%\VignetteIndexEntry{gprege Quick Guide}
%\VignetteKeywords{TimeCourse, GeneExpression, Transcription, DifferentialExpression}
%\VignettePackage{gprege}
\documentclass{article}
\usepackage{url, subfigure, float}
\usepackage[english]{babel} % Workaround to remove tildes from citation names.
\usepackage[authoryear]{natbib}
%\usepackage{pdfpages}

\title{gprege Quick Guide}
\author{Alfredo Kalaitzis, Neil D. Lawrence}

\newcommand{\Rfunction}[1]{{\texttt{#1}}}
\newcommand{\Robject}[1]{{\texttt{#1}}}
\newcommand{\Rpackage}[1]{{\textit{#1}}}
\newcommand{\gprege}{\Rpackage{gprege}}

\begin{document}
\maketitle
\SweaveOpts{keep.source=TRUE}

\section{Abstract}
The \gprege{} package implements our methodology of Gaussian process regression models for the analysis of microarray time series.
The package can be used to filter quiet genes and quantify/rank differential expression in time-series expression ratios.
The purpose of this quick guide is to present a few examples of using gprege.

\section{Citing \gprege{}}

Citing \gprege{} in publications will involve citing the methodology paper \citep{Kalaitzis:simple11} that the software is based on as well as citing the software package itself.

<<echo=FALSE, eval=TRUE>>=
  options(width = 60)
@

\section{Introductory example analysis - TP63 microarray data}
\label{section:Introductory example}

In this section we introduce the main functions of the \Rpackage{gprege} package by repeating some of the analysis from the BMC Bioinformatics paper \citep{Kalaitzis:simple11}.

\subsection{Installing the \gprege{} package}

The recommended way to install \gprege{} is to use the
\Rfunction{biocLite} function available from the bioconductor
website. Installing in this way should ensure that all appropriate
dependencies are met.

<< eval=FALSE >>==
  source("http://www.bioconductor.org/biocLite.R")
  biocLite("gprege")
@
Otherwise, to manually install the gprege software, unpack the software and run
\begin{verbatim}
  R CMD INSTALL gprege
\end{verbatim}
To load the package start R and run
<<>>=
  library(gprege)
@ 

\subsection{Loading the data}
For convenience, a fragment of the preproccessed data is provided in this package and can be loaded using
<<eval=FALSE>>=
  data(FragmentDellaGattaData)
@
The full dataset is available at
\url{https://github.com/alkalait/gprege-datasets/raw/master/R/DellaGattaData.RData}
and can be loaded using
<<eval=FALSE>>=
  # Download full Della Gatta dataset.
  load(url('https://github.com/alkalait/gprege-datasets/raw/master/R/DellaGattaData.RData'))
  # OR
  data(FullDellaGattaData)
@
Type \Rfunction{?DellaGattaData} for more details on the dataset.
If you need to preprocess some gene expression time-series from scratch and the dataset originates from Affymetrix arrays,
we highly recommend processing it with \Rfunction{rma} or \Rfunction{mmgmos} from the \Rpackage{affy} and \Rpackage{puma} packages respectively. \Rfunction{mmgmos} extracts error bars on the expression measurements directly from the array data to allow judging the reliability of individual measurements. A detailed guide on how to perform these steps can be found in the \Rpackage{tigre} \textit{Quick Guide}.

