account for intensity shifting between non-barcoded samples.

Usage

expandRadius(x, design=NULL, markers=NULL, tol=0.5)

Arguments

x A CyData object produced by prepareCellData.

design A numeric matrix specifying the experimental design.

markers A vector specifying the markers to use.

tol A numeric scalar proportional to the hypersphere radius, see countCells.

Details

This function increases the hypersphere radius to account for random shifts in marker intensity
between non-barcoded samples. The required increase is estimated by taking the mean of all in-
tensities for each marker in each sample; computing the variance of the mean intensities across
samples for each marker; and taking the mean variance across all markers. This is equivalent to the
square of the extra distance between cells caused by intensity shifts between samples.

findFirstSphere 13

The estimated increase is added onto tol, and the returned value can be directly used in the tol
argument of countCells. This expands the hyperspheres to ensure that corresponding subpopu-
lations in different samples are still counted together. Otherwise, an intensity shift in one sample
may move the cells in a subpopulation out of a hypersphere. This will inflate the variability if it
occurs between replicate samples, and introduce spurious differences if it occurs between samples
in different conditions.

If markers is specified, only the indicated markers are used to calculate the mean variance. Other-
wise, the markers to use are extracted from markerData(x)$used, which is set by prepareCellData.
By default, all markers are used unless otherwise requested.

Value

A numeric scalar specifying a modified tol to use in countCells.

Author(s)

Aaron Lun

See Also

prepareCellData, countCells

Examples

Mocking up some data:
nmarkers <- 20
marker.names <- paste0("X", seq_len(nmarkers))
nsamples <- 8
sample.names <- paste0("Y", seq_len(nsamples))

x <- list()
for (i in sample.names) {

ex <- matrix(rgamma(nmarkers*1000, 2, 2), ncol=nmarkers, nrow=1000)
ex <- t(t(ex) + rnorm(nmarkers, 0, 0.25)) # Adding a shift per marker
colnames(ex) <- marker.names
x[[i]] <- ex

}

Running the function:
cd <- prepareCellData(x)
expandRadius(cd)

findFirstSphere Identifies the first non-redundant hyperspheres

Description

Tests whether each hypersphere is not redundant to (i.e., lies more than a threshold distance away
from) another hypersphere with a lower p-value.

Usage

findFirstSphere(coords, pvalues, threshold=1, block=NULL, naive=FALSE)

14 findFirstSphere

Arguments

coords A numeric matrix of hypersphere coordinates (median locations for all markers),
where rows correspond to hyperspheres and columns correspond to markers.

pvalues A numeric vector of p-values, one for each hypersphere/row of coords.

threshold A numeric scalar specifying the maximum distance between the locations of two
redundant hyperspheres.

block A factor specifying which hyperspheres belong to which block, where non-
redundant hyperspheres are identified within each block.

naive A logical scalar specifying whether naive counting should be performed.

Details

This function iterates across the set of hyperspheres, typically ordered by decreasing significance.
It will tag a hypersphere as being redundant if its location lies within threshold of the location of
a higher-ranking hypersphere in all dimensions. In this manner, the set of all DA hyperspheres can
be filtered down to a non-redundant subset that is easier to interpret.

Note that the criterion for redundancy mentioned above is equivalent to a Chebyshev distance, rather
than Euclidean. This is easier to interpret, especially given that the median intensity is defined
separately for each marker. Unlike in countCells, the threshold is not scaled by the number of
markers because each hypersphere location is computed as an average across cells. This means that
there is generally no need to account for extra distance due to noise between cells.

The default threshold of unity assumes that the intensities have been transformed to or near a
log10 scale. It means that one hypersphere must vary from another by at least one log10-unit (i.e.,
a 10-fold change in intensity) in at least one marker to be considered non-redundant. This avoids
reporting many hyperspheres that differ from each other by relatively small, uninteresting shifts in
intensity. Greater resolution can be obtained by decreasing this value, e.g., to 0.5.

If block is set, non-redundant hyperspheres are only identified within each block (i.e., a hypersphere
cannot be redundant to hyperspheres in different blocks). For example, one can set block to the sign
of the log-fold change. This ensures that hyperspheres changing in one direction are not considered
redundant to those changing in another direction. By default, all hyperspheres are considered to be
part of the same block.

Note that setting naive=TRUE will only change the speed of the algorithm, not the results.

Value

A logical vector indicating whether each of the hyperspheres in coords is non-redundant.

Author(s)

Aaron Lun

Examples

Mocking up some data.
coords <- matrix(rnorm(10000, 2, sd=0.3), nrow=1000)
pval <- runif(1000)
logfc <- rnorm(1000)

Keep most significant non-redundant ("first") hyperspheres.
findFirstSphere(coords, pval)

intensityRanges 15

Block on the sign of the log-fold change.
findFirstSphere(coords, pval, block=sign(logfc))

intensityRanges Define intensity ranges

Description

Set the ranges of the marker intensities, to direct construction of the colour bar for plotting.

Usage

intensityRanges(x, p=0.01)

Arguments

x A CyData object produced by prepareCellData.

p A numeric scalar specifying the quantile at which intensities should be bounded.

Details

For each marker, intensities across all cells are used to calculate the p and 1-p quantiles. This defines
the lower and upper bound, respectively, to use as the irange argument in plotCellIntensity.
The aim is to prevent extreme outliers from skewing the distribution of colours. This would result
in loss of resolution at non-outlier values.

Note that, while the bounds are defined at the quantiles p and 1-p, the colour gradient will not be
computed across the percentiles. That is, the "middle" of the gradient will not represent the median
cell intensity. Rather, the colour gradient is computed from the lower and upper bounds, so the
middle with represent the average of the bounds. In short, users should label the colour bar with the
bounded intensities, rather than with the values of p or 1-p.

Value

A matrix specifying the lower and upper bounds (rows) on the intensity for each marker (columns).

Author(s)

Aaron Lun

See Also

prepareCellData, plotCellIntensity

Examples

example(prepareCellData, echo=FALSE) # Using the mocked-up data set.
bounds <- intensityRanges(cd)

Plotting example (using a subset for speed).
cd.subset <- t(cellIntensities(cd)[,1:1000])
coords <- prcomp(cd.subset)
chosen.marker <- 5

16 interpretSpheres

plotCellIntensity(coords$x[,1], coords$x[,2],
intensity=cd.subset[chosen.marker,],
irange=bounds[,chosen.marker])

interpretSpheres Interactive interpretation of hyperspheres

Description

Launches a Shiny app to assist interpretation of hyperspheres.

