
Package ‘maSigPro’
December 30, 2024

Type Package

Title Significant Gene Expression Profile Differences in Time Course
Gene Expression Data

Version 1.78.0

Author Ana Conesa and Maria Jose Nueda

Maintainer Maria Jose Nueda <mj.nueda@ua.es>

Description maSigPro is a regression based approach to find genes for which there are signifi-
cant gene expression profile differences between experimental groups in time course microar-
ray and RNA-Seq experiments.

Depends R (>= 2.3.1)

Imports Biobase, graphics, grDevices, venn, mclust, stats, MASS

LazyLoad yes

License GPL (>= 2)

biocViews Microarray, RNA-Seq, Differential Expression, TimeCourse

git_url https://git.bioconductor.org/packages/maSigPro

git_branch RELEASE_3_20

git_last_commit fe4032a

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2024-12-30

Contents
average.rows . 2
data.abiotic . 3
edesign.abiotic . 4
edesignCT . 5
edesignDR . 6
get.siggenes . 7
getDS . 10
getDSPatterns . 11
i.rank . 12
ISOdata . 13
ISOdesign . 14

1

2 average.rows

IsoModel . 15
IsoPlot . 16
make.design.matrix . 18
maSigProUsersGuide . 19
NBdata . 20
NBdesign . 20
p.vector . 21
PlotGroups . 23
PlotProfiles . 26
PodiumChange . 28
position . 29
reg.coeffs . 30
see.genes . 31
seeDS . 34
stepback . 35
stepfor . 37
suma2Venn . 38
T.fit . 39
tableDS . 42
two.ways.stepback . 43
two.ways.stepfor . 44

Index 47

average.rows Average rows by match and index

Description

average.rows matches rownames of a matrix to a match vector and performs averaging of the rows
by the index provided by an index vector.

Usage

average.rows(x, index, match, r = 0.7)

Arguments

x a matrix

index index vector indicating how rows must be averaged

match match vector for indexing rows

r minimal correlation value between rows to compute average

Details

rows will be averaged only if the pearson correlation coefficient between all rows of each given
index is greater than r. If not, that group of rows is discarded in the result matrix.

Value

a matrix of averaged rows

data.abiotic 3

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

Examples

create data matrix for row averaging
x <- matrix(rnorm(30), nrow = 6,ncol = 5)
rownames(x) <- paste("ID", c(1, 2, 11, 12, 19, 20), sep = "")
i <- paste("g", rep(c(1:10), each = 2), sep = "") # index vector
m <- paste("ID", c(1:20), sep = "") # match vector
average.rows(x, i, m, r = 0)

data.abiotic Gene expression data potato abiotic stress

Description

data.abiotic contains gene expression of a time course microarray experiment where potato
plants were submitted to 3 different abiotic stresses.

Usage

data(data.abiotic)

Format

A data frame with 1000 observations on the following 36 variables.

Control_3H_1 a numeric vector

Control_3H_2 a numeric vector

Control_3H_3 a numeric vector

Control_9H_1 a numeric vector

Control_9H_2 a numeric vector

Control_9H_3 a numeric vector

Control_27H_1 a numeric vector

Control_27H_2 a numeric vector

Control_27H_3 a numeric vector

Cold_3H_1 a numeric vector

Cold_3H_2 a numeric vector

Cold_3H_3 a numeric vector

Cold_9H_1 a numeric vector

Cold_9H_2 a numeric vector

Cold_9H_3 a numeric vector

Cold_27H_1 a numeric vector

Cold_27H_2 a numeric vector

Cold_27H_3 a numeric vector

4 edesign.abiotic

Heat_3H_1 a numeric vector

Heat_3H_2 a numeric vector

Heat_3H_3 a numeric vector

Heat_9H_1 a numeric vector

Heat_9H_2 a numeric vector

Heat_9H_3 a numeric vector

Heat_27H_1 a numeric vector

Heat_27H_2 a numeric vector

Heat_27H_3 a numeric vector

Salt_3H_1 a numeric vector

Salt_3H_2 a numeric vector

Salt_3H_3 a numeric vector

Salt_9H_1 a numeric vector

Salt_9H_2 a numeric vector

Salt_9H_3 a numeric vector

Salt_27H_1 a numeric vector

Salt_27H_2 a numeric vector

Salt_27H_3 a numeric vector

Details

This data set is part of a larger experiment in wich gene expression was monitored in both roots and
leaves using a 11K cDNA potato chip. This example data set contains a ramdom subset of 1000
genes of the leave study.

References

Rensink WA, Iobst S, Hart A, Stegalkina S, Liu J, Buell CR. Gene expression profiling of potato
responses to cold, heat, and salt stress. Funct Integr Genomics. 2005 Apr 22.

Examples

data(data.abiotic)

edesign.abiotic Experimental design potato abiotic stress

Description

edesign.abiotic contains experimental set up of a time course microarray experiment where
potato plants were submitted to 3 different abiotic stresses.

Usage

data(edesign.abiotic)

edesignCT 5

Format

A matrix with 36 rows and 6 columns

rows [1:36] "Control 3h 1" "Control 3h 2" "Control 3h 3" "Control 9h 1" ...

columns [1:6] "Time" "Replicates" "Control" "Cold" "Heat" "Salt"

Details

Arrays are given in rows and experiment descriptors are given in columns. Row names contain
array names.

"Time" indicates the values that variable Time takes in each hybridization.

"Replicates" is an index indicating replicate hyridizations, i.e. hybridizations are numbered,
giving replicates the same number.

"Control", "Cold", "Heat" and "Salt" columns indicate array assigment to experimental groups,
coding with 1 and 0 whether each array belongs to that group or not.

References

Rensink WA, Iobst S, Hart A, Stegalkina S, Liu J, Buell CR. Gene expression profiling of potato
responses to cold, heat, and salt stress. Funct Integr Genomics. 2005 Apr 22.

Examples

data(edesignCR)

edesignCT Experimental design with a shared time

Description

edesignCT contains the experimental set up of a time course microarray experiment where there is
a common starting point for the different experimental groups.

Usage

data(edesignCT)

Format

A matrix with 32 rows and 7 colums

rows [1:32] "Array1" "Array2" "Array3" "Array4" ...

columns [1:7] "Time" "Replicates" "Control" "Tissue1" "Tissue2" "Tissue3" "Tissue4"

6 edesignDR

Details

Arrays are given in rows and experiment descriptors are given in columns. Row names contain
array names.

"Time" indicates the values that variable Time takes in each hybridization. There are 4 time points,
which allows an up to 3 degree regression polynome.

"Replicates" is an index indicating replicate hyridizations, i.e. hybridizations are numbered,
giving replicates the same number.

"Control", "Tissue1", "Tissue2", "Tissue3" and "Tissue4" columns indicate array assigment
to experimental groups, coding with 1 and 0 whether each array belongs to that group or not.

Examples

data(edesignCT)

edesignDR Experimental design with different replicates

Description

edesignDR contains experimental set up of a replicated time course microarray experiment where
rats were submitted to 3 different dosis of a toxic compound. A control and an placebo treatments
are also present in the experiment.

Usage

data(edesignDR)

Format

A matrix with 54 rows and 7 columns

rows [1:54] "Array1" "Array2" "Array3" "Array4" ...

columns [1:7] "Time" "Replicates" "Control" "Placebo" "Low" "Medium" "High"

Details

Arrays are given in rows and experiment descriptors are given in columns. Row names contain
array names.

"Time" indicates the values that variable Time takes in each hybridization.

"Replicates" is an index indicating replicate hyridizations, i.e. hybridizations are numbered,
giving replicates the same number.

"Control", "Placebo", "Low", "Medium" and "High" columns indicate array assigment to exper-
imental groups, coding with 1 and 0 whether each array belongs to that group or not.

