Package 'YAPSA'

April 15, 2017

Type Package

Title Yet Another Package for Signature Analysis

Version 1.0.0

Date 2015-08-04

Author Daniel Huebschmann, Zuguang Gu, Matthias Schlesner

Maintainer Daniel Huebschmann <huebschmann.daniel@googlemail.com>

Imports lsei, SomaticSignatures, VariantAnnotation, GenomeInfoDb, reshape2, gridExtra, corrplot, dendextend, GetoptLong, circlize, gtrellis, PMCMR, ComplexHeatmap, KEGGREST, grDevices

Depends R (>= 3.3.0), GenomicRanges, ggplot2, grid

Description This package provides functions and routines useful in the analysis of somatic signatures (cf. L. Alexandrov et al., Nature 2013). In particular, functions to perform a signature analysis with known signatures (LCD = linear combination decomposition) and a signature analysis on stratified mutational catalogue (SMC = stratify mutational catalogue) are provided.

License GPL-3

Suggests BSgenome.Hsapiens.UCSC.hg19, testthat, BiocStyle, knitr, rmarkdown

VignetteBuilder knitr

LazyLoad yes

biocViews Sequencing, DNASeq, SomaticMutation, Visualization, Clustering, GenomicVariation, StatisticalMethod, BiologicalQuestion

RoxygenNote 5.0.1

NeedsCompilation no

R topics documented:

add_annotation	3
add_as_fist_to_list	4
aggregate_exposures_by_category	4
annotate_intermut_dist_cohort	5
annotate_intermut_dist_PID	6

nnotation_exposures_barplot	7
nnotation_heatmap_exposures	9
ttribute_nucleotide_exchanges	10
uild_gene_list_for_pathway	11
ompare_exposures	12
ompare_sets	13
ompare_SMCs	14
ompare_to_catalogues	15
omplex_heatmap_exposures	15
ompute_comparison_stat_df	17
osineDist	17
reate_mutation_catalogue_from_df	18
reate_mutation_catalogue_from_VR	19
utoffs	21
ut_breaks_as_intervals	22
xampleYAPSA	23
xchange_colour_vector	24
xposures_barplot	25
xtract_names_from_gene_list	26
ind_affected_PIDs	27
et_extreme_PIDs	27
clust_exposures	28
LCD	29
CD_complex_cutoff	30
nakeVRangesFromDataFrame	32
nake_catalogue_strata_df	33
nake_comparison_matrix	34
nake_strata_df	35
nake_subgroups_df	36
nelt_exposures	37
nerge_exposures	37
ormalizeMotifs_otherRownames	38
ormalize_df_per_dim	38
	38 40
lotExchangeSpectra	
lot_exposures	41
lot_SMC	42
lot_strata	
epeat_df	44
un_annotate_vcf_pl	45
un_comparison_catalogues	46
un_comparison_general	47
un_kmer_frequency_correction	48
un_kmer_frequency_normalization	49
un_plot_strata_general	50
un_SMC	51
hapiro_if_possible	53
igs	54
plit_exposures_by_subgroups	55
tat_plot_subgroups	56
tat_test_SMC	57
tat_test_subgroups	58
tderrmean	59

add_annotation

sum_over_list_of_df	50
targetCapture_cor_factors	50
test_exposureAffected	51
test_gene_list_in_exposures	52
transform_rownames_R_to_MATLAB	52
translate_to_hg19	53
trellis_rainfall_plot	54
YAPSA	55

Index

add_annotation Add information to an annotation data structure

Description

Function to iteratively add information to an annotation data structure as needed for HeatmapAnnotation and especially for annotation_exposures_barplot

Usage

Arguments

	in_annotation_col	
		List, every element of which refers to one layer of annotation. List elements are structures corresponding to named colour vectors
		structures corresponding to named colour vectors
	in_annotation_c	lf
		Data frame, every column of which corresponds to a layer of annotation. It has as many rows as there are samples, every entry in a row corresponding to the attribute the samples has for the corresponding layer of annotation. The factor levels of a column of in_annotation_df correspond to the names of the corresponding element in in_annotation_col
in_attribution_vector		
		A vector which is going to be cbinded to in_annotatiin_df, carrying the an- notation information of the new layer to be added
in_colour_vector		pr
		Named vector of colours to be attributed to the new annotation
	in_name	Name of the new layer of annotation

Value

A list with entries

- $\bullet \ \texttt{annotation_col: A list as in in_annotation_col but with one additional layer of annotation}$
- annotation_df: A data frame as in in_annotation_df but with one additional layer of annotation

Examples

NULL

add_as_fist_to_list Add an element as first entry to a list

Description

Works for all types of lists and inputs

Usage

add_as_fist_to_list(in_list, in_element)

Arguments

in_list	List to which an element is to be added
in_element	Element to be added

Value

List with input element as first entry.

Examples

NULL

aggregate_exposures_by_category *Aggregate exposures by category*

Description

If a valid category (i.e. it matches to a category specified in in_sig_ind_df) is supplied, then the exposures are aggregated over this category.

Usage

```
aggregate_exposures_by_category(in_exposures_df, in_sig_ind_df, in_category)
```

Arguments

in_exposures_df		
	Input data frame of exposures.	
in_sig_ind_df	Input data frame of meta information on the signatures. Has to match the signa- tures in in_exposures_df	
in_category	Category to be aggregated over	

A list with entries:

- exposures: The exposures H, a numeric data frame with 1 rows and m columns, 1 being the number of aggregated signatures and m being the number of samples
- norm_exposures: The normalized exposures H, a numeric data frame with 1 rows and m columns, 1 being the number of aggregated signatures and m being the number of samples
- out_sig_ind_df: Data frame of the type signature_indices_df, i.e. indicating name, function and meta-information of the aggregated signatures..

See Also

LCD_complex_cutoff

Examples

NULL

annotate_intermut_dist_cohort Annotate the intermutation distance of variants cohort-wide

Description

The function annotates the intermutational distance to a cohort wide data frame by applying annotate_intermut_dist_H to every PID-specific subfraction of the cohort wide data. Note that annotate_intermut_dist_PID calls rainfallTransform. If the PID information is missing, annotate_intermut_dist_PID is called directly for the whole input.

Usage

```
annotate_intermut_dist_cohort(in_dat, in_CHROM.field = "CHROM",
    in_POS.field = "POS", in_PID.field = NULL, in_mode = "min",
    in_verbose = FALSE)
```

Arguments

in_dat	VRanges object, VRangesList, data frame or list of data frames which carries (at least) one column for the chromosome and one column for the position. Optionally, a column to specify the PID can be provided.
in_CHROM.field	String indicating which column of in_df carries the chromosome information
in_POS.field	String indicating which column of in_df carries the position information
in_PID.field	String indicating which column of in_df carries the PID information
in_mode	String passed through annotate_intermut_dist_PID to rainfallTransform indicating which method to choose for the computation of the intermutational distance.
in_verbose	Whether verbose or not.

VRanges object, VRangesList, data frame or list of data frames identical to in_df (reordered by in_PID.field), but with the intermutation distance annotated as an additional column on the right named dist.

See Also

annotate_intermut_dist_PID
rainfallTransform

Examples

```
test_df <- data.frame(CHROM=c(1,1,1,2,2,2,3,3,3,4,4,4,5,5),</pre>
                         POS=c(1,2,4,4,6,9,1,4,8,10,20,40,100,200),
                         REF=c("C", "C", "C", "T", "T", "T", "A",
"A", "A", "G", "G", "G", "N", "A",
                         ALT=c("A","G","T","A","C","G","C",
                                "G", "T", "A", "C", "T", "A", "N"),
                         PID=c(1,1,1,2,2,2,1,1,2,2,2,1,1,2))
test_df <- test_df[order(test_df$PID,test_df$CHROM,test_df$POS),]</pre>
min_dist_df <-</pre>
  annotate_intermut_dist_cohort(test_df,in_CHROM.field="CHROM",
                                    in_POS.field="POS", in_PID.field="PID",
                                    in_mode="min")
max_dist_df <-</pre>
  annotate_intermut_dist_cohort(test_df,in_CHROM.field="CHROM",
                                    in_POS.field="POS", in_PID.field="PID",
                                    in_mode="max")
min_dist_df
max_dist_df
```

annotate_intermut_dist_PID

Annotate the intermutation distance of variants per PID

Description

The function annotates the intermutational distance to a PID wide data frame by applying rainfallTransform to every chromosome-specific subfraction of the PID wide data.

Usage

Arguments

in_dat	VRanges object or data frame which carries (at least) one column for the chro- mosome and one column for the position.
in_CHROM.field	String indicating which column of in_dat carries the chromosome information if dealing with data frames.

in_POS.field	String indicating which column of in_dat carries the position information if dealing with data frames.
in_mode	String passed to rainfallTransform indicating which method to choose for the computation of the intermutational distance.
in_verbose	Whether verbose or not.

VRanges object or data frame identical to in_dat, but with the intermutation distance annotated as an additional column on the right named dist.

See Also

annotate_intermut_dist_cohort

rainfallTransform

Examples

annotation_exposures_barplot

Plot the exposures of a cohort with different layers of annotation

Description

The exposures H, determined by NMF or by LCD, are displayed as a stacked barplot by calling Heatmap. The x-axis displays the PIDs (patient identifier or sample), the y-axis the counts attributed to the different signatures with their respective colours per PID. It is analogous to plot_exposures. As many layers of information as desired can be added via an annotation data frame. The annotation data is handled in a way similar to annotation_heatmap_exposures. This function calls:

- rowAnnotation,
- HeatmapAnnotation and
- Heatmap

```
annotation_exposures_barplot(in_exposures_df, in_signatures_ind_df,
in_subgroups_df, in_annotation_df, in_annotation_col, ylab = NULL,
title = "", in_labels = FALSE, in_barplot_borders = TRUE,
in_column_anno_borders = FALSE, in_annotation_legend_side = "right")
```

Arguments

in_exposures_df		
	Numerical data frame encoding the exposures H, i.e. which signature contributes how much to which PID (patient identifier or sample).	
in_signatures_	ind_df	
	A data frame containing meta information about the signatures	
in_subgroups_d	lf	
	A data frame indicating which PID (patient or sample identifyier) belongs to which subgroup	
in_annotation_	df	
	A data frame indicating which PID (patient or sample identifyier) belongs to which subgroup for all layers of annotation	
in_annotation_	col	
	A list indicating colour attributions for all layers of annotation	
ylab	String indicating the column name in in_subgroups_df to take the subgroup information from.	
title	Title for the plot to be created.	
in_labels	Whether or not to show the names of the samples.	
in_barplot_bor	rders	
	Whether or not to show border lines in barplot	
in_column_anno	_borders	
	Whether or not to draw separating lines between the fields in the annotation	
in_annotation_legend_side		
	Where to put the legends of the annotation df, default is right.	

Details

It might be necessary to install the newest version of the development branch of the packages **circlize** and **ComplexHeatmap** by Zuguang Gu: devtools::install_github("jokergoo/circlize") and devtools::install_github("jokergoo/ComplexHeatmap")

It might be necessary to install the newest version of the development branch of the packages **circlize** and **ComplexHeatmap** by Zuguang Gu: devtools::install_github("jokergoo/circlize") and devtools::install_github("jokergoo/ComplexHeatmap")

Value

The function doesn't return any value.

