
Package ‘DaMiRseq’
December 30, 2024

Type Package

Date 2021-11-20

Title Data Mining for RNA-seq data: normalization, feature selection
and classification

Version 2.18.0

Author Mattia Chiesa <mattia.chiesa@cardiologicomonzino.it>,
Luca Piacentini <luca.piacentini@cardiologicomonzino.it>

Maintainer Mattia Chiesa <mattia.chiesa@cardiologicomonzino.it>

Description The DaMiRseq package offers a tidy pipeline of data mining
procedures to identify transcriptional biomarkers and exploit

them for both binary and multi-class classification purposes.
The package accepts any kind of data presented as a table
of raw counts and allows including both continous and factorial
variables that occur with the experimental setting. A series
of functions enable the user to clean up the data by filtering
genomic features and samples, to adjust data by identifying
and removing the unwanted source of variation (i.e. batches
and confounding factors) and to select the best predictors
for modeling. Finally, a ``stacking'' ensemble learning
technique is applied to build a robust classification model.
Every step includes a checkpoint that the user may exploit
to assess the effects of data management by looking at
diagnostic plots, such as clustering and heatmaps,
RLE boxplots, MDS or correlation plot.

License GPL (>= 2)

Encoding UTF-8

LazyData true

biocViews Sequencing, RNASeq, Classification, ImmunoOncology

VignetteBuilder knitr

Imports DESeq2, limma, EDASeq, RColorBrewer, sva, Hmisc, pheatmap,
FactoMineR, corrplot, randomForest, e1071, caret, MASS,
lubridate, plsVarSel, kknn, FSelector, methods, stats, utils,
graphics, grDevices, reshape2, ineq, arm, pls, RSNNS, edgeR,
plyr

Suggests BiocStyle, knitr, testthat

Depends R (>= 3.4), SummarizedExperiment, ggplot2

1

2 Contents

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/DaMiRseq

git_branch RELEASE_3_20

git_last_commit 753fc77

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2024-12-30

Contents

DaMiR.Allplot . 3
DaMiR.Clustplot . 4
DaMiR.corrplot . 5
DaMiR.EnsembleLearning . 6
DaMiR.EnsembleLearning2cl . 7
DaMiR.EnsembleLearningNcl . 9
DaMiR.EnsL_Predict . 10
DaMiR.EnsL_Test . 11
DaMiR.EnsL_Train . 12
DaMiR.FBest . 13
DaMiR.FReduct . 14
DaMiR.FSelect . 15
DaMiR.FSort . 17
DaMiR.goldenDice . 18
DaMiR.iTSadjust . 19
DaMiR.iTSnorm . 20
DaMiR.makeSE . 21
DaMiR.MDSplot . 22
DaMiR.ModelSelect . 23
DaMiR.normalization . 24
DaMiR.sampleFilt . 25
DaMiR.SV . 26
DaMiR.SVadjust . 28
DaMiR.transpose . 28
data_min . 29
data_norm . 29
data_reduced . 30
data_relief . 30
df . 31
SE . 31
selected_features . 32
SEtest_norm . 32
sv . 33

Index 34

DaMiR.Allplot 3

DaMiR.Allplot Quality assessment and visualization of expression data

Description

This is a helper function to easily draw (1) clustering dendrogram and heatmap of a sample-per-
sample correlation matrix, (2) multidimensional scaling plots (MDS), (3) relative log expression
(RLE) boxplots of expression data, (4) a sample-by-sample expression value distribution, and (5) a
class average expression value distribution

Usage

DaMiR.Allplot(
data,
df,
type = c("spearman", "pearson"),
what = c("all", "all_w_PCA", "MDS", "PCA", "heatmap", "RLEbox", "distr", "avg_distr")

)

Arguments

data A SummarizedExperiment object or a matrix or a data.frame where rows and
cols should be, respectively, observations and features

df A data frame with class and known variables (or a subset of them); at least one
column with ’class’ label must be included

type A character string specifing the metric to be applied to correlation analysis. Ei-
ther "spearman" or "pearson" is allowed; default is "spearman"

what A character string specifing the plots to be shown ’all’, ’all_w_PCA’, ’MDS’,’PCA’,’heatmap’,’RLEbox’,
’distr’, ’avg_distr’ are allowed; default is "all"

Details

Please be sure that NAs are not present in df’s columns. Plots will not be drawn in the presence of
NAs.

Value

A dendrogram and heatmap, MDS plot(s), a RLE boxplot, a sample-by-sample expression value
distribution, and a class average expression value distribution

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

use example data:
data(data_norm)
data(df)
Draw clustering dendrogram and heatmap, MDS, RLE boxplot:
DaMiR.Allplot(data=data_norm, df=df[,5,drop=FALSE])

4 DaMiR.Clustplot

DaMiR.Clustplot Expression data clustering and heatmap

Description

The function helps to draw a clustering dendrogram and a heatmap of expression data.

Usage

DaMiR.Clustplot(
data,
df,
type_row = c("euclidean", "correlation"),
type_col = c("euclidean", "correlation")

)

Arguments

data A SummarizedExperiment object or a matrix or a data.frame where rows and
cols should be, respectively, observations and features

df A data frame with class and (optionally) known variables; at least one column
with ’class’ label must be included

type_row The metric to be used to cluster rows. Either "euclidean" or "correlation" is
allowed; default is "euclidean"

type_col The metric to be used to cluster cols. Either "euclidean" or "correlation" is
allowed; default is "euclidean"

Value

A clustering dendrogram and heatmap.

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

use example data:
data(data_norm)
data(df)
use the first 100 genes:
data_norm_red<-data_norm[1:100,]
Draw heatmap: samples (cols) per genes (rows)
and use variable annotation:
DaMiR.Clustplot(data=data_norm_red,
df=df, type_row="correlation", type_col="correlation")

DaMiR.corrplot 5

DaMiR.corrplot Correlation Plot

Description

This function easily draws the correlation plot of surrogate variables (sv) and variables.