References

Heijne, W.H.M.; Stierum, R.; Slijper, M.; van Bladeren P.J. and van Ommen B.(2003). Toxicoge-
nomics of bromobenzene hepatotoxicity: a combined transcriptomics and proteomics approach.
Biochemical Pharmacology 65 857-875.

get.siggenes 7

Examples

data(edesignDR)

get.siggenes Extract significant genes for sets of variables in time series gene ex-
pression experiments

Description

This function creates lists of significant genes for a set of variables whose significance value has
been computed with the T.fit function.

Usage

get.siggenes(tstep, rsq = 0.7, add.IDs = FALSE, IDs = NULL, matchID.col = 1,
only.names = FALSE, vars = c("all", "each", "groups"),

significant.intercept = "dummy",

groups.vector = NULL, trat.repl.spots = "none",
index = IDs[, (matchID.col + 1)], match = IDs[, matchID.col],

r = 0.7)

Arguments

tstep a T.fit object

rsq cut-off level at the R-squared value for the stepwise regression fit. Only genes
with R-squared more than rsq are selected

add.IDs logical indicating whether to include additional gene id’s in the result

IDs matrix contaning additional gene id information (required when add.IDs is
TRUE)

matchID.col number of matching column in matrix IDs for adding genes ids

only.names logical. If TRUE, expression values are ommited in the results

vars variables for which to extract significant genes (see details)
significant.intercept

experimental groups for which significant intercept coefficients are considered
(see details)

groups.vector required when vars is "groups".
trat.repl.spots

treatment given to replicate spots. Possible values are "none" and "average"

index argument of the average.rows function to use when trat.repl.spots is "average"

match argument of the average.rows function to use when trat.repl.spots is "average"

r minimun pearson correlation coefficient for replicated spots profiles to be aver-
aged

8 get.siggenes

Details

There are 3 possible values for the vars argument:

"all": generates one single matrix or gene list with all significant genes.

"each": generates as many significant genes extractions as variables in the general regression
model. Each extraction contains the significant genes for that variable.

"groups": generates a significant genes extraction for each experimental group.

The difference between "each" and "groups" is that in the first case the variables of the same group
(e.g. "TreatmentA" and "time*TreatmentA") will be extracted separately and in the second case
jointly.

When add.IDs is TRUE, a matrix of gene ids must be provided as argument of IDs, the matchID.col
column of which having same levels as in the row names of sig.profiles. The option only.names
is TRUE will generate a vector of significant genes or a matrix when add.IDs is set also to TRUE.

When trat.repl.spots is "average", match and index vectors are required for the average.rows
function. In gene expression data context, the index vector would contain geneIDs and indicate
which spots are replicates. The match vector is used to match these genesIDs to rows in the signifi-
cant genes matrix, and must have the same levels as the row names of sig.profiles.

The argument significant.intercept modulates the treatment for intercept coefficients to ap-
ply for selecting significant genes when vars equals "groups". There are three possible values:
"none", no significant intercept (differences) are considered for significant gene selection, "dummy",
includes genes with significant intercept differences between control and experimental groups, and
"all" when both significant intercept coefficient for the control group and significant intercept
differences are considered for selecting significant genes.

add.IDs = TRUE and trat.repl.spots = "average" are not compatible argumet values. add.IDs
= TRUE and only.names = TRUE are compatible argumet values.

Value

summary a vector or matrix listing significant genes for the variables given by the function
parameters

sig.genes a list with detailed information on the significant genes found for the variables
given by the function parameters. Each element of the list is also a list contain-
ing:

sig.profiles: expression values of significant genes
coefficients: regression coefficients of the adjusted models
groups.coeffs: regression coefficients of the impiclit models of each experi-

mental group
sig.pvalues: p-values of the regression coefficients for significant genes
g: number of genes
...: arguments passed by previous functions

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102

get.siggenes 9

Examples

GENERATE TIME COURSE DATA
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)

{

tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)

}
tc.dat

}
Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE (n = 10, r = 3, b2 = 0.5, c2 = 1.3)
Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE(n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03)
Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA [sample(c(1:(300*36)), 300)] <- NA # introduce missing values

CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")

tc.p <- p.vector(tc.DATA, design = make.design.matrix(edesign), Q = 0.01)
tc.tstep <- T.fit(data = tc.p , alfa = 0.05)

This will obtain sigificant genes per experimental group
which have a regression model Rsquared > 0.9
tc.sigs <- get.siggenes (tc.tstep, rsq = 0.9, vars = "groups")

10 getDS

This will obtain all sigificant genes regardless the Rsquared value.
Replicated genes are averaged.
IDs <- rbind(paste("feature", c(1:300), sep = ""),

rep(paste("gene", c(1:150), sep = ""), each = 2))
tc.sigs.ALL <- get.siggenes (tc.tstep, rsq = 0, vars = "all", IDs = IDs)
tc.sigs.groups <- get.siggenes (tc.tstep, rsq = 0, vars = "groups", significant.intercept="dummy")

getDS Extract lists of significant isoforms from Differentially Spliced Genes
(DSG)

Description

getDS creates lists of significant isoforms from Differentially Spliced Genes (DSG)

Usage

getDS(Model, vars="all", rsq=0.4)

Arguments

Model a IsoModel object

vars argument of the get.siggenes function applied to isoforms

rsq cut-off level at the R-squared value for the stepwise regression fit. Only isoforms
with R-squared more than rsq are selected

Details

There are 3 possible values for the vars argument: "all", "each" and "groups". See get.siggenes.

Value

In the console a summary of the selection is printed.

Model a IsoModel object to be used in the following steps

get2 a get.siggenes object to be used in the following steps

DSG Names of the selected genes: Differentially Spliced Genes

DET Names of the selected Isoforms: Differentally Expressed Transcripts

List0 a list with the names of Differentially Spliced Genes without Isoforms with R-
squared higher than rsq

NumIso.by.gene Number of selected Isoforms for each Differentially Spliced Gene

Author(s)

Maria Jose Nueda, <mj.nueda@ua.es>

getDSPatterns 11

References

Nueda, M.J., Martorell, J., Marti, C., Tarazona, S., Conesa, A. 2018. Identification and visualization
of differential isoform expression in RNA-seq time series. Bioinformatics. 34, 3, 524-526.

Nueda, M.J., Tarazona, S., Conesa, A. 2014. Next maSigPro: updating maSigPro bioconductor
package for RNA-seq time series. Bioinformatics, 30, 2598-602.

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102.

See Also

get.siggenes, IsoModel

Examples

data(ISOdata)
data(ISOdesign)
mdis <- make.design.matrix(ISOdesign)
MyIso <- IsoModel(data=ISOdata[,-1], gen=ISOdata[,1], design=mdis, counts=TRUE)

Myget <- getDS(MyIso)
Myget$DSG
Myget$DET

see <- seeDS(Myget, cluster.all=FALSE, k=6)
table <- tableDS(see)
table$IsoTable

getDSPatterns Lists of genes with Isoforms in different clusters

Description

getDSPatterns is a function that makes a list with the names of genes identified with tableDS
function.

Usage

getDSPatterns(tableDS, Cluster.Major, Cluster.minor)

Arguments

tableDS a tableDS object

Cluster.Major Number of the cluster where the major isoform belongs to

Cluster.minor Number(s) of the cluster(s) where the minor isoform(s) belongs to (see details)

Details

When minor isoforms belong to different clusters, tableDS codifies them using "&". For instance:
clusters 1 and 2, will be represented as "1&2". In such cases quotation marks must be used (see
examples). When minor isoforms are only in one cluster there is no need to use quotation marks.

12 i.rank

Value

A vector with the names of the genes.