\subsection{Interactive mode}
Let us now examine one by one, in an interactive fashion, a few profiles of the full dataset (not available in the package). We start by loading it.
<<>>=
  # Download full Della Gatta dataset.
  ## con <- url('https://github.com/alkalait/gprege-datasets/raw/master/R/DellaGattaData.RData')
  ## attempts = 0
  ## while(!exists('DGdata') && attempts < 3) {
  ##  try(load(con),TRUE) #  close.connection(con)
  ##  attempts = attempts + 1
  ## }
  data(FullDellaGattaData)
  # Timepoints / GP inputs.
  tTrue = matrix(seq(0,240,by=20), ncol=1)
  gpregeOptions <- list()
@
These gene expression profiles correspond to the top ranks as direct targets suggested by TSNI \citep{della2008direct}.
<<eval=FALSE>>=
  data(FullDellaGattaData)
  # Set index range so that only a top few targets suggested by TSNI be explored.
  gpregeOptions$indexRange <- which(DGatta_labels_byTSNItop100)[1:2]
@
If the download fails, use the following instead.
<<>>=
  # Load installed fragment-dataset.
  data(FragmentDellaGattaData)
  # Fragment dataset is comprised of top-ranked targets suggested by TSNI.
  # Explore only the first few.
  gpregeOptions$indexRange <- 1:2
@
The option \Rfunction{gpregeOptions\$explore<-TRUE} makes \Rfunction{gprege} wait for a keystroke to proceed to the next profile.
<<>>=
  # Explore individual profiles in interactive mode.
  gpregeOptions$explore <- TRUE
  # Exhaustive plot resolution of the LML function.
  gpregeOptions$exhaustPlotRes <- 30
  # Exhaustive plot contour levels.
  gpregeOptions$exhaustPlotLevels <- 10
  # Exhaustive plot maximum lengthscale.
  gpregeOptions$exhaustPlotMaxWidth <- 100
  # Noisy ground truth labels: which genes are in the top 786 ranks of the TSNI ranking.
  gpregeOptions$labels <- DGatta_labels_byTSNItop100 
  # SCG optimisation: maximum number of iterations.
  gpregeOptions$iters <- 100
  # SCG optimisation: no messages.
  gpregeOptions$display <- FALSE
  # Matrix of different hyperparameter configurations as rows:
  # [inverse-lengthscale   percent-signal-variance   percent-noise-variance].
  gpregeOptions$inithypers <-
    matrix( c(  1/1000,	1e-3,	0.999,
                1/30,	0.999,	1e-3,
                1/80,	2/3, 1/3
  ), ncol=3, byrow=TRUE)
@
\Rfunction{gprege} will generate a report and a few plots for each explored profile. The first line contains the index of the profile in \Rfunction{exprs\_tp63\_RMA} and its ground truth (according to TSNI). The hyperparameters of the optimised log-marginal likelihood (LML)  follow and then the initialisation (indicated by '<-') from which it came. Then a few statistics; the observed standard deviation of the time-series and the sum of the explained std.deviation (by the GP) and noise (Gaussian)  std.deviation. Finally the function \Rfunction{exhaustivePlot} will reveal, through an exhaustive search in the hyperparemeter space\footnote{\Rfunction{gpregeOptions\$exhaustPlotMaxWidth} defines the limit of the \textit{lengthscale} search range.}, the approximate true maximum LML and corresponding hyperparameters.
<<eval=TRUE, echo=TRUE>>=
  gpregeOutput<-gprege(data=exprs_tp63_RMA,inputs=tTrue,gpregeOptions=gpregeOptions)
@
<<results=tex,echo=FALSE, eval=TRUE>>=
  for (i in 1:length(gpregeOptions$indexRange)) {
    cat("\\begin{figure}[H]")
    cat("\\centering")
#     cat("\\subfigure[]{")
    cat("\\includegraphics[width=0.7\\linewidth]{",  paste("gpPlot",i,".pdf",sep=""), "}\n\n",  sep="")
#     cat("\\label{fig:seqfig", i, "}", sep = "")
    cat("\\caption{GP fit with different initialisations on profile \\#", gpregeOptions$indexRange[i], ".}", sep="")
    cat("\\label{fig:gpPlot", i, "}", sep = "")
    cat("\\end{figure}")
    
    cat("\\begin{figure}[H]")
    cat("\\centering")
    cat("\\subfigure[]{")
    cat("\\includegraphics[page=1,width=.7\\linewidth]{",paste("exhaustivePlot",i,".pdf",sep=""),"}}\n\n", sep="")
    cat("\\subfigure[]{")
    cat("\\includegraphics[page=2,width=.7\\linewidth]{",paste("exhaustivePlot",i,".pdf",sep=""),"}}\n\n", sep="")
    cat("\\caption{Profile \\#", gpregeOptions$indexRange[i], " : (a) Log-marginal likelihood (LML) contour. (b) GP fit with maximum LML hyperparameters from the exhaustive search.}", sep = "")
    cat("\\label{fig:exPlot", i, "}", sep = "")
    cat("\\end{figure}")
  }
@

\subsection{Comparing against BATS}
Now we demonstrate \Rfunction{compareROC}, a facility for comparing the performance of gprege on a dataset with some other method (see figures below). In this example, we reproduce the main result presented in \citep{Kalaitzis:simple11} \footnote{Results on experimental data are slightly better because more initialisation points were used in optimising the likelihood wrt the kernel hypeparameters (\Rfunction{gpregeOptions\$inithypers}), and the optimisation with the best log-marginal likelihood was always used in the end.}.
Specifically, we apply standard Gaussian process regression and BATS \citep{angelini2007bayesian} on experimental gene expression data, where only the top 100 ranks of TSNI were labelled as truly differentially expressed in the noisy ground truth. From the output of each model, a ranking of differential expression is produced and assessed with ROC curves to quantify how well in accordance to the noisy ground truth each method performs. For convenience, \Rfunction{gprege} was already run on the full DellaGatta dataset and the resulting rank metrics are stored in \Rfunction{gpregeOutput\$rankingScores} (see \Rfunction{demTp63Gp1(fulldataset=TRUE)}).