Usage

DaMiR.corrplot(sv, df, type = c("pearson", "spearman"), sig.level = 0.01)

Arguments

sv The matrix of sv identified by DaMiR.SV function

df A data frame with class and known variables; at least one column with ’class’
label must be included

type Type of correlation metric to be applied; default is "pearson"

sig.level The significance level of the correlation; default is 0.0001

Details

Factorial variables are allowed. They will be tranformed as numeric before applying the rcorr
function of Hmisc.The corrplot function, which draws the plot, marks with a cross all the cor-
relations that do not reach the significance threshold defined in the sig.level argument.This plot
allows the user to identify those sv that present significant correlations with either technical and bi-
ological known variables. Notably, none of the sv should present signifcant correlation with "class"
variable.

Value

A correlation plot between sv and known variables.

Author(s)

Mattia Chiesa, Luca Piacentini

See Also

DaMiR.SV

Examples

use example data:
data(df)
data(sv)
Draw correlation plot:
#DaMiR.corrplot(sv=sv, df=df, type = "pearson", sig.level=0.01)

6 DaMiR.EnsembleLearning

DaMiR.EnsembleLearning

Build Classifier using ’Staking’ Ensemble Learning strategy.

Description

This function implements a ’Stacking’ ensemble learning strategy. Users can provide heterogeneous
features (other than genomic features) which will be taken into account during classification model
building.

Usage

DaMiR.EnsembleLearning(
data,
classes,
variables,
fSample.tr = 0.7,
fSample.tr.w = 0.7,
iter = 100,
cl_type = c("RF", "kNN", "SVM", "LDA", "LR", "NB", "NN", "PLS")

)

Arguments

data A transposed data frame of normalized expression data. Rows and Cols should
be, respectively, observations and features

classes A class vector with nrow(data) elements. Each element represents the class
label for each observation. More than two different class labels are handled.

variables An optional data frame containing other variables (but without ’class’ column).
Each column represents a different covariate to be considered in the model

fSample.tr Fraction of samples to be used as training set; default is 0.7

fSample.tr.w Fraction of samples of training set to be used during weight estimation; default
is 0.7

iter Number of iterations to assess classification accuracy; default is 100

cl_type List of weak classifiers that will compose the meta-learners. Only "RF", "kNN",
"SVM", "LDA", "LR", "NB", "NN", "PLS" are allowed. Default is c("RF",
"LR", "kNN", "LDA", "NB", "SVM")

Details

To assess the robustness of a set of predictors, a specific ’Stacking’ strategy has been implemented.
First, a training set (TR1) and a test set (TS1) are generated by ’bootstrap’ sampling. Then, sampling
again from TR1 subset, another pair of training (TR2) and test set (TS2) are obtained. TR2 is
used to train Random Forest (RF), Naive Bayes (NB), Support Vector Machines (SVM), k-Nearest
Neighbour (kNN), Linear Discriminant Analysis (LDA) and Logistic Regression (LR) classifiers,
whereas TS2 is used to test their accuracy and to calculate weights. The decision rule of ’Stacking’
classifier is made by a linear combination of the product between weigths (w) and predictions (Pr)
of each classifier; for each sample k, the prediction is computed by:

Prk,Ensemble = wRF ∗Prk,RF+wNB∗Prk,NB+wSVM∗Prk,SVM+wk,kNN∗Prk,kNN+wk,LDA∗Prk,LDA+wk,LR∗Prk,LR

DaMiR.EnsembleLearning2cl 7

Prk,Ensemble = sum(w[RF] ∗ Pr[k, i]), i = 1, N

Performance of ’Stacking’ classifier is evaluated by using TS1. This process is repeated several
times (default 100 times).

Value

A list containing:

• A matrix of accuracies of each classifier in each iteration.

• A matrix of weights used for each classifier in each iteration.

• A list of all models generated in each iteration.

• A violin plot of model accuracy obtained for each iteration.

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

use example data:
data(selected_features)
data(df)
set.seed(1)
only for the example:
speed up the process setting a low 'iter' argument value;
for real data set use default 'iter' value (i.e. 100) or higher:
Classification_res <- DaMiR.EnsembleLearning(selected_features,
classes=df$class, fSample.tr=0.6, fSample.tr.w=0.6, iter=3,
cl_type=c("RF","kNN"))

DaMiR.EnsembleLearning2cl

Build a Binary Classifier using ’Staking’ Learning strategy.

Description

This function implements a ’Stacking’ ensemble learning strategy. Users can provide heterogeneous
features (other than genomic features) which will be taken into account during classification model
building. A ’two-classes’ classification task is addressed.

Usage

DaMiR.EnsembleLearning2cl(
data,
classes,
variables,
fSample.tr = 0.7,
fSample.tr.w = 0.7,
iter = 100,
cl_type = c("RF", "kNN", "SVM", "LDA", "LR", "NB", "NN", "PLS")

)

8 DaMiR.EnsembleLearning2cl

Arguments

data A transposed data frame of normalized expression data. Rows and Cols should
be, respectively, observations and features

classes A class vector with nrow(data) elements. Each element represents the class
label for each observation. Two different class labels are allowed

variables An optional data frame containing other variables (but without ’class’ column).
Each column represents a different covariate to be considered in the model

fSample.tr Fraction of samples to be used as training set; default is 0.7

fSample.tr.w Fraction of samples of training set to be used during weight estimation; default
is 0.7

iter Number of iterations to assess classification accuracy; default is 100

cl_type List of weak classifiers that will compose the meta-learners. "RF", "kNN",
"SVM", "LDA", "LR", "NB", "NN", "PLS" are allowed. Default is c("RF",
"LR", "kNN", "LDA", "NB", "SVM")

Details

To assess the robustness of a set of predictors, a specific ’Stacking’ strategy has been implemented.
First, a training set (TR1) and a test set (TS1) are generated by ’bootstrap’ sampling. Then, sampling
again from TR1 subset, another pair of training (TR2) and test set (TS2) are obtained. TR2 is
used to train Random Forest (RF), Naive Bayes (NB), Support Vector Machines (SVM), k-Nearest
Neighbour (kNN), Linear Discriminant Analysis (LDA) and Logistic Regression (LR) classifiers,
whereas TS2 is used to test their accuracy and to calculate weights. The decision rule of ’Stacking’
classifier is made by a linear combination of the product between weigths (w) and predictions (Pr)
of each classifier; for each sample k, the prediction is computed by:

Prk,Ensemble = wRF ∗Prk,RF+wNB∗Prk,NB+wSVM∗Prk,SVM+wk,kNN∗Prk,kNN+wk,LDA∗Prk,LDA+wk,LR∗Prk,LR

Performance of ’Stacking’ classifier is evaluated by using TS1. This process is repeated several
times (default 100 times).

