Test association between phenotype and gene
expression

Evarist Planet
Bioinformatics & Biostatistics Unit

IRB Barcelona

Contents

[1__Introduction| 1

12 Individual gene(s) association with phenotype(s)| 2
2.1 Creating an epheno|. L. 2
2.2 Useful methods for the epheno object|. 4
2.3 Export an epheno|. oL oL 7

13 Gene set(s) association with phenotype(s)| 7
[3.1 Plots that use epheno as mnput|. 8
3.2 GSEA (Gene Set Enrichment Analysis)| 10

1 Introduction

Imagine a situation where we have gene expression and phenotype variables
and we want to test the association of each gene with phenotype. We would
probably be interested in testing association of groups of genes (or gene sets)
with phenotype. This library provides the tools to do both things in a way
that is efficient, structured, fast and scalable. We also provide tools to do
GSEA (Gene set enrichment analysis) of all phenotype variables at once.

The functions and methods presented on this vignette provide tools to
easily test association between gene expression levels of individual genes or
gene sets of genes and the selected phenotypes of a given gene expression
dataset. These can be particularly useful for datasets arising from RNAseq
or microarray gene expression studies.

We will load the ExpressionSet of a cohort (GSE2034) we downloaded
from GEO.

http://www.ncbi.nlm.nih.gov/geo/

> options(width=100)
> library(phenoTest)
> data(eset)

> eset

ExpressionSet (storageMode: lockedEnvironment)
assayData: 1000 features, 100 samples

element names: exprs
protocolData: none

phenoData
sampleNames: GSM36793 GSM36796 ... GSM36924 (100 total)
varLabels: PID GEQaccession ... BrainRelapse (7 total)

varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'’
Annotation: hgul33a

For illustration purposes we selected the first 1000 genes and the first
100 samples, created a continuous variable (named Tumor.size) and added a
new category to the categorical variable lymph.node.status to illustrate the
functionality of the package.

> Tumor.size <- rnorm(ncol(eset),50,2)
> pData(eset) <- cbind(pData(eset),Tumor.size)
> pData(eset)[1:20, '1ymph.node.status'] <- 'positive'

2 Individual gene(s) association with phenotype(s)

2.1 Creating an epheno

The epheno object will contain the univariate association between a list of
phenotype variables and the gene expression from the given ExpressionSet.
We will use the ExpressionPhenoTest function to create the epheno ob-
ject. We will have to tell this function which phenotype variables we want
to test and the type of these variables (if they are ordinal, continuous, cat-
egorical or survival variables). For this purpose we will create a variable
called (for instance) vars2test. This variable has to be of class 1ist with
components continuous, categorical, ordinal and survival indicating which
phenotype variables should be tested. continuous, categorical and ordinal
must be character vectors, survival a matrix with columns named #ime and
event. The names must match names in names (pData(eset)) (being eset
the ExpressionSet of the cohort we are interested in).

> head(pData(eset))

PID GEDaccession lymph.node.status Months2Relapse Relapse ER.Status BrainRelapse

GSM36793 3 GSM36793 positive 101 0 0 0
GSM36796 5 GSM36796 positive 118 0 1 0
GSM36797 6 GSM36797 positive 9 1 0 0

GSM36798 7 GSM36798 positive 106 0 0 0

GSM36800 8 GSM36800 positive 37

GSM36801 9 GSM36801 positive 125 0 1 0
Tumor.size

GSM36793 50.86870

GSM36796 51.00436

GSM36797 50.17990

GSM36798 51.25066

GSM36800 48.148675

GSM36801 47.04388

e
o
o

> survival <- matrix(c("Relapse","Months2Relapse"),ncol=2,byrow=TRUE)
> colnames(survival) <- c('event', 'time')
> vars2test <- list(survival=survival,categorical='lymph.node.status’',continuous='Tumor.size')
> vars2test
$survival
event time

[1,1 "Relapse" "Months2Relapse"

$categorical
[1] "lymph.node.status"

$continuous
[1] "Tumor.size"

Now we have everything we need to create the epheno object:
> epheno <- ExpressionPhenoTest(eset,vars2test,p.adjust.method="'none"')

Performing analysis for continuous variable Tumor.size
Performing analysis for categorical variable lymph.node.status
Performing analysis for survival variable Relapse

> epheno

Object of class 'epheno'

featureNames: 1007_s_at, 1053_at, 117_at ... (1000) feature(s)
phenoNames: Tumor.size, lymph.node.status, Relapse. (3) phenotype(s)
P-value adjustment method: none

Annotation: hgul33a

Approach: frequentist

Type "showMethods(classes='epheno')" for a list of ALL methods
P values can also be adjusted afterwards:
> p.adjust.method(epheno)

[1] "none"

> epheno <- pAdjust(epheno,method='BH')
> p.adjust.method(epheno)

[1] "BH"

The epheno object extends the ExpressionSet object and therefore meth-
ods that are available for ExpressionSets are also available for ephenos.