<<>>=
  # Load fragment dataset.
  data(FragmentDellaGattaData)
  data(DGdat_p63)
  # Download BATS rankings (Angelini, 2007)
  # Case 1: Delta error prior, case 2: Inverse Gamma error prior,
  #  case 3: Double Exponential error prior.
  BATSranking = matrix(0, length(DGatta_labels_byTSNItop100), 3)
  ##for (i in 1:3){
  ##  # Read gene numbers.
  ##  tmp = NULL
  ##  con <- url(paste('https://github.com/alkalait/gprege-datasets/raw/master/R/DGdat_p63_case',i,'_GL.txt',sep=''))
  ##  while(is.null(tmp)) try(tmp <- read.table(con, skip=1), TRUE)
  ##  genenumbers <- as.numeric(lapply( as.character(tmp[,2]), function(x) x=substr(x,2,nchar(x))))
  ##  # Sort rankqings by gene numbers.
  ##  BATSranking[,i] <- tmp[sort(genenumbers, index.return=TRUE)$ix, 4]
  ##}
  genenumbers <- as.numeric(lapply(as.character(DGdat_p63_case1_GL[,2]), function(x) x=substr(x,2,nchar(x))))
  BATSranking[,1] <- DGdat_p63_case1_GL[sort(genenumbers, index.return=TRUE)$ix, 4]
  genenumbers <- as.numeric(lapply(as.character(DGdat_p63_case2_GL[,2]), function(x) x=substr(x,2,nchar(x))))
  BATSranking[,2] <- DGdat_p63_case2_GL[sort(genenumbers, index.return=TRUE)$ix, 4]
  genenumbers <- as.numeric(lapply(as.character(DGdat_p63_case3_GL[,2]), function(x) x=substr(x,2,nchar(x))))
  BATSranking[,3] <- DGdat_p63_case3_GL[sort(genenumbers, index.return=TRUE)$ix, 4]
@
\begin{figure}[H]
\centering
<<fig=TRUE, echo=TRUE>>=
  # The smaller a BATS-rank metric is, the better the rank of the gene
  # reporter. Invert those rank metrics to compare on a common ground
  # with gprege.
  BATSranking = 1/BATSranking
  compareROC(output=gpregeOutput$rankingScores,
          groundTruthLabels=DGatta_labels_byTSNItop100,
          compareToRanking=BATSranking)
@
\caption{ROC comparison on experimental data from \citep{della2008direct}. One curve for the GP method and three for BATS, using a different noise model (subscript 'G' for Gaussian, 'T' for Student's-t and 'DE' for double exponential marginal distributions of error), followed by the area under the corresponding curve (AUC).}
\label{fig:ROC}
\end{figure}


\subsection{Ranking differential genes}
Finally, the bulk ranking for differential expression is done with the full dataset,
no interactive mode, and a ROC comparison in the end.
Total computation time is approximately 45 minutes on a desktop running Ubuntu
10.04 with a dual-core CPU at 2.8 GHz and 3.2 GiB of memory.
<<eval=FALSE>>=
  # Download full Della Gatta dataset.
  #con <- url('https://github.com/alkalait/gprege-datasets/raw/master/R/DellaGattaData.RData')
  #while(!exists('DGdata')) try(load(con),TRUE); close.connection(con)
  data(FullDellaGattaData)
  # Timepoints / GP inputs.
  tTrue = matrix(seq(0,240,by=20), ncol=1)
  gpregeOptions <- list()
  # Explore individual profiles in interactive mode.
  gpregeOptions$explore <- FALSE
  # Exhaustive plot resolution of the LML function.
  gpregeOptions$exhaustPlotRes <- 30
  # Exhaustive plot contour levels.
  gpregeOptions$exhaustPlotLevels <- 10
  # Exhaustive plot maximum lengthscale.
  gpregeOptions$exhaustPlotMaxWidth <- 100
  # Noisy ground truth labels: which genes are in the top 786 ranks of the TSNI ranking.
  gpregeOptions$labels <- DGatta_labels_byTSNItop100 
  # SCG optimisation: maximum number of iterations.
  gpregeOptions$iters <- 100
  # SCG optimisation: no messages.
  gpregeOptions$display <- FALSE
  # Matrix of different hyperparameter configurations as rows:
  # [inverse-lengthscale   percent-signal-variance   percent-noise-variance].
  gpregeOptions$inithypers <-
    matrix( c(  1/1000,  1e-3,	0.999,
                1/8,	0.999,	1e-3,
                1/80,	2/3, 1/3
  ), ncol=3, byrow=TRUE)
  gpregeOutput<-gprege(data=exprs_tp63_RMA,inputs=tTrue,gpregeOptions=gpregeOptions)
@



%\pagebreak
\bibliographystyle{plainnat}
\bibliography{gprege_quick}

\end{document}