Value

A list containing:

• A matrix of accuracies of each classifier in each iteration.

• A matrix of weights used for each classifier in each iteration.

• A list of all models generated in each iteration.

• A violin plot of model accuracy obtained for each iteration.

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

use example data:
data(selected_features)
data(df)
set.seed(1)
only for the example:

DaMiR.EnsembleLearningNcl 9

speed up the process setting a low 'iter' argument value;
for real data set use default 'iter' value (i.e. 100) or higher:
Classification_res <- DaMiR.EnsembleLearning(selected_features,
classes=df$class, fSample.tr=0.6, fSample.tr.w=0.6, iter=3,
cl_type=c("RF","kNN"))

DaMiR.EnsembleLearningNcl

Build a Multi-Class Classifier using ’Staking’ Learning strategy.

Description

This function implements a ’Stacking’ ensemble learning strategy. Users can provide heterogeneous
features (other than genomic features) which will be taken into account during classification model
building. A ’multi-classes’ classification task is addressed.

Usage

DaMiR.EnsembleLearningNcl(
data,
classes,
variables,
fSample.tr = 0.7,
fSample.tr.w = 0.7,
iter = 100,
cl_type = c("RF", "kNN", "SVM", "LDA", "LR", "NB", "NN", "PLS")

)

Arguments

data A transposed data frame of normalized expression data. Rows and Cols should
be, respectively, observations and features

classes A class vector with nrow(data) elements. Each element represents the class
label for each observation. More than two different class labels are allowed

variables An optional data frame containing other variables (but without ’class’ column).
Each column represents a different covariate to be considered in the model

fSample.tr Fraction of samples to be used as training set; default is 0.7

fSample.tr.w Fraction of samples of training set to be used during weight estimation; default
is 0.7

iter Number of iterations to assess classification accuracy; default is 100

cl_type List of weak classifiers that will compose the meta-learners. "RF", "kNN",
"SVM", "LDA", "LR", "NB", "NN", "PLS" are allowed. Default is c("RF",
"LR", "kNN", "LDA", "NB", "SVM")

10 DaMiR.EnsL_Predict

Details

To assess the robustness of a set of predictors, a specific ’Stacking’ strategy has been implemented.
First, a training set (TR1) and a test set (TS1) are generated by ’bootstrap’ sampling. Then, sampling
again from TR1 subset, another pair of training (TR2) and test set (TS2) are obtained. TR2 is
used to train Random Forest (RF), Naive Bayes (NB), Support Vector Machines (SVM), k-Nearest
Neighbour (kNN), Linear Discriminant Analysis (LDA) and Logistic Regression (LR) classifiers,
whereas TS2 is used to test their accuracy and to calculate weights. The decision rule of ’Stacking’
classifier is made by a linear combination of the product between weigths (w) and predictions (Pr)
of each classifier; for each sample k, the prediction is computed by:

Prk,Ensemble = wRF ∗Prk,RF+wNB∗Prk,NB+wSVM∗Prk,SVM+wk,kNN∗Prk,kNN+wk,LDA∗Prk,LDA+wk,LR∗Prk,LR

Performance of ’Stacking’ classifier is evaluated by using TS1. This process is repeated several
times (default 100 times).

Value

A matrix of accuracies of each classifier in each iteration.

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

use example data:
data(selected_features)
data(df)
set.seed(1)
only for the example:
speed up the process setting a low 'iter' argument value;
for real data set use default 'iter' value (i.e. 100) or higher:
Classification_res <- DaMiR.EnsembleLearning(selected_features,
classes=df$class, fSample.tr=0.6, fSample.tr.w=0.6, iter=3,
cl_type=c("RF","kNN"))

DaMiR.EnsL_Predict Predict new samples class

Description

The best model learned by the DaMiR.EnsL_Train functionn is tested on a new dataset, in order to
predict the samples class

Usage

DaMiR.EnsL_Predict(data, bestModel)

DaMiR.EnsL_Test 11

Arguments

data A SummarizedExperiment object or a data frame/matrix of normalized expres-
sion data. Rows and Cols should be observations and features, respectively.

bestModel The best model, selected between those trained by the DaMiR.EnsL_Train func-
tion.

Details

This function implements the prediction step on new data, given a model learned by DaMiR.EnsL_Train

Value

A matrix containing the predictions

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

use example data:
data(selected_features)
data(df)

DaMiR.EnsL_Test Test Binary Classifiers

Description

This function tests the models learned by the DaMiR.EnsL_Train function, on a test set

Usage

DaMiR.EnsL_Test(data, classes, EnsL_model)

Arguments

data A SummarizedExperiment object or a data frame/matrix of normalized expres-
sion data. Rows and Cols should be observations and features, respectively.

classes A class vector with nrow(data) elements. Each element represents the class
label for each observation. Two different class labels are allowed. Note. this
argument should not be set when ’data’ is a SummarizedExperiment object

EnsL_model A list with the models trained by DaMiR.EnsL_Train function.

Details

This function implements the test step of DaMiR.EnsembleLearning2cl function

Value

A dataframe containing the predictions on the testset

12 DaMiR.EnsL_Train

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

use example data:
data(selected_features)
data(df)
set.seed(1)
only for the example:
speed up the process setting a low 'iter' argument value;
for real data set use default 'iter' value (i.e. 100) or higher:
Tr_res <- DaMiR.EnsL_Train(
selected_features,classes=df$class, fSample.tr.w=0.6, iter=3,
cl_type=c("RF","LR"))
DaMiR.EnsembleLearning2cl_Test(selected_features,
#classes=df$class,Tr_res)

DaMiR.EnsL_Train Train a Binary Classifier using ’Staking’ Learning strategy.

Description

This function learn a meta learner by a ’Stacking’ strategy. Users can provide heterogeneous fea-
tures (other than genomic features) which will be taken into account during classification model
building. A ’two-classes’ classification task isaddressed.

