
Package ‘decoupleR’
January 19, 2025

Type Package

Title decoupleR: Ensemble of computational methods to infer biological
activities from omics data

Version 2.12.0

Description Many methods allow us to extract biological activities from omics
data using information from prior knowledge resources, reducing the
dimensionality for increased statistical power and better interpretability.
Here, we present decoupleR, a Bioconductor package containing different
statistical methods to extract these signatures within a unified framework.
decoupleR allows the user to flexibly test any method with any resource.
It incorporates methods that take into account the sign and weight of
network interactions. decoupleR can be used with any omic, as long as its
features can be linked to a biological process based on prior knowledge.
For example, in transcriptomics gene sets regulated by a transcription
factor, or in phospho-proteomics phosphosites that are targeted by a kinase.

License GPL-3 + file LICENSE

URL https://saezlab.github.io/decoupleR/

BugReports https://github.com/saezlab/decoupleR/issues

Depends R (>= 4.0)

Imports BiocParallel, broom, dplyr, magrittr, Matrix, parallelly,
purrr, rlang, stats, stringr, tibble, tidyr, tidyselect, withr

Suggests glmnet (>= 4.1-7), GSVA, viper, fgsea (>= 1.15.4), AUCell,
SummarizedExperiment, rpart, ranger, BiocStyle, covr, knitr,
pkgdown, RefManageR, rmarkdown, roxygen2, sessioninfo,
pheatmap, testthat, OmnipathR, Seurat, ggplot2, ggrepel,
patchwork, magick

VignetteBuilder knitr

biocViews DifferentialExpression, FunctionalGenomics, GeneExpression,
GeneRegulation, Network, Software, StatisticalMethod,
Transcription,

Config/testthat/edition 3

Encoding UTF-8

LazyData false

Roxygen list(markdown = TRUE)

1

https://saezlab.github.io/decoupleR/
https://github.com/saezlab/decoupleR/issues

2 Contents

RoxygenNote 7.3.0

git_url https://git.bioconductor.org/packages/decoupleR

git_branch RELEASE_3_20

git_last_commit bc3245c

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2025-01-19

Author Pau Badia-i-Mompel [aut, cre] (<https://orcid.org/0000-0002-1004-3923>),
Jesús Vélez-Santiago [aut] (<https://orcid.org/0000-0001-5128-3838>),
Jana Braunger [aut] (<https://orcid.org/0000-0003-0820-9987>),
Celina Geiss [aut] (<https://orcid.org/0000-0002-8740-706X>),
Daniel Dimitrov [aut] (<https://orcid.org/0000-0002-5197-2112>),
Sophia Müller-Dott [aut] (<https://orcid.org/0000-0002-9710-1865>),
Petr Taus [aut] (<https://orcid.org/0000-0003-3764-9033>),
Aurélien Dugourd [aut] (<https://orcid.org/0000-0002-0714-028X>),
Christian H. Holland [aut] (<https://orcid.org/0000-0002-3060-5786>),
Ricardo O. Ramirez Flores [aut]

(<https://orcid.org/0000-0003-0087-371X>),
Julio Saez-Rodriguez [aut] (<https://orcid.org/0000-0002-8552-8976>)

Maintainer Pau Badia-i-Mompel <pau.badia@uni-heidelberg.de>

Contents
decoupleR-package . 3
.decoupler_mat_format . 4
.decoupler_network_format . 4
.fit_preprocessing . 5
check_corr . 5
convert_f_defaults . 6
decouple . 7
extract_sets . 9
filt_minsize . 10
get_collectri . 10
get_dorothea . 11
get_ksn_omnipath . 12
get_profile_of . 12
get_progeny . 13
get_resource . 14
get_toy_data . 14
intersect_regulons . 15
pivot_wider_profile . 15
randomize_matrix . 17
rename_net . 18
run_aucell . 19
run_consensus . 20
run_fgsea . 21
run_gsva . 22
run_mdt . 25
run_mlm . 26

https://orcid.org/0000-0002-1004-3923
https://orcid.org/0000-0001-5128-3838
https://orcid.org/0000-0003-0820-9987
https://orcid.org/0000-0002-8740-706X
https://orcid.org/0000-0002-5197-2112
https://orcid.org/0000-0002-9710-1865
https://orcid.org/0000-0003-3764-9033
https://orcid.org/0000-0002-0714-028X
https://orcid.org/0000-0002-3060-5786
https://orcid.org/0000-0003-0087-371X
https://orcid.org/0000-0002-8552-8976

decoupleR-package 3

run_ora . 28
run_udt . 30
run_ulm . 31
run_viper . 33
run_wmean . 34
run_wsum . 36
show_methods . 37
show_resources . 38
tidyeval . 38
%>% . 39

Index 40

decoupleR-package decoupleR: decoupleR: Ensemble of computational methods to infer
biological activities from omics data

Description

Many methods allow us to extract biological activities from omics data using information from prior
knowledge resources, reducing the dimensionality for increased statistical power and better inter-
pretability. Here, we present decoupleR, a Bioconductor package containing different statistical
methods to extract these signatures within a unified framework. decoupleR allows the user to flexi-
bly test any method with any resource. It incorporates methods that take into account the sign and
weight of network interactions. decoupleR can be used with any omic, as long as its features can
be linked to a biological process based on prior knowledge. For example, in transcriptomics gene
sets regulated by a transcription factor, or in phospho-proteomics phosphosites that are targeted by
a kinase.

Author(s)

Maintainer: Pau Badia-i-Mompel <pau.badia@uni-heidelberg.de> (ORCID)

Authors:

• Jesús Vélez-Santiago <jvelezmagic@gmail.com> (ORCID)
• Jana Braunger <jana.bc@gmx.de> (ORCID)
• Celina Geiss <celina.geiss@stud.uni-heidelberg.de> (ORCID)
• Daniel Dimitrov <daniel.dimitrov@uni-heidelberg.de> (ORCID)
• Sophia Müller-Dott <sophia.mueller-dott@uni-heidelberg.de> (ORCID)
• Petr Taus <petr.taus@ceitec.muni.cz> (ORCID)
• Aurélien Dugourd <aurelien.dugourd@bioquant.uni-heidelberg.de> (ORCID)
• Christian H. Holland <cholland2408@gmail.com> (ORCID)
• Ricardo O. Ramirez Flores <roramirezf@uni-heidelberg.de > (ORCID)
• Julio Saez-Rodriguez <pub.saez@uni-heidelberg.de> (ORCID)