Author(s)

Maria Jose Nueda, <mj.nueda@ua.es>

References

Nueda, M.J., Martorell, J., Marti, C., Tarazona, S., Conesa, A. 2018. Identification and visualization
of differential isoform expression in RNA-seq time series. Bioinformatics. 34, 3, 524-526.

Nueda, M.J., Tarazona, S., Conesa, A. 2014. Next maSigPro: updating maSigPro bioconductor
package for RNA-seq time series. Bioinformatics, 30, 2598-602.

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102.

See Also

tableDS, IsoModel

Examples

data(ISOdata)
data(ISOdesign)
mdis <- make.design.matrix(ISOdesign)
MyIso <- IsoModel(data=ISOdata[,-1], gen=ISOdata[,1], design=mdis, counts=TRUE)
Myget <- getDS(MyIso)
see <- seeDS(Myget, cluster.all=FALSE, k=6)
table <- tableDS(see)
table$IsoTable

getDSPatterns(table, 1, 4)
getDSPatterns(table, "1", "4") #will give the same result.

getDSPatterns(table, 1, "1&5")

i.rank Ranks a vector to index

Description

Ranks the values in a vector to sucessive values. Ties are given the same value.

Usage

i.rank(x)

Arguments

x vector

ISOdata 13

Value

Vector of ranked values

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

See Also

rank,order

Examples

i.rank(c(1, 1, 1, 3, 3, 5, 7, 7, 7))

ISOdata RNA-Seq dataset example for isoforms

Description

ISOdata contains an example of RNA-Seq data at Isoform level.

Usage

data(ISOdata)

Format

A data frame with 2782 rows and 37 columns with RNA-Seq data.

Details

Rows correspond to 2782 isoforms belonging to 1000 gene.

First column is the name of the gene each isoform belongs to.

Remaining columns are the RNA-Seq data samples asociated to 3 replicates of 12 experimental
conditions.

Examples

data(ISOdata)
data(ISOdesign)

mdis <- make.design.matrix(ISOdesign)
MyIso <- IsoModel(data=ISOdata[,-1], gen=ISOdata[,1], design=mdis, counts=TRUE)

14 ISOdesign

ISOdesign Experimental design for ISOdata dataset example

Description

ISOdesign is the experimental design to apply ISOmaSigPro to ISOdata dataset example.

Usage

data(ISOdesign)

Format

A matrix with 36 rows and 4 colums

rownames(ISOdesign) "Gr1_0h_1" "Gr1_0h_2" "Gr1_0h_3" "Gr1_2h_1" "Gr1_2h_2" "Gr1_2h_3"
"Gr1_6h_1" "Gr1_6h_2" "Gr1_6h_3" "Gr1_12h_1" "Gr1_12h_2" "Gr1_12h_3" "Gr1_18h_1" "Gr1_18h_2"
"Gr1_18h_3" "Gr1_24h_1" "Gr1_24h_2" "Gr1_24h_3" "Gr2_0h_1" "Gr2_0h_2" "Gr2_0h_3" "Gr2_2h_1"
"Gr2_2h_2" "Gr2_2h_3" "Gr2_6h_1" "Gr2_6h_2" "Gr2_6h_3" "Gr2_12h_1" "Gr2_12h_2" "Gr2_12h_3"
"Gr2_18h_1" "Gr2_18h_2" "Gr2_18h_3" "Gr2_24h_1" "Gr2_24h_2" "Gr2_24h_3"

colnames(ISOdesign) "time" "replicate" "Group1" "Group2"

Details

Samples are given in rows and experiment descriptors are given in columns. Row names contain
sample names.

"time" indicates the values that variable Time takes in each experimental condition. There are 6
time points.

"replicate" is an index indicating the same experimental condition.

"Group1" and "Group2" columns indicate assigment to experimental groups, coding with 1 and 0
whether each sample belongs to that group or not.

Examples

data(ISOdata)
data(ISOdesign)

mdis <- make.design.matrix(ISOdesign)
MyIso <- IsoModel(data=ISOdata[,-1], gen=ISOdata[,1], design=mdis, counts=TRUE)

IsoModel 15

IsoModel Detection of genes with Isoforms with different gene expression in time
course experiments

Description

IsoModel Performs a model comparison for each gene to detect genes with different trends in time
course experiments and applies maSigPro to the Isoforms belonging to selected genes.

Usage

IsoModel(data, gen, design = NULL, Q = 0.05, min.obs = 6, minorFoldfilter = NULL,
counts = FALSE, family = NULL, theta = 10, epsilon = 1e-05)

Arguments

data matrix containing isoform expression. Isoforms must be in rows and experimen-
tal conditions in columns

gen vector with the name of the gene each isoform belongs to

design design matrix for the regression fit such as that generated by the make.design.matrix
function

Q significance level

min.obs cases with less than this number of true numerical values will be excluded from
the analysis. Minimum value to estimate the model is (degree+1)xGroups+1.
Default is 6.

minorFoldfilter

fold expression difference between minor isoforms and the most expressed iso-
form to exclude minor isoforms from analysis. Default NULL

counts a logical indicating whether your data are counts

family the distribution function to be used in the glm model. It must be specified as
a function: gaussian(), poisson(), negative.binomial(theta)... If NULL fam-
ily will be negative.binomial(theta) when counts=TRUE or gaussian() when
counts=FALSE

theta theta parameter for negative.binomial family

epsilon argument to pass to glm.control, convergence tolerance in the iterative process
to estimate de glm model

Details

rownames(design) and colnames(data) must be identical vectors and indicate experimental con-
dition names.

rownames(data) should contain unique isoform IDs.

colnames(design) are the given names for the variables in the regression model.

16 IsoPlot

Value

data input data matrix to be used in the following steps

gen input gen vector to be used in the following steps

design input design matrix to be used in the following steps

DSG Names of the selected genes: Differentially Spliced Genes

pvector p.vector output of isoforms that belong to selected.genes

Tfit Tfit output of isoforms that belong to selected.genes

Author(s)

Maria Jose Nueda, <mj.nueda@ua.es>

References

Nueda, M.J., Martorell, J., Marti, C., Tarazona, S., Conesa, A. 2018. Identification and visualization
of differential isoform expression in RNA-seq time series. Bioinformatics. 34, 3, 524-526.

Nueda, M.J., Tarazona, S., Conesa, A. 2014. Next maSigPro: updating maSigPro bioconductor
package for RNA-seq time series. Bioinformatics, 30, 2598-602.

Conesa, A., Nueda M.J., Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Significant
Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics 22, 1096-
1102.

See Also

p.vector, T.fit

Examples

data(ISOdata)
data(ISOdesign)
mdis <- make.design.matrix(ISOdesign)
MyIso <- IsoModel(data=ISOdata[,-1], gen=ISOdata[,1], design=mdis, counts=TRUE)
Myget <- getDS(MyIso)
see <- seeDS(Myget, cluster.all=FALSE, k=6)
table <- tableDS(see)
table$IsoTable

IsoPlot Plotting the isoform profiles of a specific gene by groups

Description

This function makes a plot with the isoforms of a specific gene splitting the different experimental
groups.

Usage

IsoPlot(get, name, only.sig.iso=FALSE, ylim=NULL, xlab = "Time",
ylab = "Expression value", points=TRUE, cex.main=3,cex.legend=1.5)

IsoPlot 17

Arguments

get a getDS object a cluster of flat Isoform

name Name of the specific gen to show in the plot

only.sig.iso TRUE when the plot is made only with statistically significant isoforms.

ylim Range of the y axis of the desired plot. If it is NULL it will be computed auto-
matically.

xlab label for the x axis

ylab label for the y axis

points TRUE to plot points and lines. FALSE to plot only lines.

cex.main graphical parameter magnification to be used for main

cex.legend graphical parameter magnification to be used for legend

Details

The plot can be made with all the available isoforms or only with the statistilly significant ones.