Usage

DaMiR.EnsL_Train(
data,
classes,
variables,
fSample.tr.w = 0.7,
cl_type = c("RF", "SVM", "LDA", "LR", "NB", "NN", "PLS")

)

Arguments

data A SummarizedExperiment object or a data frame/matrix of normalized expres-
sion data. Rows and Cols should be observations and features, respectively.

classes A class vector with nrow(data) elements. Each element represents the class
label for each observation. Two different class labels are allowed. Note. this
argument should not be set when ’data’ is a SummarizedExperiment object

variables An optional data frame containing other variables (but without ’class’ column).
Each column represents a different covariate to be considered in the model

fSample.tr.w Fraction of samples of training set to be used during weight estimation; default
is 0.7

cl_type List of weak classifiers that will compose the meta-learners. "RF", "SVM",
"LDA", "LR", "NB", "NN", "PLS" are allowed. Default is c("RF", "LR", "LDA",
"NB", "SVM")

DaMiR.FBest 13

Details

This function implements the training step of DaMiR.EnsembleLearning2cl function

Value

A list containing:

• The models of each classifier used to build the Ensemble meta-learner with the median or the
best accuracy (over the iteration) for the Ensemble classifier;

• the weights associated to each weak classifier;

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

use example data:
data(selected_features)
data(df)
set.seed(1)
For the example:
speed up the process setting a low 'iter' argument value;
for real data set use default 'iter' value (i.e. 100) or higher:
Classification_res <- DaMiR.EnsL_Train(
selected_features,classes=df$class, fSample.tr.w=0.6, iter=3,
cl_type=c("RF","LR"))

DaMiR.FBest Select best predictors to build Classification Model

Description

This function allows the user to select a subset of predictors; the number of predictors can be defined
by user or selected automatically.

Usage

DaMiR.FBest(
data,
ranking,
autoselect = c("no", "yes"),
n.pred = 10,
th.zscore = 2

)

14 DaMiR.FReduct

Arguments

data A transposed data frame of expression data. Rows and Cols should be, respec-
tively, observations and features

ranking A data frame with importance score for each feature, generated by DaMiR.FSort

autoselect A flag to specify how to select predictors:

• "no" (default) - Manually: users can specify the number of best predictors,
setting n.pred argument

• "yes" - Automatically: users have to specify the importance threshold de-
fined by the th.zscore argument; features will be accordingly selected

n.pred If autoselect="no" then the user have to specify the number of predictors;
default is 10

th.zscore Threshold of scaled importance score (Z-score); default value is 2

Value

A list containing:

• A data frame of normalized expression data of the most important selected predictors.

• A vector with predictors name.

Author(s)

Mattia Chiesa, Luca Piacentini

See Also

DaMiR.FSort

Examples

use example data:
data(data_reduced)
data(data_relief)
select the first 8 predictors rankad by imporatance:
selected_features <- DaMiR.FBest(data_reduced, data_relief, n.pred = 8)
select predictors by importance but automatically:
selected_features <- DaMiR.FBest(data_reduced, data_relief,
autoselect = "yes", th.zscore = 1.5)

DaMiR.FReduct Remove highly correlated features, based on feature-per-feature cor-
relation.

Description

This function allows the user to remove highly correlated features.

Usage

DaMiR.FReduct(data, th.corr = 0.85, type = c("spearman", "pearson"))

DaMiR.FSelect 15

Arguments

data A transposed data frame or matrix of normalized expression data. Rows and
Cols should be, respectively, observations and features

th.corr Feature-per-feature correlation threshold; default is 0.85

type Type of correlation metric to be applied; default is "spearman"

Details

This function produces an absolute correlation matrix that it is then used to reduce pair-wise cor-
relations. When two features present a correlation higher than that defined by the user in th.corr
argument, the function, first, calculates the mean absolute correlation of each feature and, then,
removes the feature with the largest mean absolute correlation.

Value

An expression matrix without highly correlated features.

Author(s)

Mattia Chiesa, Luca Piacentini

See Also

rcorr, findCorrelation

Examples

use example data:
data(data_reduced)
reduce the number of features:
data_Reduced <- DaMiR.FReduct(data_reduced,
th.corr = 0.75, type = "pearson")

DaMiR.FSelect Feature selection for classification

Description

This function identifies the class-correlated principal components (PCs) which are then used to
implement a backward variable elimination procedure for the removal of non informative features.

Usage

DaMiR.FSelect(
data,
df,
th.corr = 0.6,
type = c("spearman", "pearson"),
th.VIP = 3,
nPlsIter = 1

)

16 DaMiR.FSelect

Arguments

data A transposed data frame or a matrix of normalized expression data. Rows and
Cols should be, respectively, observations and features

df A data frame with known variables; at least one column with ’class’ label must
be included

th.corr Minimum threshold of correlation between class and PCs; default is 0.6. Note.
If df$class has more than two levels, this option is disable and the number of
PCs is set to 3.

type Type of correlation metric; default is "spearman"

th.VIP Threshold for bve_pls function, to remove non-important variables; default is
3

nPlsIter Number of times that bve_pls has to run. Each iteration produces a set of se-
lected features, usually similar to each other but not exacly the same! When
nPlsIter is > 1, the intersection between each set of selected features is per-
formed; so that, only the most robust features are selected. Default is 1

Details

The function aims to reduce the number of features to obtain the most informative variables for
classification purpose. First, PCs obtained by principal component analysis (PCA) are correlated
with "class". The correlation threshold is defined by the user in th.corr argument. The higher
is the correlation, the lower is the number of PCs returned. Importantly, if df$class has more than
two levels, the number of PCs is automatically set to 3. In a binary experimental setting, users
should pay attention to appropriately set the th.corr argument because it will also affect the total
number of selected features that ultimately depend on the number of PCs. The bve_pls function
of plsVarSel package is, then, applied. This function exploits a backward variable elimination
procedure coupled to a partial least squares approach to remove those variable which are less infor-
mative with respect to class. The returned vector of variables is further reduced by the following
DaMiR.FReduct function in order to obtain a subset of non correlated putative predictors.

