## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, fig.width = 10, comment = "#>" ) ## ----installation, echo=TRUE, eval=FALSE-------------------------------------- # if (!requireNamespace("BiocManager", quietly=TRUE)) # install.packages("BiocManager") # # BiocManager::install("SOMNiBUS") ## ----eval=FALSE, echo=FALSE--------------------------------------------------- # ROOT_PACKAGE_PATH <- paste(getwd(), "/", sep = "") # devtools::document(ROOT_PACKAGE_PATH) # devtools::load_all(ROOT_PACKAGE_PATH) ## ----load package, echo=TRUE, message=FALSE, warning=FALSE-------------------- library(SOMNiBUS) ## ----------------------------------------------------------------------------- data("RAdat") head(RAdat) ## ----eval = FALSE------------------------------------------------------------- # formatFromBSseq <- function(bsseq_dat, verbose = TRUE) ## ----eval = FALSE------------------------------------------------------------- # formatFromBismark <- function(..., verbose = TRUE) # ## ----------------------------------------------------------------------------- RAdat.f <- na.omit(RAdat[RAdat$Total_Counts != 0, ]) ## ----------------------------------------------------------------------------- out <- binomRegMethModel(data = RAdat.f, n.k = rep(5, 3), p0 = 0.003, p1 = 0.9, Quasi = FALSE, RanEff = FALSE, verbose = FALSE) ## ----eval=FALSE--------------------------------------------------------------- # out.ctype <- binomRegMethModel(data = RAdat.f, n.k = rep(5, 2), p0 = 0.003, # p1 = 0.9, covs = "T_cell", verbose = FALSE) ## ----cache = TRUE------------------------------------------------------------- outs <- runSOMNiBUS(dat = RAdat.f, split = list(approach = "region", gap = 100), n.k = rep(10,3), p0 = 0.003, p1 = 0.9, min.cpgs = 10, max.cpgs = 2000, verbose = TRUE) ## ----------------------------------------------------------------------------- as.integer(length(unique(RAdat.f$Position)) / 20) ## ----------------------------------------------------------------------------- out$reg.out ## ----fig.cap="The estimates (solid lines) and 95% pointwise confidence intervals (dashed lines) of the intercept, the smooth effect of cell type and RA on methylation levels."---- binomRegMethModelPlot(BEM.obj = out) ## ----fig.cap="The estimates (solid lines) and 95% pointwise confidence intervals (dashed lines) of the intercept, the smooth effect of cell type and RA on methylation levels. (Same ranges of Y axis.)"---- binomRegMethModelPlot(out, same.range = TRUE) ## ----fig.cap="The estimates (solid lines) and 95% pointwise confidence intervals (dashed lines) of the smooth effect of cell type and RA on methylation levels.", echo = TRUE, eval = TRUE---- # creating plot binomRegMethModelPlot(BEM.obj = out, same.range = FALSE, verbose = FALSE, covs = c("RA", "T_cell")) ## ----fig.cap="The estimates (solid lines) and 95% pointwise confidence intervals (dashed lines) of the intercept, the smooth effect of cell type and RA on methylation levels.", echo = TRUE, fig.height = 10, eval = TRUE---- # creating a 2x2 matrix binomRegMethModelPlot(BEM.obj = out, same.range = FALSE, verbose = FALSE, mfrow = c(2,2)) # creating a 3x1 matrix binomRegMethModelPlot(BEM.obj = out, same.range = FALSE, verbose = FALSE, mfrow = c(3,1)) ## ----eval = TRUE-------------------------------------------------------------- # simulating new data pos <- out$uni.pos my.p <- length(pos) newdata <- expand.grid(pos, c(0, 1), c(0, 1)) colnames(newdata) <- c("Position", "T_cell", "RA") ## ----eval = TRUE-------------------------------------------------------------- # prediction of methylation levels for the new data (logit scale) my.pred.log <- binomRegMethModelPred(out, newdata, type = "link.scale", verbose = FALSE) # prediction of methylation levels for the new data (proportion) my.pred.prop <- binomRegMethModelPred(out, newdata, type = "proportion", verbose = FALSE) ## ----echo = TRUE, eval = TRUE------------------------------------------------- # creating the experimental design newdata$group <- "" newdata[(newdata$RA == 0 & newdata$T_cell == 0),]$group <- "CTRL MONO" newdata[(newdata$RA == 0 & newdata$T_cell == 1),]$group <- "CTRL TCELL" newdata[(newdata$RA == 1 & newdata$T_cell == 0),]$group <- "RA MONO" newdata[(newdata$RA == 1 & newdata$T_cell == 1),]$group <- "RA TCELL" # merge input data and prediction results pred <- cbind(newdata, Logit = my.pred.log, Prop = my.pred.prop) head(pred) ## ----echo = TRUE, eval = TRUE------------------------------------------------- # creating the custom style for each experimental group style <- list( "CTRL MONO" = list(color = "blue", type = "solid"), "CTRL TCELL" = list(color = "green", type = "solid"), "RA MONO" = list(color = "red", type = "solid"), "RA TCELL" = list(color = "black", type = "solid") ) ## ----fig.cap="The predicted methylation levels in the logit scale for the 4 groups of samples with different disease and cell type status.", echo = TRUE, eval = TRUE---- # creating plot (logit scale) binomRegMethPredPlot(pred = pred, pred.type = "link.scale", pred.col = "Logit", group.col = "group", title = "Logit scale", style = style, verbose = TRUE) ## ----fig.cap="The predicted methylation levels in the proportion scale for the 4 groups of samples with different disease and cell type status.", echo = TRUE, eval = TRUE---- # creating plot (proportion) binomRegMethPredPlot(pred = pred, pred.type = "proportion", pred.col = "Prop", group.col = "group", title = "Proportion scale", style = style, verbose = FALSE) ## ----fig.cap="The predicted methylation levels in the logit scale without any experimental design.", eval = TRUE, echo = TRUE---- binomRegMethPredPlot(pred = pred, pred.type = "link.scale", pred.col = "Logit", group.col = NULL, title = "Logit scale", verbose = FALSE) ## ----fig.cap="The predicted methylation levels in the logit scale for the T-cell samples.", echo = TRUE, eval = TRUE---- # exclusion of the MONO cells (not T_cell) pred[(pred$RA == 0 & pred$T_cell == 0),]$group <- NA pred[(pred$RA == 1 & pred$T_cell == 0),]$group <- "" # creating plot (logit scale) binomRegMethPredPlot(pred = pred, pred.type = "link.scale", pred.col = "Logit", group.col = "group", title = "Logit scale", style = style, verbose = FALSE) ## ----sessionInfo, echo=FALSE-------------------------------------------------- sessionInfo()