## ---- echo=FALSE, results="hide", warning=FALSE-------------------------- suppressPackageStartupMessages({ library(trackViewer) library(rtracklayer) library(Gviz) library(TxDb.Hsapiens.UCSC.hg19.knownGene) library(org.Hs.eg.db) library(VariantAnnotation) }) knitr::opts_chunk$set(warning=FALSE, message=FALSE) ## ----plotComp,echo=TRUE,fig.keep='none'---------------------------------- library(Gviz) library(rtracklayer) library(trackViewer) extdata <- system.file("extdata", package="trackViewer", mustWork=TRUE) gr <- GRanges("chr11", IRanges(122929275, 122930122), strand="-") fox2 <- importScore(file.path(extdata, "fox2.bed"), format="BED", ranges=gr) fox2$dat <- coverageGR(fox2$dat) viewTracks(trackList(fox2), gr=gr, autoOptimizeStyle=TRUE, newpage=FALSE) dt <- DataTrack(range=fox2$dat[strand(fox2$dat)=="-"] , genome="hg19", type="hist", name="fox2", window=-1, chromosome="chr11", fill.histogram="black", col.histogram="NA", background.title="white", col.frame="white", col.axis="black", col="black", col.title="black") plotTracks(dt, from=122929275, to=122930122, strand="-") ## ----Gviz,echo=FALSE,fig.cap='Plot data with **Gviz** and **trackViewer**. Note that **trackViewer** can generate similar figure as **Gviz** with several lines of simple codes.',fig.width=6,fig.height=1.5---- viewerStyle <- trackViewerStyle() setTrackViewerStyleParam(viewerStyle, "margin", c(.01, .13, .02, .02)) empty <- DataTrack(showAxis=FALSE, showTitle=FALSE, background.title="white") plotTracks(list(empty, dt), from=122929275, to=122930122, strand="-") pushViewport(viewport(0, .5, 1, .5, just=c(0, 0))) viewTracks(trackList(fox2), viewerStyle=viewerStyle, gr=gr, autoOptimizeStyle=TRUE, newpage=FALSE) popViewport() grid.text(label="Gviz track", x=.3, y=.4) grid.text(label="trackViewer track", x=.3, y=.9) ## ----lostcode,echo=TRUE,fig.keep='none'---------------------------------- gr <- GRanges("chr1", IRanges(c(1, 6, 10), c(3, 6, 12)), score=c(3, 4, 1)) dt <- DataTrack(range=gr, data="score", type="hist") plotTracks(dt, from=2, to=11) tr <- new("track", dat=gr, type="data", format="BED") viewTracks(trackList(tr), chromosome="chr1", start=2, end=11) ## ----GvizLost,echo=FALSE,fig.cap='Plot data with **Gviz** and **trackViewer**. Note that **trackViewer** is not only including more details but also showing all the data involved in the given range.',fig.width=6,fig.height=1.5---- plotTracks(list(empty, dt), from=2, to=11) pushViewport(viewport(0, .5, 1, .5, just=c(0, 0))) viewTracks(trackList(tr), viewerStyle=viewerStyle, chromosome="chr1", start=2, end=11, autoOptimizeStyle=TRUE, newpage=FALSE) popViewport() grid.text(label="Gviz track", x=.3, y=.4) grid.text(label="trackViewer track", x=.3, y=.9) ## ----importData---------------------------------------------------------- library(trackViewer) extdata <- system.file("extdata", package="trackViewer", mustWork=TRUE) repA <- importScore(file.path(extdata, "cpsf160.repA_-.wig"), file.path(extdata, "cpsf160.repA_+.wig"), format="WIG") ## because the wig file does not contain strand info, ## we need to set it manually strand(repA$dat) <- "-" strand(repA$dat2) <- "+" ## ----coverage------------------------------------------------------------ fox2 <- importScore(file.path(extdata, "fox2.bed"), format="BED", ranges=GRanges("chr11", IRanges(122929000, 122931000))) dat <- coverageGR(fox2$dat) ## we can split the data by strand into two different track channels ## here we set the dat2 slot to save the negative strand info, ## reverse order as previous. fox2$dat <- dat[strand(dat)=="+"] fox2$dat2 <- dat[strand(dat)=="-"] ## ----geneModel----------------------------------------------------------- library(TxDb.Hsapiens.UCSC.hg19.knownGene) library(org.Hs.eg.db) gr <- GRanges("chr11", IRanges(122929275, 