Value

Plot of isoform profiles of a specific gene by groups.

Author(s)

Maria Jose Nueda, <mj.nueda@ua.es>

References

Nueda, M.J., Martorell, J., Marti, C., Tarazona, S., Conesa, A. 2018. Identification and visualization
of differential isoform expression in RNA-seq time series. Bioinformatics. 34, 3, 524-526.

Nueda, M.J., Tarazona, S., Conesa, A. 2014. Next maSigPro: updating maSigPro bioconductor
package for RNA-seq time series. Bioinformatics, 30, 2598-602.

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102.

See Also

getDS, IsoModel

Examples

data(ISOdata)
data(ISOdesign)
mdis <- make.design.matrix(ISOdesign)
MyIso <- IsoModel(data=ISOdata[,-1], gen=ISOdata[,1], design=mdis, counts=TRUE)
Myget <- getDS(MyIso)

IsoPlot(Myget,"Gene1005",only.sig.iso=FALSE,cex.main=2,cex.legend=1)

18 make.design.matrix

make.design.matrix Make a design matrix for regression fit of time series gene expression
experiments

Description

make.design.matrix creates the design matrix of dummies for fitting time series micorarray gene
expression experiments.

Usage

make.design.matrix(edesign, degree = 2, time.col = 1,
repl.col = 2, group.cols = c(3:ncol(edesign)))

Arguments

edesign matrix describing experimental design. Rows must be arrays and columns ex-
periment descriptors

degree the degree of the regression fit polynome. degree = 1 returns linear regression,
degree = 2 returns quadratic regression, etc

time.col column number in edesign containing time values. Default is first column

repl.col column number in edesign containing coding for replicate arrays. Default is
second column

group.cols column numbers in edesign indicating the coding for each experimental group
(treatment, tissue, ...). See details

Details

rownames of edesign object should contain the arrays naming (i.e. array1, array2, ...). colnames of
edesign must contain the names of experiment descriptors(i.e. "Time", "Replicates", "Treatment A",
"Treatment B", etc.). for each experimental group a different column must be present in edesign,
coding with 1 and 0 whether each array belongs to that group or not.

make.design.matrix returns a design matrix where rows represent arrays and column variables of
time, dummies and their interactions for up to the degree given. Dummies show the relative effect
of each experimental group related to the first one. Single dummies indicate the abcissa component
of each group. $Time*dummy$ variables indicate slope changes, $Time^2*dummy$ indicates cur-
vature changes. Higher grade values could model complex responses. In case experimental groups
share a initial state (i.e. common time 0), no single dummies are modeled.

Value

dis design matrix of dummies for fitting time series

groups.vector vector coding the experimental group to which each variable belongs to

edesign edesign value passed as argument

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

maSigProUsersGuide 19

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102

Examples

data(edesign.abiotic, edesignCT)
make.design.matrix(edesign.abiotic) # quadratic model
make.design.matrix(edesignCT, degree = 3) # cubic model with common starting time point

maSigProUsersGuide View maSigPro User’s Guide

Description

Finds the location of the maSigPro User’s Guide and opens it.

Usage

maSigProUsersGuide(view=TRUE)

Arguments

view logical, to specify if the document is opened using the PDF document reader.

Details

The function vignette("maSigPro") will find the short maSigPro Vignette which describes how
to obtain the maSigPro User’s Guide. The User’s Guide is not itself a true vignette because it is not
automatically generated using Sweave during the package build process. This means that it cannot
be found using vignette, hence the need for this special function.

If the operating system is other than Windows, then the PDF viewer used is that given by Sys.getenv("R_PDFVIEWER").
The PDF viewer can be changed using Sys.putenv(R_PDFVIEWER=).

Value

If vignette(view=TRUE), the PDF document reader is started and the User’s Guide is opened. If
vignette(view=FALSE), returns the file location.

Examples

maSigProUsersGuide()
maSigProUsersGuide(view=FALSE)

20 NBdesign

NBdata RNA-Seq dataset example

Description

NBdata contains a subset of a bigger normalized negative binomial simulated dataset.

Usage

data(NBdata)

Format

A data frame with 100 observations on 36 numeric variables.

Details

This dataset is part of a larger simulated and normalized dataset with 2 experimental groups, 6 time-
points and 3 replicates. Simulation has been done by using a negative binomial distribution. The
first 20 genes are simulated with changes among time.

Examples

data(NBdata)

NBdesign Experimental design for RNA-Seq example

Description

NBdesign contains a subset of a bigger normalized negative binomial simulated dataset.

Usage

data(NBdesign)

Format

A matrix with 36 rows and 4 colums

rows [1:36] "G1.T1.1" "G1.T1.2" "G1.T1.3" "G1.T2.1" ...

columns [1:6] [1] "Time" "Replicates" "Group.1" "Group.2"

p.vector 21

Details

Samples are given in rows and experiment descriptors are given in columns. Row names contain
sample names.

"Time" indicates the values that variable Time takes in each experimental condition. There are 6
time points.

"Replicates" is an index indicating the same experimental condition.

"Group.1" and "Group.2" columns indicate assigment to experimental groups, coding with 1 and
0 whether each sample belongs to that group or not.

Examples

data(NBdesign)

p.vector Make regression fit for time series gene expression experiments

Description

p.vector performs a regression fit for each gene taking all variables present in the model given by
a regression matrix and returns a list of FDR corrected significant genes.

Usage

p.vector(data, design, Q = 0.05, MT.adjust = "BH", min.obs = 6,
counts=FALSE, family=NULL, theta=10, epsilon=0.00001, item="gene")

Arguments

data matrix containing normalized gene expression data. Genes must be in rows and
arrays in columns

design design matrix for the regression fit such as that generated by the make.design.matrix
function

Q significance level

MT.adjust argument to pass to p.adjust function indicating the method for multiple test-
ing adjustment of p.value

min.obs genes with less than this number of true numerical values will be excluded from
the analysis. Minimum value to estimate the model is (degree+1)xGroups+1.
Default is 6.

counts a logical indicating whether your data are counts

family the distribution function to be used in the glm model. It must be specified as
a function: gaussian(), poisson(), negative.binomial(theta)... If NULL fam-
ily will be negative.binomial(theta) when counts=TRUE or gaussian() when
counts=FALSE

theta theta parameter for negative.binomial family

epsilon argument to pass to glm.control, convergence tolerance in the iterative process
to estimate de glm model

item Name of the analysed item to show in the screen while p.vector is in process

22 p.vector

Details

rownames(design) and colnames(data) must be identical vectors and indicate array naming.

rownames(data) should contain unique gene IDs.

colnames(design) are the given names for the variables in the regression model.

Value

SELEC matrix containing the expression values for significant genes

p.vector vector containing the computed p-values

G total number of input genes

g number of genes taken in the regression fit

FDR p-value at FDR Q control when Benajamini & Holderberg (BH) correction is
used

i number of significant genes

dis design matrix used in the regression fit

dat matrix of expression value data used in the regression fit

... additional values from input parameters

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102

See Also

T.fit, lm

Examples

GENERATE TIME COURSE DATA
generates n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)

{

tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group

PlotGroups 23

Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)

}
tc.dat

}

Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE (n = 10, r = 3, b2 = 0.5, c2 = 1.3)
Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE(n = 10, r = 3, a3 = 0.7, b3 = 1, c2 = 1.3, var32 = 0.03, var33 = 0.03)
Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA [sample(c(1:(300*36)), 300)] <- NA # introduce missing values

CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")

tc.p <- p.vector(tc.DATA, design = make.design.matrix(edesign), Q = 0.05)
tc.p$i # number of significant genes
tc.p$SELEC # expression value of signficant genes
tc.p$FDR # p.value at FDR control
tc.p$p.adjusted# adjusted p.values

PlotGroups Function for plotting gene expression profile at different experimental
groups

Description

This function displays the gene expression profile for each experimental group in a time series gene
expression experiment.