See Also

HeatmapAnnotation Heatmap decorate_heatmap_body

annotation_heatmap_exposures

annotation_heatmap_exposures

plot_exposures

Examples

NULL

annotation_heatmap_exposures

Heatmap to cluster the PIDs on their signature exposures (Complex-Heatmap)

Description

The PIDs are clustered according to their signature exposures. The procedure is analogous to complex_heatmap_exposures, but enabling more than one annotation row for the PIDs. This function calls:

- rowAnnotation,
- HeatmapAnnotation and
- Heatmap

Usage

```
annotation_heatmap_exposures(in_exposures_df, in_annotation_df,
in_annotation_col, in_signatures_ind_df, in_data_type = "norm exposures",
in_method = "manhattan", in_palette = colorRamp2(c(0, 0.2, 0.4, 0.6),
c("white", "yellow", "orange", "red")), in_cutoff = 0, in_filename = NULL,
in_column_anno_borders = FALSE, in_row_anno_borders = FALSE,
in_show_PIDs = TRUE, in_annotation_legend_side = "right")
```

Arguments

-	
in_exposures_d	lf
	Numerical data frame encoding the exposures H, i.e. which signature contributes how much to which PID (patient identifier or sample).
in_annotation_	_df
	A data frame indicating which PID (patient or sample identifyier) belongs to which subgroup for all layers of annotation
in_annotation_	_col
	A list indicating colour attributions for all layers of annotation
in_signatures_	_ind_df
	A data frame containing meta information about the signatures, especially the asserted colour
in_data_type	Title in the figure
in_method	Method of the clustering to be supplied to dist. Can be either of: euclidean, maximum, manhattan, canberra, binary or minkowski
in_palette	Palette with colours or colour codes for the heatmap. Default is $colorRamp2(c(0, 0.2, 0.4, 0.6))$
in_data_type in_method	A data frame containing meta information about the signatures, especially the asserted colour Title in the figure Method of the clustering to be supplied to dist. Can be either of: euclidean,

	in_cutoff	A numeric value less than 1. Signatures from within W with an overall exposure less than in_cutoff will be discarded for the clustering.
	in_filename	A path to save the heatmap. If none is specified, the figure will be plotted to the running environment.
in_column_anno_borders		
		Whether or not to draw separating lines between the fields in the annotation
in_row_anno_borders		
		Whether or not to draw separating lines between the fields in the annotation
	in_show_PIDs	Whether or not to show the PIDs on the x-axis
	in_annotation_]	Legend_side
		Where to put the legends of the annotation df, default is right.

Details

One additional parameter, in_show_legend_bool_vector, indicating which legends to display, is planned but deactivated in this version of the package. In order to use this features, it will be necessary to install the newest version of the packages **circlize** and **ComplexHeatmap** by Zuguang Gu: devtools::install_github("jokergoo/circlize") and devtools::install_github("jokergoo/ComplexHeatmap")

attribute_nucleotide_exchanges

Value

The function doesn't return any value.

See Also

Heatmap

complex_heatmap_exposures

Examples

NULL

attribute_nucleotide_exchanges

Attribute the nucleotide exchange for an SNV

Description

SNVs are grouped into 6 different categories (12/2 as reverse complements are summed over). This function defines the attribution.

Usage

Arguments

in_dat	VRanges object or data frame which carries one column for the reference base and one column for the variant base
in_REF.field	String indicating which column of in_dat carries the reference base if dealing with data frames
in_ALT.field	String indicating which column of in_dat carries the variant base if dealing with data frames
in_verbose	Whether verbose or not.

Value

A character vector with as many rows as there are in in_dat which can be annotated (i.e. appended) to the input data frame.

Examples

```
test_df <- data.frame(
CHROM=c(1,1,1,2,2,2,3,3,3,4,4,4,5,5),
POS=c(1,2,3,4,5,6,1,2,3,4,5,6,7,8),
REF=c("C","C","C","T","T","T","A","A","A","G","G","G","G","N","A"),
ALT=c("A","G","T","A","C","G","C","G","T","A","C","T","A","N"))
test_df$change <- attribute_nucleotide_exchanges(
    test_df,in_REF.field = "REF",in_ALT.field = "ALT")
test_df
```

build_gene_list_for_pathway

```
Build a gene list for a given pathway name
```

Description

Build a gene list for a given pathway name

Usage

```
build_gene_list_for_pathway(in_string, in_organism)
```

Arguments

in_string	Name or description of the pathway
in_organism	Name of the taxon to be searched in

Value

A character vector of gene names

See Also

keggLink
keggFind
extract_names_from_gene_list

Examples

```
NULL
 ## Not run:
   species <- "hsa"</pre>
   gene_lists_meta_df <- data.frame(</pre>
     name=c("BER","NHEJ","MMR"),
     explanation=c("base excision repair",
                    "non homologous end joining",
                    "mismatch repair"))
   number_of_pathways <- dim(gene_lists_meta_df)[1]</pre>
   gene_lists_list <- list()</pre>
   for (i in seq_len(number_of_pathways)) {
     temp_list <-</pre>
       build_gene_list_for_pathway(gene_lists_meta_df$explanation[i],
                                      species)
     gene_lists_list <- c(gene_lists_list,list(temp_list))</pre>
   }
   gene_lists_list
## End(Not run)
```

compare_exposures Compares alternative exposures

Description

Compares exposures computed by two alternative approaches for the same cohort

Usage

```
compare_exposures(in_exposures1_df, in_exposures2_df, deselect_flag = TRUE)
```

Arguments

	in_exposures1_c	lf
		Numeric data frame with exposures, ideally the smaller exposure data is supplied first.
in_exposures2_df		
		Numeric data frame with exposures, ideally the bigger exposure data is supplied second.
	deselect_flag	Wehther signatures absent in both exposure data frames should be removed.

Value

A list with entries merge_df, all_cor.coeff, all_p.value, cor.coeff_vector, p.value_vector, all_cor.test, and cor.test_list.

- merge_df: Merged molten input exposure data frames
- all_cor.coeff: Pearson correlation coefficient for all data points, i.e. taken all signatures together
- all_p.value: P-value of the Pearson test for all data points, i.e. taken all signatures together

compare_sets

- cor.coeff_vector: A vector of Pearson correlation coefficients evaluated for every signature independently
- p.value_vector: A vector of p-values of the Pearson tests evaluated for every signature independently
- all_cor.test: A data structure as returned by cor.test for all data points, i.e. taken all signatures together
- cor.test_list: A list of data structures as returned by cor.test, but evaluated for every signature independently

Examples

NULL

compare_sets Compare two sets of signatures by cosine distance

Description

Compare two sets of signatures, stored in numerical data frames W1 and W2, by computing the column-wise cosine distance

Usage

compare_sets(in_df_small, in_df_big)

Arguments

in_df_small, in_df_big

Numerical data frames W1 and W2, ideally the bigger one first, both with n rows and 11 and 12 columns, n being the number of features and 11 and 12 being the respective numbers of signatures of W1 and W2

Value

A list with entries distance, hierarchy_small and hierarchy_big.

- distance: A numerical data frame with the cosine distances between the columns of W1, indexing the rows, and W2, indexing the columns
- hierarchy_small: A data frame carrying the information of ranked similarity between the signatures in W2 with the signatures in W1
- hierarchy_big: A data frame carrying the information of ranked similarity between the signatures in W1 with the signatures in W2

See Also

cosineDist

Examples

```
sig_1_df <- data.frame(matrix(c(1,0,0,0,0,1,0,0,0,0,1,0),ncol=3))
names(sig_1_df) <- paste0("B",seq_len(dim(sig_1_df)[2]))
sig_2_df <- data.frame(matrix(c(1,1,0,0,0,0,1,1),ncol=2))
compare_sets(sig_1_df,sig_2_df)</pre>
```

compare_SMCs

Compare all strata from different stratifications

Description

Compare all strata from different orthogonal stratification axes, i.e. othogonal SMCs by cosine similarity of signature exposures. First calls

- make_strata_df, then
- plot_strata and finally
- make_comparison_matrix

Usage

```
compare_SMCs(in_stratification_lists_list, in_signatures_ind_df, output_path,
    in_nrect = 5, in_attribute = "")
```

.

Arguments

in_stratification_lists_list	

	List of lists with entries from different (orthogonal) stratification axes or SMCs	
in_signatures_ind_df		
	A data frame containing meta information about the signatures	
output_path	Path to directory where the results, especially the figure produced by corrplot is going to be stored.	
in_nrect	Number of clusters in the clustering procedure provided by corrplot	
in_attribute	Additional string for the file name where the figure produced by corrplot is going to be stored.	

. .

.

~ . . ~

Value

The comparison matrix of cosine similarities.

See Also

plot_strata
make_comparison_matrix

Examples

NULL

compare_to_catalogues Compare one mutational catalogue to reference mutational catalogues

Description

Compare one mutational catalogue (e.g. of one index patient) to a list of reference mutational catalogues (e.g. from the initial Alexandrov puplication) by cosine similarities

Usage

```
compare_to_catalogues(in_index_df, in_comparison_list)
```

Arguments

in_index_df Data frame containing the mutational catalogue of interest
in_comparison_list
List of data frames (ideally named) containing the reference mutational catalogues

Value

A similarity dataframe

Examples

NULL

```
complex_heatmap_exposures
```

Heatmap to cluster the PIDs on their signature exposures (Complex-Heatmap)

Description

The PIDs are clustered according to their signature exposures. uses package **ComplexHeatmap** by Zuguang Gu. This function calls:

- rowAnnotation,
- HeatmapAnnotation and
- Heatmap

Usage

```
complex_heatmap_exposures(in_exposures_df, in_subgroups_df,
in_signatures_ind_df, in_data_type = "norm exposures",
in_method = "manhattan", in_subgroup_column = "subgroup",
in_subgroup_colour_column = NULL, in_palette = colorRamp2(c(0, 0.2, 0.4,
0.6), c("white", "yellow", "orange", "red")), in_cutoff = 0,
in_filename = NULL, in_column_anno_borders = FALSE,
in_row_anno_borders = FALSE)
```

Arguments

in_exposures_df	
	Numerical data frame encoding the exposures H, i.e. which signature contributes how much to which PID (patient identifier or sample).
in_subgroups_df	
	A data frame indicating which PID (patient or sample identifyier) belongs to which subgroup
in_signatures_i	nd_df
	A data frame containing meta information about the signatures, especially the asserted colour
in_data_type	Title in the figure
in_method	Method of the clustering to be supplied to dist. Can be either of: euclidean, maximum, manhattan, canberra, binary or minkowski
in_subgroup_col	umn
	Indicates the name of the column in which the subgroup information is encoded in in_subgroups_df
in_subgroup_col	our_column
	Indicates the name of the column in which the colour information for subgroups is encoded in in_subgroups_df. If NULL, a rainbow palette is used instead.
in_palette	Palette with colours for the heatmap. Default is colorRamp2(c(0, 0.2, 0.4, 0.6), c('white', 'y
in_cutoff	A numeric value less than 1. Signatures from within W with an overall exposure less than in_cutoff will be discarded for the clustering.
in_filename	A path to save the heatmap. If none is specified, the figure will be plotted to the running environment.
in_column_anno_	borders
	Whether or not to draw separating lines between the fields in the annotation
in_row_anno_bor	
	Whether or not to draw separating lines between the fields in the annotation

Details

It might be necessary to install the newest version of the development branch of the packages **circlize** and **ComplexHeatmap** by Zuguang Gu: devtools::install_github("jokergoo/circlize") and devtools::install_github("jokergoo/ComplexHeatmap")

Value

The function doesn't return any value.

See Also

Heatmap

Examples

```
data(lymphoma_cohort_LCD_results)
complex_heatmap_exposures(
   rel_lymphoma_Nature2013_COSMIC_cutoff_exposures_df,
   COSMIC_subgroups_df,
   chosen_signatures_indices_df,
   in_data_type="norm exposures",
```

```
in_subgroup_colour_column="col",
in_method="manhattan",
in_subgroup_column="subgroup")
```

compute_comparison_stat_df

Extract statistical measures for entity comparison

Description

Compare one mutational catalogue (e.g. of one index patient) to a list of reference mutational catalogues (e.g. from the initial Alexandrov puplication) by cosine similarities

Usage

```
compute_comparison_stat_df(in_sim_df)
```

Arguments

in_sim_df A similarity data frame as extracted by compare_to_catalogues

Value

A dataframe containing statistical measures, prepared for bar plot

Examples

NULL

cosineDist

Compute the cosine distance of two vectors

Description

Compute the cosine distance of two vectors

Usage

```
cosineDist(a, b)
```

Arguments

a, b Numerical vectors of same length

Value

The scalar product of the two input vectors divided by the product of the norms of the two input vectors

Examples

```
## 1. Orthogonal vectors:
cosineDist(c(1,0),c(0,1))
## 2. Non-orthogonal vectors:
cosineDist(c(1,0),c(1,1))
## Compare trigonometry:
1-cos(pi/4)
```

create_mutation_catalogue_from_df

Create a Mutational Catalogue from a data frame

Description

This function creates a mutational catalogue from a data frame. It is a wrapper function for create_mutation_catalogue_from_VR: it first creates a VRanges object from the data frame by makeVRangesFromDataFrame and then passes this object on to the above mentioned custom function.