Usage

interpretSpheres(x, markers=NULL, labels=NULL, select=NULL, metrics=NULL,
num.per.row=6, plot.height=100, xlim=NULL, p=0.01,
red.coords=NULL, red.highlight=NULL, red.plot.height=500,
add.plot=NULL, add.plot.height=500, run=TRUE, ...)

Arguments

x A CyData object generated by countCells, containing counts and coordinates
for each hypersphere.

markers A character vector indicating the markers to use, and the order they should
be plotted in. If NULL, all markers are used in the order corresponding to the
columns of intensities(x).

labels A character vector containing existing labels for the hyperspheres. This should
be of length equal to the number of rows in x.

select A logical or integer vector indicating which rows of x should be inspected. De-
faults to all rows.

metrics A dataframe containing metrics to be reported for each hypersphere, with num-
ber of rows equal to x.

num.per.row An integer scalar specifying the number of plots per row.
plot.height An integer scalar specifying the height of each plot in pixels.
xlim A numeric vector of length two specifying the x-axis limits for all plots. Other-

wise, intensityRanges is used to define limits for each marker.
p A numeric scalar to be passed to intensityRanges.
red.coords A numeric matrix with two columns and number of rows equal to nrow(x),

containing a reduced-dimension representation of hypersphere coordinates. The
first and second columns should contain the x- and y-coordinates, respectively.

red.highlight A logical or integer vector specifying which rows of x should be highlighed on
the reduced dimensionality plot.

red.plot.height

An integer scalar specifying the height of the reduced-dimension plot.
add.plot A function taking two arguments (see below) to create additional plots in the

app.
add.plot.height

An integer scalar specifying the height of the additional plots.
run A logical scalar specifying whether the Shiny app should be run.
... Additional arguments to be passed to density.

interpretSpheres 17

Details

This function creates a Shiny app in which density plots are constructed for intensities across all
cells, one for each marker. For a given hypersphere, the median intensity is plotted as a red circle
on top of the density plot for each marker. This allows users to quickly determine the biologi-
cal meaning of each hypersphere, based on its median marker expression (and other statistics in
metrics).

For each marker, the area under the curve is highlighted using the viridis colour scheme. This
is based on whether the median is relatively high (yellow) or low (purple) compared to all of the
cells. An interval around the median is also displayed, representing the range of intensities across a
given percentage (default 95%) of cells in the hypersphere. This provides more information about
the spread of intensities within each hypersphere.

Each hypersphere can be labelled with some meaningful term, e.g., the cell type that corresponds
to the suite of expressed markers. For each hypersphere, the closest hyperspheres that have already
been labelled are shown, along with the Euclidean distances to their locations. This is designed to
assist with the labelling process by identifying pre-labelled hyperspheres in the neighbouring space.

Finally, the labels can be saved to R using the “Save to R” button. This stops the app and returns a
character vector of labels in the R session. Existing labels can also be re-used by supplying them to
labels, to allow users to label parts of the data set at a time.

Value

If run=FALSE, a Shiny app is returned that can be run with runApp. This passes control to a browser
window in which labels can be entered for each hypersphere. Upon stopping the app, a character
vector of length equal to the number of rows in x is returned.

If run=TRUE, a Shiny app is opened directly in a browser window. This returns a character vector
upon stopping, as previously described.

Navigation

Users can navigate through the data set using the “Previous” or “Next” buttons. This moves
across hyperspheres specified by select, i.e., pressing “Next” will jump to the next hypersphere in
select. By default, select=NULL which means that the app will progress through all hyperspheres
in x. It is often worth setting select, e.g., to non-redundant significant hyperspheres in order to
reduce the number of elements that need to be inspected.

Users can also jump to a particular row/hypersphere by providing an integer scalar in the “Go to
sphere” field. This specifies the row index for the hypersphere of interest, and works for either
selected or unselected hyperspheres. However, pressing “Previous” or “Next” will jump to the
nearest index of the selected hyperspheres. The navigation history at any given time is shown in the
side bar.

A reduced-dimensionality plot is also constructed using specified coordinates in two-dimensional
space for each hypersphere. The current hypersphere is marked on this plot with a red dot. Pre-
viously visited and labelled hyperspheres are marked in black. Users can also highlight particular
hyperspheres in orange with red.highlight, e.g., if they are significantly differential or not.

Putting in additional plots

Users can define add.plot as a function taking two arguments:

1. An integer scalar, specifying the row index of the second argument. This corresponds to the
hypersphere currently being inspected.

18 interpretSpheres

2. A CyData object, which is set internally to the value of x used in interpretSpheres. This
should contain information about all hyperspheres.

add.plot should generate a plot on the current graphics device. This is usually done in a hypersphere-
specific manner, where the first argument is used to extract the relevant information from the second
argument. For example, the abundances of all samples can be visualized directly for each hyper-
sphere in the app.

Inspecting label propagation

If red.dim is supplied and at least one cell is labelled, the “Update labels” button can be used to
propagate the labels to surrounding cells. Specifically, for each unlabelled cell, the closest labelled
cell is identified and its label is assigned to the unlabelled cell. A plot is then created showing the
distribution of cells for each label in the low-dimensional space.

This functionality is useful for determining how the labels would be automatically assigned by
labelSpheres. If many distinct clusters have the same label, it suggests that more manual labelling
is required to distinguish clusters. Note that the automatically assigned labels are not recorded, they
are only used here for visualization purposes.

Author(s)

Aaron Lun

See Also

density, intensityRanges, runApp

Examples

Mocking up some data.
example(prepareCellData, echo=FALSE)
cnt <- countCells(cd, filter=1)

Constructing the app
app <- interpretSpheres(cnt, run=FALSE)

Not run: # Running the app from the object.
labels <- shiny::runApp(app)

#Or directly running the app from the function.
labels <- interpretSpheres(cnt)

End(Not run)

Doing it with metrics and coordinates.
N <- nrow(cnt)
metrics <- data.frame(logFC=rnorm(N), PValue=runif(N))
coords <- matrix(rnorm(N*2), ncol=2)
app <- interpretSpheres(cnt, red.coord=coords, metrics=metrics, run=FALSE)

Doing it with an extra plot.
app <- interpretSpheres(cnt, run=FALSE, add.plot=function(i, x) {

barplot(assay(x)[i,]/x$totals*100, ylab="Percentage of cells")
})

labelSpheres 19

labelSpheres Label unannotated hyperspheres

Description

Given a set of labels for annotated hyperspheres, propagate labels to the surrounding unannotated
hyperspheres.