See Also

Useful links:

• https://saezlab.github.io/decoupleR/

• Report bugs at https://github.com/saezlab/decoupleR/issues

https://orcid.org/0000-0002-1004-3923
https://orcid.org/0000-0001-5128-3838
https://orcid.org/0000-0003-0820-9987
https://orcid.org/0000-0002-8740-706X
https://orcid.org/0000-0002-5197-2112
https://orcid.org/0000-0002-9710-1865
https://orcid.org/0000-0003-3764-9033
https://orcid.org/0000-0002-0714-028X
https://orcid.org/0000-0002-3060-5786
https://orcid.org/0000-0003-0087-371X
https://orcid.org/0000-0002-8552-8976
https://saezlab.github.io/decoupleR/
https://github.com/saezlab/decoupleR/issues

4 .decoupler_network_format

.decoupler_mat_format DecoupleR mat format

Description

DecoupleR mat format

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

See Also

Other decoupleR formats: .decoupler_network_format

.decoupler_network_format

DecoupleR network format

Description

A network passed to any run_ method in the package must contain at least two attributes: .source
and .target. In addition, the methods must map their corresponding metadata associated with their
edges.

Arguments

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

.mor Column with edge mode of regulation (i.e. mor).

.likelihood Deprecated argument. Now it will always be set to 1.

Details

• All the attributes to be mapped are prefixed by .

• The idea of using this type of mapping is to provide flexibility to different types of networks,
be they regulatory, metabolic, or of any other type. This way, you should only consider having
your network or networks in a long format and these can easily be manipulated by functions
within the tidyverse ecosystem.

See Also

Other decoupleR formats: .decoupler_mat_format

https://www.tidyverse.org/

.fit_preprocessing 5

.fit_preprocessing Pre-processing for methods that fit networks.

Description

• If center is true, then the expression values are centered by the mean of expression across the
samples.

Usage

.fit_preprocessing(network, mat, center, na.rm, sparse)

Arguments

network Tibble or dataframe with edges and it’s associated metadata.

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

center Logical value indicating if mat must be centered by base::rowMeans().

na.rm Should missing values (including NaN) be omitted from the calculations of
base::rowMeans()?

sparse Deprecated parameter.

Value

A named list of matrices to evaluate in methods that fit models, like .mlm_analysis().

• mat: Features as rows and samples as columns.

• mor_mat: Features as rows and columns as source.

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")
mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))
net <- rename_net(net, source, target, mor)
.fit_preprocessing(net, mat, center = FALSE, na.rm = FALSE, sparse = FALSE)

check_corr Check correlation (colinearity)

Description

Checks the correlation across the regulators in a network.

6 convert_f_defaults

Usage

check_corr(
network,
.source = "source",
.target = "target",
.mor = "mor",
.likelihood = NULL

)

Arguments

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

.mor Column with edge mode of regulation (i.e. mor).

.likelihood Deprecated argument. Now it will always be set to 1.

Value

Correlation pairs tibble.

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")
net <- readRDS(file.path(inputs_dir, "net.rds"))
check_corr(net, .source='source')

convert_f_defaults Rename columns and add defaults values if column not present

Description

convert_f_defaults() combine the dplyr::rename() way of working and with the tibble::add_column()
to add columns with default values in case they don’t exist after renaming data.

Usage

convert_f_defaults(.data, ..., .def_col_val = c(), .use_dots = TRUE)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For rename(): <tidy-select> Use new_name = old_name to rename selected
variables.
For rename_with(): additional arguments passed onto .fn.

.def_col_val Named vector with columns with default values if none exist after rename.

.use_dots Should a dot prefix be added to renamed variables? This will allow swapping of
columns.

decouple 7

Details

The objective of using .use_dots is to be able to swap columns which, by default, is not allowed
by the dplyr::rename() function. The same behavior can be replicated by simply using the
dplyr::select(), however, the select evaluation allows much more flexibility so that unexpected
results could be obtained. Despite this, a future implementation will consider this form of execution
to allow renaming the same column to multiple ones (i.e. extend dataframe extension).

Value

An object of the same type as .data. The output has the following properties:

• Rows are not affected.

• Column names are changed.

• Column order is the same as that of the function call.

Examples

df <- tibble::tibble(x = 1, y = 2, z = 3)

Rename columns
df <- tibble::tibble(x = 1, y = 2)
convert_f_defaults(

.data = df,
new_x = x,
new_y = y,
new_z = NULL,
.def_col_val = c(new_z = 3)

)

decouple Evaluate multiple statistics with same input data

Description

Calculate the source activity per sample out of a gene expression matrix by coupling a regulatory
network with a variety of statistics.

Usage

decouple(
mat,
network,
.source = source,
.target = target,
statistics = NULL,
args = list(NULL),
consensus_score = TRUE,
consensus_stats = NULL,
include_time = FALSE,
show_toy_call = FALSE,
minsize = 5

)

8 decouple

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

statistics Statistical methods to be run sequentially. If none are provided, only top per-
former methods are run (mlm, ulm and wsum).

args A list of argument-lists the same length as statistics (or length 1). The default
argument, list(NULL), will be recycled to the same length as statistics, and
will call each function with no arguments (apart from mat, network, .source
and, .target).

consensus_score

Boolean whether to run a consensus score between methods.
consensus_stats

List of estimate names to use for the calculation of the consensus score. This
is used to filter out extra estimations from some methods, for example wsum
returns wsum, corr_wsum and norm_wsum. If none are provided, and also no
statstics where provided, only top performer methods are used (mlm, ulm and
norm_wsum). Else, it will use all available estimates after running all methods
in the statistics argument.

include_time Should the time per statistic evaluated be informed?

show_toy_call The call of each statistic must be informed?

minsize Integer indicating the minimum number of targets per source.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. run_id: Indicates the order in which the methods have been executed.

2. statistic: Indicates which method is associated with which score.

3. source: Source nodes of network.

4. condition: Condition representing each column of mat.

5. score: Regulatory activity (enrichment score).

6. statistic_time: If requested, internal execution time indicator.

7. p_value: p-value (if available) of the obtained score.