Usage

PlotGroups(data, edesign = NULL, time = edesign[, 1],
groups = edesign[,c(3:ncol(edesign))], repvect = edesign[, 2],
show.lines = TRUE, show.fit = FALSE, dis = NULL,

24 PlotGroups

step.method = "backward", min.obs = 2, alfa = 0.05,
nvar.correction = FALSE, summary.mode = "median",
groups.vector = NULL, main = NULL, sub = NULL, xlab = "Time",
ylab = "Expression value", item = NULL, ylim = NULL, pch = 21,
col = NULL, legend = TRUE, cex.legend = 1,lty.legend = NULL,...)

Arguments

data vector or matrix containing the gene expression data

edesign matrix describing experimental design. Rows must be arrays and columns ex-
periment descriptors

time vector indicating time assigment for each array

groups matrix indicating experimental group to which each array is assigned

repvect index vector indicating experimental replicates

show.lines logical indicating whether a line must be drawn joining plotted data points for
reach group

show.fit logical indicating whether regression fit curves must be plotted

dis regression design matrix

step.method stepwise regression method to fit models for cluster mean profiles. It can be ei-
ther "backward", "forward", "two.ways.backward" or "two.ways.forward"

min.obs minimal number of observations for a gene to be included in the analysis

alfa significance level used for variable selection in the stepwise regression

nvar.correction

argument for correcting stepwise regression significance level. See T.fit

summary.mode the method to condensate expression information when more than one gene is
present in the data. Possible values are "representative" and "median"

groups.vector vector indicating experimental group to which each variable belongs

main plot main title

sub plot subtitle

xlab label for the x axis

ylab label for the y axis

item name of the analysed items to show

ylim range of the y axis

pch integer specifying type of points to plot

col a vector specifying colours to plot. If missing first naturals will be used

legend logical indicating whether legend must be added when plotting profiles

cex.legend Expansion factor for legend

lty.legend To add a coloured line in the legend

... other graphical function argument

PlotGroups 25

Details

To compute experimental groups either a edesign object must be provided, or separate values must
be given for the time, repvect and groups arguments.

When data is a matrix, the average expression value is displayed.

When there are array replicates in the data (as indicated by repvect), values are averaged by
repvect.

PlotGroups plots one single expression profile for each experimental group even if there are more
that one genes in the data set. The way data is condensated for this is given by summary.mode.
When this argument takes the value "representative", the gene with the lowest distance to all
genes in the cluster will be plotted. When the argument is "median", then median expression value
is computed.

When show.fit is TRUE the stepwise regression fit for the data will be computed and the regression
curves will be displayed.

If data is a matrix of genes and summary.mode is "median", the regression fit will be computed for
the median expression value.

Value

Plot of gene expression profiles by-group.

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

PlotProfiles

Examples

GENERATE TIME COURSE DATA
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)

{

tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group

26 PlotProfiles

Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)

}
tc.dat

}

create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
tc.DATA <- tc.GENE(n = 10,r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
rownames(tc.DATA) <- paste("gene", c(1:10), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")

CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Ctl <- c(rep(1, 9), rep(0, 27))
Tr1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Tr2 <- c(rep(0, 18), rep(1, 9), rep(0, 9))
Tr3 <- c(rep(0, 27), rep(1, 9))

PlotGroups (tc.DATA, time = Time, repvect = Replicates, groups = cbind(Ctl, Tr1, Tr2, Tr3))

PlotProfiles Function for visualization of gene expression profiles

Description

PlotProfiles displays the expression profiles of a group of genes.

Usage

PlotProfiles(data, cond, cex.axis = 0.5, ylim = NULL, repvect,
main = NULL, sub = NULL, color.mode = "rainbow", item = NULL)

Arguments

data a matrix containing the gene expression data

cond vector for x axis labeling, typically array names

cex.axis graphical parameter maginfication to be used for x axis in plotting functions

ylim index vector indicating experimental replicates

repvect index vector indicating experimental replicates

main plot main title

sub plot subtitle

color.mode color scale for plotting profiles. Can be either "rainblow" or "gray"

item Name of the analysed items to show

Details

The repvect argument is used to indicate with vertical lines groups of replicated arrays.

PlotProfiles 27

Value

Plot of experiment-wide gene expression profiles.

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

PlotGroups

Examples

GENERATE TIME COURSE DATA
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)

{

tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)

}
tc.dat

}

create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
tc.DATA <- tc.GENE(n = 10,r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
rownames(tc.DATA) <- paste("gene", c(1:10), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")

PlotProfiles (tc.DATA, cond = colnames(tc.DATA), main = "Time Course",
repvect = rep(c(1:12), each = 3))

28 PodiumChange

PodiumChange Detection of Genes with switchs of their major isoforms

Description

This function provides lists of genes that have different Major isoforms (most expressed) when
different intervals of the experimental conditions are considered.

The subrange of the experimental conditions can be chosen as a specific point, all the points of a
specific experimental group or at any point.

Usage

PodiumChange(get, only.sig.iso=FALSE, comparison=c("any",
"groups","specific"), group.name="Ctr", time.points=0)

Arguments

get a getDS object a cluster of flat Isoform

only.sig.iso TRUE when changes are looked for only through statistically significant iso-
forms.

comparison Type of search to do: any, groups or specific (see details).

group.name required when comparison is "specific".

time.points required when comparison is "specific".

Details

There are 3 possible values for the comparison argument:

"any": Detects genes with Major Isoform changes in at least one experimental condition.

"groups": Detects genes with different Major Isoform for different experimental groups.

"specific": Detects genes with Major Isoform changes in a specific time interval, especified in
time.points argument and a specific experimental group, especified in group.name argument.

Value

L Names of the genes with PodiumChange Isoforms

data.L Data values of all the isoforms belonging to the genes in L

gen.L gen vector with the name of the gene of each isoform

edesign matrix describing experimental design needed to visualize PodiumChange se-
lection with IsoPlot function. It is the input of make.design.matrix.

Author(s)

Maria Jose Nueda, <mj.nueda@ua.es>

position 29

References

Nueda, M.J., Martorell, J., Marti, C., Tarazona, S., Conesa, A. 2018. Identification and visualization
of differential isoform expression in RNA-seq time series. Bioinformatics. 34, 3, 524-526. Nueda,
M.J., Tarazona, S., Conesa, A. 2014. Next maSigPro: updating maSigPro bioconductor package
for RNA-seq time series. Bioinformatics, 30, 2598-602.

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102.

See Also

see.genes, IsoModel

Examples

data(ISOdata)
data(ISOdesign)
mdis <- make.design.matrix(ISOdesign)
MyIso <- IsoModel(data=ISOdata[,-1], gen=ISOdata[,1], design=mdis,
counts=TRUE)
Myget <- getDS(MyIso)

PC <- PodiumChange(Myget, only.sig.iso=TRUE,
comparison="specific", group.name="Group2", time.points=c(18,24))
PC$L

position Column position of a variable in a data frame

Description

Finds the column position of a character variable in the column names of a data frame.

Usage

position(matrix, vari)

Arguments

matrix matrix or data.frame with character column names

vari character variable

Value

numerical. Column position for the given variable.

