Package 'synapsis'

April 1, 2025

Type Package

Title An R package to automate the analysis of double-strand break repair during meiosis

Version 1.12.0

Description Synapsis is a Bioconductor software package for automated (unbiased and reproducible) analysis of meiotic immunofluorescence datasets. The primary functions of the software can i) identify cells in meiotic prophase that are labelled by a synaptonemal complex axis or central element protein, ii) isolate individual synaptonemal complexes and measure their physical length, iii) quantify foci and co-localise them with synaptonemal complexes, iv) measure interference between synaptonemal complex-associated foci. The software has applications that extend to multiple species and to the analysis of other proteins that label meiotic prophase chromosomes. The software converts meiotic immunofluorescence images into R data frames that are compatible with machine learning methods. Given a set of microscopy images of meiotic spread slides, synapsis crops images around individual single cells, counts colocalising foci on strands on a per cell basis, and measures the distance between foci on any given strand.

```
biocViews Software, SingleCell
Depends R (>= 4.1)
Imports EBImage, stats, utils, graphics
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.1
VignetteBuilder knitr
Suggests knitr, rmarkdown, testthat (>= 3.0.0), ggplot2, tidyverse,
      BiocStyle
Config/testthat/edition 3
git_url https://git.bioconductor.org/packages/synapsis
git branch RELEASE 3 20
git last commit ac3151c
git_last_commit_date 2024-10-29
Repository Bioconductor 3.20
Date/Publication 2025-03-31
Author Lucy McNeill [aut, cre, cph] (<a href="https://orcid.org/0000-0003-1752-4882">https://orcid.org/0000-0003-1752-4882</a>),
      Wayne Crismani [rev, ctb] (<a href="https://orcid.org/0000-0003-0143-8293">https://orcid.org/0000-0003-0143-8293</a>)
Maintainer Lucy McNeill < luc.mcneill@gmail.com>
```

Contents

```
3
19
19
20
Index
  21
annotate_foci_counting
```

annotate_foci_counting

Description

Contains all plotting routines for count foci annotation

Usage

```
annotate_foci_counting(
  img_file,
  cell_count,
  img_orig,
  img_orig_foci,
  artificial_amp_factor,
  strands,
  coincident_foci,
  foci_label,
  alone_foci,
  percent_px,
  foci_per_cell
)
```

```
img_file cell's file name
cell_count unique cell counter
img_orig original strand crop
img_orig_foci cropped foci channel
```

Value

displays key steps from raw image to coincident foci count

```
annotate_foci_counting_adjusted

annotate_foci_counting_adjusted
```

Description

Contains all plotting routines for count foci annotation

Usage

```
annotate_foci_counting_adjusted(
  img_file,
  cell_count,
  img_orig,
  img_orig_foci,
  artificial_amp_factor,
  strands,
  coincident_foci,
  foci_label,
  alone_foci,
  percent_px,
  foci_per_cell
)
```

4 append_data_frame

```
coincident_foci
mask of overlap between strand and foci channel

foci_label black and white mask of foci channel

alone_foci estimated number of foci that are NOT on a strand.

percent_px percentage of foci mask that coincides with strand channel small number indicates potentially problematic image.

foci_per_cell number of foci counted per cell
```

Value

displays key steps from raw image to coincident foci count

```
append_data_frame append_data_frame
```

Description

applies new row to data frame

Usage

```
append_data_frame(
 WT_str,
 KO_str,
 WT_out,
 KO_out,
  img_file,
  foci_areas,
  df_cells,
  cell_count,
  stage,
  foci_per_cell,
  image_mat,
 percent_px,
 alone_foci,
 discrepant_category,
)
```

auto_crop_fast 5

cell_count unique cell counter

stage meiosis stage of interest. Currently count_foci determines this with threshold-

ing/ object properties in the synaptonemal complex channel by previously calling the get_pachytene function. Note that if using this option, the count_foci function requires that the input directory contains a folder called "pachytene" with

the crops in it.

foci_per_cell foci count for cell

image_mat matrix with all pixel values above zero

percent_px percentage of foci mask that coincides with strand channel small number indi-

cates potentially problematic image.

alone_foci estimated number of foci that are NOT on a strand.

discrepant_category

estimated number of foci that are NOT on a strand.

