## ----eval=TRUE, include = FALSE----------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE, fig.width = 7.5 ) ## ----message=FALSE------------------------------------------------------------ library(demuxSNP) library(ComplexHeatmap) library(viridisLite) library(Seurat) library(ggpubr) library(dittoSeq) library(utils) library(EnsDb.Hsapiens.v86) ## ----------------------------------------------------------------------------- colors <- structure(viridis(n = 3), names = c("-1", "0", "1")) ## ----eval=FALSE--------------------------------------------------------------- # # if (!require("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # # BiocManager::install("demuxSNP") # # ## or for development version: # # devtools::install_github("michaelplynch/demuxSNP") # ## ----eval=FALSE--------------------------------------------------------------- # #Data loading # data(multiplexed_scrnaseq_sce, # commonvariants_1kgenomes_subset, # vartrix_consensus_snps, # package = "demuxSNP") # # small_sce<-multiplexed_scrnaseq_sce[,1:100] # ensdb <- EnsDb.Hsapiens.v86::EnsDb.Hsapiens.v86 # # #Preprocessing # top_genes<-common_genes(small_sce) # vcf_sub<-subset_vcf(commonvariants_1kgenomes_subset, top_genes, ensdb) # small_sce<-high_conf_calls(small_sce) # # #Use subsetted vcf with VarTrix in default 'consensus' mode to generate SNPs # #matrix # # small_sce<-add_snps(small_sce,vartrix_consensus_snps[,1:100]) # # small_sce<-reassign_centroid(small_sce,min_cells = 5) # # table(small_sce$knn) ## ----eval=FALSE--------------------------------------------------------------- # sce <- reassign_centroid(sce, # train_cells = sce$train, # predict_cells = sce$predict, # min_cells=5 # ) ## ----------------------------------------------------------------------------- data(multiplexed_scrnaseq_sce, commonvariants_1kgenomes_subset, vartrix_consensus_snps, package = "demuxSNP") class(multiplexed_scrnaseq_sce) class(commonvariants_1kgenomes_subset) class(vartrix_consensus_snps) ## ----echo=FALSE, warning=FALSE, fig.height=5,fig.width=8.5-------------------- htos <- as.data.frame(t(as.matrix(logcounts(altExp(multiplexed_scrnaseq_sce, "HTO"))))) x1 <- gghistogram(htos, x = "Hashtag1", fill = dittoColors(1)[1], palette = "lancet", xlim = c(0, 8), ylim = c(0, 750), alpha = 1) x2 <- gghistogram(htos, x = "Hashtag2", fill = dittoColors(1)[2], palette = "lancet", xlim = c(0, 8), ylim = c(0, 750), alpha = 1) x3 <- gghistogram(htos, x = "Hashtag3", fill = dittoColors(1)[3], palette = "lancet", xlim = c(0, 8), ylim = c(0, 750), alpha = 1) x4 <- gghistogram(htos, x = "Hashtag4", fill = dittoColors(1)[4], palette = "lancet", xlim = c(0, 8), ylim = c(0, 750), alpha = 1) x5 <- gghistogram(htos, x = "Hashtag5", fill = dittoColors(1)[5], palette = "lancet", xlim = c(0, 8), ylim = c(0, 750), alpha = 1) x6 <- gghistogram(htos, x = "Hashtag6", fill = dittoColors(1)[6], palette = "lancet", xlim = c(0, 8), ylim = c(0, 750), alpha = 1) plot <- ggarrange(x1, x2, x3, x4, x5, x6, align = "hv", ncol = 3, nrow = 2) annotate_figure(plot, top = text_grob("CLR normalised HTO counts", size = 12)) ## ----------------------------------------------------------------------------- logcounts(multiplexed_scrnaseq_sce) <- counts(multiplexed_scrnaseq_sce) seurat <- as.Seurat(multiplexed_scrnaseq_sce) seurat <- HTODemux(seurat) seurat$hash.ID <- factor(as.character(seurat$hash.ID)) multiplexed_scrnaseq_sce$seurat <- seurat$hash.ID multiplexed_scrnaseq_sce$seurat <- seurat$hash.ID table(multiplexed_scrnaseq_sce$seurat) ## ----------------------------------------------------------------------------- dittoPlot(seurat, "nCount_HTO", group.by = "hash.ID") dittoPlot(seurat, "nCount_RNA", group.by = "hash.ID") ## ----------------------------------------------------------------------------- top_genes <- common_genes(sce = multiplexed_scrnaseq_sce, n = 100) top_genes[1:10] ## ----------------------------------------------------------------------------- ensdb <- EnsDb.Hsapiens.v86::EnsDb.Hsapiens.v86 genome(commonvariants_1kgenomes_subset)[1] == genome(ensdb)[1] new_vcf <- subset_vcf(commonvariants_1kgenomes_subset, top_genes = top_genes, ensdb) commonvariants_1kgenomes_subset new_vcf ## ----------------------------------------------------------------------------- multiplexed_scrnaseq_sce <- high_conf_calls(multiplexed_scrnaseq_sce) table(multiplexed_scrnaseq_sce$train) table(multiplexed_scrnaseq_sce$predict) table(multiplexed_scrnaseq_sce$labels) ## ----------------------------------------------------------------------------- dim(vartrix_consensus_snps) multiplexed_scrnaseq_sce <- add_snps(multiplexed_scrnaseq_sce, vartrix_consensus_snps, thresh = 0.95) altExp(multiplexed_scrnaseq_sce, "SNP") ## ----------------------------------------------------------------------------- hm <- Heatmap(counts(altExp(multiplexed_scrnaseq_sce, "SNP")), column_split = multiplexed_scrnaseq_sce$seurat, cluster_rows = FALSE, show_column_names = FALSE, cluster_column_slices = FALSE, column_title_rot = -45, row_title = "SNPs", show_row_names = FALSE, col = colors ) draw(hm, column_title = "SNP profiles split by Seurat HTODemux call", padding = unit(c(2, 15, 2, 2), "mm") ) ## ----------------------------------------------------------------------------- set.seed(1) multiplexed_scrnaseq_sce$labels<-as.character(multiplexed_scrnaseq_sce$labels) multiplexed_scrnaseq_sce$knn <- reassign_centroid(multiplexed_scrnaseq_sce, train_cells = multiplexed_scrnaseq_sce$train, predict_cells = multiplexed_scrnaseq_sce$predict, min_cells = 5 ) table(multiplexed_scrnaseq_sce$knn) ## ----------------------------------------------------------------------------- hm <- Heatmap(counts(altExp(multiplexed_scrnaseq_sce, "SNP")), column_split = multiplexed_scrnaseq_sce$knn, cluster_rows = FALSE, show_column_names = FALSE, cluster_column_slices = FALSE, column_names_rot = 45, column_title_rot = -45, row_title = "SNPs", show_row_names = FALSE, col = colors ) draw(hm, column_title = "SNP profiles split by updated knn classification", padding = unit(c(2, 15, 2, 2), "mm") ) ## ----------------------------------------------------------------------------- hm <- Heatmap(counts(altExp(multiplexed_scrnaseq_sce, "SNP"))[, multiplexed_scrnaseq_sce$knn == "Hashtag5"], column_split = multiplexed_scrnaseq_sce$seurat[multiplexed_scrnaseq_sce$knn == "Hashtag5"], cluster_rows = FALSE, show_column_names = FALSE, cluster_column_slices = FALSE, column_names_rot = 45, column_title_rot = -45, row_title = "SNPs", show_row_names = FALSE, col = colors ) draw(hm, column_title = "knn Hashtag5 group split by Seurat HTODemux classification", padding = unit(c(2, 15, 2, 2), "mm") ) ## ----------------------------------------------------------------------------- sce_test <- multiplexed_scrnaseq_sce[, multiplexed_scrnaseq_sce$train == TRUE] sce_test$knn <- NULL #sce_test$labels <- droplevels(sce_test$labels) sce_test sce_test$train2 <- rep(FALSE, length(sce_test$train)) sce_test$train2[seq_len(500)] <- TRUE sce_test$test <- sce_test$train2 == FALSE ## ----------------------------------------------------------------------------- sce_test$knn <- reassign_centroid(sce_test, train_cells = sce_test$train2, predict_cells = sce_test$test, min_cells = 5) table(sce_test$labels[sce_test$test == TRUE], sce_test$knn[sce_test$test == TRUE]) ## ----------------------------------------------------------------------------- sce_test$knn <- NULL sce_test$labels2 <- sce_test$labels table(sce_test$labels, sce_test$labels2) ## ----------------------------------------------------------------------------- sce_test$labels2[which(sce_test$labels2 == "Hashtag5")[1:25]] <- "Hashtag2" table(sce_test$labels, sce_test$labels2) sce_test$knn <- reassign_centroid(sce_test, train_cells = sce_test$train, predict_cells = sce_test$train, min_cells = 5 ) table(sce_test$labels, sce_test$knn) ## ----------------------------------------------------------------------------- hm <- Heatmap(counts(altExp(sce_test, "SNP"))[, sce_test$knn == "Hashtag6"], column_split = sce_test$labels[sce_test$knn == "Hashtag6"], cluster_rows = FALSE, show_column_names = FALSE, cluster_column_slices = FALSE, column_names_rot = 45, column_title_rot = -45, row_title = "SNPs", show_row_names = FALSE, col = colors ) draw(hm, column_title = "knn Hashtag6 group split by demuxmix classification", padding = unit(c(2, 15, 2, 2), "mm") ) ## ----------------------------------------------------------------------------- sessionInfo()