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

30 reg.coeffs

Examples

x <- matrix(c(1, 1, 2, 2, 3, 3),ncol = 3,nrow = 2)
colnames(x) <- c("one", "two", "three")
position(x, "one")

reg.coeffs Calculate true variables regression coefficients

Description

reg.coeffs calculates back regression coefficients for true variables (experimental groups) from
dummy variables regression coefficients.

Usage

reg.coeffs(coefficients,
indepen = groups.vector[nchar(groups.vector)==min(nchar(groups.vector))][1],
groups.vector, group)

Arguments

coefficients vector of regression coefficients obtained from a regression model with dummy
variables

indepen idependent variable of the regression formula
groups.vector vector indicating the true variable of each variable in coefficients

group true variable for which regression coefficients are to be computed

Details

regression coefficients in coefficients vector should be ordered by polynomial degree in a regression
formula, ie: intercept, x term, x^2 term, x^3 term, and so on...

Value

reg.coeff vector of calculated regression coefficients

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

Examples

groups.vector <-c("CT", "T1vsCT", "T2vsCT", "CT", "T1vsCT","T2vsCT", "CT", "T1vsCT", "T2vsCT")
coefficients <- c(0.1, 1.2, -0.8, 1.7, 3.3, 0.4, 0.0, 2.1, -0.9)
calculate true regression coefficients for variable "T1"
reg.coeffs(coefficients, groups.vector = groups.vector, group = "T1")

see.genes 31

see.genes Wrapper function for visualization of gene expression values of time
course experiments

Description

This function provides visualisation tools for gene expression values in a time course experiment.
The function first calls the heatmap function for a general overview of experiment results. Next a
partioning of the data is generated using a clustering method. The results of the clustering are visu-
alized both as gene expression profiles extended along all arrays in the experiment, as provided by
the plot.profiles function, and as summary expression profiles for comparison among experimental
groups.

Usage

see.genes(data, edesign = data$edesign, time.col = 1, repl.col = 2,
group.cols = c(3:ncol(edesign)), names.groups = colnames(edesign)[3:ncol(edesign)],
cluster.data = 1, groups.vector = data$groups.vector, k = 9, k.mclust=FALSE,
cluster.method = "hclust", distance = "cor", agglo.method = "ward.D",
show.lines = TRUE, show.fit = FALSE, dis = NULL, step.method = "backward",
min.obs = 3, alfa = 0.05, nvar.correction = FALSE, iter.max = 500,
summary.mode = "median", color.mode = "rainbow", ylim = NULL, item = "genes",
legend = TRUE, cex.legend = 1, lty.legend = NULL,...)

Arguments

data either matrix or a list containing the gene expression data, typically a get.siggenes
object

edesign matrix of experimental design

time.col column in edesign containing time values. Default is first column

repl.col column in edesign containing coding for replicates arrays. Default is second
column

group.cols columns indicating the coding for each group (treatment, tissue,...) in the exper-
iment (see details)

names.groups names for experimental groups

cluster.data type of data used by the cluster algorithm (see details)

groups.vector vector indicating the experimental group to which each variable belongs

k number of clusters for data partioning

k.mclust TRUE for computing the optimal number of clusters with Mclust algorithm

cluster.method clustering method for data partioning. Currently "hclust", "kmeans" and "Mclust"
are supported

distance distance measurement function when cluster.method is hclust

agglo.method aggregation method used when cluster.method is hclust

show.lines logical indicating whether a line must be drawn joining plotted data points for
reach group

show.fit logical indicating whether regression fit curves must be plotted

32 see.genes

dis regression design matrix

step.method stepwise regression method to fit models for cluster mean profiles. Can be either
"backward", "forward", "two.ways.backward" or "two.ways.forward"

min.obs minimal number of observations for a gene to be included in the analysis

alfa significance level used for variable selection in the stepwise regression
nvar.correction

argument for correcting T.fitsignificance level. See T.fit

iter.max maximum number of iterations when cluster.method is kmeans

summary.mode the method PlotGroups takes to condensate expression information when more
than one gene is present in the data. Possible values are "representative" and
"median"

color.mode color scale for plotting profiles. Can be either "rainblow" or "gray"

ylim range of the y axis to be used by PlotProfiles and PlotGroups

item Name of the analysed items to show

legend logical indicating whether legend must be added when plotting profiles

cex.legend Expansion factor for legend

lty.legend To add a coloured line in the legend

... other graphical function argument

Details

Data can be provided either as a single data matrix of expression values, or a get.siggenes object.
In the later case the other argument of the fuction can be taken directly from data.

Data clustering can be done on the basis of either the original expression values, the regression
coefficients, or the t.scores. In case data is a get.siggenes object, this is given by providing the
element names of the list c("sig.profiles","coefficients","t.score") of their list position
(1,2 or 3).

Value

Experiment wide gene profiles and by group profiles plots are generated for each data cluster in the
graphical device.

cut vector indicating gene partioning into clusters

c.algo.used clustering algorith used for data partioning

groups groups matrix used for plotting functions

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102

See Also

PlotProfiles, PlotGroups

see.genes 33

Examples

GENERATE TIME COURSE DATA
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)

{

tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)

}
tc.dat

}

Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE (n = 10, r = 3, b2 = 0.5, c2 = 1.3)
Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE(n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03)
Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA [sample(c(1:(300*36)), 300)] <- NA # introduce missing values

CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")

see.genes(tc.DATA, edesign = edesign, k = 4)

This will show the regression fit curve
dise <- make.design.matrix(edesign)
see.genes(tc.DATA, edesign = edesign, k = 4, show.fit = TRUE,

34 seeDS

dis = dise$dis, groups.vector = dise$groups.vector, distance = "euclidean")

seeDS Wrapper function for visualization of significant isoforms from Differ-
entially Spliced Genes

Description

seeDS This function provides visualisation tools for Significant Isoforms in a time course exper-
iment. The function calls the see.genes function for selected Isoforms. This cluster will be the
reference in tableDS function to identify the trends that follows the isoforms of a specific gene.

Usage

seeDS(get, rsq=0.4, cluster.all=TRUE, plot.mDSG=FALSE, k=6,
cluster.method="hclust", k.mclust=FALSE, ...)

Arguments

get a getDS object a cluster of flat Isoform
rsq Required when cluster.all=TRUE. It is the cut-off level at the R-squared value

for detecting significant isoforms of all the genome.
cluster.all TRUE to make the cluster with significant isoforms of all the genome. FALSE

to make the cluster with significant isoforms of Differentially Spliced Genes.
plot.mDSG TRUE to make a cluster with the Isoforms belonging to monoIsoform genes
k number of clusters for data partioning
cluster.method clustering method for data partioning. Currently "hclust", "kmeans" and "Mclust"

are supported
k.mclust TRUE for computing the optimal number of clusters with Mclust algorithm
... other graphical function argument

Details

The cluster reference can be made with significant isoforms of all the genome or with the isoforms
belonging to the Differentially Spliced Genes.

Alternatively a cluster of monoIsoforms can be asked.

Next a partioning of the data is generated using a clustering method.

The results of the clustering are visualized in two plots as in see.genes.

Value

Experiment wide Isoform profiles and by group profiles plots are generated for each data cluster in
the graphical device.

Model a IsoModel object to be used in the following steps
get a get.siggenes object to be used in the following steps
NumIso.by.gene Number of selected Isoforms for each Differentially Spliced Gene
cut vector indicating gene partioning into clusters
names.genes vector with the name of the gene each selected isoform belongs to

stepback 35

Author(s)

Maria Jose Nueda, <mj.nueda@ua.es>

References

Nueda, M.J., Martorell, J., Marti, C., Tarazona, S., Conesa, A. 2018. Identification and visualization
of differential isoform expression in RNA-seq time series. Bioinformatics. 34, 3, 524-526.