C1 criteria

Value

data frame with new row

auto_crop_fast

auto_crop_fast

Description

crop an image around each viable cell candidate.

```
auto_crop_fast(
  img_path,
 max_cell_area = 20000,
 min_cell_area = 7000,
 mean_pix = 0.08,
  annotation = "off",
 blob_factor = 15,
 bg_blob_factor = 10,
 offset = 0.2,
  final_blob_amp = 10,
  test_amount = 0,
 brush_size_blob = 51,
  sigma_blob = 15,
  channel3_string = "DAPI",
  channel2_string = "SYCP3",
  channel1_string = "MLH3",
  file_ext = "jpeg"
  third_channel = "off",
  cell_aspect_ratio = 2,
  strand_amp = 2,
  path_out = img_path,
```

6 auto_crop_fast

```
resize_1 = 720,
  crowded_cells = "FALSE",
  watershed_radius = 50,
  watershed_tol = 0.2,
  cropping_factor = 1.3
)
```

Arguments

img_path path containing image data to analyse
max_cell_area Maximum pixel area of a cell candidate
min_cell_area Minimum pixel area of a cell candidate

mean_pix Mean pixel intensity of cell crop (in SYCP3 channel) for normalisation

annotation Choice to output pipeline choices (recommended to knit)

blob_factor Contrast factor to multiply original image by before smoothing/smudging

bg_blob_factor Contrast factor to multiply original image by to take background. Used prior to

thresholding.

offset Pixel value offset from bg_blob_factor. Used in thresholding to make blob mask.

final_blob_amp Contrast factor to multiply smoothed/smudged image. Used in thresholding to

make blob mask.

test_amount Optional number of first N images you want to run function on. For trou-

bleshooting/testing/variable calibration purposes.

brush_size_blob

Brush size for smudging the synaptonemal complex channel to make blobs

sigma_blob Sigma in Gaussian brush for smudging the synaptonemal complex channel to

make blobs

channel3_string

Optional. String appended to the files showing the channel illuminating cell structures. Defaults to DAPI, if third channel == "on".

channel2_string

String appended to the files showing the channel illuminating synaptonemal complexes. Defaults to SYCP3

channel1_string

String appended to the files showing the channel illuminating foci. Defaults to

file_ext file extension of your images e.g. tif jpeg or png.

third_channel Optional, defaults to "off". Set to "on" if you would also like crops of the third

channel.

cell_aspect_ratio

Maximum aspect ratio of blob to be defined as a cell

strand_amp multiplication of strand channel for get blobs function.

path_out user specified output path. Defaults to img_path

resize_l length for resized image

crowded_cells TRUE or FALSE, defaults to FALSE. Set to TRUE if you have many cells in a

frame that almost touch

watershed_radius

Radius (ext variable) in watershed method used in strand channel. Defaults to 1 (small)

count_foci 7

```
watershed_tol Intensity tolerance for watershed method. Defaults to 0.05. cropping_factor
```

size of cropping window square, as factor of characteristic blob radius. Defaults to 1. May need to increase if using watershed.

Details

This function takes all images in a directory, and crops around individual cells according to the antibody that stains synaptonemal complexes e.g. SYCP3. First, it increases the brightness and smudges the image with a Gaussian brush, and creates a mask using thresholding (get_blobs). Then it deletes cell candidates in the mask deemed too large, too small, or too long (keep_cells). Using the computeFeatures functions from EBImage to locate centre and radius, the cropping area is determined and the original image cropped. These images are saved in either a user specified directory, or a crops folder at the location of the image files.

Value

cropped synaptonemal complex and foci channels around single cells, regardless of stage

Author(s)

Lucy McNeill

Examples

```
demo_path = paste0(system.file("extdata",package = "synapsis"))
auto_crop_fast(demo_path, annotation = "on", max_cell_area = 30000,
min_cell_area = 7000, file_ext = "tif",crowded_cells = TRUE)
```

count_foci

count_foci

Description

Calculates coincident foci in synaptonemal complex and foci channel, per cell

```
count_foci(
  img_path,
  stage = "none",
  offset_px = 0.2,
  offset_factor = 2,
  brush_size = 3,
  brush_sigma = 3,
  foci_norm = 0.01,
  annotation = "off",
  channel2_string = "SYCP3",
  channel1_string = "MLH3",
  file_ext = "jpeg",
  KO_str = "--",
  WT_str = "++",
```

8 count_foci

```
KO_out = "-/-",
WT_out = "+/+",
watershed_stop = "off",
watershed_radius = 1,
watershed_tol = 0.05,
crowded_foci = TRUE,
artificial_amp_factor = 1,
strand_amp = 2,
min_foci = -1,
disc_size = 51,
modify_problematic = "off",
disc_size_foci = 5,
C1 = 0.02,
C2 = 0.46,
C_weigh_foci_number = TRUE
```