Usage

```
create_mutation_catalogue_from_df(this_df, this_refGenome_Seqinfo = NULL,
    this_seqnames.field = "X.CHROM", this_start.field = "POS",
    this_end.field = "POS", this_PID.field = "PID",
    this_subgroup.field = "subgroup", this_refGenome, this_wordLength,
    this_verbose = 1, this_rownames = c(), this_adapt_rownames = 1)
```

Arguments

this_df	A data frame constructed from a vcf-like file of a whole cohort. The first columns are those of a standard vcf file, followed by an arbitrary number of custom or used defined columns. One of these can carry a PID (patient or sample identifyier) and one can carry subgroup information.
this_refGenome_	Seqinfo
	A seqInfo object, referring to the reference genome used. Argument passed on to makeGRangesFromDataFrame and thus indirectly to makeGRangesFromDataFrame.
this_seqnames.f	Tield
	Indicates the name of the column in which the chromosome is encoded
this_start.fiel	d
	Indicates the name of the column in which the start coordinate is encoded
this_end.field	Indicates the name of the column in which the end coordinate is encoded
this_PID.field	Indicates the name of the column in which the PID (patient or sample identifier) is encoded
this_subgroup.f	ield
	Indicates the name of the column in which the subgroup information is encoded
this_refGenome	The reference genome handed over to create_mutation_catalogue_from_VR and indirectly to mutationContext and used to extract the motif context of the variants in in_vr.

this_wordLength	
	The size of the motifs to be extracted by mutationContext
this_verbose	Verbose if this_verbose=1
this_rownames	Optional parameter to specify rownames of the mutational catalogue V i.e. the names of the features.
this_adapt_rownames	
	Rownames of the output matrix will be adapted if this_adapt_rownames=1

A list with entries matrix and frame obtained from create_mutation_catalogue_from_VR:

- matrix: The mutational catalogue V
- frame: Additional and meta information on rownames (features), colnames (PIDs) and subgroup attribution.

See Also

makeVRangesFromDataFrame
create_mutation_catalogue_from_VR

Examples

```
library(BSgenome.Hsapiens.UCSC.hg19)
data(lymphoma_test)
word_length <- 3
temp_list <- create_mutation_catalogue_from_df(
    lymphoma_test_df,this_seqnames.field = "CHROM",
    this_start.field = "POS",this_end.field = "POS",
    this_PID.field = "PID",this_subgroup.field = "SUBGROUP",
    this_refGenome = BSgenome.Hsapiens.UCSC.hg19,
    this_wordLength = word_length)
    dim(temp_list$matrix)
    head(temp_list$matrix)</pre>
```

create_mutation_catalogue_from_VR

Create a Mutational Catalogue from a VRanges Object

Description

This function creates a mutational catalogue from a VRanges Object by first calling mutationContext to establish the motif context of the variants in the input VRanges and then calling motifMatrix to build the mutational catalogue V.

Usage

```
create_mutation_catalogue_from_VR(in_vr, in_refGenome, in_wordLength,
    in_PID.field = "PID", in_verbose = 0, in_rownames = c(),
    adapt_rownames = 1)
```

Arguments

in_vr	A VRanges object constructed from a vcf-like file of a whole cohort. The first columns are those of a standard vcf file, followed by an arbitrary number of custom or used defined columns. One of these can carry a PID (patient or sample identifyier) and one can carry subgroup information.
in_refGenome	The reference genome handed over to mutationContext and used to extract the motif context of the variants in in_vr.
in_wordLength	The size of the motifs to be extracted by mutationContext
in_PID.field	Indicates the name of the column in which the PID (patient or sample identifier) is encoded
in_verbose	Verbose if in_verbose=1
in_rownames	Optional parameter to specify rownames of the mutational catalogue V i.e. the names of the features.
adapt_rownames	Rownames of the output matrix will be adapted if adapt_rownames=1

Value

A list with entries matrix, frame,

- matrix: The mutational catalogue V
- frame: Additional and meta information on rownames (features), colnames (PIDs) and subgroup attribution.

See Also

mutationContext

motifMatrix

Examples

```
library(BSgenome.Hsapiens.UCSC.hg19)
data(lymphoma_test)
data(sigs)
word_length <- 3
temp_vr <- makeVRangesFromDataFrame(</pre>
  lymphoma_test_df,in_seqnames.field="CHROM",
  in_subgroup.field="SUBGROUP",verbose_flag=1)
temp_list <- create_mutation_catalogue_from_VR(</pre>
  temp_vr,in_refGenome=BSgenome.Hsapiens.UCSC.hg19,
  in_wordLength=word_length, in_PID.field="PID",
  in_verbose=1)
dim(temp_list$matrix)
head(temp_list$matrix)
test_list <- split(lymphoma_test_df,f=lymphoma_test_df$PID)</pre>
other_list <- list()</pre>
for(i in seq_len(length(test_list))){
  other_list[[i]] <- test_list[[i]][c(1:80),]</pre>
}
other_df <- do.call(rbind,other_list)</pre>
other_vr <- makeVRangesFromDataFrame(</pre>
  other_df,in_seqnames.field="CHROM",
  in_subgroup.field="SUBGROUP",verbose_flag=1)
```

cutoffs

```
other_list <- create_mutation_catalogue_from_VR(
    other_vr,in_refGenome=BSgenome.Hsapiens.UCSC.hg19,
    in_wordLength=word_length,in_PID.field="PID",
    in_verbose=1,in_rownames=rownames(AlexCosmicValid_sig_df))
dim(other_list$matrix)
head(other_list$matrix)</pre>
```

cutoffs

Cutoffs for a supervised analysis of mutational signatures.

Description

Series of data frames with signature-specific cutoffs. All values represent optimal cutoffs. The optimal cutoffs were determined for different choices of parameters in the cost function of the optimization. The row index is equivalent to the ratio between costs for false negative attribution and false positive attribution. The columns correspond to the different signatures. To be used with LCD_complex_cutoff.

cutoffCosmicValid_rel_df: Optimal cutoffs for AlexCosmicValid_sig_df, i.e. COSMIC signatures, only validated, trained on relative exposures.

cutoffCosmicArtif_rel_df: Optimal cutoffs for AlexCosmicArtif_sig_df, i.e. COSMIC signatures, including artifact signatures, trained on relative exposures.

cutoffCosmicValid_abs_df: Optimal cutoffs for AlexCosmicValid_sig_df, i.e. COSMIC signatures, only validated, trained on absolute exposures.

cutoffCosmicArtif_abs_df: Optimal cutoffs for AlexCosmicArtif_sig_df, i.e. COSMIC signatures, including artifact signatures, trained on absolute exposures.

cutoffInitialValid_rel_df: Optimal cutoffs for AlexInitialValid_sig_df, i.e. initially published signatures, only validated signatures, trained on relative exposures.

cutoffInitialArtif_rel_df: Optimal cutoffs for AlexInitialArtif_sig_df, i.e. initially published signatures, including artifact signatures, trained on relative exposures.

cutoffInitialValid_abs_df: Optimal cutoffs for AlexInitialValid_sig_df, i.e. initially published signatures, only validated signatures, trained on absolute exposures.

cutoffInitialArtif_abs_df: Optimal cutoffs for AlexInitialArtif_sig_df, i.e. initially published signatures, including artifact signatures, trained on absolute exposures.

Usage

```
data(cutoffs)
```

Author(s)

Daniel Huebschmann <huebschmann.daniel@googlemail.com>

cut_breaks_as_intervals

Wrapper for cut

Description

In this wrapper function for the known **cut** function, the breaks vector need not be supplied directly, instead, for every break, an interval is supplied and the function optimizes the choice of the breakpoint by chosing a local minimum of the distribution.

Usage

```
cut_breaks_as_intervals(in_vector, in_outlier_cutoffs = c(0, 3000),
    in_cutoff_ranges_list = list(c(60, 69), c(25, 32)), in_labels = c("late",
    "intermediate", "early"), in_name = "", output_path = NULL)
```

Arguments

in_vector	Vector of numerical continuously distributed input		
in_outlier_cuto	in_outlier_cutoffs		
	Interval specifyinf the upper and lower bounds of the range to be considered		
in_cutoff_range	es_list		
	List if intervals in which the cutoffs for cut have to be optimized.		
in_labels	Labels assigned to the strata or factors returned		
in_name	String specifying the name of the quantity analyzed (and plotted on the x-axis of the figure to be created).		
output_path	Path where the figure produced by the density function should be stored if non-NULL.		

Value

A list with entries category_vector, and density_plot and cutoffs

- category_vector: Factor vector of the categories or strata, of the same length as in_vector
- density_plot: Density plot produced by the density function and indication of the chosen cutoffs.
- cutoffs: Vector of the computed optimal cutoffs

See Also

cut

density

example YAPSA

Examples

```
data(lymphoma_test)
lymphoma_test_df$random_norm <- rnorm(dim(lymphoma_test_df)[1])
temp_list <- cut_breaks_as_intervals(
    lymphoma_test_df$random_norm,
    in_outlier_cutoffs=c(-4,4),
    in_cutoff_ranges_list=list(c(-2.5,-1.5),c(0.5,1.5)),
    in_labels=c("small","intermediate","big"))
temp_list$density_plot</pre>
```

exampleYAPSA Test and example data

Description

Data structures used in examples, tests and the vignette of the YAPSA package.

lymphoma_PID_df: A data frame carrying subgroup information for a subcohort of samples used in the vignette. Data in the vignette is downloaded from ftp://ftp.sanger.ac.uk/pub/cancer/ AlexandrovEtAl/somatic_mutation_data/LymphomaB-cell/LymphomaB-cell_clean_somatic_ mutations_for_signature_analysis.txt. In the file available under that link somatic point mutation calls from several samples are listed in a vcf-like format. One column encodes the sample the variant was found in. In the vignette we want to restrict the analysis to only a fraction of these involved samples. The data frame lymphoma_PID_df carries the sample identifiers (PID) as rownames and the attributed subgroup in a column called subgroup.

lymphoma_test_df: A data frame carrying point mutation calls. It represents a subset of the data stored in ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/somatic_mutation_data/ LymphomaB-cell/LymphomaB-cell_clean_somatic_mutations_for_signature_analysis.txt. In the file available under that link somatic point mutation calls from several samples are listed in a vcf-like format. One column encodes the sample the variant was found in. The data frame lymphoma_test_df has only the variants occuring in the sample identifiers (PIDs) 4112512, 4194218 and 4121361.

lymphoma_Nature2013_raw_df: A data frame carrying point mutation calls. It represents a subset of the data stored in ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/somatic_mutation_ data/LymphomaB-cell/LymphomaB-cell_clean_somatic_mutations_for_signature_analysis. txt. In the file available under that link somatic point mutation calls from several samples are listed in a vcf-like format. One column encodes the sample the variant was found in.

lymphoma_Nature2013_COSMIC_cutoff_exposures_df: Data frame with exposures for testing the plot functions. Data taken from ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/ somatic_mutation_data/LymphomaB-cell/LymphomaB-cell_clean_somatic_mutations_for_ signature_analysis.txt.

rel_lymphoma_Nature2013_COSMIC_cutoff_exposures_df: Data frame with normalized or relative exposures for testing the plot functions. Data taken from ftp://ftp.sanger.ac.uk/pub/ cancer/AlexandrovEtAl/somatic_mutation_data/LymphomaB-cell/LymphomaB-cell_clean_ somatic_mutations_for_signature_analysis.txt.

COSMIC_subgroups_df: Subgroup information for the data stored in lymphoma_Nature2013_COSMIC_cutoff_exposur and rel_lymphoma_Nature2013_COSMIC_cutoff_exposures_df.

chosen_AlexInitialArtif_sigInd_df: Signature information for the data stored in lymphoma_Nature2013_COSMIC_v and rel_lymphoma_Nature2013_COSMIC_cutoff_exposures_df.

exchange_colour_vector

chosen_signatures_indices_df: Signature information for the data stored in lymphoma_Nature2013_COSMIC_cutof and rel_lymphoma_Nature2013_COSMIC_cutoff_exposures_df.

Usage

```
data(lymphoma_PID)
```

data(lymphoma_test)

data(lymphoma_Nature2013_raw)

data(lymphoma_cohort_LCD_results)

data(lymphoma_cohort_LCD_results)

data(lymphoma_cohort_LCD_results)

data(lymphoma_cohort_LCD_results)

data(lymphoma_cohort_LCD_results)

Author(s)

Daniel Huebschmann <huebschmann.daniel@googlemail.com>

References

http://www.ncbi.nlm.nih.gov/pubmed/23945592

Examples

```
data(lymphoma_test)
head(lymphoma_test_df)
dim(lymphoma_test_df)
table(lymphoma_test_df$PID)
```

```
data(lymphoma_Nature2013_raw)
head(lymphoma_Nature2013_raw_df)
dim(lymphoma_Nature2013_raw_df)
```

exchange_colour_vector

Colours codes for displaying SNVs

Description

Vector attributing colours to nucleotide exchanges used when displaying SNV information, e.g. in a rainfall plot.