Value

A list containing:

• An expression matrix with only informative features.

• A data frame with class and optional variables information.

Author(s)

Mattia Chiesa, Luca Piacentini

References

Tahir Mehmood, Kristian Hovde Liland, Lars Snipen and Solve Saebo (2011). A review of variable
selection methods in Partial Least Squares Regression. Chemometrics and Intelligent Laboratory
Systems 118, pp. 62-69.

See Also

• bve_pls

• DaMiR.FReduct

DaMiR.FSort 17

Examples

use example data:
data(data_norm)
data(df)
extract expression data from SummarizedExperiment object
and transpose the matrix:
t_data<-t(assay(data_norm))
t_data <- t_data[,seq_len(100)]
select class-related features
data_reduced <- DaMiR.FSelect(t_data, df,
th.corr = 0.7, type = "spearman", th.VIP = 1)

DaMiR.FSort Order features by importance, using RReliefF filter

Description

This function implements a procedure in order to rank features by their importance evaluated by
RReliefF score.

Usage

DaMiR.FSort(data, df, fSample = 1)

Arguments

data A transposed data frame of expression data, i.e. transformed counts by vst or
rlog. A log2 transformed expression matrix is also accepted. Rows and Cols
should be, respectively, observations and features

df A data frame with class and known variables; at least one column with ’class’
label must be included

fSample Fraction of sample to be used for the implementation of RReliefF algorithm;
default is 1

Details

This function is very time-consuming when the number of features is high. We observed there is
a quadratic relationship between execution time and the number of features. Thus, we have also
implemented a formula which allows the users to estimate the time to perform this step, given the
number of features. The formula is:

T = 0.0011 ∗N2 − 0.1822 ∗N + 27.092

where T = Time and N = Number of genes. We strongly suggest to filter out non informative
features before performing this step.

Value

A data frame with two culmuns, where features are sorted by importance scores:

• RReliefF score - Calculated by relief function, implemented in FSelector package;
• scaled.RReliefF score - Z-score value, computed for each RReliefF score.

A plot with the first 50 features ordered by their importance.

18 DaMiR.goldenDice

Author(s)

Mattia Chiesa, Luca Piacentini

References

Marko Robnik-Sikonja, Igor Kononenko: An adaptation of Relief for attribute estimation in regres-
sion. In: Fourteenth International Conference on Machine Learning, 296-304, 1997

See Also

relief, DaMiR.FSelect, DaMiR.FReduct

Examples

use example data:
data(data_reduced)
data(df)
rank features by importance:
df.importance <- DaMiR.FSort(data_reduced[,1:10],
df, fSample = 0.75)

DaMiR.goldenDice Generate a Number to Set Seed

Description

This function implements a formula based on current date and time.

Usage

DaMiR.goldenDice()

Details

The number is generated by combining current seconds (S), minutes (Mi), hours (H), days (D),
months (Mo), years (Y) and golden ratio (ϕ), in the form:

Num = (S ∗Mi+H ∗D ∗Mo/D)ϕ

Value

An integer number.

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

gen_numb <- DaMiR.goldenDice()
set.seed(gen_numb)

DaMiR.iTSadjust 19

DaMiR.iTSadjust Batch correction of normalized Independent Test Set

Description

This function aims to perform a batch correction on a normalized independent test set, exploiting
the ComBat function of the sva package.

Usage

DaMiR.iTSadjust(adj_Learning_set, norm_Ind_Test_set, iTS_batch)

Arguments

adj_Learning_set

A SummarizedExperiment object or a data frame/matrix of adjusted and nor-
malized data, obtained by the DaMiR.SVadjust function.

norm_Ind_Test_set

A data frame or a matrix of normalized data. The independent test set is sup-
posed to be already normlaized by the DaMiR.iTSnorm function

iTS_batch (Optional). A factor or a data.frame, containing information regarding experi-
mental batches of the independent test set. Users can ignore this argument, if
the independent test set is deemed a single experimental batch.

Details

The function applied a batch correction procedure to the independent test set, normalized by DaMiR.iTSnorm.

Value

A matrix containing a normalized and adjusted expression matrix (log2 scale).

Author(s)

Mattia Chiesa, Luca Piacentini

References

Jeffrey T. Leek, W. Evan Johnson, Hilary S. Parker, Elana J. Fertig, Andrew E. Jaffe and John D.
Storey (2016). sva: Surrogate Variable Analysis. R package version 3.22.0.

See Also

ComBat

Examples

use example data:
data(SE)

20 DaMiR.iTSnorm

DaMiR.iTSnorm Normalization of Independent Test Set

Description

This function aims to normalize properly an actual independent test set by taking information from
the Learning set that will be used to transform the new sample(s).

Usage

DaMiR.iTSnorm(
Learning_set,
Ind_Test_set,
normtype = c("vst", "rlog", "logcpm"),
method = c("precise", "quick")

)

Arguments

Learning_set A SummarizedExperiment object or a data frame/matrix of raw count data. The
learning set is supposed to be a raw counts dataset of the expressed features (not
all features). Rows and Cols should be features and samples, respectively.

Ind_Test_set A SummarizedExperiment object or a data frame/matrix of raw count data. The
independent test set is supposed to be a raw counts dataset with the same features
of ’Learning_set’. Rows and Cols should be features and samples, respectively.

normtype Type of normalization to be applied: varianceStabilizingTransformation
(vst), rlog or logcpm are allowed; default is "vst".

method Type of method to estimate the dispersion, applied to the independent test set
to normalize data. Only ’precise’ and ’quick’ are allowed. In the first case, the
dispersion is estimated by the Learning set and applied to the independent test
set. In the second case, is estimated from the independent test set. Default is
"precise". See details in dispersionFunction

Details

The Learning_set is supposed to be a raw counts dataset of the expressed features. Moreover, the
independent test set is supposed to be a raw counts dataset with the same features of ’Learning_set’.
The independent test set is normalized, taking into account the dispersion parameter, estimated by
the Learning set (’precise’ method) or by the independent test set itself (’quick’ method).