Arguments

img_path path containing crops to analyse

stage meiosis stage of interest. Currently count_foci determines this with threshold-

ing/ object properties in the synaptonemal complex channel by previously calling the get_pachytene function. Note that if using this option, the count_foci function requires that the input directory contains a folder called "pachytene" with

the crops in it.

offset_px Pixel value offset used in thresholding of synaptonemal complex channel

offset_factor Pixel value offset used in thresholding of foci channel

brush_size size of brush to smooth the foci channel. Should be small to avoid erasing foci.

brush_sigma sigma for Gaussian smooth of foci channel. Should be small to avoid erasing

foci.

foci_norm Mean intensity to normalise all foci channels to.

annotation Choice to output pipeline choices (recommended to knit)

channel2_string

String appended to the files showing the channel illuminating synaptonemal

complexes. Defaults to SYCP3

channel1_string

String appended to the files showing the channel illuminating foci. Defaults to

MLH3

file_ext file extension of your images e.g. tiff jpeg or png.

KO_str string in filename corresponding to knockout genotype. Defaults to -.

WT_str string in filename corresponding to wildtype genotype. Defaults to ++.

KO_out string in output csv in genotype column, for knockout. Defaults to -/-.

WT_out string in output csv in genotype column, for knockout. Defaults to +/+.

 $watershed_stop \ \ Stop \ default \ watershed \ method \ with \ "on"$

watershed_radius

Radius (ext variable) in watershed method used in foci channel. Defaults to 1

(small)

watershed_tol Intensity tolerance for watershed method. Defaults to 0.05.

crowded_foci TRUE or FALSE, defaults to FALSE. Set to TRUE if you have foci > 100 or so. artificial_amp_factor

Amplification of foci channel, for annotation only.

strand_amp multiplication of strand channel to make masks

min_foci minimum pixel area for a foci. Depends on your dpi etc. Defaults to 4

disc_size size of disc for local background calculation in synaptonemal complex channel

modify_problematic

option for synapsis to try and "save" images which have likely been counted incorrectly due to a number of reasons. Default settings are optimized for mouse

pachytene. Defaults to "off"

disc_size_foci size of disc for local background calculation in foci channel

C1 Default crispness criteria = sd(foci_area)/(mean(foci_area)+1)

C2 Alternative crisp criteria.

C_weigh_foci_number

choose crispness criteria- defaults to TRUE to use C1 (weighing with number).

Otherwise set to FALSE to use C2

Details

In this function, masks for the synaptonemal complex (SC) and foci channel are created from the saved crops of single/individual cells. These masks are computed using (optional) input parameters related to meiosis stage/ how well spread chromosomes are (for the former) and related to smoothing, thresholding and how "crowded" foci are for the latter. Finally, these two masks are multiplied, and the number of objects found with EBImage's computeFeatures are the colocalizing foci.

The file, cell number, foci count etc. are output as a data frame.

Value

data frame with foci count per cell

Author(s)

Lucy McNeill

Examples

```
demo_path = paste0(system.file("extdata",package = "synapsis"))
foci_counts <- count_foci(demo_path,offset_factor = 3, brush_size = 3,
brush_sigma = 3, annotation = "on",stage = "pachytene")</pre>
```

Description

Creates mask for every individual cell candidate in mask

Usage

```
crop_single_object_fast(
  retained,
  OOI_final,
  counter_final,
  img_orig,
  img_orig_foci,
  img_orig_DAPI = "blank",
  file_sc,
  file_foci,
  file_DAPI = "blank",
  cell_count,
  mean_pix,
  annotation,
  file_base,
  img_path,
  r_max,
  cx,
  сy,
  channel3_string,
  channel2_string,
  channel1_string,
  file_ext,
  third_channel,
  path_out,
  img_orig_highres,
  resize_l,
  crowded_cells,
  cropping_factor
```

retained	Mask of cell candidates which meet size criteria. After smoothing/smudging and thresholding.
00I_final	Objects of interest count. Total number of cell candidates in retained.
counter_final	Counter for single cell we are focussing on. Remove all other cells where counter_single not equal to counter_final.
img_orig	description
img_orig_foci	description
img_orig_DAPI	description
file_sc	filename of synaptonemal complex channel image
file_foci	filename of foci channel image
file_DAPI	filename of DAPI channel image
cell_count	counter for successful crops around cells
mean_pix	Mean pixel intensity of cell crop (in SYCP3 channel) for normalisation
annotation	Choice to output pipeline choices (recommended to knit)
file_base	filename base common to all three channels i.e. without -MLH3.jpeg etc.