Usage

```
data(exchange_colour_vector)
```

exposures_barplot

Value

A named character vector

Author(s)

Daniel Huebschmann <huebschmann.daniel@googlemail.com>

exposures_barplot Wrapper for enhanced_barplot

Description

Wrapper for enhanced_barplot

Usage

```
exposures_barplot(in_exposures_df, in_signatures_ind_df = NULL,
in_subgroups_df = NULL, in_sum_ind = NULL,
in_subgroups.field = "subgroup", in_title = "", in_labels = TRUE,
in_show_subgroups = TRUE, ylab = NULL, in_barplot_borders = TRUE,
in_column_anno_borders = FALSE)
```

Arguments

```
in_exposures_df
                  Numerical data frame encoding the exposures H, i.e. which signature contributes
                  how much to which PID (patient identifier or sample).
in_signatures_ind_df
                  A data frame containing meta information about the signatures. If NULL, the
                  colour information for the signatures is taken from a rainbow palette.
in_subgroups_df
                  A data frame indicating which PID (patient or sample identifyier) belongs to
                  which subgroup. If NULL, it is assumed that all PIDs belong to one common
                  subgroup. The colour coding for the default subgroup is red.
in_sum_ind
                  Index vector influencing the order in which the PIDs are going to be displayed
in_subgroups.field
                  String indicating the column name in in_subgroups_df to take the subgroup
                  information from.
in_title
                  Title for the plot to be created.
in_labels
                  Flag, if TRUE the PIDs are displayed on the x-axis
in_show_subgroups
                  Flag, if TRUE then PIDs are grouped by subgroups
                  Label of the y-axis on the plot to be generate
ylab
in_barplot_borders
                  Whether or not to show border lines in barplot
in_column_anno_borders
                  Whether or not to draw separating lines between the fields in the annotation
```

The generated barplot - a ggplot2 plot

Examples

Description

Return gene names from gene lists

Usage

```
extract_names_from_gene_list(in_KEGG_gene_list, 1)
```

Arguments

in_KEGG_gene_1	ist
	Gene list to extract names from
1	Index of the gene to be extracted

Value

The gene name.

See Also

keggGet

build_gene_list_for_pathway

Examples

NULL

find_affected_PIDs Find samples affected

Description

Find samples affected by SNVs in a certain pathway

Usage

```
find_affected_PIDs(in_gene_list, in_gene_vector, in_PID_vector)
```

Arguments

in_gene_list	List of genes in the pathway of interest.
in_gene_vector	Character vector for genes annotated to SNVs as in vcf_like_df.
in_PID_vector	Character vector for sample names annotated to SNVs as in vcf_like_df.

Value

A character vector of the names of the affected samples

Examples

NULL

<pre>get_extreme_PIDs</pre>	Return those PIDs which have an extreme pattern for signature expo-
	sure

Description

For all signatures found in a project, this function returns the sample identifiers (PIDs) with extremely high or extremely low exposures of the respective signatures.

Usage

```
get_extreme_PIDs(in_exposures_df, in_quantile = 0.03)
```

Arguments

in_exposures_d	f
	Data frame with the signature exposures
in_quantile	Quantile for the amount of extreme PIDs to be selected.

Value

A data frame with 4 rows per signature (high PIDs, high exposures, low PIDs, low exposures); the number of columns depends on the quantile chosen.

Examples

```
data(lymphoma_cohort_LCD_results)
get_extreme_PIDs(lymphoma_Nature2013_COSMIC_cutoff_exposures_df,0.05)
```

hclust_exposures Cluster the PIDs according to their signature exposures

Description

The PIDs are clustered according to their signature exposures by calling first creating a distance matrix:

- dist, then
- hclust and then
- labels_colors to colour the labels (the text) of the leaves in the dendrogram.

Typically one colour per subgroup.

Usage

```
hclust_exposures(in_exposures_df, in_subgroups_df, in_method = "manhattan",
in_subgroup_column = "subgroup", in_palette = NULL, in_cutoff = 0,
in_filename = NULL, in_shift_factor = 0.3, in_cex = 0.2,
in_title = "", in_plot_flag = FALSE)
```

Arguments

```
in_exposures_df
                  Numerical data frame encoding the exposures H, i.e. which signature contributes
                  how much to which PID (patient identifier or sample).
in_subgroups_df
                  A data frame indicating which PID (patient or sample identifyier) belongs to
                  which subgroup
in method
                  Method of the clustering to be supplied to dist. Can be either of: euclidean,
                  maximum, manhattan, canberra, binary or minkowski
in_subgroup_column
                  Indicates the name of the column in which the subgroup information is encoded
                  in in_subgroups_df
in_palette
                  Palette with colours or colour codes for the labels (the text) of the leaves in the
                  dendrogram. Typically one colour per subgroup. If none is specified, a rainbow
                  palette of the length of the number of subgroups will be used as default.
in_cutoff
                  A numeric value less than 1. Signatures from within W with an overall exposure
                  less than in_cutoff will be discarded for the clustering.
in_filename
                  A path to save the dendrogram. If none is specified, the figure will be plotted to
                  the running environment.
in_shift_factor
                  Graphical parameter to adjust figure to be created
in cex
                  Graphical parameter to adjust figure to be created
in_title
                  Title in the figure to be created under in_filename
                  Whether or not to display the dendrogram
in_plot_flag
```

LCD

Value

A list with entries hclust and dendrogram.

- hclust: The object created by hclust
- dendrogram: The above object wrapped in as.dendrogram

See Also

```
hclust
dist
labels_colors
```

Examples

LCD

Linear Combination Decomposition

Description

LCD performs a mutational signatures decomposition of a given mutational catalogue V with known signatures W by solving the minimization problem min(||W * H - V||) with additional constraints of non-negativity on H where W and V are known

Usage

```
LCD(in_mutation_catalogue_df, in_signatures_df, in_per_sample_cutoff = 0)
```

Arguments

```
in_mutation_catalogue_df
```

A numeric data frame V with n rows and m columns, n being the number of features and m being the number of samples

in_signatures_df

A numeric data frame W with n rows and 1 columns, n being the number of features and 1 being the number of signatures

in_per_sample_cutoff

A numeric value less than 1. Signatures from within W with an exposure per sample less than in_cutoff will be discarded.

Value

The exposures H, a numeric data frame with 1 rows and m columns, 1 being the number of signatures and m being the number of samples

See Also

lsei

Examples

```
## define raw data
W_prim <- matrix(c(1,2,3,4,5,6),ncol=2)</pre>
W_prim_df <- as.data.frame(W_prim)</pre>
W_df <- YAPSA:::normalize_df_per_dim(W_prim_df,2) # corresponds to the sigs</pre>
W <- as.matrix(W_df)</pre>
## 1. Simple case: non-negativity already in raw data
H <- matrix(c(2,5,3,6,1,9,1,2),ncol=4)
H_df <- as.data.frame(H) # corresponds to the exposures
V <- W %*% H # matrix multiplication
V_df <- as.data.frame(V) # corresponds to the mutational catalogue
exposures_df <- YAPSA:::LCD(V_df,W_df)</pre>
## 2. more complicated: raw data already contains negative elements
## define indices where sign is going to be swapped
sign_ind <- c(5,7)
## now compute the indices of the other fields in the columns affected
## by the sign change
row_ind <- sign_ind %% dim(H)[1]</pre>
temp_ind <- 2*row_ind -1</pre>
other_ind <- sign_ind + temp_ind</pre>
## alter the matrix H to yield a new mutational catalogue
H_compl <- H
H_compl[sign_ind] <- (-1)*H[sign_ind]</pre>
H_compl_df <- as.data.frame(H_compl) # corresponds to the exposures
V_compl <- W %*% H_compl # matrix multiplication</pre>
V_compl_df <- as.data.frame(V_compl) # corresponds to the mutational catalog
exposures_df <- YAPSA:::LCD(V_compl_df,W_df)</pre>
exposures <- as.matrix(exposures_df)</pre>
```

LCD_complex_cutoff LCD with a signature-specific cutoff on exposures

Description

LCD_cutoff performs a mutational signatures decomposition by Linear Combination Decomposition (LCD) of a given mutational catalogue V with known signatures W by solving the minimization problem min(||W * H - V||) with additional constraints of non-negativity on H where W and V are known, but excludes signatures with an overall contribution less than a given signature-specific cutoff (and thereby accounting for a background model) over the whole cohort.

LCD_complex_cutoff_perPID is a wrapper for LCD_complex_cutoff and runs individually for every PID.

Usage

```
LCD_complex_cutoff(in_mutation_catalogue_df, in_signatures_df,
    in_cutoff_vector = NULL, in_filename = NULL, in_method = "abs",
    in_per_sample_cutoff = 0, in_rescale = TRUE, in_sig_ind_df = NULL,
    in_cat_list = NULL)
```

```
LCD_complex_cutoff_perPID(in_mutation_catalogue_df, in_signatures_df,
in_cutoff_vector = NULL, in_filename = NULL, in_method = "abs",
in_rescale = TRUE, in_sig_ind_df = NULL, in_cat_list = NULL)
```

Arguments

in_mutation_catalogue_df	
	A numeric data frame V with n rows and m columns, n being the number of features and m being the number of samples
in_signatures_df	
	A numeric data frame W with n rows and 1 columns, n being the number of features and 1 being the number of signatures
in_cutoff_vector	
	A numeric vector of values less than 1. Signatures from within W with an overall exposure less than the respective value in in_cutoff_vector will be discarded.
in_filename	A path to generate a histogram of the signature exposures if non-NULL
in_method	Indicate to which data the cutoff shall be applied: absolute exposures, relative exposures
in_per_sample_cutoff	
	A numeric value less than 1. Signatures from within W with an exposure per sample less than in_cutoff will be discarded.
in_rescale	Boolean, if TRUE (default) the exposures are rescaled such that colSums over exposures match colSums over mutational catalogue
in_sig_ind_df	Data frame of type signature_indices_df, i.e. indicating name, function and meta-information of the signatures. Default is NULL.
in_cat_list	List of categories for aggregation. Have to be among the column names of in_sig_ind_df. Default is NULL.

Value

A list with entries:

- exposures: The exposures H, a numeric data frame with 1 rows and m columns, 1 being the number of signatures and m being the number of samples
- norm_exposures: The normalized exposures H, a numeric data frame with 1 rows and m columns, 1 being the number of signatures and m being the number of samples
- signatures: The reduced signatures that have exposures bigger than in_cutoff
- choice: Index vector of the reduced signatures in the input signatures
- order: Order vector of the signatures by exposure
- residual_catalogue: Numerical data frame (matrix) of the difference between fit (product of signatures and exposures) and input mutational catalogue
- rss: Residual sum of squares (i.e. sum of squares of the residual catalogue)
- cosDist_fit_orig_per_matrix: Cosine distance between the fit (product of signatures and exposures) and input mutational catalogue computed after putting the matrix into vector format (i.e. one scaler product for the whole matrix)
- cosDist_fit_orig_per_col: Cosine distance between the fit (product of signatures and exposures) and input mutational catalogue computed per column (i.e. per sample, i.e. as many scaler products as there are samples in the cohort)

- sum_ind: Decreasing order of mutational loads based on the input mutational catalogue
- out_sig_ind: Data frame of the type signature_indices_df, i.e. indicating name, function and meta-information of the signatures. Default is NULL, non-NULL only if in_sig_ind_df is non-NULL.
- aggregate_exposures_list: List of exposure data frames aggregated over different categories. Default is NULL, non-NULL only if in_sig_ind_df and in_cat_list are non-NULL and if the categories specified in in_cat_list are among the column names of in_sig_ind_df.