Usage

labelSpheres(coords, labels, naive=FALSE)

Arguments

coords A numeric matrix of hypersphere coordinates, containing the median intensity
of each marker (column) in each hypersphere (row).

labels A character vector of labels for each hypersphere, set to an empty string for
unannotated hyperspheres.

naive A logical scalar specifying whether a naive search should be performed.

Details

After some hyperspheres have been labelled with interpretSpheres, the remainder can be auto-
matically labelled with this function. Unlabelled hyperspheres are assigned the label of the closest
labelled hypersphere. Obviously, this assumes that enough hyperspheres have been labelled so that
the closest hypersphere is of a similar cell type/state.

Value

A character vector containing labels for all hyperspheres.

Author(s)

Aaron Lun

See Also

interpretSpheres

Examples

set.seed(1000)
coords <- matrix(rgamma(10000, 2, 2), nrow=1000)
labels <- character(nrow(coords))
labels[1:4] <- c("B", "CD4T", "CD8T", "Mono")

ref <- labelSpheres(coords, labels)
naive <- labelSpheres(coords, labels, naive=TRUE)

20 medIntensities

medIntensities Compute median marker intensities

Description

Calcalute the median intensity across cells in each group and sample for the specified markers.

Usage

medIntensities(x, markers)

Arguments

x A CyData object where each row corresponds to a group of cells, such as that
produced by countCells.

markers A vector specifying the markers for which median intensities should be calcu-
lated.

Details

For each group of cells, the median intensity across all assigned cells in each sample is computed.
This is returned as a matrix of median intensities, with one value per sample (column) and hyper-
sphere (row). If a sample has no cells in a group, the corresponding entry of the matrix will be set
to NA.

The groups in x should be defined using a different set of markers than in markers. If the same
markers were used for both functions, then a shift is unlikely to be observed. This is because, by
definition, the groups will contain cells with similar intensities for the markers used.

The idea is to use these values for weighted linear regression to identify a shift in intensity within
each hypersphere. The weight for each group/sample is defined as the number of cells, i.e., the
"counts" assay in x. This accounts for the precision with which the median is estimated, under
certain assumptions. See the Examples for how this data can be prepared for entry into analysis
packages like limma.

The median intensity is used rather than the mean to ensure that shifts are interpreted correctly. For
example, mean shifts can be driven by strong changes in a subset of cells that are not representative
of the majority of cells in the group. This could lead to misinterpretation of the nature of the shift
with respect to the group’s overall identity.

Value

A CyData object is returned equivalent to x, but with numeric matrices of sample-specific median
intensities as additional elements of the Assays slot.

Choosing between counting strategies

In situations where markers can be separated into two sets (e.g., cell type and signalling markers),
there are two options for analysis. The first is to define groups based on the “primary” set of markers,
then use medIntensities to identify shifts in each group for each of the “secondary” markers. This
is the best approach for detecting increases or decreases in marker intensity that affect a majority of
cells in each group.

multiIntHist 21

The second approach is to recount cells into new groups using recountCells to focus on each
secondary marker. This provides more power to detect changes in marker intensity that only affect
a subset of cells in each group. Such changes are also easier to interpret as any correlation with
respect to the primary markers for the affected subset can be studied.

The second approach is also more useful if one is interested in identifying cells with concomitant
changes in multiple secondary markers. Indeed, if we were interested in studying changes in all
combinations of second markers, we would effectively revert to the obvious approach of just using
all markers for counting. However, this tends to be less effective for studying changes in a specific
marker, due to the loss of precision with increased dimensionality.

Author(s)

Aaron Lun

See Also

countCells, recountCells

Examples

Mocking up some data:
nmarkers <- 21
marker.names <- paste0("X", seq_len(nmarkers))
nsamples <- 5
sample.names <- paste0("Y", seq_len(nsamples))

x <- list()
for (i in sample.names) {

ex <- matrix(rgamma(nmarkers*1000, 2, 2), ncol=nmarkers, nrow=1000)
colnames(ex) <- marker.names
x[[i]] <- ex

}

Processing it beforehand with one set of markers:
cd <- prepareCellData(x, markers=marker.names[1:10])
cnt <- countCells(cd, filter=5)

Computing the median intensity for one marker:
cnt2 <- medIntensities(cnt, markers=marker.names[21])
library(limma)
median.int.21 <- assay(cnt2, "med.X21")
cell.count <- assay(cnt2, "counts")
el <- new("EList", list(E=median.int.21, weights=cell.count))

multiIntHist multiIntHist

Description

Generate intensity histograms from multiple batches.

22 multiIntHist

Usage

multiIntHist(collected, cols=NULL, xlab="Intensity", ylab="Density",
lwd=2, lty=1, pch=16, cex=2, ...)

Arguments

collected A list of numeric vectors, where each vector contains intensities for a given
marker from all cells of a single batch.

cols A vector of R colours of the same length as collected, to be used in colouring
the histograms.

xlab, ylab Strings specifying the x- and y-axis labels.

lwd, lty Parameters for plotting the histogram traces.

pch, cex Parameters for plotting the frequency of zeroes.

... Other arguments to pass to plot.

Details

A histogram is constructed for the set of intensities from each batch, and the histogram outline is
plotted with the specified parameters. The frequency of intensities at zero (or negative values) is
indicated with a single point at an intensity of zero. This ensures that the number of events at zero
and small non-zero intensities can be distinguished.

The process is repeated for all batches so that intensity distributions can be compared between
batches. If cols=NULL, the rainbow colour palette is automatically used to generate the colour for
each batch. Some small jitter is added to the zero points so that they do not completely overlap each
other.

Value

Histogram traces representing the intensity distributions are produced on the current graphics de-
vice.

Author(s)

Aaron Lun

See Also

normalizeBatch

Examples

multiIntHist(list(rgamma(1000, 1, 1), rgamma(1000, 2, 1), rgamma(1000, 1, 2)))

neighborDistances 23

neighborDistances Compute distances to neighbors

Description

Calculate the distances in high-dimensional space to the neighboring cells.

Usage

neighborDistances(x, neighbors=50, downsample=50, as.tol=TRUE, naive=FALSE)

Arguments

x A CyData object produced by prepareCellData.

neighbors An integer scalar specifying the number of neighbours.

downsample An integer scalar specifying the frequency with which cells are examined.

as.tol A logical scalar specifying if the distances should be reported as tolerance val-
ues.

naive A logical scalar specifying whether a naive counting approach should be used.