122930122), strand="-") trs <- geneModelFromTxdb(TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, gr=gr) ## ----viewTracks,fig.cap='plot data and annotation information along genomic coordinates',fig.width=6,fig.height=1.5---- viewerStyle <- trackViewerStyle() setTrackViewerStyleParam(viewerStyle, "margin", c(.1, .05, .02, .02)) vp <- viewTracks(trackList(repA, fox2, trs), gr=gr, viewerStyle=viewerStyle, autoOptimizeStyle=TRUE) addGuideLine(c(122929767, 122929969), vp=vp) addArrowMark(list(x=122929650, y=2), # 2 means track 2 from bottom. label="label", col="blue", vp=vp) ## ----optSty-------------------------------------------------------------- optSty <- optimizeStyle(trackList(repA, fox2, trs)) trackList <- optSty$tracks viewerStyle <- optSty$style ## ----viewTracksXaxis,fig.cap='plot data with x-scale',fig.width=6,fig.height=1.5---- setTrackViewerStyleParam(viewerStyle, "xaxis", FALSE) setTrackViewerStyleParam(viewerStyle, "margin", c(.01, .05, .01, .01)) setTrackXscaleParam(trackList[[1]], "draw", TRUE) setTrackXscaleParam(trackList[[1]], "gp", list(cex=.5)) viewTracks(trackList, gr=gr, viewerStyle=viewerStyle) ## ----viewTracksYaxis,fig.cap='plot data with y-axis in right side',fig.width=6,fig.height=1.5---- setTrackViewerStyleParam(viewerStyle, "margin", c(.01, .05, .01, .05)) for(i in 1:2){ setTrackYaxisParam(trackList[[i]], "main", FALSE) } ## adjust y scale setTrackStyleParam(trackList[[1]], "ylim", c(0, 25)) setTrackStyleParam(trackList[[2]], "ylim", c(-25, 0)) viewTracks(trackList, gr=gr, viewerStyle=viewerStyle) ## ----viewTracksYlab,fig.cap='plot data with adjusted color and size of y label',fig.width=6,fig.height=1.5---- setTrackStyleParam(trackList[[1]], "ylabgp", list(cex=.8, col="green")) ## set cex to avoid automatic adjust setTrackStyleParam(trackList[[2]], "ylabgp", list(cex=.8, col="blue")) setTrackStyleParam(trackList[[2]], "marginBottom", .2) viewTracks(trackList, gr=gr, viewerStyle=viewerStyle) ## ----viewTracksYlabTopBottom,fig.cap='plot data with adjusted y label position',fig.width=6,fig.height=1.5---- setTrackStyleParam(trackList[[1]], "ylabpos", "bottomleft") setTrackStyleParam(trackList[[2]], "ylabpos", "topright") setTrackStyleParam(trackList[[2]], "marginTop", .2) viewTracks(trackList, gr=gr, viewerStyle=viewerStyle) ## ----viewTracksYlabUpsDown,fig.cap='plot data with adjusted transcripts name position',fig.width=6,fig.height=1.5---- trackListN <- trackList setTrackStyleParam(trackListN[[3]], "ylabpos", "upstream") setTrackStyleParam(trackListN[[4]], "ylabpos", "downstream") ## set cex to avoid automatic adjust setTrackStyleParam(trackListN[[3]], "ylabgp", list(cex=.6)) setTrackStyleParam(trackListN[[4]], "ylabgp", list(cex=.6)) gr1 <- range(unlist(GRangesList(sapply(trs, function(.ele) .ele$dat)))) start(gr1) <- start(gr1) - 2000 end(gr1) <- end(gr1) + 2000 viewTracks(trackListN, gr=gr1, viewerStyle=viewerStyle) ## ----viewTracksCol,fig.cap='plot data with adjusted track color',fig.width=6,fig.height=1.5---- setTrackStyleParam(trackList[[1]], "color", c("green", "black")) setTrackStyleParam(trackList[[2]], "color", c("black", "blue")) for(i in 3:length(trackList)) setTrackStyleParam(trackList[[i]], "color", "black") viewTracks(trackList, gr=gr, viewerStyle=viewerStyle) ## ----viewTracksHeight,fig.cap='plot data with adjusted track height',fig.width=6,fig.height=1.5---- trackListH <- trackList setTrackStyleParam(trackListH[[1]], "height", .1) setTrackStyleParam(trackListH[[2]], "height", .44) for(i in 3:length(trackListH)){ setTrackStyleParam(trackListH[[i]], "height", (1-(0.1+0.44))/(length(trackListH)-2)) } viewTracks(trackListH, gr=gr, viewerStyle=viewerStyle) ## ----viewTracksNames,fig.cap='change the track