See Also

Other decoupleR statistics: run_aucell(), run_fgsea(), run_gsva(), run_mdt(), run_mlm(),
run_ora(), run_udt(), run_ulm(), run_viper(), run_wmean(), run_wsum()

extract_sets 9

Examples

if (FALSE) {
inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))

decouple(
mat = mat,
network = net,
.source = "source",
.target = "target",
statistics = c("gsva", "wmean", "wsum", "ulm", "aucell"),
args = list(

gsva = list(verbose = FALSE),
wmean = list(.mor = "mor", .likelihood = "likelihood"),
wsum = list(.mor = "mor"),
ulm = list(.mor = "mor")

),
minsize = 0

)
}

extract_sets Extract sets

Description

Extracts feature sets from a renamed network (see rename_net).

Usage

extract_sets(network)

Arguments

network Tibble or dataframe with edges and it’s associated metadata.

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")
mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))
net <- rename_net(net, source, target, mor)
extract_sets(net)

10 get_collectri

filt_minsize Filter sources with minsize targets

Description

Filter sources of a net with less than minsize targets

Usage

filt_minsize(mat_f_names, network, minsize = 5)

Arguments

mat_f_names Feature names of mat.

network Tibble or dataframe with edges and it’s associated metadata.

minsize Integer indicating the minimum number of targets per source.

Value

Filtered network.

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")
mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))
net <- rename_net(net, source, target, mor)
filt_minsize(rownames(mat), net, minsize = 4)

get_collectri CollecTRI gene regulatory network. Wrapper to access CollecTRI
gene regulatory network. CollecTRI is a comprehensive resource con-
taining a curated collection of transcription factors (TFs) and their
target genes. It is an expansion of DoRothEA. Each interaction is
weighted by its mode of regulation (either positive or negative).

Description

CollecTRI gene regulatory network. Wrapper to access CollecTRI gene regulatory network. Col-
lecTRI is a comprehensive resource containing a curated collection of transcription factors (TFs)
and their target genes. It is an expansion of DoRothEA. Each interaction is weighted by its mode
of regulation (either positive or negative).

Usage

get_collectri(organism = "human", split_complexes = FALSE, ...)

get_dorothea 11

Arguments

organism Which organism to use. Only human, mouse and rat are available.

split_complexes

Whether to split complexes into subunits. By default complexes are kept as they
are.

... Ignored.

Examples

collectri <- get_collectri(organism='human', split_complexes=FALSE)

get_dorothea DoRothEA gene regulatory network.

Description

Wrapper to access DoRothEA gene regulatory network. DoRothEA is a comprehensive resource
containing a curated collection of transcription factors (TFs) and their target genes. Each interaction
is weighted by its mode of regulation (either positive or negative) and by its confidence level

Usage

get_dorothea(
organism = "human",
levels = c("A", "B", "C"),
weight_dict = list(A = 1, B = 2, C = 3, D = 4)

)

Arguments

organism Which organism to use. Only human, mouse and rat are available.

levels List of confidence levels to return. Goes from A to D, A being the most confident
and D being the less.

weight_dict Dictionary of values to divide the mode of regulation (-1 or 1), one for each
confidence level. Bigger values will generate weights close to zero.

Examples

dorothea <- get_dorothea(organism='human', levels=c('A', 'B'))

12 get_profile_of

get_ksn_omnipath OmniPath kinase-substrate network

Description

Retrieve a ready to use, curated kinase-substrate Network from the OmniPath database.

Usage

get_ksn_omnipath(...)

Arguments

... Passed to OmnipathR::import_omnipath_enzsub.

Details

Import enzyme-PTM network from OmniPath, then filter out anything that is not phospho or de-
phosphorilation. Then format the columns for use with decoupleR functions.

get_profile_of Complete a data frame with missing combinations of data

Description

Turns implicit missing values into explicit missing values. This is a wrapper around expand(),
dplyr::full_join() and replace_na() that’s useful for completing missing combinations of
data.

Usage

get_profile_of(data, sources, values_fill = NA)

Arguments

data A data frame.

sources A named vector or list with the values to expand and get profile.

values_fill Optionally, a (scalar) value that specifies what each value should be filled in
with when missing.
This can be a named list if you want to apply different fill values to different
value columns.

Value

A data frame with the expanded grid of the values passed in sources and filled as specified in the
fill argument.

See Also

complete expand

get_progeny 13

Examples

Not run:
library(dplyr, warn.conflicts = FALSE)
df <- tibble(

group = c(1:2, 1),
item_id = c(1:2, 2),
item_name = c("a", "b", "b"),
value1 = 1:3,
value2 = 4:6

)

to_get_profile <- list(group = c(1, 2, 3), item_id = c(1, 2))

This will add the combinations of group 3 with the id of the items
df %>% get_profile_of(sources = to_get_profile)

You can also choose to fill in missing values

This only fill with "Unknown" the NA values of the column item_name
df %>% get_profile_of(

sources = to_get_profile,
values_fill = list(item_name = "Unknown")

)

Replace all NAs with "Unkwnon"
df %>% get_profile_of(sources = to_get_profile, values_fill = "Unknown")

End(Not run)

get_progeny Pathway RespOnsive GENes for activity inference (PROGENy).

Description

Wrapper to access PROGENy model gene weights. Each pathway is defined with a collection of
target genes, each interaction has an associated p-value and weight. The top significant interactions
per pathway are returned.

Usage

get_progeny(organism = "human", top = 500)

Arguments

organism Which organism to use. Only human and mouse are available.

top Number of genes per pathway to return.

Examples

progeny <- get_progeny(organism='human', top=500)

14 get_toy_data

get_resource Wrapper to access resources inside Omnipath. This wrapper
allows to easily query different prior knowledge resources. To
check available resources run decoupleR::show_resources().
For more information visit the official website for
Rhrefhttps://omnipathdb.org/Omnipath.

Description

Wrapper to access resources inside Omnipath. This wrapper allows to easily query different prior
knowledge resources. To check available resources run decoupleR::show_resources(). For more
information visit the official website for Omnipath.

Usage

get_resource(name, organism = "human", ...)

Arguments

name Name of the resource to query.

organism Organism name or NCBI Taxonomy ID.

... Passed to OmnipathR::import_omnipath_annotations.

Examples

df <- decoupleR::get_resource('SIGNOR')

get_toy_data Generate a toy mat and network.

Description

Generate a toy mat and network.

Usage

get_toy_data(n_samples = 24, seed = 42)

Arguments

n_samples Number of samples to simulate.

seed A single value, interpreted as an integer, or NULL for random number genera-
tion.

Value

List containing mat and network.

https://omnipathdb.org/

intersect_regulons 15

Examples

data <- get_toy_data()
mat <- data$mat
network <- data$network

intersect_regulons Intersect network target features with input matrix.