Details

This function examines each cell at the specified downsampling frequency, and computes the Eu-
clidean distances to its nearest neighbors. If as.tol=TRUE, these distances are reported on the same
scale as tol in countCells. This allows users to choose a value for tol based on the output of this
function. Otherwise, the distances are reported without modification. If markerData(x)$used is
not all TRUE, only the specified markers will be used to calculate the distance.

To visualize the distances/tolerances, one option is to use boxplots, as shown below. Each boxplot
represents the distribution of tolerances required for hyperspheres to contain a certain number of
cells. For example, assume that at least 20 cells in each hypersphere are needed to have sufficient
power for hypothesis testing. Now, consider all hyperspheres that are large enough to include the
19th nearest neighbour. The average distance required to do so would be the median of the boxplot
generated from the 19th column of the output.

Another option is to examine the distribution of counts at a given tolerance/distance. This is done
by counting the number of hyperspheres with a particular number of nearest neighbors closer than
the specified tolerance. In this manner, the expected count distribution from setting a particular
tolerance can be determined. Note that the histogram is capped at neighbors, as a greater number
of neighbors is not considered.

Note that, for each examined cell, its neighbors are identified from the full set of cells. Downsam-
pling only changes the rate at which cells are examined, for the sake of computational efficiency.
Neighbors are not identified from the downsampled set as this will inflate the reported distances.
Similarly, setting naive=TRUE will only affect speed and will not change the results.

Value

A numeric matrix of distances where each row corresponds to an examined cell and each column i
corresponds to the ith closest neighbor.

24 normalizeBatch

Author(s)

Aaron Lun

See Also

countCells

Examples

example(prepareCellData, echo=FALSE)

distances <- neighborDistances(cd, as.tol=FALSE)
boxplot(distances, xlab="Neighbor", ylab="Distance")

######################################
Making a plot to choose 'tol' in countCells().
distances <- neighborDistances(cd, as.tol=TRUE)
boxplot(distances, xlab="Neighbor", ylab="Tolerance")

required.count <- 20 # 20 cells per hypersphere
med <- median(distances[,required.count-1])
segments(-10, med, required.count-1, col="dodgerblue")
segments(required.count-1, med, y1=0, col="dodgerblue")

######################################
Examining the distribution of counts at a given 'tol' of 0.7.
(Adding 1 to account for the cell at the centre of the hypersphere.)
counts <- rowSums(distances <= 0.7) + 1
hist(counts, xlab="Count per hypersphere")

normalizeBatch Normalize intensities across batches

Description

Perform normalization to correct intensities across batches with at least one common level.

Usage

normalizeBatch(batch.x, batch.comp, mode="range", p=0.01,
target=NULL, markers=NULL, ...)

Arguments

batch.x A list, where each element is of the same type as x used in prepareCellData
(i.e., a ncdfFlowSet or a list of intensity matrices across all samples).

batch.comp A list of factors (or elements coercible to factors) specifying the composition of
each batch, i.e., which samples belong to which groups. Also can be NULL, see
below.

normalizeBatch 25

mode A string or character vector of length equal to the number of markers, specifying
whether range-based or warping normalization should be performed for each
marker. This can take values of "range", "warp" or "none" (in which case no
normalization is performed).

p A numeric scalar between 0 and 0.5, specifying the percentile used to define the
range of the distribution for range-based normalization.

target An integer scalar indicating the reference batch.

markers A character vector specifying the markers to be normalized and returned.

... Additional arguments to be passed to warpSet for mode="warp".

Details

Consider an experiment containing several batches of barcoded samples, in which the barcoding
was performed within but not between batches. This function normalizes the intensities for each
marker such that they are comparable between samples in different batches. The process for each
marker is as follows:

1. Weighting is performed to downweight the contribution of larger samples within each batch,
as well as to match the composition of samples across different batches. The composition
of each batch can be specified by batch.comp, see below for more details. The weighted
intensities for each batch represents the pooled distribution of intensities from all samples in
that batch.

2. If mode="range", a quantile function is constructed for the pooled distribution of each batch.
These functions are averaged across batches to obtain a reference quantile function, represent-
ing a reference distribution. The range of the reference distribution is computed at percentiles
p and 1-p (to avoid distortions due to outliers). A batch-specific scaling function is defined to
equalize the range of the weighted distribution of intensities from each batch to the reference
range.

3. If mode="warp", weighted sampling from each pooled distribution is performed to generate a
pseudo-sample for each batch. This is used to construct a flowSet for use in warping normal-
ization - see ?normalization and ?warpSet for details. A warping function is computed for
each batch that adjust the intensity distribution to be more similar to the reference (constructed
by averaging across batches).

4. The scaling or warping function is applied to the intensities of all samples in that batch, yield-
ing corrected intensities for direct comparisons between samples.

Groupings can be specified as batch-specific factors in batch.comp, with at least one common group
required across all batches. If the composition of each batch is the same, batch.comp can be set to
NULL rather than being manually specified. This composition is used to weight the contribution of
each sample to the reference distribution. For example, a batch with more samples in group A and
fewer samples in group B would get lower weights assigned to the former and larger weights to the
latter.

Construction of the adjustment function relies on the presence of samples from the same group
across the different batches. Ideally, all batches would contain samples from all groups, with similar
total numbers of cells across batches for each group. The adjustment function will still be applied to
intensities for samples from non-shared groups that do not contribute to the reference distribution.
However, note that the adjustment may not be accurate if the to-be-corrected intensities lie outside
the range of values used to construct the function.

By default, the reference distribution for each marker is defined as an average of the relevant statistic
across batches. If target is not NULL, the specified batch will be used as the reference distribution.
This means that if mode="range", the reference quantile function will be defined as the quantile

26 normalizeBatch

function of the chosen batch. Similarly, if mode="warp", warpSet will align all other batches to the
locations of the peaks in target.

All markers are used by default when markers=NULL. If markers is specified, only the specified
markers will be normalized and returned in the output expression matrices. This is usually more
convenient than subsetting the inputs or outputs manually.

To convert the output into a format appropriate for prepareCellData, apply unlist with recursive=FALSE.
This will generate a list of intensity matrices for all samples in all batches, rather than a list of list
of matrices. Note that a batch effect should still be included in the design matrix when modelling
abundances, as only the intensities are corrected here.

Value

A list of lists, where each internal list corresponds to a batch and contains intensity matrices corre-
sponding to all samples in that batch. This matches the format of batch.x.