names',fig.width=6,fig.height=1.5---- names(trackList) <- c("cpsf160", "fox2", rep("HSPA8", 5)) viewTracks(trackList, gr=gr, viewerStyle=viewerStyle) ## ----viewTracksPaired,fig.cap='show two data in the same track',fig.width=6,fig.height=1.2---- cpsf160 <- importScore(file.path(extdata, "cpsf160.repA_-.wig"), file.path(extdata, "cpsf160.repB_-.wig"), format="WIG") strand(cpsf160$dat) <- strand(cpsf160$dat2) <- "-" setTrackStyleParam(cpsf160, "color", c("black", "red")) viewTracks(trackList(trs, cpsf160), gr=gr, viewerStyle=viewerStyle) ## ----viewTracksFlipped,fig.cap='show data in the flipped track',fig.width=6,fig.height=2---- viewerStyleF <- viewerStyle setTrackViewerStyleParam(viewerStyleF, "flip", TRUE) setTrackViewerStyleParam(viewerStyleF, "xaxis", TRUE) setTrackViewerStyleParam(viewerStyleF, "margin", c(.1, .05, .01, .01)) vp <- viewTracks(trackList, gr=gr, viewerStyle=viewerStyleF) addGuideLine(c(122929767, 122929969), vp=vp) addArrowMark(list(x=122929650, y=2), label="label", col="blue", vp=vp) ## ----theme_bw,fig.cap='theme_bw',fig.width=6,fig.height=2---------------- optSty <- optimizeStyle(trackList(repA, fox2, trs), theme="bw") trackList <- optSty$tracks viewerStyle <- optSty$style vp <- viewTracks(trackList, gr=gr, viewerStyle=viewerStyle) ## ----theme_col,fig.cap='theme_col',fig.width=6,fig.height=2-------------- optSty <- optimizeStyle(trackList(repA, fox2, trs), theme="col") trackList <- optSty$tracks viewerStyle <- optSty$style vp <- viewTracks(trackList, gr=gr, viewerStyle=viewerStyle) ## ----axis.break,fig.cap='axis.break',fig.width=6,fig.height=2------------ gr.breaks <- GRanges("chr11", IRanges(c(122929275, 122929575, 122929775), c(122929555, 122929725, 122930122)), strand="-", percentage=c(.4, .2, .4)) vp <- viewTracks(trackList, gr=gr.breaks, viewerStyle=viewerStyle) ## ----viewTracksOperator1,fig.cap='show data with operator "+"',fig.width=6,fig.height=2---- newtrack <- repA ## must keep same format for dat and dat2 newtrack <- parseWIG(newtrack, "chr11", 122929275, 122930122) newtrack$dat2 <- newtrack$dat newtrack$dat <- fox2$dat2 setTrackStyleParam(newtrack, "color", c("blue", "red")) viewTracks(trackList(newtrack, trs), gr=gr, viewerStyle=viewerStyle, operator="+") ## ----viewTracksOperator2,fig.cap='show data with operator "-"',fig.width=6,fig.height=2---- viewTracks(trackList(newtrack, trs), gr=gr, viewerStyle=viewerStyle, operator="-") ## ----viewTracksOperator3,fig.cap='show data with operator "-"',fig.width=6,fig.height=2---- newtrack$dat <- GRoperator(newtrack$dat, newtrack$dat2, col="score", operator="-") newtrack$dat2 <- GRanges() viewTracks(trackList(newtrack, trs), gr=gr, viewerStyle=viewerStyle) ## ----lolliplot1, fig.width=6, fig.height=3------------------------------- SNP <- c(10, 12, 1400, 1402) sample.gr <- GRanges("chr1", IRanges(SNP, width=1, names=paste0("snp", SNP))) features <- GRanges("chr1", IRanges(c(1, 501, 1001), width=c(120, 400, 405), names=paste0("block", 1:3))) lolliplot(sample.gr, features) ## more SNPs SNP <- c(10, 100, 105, 108, 400, 410, 420, 600, 700, 805, 840, 1400, 1402) sample.gr <- GRanges("chr1", IRanges(SNP, width=1, names=paste0("snp", SNP))) lolliplot(sample.gr, features) ## define the range lolliplot(sample.gr, features, ranges = GRanges("chr1", IRanges(104, 109))) ## ----lolliplot2, fig.width=6, fig.height=3------------------------------- features$fill <- c("#FF8833", "#51C6E6", "#DFA32D") lolliplot(sample.gr, features) ## ----lolliplot3, fig.width=6, fig.height=3------------------------------- sample.gr$color <- sample.int(6, length(SNP), replace=TRUE) sample.gr$border <- sample(c("gray80", "gray30"), length(SNP), replace=TRUE) lolliplot(sample.gr, features) ## ----lolliplot.index, fig.width=6, fig.height=3-------------------------- sample.gr$label <- as.character(1:length(sample.gr)) sample.gr$label.col <- "white" lolliplot(sample.gr, features) ## ----lolliplot4, fig.width=6, fig.height=3------------------------------- features$height <- c(0.02, 0.05, 0.08) lolliplot(sample.gr, features) ## keep the height by giving the unit features$height <- list(unit(1/16, "inches"), unit(3, "mm"), unit(12, "points")) lolliplot(sample.gr, features) ## ----lolliplot.mul.features, fig.width=6, fig.height=3------------------- features.mul <- rep(features, 2) features.mul$height[4:6] <- list(unit(1/8, "inches"), unit(0.5, "lines"), unit(.2, "char")) features.mul$fill <- c("#FF8833", "#F9712A", "#DFA32D", "#51C6E6", "#009DDA", "#4B9CDF") end(features.mul)[5] <- end(features.mul[5])+50 features.mul$featureLayerID <- paste("tx", rep(1:2, each=length(features)), sep="_") names(features.mul) <- paste(features.mul$featureLayerID, rep(1:length(features), 2), sep="_") lolliplot(sample.gr, features.mul) ## one name per transcripts names(features.mul) <- features.mul$featureLayerID lolliplot(sample.gr, features.mul) ## ----lolliplot4.1, fig.width=6, fig.height=3.5--------------------------- #Note: the score value is integer less than 10 sample.gr$score <- sample.int(5, length(sample.gr), replace = TRUE) lolliplot(sample.gr, features) ##remove yaxis lolliplot(sample.gr, features, yaxis=FALSE) ## ----lolliplot4.2, fig.width=6, fig.height=4.5--------------------------- #Try score value greater than 10 sample.gr$score <- sample.int(20, length(sample.gr), replace=TRUE) lolliplot(sample.gr, features) #Try float numeric score sample.gr$score <- runif(length(sample.gr))*10 lolliplot(sample.gr, features) # score should not be smaller than 1 ## ----lolliplot.xaxis, fig.width=6, fig.height=4.5------------------------ xaxis <- c(1, 200, 400, 701, 1000, 1200, 1402) ## define the position lolliplot(sample.gr, features, xaxis=xaxis) names(xaxis) <- xaxis # define the labels names(xaxis)[4] <- "center" lolliplot(sample.gr, features, xaxis=xaxis) ## ----lolliplot.yaxis, fig.width=6, fig.height=4.5------------------------ yaxis <- c(0, 5) ## define the position lolliplot(sample.gr, features, yaxis=yaxis) yaxis <- c(0, 5, 10, 15) names(yaxis) <- yaxis # define the labels names(yaxis)[3] <- "yaxis" lolliplot(sample.gr, features, yaxis=yaxis) ## ----lolliplot.jitter, fig.width=6, fig.height=4.5----------------------- sample.gr$dashline.col <- sample.gr$color lolliplot(sample.gr, features, jitter="label") ## ----lolliplot.legend, fig.width=6, fig.height=5------------------------- legend <- 1:6 ## legend fill color names(legend) <- paste0("legend", letters[1:6]) ## legend labels lolliplot(sample.gr, features, legend=legend) ## use list to define more attributes. see ?grid::gpar to get more details. legend <- list(labels=paste0("legend", LETTERS[1:6]), col=palette()[6:1], fill=palette()[legend]) lolliplot(sample.gr, features, legend=legend) ## if you have multiple tracks, try to set the legend by list. ## see more in section [Plot multiple samples](#plot-multiple-samples) legend <- list(legend) lolliplot(sample.gr, features, legend=legend) ## ----lolliplot.labels.control, fig.width=6, fig.height=5----------------- sample.gr.rot <- sample.gr sample.gr.rot$label.parameter.rot <- 45 lolliplot(sample.gr.rot, features, legend=legend) sample.gr.rot$label.parameter.rot <- 60 sample.gr.rot$label.parameter.gp <- gpar(col="brown") lolliplot(sample.gr.rot, features, legend=legend) ## ----lolliplot.xlab.ylab.title, fig.width=6, fig.height=5.2-------------- lolliplot(sample.gr.rot, features, legend=legend, ylab="y label here") grid.text("x label here", x=.5, y=.01, just="bottom") grid.text("title here", x=.5, y=.98, just="top", gp=gpar(cex=1.5, fontface="bold")) ## ----lolliplot5, fig.width=6, fig.height=4.5----------------------------- lolliplot(sample.gr, features, type="pin") sample.gr$color <- lapply(sample.gr$color, function(.ele) c(.ele, sample.int(6, 1))) sample.gr$border <- sample.int(6, length(SNP), replace=TRUE) lolliplot(sample.gr, features, type="pin") ## ----lolliplot6, fig.width=6, fig.height=3------------------------------- sample.gr$score <- NULL ## must be removed, because pie will consider all the numeric columns except column "color", "fill", "lwd", "id" and "id.col". sample.gr$label <- NULL sample.gr$label.col <- NULL x <- sample.int(100, length(SNP)) sample.gr$value1 <- x sample.gr$value2 <- 100 - x ## the length of color should be no less than the values number sample.gr$color <- rep(list(c("#87CEFA", '#98CE31')), length(SNP)) sample.gr$border <- "gray30" lolliplot(sample.gr, features, type="pie") ## ----lolliplot7, fig.width=6, fig.height=5.5----------------------------- SNP2 <- sample(4000:8000, 30) x2 <- sample.int(100, length(SNP2), replace=TRUE) sample2.gr <- GRanges("chr3", IRanges(SNP2, width=1, names=paste0("snp", SNP2)), value1=x2, value2=100-x2) sample2.gr$color <- rep(list(c('#DB7575', '#FFD700')), length(SNP2)) sample2.gr$border <- "gray30" features2 <- GRanges("chr3", IRanges(c(5001, 5801, 7001), width=c(500, 500, 405), names=paste0("block", 4:6)), fill=c("orange", "gray30", "lightblue"), height=unit(c(0.5, 0.3, 0.8), "cm")) legends <- list(list(labels=c("WT", "MUT"), fill=c("#87CEFA", '#98CE31')), list(labels=c("WT", "MUT"), fill=c('#DB7575', '#FFD700'))) lolliplot(list(A=sample.gr, B=sample2.gr), list(x=features, y=features2), type="pie", legend=legends) ## ----lolliplot.multiple.type, fig.width=6, fig.height=7.5---------------- sample2.gr$score <- sample2.gr$value1 ## circle layout need score column lolliplot(list(A=sample.gr, B=sample2.gr), list(x=features, y=features2), type=c("pie", "circle"), legend=legends) ## ----lolliplot.pie.stack, fig.width=6, fig.height=5---------------------- rand.id <- sample.int(length(sample.gr), 3*length(sample.gr), replace=TRUE) rand.id <- sort(rand.id) sample.gr.mul.patient <- sample.gr[rand.id] ## pie.stack require metadata "stack.factor", and the metadata can not be ## stack.factor.order or stack.factor.first len.max <- max(table(rand.id)) stack.factors <- paste0("patient", formatC(1:len.max, width=nchar(as.character(len.max)), flag="0")) sample.gr.mul.patient$stack.factor <- unlist(lapply(table(rand.id), sample, x=stack.factors)) sample.gr.mul.patient$value1 <- sample.int(100, length(sample.gr.mul.patient), replace=TRUE) sample.gr.mul.patient$value2 <- 100 - sample.gr.mul.patient$value1 patient.color.set <- as.list(as.data.frame(rbind(rainbow(length(stack.factors)), "#FFFFFFFF"), stringsAsFactors=FALSE)) names(patient.color.set) <- stack.factors sample.gr.mul.patient$color <- patient.color.set[sample.gr.mul.patient$stack.factor] legend <- list(labels=stack.factors, col="gray80", fill=sapply(patient.color.set, `[`, 1)) lolliplot(sample.gr.mul.patient, features, type="pie.stack", legend=legend, dashline.col="gray") ## ----lolliplot.caterpillar, fig.width=6, fig.height=4-------------------- sample.gr$SNPsideID <- sample(c("top", "bottom"), length(sample.gr), replace=TRUE) lolliplot(sample.gr, features, type="pie", legend=legends[[1]]) ## ----lolliplot.caterpillar2, fig.width=6, fig.height=12------------------ ## two layers sample2.gr$SNPsideID <- "top" idx <- sample.int(length(sample2.gr), 15) sample2.gr$SNPsideID[idx] <- "bottom" sample2.gr$color[idx] <- '#FFD700' lolliplot(list(A=sample.gr, B=sample2.gr), list(x=features.mul, y=features2), type=c("pie", "circle"), legend=legends) ## ----VCF, fig.width=6, fig.height=5-------------------------------------- library(VariantAnnotation) library(TxDb.Hsapiens.UCSC.hg19.knownGene) library(org.Hs.eg.db) fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation") gr <- GRanges("22", IRanges(50968014, 50970514, names="TYMP")) tab <- TabixFile(fl) vcf <- readVcf(fl, "hg19", param=gr) mutation.frequency <- rowRanges(vcf) mcols(mutation.frequency) <- cbind(mcols(mutation.frequency), VariantAnnotation::info(vcf)) mutation.frequency$border <- "gray30" mutation.frequency$color <- ifelse(grepl("^rs", names(mutation.frequency)), "lightcyan", "lavender") ## plot Global Allele Frequency based on AC/AN mutation.frequency$score <- mutation.frequency$AF*100 seqlevelsStyle(gr) <- seqlevelsStyle(mutation.frequency) <- "UCSC" trs <- geneModelFromTxdb(TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, gr=gr) features <- c(range(trs[[1]]$dat), range(trs[[5]]$dat)) names(features) <- c(trs[[1]]$name, trs[[5]]$name) features$fill <- c("lightblue", "mistyrose") features$height <- c(.02, .04) lolliplot(mutation.frequency, features, ranges=gr) ## ----methylation, eval=FALSE, echo=TRUE---------------------------------- # library(rtracklayer) # session <- browserSession() # query <- ucscTableQuery(session, track="HAIB Methyl RRBS", # range=GRangesForUCSCGenome("hg19", seqnames(gr), ranges(gr))) # tableName(query) <- tableNames(query)[1] # methy <- track(query) # methy <- GRanges(methy) ## ----methylation.hide, echo=FALSE---------------------------------------- methy <- import(system.file("extdata", "methy.bed", package="trackViewer"), "BED") ## ----fig.width=6,fig.height=4-------------------------------------------- lolliplot(methy, features, ranges=gr, type="pin") ## ----fig.width=6,fig.height=2.5------------------------------------------ methy$lwd <- .5 lolliplot(methy, features, ranges=gr, type="pin", cex=.5) lolliplot(methy, features, ranges=gr, type="circle", cex=.5) methy$score2 <- max(methy$score) - methy$score lolliplot(methy, features, ranges=gr, type="pie", cex=.5) ## we can change it one by one methy$cex <- runif(length(methy)) lolliplot(methy, features, ranges=gr, type="pin") lolliplot(methy, features, ranges=gr, type="circle") ## ----fig.width=4.5,fig.height=3------------------------------------------ dandelion.plot(methy, features, ranges=gr, type="pin") ## ----fig.width=4.5,fig.height=3------------------------------------------ methy$color <- 3 methy$border <- "gray" ## score info is required, the score must be a number in [0, 1] m <- max(methy$score) methy$score <- methy$score/m dandelion.plot(methy, features, ranges=gr, type="fan") ## ----fig.width=4.5,fig.height=4------------------------------------------ methy$color <- rep(list(c(3, 5)), length(methy)) methy$score2 <- methy$score2/m legends <- list(list(labels=c("s1", "s2"), fill=c(3, 5))) dandelion.plot(methy, features, ranges=gr, type="pie", legend=legends) ## ----fig.width=4.5,fig.height=2.5---------------------------------------- ## want less dandelion.plot(methy, features, ranges=gr, type="circle", maxgaps=1/10) ## ----fig.width=4.5,fig.height=4.5---------------------------------------- ## want more dandelion.plot(methy, features, ranges=gr, type="circle", maxgaps=1/100) ## ----eval=FALSE---------------------------------------------------------- # ideo <- loadIdeogram("hg38") ## ----echo=FALSE, results="hide"------------------------------------------ path <- system.file("extdata", "ideo.hg38.rds", package = "trackViewer") ideo <- readRDS(path) ## ------------------------------------------------------------------------ dataList <- ideo dataList$score <- as.numeric(dataList$gieStain) dataList <- dataList[dataList$gieStain!="gneg"] dataList <- GRangesList(dataList) ideogramPlot(ideo, dataList, layout=list("chr1", c("chr3", "chr22"), c("chr4", "chr21"))) ## ----sessionInfo, results='asis'----------------------------------------- sessionInfo()