See Also

```
LCD
aggregate_exposures_by_category
lsei
```

Examples

NULL

makeVRangesFromDataFrame

Construct a VRanges Object from a data frame

Description

In this package, big data frames are generated from cohort wide vcf-like files. This function constructs a VRanges object from such a data frame by using makeGRangesFromDataFrame from the package GenomicRanges

Usage

```
makeVRangesFromDataFrame(in_df, in_keep.extra.columns = TRUE,
    in_seqinfo = NULL, in_seqnames.field = "X.CHROM",
    in_start.field = "POS", in_end.field = "POS", in_PID.field = "PID",
    in_subgroup.field = "subgroup", in_strand.field = "strand",
    verbose_flag = 1)
```

Arguments

in_df	A big dataframe constructed from a vcf-like file of a whole cohort. The first columns are those of a standard vcf file, followed by an arbitrary number of custom or user defined columns. One of these can carry a PID (patient or sample identifyier) and one can carry subgroup information.
in_keep.extra.columns	
	in_seqinfo Argument passed on to makeGRangesFromDataFrame
in_seqinfo	A seqInfo object, referring to the reference genome used. Argument passed on to makeGRangesFromDataFrame
in_seqnames.field	
	Indicates the name of the column in which the chromosome is encoded

in_start.field	Indicates the name of the column in which the start coordinate is encoded
in_end.field	Indicates the name of the column in which the end coordinate is encoded
in_PID.field	Indicates the name of the column in which the PID (patient or sample identifier) is encoded
in_subgroup.field	
	Indicates the name of the column in which the subgroup information is encoded
in_strand.field	
	Indicates the name of the column in which the strandedness is encoded
verbose_flag	Verbose if 1

The constructed VRanges object

See Also

makeGRangesFromDataFrame

Examples

make_catalogue_strata_df

Group strata from different stratification axes

Description

For a comparison of the strata from different orthogonal stratification axes, i.e. othogonal SMCs, the strata have to be grouped and reformatted. This function does this task for the comparison by cosine similarity of mutational catalogues. Output of this function is the basis for applying make_comparison_matrix. It is called by the wrapper function run_comparison_catalogues.

Usage

Arguments

```
in_stratification_lists_list
   List of lists with entries from different (orthogonal) stratification axes or SMCs
in_additional_stratum
```

Include an additionally supplied stratum in comparison in non-NULL.

A list with entries strata_df, number_of_SMCs, number_of_strata.

- strata_df: Pasted numerical data frame of all strata (these are going to be compared e.g. by make_comparison_matrix).
- number_of_SMCs: Number of orthogonal stratifications in in_stratification_lists_list and additional ones.
- number_of_strata: Cumulative number of strata (sum over the numbers of strata of the different stratifications in in_stratification_lists_list) and additional ones.

See Also

plot_strata
make_comparison_matrix
run_comparison_catalogues

Examples

NULL

make_comparison_matrix

Compute a similarity matrix for different strata

Description

Compute and plot a similarity matrix for different strata from different stratification axes together. First, compare_sets is called on in_strata_df with itself, yielding a distance matrix (a numerical data frame) dist_df of the strata. The corresponding similarity matrix 1-dif_df is then passed to corrplot.

Usage

Arguments

in_strata_df	Numerical data frame of all strata to be compared.
output_path	Path to directory where the results, especially the figure produced by corrplot is going to be stored.
in_nrect	Number of clusters in the clustering procedure provided by corrplot
in_attribute	Additional string for the file name where the figure produced by corrplot is going to be stored.
in_palette	Colour palette for the matrix

Value

The comparison matrix of cosine similarities.

make_strata_df

See Also

compare_SMCs

Examples

```
data(sigs)
make_comparison_matrix(
   AlexCosmicValid_sig_df,in_nrect=9,
   in_palette=colorRampPalette(c("blue","green","red"))(n=100))
```

make_strata_df

Group strata from different stratification axes

Description

For a comparison of the strata from different orthogonal stratification axes, i.e. othogonal SMCs, the strata have to be grouped and reformatted. This function does this task for the comparison by cosine similarity of signature exposures. Output of this function is the basis for applying plot_strata and make_comparison_matrix. It is called by the wrapper functions compare_SMCs, run_plot_strata_general or run_comparison_general.

Usage

```
make_strata_df(in_stratification_lists_list, in_remove_signature_ind = NULL,
    in_additional_stratum = NULL)
```

Arguments

```
in_stratification_lists_list
```

List of lists with entries from different (orthogonal) stratification axes or SMCs

in_remove_signature_ind

Omit one of the signatures in in_signatures_ind_df for the comparison if non-NULL. The parameter specifies the index of the signature to be removed.

in_additional_stratum

Include an additionally supplied stratum in comparison in non-NULL.

Value

A list with entries strata_df, number_of_SMCs, number_of_strata.

- strata_df: Pasted numerical data frame of all strata (these are going to be compared e.g. by make_comparison_matrix).
- number_of_SMCs: Number of orthogonal stratifications in in_stratification_lists_list and additional ones.
- number_of_strata: Cumulative number of strata (sum over the numbers of strata of the different stratifications in in_stratification_lists_list) and additional ones.

See Also

```
plot_strata
make_comparison_matrix
compare_SMCs
run_plot_strata_general
run_comparison_general
```

Examples

NULL

make_subgroups_df *Make a custom data structure for subgroups*

Description

Creates a data frame carrying the subgroup information and the order in which the PIDs have to be displayed. Calls aggregate on in_vcf_like_df.

Usage

```
make_subgroups_df(in_vcf_like_df, in_exposures_df = NULL, in_palette = NULL,
in_subgroup.field = "SUBGROUP", in_PID.field = "PID",
in_verbose = FALSE)
```

Arguments

in_vcf_like_df	vcf-like data frame with point mutation calls
in_exposures_df	
	Data frame with the signature exposures
in_palette	Palette for colour attribution to the subgroups if nun-NULL
in_subgroup.field	
	String indicating which column of in_vcf_like_df carries the subgroup infor- mation
in_PID.field	String indicating which column of in_vcf_like_df and of in_exposures_df carries the PID information
in_verbose	Whether verbose or not.

Value

subgroups_df: A data frame carrying the subgroup and rank information.

See Also

aggregate
melt_exposures

Examples

melt_exposures

Generically melts exposure data frames

Description

Melt an exposure data frame with signatures as ID variables.

Usage

melt_exposures(in_df)

Arguments

in_df Numeric data frame with exposures.

Value

A data frame with the molten exposures.

Examples

NULL

merge_exposures Merge exposure data frames

Description

Merges with the special feature of preserving the signatures and signature order.

Usage

```
merge_exposures(in_exposures_list, in_signatures_df)
```

Arguments

```
in_exposures_list
List of data frames (carrying information on exposures).
in_signatures_df
```

Data frame W in which the columns represent the signatures.

Value

A data frame with the merged exposures.

Examples

NULL

normalizeMotifs_otherRownames

Normalize Somatic Motifs with different rownames

Description

This is a wrapper function to normalizeMotifs. The rownames are first transformed to fit the convention of the SomaticSignatures package and then passed on to the above mentioned function.

Usage

```
normalizeMotifs_otherRownames(in_matrix, in_norms, adjust_counts = TRUE)
```

Arguments

Value

The matrix returned by normalizeMotifs, but with rownames transformed back to the convention of the input

Examples

NULL

normalize_df_per_dim Useful functions on data frames

Description

normalize_df_per_dim: Normalization is carried out by dividing by rowSums or colSums; for rows with rowSums=0 or columns with colSums=0, the normalization is left out.

average_over_present: If averaging over columns, zero rows (i.e. those with rowSums=0) are left out, if averaging over rows, zero columns (i.e. those with colSums=0) are left out.

sd_over_present: If computing the standard deviation over columns, zero rows (i.e. those with rowSums=0) are left out, if computing the standard deviation over rows, zero columns (i.e. those with colSums=0) are left out.

stderrmean_over_present: If computing the standard error of the mean over columns, zero rows (i.e. those with rowSums=0) are left out, if computing the standard error of the mean over rows, zero columns (i.e. those with colSums=0) are left out. Uses the function stderrmean

38

Usage

normalize_df_per_dim(in_df, in_dimension)

average_over_present(in_df, in_dimension)

sd_over_present(in_df, in_dimension)

```
stderrmean_over_present(in_df, in_dimension)
```

Arguments

in_df	Data frame to be normalized
in_dimension	Dimension along which the operation will be carried out

Value

The normalized numerical data frame (normalize_df_per_dim)

A vector of the means (average_over_present)

A vector of the standard deviations (sd_over_present)

A vector of the standard errors of the mean (stderrmean_over_present)

See Also

stderrmean

Examples

```
test_df <- data.frame(matrix(c(1,2,3,0,5,2,3,4,0,6,0,0,0,0,0,4,5,6,0,7),</pre>
                              ncol=4))
## 1. Normalize over rows:
normalize_df_per_dim(test_df,1)
## 2. Normalize over columns:
normalize_df_per_dim(test_df,2)
test_df <- data.frame(matrix(c(1,2,3,0,5,2,3,4,0,6,0,0,0,0,0,4,5,6,0,7),</pre>
                              ncol=4))
## 1. Average over non-zero rows:
average_over_present(test_df,1)
## 2. Average over non-zero columns:
average_over_present(test_df,2)
test_df <- data.frame(matrix(c(1,2,3,0,5,2,3,4,0,6,0,0,0,0,0,4,5,6,0,7),</pre>
                             ncol=4))
## 1. Compute standard deviation over non-zero rows:
sd_over_present(test_df,1)
## 2. Compute standard deviation over non-zero columns:
sd_over_present(test_df,2)
test_df <- data.frame(matrix(c(1,2,3,0,5,2,3,4,0,6,0,0,0,0,0,4,5,6,0,7),</pre>
                              ncol=4))
## 1. Compute standard deviation over non-zero rows:
stderrmean_over_present(test_df,1)
## 2. Compute standard deviation over non-zero columns:
stderrmean_over_present(test_df,2)
```

plotExchangeSpectra Plot the spectra of nucleotide exchanges

Description

Plots the spectra of nucleotide exchanges in their triplet contexts. If several columns are present in the input data frame, the spectra are plotted for every column separately.

Usage

Arguments

in_catalogue_df		
Numerical data frame encoding the exchange spectra to be displayed, either a mutational catalogue V or a signatures matrix W.		
in_colour_vector		
Specifies the colours of the 6 nucleotide exchanges if non-null.		
in_show_triplets		
Whether or not to show the triplets on the x-axis		
in_show_axis_title		
Whether or not to show the name of the y-axis		

Value

The generated barplot - a ggplot2 plot

See Also

geom_bar

facet_grid

Examples

plot_exposures Plot the exposures of a cohort

Description

plot_exposures: The exposures H, determined by NMF or by LCD, are displayed as a stacked barplot by calling

- geom_bar and optionally
- geom_text.

The x-axis displays the PIDs (patient identifier or sample), the y-axis the counts attributed to the different signatures with their respective colours per PID. Is called by plot_relative_exposures.

plot_relative_exposures: Plot the relative or normalized exposures of a cohort. This function first normalizes its input and then sends the normalized data to plot_exposures.

Usage

```
plot_exposures(in_exposures_df, in_signatures_ind_df, in_subgroups_df = NULL,
    in_sum_ind = NULL, in_subgroups.field = "subgroup", in_title = "",
    in_labels = TRUE, in_show_subgroups = TRUE, legend_height = 10)
```

```
plot_relative_exposures(in_exposures_df, in_signatures_ind_df, in_subgroups_df,
    in_sum_ind = NULL, in_subgroups.field = "subgroup", in_title = "",
    in_labels = TRUE, in_show_subgroups = TRUE)
```

Arguments

in_exposures_df Numerical data frame encoding the exposures H, i.e. which signature contributes how much to which PID (patient identifier or sample). in_signatures_ind_df A data frame containing meta information about the signatures in_subgroups_df A data frame indicating which PID (patient or sample identifyier) belongs to which subgroup in_sum_ind Index vector influencing the order in which the PIDs are going to be displayed in_subgroups.field String indicating the column name in in_subgroups_df to take the subgroup information from. in_title Title for the plot to be created. in_labels Flag, if TRUE the PIDs are displayed on the x-axis in_show_subgroups Flag, if TRUE then PIDs are grouped by subgroups How many signatures should be displayed in one column together at most. legend_height

Value

The generated barplot - a ggplot2 plot

See Also

LCD geom_bar

geom_text

Examples

```
chosen_signatures_indices_df,
COSMIC_subgroups_df)
```

plot_SMC

Plot results of the Stratification of a Mutational Catalogue

Description

Plot a big composite figure with 3 columns: in the left column the per-PID absolute exposures will be shown, in the middle column the per_PID relative or normalized exposures will be shown, in the right column the cohort-wide exposures are shown (averaged over PIDs).