Description

Keep only edges which its target features belong to the input matrix.

Usage

intersect_regulons(mat, network, .source, .target, minsize)

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

minsize Minimum number of targets per source allowed.

Value

Filtered tibble.

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")
mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))
intersect_regulons(mat, net, source, target, minsize=4)

pivot_wider_profile Pivot a data frame to wider and convert it to matrix

Description

Generates a kind of table where the rows come from id_cols, the columns from names_from and
the values from values_from.

16 pivot_wider_profile

Usage

pivot_wider_profile(
data,
id_cols,
names_from,
values_from,
values_fill = NA,
to_matrix = FALSE,
to_sparse = FALSE,
...

)

Arguments

data A data frame to pivot.

id_cols <tidy-select> A set of columns that uniquely identify each observation. Typ-
ically used when you have redundant variables, i.e. variables whose values are
perfectly correlated with existing variables.
Defaults to all columns in data except for the columns specified through names_from
and values_from. If a tidyselect expression is supplied, it will be evaluated on
data after removing the columns specified through names_from and values_from.

names_from, values_from
<tidy-select> A pair of arguments describing which column (or columns)
to get the name of the output column (names_from), and which column (or
columns) to get the cell values from (values_from).
If values_from contains multiple values, the value will be added to the front of
the output column.

values_fill Optionally, a (scalar) value that specifies what each value should be filled in
with when missing.
This can be a named list if you want to apply different fill values to different
value columns.

to_matrix Logical value indicating if the result should be a matrix. Parameter is ignored in
case sparse is TRUE.

to_sparse Logical value indicating whether the resulting matrix should be sparse or not.

... Additional arguments passed on to methods.

Details

In the current state of the function, to ensure its operation, the id_cols parameter is a single selector.

Value

"widened" data; it is increasing the number of columns and decreasing the number of rows.

Examples

Not run:
df <- tibble::tibble(

tf = c("tf_1", "tf_1", "tf_2", "tf_2"),
gene = c("gene_1", "gene_2", "gene_1", "gene_2"),
mor = c(1, -1, 1, -1)

randomize_matrix 17

)

Return a tibble
pivot_wider_profile(

data = df,
id_cols = tf,
names_from = gene,
values_from = mor

)

Return a matrix
pivot_wider_profile(

data = df,
id_cols = tf,
names_from = gene,
values_from = mor,
to_matrix = TRUE

)
Return a sparse Matrix of class "dgCMatrix"
pivot_wider_profile(

data = df,
id_cols = tf,
names_from = gene,
values_from = mor,
to_sparse = TRUE

)

End(Not run)

randomize_matrix Randomize matrix

Description

Utility function used in functions that require permutations of the expression matrix

Usage

randomize_matrix(mat, randomize_type = c("rows", "cols_independently"))

Arguments

mat Matrix to randomize.

randomize_type How to randomize.

Value

Randomized matrix

18 rename_net

Examples

Not run:
mat <- matrix(seq_len(9), ncol = 3)
mat

set.seed(42)
randomize_matrix(mat, randomize_type = "rows")

set.seed(42)
randomize_matrix(mat, randomize_type = "cols_independently")

End(Not run)

rename_net Rename network

Description

Renames a given network to these column names: .source, .target, .mor, If .mor is not provided,
then the function sets them to default values.

Usage

rename_net(
network,
.source,
.target,
.mor = NULL,
.likelihood = NULL,
def_mor = 1

)

Arguments

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

.mor Column with edge mode of regulation (i.e. mor).

.likelihood Deprecated argument. Now it will always be set to 1.

def_mor Default value for .mor when not provided.

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")
mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))
rename_net(net, source, target, mor)

run_aucell 19

run_aucell AUCell

Description

Calculates regulatory activities using AUCell.

Usage

run_aucell(
mat,
network,
.source = source,
.target = target,
aucMaxRank = ceiling(0.05 * nrow(rankings)),
nproc = availableCores(),
seed = 42,
minsize = 5

)

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

aucMaxRank Threshold to calculate the AUC.

nproc Number of cores to use for computation.

seed A single value, interpreted as an integer, or NULL for random number genera-
tion.

minsize Integer indicating the minimum number of targets per source.

Details

AUCell (Aibar et al., 2017) uses the Area Under the Curve (AUC) to calculate whether a set of
targets is enriched within the molecular readouts of each sample. To do so, AUCell first ranks the
molecular features of each sample from highest to lowest value, resolving ties randomly. Then, an
AUC can be calculated using by default the top 5% molecular features in the ranking. Therefore,
this metric, aucell, represents the proportion of abundant molecular features in the target set, and
their relative abundance value compared to the other features within the sample.

Aibar S. et al. (2017) Scenic: single-cell regulatory network inference and clustering. Nat. Meth-
ods, 14, 1083–1086.

See Also

Other decoupleR statistics: decouple(), run_fgsea(), run_gsva(), run_mdt(), run_mlm(),
run_ora(), run_udt(), run_ulm(), run_viper(), run_wmean(), run_wsum()

20 run_consensus

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))

run_aucell(mat, net, minsize=0, nproc=1, aucMaxRank=3)

run_consensus Consensus score between methods

Description

Function to generate a consensus score between methods from the result of the decouple function.

Usage

run_consensus(df, include_time = FALSE, seed = NULL)

Arguments

df decouple data frame result

include_time Should the time per statistic evaluated be informed?

seed Deprecated parameter.

Value

Updated tibble with the computed consensus score between methods

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")
mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))

results <- decouple(
mat = mat,
network = net,
.source = "source",
.target = "target",
statistics = c("wmean", "ulm"),
args = list(

wmean = list(.mor = "mor", .likelihood = "likelihood"),
ulm = list(.mor = "mor", .likelihood = "likelihood")

),
consensus_score = FALSE,
minsize = 0
)

run_consensus(results)

run_fgsea 21

run_fgsea Fast Gene Set Enrichment Analysis (FGSEA)

Description

Calculates regulatory activities using FGSEA.

Usage

run_fgsea(
mat,
network,
.source = source,
.target = target,
times = 100,
nproc = availableCores(),
seed = 42,
minsize = 5,
...

)

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

times How many permutations to do?

nproc Number of cores to use for computation.

seed A single value, interpreted as an integer, or NULL.

minsize Integer indicating the minimum number of targets per source.