Choosing between normalization methods

Warping normalization can be more powerful than range-based normalization, as the former can
eliminate non-linear changes to the intensities whereas the latter cannot. However, it requires
that landmarks in the intensity distribution (i.e., peaks) be easily identifiable and consistent across
batches. Large differences (e.g., a peak present in one batch and absent in another) may lead to
incorrect adjustments.

Such differences may be present when batches are confounded with uninteresting biological factors
(e.g., individual, mouse of origin) that affect cell abundance. In such cases, range-based normal-
ization with mode="range" is recommended as it is more constrained in how the intensities are
adjusted. This reduces the risk of distorting the intensities, albeit at the cost of “under-normalizing”
the data.

It is advisable to inspect the intensity distributions before and after normalization, to ensure that the
methods have behaved appropriately. This can be done by constructing histograms for each marker
with multiIntHist. See also diffIntDistr for a quantitative measure of similarity between dis-
tributions.

Author(s)

Aaron Lun

See Also

prepareCellData, diffIntDistr, multiIntHist, normalization, warpSet

Examples

Mocking up some data:
nmarkers <- 10
marker.names <- paste0("X", seq_len(nmarkers))
all.x <- list()

for (b in paste0("Batch", 1:3)) { # 3 batches
nsamples <- 10
sample.names <- paste0("Y", seq_len(nsamples))
trans.shift <- runif(nmarkers, 0, 1)
trans.grad <- runif(nmarkers, 1, 2)
x <- list()

outlierGate 27

for (i in sample.names) {
ex <- matrix(rgamma(nmarkers*1000, 2, 2), nrow=nmarkers)
ex <- t(ex*trans.grad + trans.shift)
colnames(ex) <- marker.names
x[[i]] <- ex

}
all.x[[b]] <- x

}

batch.comp <- list(# Each batch contains different composition/ordering of groups
factor(rep(1:2, c(3,7))),
factor(rep(1:2, c(7,3))),
factor(rep(1:2, 5))

)

Running the function:
corrected <- normalizeBatch(all.x, batch.comp, mode="range")
par(mfrow=c(1,2))
plot(ecdf(all.x[[1]][[3]][,1]), col="blue", main="Before")
plot(ecdf(all.x[[2]][[3]][,1]), add=TRUE, col="red")
plot(ecdf(corrected[[1]][[3]][,1]), col="blue", main="After")
plot(ecdf(corrected[[2]][[3]][,1]), add=TRUE, col="red")

Similar effects with warping normalization.
if (.Platform$OS.type!="windows") {

wcorrected <- normalizeBatch(all.x, batch.comp, mode="warp")
}

outlierGate Create an outlier gate

Description

Define gating thresholds to remove outlier events for a particular channel.

Usage

outlierGate(x, name, nmads=3, type=c("both", "upper", "lower"))

Arguments

x A flowFrame object like that constructed by poolCells.

name A string specifying the name of the channel in x from which intensities are to be
extracted.

nmads A numeric scalar specifying the number of median absolute deviations (MADs)
beyond which an event can be considered an outlier.

type A string specifying the type of outliers to be removed.

28 packIndices

Details

Outliers are defined as events with intensities that are more than nmads median absolute deviations
from the median of the intensity distribution. The lower gate threshold is defined as the median
minus nmads MADs, while the upper gate threshold is defined as the median plus nmads MADs. If
type="upper", only large outliers are removed (e.g., dead/alive stains), so the lower threshold is
set to -Inf. If type="lower", only small outliers are removed (e.g., DNA), so the upper threshold
is set to Inf.

Value

A rectangleGate object with lower and upper thresholds defined from x.

Author(s)

Aaron Lun

See Also

poolCells, rectangleGate

Examples

example(poolCells)
ogate <- outlierGate(ff, "X1")
ogate

ogate <- outlierGate(ff, "X2", type="upper")
ogate

ogate <- outlierGate(ff, "X3", type="lower")
ogate

sff <- Subset(ff, ogate) # for actual gating.

packIndices Pack or unpack indices

Description

Compress or decompress a vector of indices, usually specifying cell assignments to groups.

Usage

packIndices(assignments)
unpackIndices(assignments)

Arguments

assignments A list of integer vectors containing indices that specify cell assignments to
groups. Each vector corresponds to a group and should be uncompressed for
packIndices, or already compressed for unpackIndices.

pickBestMarkers 29

Details

Indices are stored in a compressed format whereby a negative number indicates that all consecutive
integers from the preceding index should be used. For example, a sequence of c(1, 3, -6, 8, -10, 12)
would be unpacked as c(1, 3:6, 8:10, 12). This saves a lot of memory for storing cell assign-
ments in hyperspheres, where there are likely to be many consecutive indices.

The countCells function will automatically fill in the cellAssignments slot of the output object
with compressed index vectors. The unpackIndices function can be used to construct the full
vector from some or all of these vectors, for manual use elsewhere. Conversely, users manually
constructing CyData objects can use packIndices to compress the vectors and save space.

Value

A list of integer vectors containing compressed or uncompressed index vectors, for packIndices
and unpackIndices respectively.

Author(s)

Aaron Lun

See Also

countCells

Examples

a <- c(1L, 3:6, 8:10, 12L)
packIndices(list(a))

b <- c(1L, 3L, -6L, 8L, -10L, 12L)
unpackIndices(list(b))

pickBestMarkers Pick best markers

Description

Pick the best markers that distinguish between cells in and outside of a set of hyperspheres.

Usage

pickBestMarkers(x, chosen, markers=NULL, downsample=10, p=0.05, naive=FALSE)

Arguments

x A CyData object, constructed using countCells.

chosen A vector specifying the rows of x corresponding to the hyperspheres of interest.

markers A vector specifying the markers to use in the LASSO regression.

downsample A numeric scalar specifying the cell downsampling interval.

p A numeric scalar defining the quantiles for gating.

naive A logical scalar specifying whether a naive search should be used.

30 pickBestMarkers

Details

A putative subpopulation is defined by a user-supplied set of hyperspheres in chosen. Cells in
cellIntensities(x) are downsampled according to downsample. Then, this function identifies
all cells in the downsampled set that were counted into any of the hyperspheres specified by chosen
at the tolerance tol. We recommend that downsample also be set to the same value as that used
in countCells to construct x. (This ensures that the identified cells are consistent with those that
were originally counted. It also avoids situations where no cells are counted into hyperspheres for
rare subpopulations, which prevents GLM fitting as the response will only have one level.)