Usage

```
plot_SMC(number_of_strata, output_path, decomposition_method, number_of_sigs,
    name_list, exposures_strata_list, this_signatures_ind_df, this_subgroups_df,
    in_strata_order_ind, exposures_both_rel_df_list, cohort_method_flag,
    fig_width = 1200, fig_height = 900, fig_type = "png",
    in_label_orientation = "turn", this_sum_ind = NULL)
```

Arguments

number_of_strat	ta	
	Number of strata as deduced from link{SMC}	
output_path	Path to file where the results are going to be stored. If NULL, the results will be plotted to the running environment.	
decomposition_method		
	String for the filename of the generated barplot.	
number_of_sigs	Number of signatures	
name_list	Names of the contructed strata.	
exposures_strata_list		
	The list of s strata specific exposures Hi, all are numerical data frames with 1 rows and m columns, 1 being the number of signatures and m being the number of samples	

42

plot_strata

this_signature	s_ind_df
	A data frame containing meta information about the signatures
this_subgroups	_df
	A data frame indicating which PID (patient or sample identifyier) belongs to
	which subgroup
in_strata_orde	r_ind
	Index vector defining reordering of the strata
exposures_both	_rel_df_list
	A list of s strata specific cohortwide (i.e. averaged over cohort) normalized
	exposures
<pre>cohort_method_</pre>	flag
	Either or several of c("all_PIDs", "cohort", "norm_PIDs"), representing al-
	ternative ways to average over the cohort.
fig_width	Width of the figure to be plotted
fig_height	Height of the figure to be plotted
fig_type	png or pdf
in_label_orien	tation
	Whether or not to turn the labels on the x-axis.
this_sum_ind	Optional set of indices for reordering the PIDs

Value

The function doesn't return any value.

Examples

NULL

olot_strata	Plot all	strata	from	different	stratification	axes together
-------------	----------	--------	------	-----------	----------------	---------------

Description

Plot the cohort wide signature exposures of all strata from different stratification axes together. Naturally called by compare_SMCs.

Usage

Arguments

in_strata_list	Data structure created by make_strata_df or make_catalogue_strata_df in which the strata from different orthogonal stratification axes are reorganized in
	a consistent structure.
in_signatures_i	nd_df
	A data frame containing meta information about the signatures
output_path	Path to directory where the results, especially the figure produced, are going to be stored.
in_attribute	Additional string for the file name where the figure output is going to be stored.

Value

The function doesn't return any value.

See Also

compare_SMCs

Examples

NULL

repeat_df

Create a data frame with default values

Description

Create a data frame with default values

Usage

repeat_df(in_value, in_rows, in_cols)

Arguments

in_value Default entry to be repeated in the data frame in_rows, in_cols

Dimensions of the data frame to be created

Value

The created data frame

Examples

```
## 1. Initialize with numeric value:
repeat_df(1,2,3)
## 2. Initialize with NA value:
repeat_df(NA,3,2)
## 3. Initialize with character:
repeat_df("a",4,3)
```

44

run_annotate_vcf_pl Wrapper function to annotate addition information

Description

Wrapper function to the perl script annotate_vcf.pl which annotates data of a track stored in file_B (may be different formats) to called variants stored in a vcf-like file_A.

Usage

```
run_annotate_vcf_pl(in_data_file, in_anno_track_file, in_new_column_name,
    out_file, in_data_file_type = "custom", in_anno_track_file_type = "bed",
    in_data_CHROM.field = "CHROM", in_data_POS.field = "POS",
    in_data_END.field = "POS")
```

Arguments

in_data_f	ile Path to the input vcf-like file to be annotated	
in_anno_t	rack_file	
	Path to the input file containing the annotation track	
in_new_co	lumn_name	
	String indicating the name of the column to be created for annotation.	
out_file	Path where the created files can be stored.	
in_data_f	ile_type	
	custom for vcf-like	
<pre>in_anno_track_file_type</pre>		
	Type of the file in_anno_track_file containing the annotation track.	
in_data_C	HROM.field	
	String indicating which column of in_data_file contains the chromosome in- formation.	
in_data_P	OS.field	
	String indicating which column of in_data_file contains the position infor- mation.	
in_data_END.field		
	String indicating which column of in_data_file contains the end information if regions are considered.	

Value

Return zero if no problems occur.

Examples

run_comparison_catalogues

Compare all strata from different stratifications

Description

Compare all strata from different orthogonal stratification axes, i.e. othogonal SMCs by cosine similarity of mutational catalogues. Function similar to run_comparison_general. First calls

- make_catalogue_strata_df, then
- make_comparison_matrix

Usage

Arguments

output_pathPath to directory where the results, especially the figure produced by cor is going to be stored.in_nrectNumber of clusters in the clustering procedure provided by corrplot	MCs
in pract Number of clusters in the clustering procedure provided by correlat	plot
The first of clusters in the clustering procedure provided by complete	
in_attribute Additional string for the file name where the figure produced by	

Value

The comparison matrix of cosine similarities.

See Also

make_comparison_matrix

run_comparison_general

Examples

run_comparison_general

Compare all strata from different stratifications

Description

Compare all strata from different orthogonal stratification axes, i.e. othogonal SMCs by cosine similarity of signature exposures. Function similar to compare_SMCs, but without calling plot_strata. First calls

- make_strata_df, then
- make_comparison_matrix

Usage

```
run_comparison_general(in_stratification_lists_list, output_path = NULL,
    in_nrect = 5, in_attribute = "", in_remove_signature_ind = NULL,
    in_additional_stratum = NULL)
```

Arguments

in_stratification_lists_list

	List of lists with entries from different (orthogonal) stratification axes or SMCs
output_path	Path to directory where the results, especially the figure produced by corrplot is going to be stored.
in_nrect	Number of clusters in the clustering procedure provided by corrplot
in_attribute	Additional string for the file name where the figure produced by corrplot is going to be stored.
in_remove_signa	iture_ind
	Omit one of the signatures in in_signatures_ind_df for the comparison if non-NULL. The parameter specifies the index of the signature to be removed.
in_additional_s	tratum
	Include an additionally supplied stratum in comparison in non-NULL.

Value

The comparison matrix of cosine similarities.

See Also

make_comparison_matrix
compare_SMCs
run_comparison_catalogues

Examples

```
run_kmer_frequency_correction
```

Provide comprehensive correction factors for kmer content

Description

This function is analogous to normalizeMotifs. If an analysis of mutational signatures is performed on e.g. Whole Exome Sequencing (WES) data, the signatures and exposures have to be adapted to the potentially different kmer (trinucleotide) content of the target capture. The present function takes as arguments paths to the used reference genome and target capture file. It the extracts the sequence of the target capture by calling bedtools getfasta on the system command prompt. run_kmer_frequency_normalization then calls a custom made perl script kmer_frequencies.pl also included in this package to count the occurences of the tripletts in both the whole reference genome and the created target capture sequence. These counts are used for normalization as in normalizeMotifs. Note that kmerFrequency provides a solution to approximate kmer frequencies by random sampling. As opposed to that approach, the function described here deterministically counts all occurences of the kmers in the respective genome.

Usage

Arguments

<pre>in_ref_genome_f</pre>	Fasta
	Path to the reference genome fasta file used.
in_target_capt	ure_bed
	Path to a bed file containing the information on the used target capture. May also be a compressed bed.
in_word_length	Integer number defining the length of the features or motifs, e.g. 3 for tripletts or 5 for pentamers
project_folder	Path where the created files, especially the fasta file with the sequence of the target capture and the count matrices, can be stored.
target_capture_	fasta
	Name of the fasta file of the target capture to be created if not yet existent.
in_verbose	Verbose if in_verbose=1

Value

A list with 2 entries:

- rel_cor: The correction factors after normalization as in run_kmer_frequency_normalization
- abs_cor: The correction factors without normalization.

See Also

normalizeMotifs

Examples

NULL

Description

This function is analogous to normalizeMotifs. If an analysis of mutational signatures is performed on e.g. Whole Exome Sequencing (WES) data, the signatures and exposures have to be adapted to the potentially different kmer (trinucleotide) content of the target capture. The present function takes as arguments paths to the used reference genome and target capture file. It the extracts the sequence of the target capture by calling bedtools getfasta on the system command prompt. run_kmer_frequency_normalization then calls a custom made perl script kmer_frequencies.pl also included in this package to count the occurences of the tripletts in both the whole reference genome and the created target capture sequence. These counts are used for normalization as in normalizeMotifs. Note that kmerFrequency provides a solution to approximate kmer frequencies by random sampling. As opposed to that approach, the function described here deterministically counts all occurences of the kmers in the respective genome.

Usage

Arguments

in_ref_genome_fasta		
	Path to the reference genome fasta file used.	
in_target_captu	ure_bed	
	Path to a bed file containing the information on the used target capture. May also be a compressed bed.	
in_word_length	Integer number defining the length of the features or motifs, e.g. 3 for tripletts or 5 for pentamers	
project_folder	Path where the created files, especially the fasta file with the sequence of the target capture and the count matrices, can be stored.	
in_verbose	Verbose if in_verbose=1	

Value

A numeric vector with correction factors

See Also

normalizeMotifs

Examples

```
run_plot_strata_general
```

Wrapper function for plot_strata

Description

First calls

- make_strata_df, then
- plot_strata

Usage

```
run_plot_strata_general(in_stratification_lists_list, in_signatures_ind_df,
    output_path = NULL, in_attribute = "", in_remove_signature_ind = NULL,
    in_additional_stratum = NULL)
```

Arguments

in_stratificati	lon_lists_list
	List of lists with entries from different (orthogonal) stratification axes or SMCs
in_signatures_i	ind_df
	A data frame containing meta information about the signatures
output_path	Path to directory where the results, especially the figure produced by plot_strata is going to be stored.
in_attribute	Additional string for the file name where the figure produced by plot_strata is going to be stored.
in_remove_signa	ature_ind
	Omit one of the signatures in in_signatures_ind_df for the comparison if non-NULL. The parameter specifies the index of the signature to be removed.
in_additional_s	stratum
	Include an additionally supplied stratum in comparison in non-NULL.

Value

The function doesn't return any value.

See Also

plot_strata

Examples

run_SMC

Description

run_SMC takes as input a big dataframe constructed from a vcf-like file of a whole cohort. This wrapper function calls custom functions to construct a mutational catalogue and stratify it according to categories indicated by a special column in the input dataframe:

- create_mutation_catalogue_from_df
- adjust_number_of_columns_in_list_of_catalogues

This stratification yields a collection of stratified mutational catalogues, these are reformatted and sent to the custom function SMC and thus indirectly to LCD_SMC to perform a signature analysis of the stratified mutational catalogues. The result is then handed over to plot_SMC for visualization.

Usage

```
run_SMC(my_table, this_signatures_df, this_signatures_ind_df, this_subgroups_df,
  column_name, refGenome, cohort_method_flag = "all_PIDs",
  in_strata_order_ind = seq_len(length(unique(my_table[, column_name]))),
  wordLength = 3, verbose_flag = 1, target_dir = NULL,
   strata_dir = NULL, output_path = NULL, in_all_exposures_df = NULL,
   in_rownames = c(), in_norms = NULL, in_label_orientation = "turn",
   this_sum_ind = NULL)
```

Arguments

my_table	A big dataframe constructed from a vcf-like file of a whole cohort. The first columns are those of a standard vcf file, followed by an arbitrary number of custom or user defined columns. One of these must carry a PID (patient or sample identifyier) and one must be the category used for stratification.
this_signatures	_df
	A numeric data frame W in with n rows and 1 columns, n being the number of
	features and 1 being the number of signatures
this_signatures_ind_df	
	A data frame containing meta information about the signatures
this_subgroups_df	
	A data frame indicating which PID (patient or sample identifyier) belongs to which subgroup
column_name	Name of the column in my_table which is going to be used for stratification
refGenome	FaFile of the reference genome to extract the motif context of the variants in $\ensuremath{\mbox{my_table}}$
<pre>cohort_method_f</pre>	lag
	Either or several of c("all_PIDs", "cohort", "norm_PIDs"), representing alternative ways to average over the cohort.
in_strata_order_ind	
	Index vector defining reordering of the strata
wordLength	Integer number defining the length of the features or motifs, e.g. 3 for tripletts or 5 for pentamers

verbose_flag	Verbose if verbose_flag=1
target_dir	Path to directory where the results of the stratification procedure are going to be stored if non-NULL.
strata_dir	Path to directory where the mutational catalogues of the different strata are going to be stored if non-NULL
output_path	Path to directory where the results, especially the figures produced by plot_SMC are going to be stored.
in_all_exposures_df	
	Optional argument, if specified, H, i.e. the overall exposures without stratifica- tion, is set to equal in_all_exposures_df. This is equivalent to forcing the LCD_SMC procedure to use e.g. the exposures of a previously performed NMF decomposition.
in_rownames	Optional parameter to specify rownames of the mutational catalogue V i.e. the names of the features.
in_norms	If specified, vector of the correction factors for every motif due to differing trinucleotide content. If null, no correction is applied.
in_label_orientation	
	Whether or not to turn the labels on the x-axis.
this_sum_ind	Optional set of indices for reordering the PIDs

Value

A list with entries exposures_list, catalogues_list, cohort and name_list.