... Arguments passed on to fgsea::fgseaMultilevel

sampleSize The size of a random set of genes which in turn has size = path-
waySize

minSize Minimal size of a gene set to test. All pathways below the threshold
are excluded.

maxSize Maximal size of a gene set to test. All pathways above the threshold
are excluded.

eps This parameter sets the boundary for calculating the p value.
scoreType This parameter defines the GSEA score type. Possible options are

("std", "pos", "neg"). By default ("std") the enrichment score is computed
as in the original GSEA. The "pos" and "neg" score types are intended to be
used for one-tailed tests (i.e. when one is interested only in positive ("pos")
or negateive ("neg") enrichment).

gseaParam GSEA parameter value, all gene-level statis are raised to the power
of ‘gseaParam‘ before calculation of GSEA enrichment scores.

22 run_gsva

BPPARAM Parallelization parameter used in bplapply. Can be used to specify
cluster to run. If not initialized explicitly or by setting ‘nproc‘ default value
‘bpparam()‘ is used.

absEps deprecated, use ‘eps‘ parameter instead

Details

GSEA (Aravind et al., 2005) starts by transforming the input molecular readouts in mat to ranks
for each sample. Then, an enrichment score fgsea is calculated by walking down the list of fea-
tures, increasing a running-sum statistic when a feature in the target feature set is encountered and
decreasing it when it is not. The final score is the maximum deviation from zero encountered in the
random walk. Finally, a normalized score norm_fgsea, can be obtained by computing the z-score
of the estimate compared to a null distribution obtained from N random permutations. The used
implementation is taken from the package fgsea (Korotkevich et al., 2021).

Aravind S. et al. (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. PNAS. 102, 43.

Korotkevich G. et al. (2021) Fast gene set enrichment analysis. bioRxiv. DOI: https://doi.org/10.1101/060012.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.

2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_gsva(), run_mdt(), run_mlm(),
run_ora(), run_udt(), run_ulm(), run_viper(), run_wmean(), run_wsum()

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))

run_fgsea(mat, net, minsize=0, nproc=1)

run_gsva Gene Set Variation Analysis (GSVA)

Description

Calculates regulatory activities using GSVA.

run_gsva 23

Usage

run_gsva(
mat,
network,
.source = source,
.target = target,
verbose = FALSE,
method = c("gsva", "plage", "ssgsea", "zscore"),
minsize = 5L,
maxsize = Inf,
...

)

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

verbose Gives information about each calculation step. Default: FALSE.

method Method to employ in the estimation of gene-set enrichment. scores per sam-
ple. By default this is set to gsva (Hänzelmann et al, 2013). Further avail-
able methods are "plage", "ssgsea" and "zscore". Read more in the manual of
GSVA::gsva.

minsize Integer indicating the minimum number of targets per source. Must be greater
than 0.

maxsize Integer indicating the maximum number of targets per source.

... Arguments passed on to GSVA::gsvaParam, GSVA::ssgseaParam

assay The name of the assay to use in case exprData is a multi-assay container,
otherwise ignored. By default, the first assay is used.

annotation The name of a Bioconductor annotation package for the gene iden-
tifiers occurring in the row names of the expression data matrix. This can be
used to map gene identifiers occurring in the gene sets if those are provided
in a GeneSetCollection. By default gene identifiers used in expression
data matrix and gene sets are matched directly.

kcdf Character vector of length 1 denoting the kernel to use during the non-
parametric estimation of the cumulative distribution function of expression
levels across samples. By default, kcdf="Gaussian" which is suitable
when input expression values are continuous, such as microarray fluores-
cent units in logarithmic scale, RNA-seq log-CPMs, log-RPKMs or log-
TPMs. When input expression values are integer counts, such as those
derived from RNA-seq experiments, then this argument should be set to
kcdf="Poisson".

tau Numeric vector of length 1. The exponent defining the weight of the tail in
the random walk performed by the GSVA (Hänzelmann et al., 2013) method.
The default value is 1 as described in the paper.

24 run_gsva

maxDiff Logical vector of length 1 which offers two approaches to calculate
the enrichment statistic (ES) from the KS random walk statistic.

• FALSE: ES is calculated as the maximum distance of the random walk
from 0.

• TRUE (the default): ES is calculated as the magnitude difference be-
tween the largest positive and negative random walk deviations.

absRanking Logical vector of length 1 used only when maxDiff=TRUE. When
absRanking=FALSE (default) a modified Kuiper statistic is used to calculate
enrichment scores, taking the magnitude difference between the largest pos-
itive and negative random walk deviations. When absRanking=TRUE the
original Kuiper statistic that sums the largest positive and negative random
walk deviations, is used. In this latter case, gene sets with genes enriched
on either extreme (high or low) will be regarded as ’highly’ activated.

alpha Numeric vector of length 1. The exponent defining the weight of the tail
in the random walk performed by the ssGSEA (Barbie et al., 2009) method.
The default value is 0.25 as described in the paper.

normalize Logical vector of length 1; if TRUE runs the ssGSEA method from
Barbie et al. (2009) normalizing the scores by the absolute difference be-
tween the minimum and the maximum, as described in their paper. Other-
wise this last normalization step is skipped.

Details

GSVA (Hänzelmann et al., 2013) starts by transforming the input molecular readouts in mat to a
readout-level statistic using Gaussian kernel estimation of the cumulative density function. Then,
readout-level statistics are ranked per sample and normalized to up-weight the two tails of the rank
distribution. Afterwards, an enrichment score gsva is calculated using a running sum statistic that
is normalized by subtracting the largest negative estimate from the largest positive one.

Hänzelmann S. et al. (2013) GSVA: gene set variation analysis for microarray and RNA-seq data.
BMC Bioinformatics, 14, 7.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.

2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_mdt(), run_mlm(),
run_ora(), run_udt(), run_ulm(), run_viper(), run_wmean(), run_wsum()

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))

run_mdt 25

run_gsva(mat, net, minsize=1, verbose = FALSE)

run_mdt Multivariate Decision Trees (MDT)

Description

Calculates regulatory activities using MDT.