Nueda, M.J., Tarazona, S., Conesa, A. 2014. Next maSigPro: updating maSigPro bioconductor
package for RNA-seq time series. Bioinformatics, 30, 2598-602.

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102.

See Also

see.genes, IsoModel

Examples

data(ISOdata)
data(ISOdesign)
mdis <- make.design.matrix(ISOdesign)
MyIso <- IsoModel(data=ISOdata[,-1], gen=ISOdata[,1], design=mdis, counts=TRUE)
Myget <- getDS(MyIso)
see <- seeDS(Myget, cluster.all=FALSE, k=6)

table <- tableDS(see)
table$IsoTable

stepback Fitting a linear model by backward-stepwise regression

Description

stepback fits a linear regression model applying a backward-stepwise strategy.

Usage

stepback(y = y, d = d, alfa = 0.05, family = gaussian(), epsilon=0.00001)

Arguments

y dependent variable

d data frame containing by columns the set of variables that could be in the se-
lected model

alfa significance level to decide if a variable stays or not in the model

family the distribution function to be used in the glm model

epsilon argument to pass to glm.control, convergence tolerance in the iterative process
to estimate de glm model

36 stepback

Details

The strategy begins analysing a model with all the variables included in d. If all variables are
statistically significant (all variables have a p-value less than alfa) this model will be the result. If
not, the less statistically significant variable will be removed and the model is re-calculated. The
process is repeated up to find a model with all the variables statistically significant.

Value

stepback returns an object of the class lm, where the model uses y as dependent variable and all
the selected variables from d as independent variables.

The function summary are used to obtain a summary and analysis of variance table of the results.
The generic accessor functions coefficients, effects, fitted.values and residuals extract
various useful features of the value returned by lm.

Author(s)

Ana Conesa, aconesa@cipf.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

lm, step, stepfor, two.ways.stepback, two.ways.stepfor

Examples

create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)

expression vector
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0.040,
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
-1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)

s.fit <- stepback(y = y, d = dis)
summary(s.fit)

stepfor 37

stepfor Fitting a linear model by forward-stepwise regression

Description

stepfor fits a linear regression model applying forward-stepwise strategy.

Usage

stepfor(y = y, d = d, alfa = 0.05, family = gaussian(), epsilon=0.00001)

Arguments

y dependent variable

d data frame containing by columns the set of variables that could be in the se-
lected model

alfa significance level to decide if a variable stays or not in the model

family the distribution function to be used in the glm model

epsilon argument to pass to glm.control, convergence tolerance in the iterative process
to estimate de glm model

Details

The strategy begins analysing all the possible models with only one of the variables included in d.
The most statistically significant variable (with the lowest p-value) is included in the model and then
it is considered to introduce in the model another variable analysing all the possible models with two
variables (the selected variable in the previous step plus a new variable). Again the most statistically
significant variable (with lowest p-value) is included in the model. The process is repeated till there
are no more statistically significant variables to include.

Value

stepfor returns an object of the class lm, where the model uses y as dependent variable and all the
selected variables from d as independent variables.

The function summary are used to obtain a summary and analysis of variance table of the results.
The generic accessor functions coefficients, effects, fitted.values and residuals extract
various useful features of the value returned by lm.

Author(s)

Ana Conesa, aconesa@cipf.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

lm, step, stepback, two.ways.stepback, two.ways.stepfor

38 suma2Venn

Examples

create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)

expression vector
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0.040,
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
-1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)

s.fit <- stepfor(y = y, d = dis)
summary(s.fit)

suma2Venn Creates a Venn Diagram from a matrix of characters

Description

suma2Venn transforms a matrix or a data frame with characters into a list to draw and display a
Venn diagram with up to 7 sets

Usage

suma2Venn(x, size = 30, cexil = 0.9, cexsn = 1, zcolor = heat.colors(ncol(x)), ...)

Arguments

x matrix or data frame of character values

size Plot size, in centimeters

cexil Character expansion for the intersection labels

cexsn Character expansion for the set names

zcolor A vector of colors for the custom zones

... Additional plotting arguments for the venn function

Details

suma2Venn creates a list with the columns of a matrix or a data frame of characters which can be
taken by the venn to generate a Venn Diagram

Value

suma2Venn returns a Venn Plot such as that created by the venn function

T.fit 39

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

See Also

venn

Examples

A <- c("a","b","c", "d", "e", NA, NA)
B <- c("a","b","f", NA, NA, NA, NA)
C <- c("a","b","e","f", "h", "i", "j", "k")
x <- cbind(A, B, C)
suma2Venn(x)

T.fit Makes a stepwise regression fit for time series gene expression exper-
iments

Description

T.fit selects the best regression model for each gene using stepwise regression.

Usage

T.fit(data, design = data$dis, step.method = "backward",
min.obs = data$min.obs, alfa = data$Q,
nvar.correction = FALSE, family = gaussian(),
epsilon=0.00001, item="gene")

Arguments

data can either be a p.vector object or a matrix containing expression data with the
same requirements as for the p.vector function

design design matrix for the regression fit such as that generated by the make.design.matrix
function. If data is a p.vector object, the same design matrix is used by default

step.method argument to be passed to the step function. Can be either "backward", "forward",
"two.ways.backward" or "two.ways.forward"

min.obs genes with less than this number of true numerical values will be excluded from
the analysis

alfa significance level used for variable selection in the stepwise regression
nvar.correction

argument for correcting T.fit significance level. See details

family the distribution function to be used in the glm model. It must be the same used
in p.vector

epsilon argument to pass to glm.control, convergence tolerance in the iterative process
to estimate de glm model

item Name of the analysed item to show in the screen while T.fit is in process

40 T.fit

Details

In the maSigPro approach p.vector and T.fit are subsequent steps, meaning that significant genes
are first selected on the basis of a general model and then the significant variables for each gene are
found by step-wise regression.

The step regression can be "backward" or "forward" indicating whether the step procedure starts
from the model with all or none variables. With the "two.ways.backward" or "two.ways.forward"
options the variables are both allowed to get in and out. At each step the p-value of each variable is
computed and variables get in/out the model when this p-value is lower or higher than given thresh-
old alfa. When nva.correction is TRUE the given significance level is corrected by the number of
variables in the model

Value

sol matrix for summary results of the stepwise regression. For each selected gene
the following values are given:

• p-value of the regression ANOVA
• R-squared of the model
• p-value of the regression coefficients of the selected variables

sig.profiles expression values for the genes contained in sol

coefficients matrix containing regression coefficients for the adjusted models

groups.coeffs matrix containing the coefficients of the impiclit models of each experimental
group

variables variables in the complete regression model

G total number of input genes

g number of genes taken in the regression fit

dat input analysis data matrix

dis regression design matrix

step.method imputed step method for stepwise regression

edesign matrix of experimental design

influ.info data frame of genes containing influencial data

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102

See Also

p.vector, step

T.fit 41

Examples

GENERATE TIME COURSE DATA
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)

{

tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)

}
tc.dat

}

Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE (n = 10, r = 3, b2 = 0.5, c2 = 1.3)
Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE(n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03)
Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA [sample(c(1:(300*36)), 300)] <- NA # introduce missing values

CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")

run T.fit from a p.vector object
tc.p <- p.vector(tc.DATA, design = make.design.matrix(edesign), Q = 0.01)
tc.tstep <- T.fit(data = tc.p , alfa = 0.05)

run T.fit from a data matrix and a design matrix

42 tableDS

dise <- make.design.matrix(edesign)
tc.tstep <- T.fit (data = tc.DATA[271:300,], design = dise$dis,

step.method = "two.ways.backward", min.obs = 10, alfa = 0.05)
tc.tstep$sol # gives the p.values of the significant

regression coefficients of the optimized models

tableDS Identification of Mayor and minor Isoforms in the clusters

Description

tableDS identifies for each Differentialy Spliced Gene (DSG) the clusters where their isoforms
belong to, labelling gene transcripts as mayor (or most expressed) and minor.

