## ---- eval=FALSE--------------------------------------------------------- ## # 'MSstatsInput.csv' is the MSstats report from Skyline. ## input <- read.csv(file="MSstatsInput.csv") ## ## raw <- SkylinetoMSstatsFormat(input) ## ---- eval=FALSE--------------------------------------------------------- ## # Read in MaxQuant files ## proteinGroups <- read.table("proteinGroups.txt", sep="\t", header=TRUE) ## ## infile <- read.table("evidence.txt", sep="\t", header=TRUE) ## ## # Read in annotation including condition and biological replicates per run. ## # Users should make this annotation file. It is not the output from MaxQuant. ## annot <- read.csv("annotation.csv", header=TRUE) ## ## raw <- MaxQtoMSstatsFormat(evidence=infile, ## annotation=annot, ## proteinGroups=proteinGroups) ## ---- eval=FALSE--------------------------------------------------------- ## input <- read.csv("output_progenesis.csv", stringsAsFactors=F) ## ## # Read in annotation including condition and biological replicates per run. ## # Users should make this annotation file. It is not the output from Progenesis. ## annot <- read.csv('annotation.csv') ## ## raw <- ProgenesistoMSstatsFormat(input, annotation=annot) ## ---- eval=FALSE--------------------------------------------------------- ## input <- read.csv("output_spectronaut.csv", stringsAsFactors=F) ## ## quant <- SpectronauttoMSstatsFormat(input) ## ---- eval=FALSE--------------------------------------------------------- ## QuantData <- dataProcess(SRMRawData) ## ---- eval=FALSE--------------------------------------------------------- ## QuantData <- dataProcess(SRMRawData) ## ## # Profile plot ## dataProcessPlots(data=QuantData, type="ProfilePlot") ## ## # Quality control plot ## dataProcessPlots(data=QuantData, type="QCPlot") ## ## # Quantification plot for conditions ## dataProcessPlots(data=QuantData, type="ConditionPlot") ## ---- eval=FALSE--------------------------------------------------------- ## QuantData <- dataProcess(SRMRawData) ## ## levels(QuantData$ProcessedData$GROUP_ORIGINAL) ## comparison <- matrix(c(-1,0,0,0,0,0,1,0,0,0), nrow=1) ## row.names(comparison) <- "T7-T1" ## ## # Tests for differentially abundant proteins with models: ## testResultOneComparison <- groupComparison(contrast.matrix=comparison, data=QuantData) ## ---- eval=FALSE--------------------------------------------------------- ## QuantData <- dataProcess(SRMRawData) ## ## # based on multiple comparisons (T1 vs T3; T1 vs T7; T1 vs T9) ## comparison1<-matrix(c(-1,0,1,0,0,0,0,0,0,0),nrow=1) ## comparison2<-matrix(c(-1,0,0,0,0,0,1,0,0,0),nrow=1) ## comparison3<-matrix(c(-1,0,0,0,0,0,0,0,1,0),nrow=1) ## comparison<-rbind(comparison1,comparison2, comparison3) ## row.names(comparison)<-c("T3-T1","T7-T1","T9-T1") ## ## testResultMultiComparisons <- groupComparison(contrast.matrix=comparison, data=QuantData) ## ## # Volcano plot ## groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult, type="VolcanoPlot") ## ## # Heatmap ## groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult, type="Heatmap") ## ## # Comparison Plot ## groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult, type="ComparisonPlot") ## ---- eval=FALSE--------------------------------------------------------- ## testResultOneComparison <- groupComparison(contrast.matrix=comparison, data=QuantData) ## ## # normal quantile-quantile plots ## modelBasedQCPlots(data=testResultOneComparison, type="QQPlots") ## ## # residual plots ## modelBasedQCPlots(data=testResultOneComparison, type="ResidualPlots") ## ---- eval=FALSE--------------------------------------------------------- ## QuantData <- dataProcess(SRMRawData) ## head(QuantData$ProcessedData) ## ## ## based on multiple comparisons (T1 vs T3; T1 vs T7; T1 vs T9) ## comparison1 <- matrix(c(-1,0,1,0,0,0,0,0,0,0),nrow=1) ## comparison2 <- matrix(c(-1,0,0,0,0,0,1,0,0,0),nrow=1) ## comparison3 <- matrix(c(-1,0,0,0,0,0,0,0,1,0),nrow=1) ## comparison <- rbind(comparison1,comparison2, comparison3) ## row.names(comparison) <- c("T3-T1","T7-T1","T9-T1") ## ## testResultMultiComparisons <- groupComparison(contrast.matrix=comparison,data=QuantData) ## ## #(1) Minimal number of biological replicates per condition ## designSampleSize(data=testResultMultiComparisons$fittedmodel, numSample=TRUE, ## desiredFC=c(1.25,1.75), FDR=0.05, power=0.8) ## ## #(2) Power calculation ## designSampleSize(data=testResultMultiComparisons$fittedmodel, numSample=2, ## desiredFC=c(1.25,1.75), FDR=0.05, power=TRUE) ## ---- eval=FALSE--------------------------------------------------------- ## # (1) Minimal number of biological replicates per condition ## result.sample <- designSampleSize(data=testResultMultiComparisons$fittedmodel, numSample=TRUE, ## desiredFC=c(1.25,1.75), FDR=0.05, power=0.8) ## designSampleSizePlots(data=result.sample) ## ## # (2) Power ## result.power <- designSampleSize(data=testResultMultiComparisons$fittedmodel, numSample=2, ## desiredFC=c(1.25,1.75), FDR=0.05, power=TRUE) ## designSampleSizePlots(data=result.power) ## ---- eval=FALSE--------------------------------------------------------- ## QuantData <- dataProcess(SRMRawData) ## ## # Sample quantification ## sampleQuant <- quantification(QuantData) ## ## # Group quantification ## groupQuant <- quantification(QuantData, type="Group") ## ---- eval=FALSE--------------------------------------------------------- ## # Consider data from a spiked-in contained in an example dataset ## head(SpikeInDataNonLinear) ## ## nonlinear_quantlim_out <- nonlinear_quantlim(SpikeInDataNonLinear) ## ## # Get values of LOB/LOD ## nonlinear_quantlim_out$LOB[1] ## nonlinear_quantlim_out$LOD[1] ## ---- eval=FALSE--------------------------------------------------------- ## # Consider data from a spiked-in contained in an example dataset ## head(SpikeInDataLinear) ## ## linear_quantlim_out <- linear_quantlim(SpikeInDataLinear) ## ## # Get values of LOB/LOD ## linear_quantlim_out$LOB[1] ## linear_quantlim_out$LOD[1] ## ---- eval=FALSE--------------------------------------------------------- ## # Consider data from a spiked-in contained in an example dataset ## head(SpikeInDataNonLinear) ## ## nonlinear_quantlim_out <- nonlinear_quantlim(SpikeInDataNonLinear, alpha = 0.05) ## ## #Get values of LOB/LOD ## nonlinear_quantlim_out$LOB[1] ## nonlinear_quantlim_out$LOD[1] ## ## plot_quantlim(spikeindata = SpikeInDataLinear, quantlim_out = nonlinear_quantlim_out, ## dir_output = getwd(), alpha = 0.05)