Usage

run_mdt(
mat,
network,
.source = source,
.target = target,
.mor = mor,
.likelihood = likelihood,
sparse = FALSE,
center = FALSE,
na.rm = FALSE,
trees = 10,
min_n = 20,
nproc = availableCores(),
seed = 42,
minsize = 5

)

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
.mor Column with edge mode of regulation (i.e. mor).
.likelihood Deprecated argument. Now it will always be set to 1.
sparse Deprecated parameter.
center Logical value indicating if mat must be centered by base::rowMeans().
na.rm Should missing values (including NaN) be omitted from the calculations of

base::rowMeans()?
trees An integer for the number of trees contained in the ensemble.
min_n An integer for the minimum number of data points in a node that are required

for the node to be split further.
nproc Number of cores to use for computation.
seed A single value, interpreted as an integer, or NULL for random number genera-

tion.
minsize Integer indicating the minimum number of targets per source.

26 run_mlm

Details

MDT fits a multivariate regression random forest for each sample, where the observed molecular
readouts in mat are the response variable and the regulator weights in net are the covariates. Target
features with no associated weight are set to zero. The obtained feature importances from the fitted
model are the activities mdt of the regulators in net.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.

2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mlm(),
run_ora(), run_udt(), run_ulm(), run_viper(), run_wmean(), run_wsum()

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))

run_mdt(mat, net, minsize=0)

run_mlm Multivariate Linear Model (MLM)

Description

Calculates regulatory activities using MLM.

Usage

run_mlm(
mat,
network,
.source = source,
.target = target,
.mor = mor,
.likelihood = likelihood,
sparse = FALSE,
center = FALSE,
na.rm = FALSE,
minsize = 5

)

run_mlm 27

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

.mor Column with edge mode of regulation (i.e. mor).

.likelihood Deprecated argument. Now it will always be set to 1.

sparse Deprecated parameter.

center Logical value indicating if mat must be centered by base::rowMeans().

na.rm Should missing values (including NaN) be omitted from the calculations of
base::rowMeans()?

minsize Integer indicating the minimum number of targets per source.

Details

MLM fits a multivariate linear model for each sample, where the observed molecular readouts in
mat are the response variable and the regulator weights in net are the covariates. Target features with
no associated weight are set to zero. The obtained t-values from the fitted model are the activities
(mlm) of the regulators in net.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.

2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_ora(), run_udt(), run_ulm(), run_viper(), run_wmean(), run_wsum()

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))

run_mlm(mat, net, minsize=0)

28 run_ora

run_ora Over Representation Analysis (ORA)

Description

Calculates regulatory activities using ORA.

Usage

run_ora(
mat,
network,
.source = source,
.target = target,
n_up = ceiling(0.05 * nrow(mat)),
n_bottom = 0,
n_background = 20000,
with_ties = TRUE,
seed = 42,
minsize = 5,
...

)

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

n_up Integer indicating the number of top targets to slice from mat.

n_bottom Integer indicating the number of bottom targets to slice from mat.

n_background Integer indicating the background size of the sliced targets. If not specified
the number of background targets is determined by the total number of unique
targets in the union of mat and network.

with_ties Should ties be kept together? The default, TRUE, may return more rows than you
request. Use FALSE to ignore ties, and return the first n rows.

seed A single value, interpreted as an integer, or NULL for random number genera-
tion.

minsize Integer indicating the minimum number of targets per source.

... Arguments passed on to stats::fisher.test

workspace an integer specifying the size of the workspace used in the network
algorithm. In units of 4 bytes. Only used for non-simulated p-values larger
than 2 × 2 tables. Since R version 3.5.0, this also increases the internal
stack size which allows larger problems to be solved, however sometimes
needing hours. In such cases, simulate.p.values=TRUE may be more
reasonable.

run_ora 29

hybrid a logical. Only used for larger than 2 × 2 tables, in which cases it in-
dicates whether the exact probabilities (default) or a hybrid approximation
thereof should be computed.

hybridPars a numeric vector of length 3, by default describing “Cochran’s
conditions” for the validity of the chisquare approximation, see ‘Details’.

control a list with named components for low level algorithm control. At
present the only one used is "mult", a positive integer ≥ 2 with default 30
used only for larger than 2 × 2 tables. This says how many times as much
space should be allocated to paths as to keys: see file ‘fexact.c’ in the
sources of this package.

or the hypothesized odds ratio. Only used in the 2× 2 case.
alternative indicates the alternative hypothesis and must be one of "two.sided",

"greater" or "less". You can specify just the initial letter. Only used in
the 2× 2 case.

conf.int logical indicating if a confidence interval for the odds ratio in a 2×2
table should be computed (and returned).

conf.level confidence level for the returned confidence interval. Only used in
the 2× 2 case and if conf.int = TRUE.

simulate.p.value a logical indicating whether to compute p-values by Monte
Carlo simulation, in larger than 2× 2 tables.

B an integer specifying the number of replicates used in the Monte Carlo test.

Details

ORA measures the overlap between the target feature set and a list of most altered molecular fea-
tures in mat. The most altered molecular features can be selected from the top and or bottom of
the molecular readout distribution, by default it is the top 5% positive values. With these, a contin-
gency table is build and a one-tailed Fisher’s exact test is computed to determine if a regulator’s set
of features are over-represented in the selected features from the data. The resulting score, ora, is
the minus log10 of the obtained p-value.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.

2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_mlm(), run_udt(), run_ulm(), run_viper(), run_wmean(), run_wsum()

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))

30 run_udt

run_ora(mat, net, minsize=0)

run_udt Univariate Decision Tree (UDT)

Description

Calculates regulatory activities by using UDT.

Usage

run_udt(
mat,
network,
.source = source,
.target = target,
.mor = mor,
.likelihood = likelihood,
sparse = FALSE,
center = FALSE,
na.rm = FALSE,
min_n = 20,
seed = 42,
minsize = 5

)

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

.mor Column with edge mode of regulation (i.e. mor).

.likelihood Deprecated argument. Now it will always be set to 1.

sparse Deprecated parameter.

center Logical value indicating if mat must be centered by base::rowMeans().

na.rm Should missing values (including NaN) be omitted from the calculations of
base::rowMeans()?

min_n An integer for the minimum number of data points in a node that are required
for the node to be split further.

seed A single value, interpreted as an integer, or NULL for random number genera-
tion.

minsize Integer indicating the minimum number of targets per source.

run_ulm 31

Details

UDT fits a single regression decision tree for each sample and regulator, where the observed molec-
ular readouts in mat are the response variable and the regulator weights in net are the explanatory
one. Target features with no associated weight are set to zero. The obtained feature importance
from the fitted model is the activity udt of a given regulator.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.