Usage

tableDS(seeDS)

Arguments

seeDS a seeDS object

Details

This table includes DSG with 2 or more Isoforms. Mono isoform genes are useful to determine
the trends of the cluster. However, as they have only one Isoform, there is not the possibility of
comparing minor and major DETs.

Value

IsoTable A classification table that indicates the distribution of isoforms across diferent
clusters

IsoClusters A data.frame with genes in rows and two columns: first indicates the number of
cluster of the major isoform and second the number(s) of cluster(s) of the minor
isoforms.

Author(s)

Maria Jose Nueda, <mj.nueda@ua.es>

References

Nueda, M.J., Martorell, J., Marti, C., Tarazona, S., Conesa, A. 2018. Identification and visualization
of differential isoform expression in RNA-seq time series. Bioinformatics. 34, 3, 524-526.

Nueda, M.J., Tarazona, S., Conesa, A. 2014. Next maSigPro: updating maSigPro bioconductor
package for RNA-seq time series. Bioinformatics, 30, 2598-602.

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102.

two.ways.stepback 43

See Also

seeDS, IsoModel

Examples

data(ISOdata)
data(ISOdesign)
mdis <- make.design.matrix(ISOdesign)
MyIso <- IsoModel(data=ISOdata[,-1], gen=ISOdata[,1], design=mdis, counts=TRUE)
Myget <- getDS(MyIso)
see <- seeDS(Myget, cluster.all=FALSE, k=6)
table <- tableDS(see)
table$IsoTable

two.ways.stepback Fitting a linear model by backward-stepwise regression

Description

two.ways.stepback fits a linear regression model applying backward-stepwise strategy.

Usage

two.ways.stepback(y = y, d = d, alfa = 0.05, family = gaussian(), epsilon=0.00001)

Arguments

y dependent variable

d data frame containing by columns the set of variables that could be in the se-
lected model

alfa significance level to decide if a variable stays or not in the model

family the distribution function to be used in the glm model

epsilon argument to pass to glm.control, convergence tolerance in the iterative process
to estimate de glm model

Details

The strategy begins analysing a model with all the variables included in d. If all the variables are
statistically significant (all the variables have a p-value less than alfa) this model will be the result.
If not, the less statistically significant variable will be removed and the model is re-calculated. The
process is repeated up to find a model with all the variables statistically significant (p-value < alpha).
Each time that a variable is removed from the model, it is considered the possibility of one or more
removed variables to come in again.

Value

two.ways.stepback returns an object of the class lm, where the model uses y as dependent variable
and all the selected variables from d as independent variables.

The function summary are used to obtain a summary and analysis of variance table of the results.
The generic accessor functions coefficients, effects, fitted.values and residuals extract
various useful features of the value returned by lm.

44 two.ways.stepfor

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

lm, step, stepfor, stepback, two.ways.stepfor

Examples

create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)

expression vector
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0.040,
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
-1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)

s.fit <- two.ways.stepback(y = y, d = dis)
summary(s.fit)

two.ways.stepfor Fitting a linear model by forward-stepwise regression

Description

two.ways.stepfor fits a linear regression model applying forward-stepwise strategy.

Usage

two.ways.stepfor(y = y, d = d, alfa = 0.05, family = gaussian(), epsilon=0.00001)

Arguments

y dependent variable

d data frame containing by columns the set of variables that could be in the se-
lected model

alfa significance level to decide if a variable stays or not in the model

two.ways.stepfor 45

family the distribution function to be used in the glm model

epsilon argument to pass to glm.control, convergence tolerance in the iterative process
to estimate de glm model

Details

The strategy begins analysing all the possible models with only one of the variables included in d.
The most statistically significant variable (with the lowest p-value) is included in the model and then
it is considered to introduce in the model another variable analysing all the possible models with two
variables (the selected variable in the previous step plus a new variable). Again the most statistically
significant variable (with lowest p-value) is included in the model. The process is repeated till there
are no more statistically significant variables to include. Each time that a variable enters the model,
the p-values of the current model vairables is recalculated and non significant variables will be
removed.

Value

two.ways.stepfor returns an object of the class lm, where the model uses y as dependent variable
and all the selected variables from d as independent variables.

The function summary are used to obtain a summary and analysis of variance table of the results.
The generic accessor functions coefficients, effects, fitted.values and residuals extract
various useful features of the value returned by lm.

Author(s)

Ana Conesa and Maria Jose Nueda, <mj.nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

lm, step, stepback, stepfor, two.ways.stepback

Examples

create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)

expression vector
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0.040,
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
-1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)

46 two.ways.stepfor

s.fit <- two.ways.stepfor(y = y, d = dis)
summary(s.fit)

Index

∗ UsersGuide
maSigProUsersGuide, 19

∗ aplot
PlotGroups, 23
PlotProfiles, 26
see.genes, 31
suma2Venn, 38

∗ arith
average.rows, 2
i.rank, 12
position, 29

∗ datasets
data.abiotic, 3
edesign.abiotic, 4
edesignCT, 5
edesignDR, 6
ISOdata, 13
ISOdesign, 14
NBdata, 20
NBdesign, 20

∗ design
make.design.matrix, 18

∗ manip
get.siggenes, 7
see.genes, 31

∗ misc
reg.coeffs, 30

∗ models
T.fit, 39

∗ regression
make.design.matrix, 18
p.vector, 21
stepback, 35
stepfor, 37
T.fit, 39
two.ways.stepback, 43
two.ways.stepfor, 44

average.rows, 2, 7, 8

coefficients, 36, 37, 43, 45

data.abiotic, 3

edesign.abiotic, 4

edesignCT, 5
edesignDR, 6
effects, 36, 37, 43, 45

fitted.values, 36, 37, 43, 45

get.siggenes, 7, 10, 11, 31, 32
getDS, 10, 17
getDSPatterns, 11

hclust, 31

i.rank, 12
ISOdata, 13
ISOdesign, 14
IsoModel, 11, 12, 15, 17, 29, 35, 43
IsoPlot, 16

kmeans, 32

lm, 22, 36, 37, 43–45

make.design.matrix, 15, 18, 21, 39
maSigProUsersGuide, 19

NBdata, 20
NBdesign, 20

order, 13

p.vector, 16, 21, 39, 40
PlotGroups, 23, 27, 32
PlotProfiles, 25, 26, 32
PodiumChange, 28
position, 29

rank, 13
reg.coeffs, 30
residuals, 36, 37, 43, 45

see.genes, 29, 31, 35
seeDS, 34, 43
step, 36, 37, 40, 44, 45
stepback, 35, 37, 44, 45
stepfor, 36, 37, 44, 45
suma2Venn, 38

47

48 INDEX

summary, 36, 37, 43, 45

T.fit, 16, 22, 24, 32, 39, 40
tableDS, 12, 42
two.ways.stepback, 36, 37, 43, 45
two.ways.stepfor, 36, 37, 44, 44

venn, 38, 39

	average.rows
	data.abiotic
	edesign.abiotic
	edesignCT
	edesignDR
	get.siggenes
	getDS
	getDSPatterns
	i.rank
	ISOdata
	ISOdesign
	IsoModel
	IsoPlot
	make.design.matrix
	maSigProUsersGuide
	NBdata
	NBdesign
	p.vector
	PlotGroups
	PlotProfiles
	PodiumChange
	position
	reg.coeffs
	see.genes
	seeDS
	stepback
	stepfor
	suma2Venn
	T.fit
	tableDS
	two.ways.stepback
	two.ways.stepfor
	Index