Value

A matrix containing a normalized expression matrix (log2 scale)

Author(s)

Mattia Chiesa, Luca Piacentini

References

Michael I Love, Wolfgang Huber and Simon Anders (2014): Moderated estimation of fold change
and dispersion for RNA-Seq data with DESeq2. Genome Biology

DaMiR.makeSE 21

See Also

varianceStabilizingTransformation, rlog cpm

Examples

use example data:
data(SE)

DaMiR.makeSE Import RNA-Seq count data and variables

Description

This is an helper function that allows the user to simultaneously import counts, class (mandatory)
and variables (optional) data, and creates a SummarizedExperiment object.

Usage

DaMiR.makeSE(x, y)

Arguments

x A tab-delimited file which contains RNA-Seq count data. Each row is a feature
(i.e. gene, transcript, exon etc.) and each column is a sample

y A tab-delimited file which contains experiment information. Each row is a sam-
ple and each column is a variable. This file must contain at least one column
which represent ’class’ information for data adjustment and classification; the
class column must be labeled as ’class’

Details

Before creating a SummarizedExperiment object, the function performs some checks on input
data to ensure that only a matrix of raw counts is accordingly loaded. Other checks allows the
identification of missing data (NA) in the data frame of the variables of interest.

Value

A SummarizedExperiment object containing raw counts, class and (optionally) variables of inter-
est.

Author(s)

Mattia Chiesa, Luca Piacentini

References

Morgan M, Obenchain V, Hester J and Pag\‘es H (2016). SummarizedExperiment: Summarized-
Experiment container. R package version 1.4.0.

22 DaMiR.MDSplot

See Also

SummarizedExperiment

Examples

rawdata.path <- system.file(package = "DaMiRseq","extdata")
import tab-delimited files:
sample data are a small subset of Genotype-Tissue Expression (GTEx)
RNA-Seq database (dbGap Study Accession: phs000424.v6.p1):
count_data <- read.delim(file.path(rawdata.path, "counts_import.txt"))
variables_data <- read.delim(file.path(rawdata.path, "annotation_import.txt"))
create a SummarizedExperiment object:
SE <- DaMiR.makeSE(count_data, variables_data)
print(SE)

DaMiR.MDSplot Plot multidimentional scaling (MDS)

Description

A MDS plot is drawn in order to visualize class clustering.

Usage

DaMiR.MDSplot(data, df, type = c("spearman", "pearson"))

Arguments

data A SummarizedExperiment object or a matrix or a data.frame where rows and
cols should be, respectively, observations and features

df A data frame with class; it can be directly subset from data

type A character string specifing the metric to be applied to correlation analysis. Ei-
ther "spearman" or "pearson" is allowed; default is "spearman"

Details

The MDS plot is drawn taking as input a dissimilarity matrix produced by either a sample-per-
sample Pearson’s or Spearman’s correlation of normalized expression data.

Value

A MDS plot, using only ’class’ information

Author(s)

Mattia Chiesa, Luca Piacentini

DaMiR.ModelSelect 23

Examples

use example data:
data(data_reduced)
data(df)
Draw MDS:
DaMiR.MDSplot(data=data_reduced, df=df, type="pearson")

DaMiR.ModelSelect Select the best classification model

Description

This function selects the bestmodels learned by the DaMiR.EnsL_Train and a tested by DaMiR.EnsL_Test.

Usage

DaMiR.ModelSelect(
df,
type.sel = c("mode", "median", "greater"),
th.sel = 0.85,
npred.sel = c("min", "rnd"),
metric.idx = 1,
npred.idx = 2

)

Arguments

df A data frame of performance metrics. At least two columns representing a spe-
cific classification metrics (e.g., Accuracy) and the number of predictors must
be provided. Additionally, other classification metrics (e.g., MCC, Sensitiv-
ity, Specificity,PPV, NPV, AUC, ...) can be appended (from the third column
onwards) and used for the evaluation, by correctly setting the ’metric.idx’ pa-
rameter.

type.sel The method to select the best models. Only "mode","median" and "greater"
values are allowed. For a specific classification metrics, "mode" selects all mod-
els whose score is the mode of all scores; "median" selects all models whose
score is the median of all scores; and, "greater" selects all models whose score
is greater than the value specified in "th.sel". Default: "mode".

th.sel Threshold for the evaluation of the performance when "type.sel" is equal to
"greater". Default: 0.85

npred.sel The method to select the best model. Only "min" and "rnd" values are allowed.
Taking into account the subset of models found by ’type.sel’, this parameter
selects one single model with the minimum number of predictors ("min") or
randomly ("rnd"). Default: "min".

metric.idx The index of the ’df’ column (i.e., classification metrics) to be considered for
the models evaluation. Default: 1.

npred.idx The index of the ’df’ column representing the number of predictors. Default: 2.

24 DaMiR.normalization

Details

This function finds the best model, taking into account specific classification metrics.

Value

The index of df (row), representing the model selected and a bubble chart

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

use example data:
set.seed(1)

DaMiR.normalization Filter non Expressed and ’Hypervariant’ features and Data Normal-
ization

Description

Features will be firstly filtered based on their expression value and/or by their variability across
samples; features will be then normalized.

Usage

DaMiR.normalization(
data,
minCounts = 10,
fSample = 0.5,
hyper = c("yes", "no"),
th.cv = 3,
type = c("vst", "rlog", "logcpm"),
nFitType = c("parametric", "local", "mean")

)

Arguments

data A SummarizedExperiment object

minCounts Minimum reads counts; default is 10

fSample Fraction of samples with minCounts counts; default is 0.5

hyper Flag to enable gene filtering by Coefficient of Variation (CV); default is "yes"

th.cv Threshold of minimum CV to consider a feature ’Hypervariant’ accross sam-
ples; default is 3

type Type of normalization to be applied: varianceStabilizingTransformation
(vst), rlog or logcpm are allowed; default is "vst"

nFitType Type of method to estimate the dispersion by vst or rlog. Default is "parametric".

DaMiR.sampleFilt 25

Details

Before normalization step, this function allows the user to filter features by:

• Expression - Features will be filtered out whether their reads count do not reach a minCounts
in at least fSample of samples;

• CV - The CV of each feature is individually calculated for each sample class. Featurers
with both class CV greater than th.cv will be discarded. Computing a class restricted CV
may prevent the removal of hypervariant features that may be specifically associated with a
certain class. This could be important, for example, for immune genes whose expression under
definite conditions may unveil peculiar class-gene association.