get_blobs 11

img_path path containing image data to analyse r_max maximum radius of blob for cropping

cx centre of blob x cy centre of blob y

channel3_string

Optional. String appended to the files showing the channel illuminating cell structures. Defaults to DAPI, if third channel == "on".

channel2_string

String appended to the files showing the channel illuminating synaptonemal complexes. Defaults to SYCP3

channel1_string

String appended to the files showing the channel illuminating foci. Defaults to

MLH3

file_ext file extension of your images e.g. tif jpeg or png.

third_channel Optional, defaults to "off". Set to "on" if you would also like crops of the third

channel.

path_out user specified output path. Defaults to img_path

img_orig_highres

the original strand image with original resolution

resize_l length of square to resize original image to.

crowded_cells TRUE or FALSE, defaults to FALSE. Set to TRUE if you have many cells in a

frame that almost touch

cropping_factor

size of cropping window square, as factor of characteristic blob radius. Defaults

to 1. May need to increase if using watershed.

Value

Crops around all candidates in both channels

get_blobs get_blobs

Description

Makes mask of all objects bright enough to be classified as a cell cadidate

```
get_blobs(
  img_orig,
  blob_factor,
  bg_blob_factor,
  offset,
  final_blob_amp,
  brush_size_blob,
  sigma_blob,
  watershed_tol,
```

12 get_C1

```
watershed_radius,
crowded_cells,
annotation
)
```

Arguments

img_orig Original image

blob_factor Contrast factor to multiply original image by before smoothing/smudging

bg_blob_factor Contrast factor to multiply original image by to take background. Used prior to

thresholding.

offset Pixel value offset from bg_blob_factor. Used in thresholding to make blob mask.

final_blob_amp Contrast factor to multiply smoothed/smudged image. Used in thresholding to

make blob mask.

brush_size_blob

Brush size for smudging the synaptonemal complex channel to make blobs

sigma_blob Sigma in Gaussian brush for smudging the synaptonemal complex channel to

make blobs

watershed_tol Intensity tolerance for watershed method. Defaults to 0.05.

watershed_radius

Radius (ext variable) in watershed method used in strand channel. Defaults to 1

(small)

crowded_cells TRUE or FALSE, defaults to FALSE. Set to TRUE if you have many cells in a

frame that almost touch

annotation Choice to output pipeline choices (recommended to knit) have many cells in a

frame that almost touch

Value

Mask with cell candidates

get_C1 get_C1

Description

calculates the statistic to compare to crisp_criteria, which determines whether the foci count will be reliable

Usage

```
get_C1(foci_areas, foci_per_cell, C_weigh_foci_number)
```

Arguments

foci_areas pixel area of each foci foci_per_cell foci count for cell C_weigh_foci_number

choose crispness criteria- defaults to TRUE to use C1 (weighing with number). Otherwise set to FALSE to use C2

get_coincident_foci 13

Value

statistic to comapre to crisp_criteria

Description

calculates the statistic to compare to crisp_criteria, which determines whether the foci count will be reliable

Usage

```
get_coincident_foci(
  offset_px,
  offset_factor,
  brush_size,
  brush_sigma,
  annotation,
  watershed_stop,
  watershed_radius,
  watershed_tol,
  crowded_foci,
  artificial_amp_factor,
  strand_amp,
  disc_size,
  disc_size_foci,
  img_file,
  cell_count,
  img_orig,
  {\tt img\_orig\_foci},
  stage,
  WT_str,
  KO_str,
  WT_out,
  KO_out,
  C1_search,
  discrepant_category,
  C1,
  C2,
  df_cells,
  C_weigh_foci_number
```

Arguments

offset_px Pixel value offset used in thresholding of synaptonemal complex channel
offset_factor Pixel value offset used in thresholding of foci channel
brush_size size of brush to smooth the foci channel. Should be small to avoid erasing foci.