Relevant markers are identified by fitting a binomial GLM with LASSO regression to the downsam-
pled cells, using the glmnet function. The response is whether or not the cell was counted into the
hyperspheres (and thus, the subpopulation). The covariates are the marker intensities of each cell,
used in a simple additive model with an intercept. Upon fitting, the markers can be ranked from
most to least important in terms of their ability to separate counted from uncounted cells. This is
done based on the LASSO iteration at which each marker’s coefficient becomes non-zero - smaller
values indicate more importance, while equal values indicate tied importance. A panel of useful
markers can subsequently be constructed by taking the top set from this ranking.

To evaluate the performance of each extra marker, we consider a progressive gating scheme. For
each marker, we define the gating boundaries as the interval between the p and 1-p quantiles. For
a top set of markers, we calculate the number of cells from the subpopulation that fall inside the
gating boundaries for each marker (i.e., true positives). We repeat this for the number of cells not
in the subpopulation (false positives). This allows us to compute the recovery (i.e., sensitivity)
of the gating scheme as the proportion of true positives out of the total number of cells in the
subpopulation; and the contamination (i.e., non-specificity), as the proportion of false positives out
of the total number of gated cells.

If markers is specified, only the supplied markers are used in the regression. Otherwise, the markers
to use are extracted from markerData(x)$used, which is set by prepareCellData. By default, all
markers are used unless otherwise requested.

Value

A data frame is returned, where each row is a marker ordered in terms of decreasing importance.
The combined contamination and recovery proportions of the top n markers are reported at row n,
along with the LASSO iteration to denote ties. The lower and upper gating boundaries are also
reported for each marker.

Author(s)

Aaron Lun

See Also

countCells, prepareCellData, glmnet

Examples

Mocking up some data with two clear subpopulations.
nmarkers <- 10L
ex1 <- matrix(rgamma(nmarkers*1000, 2, 2), ncol=nmarkers, nrow=1000)
ex2 <- ex1; ex2[,1:4] <- ex2[,1:4] + 1
ex <- rbind(ex1, ex2)
colnames(ex) <- paste0("X", seq_len(nmarkers))
cd <- prepareCellData(list(A=ex))

Plot Cells 31

cnt <- countCells(cd, filter=1L)

Selecting hyperspheres centred on cells in the first mocked-up subpopulation.
selected <- cellData(cnt)$cell.id[rowData(cnt)$center.cell] > 1000
pickBestMarkers(cnt, selected)

Plot Cells Plot cell or hypersphere data

Description

Visualize cells or hyperspheres in low-dimensional space, coloured by marker intensities or log-fold
changes.

Usage

plotCellLogFC(x, y, logFC, max.logFC=NULL, zero.col=0.8,
length.out=100, pch=16, ...)

plotCellIntensity(x, y, intensity, irange=NULL,
length.out=100, pch=16, ...)

Arguments

x, y A numeric vector of coordinates for each feature (i.e., cell or hypersphere).

logFC A numeric vector of log-fold changes for each feature.

max.logFC A numeric scalar specifying the maximum absolute log-fold change.

zero.col A numeric scalar between 0 and 1, specifying the greyscale intensity to represent
a log-fold change of zero.

intensity A numeric vector specifying the marker intensities for each feature.

irange A numeric vector of length 2, specifying the upper and lower bound for the
intensities.

length.out An integer scalar specifying the resolution of the colour bar.

pch, ... Additional arguments to pass to plot.

Details

plotCellLogFC will colour the points from blue (negative log-FC) to grey (zero log-FC) to red
(positive log-FC). The darkness of the grey colour is set with zero.col. If max.logFC is not NULL,
extreme values in logFC are winsorized to lie within [-max.logFC, max.logFC]. This preserves
the resolution for smaller log-fold changes.

plotCellIntensity will colour the points using the viridis colour scheme, i.e., purple (low inten-
sity) to green (medium) to yellow (high). If irange is not NULL, extreme values in intensity will
be winsorized to lie within irange. Like before, this preserves the resolution for smaller changes
in intensity. Users should consider using intensityRanges to define appropriate values of irange
for each marker.

32 poolCells

Value

A vector of colours of length length.out is returned, containing the colour gradient used for plot-
ting. The vector names contains the numeric values associated with each colour. This can be used
to construct a colour bar.

Author(s)

Aaron Lun

See Also

viridis, intensityRanges

Examples

Making up some coordinates.
x <- rnorm(100)
y <- rnorm(100)

Log-FC plot and colour bar.
logFC <- rnorm(100)
out <- plotCellLogFC(x, y, logFC)
out <- plotCellLogFC(x, y, logFC, max.logFC=0.5)

plot(0,0, type="n", axes=FALSE, ylab="", xlab="", ylim=c(-1, 1), xlim=c(-1, 0.5))
start.loc <- seq(-0.5, 0.5, length.out=length(out))
rect(-0.5, start.loc, 0.5, start.loc+diff(start.loc)[1], col=out, border=NA)
text(0, -0.5, pos=1, names(out)[1], cex=1.2)
text(0, 0.5, pos=3, names(out)[length(out)], cex=1.2)
text(-0.6, 0, srt=90, "Log-FC", cex=1.2)

Intensity plot and colour bar.
intensities <- rgamma(100, 2, 2)
out <- plotCellIntensity(x, y, intensities)
out <- plotCellIntensity(x, y, intensities, irange=c(0, 2))

plot(0,0, type="n", axes=FALSE, ylab="", xlab="", ylim=c(-1, 1), xlim=c(-1, 0.5))
start.loc <- seq(-0.5, 0.5, length.out=length(out))
rect(-0.5, start.loc, 0.5, start.loc+diff(start.loc)[1], col=out, border=NA)
text(0, -0.5, pos=1, names(out)[1], cex=1.2)
text(0, 0.5, pos=3, names(out)[length(out)], cex=1.2)
text(-0.6, 0, srt=90, "Intensity", cex=1.2)

poolCells Pool cells for pre-processing

Description

Construct a flowFrame object by pooling cells from multiple (barcoded) samples, for use in common
transformation and gating.

Usage

poolCells(x, equalize=TRUE, n=NULL)

poolCells 33

Arguments

x A named list of numeric matrices, where each matrix corresponds to a sample
and contains expression intensities for each cell (row) and each marker (col-
umn). Alternatively, a ncdfFlowSet object containing the same information.

equalize A logical scalar specifying whether the same number of cells should be taken
from each sample for pooling. If FALSE, all cells are used from all samples.

n A numeric scalar specifying the number of cells to be used from each sample if
equalize=TRUE. If NULL, this is set to the number of cells in the smallest sample.