2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_mlm(), run_ora(), run_ulm(), run_viper(), run_wmean(), run_wsum()

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))

run_udt(mat, net, minsize=0)

run_ulm Univariate Linear Model (ULM)

Description

Calculates regulatory activities using ULM.

Usage

run_ulm(
mat,
network,
.source = source,
.target = target,
.mor = mor,
.likelihood = likelihood,
sparse = FALSE,
center = FALSE,
na.rm = FALSE,
minsize = 5L

)

32 run_ulm

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

.mor Column with edge mode of regulation (i.e. mor).

.likelihood Deprecated argument. Now it will always be set to 1.

sparse Deprecated parameter.

center Logical value indicating if mat must be centered by base::rowMeans().

na.rm Should missing values (including NaN) be omitted from the calculations of
base::rowMeans()?

minsize Integer indicating the minimum number of targets per source.

Details

ULM fits a linear model for each sample and regulator, where the observed molecular readouts
in mat are the response variable and the regulator weights in net are the explanatory one. Target
features with no associated weight are set to zero. The obtained t-value from the fitted model is the
activity ulm of a given regulator.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.

2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_mlm(), run_ora(), run_udt(), run_viper(), run_wmean(), run_wsum()

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))

run_ulm(mat, net, minsize=0)

run_viper 33

run_viper Virtual Inference of Protein-activity by Enriched Regulon analysis
(VIPER)

Description

Calculates regulatory activities using VIPER.

Usage

run_viper(
mat,
network,
.source = source,
.target = target,
.mor = mor,
.likelihood = likelihood,
verbose = FALSE,
minsize = 5,
pleiotropy = TRUE,
eset.filter = FALSE,
...

)

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

.mor Column with edge mode of regulation (i.e. mor).

.likelihood Deprecated argument. Now it will always be set to 1.

verbose Logical, whether progression messages should be printed in the terminal.

minsize Integer indicating the minimum number of targets per source.

pleiotropy Logical, whether correction for pleiotropic regulation should be performed.

eset.filter Logical, whether the dataset should be limited only to the genes represented in
the interactome.

... Arguments passed on to viper::viper

dnull Numeric matrix for the null model, usually generated by nullTtest

nes Logical, whether the enrichment score reported should be normalized
method Character string indicating the method for computing the single sam-

ples signature, either scale, rank, mad, ttest or none
bootstraps Integer indicating the number of bootstraps iterations to perform.

Only the scale method is implemented with bootstraps.

34 run_wmean

adaptive.size Logical, whether the weighting scores should be taken into
account for computing the regulon size

pleiotropyArgs list of 5 numbers for the pleotropy correction indicating: reg-
ulators p-value threshold, pleiotropic interaction p-value threshold, mini-
mum number of targets in the overlap between pleiotropic regulators, penalty
for the pleiotropic interactions and the method for computing the pleiotropy,
either absolute or adaptive

cores Integer indicating the number of cores to use (only 1 in Windows-based
systems)

Details

VIPER (Alvarez et al., 2016) estimates biological activities by performing a three-tailed enrichment
score calculation. For further information check the supplementary information of the decoupler
manuscript or the original publication.

Alvarez M.J.et al. (2016) Functional characterization of somatic mutations in cancer using network-
based inference of protein activity. Nat. Genet., 48, 838–847.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.

2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_mlm(), run_ora(), run_udt(), run_ulm(), run_wmean(), run_wsum()

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))

run_viper(mat, net, minsize=0, verbose = FALSE)

run_wmean Weighted Mean (WMEAN)

Description

Calculates regulatory activities using WMEAN.

run_wmean 35

Usage

run_wmean(
mat,
network,
.source = source,
.target = target,
.mor = mor,
.likelihood = likelihood,
times = 100,
seed = 42,
sparse = TRUE,
randomize_type = "rows",
minsize = 5

)

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
.mor Column with edge mode of regulation (i.e. mor).
.likelihood Deprecated argument. Now it will always be set to 1.
times How many permutations to do?
seed A single value, interpreted as an integer, or NULL for random number genera-

tion.
sparse Should the matrices used for the calculation be sparse?
randomize_type How to randomize the expression matrix.
minsize Integer indicating the minimum number of targets per source.

Details

WMEAN infers regulator activities by first multiplying each target feature by its associated weight
which then are summed to an enrichment score wmean. Furthermore, permutations of random tar-
get features can be performed to obtain a null distribution that can be used to compute a z-score
norm_wmean, or a corrected estimate corr_wmean by multiplying wmean by the minus log10 of the
obtained empirical p-value.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.
2. source: Source nodes of network.
3. condition: Condition representing each column of mat.
4. score: Regulatory activity (enrichment score).
5. p_value: p-value for the score of the method.

36 run_wsum

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_mlm(), run_ora(), run_udt(), run_ulm(), run_viper(), run_wsum()

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))

run_wmean(mat, net, minsize=0)

run_wsum Weighted Sum (WSUM)

Description

Calculates regulatory activities using WSUM.

Usage

run_wsum(
mat,
network,
.source = source,
.target = target,
.mor = mor,
.likelihood = likelihood,
times = 100,
seed = 42,
sparse = TRUE,
randomize_type = "rows",
minsize = 5

)

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

.mor Column with edge mode of regulation (i.e. mor).

.likelihood Deprecated argument. Now it will always be set to 1.

times How many permutations to do?

seed A single value, interpreted as an integer, or NULL for random number genera-
tion.

show_methods 37

sparse Should the matrices used for the calculation be sparse?
randomize_type How to randomize the expression matrix.
minsize Integer indicating the minimum number of targets per source.

Details

WSUM infers regulator activities by first multiplying each target feature by its associated weight
which then are summed to an enrichment score wsum. Furthermore, permutations of random tar-
get features can be performed to obtain a null distribution that can be used to compute a z-score
norm_wsum, or a corrected estimate corr_wsum by multiplying wsum by the minus log10 of the
obtained empirical p-value.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.
2. source: Source nodes of network.
3. condition: Condition representing each column of mat.
4. score: Regulatory activity (enrichment score).
5. p_value: p-value for the score of the method.

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_mlm(), run_ora(), run_udt(), run_ulm(), run_viper(), run_wmean()

Examples

inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "mat.rds"))
net <- readRDS(file.path(inputs_dir, "net.rds"))

run_wsum(mat, net, minsize=0)

show_methods Show methods

Description

Prints the methods available in decoupleR. The first column correspond to the function name in
decoupleR and the second to the method’s full name.