- exposures_list: The list of s strata specific exposures Hi, all are numerical data frames with 1 rows and m columns, 1 being the number of signatures and m being the number of samples
- catalogues_list: A list of s strata specific cohortwide (i.e. averaged over cohort) normalized exposures
- cohort: subgroups_df adjusted for plotting
- name_list: Names of the contructed strata.

See Also

```
create_mutation_catalogue_from_df
normalizeMotifs_otherRownames
plot_SMC
```

Examples

shapiro_if_possible

shapiro_if_possible Wrapper for Shapiro test but allow for all identical values

Description

Wrapper for Shapiro test but allow for all identical values

Usage

```
shapiro_if_possible(in_vector)
```

Arguments

in_vector Numerical vector the Shapiro-Wilk test is computed on

Value

p-value of the Shapiro-Wilk test, zero if all entries in the input vector in_vector are identical.

See Also

shapiro.test

Examples

```
shapiro_if_possible(runif(100,min=2,max=4))
shapiro_if_possible(rnorm(100,mean=5,sd=3))
shapiro_if_possible(rep(4.3,100))
shapiro_if_possible(c("Hello","World"))
```

Description

The numerical data of the mutational signatures published initially by Alexandrov et al. (Nature 2013) is stored in data frames with endings _sig_df, the associated meta-information is stored in data frames with endings _sigInd_df. There are several instances of _sig_df and _sigInd_df, corresponding to results and data obtained at different times and with different raw data. There always is a one-to-one correspondence between a _sig_df and a _sigInd_df. The data frames of type _sig_df have as many rows as there are features, i.e. 96 if analyzing mutational signatures of SNVs in a triplet context, and as many columns as there are signatures. Data frames of type _sigInd_df have as many rows as there are signatures in the corresponding _sig_df and several columns:

- sig: signature name
- index: corresponding to the row index of the signature
- · colour: colour for visualization in stacked barplots
- · process: asserted biological process
- cat.coarse: categorization of the signatures according to the asserted biological processes at low level of detail
- cat.medium: categorization of the signatures according to the asserted biological processes at intermediate level of detail
- cat.high: categorization of the signatures according to the asserted biological processes at high level of detail
- cat.putative: categorization of the signatures according to the asserted biological processes based on clustering and inference

AlexInitialArtif_sig_df: Data frame of the signatures published initially by Alexandrov et al. (Nature 2013). There are 27 signatures which constitute the columns, 22 of which were validated by an orhtogonal sequencing technology. These 22 are in the first 22 columns of the data frame. The column names are A pasted to the number of the signature, e.g. A5. The nonvalidated signatures have an additional letter in their naming convention: either AR1 - AR3 or AU1 - AU2. The rownames are the features, i.e. an encoding of the nucleotide exchanges in their trinucleotide context, e.g. C>A ACA. In total there are 96 different features and therefore 96 rows when dealing with a trinucleotide context.

AlexInitialArtif_sigInd_df: Meta-information for AlexInitialArtif_sig_df

AlexInitialValid_sig_df: Data frame of only the validated signatures published initially by Alexandrov et al. (Nature 2013), corresponding to the first 22 columns of AlexInitialArtif_sig_df

AlexInitialValid_sigInd_df: Meta-information for AlexInitialValid_sig_df

AlexCosmicValid_sig_df: Data frame of the updated signatures list maintained by Ludmil Alexandrov at http://cancer.sanger.ac.uk/cosmic/signatures. The column names are AC pasted to the number of the signature, e.g. AC5. The naming convention for the rows is as described for AlexInitialArtif_sig_df.

AlexCosmicValid_sigInd_df: Meta-information for AlexCosmicValid_sig_df

AlexCosmicArtif_sig_df: Data frame of the updated signatures list maintained by Ludmil Alexandrov at http://cancer.sanger.ac.uk/cosmic/signatures and complemented by the artifact

sigs

split_exposures_by_subgroups

signatures from the initial publication, i.e. the last 5 columns of AlexInitialArtif_sig_df. The column names are AC pasted to the number of the signature, e.g. AC5. The naming convention for the rows is as described for AlexInitialArtif_sig_df.

 ${\tt AlexCosmicArtif_sigInd_df: Meta-information for {\tt AlexCosmicArtif_sig_df}}$

Usage

data(sigs)

Author(s)

Daniel Huebschmann <huebschmann.daniel@googlemail.com>

Source

```
AlexInitial: ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/signatures.txt
AlexCosmic: http://cancer.sanger.ac.uk/cancergenome/assets/signatures_probabilities.
txt
```

References

Alexandrov et al. (Nature 2013)

split_exposures_by_subgroups

Split an exposures data frame by subgroups

Description

If a cohort consists of different subgroups, this function enables to split the data frame storing the signature exposures into a list of data frames with signature exposures, one per subgroup. This functionality is needed for stat_test_subgroups and stat_plot_subgroups

Usage

```
split_exposures_by_subgroups(in_exposures_df, in_subgroups_df,
in_subgroups.field = "subgroup", in_PID.field = "PID")
```

Arguments

in_exposures_d	f
	Numerical data frame of the exposures (i.e. contributions of the different signa- tures to the number of point mutations per PID)
in_subgroups_df	
	Data frame indicating which PID belongs to which subgroup
in_subgroups.field	
	Name indicating which column in in_subgroups_df contains the subgroup in- formation
in_PID.field	Name indicating which column in in_subgroups_df contains the PID informa- tion

List of data frames with the subgroup specific signature exposures.

See Also

stat_test_subgroups
stat_plot_subgroups

Examples

NULL

stat_plot_subgroups Plot averaged signature exposures per subgroup

Description

Plot one averaged signature exposure pattern per subgroup. Uses split_exposures_by_subgroups.

Usage

```
stat_plot_subgroups(in_exposures_df, in_subgroups_df, in_signatures_ind_df,
in_subgroups.field = "subgroup", in_PID.field = "PID",
in_colour_vector = NULL)
```

Arguments

in_exposures_df
Numerical data frame of the exposures (i.e. contributions of the different signatures to the number of point mutations per PID)
in_subgroups_df
Data frame indicating which PID belongs to which subgroup
in_signatures_ind_df
Data frame carrying additional information on the signatures
in_subgroups.field
Name indicating which column in in_subgroups_df contains the subgroup information
in_PID.field
Name indicating which column in in_subgroups_df contains the PID information
in_colour_vector
If non-null, specifies the colours attributed to the subgroups

Value

The function doesn't return any value, it plots instead.

See Also

split_exposures_by_subgroups

56

stat_test_SMC

Examples

NULL

stat_test_SMC

Apply statistical tests to a stratification (SMC)

Description

stat_test_SMC tests for enrichment or depletion in the different strata of a stratification of the mutational catalogue for every signature independently by applying Kruskal Wallis tests. For those signatures where the Kruskal Wallis test gives a significant p-value, pairwise posthoc tests are carried out by calling posthoc.kruskal.nemenyi.test. Additionally all data is tested for normality by Shapiro Wilk tests, so that the user may apply ANOVA and pairwise posthoc t-test where allowed.

Usage

stat_test_SMC(in_strat_list, in_flag = "norm")

Arguments

in_strat_list	A list with entries exposures_list, catalogues_list, cohort and name_list as in the output of run_SMC.
	• exposures_list: The list of s strata specific exposures Hi, all are numeri- cal data frames with 1 rows and m columns, 1 being the number of signatures and m being the number of samples
	• catalogues_list: A list of s strata specific cohortwide (i.e. averaged over cohort) normalized exposures
	 cohort: subgroups_df adjusted for plotting
	 name_list: Names of the contructed strata.
in_flag	If "norm", all tests are performed on normalized exposures, otherwise the abso- lute exposures are taken.

Value

A list with entries kruskal_df, shapiro_df, kruskal_posthoc_list,

- kruskal_df: A data frame containing results (statistic and p values) of the Kruskal Wallis tests (tests for enrichment or depletion in the different strata for every signature independently).
- shapiro_df: A data frame containing results (p values) of the Shapiro Wilk tests (tests for normal distribution in the different strata for every signature independently).
- kruskal_posthoc_list: A list of results of pairwise posthoc tests carried out for those signatures where the Kruskal Wallis test yielded a significant p-value (carried out by posthoc.kruskal.nemenyi.test).

See Also

```
run_SMC
posthoc.kruskal.nemenyi.test
kruskal.test
shapiro_if_possible
shapiro.test
```

Examples

NULL

stat_test_subgroups Test for differences in average signature exposures between subgroups

Description

Apply Kruskal-Wallis tests to detect differences in the signature exposures between different subgroups. Uses split_exposures_by_subgroups. Algorithm analogous to stat_test_SMC.

Usage

Arguments

in_exposures_df	
	Numerical data frame of the exposures (i.e. contributions of the different signa- tures to the number of point mutations per PID)
in_subgroups_df	
	Data frame indicating which PID belongs to which subgroup
in_subgroups.field	
	Name indicating which column in in_subgroups_df contains the subgroup in- formation
in_PID.field	Name indicating which column in in_subgroups_df contains the PID informa- tion

Value

A list with entries kruskal_df, kruskal_posthoc_list,

- kruskal_df: A data frame containing results (statistic and p values) of the Kruskal Wallis tests (tests for enrichment or depletion in the different strata for every signature independently).
- kruskal_posthoc_list: A list of results of pairwise posthoc tests carried out for those signatures where the Kruskal Wallis test yielded a significant p-value (carried out by posthoc.kruskal.nemenyi.test).

58

stderrmean

See Also

split_exposures_by_subgroups
stat_test_SMC
posthoc.kruskal.nemenyi.test
kruskal.test

Examples

NULL

stderrmean

Compute the standard error of the mean

Description

This function returns the standard deviation of an input numerical vector divided by the square root of the length of the input vector

Usage

stderrmean(x)

Arguments

x A numerical vector

Value

Standard deviation of an input numerical vector divided by the square root of the length of the input vector

Examples

A <- c(1,2,3)
sd(A)
stderrmean(A)</pre>

sum_over_list_of_df Elementwise sum over a list of (numerical) data frames

Description

Elementwise sum over a list of (numerical) data frames

Usage

```
sum_over_list_of_df(in_df_list)
```

Arguments

in_df_list List of (numerical) data frames

Value

A numerical data frame with the same dimensions as the entries of in_df_list with elementwise sums

Examples

```
A <- data.frame(matrix(c(1,1,1,2,2,2),ncol=2))
B <- data.frame(matrix(c(3,3,3,4,4,4),ncol=2))
df_list <- list(A=A,B=B)
sum_over_list_of_df(df_list)</pre>
```

targetCapture_cor_factors

Correction factors for different target capture kits

Description

List of lists with correction factors for different target capture kits. The elements of the overall list are lists, every one carrying information for one target capture kit (and namend after it). The elements of these sublists are 64 dimensional vectors with correction factors for all triplets. They were computed using counts of occurence of the respective triplets in the target capture and in the reference genome and making ratios (either for the counts themselves as in abs_cor or for the relative occurences in rel_cor). The information in this data structure may be used as input to normalizeMotifs_otherRownames.