Details

The idea is to use the pooled set of cells to estimate common parameters such as transformation
values and gating thresholds. Otherwise, if these parameters were estimated separately for each
sample, they may distort the comparisons between samples. This function is typically used to
generate an object for use in estimateLogicle or in various gating functions like outlierGate.
This yields parameter values that can be applied to the full set of cells in the original x object.

Value

A flowFrame object containing cells pooled from all samples.

Author(s)

Aaron Lun

See Also

flowFrame, outlierGate, estimateLogicle

Examples

Mocking up some data:
set.seed(100)
nmarkers <- 40
marker.names <- paste0("X", seq_len(nmarkers))
nsamples <- 10
sample.names <- paste0("Y", seq_len(nsamples))

x <- list()
for (i in sample.names) {

ex <- matrix(rexp(nmarkers*1000, 0.01), ncol=nmarkers, nrow=1000)
colnames(ex) <- marker.names
x[[i]] <- ex

}

Running the function:
ff <- poolCells(x)
ff

Using for estimation:
library(flowCore)
trans <- estimateLogicle(ff, colnames(ff))
ff <- transform(ff, trans) # or, apply to original data.

34 prepareCellData

prepareCellData Prepare mass cytometry data

Description

Convert single-cell marker intensities from a mass cytometry experiment into a format for efficient
counting.

Usage

prepareCellData(x, naive=FALSE, markers=NULL, ...)

Arguments

x A named list of numeric matrices, where each matrix corresponds to a sample
and contains expression intensities for each cell (row) and each marker (col-
umn). Alternatively, a ncdfFlowSet object containing the same information.

naive A logical scalar specifying whether k-means clustering should be performed.

markers A vector specifying the markers to use in distance calculations.

... Additional arguments to pass to kmeans.

Details

This function constructs a CyData object from the marker intensities of each cell in one or more
samples.

If naive=FALSE, this function performs k-means clustering on all the cells based on their marker
intensities. The number of clusters is set to the square-root of the total number of cells. The cluster
centres and cell assignments are then stored for later use in speeding up high-dimensional searches.
Intensity matrices from several samples are also merged into a single matrix for greater efficiency.

Note that naive does not change the results of downstream functions, only the computational algo-
rithm with which they are obtained.

If markers is specified, only the specified markers will be used in the distance calculations. This
also applies to calculations in downstream functions like countCells and neighborDistances. All
other markers will be ignored unless their usage is explicitly requested. By default, markers=NULL
which means that all supplied markers will be used in the calculations.

Value

A CyData object with marker intensities for each cell stored in the cellIntensities slot. In
addition:

• Marker names are stored as the row names of the markerData slot. An additional used field
also specifies whether the marker was used or not.

• Sample names are stored as the column names of the output object.

• cellData contains sample.id, an integer vector specifying the element of x that each cell
was taken from; and cell.id, an integer vector specifying the row index of each cell in its
original matrix.

recountCells 35

• If naive=FALSE, the metadata contains cluster.centers, a numeric matrix containing the
centre coordinates of each cluster (column) for each marker (row); and cluster.info, a list
containing information for each cluster.

Each element of cluster.info is a list, containing the zero-indexed column index of the output
matrix that specifies the first cell in the cluster; as well as a numeric vector of distances between
each cell in the cluster and the cluster centre. Cells in cellIntensities are arranged in blocks
corresponding to the clusters and ordered such that the distances are increasing.

Author(s)

Aaron Lun

See Also

countCells, neighborDistances

Examples

Mocking up some data:
nmarkers <- 20
marker.names <- paste0("X", seq_len(nmarkers))
nsamples <- 8
sample.names <- paste0("Y", seq_len(nsamples))

x <- list()
for (i in sample.names) {

ex <- matrix(rgamma(nmarkers*1000, 2, 2), ncol=nmarkers, nrow=1000)
colnames(ex) <- marker.names
x[[i]] <- ex

}

Running the function:
cd <- prepareCellData(x)
cd

recountCells Recount cells in each group

Description

Count the number of cells in hyperspheres across a specified marker space, nested within pre-
defined groups of cells.

Usage

recountCells(x, markers, tol=0.5)

Arguments

x A CyData object containing cell assignments into hyperspheres, such as that
produced by countCells.

markers A vector specifying the markers for which hyperspheres should be constructed.

tol A numeric scalar proportional to the hypersphere radius.

36 recountCells

Details

Each row of x corresponds to an existing hypersphere across some high-dimensional space, to which
a set of cells are assigned. This function extends the hypersphere into the dimensions specified by
markers. Thus, each new hypersphere is “nested” within the existing hypersphere in x. Only the
cells in the latter are assigned into the former (though obviously, some cells will not be assigned if
they are too distant from the centre in the new dimensions).

This function allows for fast recounting in situations where the markers have different purposes. For
example, x could be constructed using cell type-specific markers to define cell types. recountCells
can then be applied with markers that define, e.g., the activation status within each cell type. In
general, it is most interesting to use markers that were not used to construct x. Otherwise, by
definition, all the cells in each hypersphere would have similar marker intensities.

Also see medIntensities for a discussion of strategies to use when markers can be separated into
two distinct sets.

Value

A CyData object containing counts and cell assignments for nested hyperspheres. This follows the
same format as the output from countCells, i.e., each row is a hypersphere and each column is a
sample. Some fields are modified:

• counts, intensities and cellAssignments contain the relevant values for the nested hy-
perspheres.

• The used field in markerData is set to all markers used in both the original and re-counting.

• The tol value in the metadata is set to the (effective) tolerance used in re-counting.

Note on the radius calculation

The output of this function is designed to be equivalent to directly running countCells with both
new and old markers. However, to speed up the counting, only the cells already assigned to each
hypersphere in x are considered for re-counting. This has some consequences for the results, as the
radius scales with respect to tol and the number of markers.

Specifically, when new markers are specified in markers, the radius must increase to accommodate
the increase in dimensions. However, the cells were originally counted with a radius proportional to
the (square root of the) old number of markers and metadata(x)$tol. If the radius now increases,
but only pre-assigned cells are used for re-counting, then there will be cells that are missed in the
re-counts.

Thus, to preserve equivalence with countCells output, tol is decreased so that the radius does
not change with new markers. This shows up as a warning specifying the effective tolerance that
was used in during re-counting. Users can also avoid this problem by using a higher radius when
constructing x, such that the radius calculated from the tol here will be smaller.