14 get_coincident_foci

brush_sigma sigma for Gaussian smooth of foci channel. Should be small to avoid erasing

foci.

annotation Choice to output pipeline choices (recommended to knit)

watershed_stop Stop default watershed method with "on"

watershed_radius

Radius (ext variable) in watershed method used in foci channel. Defaults to 1

(small)

watershed_tol Intensity tolerance for watershed method. Defaults to 0.05.

crowded_foci TRUE or FALSE, defaults to FALSE. Set to TRUE if you have foci > 100 or so.

artificial_amp_factor

Amplification of foci channel, for annotation only.

strand_amp multiplication of strand channel to make masks

disc_size size of disc for local background calculation in synaptonemal complex channel

disc_size_foci size of disc for local background calculation in foci channel

stage meiosis stage of interest. Currently count foci determines this with threshold-

ing/ object properties in the synaptonemal complex channel by previously calling the get_pachytene function. Note that if using this option, the count_foci function requires that the input directory contains a folder called "pachytene" with

the crops in it.

WT_str string in filename corresponding to wildtype genotype. Defaults to ++.

KO_str string in filename corresponding to knockout genotype. Defaults to -.

WT_out string in output csv in genotype column, for knockout. Defaults to +/+.

KO_out string in output csv in genotype column, for knockout. Defaults to -/-.

C1_search TRUE or FALSE whether the image is still being modified until it meets the

crispness criteria

discrepant_category

estimated number of foci that are NOT on a strand.

C1 Default crispness criteria = sd(foci_area)/(mean(foci_area)+1)

C2 Alternative crisp criteria.

df_cells current data frame

C_weigh_foci_number

choose crispness criteria- defaults to TRUE to use C1 (weighing with number).

Otherwise set to FALSE to use C2

Value

data frame with new row with most recent foci per cell appended

get_foci_per_cell 15

```
get_foci_per_cell get_foci_per_cell
```

Description

creates mask for coincident foci

Usage

```
get_foci_per_cell(
   img_file,
   offset_px,
   stage,
   strands,
   watershed_stop,
   foci_label,
   annotation,
   cell_count,
   img_orig,
   img_orig_foci,
   artificial_amp_factor,
   coincident_foci
)
```

Arguments

img_file cell's file name offset_px Pixel value offset used in thresholding of synaptonemal complex channel meiosis stage of interest. Currently count_foci determines this with thresholdstage ing/object properties in the synaptonemal complex channel by previosly calling the get_pachytene function. Note that if using this option, the count_foci function requires that the input directory contains a folder called "pachytene" with the crops in it. black white mask of strand channel strands Stop default watershed method with "on" watershed_stop foci_label black and white mask of foci channel annotation Choice to output pipeline choices (recommended to knit) cell_count unique cell counter img_orig original strand crop img_orig_foci cropped foci channel

Value

number of foci per cell

coincident_foci

artificial_amp_factor

amplification factor

mask of coincident foci

16 get_pachytene

```
get_overlap_mask
```

get_overlap_mask

Description

creates mask for coincident foci

Usage

```
get_overlap_mask(
   strands,
   foci_label,
   watershed_stop,
   img_orig_foci,
   watershed_radius,
   watershed_tol
)
```

Arguments

```
strands black white mask of strand channel

foci_label black and white mask of foci channel

watershed_stop Stop default watershed method with "on"

img_orig_foci cropped foci channel

watershed_radius

Radius (ext variable) in watershed method used in foci channel. Defaults to 1

(small)

watershed_tol Intensity tolerance for watershed method. Defaults to 0.05.
```

Value

mask with coincident foci on strands

get_pachytene

get_pachytene

Description

Identifies crops in pachytene

```
get_pachytene(
  img_path,
  species_num = 20,
  offset = 0.2,
  ecc_thresh = 0.85,
  area_thresh = 0.06,
```

get_pachytene 17

```
annotation = "off",
  channel2_string = "SYCP3",
  channel1_string = "MLH3",
  file_ext = "jpeg",
  KO_str = "--",
  WT_str = "++",
  KO_out = "-/-",
  WT_out = "+/+",
  path_out = img_path,
  artificial_amp_factor = 3,
  strand_amp = 2,
  resize_l = 120
)
```

Arguments

	img_path	path containing crops analyse
	species_num	number of chromosomes in the species
	offset	Pixel value offset used in the rholding for the synaptonemal complex (SYCP3) channel $$
	ecc_thresh	The minimum average eccentricity of all objects in mask determined by compute features, for a cell to be pachytene.
	area_thresh	The minimum ratio of pixels included in mask to total, for a cell to be classified as pachytene.
	annotation	Choice to output pipeline choices (recommended to knit)
channel2_string		
		String appended to the files showing the channel illuminating synaptonemal complexes. Defaults to SYCP3
channel1_string		
		String appended to the files showing the channel illuminating foci. Defaults to MLH3
	file_ext	file extension of your images e.g. tiff jpeg or png.
	KO_str	string in filename corresponding to knockout genotype. Defaults to
	WT_str	string in filename corresponding to wildtype genotype. Defaults to ++.
	KO_out	string in output csv in genotype column, for knockout. Defaults to -/
	WT_out	string in output csv in genotype column, for knockout. Defaults to +/+.
	path_out	user specified output path. Defaults to img_path
	artificial_amp_	factor
		Amplification of foci channel, for RGB output files. Deaults to 3.
	strand_amp	multiplication of strand channel.
	resize_l	length of resized square cell image.