Usage

```
data(targetCapture_cor_factors)
```

Value

A list of lists of data frames

test_exposureAffected

Author(s)

Daniel Huebschmann < huebschmann.daniel@googlemail.com>

test_exposureAffected Test significance of association

Description

Test significance of association between a vector of exposures and a selection of samples, e.g. those affected by mutations in a pathway as returned by find_affected_PIDs

Usage

Arguments

```
in_exposure_vector
Named vector of a phenotype (e.g. exposures to a specific signature)
in_affected_PIDs
Character vector of samples affected by some criterion, e.g. mutations in a path-
way as returned by find_affected_PIDs
in_mutation_label
If non-NULL, prefix to the mutation status (x-axis label) in the produced boxplot
in_exposure_label
```

If non-NULL, prefix to the exposures (y-axis label) in the produced boxplot

Value

A list with entries:

- current_kruskal: Kruskal test object from testing phenotype against affection
- current_boxplot: Boxplot of phenotype against affection

Examples

```
test_gene_list_in_exposures
```

Test if mutated PIDs are enriched in signatures

Description

For all signatures found in a project, this function tests whether PIDs having mutations in a specified list of genes of interest have significantly higher exposures.

Usage

Arguments

in_gene_list	List with genes of interest
in_exposure_df	Data frame with the signature exposures
in_mut_table	Data frame or table of mutations (derived from vcf-format)
in_gene.field	Name of the column in which the gene names are to be looked up
in_p_cutoff	Significance threshold

Value

A list with entries pvals, exposure_df, number_of_mutated,

- pvals: p-values of the t-tests performed on mutated vs. unmutated PIDs
- exposure_df: Transposed input exposures data frame with additional annotations for mutation status
- number_of_mutated: Number of PIDs carrying a mutation

Examples

NULL

 $transform_rownames_R_to_MATLAB$

Change rownames from one naming convention to another

Description

Rownames or names of the features used differ between the different contexts a signature analysis is carried out in. The function transform_rownames_R_to_MATLAB changes from the convention used in the YAPSA pacakge to the one used by Alexandrov et al. in the MATLAB framework.

The function transform_rownames_MATLAB_to_R changes from the convention used in Alexandrov et al. in the MATLAB framework to the one used by the YAPSA pacakge.

The function transform_rownames_MATLAB_to_R changes from the convention used in stored mutational catalogues by Alexandrov et al. to the one used by the YAPSA pacakge.

The function transform_rownames_YAPSA_to_deconstructSigs changes from the convention used in the YAPSA package to the one used by the deconstructSigs package.

The function transform_rownames_YAPSA_to_deconstructSigs changes from the convention used in the deconstructSigs package to the one used by the YAPSA pacakge.

Usage

transform_rownames_R_to_MATLAB(in_rownames, wordLength = 3)

transform_rownames_MATLAB_to_R(in_rownames, wordLength = 3)

transform_rownames_nature_to_R(in_rownames, wordLength = 3)

transform_rownames_YAPSA_to_deconstructSigs(in_rownames, wordLength = 3)

transform_rownames_deconstructSigs_to_YAPSA(in_rownames, wordLength = 3)

Arguments

in_rownames	Character vector of input rownames
wordLength	Size of the considered motif context

Value

A character vector of the translated rownames.

Examples

NULL

translate_to_hg19 Translate chromosome names to the hg19 naming convention

Description

translate_to_hg19: In hg19 naming convention, chromosome names start with the prefix *chr* and the gonosomes are called X and Y. If data analysis is performed e.g. with BSgenome.Hsapiens.UCSC.hg19, this naming convention is needed. The inverse transform is done with translate_to_1kG.

translate_to_1kG: In 1kG, i.e. 1000 genomes naming convention, chromosome names have no prefix *chr* and the gonosomes are called 23 for X and 24 for Y. If data analysis is performed e.g. with hs37d5.fa, this naming convention is needed. The inverse transform is done with translate_to_hg19.

```
translate_to_hg19(in_dat, in_CHROM.field = "CHROM", in_verbose = FALSE)
```

```
translate_to_1kG(in_dat, in_CHROM.field = "chr", in_verbose = FALSE)
```

Arguments

in_dat	GRanges object, VRanges object or data frame which carries one column with chromosome information to be reformatted.
in_CHROM.field	String indicating which column of in_dat carries the chromosome information
in_verbose	Whether verbose or not.

Value

GRanges object, VRanges object or data frame identical to in_dat, but with the names in the chromosome column replaced (if dealing with data frames) or alternatively the seqlevels replaced (if dealing with GRanges or VRanges objects).

Examples

trellis_rainfall_plot Create a rainfall plot in a trellis structure

Description

A trellis is a plot structure which allows space optimized multi-panel multi track plots. This function uses the package **gtrellis** developed by Zuguang Gu, also available at http://www.bioconductor. org/packages/release/bioc/html/gtrellis.html. The graphics in the tracks within a gtrellis plot are mostly drawn with functions from the package **grid**. Note that for technical reasons, the column indicating the chromosome MUST have the name *chr* and be the first column in the data frame supplied to the gtrellis functions. Therefore reformatting is performed in this function before calling gtrellis functions.

Usage

```
trellis_rainfall_plot(in_rainfall_dat, in_point_size = unit(1, "mm"),
    in_rect_list = NULL, in_title = "", in_CHROM.field = "CHROM",
    in_POS.field = "POS", in_dist.field = "dist", in_col.field = "col")
```

YAPSA

Arguments

in_rainfall_dat	
	Data frame which has to contain at least columns for chromosome, position, intermutational distance and colour information
in_point_size	size of the points in the rainfall plot to be created has to be provided with appropriate units, e.g. in_point_size=unit(0.5,"mm")
in_rect_list	Optional argument, if present, will lead to highlighting of specified regions by coloured but transparent rectangles
in_title	Title in the figure to be created.
in_CHROM.field	String indicating which column of in_rainfall_dat carries the chromosome information
in_POS.field	String indicating which column of in_rainfall_dat carries the position information
in_dist.field	String indicating which column of in_rainfall_dat carries the intermutational distance information
in_col.field	String indicating which column of in_rainfall_dat carries the colour infor- mation encoding the nucleotide exchange

Value

The function doesn't return any value.

See Also

gtrellis_layout
add_track
grid.points

Examples

```
data(lymphoma_test)
choice_PID <- "4121361"
PID_df <- subset(lymphoma_test_df,PID==choice_PID)
trellis_rainfall_plot(PID_df,in_point_size=unit(0.5,"mm"))</pre>
```

YAPSA

Generate R documentation from inline comments.

Description

Yet Another Package for mutational Signature analysis

Details

This package provides functions and routines useful in the analysis of mutational signatures (cf. L. Alexandrov et al., Nature 2013). In particular, functions to perform a signature analysis with known signatures (LCD = linear combination decomposition) and a signature analysis on stratified mutational catalogue (run_SMC = stratify mutational catalogue) are provided.

Index

```
add_annotation, 3
add_as_fist_to_list,4
add_track, 65
aggregate, 36
aggregate_exposures_by_category, 4, 32
AlexCosmicArtif_sig_df, 21
AlexCosmicArtif_sig_df(sigs), 54
AlexCosmicArtif_sigInd_df (sigs), 54
AlexCosmicValid_sig_df, 21
AlexCosmicValid_sig_df (sigs), 54
AlexCosmicValid_sigInd_df (sigs), 54
AlexInitialArtif_sig_df, 21, 54, 55
AlexInitialArtif_sig_df (sigs), 54
AlexInitialArtif_sigInd_df (sigs), 54
AlexInitialValid_sig_df, 21
AlexInitialValid_sig_df (sigs), 54
AlexInitialValid_sigInd_df (sigs), 54
annotate_intermut_dist_cohort, 5, 7
annotate_intermut_dist_PID, 5, 6, 6
annotation_exposures_barplot, 3, 7
annotation_heatmap_exposures, 7, 9, 9
as.dendrogram, 29
attribute_nucleotide_exchanges, 10
average_over_present
        (normalize_df_per_dim), 38
```

```
BSgenome.Hsapiens.UCSC.hg19, 63
build_gene_list_for_pathway, 11, 26
```

```
chosen_AlexInitialArtif_sigInd_df
        (exampleYAPSA), 23
chosen_signatures_indices_df
        (exampleYAPSA), 23
compare_exposures, 12
compare_sets, 13, 34
compare_SMCs, 14, 35, 36, 43, 44, 47
compare_to_catalogues, 15, 17
complex_heatmap_exposures, 9, 10, 15
compute_comparison_stat_df, 17
cor.test, 13
corrplot, 14, 34, 46, 47
cosineDist, 13, 17
COSMIC_subgroups_df (exampleYAPSA), 23
```

```
decorate_heatmap_body, 8
density, 22
dist, 9, 16, 28, 29
```

exampleYAPSA, 23
exchange_colour_vector, 24
exposures_barplot, 25
extract_names_from_gene_list, 11, 26

facet_grid, 40
find_affected_PIDs, 27, 61

```
GenomicRanges, 32
geom_bar, 40-42
geom_text, 41, 42
get_extreme_PIDs, 27
grid.points, 65
gtrellis_layout, 65
```

hclust, 28, 29 hclust_exposures, 28 Heatmap, 7–10, 15, 16 HeatmapAnnotation, 3, 7–9, 15

keggFind, 11
keggGet, 26
keggLink, 11
kmerFrequency, 48, 49
kruskal.test, 58, 59

INDEX

labels_colors, 28, 29 run_plot_strata_general, 35, 36, 50 LCD, 7, 29, 32, 41, 42, 65 run_SMC, 51, 57, 58, 65 LCD_complex_cutoff, 5, 21, 30, 30 sd_over_present (normalize_df_per_dim), LCD_complex_cutoff_perPID 38 (LCD_complex_cutoff), 30 shapiro.test, 53, 58 lsei, 30, 32 lymphoma_Nature2013_COSMIC_cutoff_exposures_d\$hapiro_if_possible, 53, 58 sigs, 54 23, 24 lymphoma_Nature2013_COSMIC_cutoff_exposures_d^{\$pomaticSignatures, 38} split_exposures_by_subgroups, 55, 56, 58, (exampleYAPSA), 23 59 lymphoma_Nature2013_raw_df stat_plot_subgroups, 55, 56, 56 (exampleYAPSA), 23 stat_test_SMC, 57, 58, 59 lymphoma_PID_df (exampleYAPSA), 23 stat_test_subgroups, 55, 56, 58 lymphoma_test_df(exampleYAPSA), 23 stderrmean, 38, 39, 59 make_catalogue_strata_df, 33 stderrmean_over_present make_comparison_matrix, 14, 33, 34, 34, 35, (normalize_df_per_dim), 38 36, 46, 47 sum_over_list_of_df, 60 make_strata_df, 35 targetCapture_cor_factors, 60 make_subgroups_df, 36 makeGRangesFromDataFrame, 18, 32, 33 test_exposureAffected, 61 test_gene_list_in_exposures, 62 makeVRangesFromDataFrame, 18, 19, 32 melt_exposures, 37 transform_rownames_deconstructSigs_to_YAPSA merge_exposures, 37 (transform_rownames_R_to_MATLAB), motifMatrix, 19, 20 62 mutationContext. 18-20 transform_rownames_MATLAB_to_R (transform_rownames_R_to_MATLAB), normalize_df_per_dim, 38 62 normalizeMotifs, 38, 48, 49 transform_rownames_nature_to_R normalizeMotifs_otherRownames, 38, 52, (transform_rownames_R_to_MATLAB), 60 62 transform_rownames_R_to_MATLAB, 62 plot_exposures, 7, 9, 41, 41 transform_rownames_YAPSA_to_deconstructSigs plot_relative_exposures, 41 (transform_rownames_R_to_MATLAB), plot_relative_exposures 62 (plot_exposures), 41 translate_to_1kG, 63 plot_SMC, 42, 51, 52 translate_to_1kG(translate_to_hg19), 63 plot_strata, 14, 34-36, 43, 47, 50 translate_to_hg19, 63, 63 plotExchangeSpectra, 40 trellis_rainfall_plot, 64 posthoc.kruskal.nemenyi.test, 57-59 YAPSA, 65 rainfallTransform, 5–7 rel_lymphoma_Nature2013_COSMIC_cutoff_exposures_df, 23, 24 rel_lymphoma_Nature2013_COSMIC_cutoff_exposures_df (exampleYAPSA), 23 repeat_df, 44 rowAnnotation, 7, 9, 15 run_annotate_vcf_pl, 45 run_comparison_catalogues, 33, 34, 46, 47 run_comparison_general, 35, 36, 46, 47 run_kmer_frequency_correction, 48 run_kmer_frequency_normalization, 48, 49