Author(s)

Aaron Lun

See Also

countCells, medIntensities

spatialFDR 37

Examples

Mocking up some data:
nmarkers <- 20
marker.names <- paste0("X", seq_len(nmarkers))
nsamples <- 8
sample.names <- paste0("Y", seq_len(nsamples))

x <- list()
for (i in sample.names) {

ex <- matrix(rgamma(nmarkers*1000, 2, 2), ncol=nmarkers, nrow=1000)
colnames(ex) <- marker.names
x[[i]] <- ex

}

Processing it beforehand with one set of markers:
cd <- prepareCellData(x, markers=marker.names[1:10])
cnt <- countCells(cd, filter=5)

Processing it afterwards with another set of markers:
rcnt <- recountCells(cnt, markers=marker.names[11:12])
rcnt

spatialFDR Compute the spatial FDR

Description

Computed adjusted p-values for all hyperspheres, using a density-weighted version of the Benjamini-
Hochberg method.

Usage

spatialFDR(coords, pvalues, neighbors=50, bandwidth=NULL, naive=FALSE)

Arguments

coords A numeric matrix of hypersphere coordinates, containing the median intensity
of each marker (column) in each hypersphere (row).

pvalues A numeric vector of p-values for each hypersphere.

neighbors An integer scalar specifying the number of neighbors with which to compute the
bandwidth.

bandwidth A numeric scalar specifying the bandwidth for density estimation.

naive A logical scalar specifying whether a naive search should be performed.

Details

Consider the set of significant hyperspheres, distributed in some manner across the M-dimensional
space (for M markers). The aim is to control the FDR across the subspaces containing significant
hyperspheres. This is subtly different from controlling the FDR across the hypersphere themselves,
which will skew the results for densely occupied subspaces.

38 spatialFDR

Control of the spatial FDR is achieved by weighting the hyperspheres inversely proportional to
their local densities. This downweights hyperspheres in dense subspaces while upweighting hy-
perspheres in sparse subspaces. The computed weights are then used as frequency weights in the
Benjamini-Hochberg method, to control the FDR across subspaces.

The local density is calculated using a tricube kernel and the specified bandwidth. If unspecified,
bandwidth is set to the median of the distances to the neighbors-closest neighbor for all hyper-
spheres. This usually provides stable density estimates while maintaining sensitivity to fine-scale
structure.

Setting naive=TRUE will perform a naive search for nearest neighbors, rather than the more efficient
convex method. However, this should only affect computational efficiency and should not change
the final results.

Value

A numeric vector of adjusted p-values for all hyperspheres.

Author(s)

Aaron Lun

Examples

coords <- matrix(rgamma(10000, 2, 2), nrow=1000)
pvalues <- rbeta(nrow(coords), 1, 2)
out <- spatialFDR(coords, pvalues)

Index

[,CyData,ANY,ANY,ANY-method
(CyData-subset), 7

[,CyData,ANY,ANY-method
(CyData-subset), 7

[,CyData,ANY-method (CyData-subset), 7
[<-,CyData,ANY,ANY,CyData-method

(CyData-subset), 7

c,CyData-method (CyData-subset), 7
cbind,CyData-method (CyData-subset), 7
cellAssignments (CyData-getset), 5
cellAssignments,CyData-method

(CyData-getset), 5
cellAssignments<- (CyData-getset), 5
cellAssignments<-,CyData-method

(CyData-getset), 5
cellData (CyData-getset), 5
cellData,CyData-method (CyData-getset),

5
cellData<- (CyData-getset), 5
cellData<-,CyData-method

(CyData-getset), 5
cellIntensities (CyData-getset), 5
cellIntensities,CyData-method

(CyData-getset), 5
cellIntensities<- (CyData-getset), 5
cellIntensities<-,CyData-method

(CyData-getset), 5
countCells, 2, 12–14, 16, 20, 21, 23, 24, 29,

30, 34–36
CyData (CyData-class), 4
CyData-class, 4
CyData-getset, 5
CyData-subset, 7

density, 11, 16, 18
diffIntDistr, 9, 26
dnaGate, 10

estimateLogicle, 33
expandRadius, 12

findFirstSphere, 13
flowFrame, 33

glmnet, 30

intensities (CyData-getset), 5
intensities,CyData-method

(CyData-getset), 5
intensities<- (CyData-getset), 5
intensities<-,CyData-method

(CyData-getset), 5
intensityRanges, 15, 16, 18, 31, 32
interpretSpheres, 16, 19

kmeans, 34

labelSpheres, 18, 19

markerData (CyData-getset), 5
markerData,CyData-method

(CyData-getset), 5
markerData<- (CyData-getset), 5
markerData<-,CyData-method

(CyData-getset), 5
markernames (CyData-getset), 5
markernames,CyData-method

(CyData-getset), 5
markernames<- (CyData-getset), 5
markernames<-,CyData,ANY-method

(CyData-getset), 5
markernames<-,CyData-method

(CyData-getset), 5
medIntensities, 20, 36
multiIntHist, 21, 26

ncells (CyData-getset), 5
ncells,CyData-method (CyData-getset), 5
neighborDistances, 23, 34, 35
nmarkers (CyData-getset), 5
nmarkers,CyData-method (CyData-getset),

5
normalization, 25, 26
normalizeBatch, 10, 22, 24

outlierGate, 27, 33

packIndices, 3, 4, 28
pickBestMarkers, 29

39

40 INDEX

Plot Cells, 31
plotCellIntensity, 15
plotCellIntensity (Plot Cells), 31
plotCellLogFC (Plot Cells), 31
polygonGate, 11
poolCells, 10, 11, 27, 28, 32
prepareCellData, 2–4, 9, 12, 13, 15, 23, 24,

26, 30, 34

rbind,CyData-method (CyData-subset), 7
recountCells, 21, 35
rectangleGate, 28
runApp, 17, 18

sampleNames (CyData-getset), 5
sampleNames,CyData-method

(CyData-getset), 5
sampleNames<- (CyData-getset), 5
sampleNames<-,CyData,ANY-method

(CyData-getset), 5
sampleNames<-,CyData-method

(CyData-getset), 5
show,CyData-method (CyData-class), 4
spatialFDR, 37
subset,CyData-method (CyData-subset), 7

unlist, 26
unpackIndices (packIndices), 28

viridis, 17, 32

warpSet, 25, 26

	countCells
	CyData-class
	CyData-getset
	CyData-subset
	diffIntDistr
	dnaGate
	expandRadius
	findFirstSphere
	intensityRanges
	interpretSpheres
	labelSpheres
	medIntensities
	multiIntHist
	neighborDistances
	normalizeBatch
	outlierGate
	packIndices
	pickBestMarkers
	Plot Cells
	poolCells
	prepareCellData
	recountCells
	spatialFDR
	Index