Finally, expressed features will be normalized by varianceStabilizingTransformation (de-
fault) or rlog, both implemented in DESeq2 package. We suggest to use varianceStabilizingTransformation
to speed up the normalization process because rlog is very time-consuming despite the two meth-
ods produce quite similar results.

Value

A SummarizedExperiment object which contains a normalized expression matrix (log2 scale) and
the data frame with ’class’ and (optionally) variables.

Author(s)

Mattia Chiesa, Luca Piacentini

References

Michael I Love, Wolfgang Huber and Simon Anders (2014): Moderated estimation of fold change
and dispersion for RNA-Seq data with DESeq2. Genome Biology

See Also

varianceStabilizingTransformation, rlog

Examples

use example data:
data(SE)
perform normalization on a subset of data:
SE_sub<-SE[1:1000, c(1:3, 21:23)]
data_norm <- DaMiR.normalization(SE_sub, minCounts=10, fSample=0.8,
hyper="yes", th.cv = 2.5)

DaMiR.sampleFilt Filter Samples by Mean Correlation Distance Metric

Description

This function implements a sample-per-sample correlation. Samples with a mean correlation lower
than a user’s defined threshold will be filtered out.

26 DaMiR.SV

Usage

DaMiR.sampleFilt(data, th.corr = 0.9, type = c("spearman", "pearson"))

Arguments

data A SummarizedExpression object
th.corr Threshold of mean correlation; default is 0.9
type Type of correlation metric; default is "spearman"

Details

This step introduces a sample quality checkpoint. Global gene expression should, in fact, exhibit a
high correlation among biological replicates; conversely, low correlated samples may be suspected
to bear some technical artifact (e.g. poor RNA or library preparation quality), despite they may
have passed sequencing quality checks. If not assessed, these samples may, thus, negatively affect
all the downstream analysis. This function looks at the mean absolute correlation of each sample
and removes those samples with a mean correlation lower than the value set in th.corr argument.
This threshold may be specific for different experimental setting but should be as high as possible.
For sequencing data we suggest to set th.corr greater than 0.85.

Value

A SummarizedExperiment object which contains a normalized and filtered expression matrix (log2
scale) and a filtered data frame with ’class’ and (optionally) variables.

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

use example data:
data(data_norm)
filter out samples with Pearson's correlation <0.92:
data_filt<- DaMiR.sampleFilt(data_norm, th.corr=0.92, type ="pearson")

DaMiR.SV Identification of Surrogate Variables

Description

This function returns a matrix of surrogate variables (sv) using the implementation by Chiesa-
Piacentini or the sva method by Leek et al.

Usage

DaMiR.SV(
data,
method = c("fve", "leek", "be"),
th.fve = 0.95,
second.var = NULL

)

DaMiR.SV 27

Arguments

data A SummarizedExpression object

method The method used to identify sv. If missing, the "fve" method will be selected.
Otherwise the method "leek" or "be" should be choosen

th.fve This argument sets the threshold of maximum fraction of variance explained
(fve) to be used in conjunction with "fve" method; default is 0.95

second.var A factor or a numeric vector corresponding to an additional variable to take into
account during the sv identification. This variable together with ’class’ in the
data object will be used to design the model matrix (~ class + second.var)

Details

This function helps the user to identify the appropriate number of sv: it is possible to select a differ-
ent strategy to be used by changing the option in method argument. Three methods are available:

• "be" - this option uses the num.sv function of sva package with default parameters;

• "leek" - The same of before but with asymptotic approach proposed by Leek;

• "fve" - This method is introduced in DaMiRseq package, and integrates part of sva function
with custom code. Briefly, we computed eigenvalues of data using code already implemented
in sva function and then, we calculated the squared of each eigenvalues. Thus, the ratio be-
tween each "squared eigenvalue" and the sum of them were calculated. These values represent
a surrogate measure of the "Percentage of Explained Variance" (pve) obtained by principal
component analysis (PCA), and their cumulative sum can be used to select sv.

Value

A matrix of sv. A plot with the sv identified by "fve" method is also returned. A red dot shows the
maximum number of variables to be included for a specific "fve".

Author(s)

Mattia Chiesa, Luca Piacentini

References

Jeffrey T. Leek, W. Evan Johnson, Hilary S. Parker, Elana J. Fertig, Andrew E. Jaffe and John D.
Storey (2016). sva: Surrogate Variable Analysis. R package version 3.22.0.

See Also

sva

Examples

use example data:
data(data_norm)
sv <- DaMiR.SV(data_norm, method = "fve", th.fve=0.95)

28 DaMiR.transpose

DaMiR.SVadjust Remove variable effects from expression data

Description

This function removes surrogate or other confounding variable effects from normalized expression
data by the usage of removeBatchEffect function of limma package.

Usage

DaMiR.SVadjust(data, sv, n.sv)

Arguments

data A SummarizedExpression object

sv The matrix of surrogate variables identified by DaMiR.SV function

n.sv The number of surrogate variables to be used to adjust the data

Value

A SummarizedExpression object containing a matrix of log-expression values with sv effects re-
moved and the data frame of the variables.

Author(s)

Mattia Chiesa, Luca Piacentini

See Also

removeBatchEffect, DaMiR.SV

Examples

use example data:
data(data_norm)
data(sv)
data_adjust <- DaMiR.SVadjust(data_norm, sv = sv, n.sv = 3)

DaMiR.transpose Matrix transposition and replacement of ’.’ and ’-’ special characters

Description

This function transposes matrix and replaces ’.’ and ’-’ special characters.