Usage

show_methods()

Examples

show_methods()

38 tidyeval

show_resources Shows available resources in Omnipath. For more information visit
the official website for Rhrefhttps://omnipathdb.org/Omnipath.

Description

Shows available resources in Omnipath. For more information visit the official website for Omni-
path.

Usage

show_resources()

Examples

decoupleR::show_resources()

tidyeval Tidy eval helpers

Description

• rlang::sym() creates a symbol from a string and syms() creates a list of symbols from a
character vector.

• enquo() and enquos() delay the execution of one or several function arguments. enquo()
returns a single quoted expression, which is like a blueprint for the delayed computation.
enquos() returns a list of such quoted expressions.

• expr() quotes a new expression locally. It is mostly useful to build new expressions around ar-
guments captured with enquo() or enquos(): expr(mean(!!enquo(arg), na.rm = TRUE)).

• rlang::as_name() transforms a quoted variable name into a string. Supplying something
else than a quoted variable name is an error.
That’s unlike rlang::as_label() which also returns a single string but supports any kind of
R object as input, including quoted function calls and vectors. Its purpose is to summarise that
object into a single label. That label is often suitable as a default name.
If you don’t know what a quoted expression contains (for instance expressions captured with
enquo() could be a variable name, a call to a function, or an unquoted constant), then use
as_label(). If you know you have quoted a simple variable name, or would like to enforce
this, use as_name().

To learn more about tidy eval and how to use these tools, visit https://tidyeval.tidyverse.org
and the Metaprogramming section of Advanced R.

Examples

if (FALSE) {
help("nse-defuse", package = "rlang")

}

https://omnipathdb.org/
https://omnipathdb.org/
https://tidyeval.tidyverse.org
https://adv-r.hadley.nz/metaprogramming.html
https://adv-r.hadley.nz

%>% 39

%>% Pipe operator

Description

See magrittr::%>% for details.

Usage

lhs %>% rhs

Value

Pipe an object forward into a function or call expression.

Examples

c(1, 2, 3) %>% sum()

Index

∗ decoupleR formats
.decoupler_mat_format, 4
.decoupler_network_format, 4

∗ decoupleR statistics
decouple, 7
run_aucell, 19
run_fgsea, 21
run_gsva, 22
run_mdt, 25
run_mlm, 26
run_ora, 28
run_udt, 30
run_ulm, 31
run_viper, 33
run_wmean, 34
run_wsum, 36

∗ internal
.decoupler_mat_format, 4
.decoupler_network_format, 4
%>%, 39
decoupleR-package, 3
get_profile_of, 12
pivot_wider_profile, 15
randomize_matrix, 17
tidyeval, 38

.data (tidyeval), 38

.decoupler_mat_format, 4, 4

.decoupler_network_format, 4, 4

.fit_preprocessing, 5
:= (tidyeval), 38
%>%, 39, 39

abort (tidyeval), 38
as_label (tidyeval), 38
as_name (tidyeval), 38

base::rowMeans(), 5, 25, 27, 30, 32

check_corr, 5
complete, 12
convert_f_defaults, 6

decouple, 7, 19, 22, 24, 26, 27, 29, 31, 32, 34,
36, 37

decoupleR (decoupleR-package), 3
decoupleR-package, 3
dplyr::full_join(), 12
dplyr::rename(), 6, 7
dplyr::select(), 7

enquo (tidyeval), 38
enquo(), 38
enquos (tidyeval), 38
enquos(), 38
exec (tidyeval), 38
expand, 12
expand(), 12
expr (tidyeval), 38
expr(), 38
extract_sets, 9

fgsea::fgseaMultilevel, 21
filt_minsize, 10

GeneSetCollection, 23
get_collectri, 10
get_dorothea, 11
get_ksn_omnipath, 12
get_profile_of, 12
get_progeny, 13
get_resource, 14
get_toy_data, 14
GSVA::gsva, 23
GSVA::gsvaParam, 23
GSVA::ssgseaParam, 23

intersect_regulons, 15

mat_format (.decoupler_mat_format), 4

network_format
(.decoupler_network_format), 4

pivot_wider_profile, 15

quo_is_missing (tidyeval), 38
quo_is_null (tidyeval), 38

randomize_matrix, 17

40

INDEX 41

rename_net, 9, 18
replace_na(), 12
rlang::as_label(), 38
rlang::as_name(), 38
rlang::sym(), 38
run_aucell, 8, 19, 22, 24, 26, 27, 29, 31, 32,

34, 36, 37
run_consensus, 20
run_fgsea, 8, 19, 21, 24, 26, 27, 29, 31, 32,

34, 36, 37
run_gsva, 8, 19, 22, 22, 26, 27, 29, 31, 32, 34,

36, 37
run_mdt, 8, 19, 22, 24, 25, 27, 29, 31, 32, 34,

36, 37
run_mlm, 8, 19, 22, 24, 26, 26, 29, 31, 32, 34,

36, 37
run_ora, 8, 19, 22, 24, 26, 27, 28, 31, 32, 34,

36, 37
run_udt, 8, 19, 22, 24, 26, 27, 29, 30, 32, 34,

36, 37
run_ulm, 8, 19, 22, 24, 26, 27, 29, 31, 31, 34,

36, 37
run_viper, 8, 19, 22, 24, 26, 27, 29, 31, 32,

33, 36, 37
run_wmean, 8, 19, 22, 24, 26, 27, 29, 31, 32,

34, 34, 37
run_wsum, 8, 19, 22, 24, 26, 27, 29, 31, 32, 34,

36, 36

show_methods, 37
show_resources, 38
stats::fisher.test, 28
sym (tidyeval), 38
syms (tidyeval), 38
syms(), 38

tibble::add_column(), 6
tidyeval, 38

viper::viper, 33

	decoupleR-package
	.decoupler_mat_format
	.decoupler_network_format
	.fit_preprocessing
	check_corr
	convert_f_defaults
	decouple
	extract_sets
	filt_minsize
	get_collectri
	get_dorothea
	get_ksn_omnipath
	get_profile_of
	get_progeny
	get_resource
	get_toy_data
	intersect_regulons
	pivot_wider_profile
	randomize_matrix
	rename_net
	run_aucell
	run_consensus
	run_fgsea
	run_gsva
	run_mdt
	run_mlm
	run_ora
	run_udt
	run_ulm
	run_viper
	run_wmean
	run_wsum
	show_methods
	show_resources
	tidyeval
	>
	Index