Details

This function takes the crops make by auto_crop fast, and determines the number of synaptonemal complex candidates by considering the local background and using EBImage functions. In general, very bright objects which contrast highly with the background will be classified as the same object. Dim objects will likely be classified as many different objects. If the number of objects is too high compared to the species number (species_num) then the cell is determined to not be in pachytene. Note that this function has been optimized for mouse cells which can be very well spread / separated.

18 keep_cells

Value

Pairs of foci and synaptonemal channel crops for pachytene

Author(s)

Lucy McNeill

Examples

```
demo_path = paste0(system.file("extdata",package = "synapsis"))
SYCP3_stats <- get_pachytene(demo_path,ecc_thresh = 0.8, area_thresh = 0.04, annotation = "on")</pre>
```

keep_cells

keep_cells

Description

Deletes objects in mask which are too small, large, oblong i.e. unlikely to be a cell

Usage

```
keep_cells(
  candidate,
  max_cell_area,
  min_cell_area,
  cell_aspect_ratio,
  crowded_cells,
  annotation
)
```

Arguments

Value

Mask of cell candidates which meet size criteria

make_foci_mask 19

make_foci_mask

make_foci_mask

Description

creates foci mask for foci channel crop

Usage

```
make_foci_mask(
   offset_factor,
   bg,
   crowded_foci,
   img_orig_foci,
   brush_size,
   brush_sigma,
   disc_size_foci
)
```

Arguments

offset_factor Pixel value offset used in thresholding of foci channel

bg background value- currently just mean pixel value of whole image

crowded_foci TRUE or FALSE, defaults to FALSE. Set to TRUE if you have foci > 100 or so.

img_orig_foci cropped foci channel

brush_size size of brush to smooth the foci channel. Should be small to avoid erasing foci.
brush_sigma sigma for Gaussian smooth of foci channel. Should be small to avoid erasing

foci.

disc_size_foci size of disc for local background calculation in foci channel

Value

foci mask

make_strand_mask

make_strand_mask

Description

creates strand mask for strand channel crop

```
make_strand_mask(
  offset_px,
  stage,
  img_orig,
  disc_size,
  brush_size,
  brush_sigma
)
```

20 remove_XY

Arguments

offset_px Pixel value offset used in thresholding of synaptonemal complex channel

meiosis stage of interest. Currently count_foci determines this with thresholdstage

ing/object properties in the synaptonemal complex channel by previosly calling the get_pachytene function. Note that if using this option, the count_foci function requires that the input directory contains a folder called "pachytene" with

the crops in it.

img_orig original strand crop

disc_size size of disc for local background calculation in synaptonemal complex channel brush_size size of brush to smooth the foci channel. Should be small to avoid erasing foci.

brush_sigma

sigma for Gaussian smooth of foci channel. Should be small to avoid erasing

foci.

Value

strand mask

remove_XY remove_XY

Description

applies new row to data frame

Usage

```
remove_XY(foci_label, foci_candidates, foci_areas)
```

Arguments

foci_label black and white mask of foci channel

foci_candidates

computeFeatures data frame of foci channel

the areas of the foci objects foci_areas

Value

mask with XY blob removed

Index

```
annotate_foci_counting, 2
{\tt annotate\_foci\_counting\_adjusted, 3}
append_data_frame, 4
auto_crop_fast, 5
count_foci, 7
{\tt crop\_single\_object\_fast}, 9
get_blobs, 11
get_C1, 12
get_coincident_foci, 13
{\tt get\_foci\_per\_cell}, {\tt 15}
{\tt get\_overlap\_mask}, {\color{red} 16}
{\tt get\_pachytene}, \\ \frac{16}{}
keep_cells, 18
{\tt make\_foci\_mask}, \\ 19
{\tt make\_strand\_mask}, \\ 19
remove_XY, 20
```