## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>") ## ----installation, eval=FALSE------------------------------------------------- # if(!require("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # BiocManager::install("crupR") ## ----setup-for-metadata------------------------------------------------------- library(crupR) files <- c(system.file("extdata", "Condition1.H3K4me1.bam", package="crupR"), system.file("extdata", "Condition1.H3K4me3.bam", package="crupR"), system.file("extdata", "Condition1.H3K27ac.bam", package="crupR"), system.file("extdata", "Condition2.H3K4me1.bam", package="crupR"), system.file("extdata", "Condition2.H3K4me3.bam", package="crupR"), system.file("extdata", "Condition2.H3K27ac.bam", package="crupR")) inputs <- c(rep(system.file("extdata", "Condition1.Input.bam", package="crupR"), 3), rep(system.file("extdata", "Condition2.Input.bam", package="crupR"), 3)) ## ----metadata----------------------------------------------------------------- metaData <- data.frame(HM = rep(c("H3K4me1","H3K4me3","H3K27ac"),2), condition = c(1,1,1,2,2,2), replicate = c(1,1,1,1,1,1), bamFile = files, inputFile = inputs) metaData ## ----run-normalize------------------------------------------------------------ normalized_1 <- normalize(metaData = metaData, condition = 1, replicate = 1, genome = "mm10", sequencing = "paired") normalized_2 <- normalize(metaData = metaData, condition = 2, replicate = 1, genome = "mm10", sequencing = "paired") ## ----show-normalize----------------------------------------------------------- normalized_1 #the object with the normalized counts S4Vectors::metadata(normalized_1) #meta data of the samples ## ----show-parameters-normalize------------------------------------------------ normalized_1_inputFree <- normalize(metaData = metaData, condition = 1, replicate = 1, genome = "mm10", sequencing = "paired", input.free = TRUE) normalized_1_inputFree ## ----chromsomewise-normalize-------------------------------------------------- normalized_1_chr8 <- normalize(metaData = metaData, condition = 1, replicate = 1, genome = "mm10", sequencing = "paired", chroms = c("chr8")) ## ----run-getEnhancers--------------------------------------------------------- prediction_1 <- getEnhancers(data = normalized_1) prediction_2 <- getEnhancers(data = normalized_2) ## ----run-getEnhancers-ownclassifier, eval = FALSE----------------------------- # prediction_1_own_class <- getEnhancers(data = normalized_1, # classifier = "path/to/classifier") ## ----run-getSE---------------------------------------------------------------- se <- getSE(data = prediction_2) se_strict <- getSE(data = prediction_2, cutoff = 0.9) se_close <- getSE(data = prediction_2, distance=10000) ## ----list-predictions--------------------------------------------------------- predictions <- list(prediction_1, prediction_2) ## ----run-getDynamics---------------------------------------------------------- clusters <- getDynamics(data = predictions) ## ----show-dynamics------------------------------------------------------------ #clusters clusters #meta data S4Vectors::metadata(clusters) ## ----plotSummary-------------------------------------------------------------- crupR::plotSummary(clusters) ## ----get-expression----------------------------------------------------------- expression <- readRDS(file = system.file("extdata", "expressions.rds", package="crupR")) expression ## ----run-getTargets----------------------------------------------------------- targets <- crupR::getTargets(data=clusters, expr = expression, genome = "mm10") ## ----run-getTargets-TADs------------------------------------------------------ path_to_bed <- system.file("extdata", "mESC_mapq30_KR_all_TADs.bed", package="crupR") targets <- getTargets(data = clusters, expr = expression, genome = "mm10", TAD.file = path_to_bed) ## ----run-getTargets-nearest--------------------------------------------------- targets_nearest <- getTargets(data = clusters, expr = NULL, genome = "mm10", nearest = TRUE) ## ----show-Targets------------------------------------------------------------- targets ## ----show-saveFiles, eval = FALSE--------------------------------------------- # out_dir <- file.path(tempdir(), 'crupR') #let's use a temporary direcotry for the outputs # dir.create(out_dir) #create the directory # #save the GRanges object of the getEnhancers() step # saveFiles(data = prediction_1, modes = c("bigWig", "rds"), outdir = out_dir) # #save the GRanges object of the getSE() step # saveFiles(data = se, modes = c("bedGraph", "bed"), outdir = out_dir) # #save the GRanges object of the getDynamics() step # saveFiles(data = clusters, modes = "beds", outdir = out_dir) # #save the GRanges object of the getTargets() step # saveFiles(data = targets, modes = "UCSC", outdir = out_dir) ## ----saveFiles-nearest, eval = FALSE------------------------------------------ # saveFiles(data = targets_nearest, modes = "UCSC", outdir = out_dir, # nearest = TRUE) ## ----sessionInfo-------------------------------------------------------------- sessionInfo()