Usage

DaMiR.transpose(data)

data_min 29

Arguments

data Matrix of normalized expression data, i.e. transformed counts by vst or rlog. A
log2 transformed expression matrix is also accepted

Value

Normalized matrix in which each row is a sample and each column is a feature

Author(s)

Mattia Chiesa, Luca Piacentini

Examples

data(data_norm)
data.transposed <- DaMiR.transpose(assay(data_norm))

data_min Example gene-expression dataset for DaMiRseq package

Description

A dataset with a small dimension of normalized expression data in DaMiRseq package

Usage

data_min

Format

A data frame with 40 samples (rows) and 87 genes (columns)

Value

An example dataset for DaMiRseq package

data_norm A dataset with a normalized matrix to test several DaMiRseq func-
tions: sample data are a subset of Genotype-Tissue Expression (GTEx)
RNA-Seq database (dbGap Study Accession: phs000424.v6.p1)

Description

A dataset with a normalized matrix to test several DaMiRseq functions: sample data are a subset of
Genotype-Tissue Expression (GTEx) RNA-Seq database (dbGap Study Accession: phs000424.v6.p1)

Usage

data_norm

30 data_relief

Format

A SummarizedExperiment object containing an assay of 4897 genes (rows) and 40 samples (columns)
and a colData with 5 variables

Value

An example dataset for DaMiRseq package

data_reduced Example gene-expression dataset for DaMiRseq package

Description

A dataset with a small dimension of normalized expression data in DaMiRseq package

Usage

data_reduced

Format

A list with:

data reduced expression matrix

variables a data frame with variables

Value

An example dataset for DaMiRseq package

data_relief Example ranking dataset for DaMiRseq package

Description

A data frame with relieF and scaled reliefF scores for each gene

Usage

data_relief

Format

A dataframe with 87 genes (rows) and 2 variables (columns):

reliefF Score reliefF score for each gene

scaled reliefF Score scaled reliefF score for each gene, by z-score

Value

An example dataset for DaMiRseq package

df 31

df Example gene-expression dataset for DaMiRseq package

Description

A data frame with class and covariates information

Usage

df

Format

A dataframe with 40 samples (rows) and 5 variables (columns):

center center where sample has been collected

sex sample’s gender

age sample’s age

death kind of sample’s death, based on Hardy scale

class sample’s class

Value

An example dataset for DaMiRseq package

SE Example gene-expression dataset for DaMiRseq package

Description

A dataset with count matrix to test several DaMiRseq functions. To show package functionality in a
reasonably execution time, sample data are a subset of Genotype-Tissue Expression (GTEx) RNA-
Seq database (dbGap Study Accession: phs000424.v6.p1). Samples incude 20 Anterior Cingulate
Cortex (ACC) tissues and 20 Frontal Cortex (FC) tissues. 21363 genes have been preaviously
selected to have 5 read counts in at least 60

Usage

SE

Format

A SummarizedExperiment object containing an assay of 21363 randomly selected genes (rows) and
40 samples (columns) and a colData with 5 variables

Value

An example dataset for DaMiRseq package

32 SEtest_norm

selected_features Example gene-expression dataset for DaMiRseq package

Description

A dataset with normalized expression data to build classification models in DaMiRseq package

Usage

selected_features

Format

A dataframe with 40 samples (rows) and 7 variables (genes):

Value

An example dataset for DaMiRseq package

SEtest_norm A sample dataset with a normalized count matrix for "testthat" func-
tions.

Description

A sample dataset with a normalized count matrix for "testthat" functions.

Usage

SEtest_norm

Format

A SummarizedExperiment object containing an assay of 100 genes (rows) and 11 samples (columns)
and a colData with 5 variables

Value

An example dataset for DaMiRseq package

sv 33

sv Example Surrogate Variables dataset for DaMiRseq package

Description

A dataset with surrogate variables to test DaMiRseq functions

Usage

sv

Format

A matrix with 40 samples (rows) and 4 surrogate variables (columns):

Value

An example dataset for DaMiRseq package

Index

∗ datasets
data_min, 29
data_norm, 29
data_reduced, 30
data_relief, 30
df, 31
SE, 31
selected_features, 32
SEtest_norm, 32
sv, 33

bve_pls, 16

ComBat, 19
corrplot, 5
cpm, 21

DaMiR.Allplot, 3
DaMiR.Clustplot, 4
DaMiR.corrplot, 5
DaMiR.EnsembleLearning, 6
DaMiR.EnsembleLearning2cl, 7, 11, 13
DaMiR.EnsembleLearningNcl, 9
DaMiR.EnsL_Predict, 10
DaMiR.EnsL_Test, 11, 23
DaMiR.EnsL_Train, 10, 11, 12, 23
DaMiR.FBest, 13
DaMiR.FReduct, 14, 16, 18
DaMiR.FSelect, 15, 18
DaMiR.FSort, 14, 17
DaMiR.goldenDice, 18
DaMiR.iTSadjust, 19
DaMiR.iTSnorm, 19, 20
DaMiR.makeSE, 21
DaMiR.MDSplot, 22
DaMiR.ModelSelect, 23
DaMiR.normalization, 24
DaMiR.sampleFilt, 25
DaMiR.SV, 5, 26, 28
DaMiR.SVadjust, 19, 28
DaMiR.transpose, 28
data_min, 29
data_norm, 29
data_reduced, 30

data_relief, 30
df, 31
dispersionFunction, 20

findCorrelation, 15

rcorr, 5, 15
relief, 17, 18
removeBatchEffect, 28
rlog, 21, 25

SE, 31
selected_features, 32
SEtest_norm, 32
SummarizedExperiment, 22
sv, 33
sva, 27

varianceStabilizingTransformation, 21,
25

34

	DaMiR.Allplot
	DaMiR.Clustplot
	DaMiR.corrplot
	DaMiR.EnsembleLearning
	DaMiR.EnsembleLearning2cl
	DaMiR.EnsembleLearningNcl
	DaMiR.EnsL_Predict
	DaMiR.EnsL_Test
	DaMiR.EnsL_Train
	DaMiR.FBest
	DaMiR.FReduct
	DaMiR.FSelect
	DaMiR.FSort
	DaMiR.goldenDice
	DaMiR.iTSadjust
	DaMiR.iTSnorm
	DaMiR.makeSE
	DaMiR.MDSplot
	DaMiR.ModelSelect
	DaMiR.normalization
	DaMiR.sampleFilt
	DaMiR.SV
	DaMiR.SVadjust
	DaMiR.transpose
	data_min
	data_norm
	data_reduced
	data_relief
	df
	SE
	selected_features
	SEtest_norm
	sv
	Index

