## ----include = FALSE---------------------------------------------------------- # Prevent certificate issues for GitHub actions options(gemma.SSL = FALSE,gemma.memoised = TRUE) # options(gemma.API = "https://dev.gemma.msl.ubc.ca/rest/v2/") knitr::opts_chunk$set( comment = "" ) ## ----setup, message = FALSE--------------------------------------------------- library(gemma.R) library(data.table) library(dplyr) library(ggplot2) library(ggrepel) library(SummarizedExperiment) library(pheatmap) library(viridis) library(listviewer) ## ----include = FALSE---------------------------------------------------------- gemma.R:::setGemmaPath('prod') forget_gemma_memoised() # to make sure local tests don't succeed because of history ## ----------------------------------------------------------------------------- # accessing all mouse and human datasets get_datasets(taxa = c('mouse','human')) %>% select(experiment.shortName, experiment.name, experiment.description,taxon.name) %>% head %>% gemma_kable # accessing human datasets with the word "bipolar" get_datasets(query = 'bipolar',taxa = 'human') %>% select(experiment.shortName, experiment.name, experiment.description,taxon.name) %>% head %>% gemma_kable # access human datasets that were annotated with the ontology term for the # bipolar disorder # use search_annotations function to search for available annotation terms get_datasets(taxa ='human', uris = 'http://purl.obolibrary.org/obo/MONDO_0004985') %>% select(experiment.shortName, experiment.name, experiment.description,taxon.name) %>% head %>% gemma_kable ## ----------------------------------------------------------------------------- filter_properties()$dataset %>% head %>% gemma_kable() ## ----------------------------------------------------------------------------- # access human datasets that has bipolar disorder as an experimental factor get_datasets(taxa = 'human', filter = "experimentalDesign.experimentalFactors.factorValues.characteristics.valueUri = http://purl.obolibrary.org/obo/MONDO_0004985") %>% select(experiment.shortName, experiment.name, experiment.description,taxon.name) %>% head %>% gemma_kable ## ----------------------------------------------------------------------------- # all datasets with more than 4 samples annotated for any disease get_datasets(filter = 'bioAssayCount > 4 and allCharacteristics.category = disease') %>% select(experiment.shortName, experiment.name, experiment.description,taxon.name) %>% head %>% gemma_kable # all datasets with ontology terms for Alzheimer's disease and Parkinson's disease # this is equivalent to using the uris parameter get_datasets(filter = 'allCharacteristics.valueUri in (http://purl.obolibrary.org/obo/MONDO_0004975,http://purl.obolibrary.org/obo/MONDO_0005180 )') %>% select(experiment.shortName, experiment.name, experiment.description,taxon.name) %>% head %>% gemma_kable ## ----------------------------------------------------------------------------- get_datasets(taxa = 'human') %>% get_all_pages() %>% select(experiment.shortName, experiment.name, experiment.description,taxon.name) %>% head %>% gemma_kable ## ----------------------------------------------------------------------------- get_datasets(taxa = 'human', filter = 'bioAssayCount > 4') %>% filter(experiment.batchEffect !=-1) %>% select(experiment.shortName, experiment.name, experiment.description,taxon.name) %>% head %>% gemma_kable ## ----------------------------------------------------------------------------- search_annotations('bipolar') %>% head %>% gemma_kable() ## ----dataset------------------------------------------------------------------ get_datasets_by_ids("GSE46416") %>% select(experiment.shortName, experiment.name, experiment.description,taxon.name) %>% head %>% gemma_kable ## ----load-expression, eval = TRUE--------------------------------------------- dat <- get_dataset_object("GSE46416", type = 'se') # SummarizedExperiment is the default output type ## ----------------------------------------------------------------------------- # Check the levels of the disease factor dat[[1]]$disease %>% unique() # Subset patients during manic phase and controls manic <- dat[[1]][, dat[[1]]$disease == "bipolar disorder has_modifier manic phase" | dat[[1]]$disease == "reference subject role"] manic ## ----boxplot, fig.cap="Sample to sample correlations of bipolar patients during manic phase and controls."---- # Get Expression matrix manicExpr <- assay(manic, "counts") manicExpr %>% cor %>% pheatmap(col =viridis(10),border_color = NA,angle_col = 45,fontsize = 7) ## ----------------------------------------------------------------------------- get_dataset_samples('GSE46416') %>% make_design('text') %>% select(-factorValues) %>% head %>% gemma_kable() ## ----------------------------------------------------------------------------- head(get_platform_annotations('GPL96') %>% select(-GOTerms)) ## ----------------------------------------------------------------------------- head(get_platform_annotations('Generic_human_ncbiIds') %>% select(-GOTerms)) ## ----------------------------------------------------------------------------- # lists genes in gemma matching the symbol or identifier get_genes('Eno2') %>% gemma_kable() # ncbi id for human ENO2 probes <- get_gene_probes(2026) # remove the description for brevity of output head(probes[,.SD, .SDcols = !colnames(probes) %in% c('mapping.Description','platform.Description')]) %>% gemma_kable() ## ----------------------------------------------------------------------------- dif_exp <- get_differential_expression_values('GSE46416') dif_exp[[1]] %>% head %>% gemma_kable() ## ----------------------------------------------------------------------------- contrasts <- get_dataset_differential_expression_analyses('GSE46416') contrasts %>% gemma_kable() ## ----------------------------------------------------------------------------- # using result.ID and contrast.ID of the output above, we can access specific # results. Note that one study may have multiple contrast objects seq_len(nrow(contrasts)) %>% sapply(function(i){ result_set = dif_exp[[as.character(contrasts[i,]$result.ID)]] p_values = result_set[[glue::glue("contrast_{contrasts[i,]$contrast.ID}_pvalue")]] # multiple testing correction sum(p.adjust(p_values,method = 'BH') < 0.05) }) -> dif_exp_genes contrasts <- data.table(result.ID = contrasts$result.ID, contrast.id = contrasts$contrast.ID, baseline.factorValue = contrasts$baseline.factors, experimental.factorValue = contrasts$experimental.factors, n_diff = dif_exp_genes) contrasts %>% gemma_kable() contrasts$baseline.factors contrasts$experimental.factors ## ----diffExpr, fig.cap="Differentially-expressed genes in bipolar patients during manic phase versus controls.", fig.wide=TRUE, warning = FALSE---- de <- get_differential_expression_values("GSE46416",readableContrasts = TRUE)[[1]] de %>% head %>% gemma_kable # Classify probes for plotting de$diffexpr <- "No" de$diffexpr[de$`contrast_bipolar disorder has_modifier manic phase_logFoldChange` > 1.0 & de$`contrast_bipolar disorder has_modifier manic phase_pvalue` < 0.05] <- "Up" de$diffexpr[de$`contrast_bipolar disorder has_modifier manic phase_logFoldChange` < -1.0 & de$`contrast_bipolar disorder has_modifier manic phase_pvalue` < 0.05] <- "Down" # Upregulated probes filter(de, diffexpr == "Up") %>% arrange(`contrast_bipolar disorder has_modifier manic phase_pvalue`) %>% select(Probe, GeneSymbol, `contrast_bipolar disorder has_modifier manic phase_pvalue`, `contrast_bipolar disorder has_modifier manic phase_logFoldChange`) %>% head(10) %>% gemma_kable() # Downregulated probes filter(de, diffexpr == "Down") %>% arrange(`contrast_bipolar disorder has_modifier manic phase_pvalue`) %>% select(Probe, GeneSymbol, `contrast_bipolar disorder has_modifier manic phase_pvalue`, `contrast_bipolar disorder has_modifier manic phase_logFoldChange`) %>% head(10) %>% gemma_kable() # Add gene symbols as labels to DE genes de$delabel <- "" de$delabel[de$diffexpr != "No"] <- de$GeneSymbol[de$diffexpr != "No"] # Volcano plot for bipolar patients vs controls ggplot( data = de, aes( x = `contrast_bipolar disorder has_modifier manic phase_logFoldChange`, y = -log10(`contrast_bipolar disorder has_modifier manic phase_pvalue`), color = diffexpr, label = delabel ) ) + geom_point() + geom_hline(yintercept = -log10(0.05), col = "gray45", linetype = "dashed") + geom_vline(xintercept = c(-1.0, 1.0), col = "gray45", linetype = "dashed") + labs(x = "log2(FoldChange)", y = "-log10(p-value)") + scale_color_manual(values = c("blue", "black", "red")) + geom_text_repel(show.legend = FALSE) + theme_minimal() ## ----------------------------------------------------------------------------- get_platforms_by_ids() %>% get_all_pages() %>% head %>% gemma_kable() ## ----------------------------------------------------------------------------- platform_count = attributes(get_platforms_by_ids(limit = 1))$totalElements print(platform_count) ## ----------------------------------------------------------------------------- lapply(seq(0,platform_count,100), function(offset){ get_platforms_by_ids(limit = 100, offset = offset) %>% select(platform.ID, platform.shortName, taxon.name) }) %>% do.call(rbind,.) %>% head %>% gemma_kable() ## ----error, error = TRUE------------------------------------------------------ try({ get_dataset_annotations(c("GSE35974", "GSE46416")) }) ## ----loop--------------------------------------------------------------------- lapply(c("GSE35974", "GSE12649"), function(dataset) { get_dataset_annotations(dataset) %>% mutate(experiment.shortName = dataset) %>% select(experiment.shortName, class.name, term.name) }) %>% do.call(rbind,.) %>% gemma_kable() ## ----------------------------------------------------------------------------- get_gene_locations("DYRK1A") %>% gemma_kable() get_gene_locations("DYRK1A", raw = TRUE) %>% jsonedit() ## ----eval=FALSE--------------------------------------------------------------- # # use memoisation by default using the default cache # gemma_memoised(TRUE) # # # set an altnernate cache path # gemma_memoised(TRUE,"path/to/cache_directory") # # # cache in memory of the R session # # this cache will not be preserved between sessions # gemma_memoised(TRUE,"cache_in_memory") # # ## ----defaults, eval = FALSE--------------------------------------------------- # options(gemma.memoised = TRUE) # always refer to cache. this is redundant with gemma_memoised function # options(gemma.overwrite = TRUE) # always overwrite when saving files # options(gemma.raw = TRUE) # always receive results as-is from Gemma ## ----include = FALSE---------------------------------------------------------- options(gemma.memoised = FALSE) options(gemma.raw = FALSE) ## ----------------------------------------------------------------------------- sessionInfo()