The effect of both continuous, categorical and ordinal phenotype variables
on gene expression levels are tested via 1mFit from package limma (Smyth
[2005]). For ordinal variables a single coefficient is used to test its effect on
gene expression (trend test), which is then used to obtain a P-value. Gene
expression effects on survival are tested via Cox proportional hazards model
(Cox [1972]), as implemented in function coxph from package survival.

If we want we can compute posterior probabilities instead of pvalues we
can set the argument approach="bayesian’. The default value is "frequentist’.

ExpressionPhenoTest implements parallel computing via the function
mclapply from the package multicore. Currently multicore only operates

on Unix systems. If you are a windows user you should set mc.cores=1 (the
default).

2.2 Useful methods for the epheno object

Some of the methods for the epheno objects are shown here.
The object can be subseted by phenotype names:

> phenoNames (epheno)
[1] "Tumor.size" "lymph.node.status" "Relapse"
> epheno[, 'Tumor.size']

Object of class 'epheno'

featureNames: 1007_s_at, 1053_at, 117_at ... (1000) feature(s)
phenoNames: Tumor.size. (1) phenotype(s)

P-value adjustment method: BH

Annotation: hgul33a

Approach: frequentist

Type "showMethods(classes='epheno')" for a list of ALL methods
> ephenol[,2]

Object of class 'epheno'

featureNames: 1007_s_at, 1053_at, 117_at ... (1000) feature(s)
phenoNames: Tumor.size. (1) phenotype(s)

P-value adjustment method: BH

Annotation: hgul33a

Approach: frequentist

Type "showMethods(classes='epheno')" for a list of ALL methods

or by class (class can be ordinal, continuous, categorical or survival):

> phenoClass(epheno)

Tumor.size lymph.node.status Relapse
"continuous" "categorical" "survival"

> ephenol,phenoClass (epheno)=="'survival']

Object of class 'epheno'

featureNames: 1007_s_at, 1053_at, 117_at ... (1000) feature(s)
phenoNames: Relapse. (1) phenotype(s)

P-value adjustment method: BH

Annotation: hgul33a

Approach: frequentist

Type "showMethods(classes='epheno')" for a list of ALL methods

epheno objects contain information summarizing the association between
genes and phenotypes. getMeans can be used to obtain the average expres-
sion for each group in categorical and ordinal variables, as well as for cate-
gorized version of the continuous variables.

> head(getMeans (epheno))

Tumor.size.[45.6,49.5) Tumor.size.[49.5,51.2) Tumor.size.[51.2,54.1]

1007_s_at 11.846303 11.812440 11.732199

1063_at 7.793418 7.656794 7.769770

117_at 7.928100 7.884194 7.883315

121_at 10.213064 10.281194 10.206596

1255_g_at 5.879571 5.891808 5.930127

1294 _at 9.284132 9.569854 9.487338
lymph.node.status.negative lymph.node.status.positive

1007_s_at 11.779693 11.868594

1063_at 7.700153 7.902028

117_at 7.882203 7.965347

121_at 10.217469 10.297187

1255_g_at 5.856978 6.073553

1294 _at 9.444534 9.449257

Here we see that tumor size has been categorized into 3 groups. The num-
ber of categories can be changed with the argument continuousCategories
in the call to ExpressionPhenoTest.

epheno objects also contain fold changes and hazard ratios (for survival
variables). These can be accessed with getSummaryDif, getFc and getHr.

> head(getSummaryDif (epheno))

Tumor.size.fc.[49.5,51.2) Tumor.size.fc.[51.2,54.1] lymph.node.status.positive.fc

1007_s_at -1.023749 -1.082303 1.063559

1053_at -1.099329 -1.016527 1.150192

117 _at -1.030901 -1.031529 1.059324

121_at 1.048357 -1.004493 1.056812

1255_g_at 1.008519 1.035665 1.161972

1294 _at 1.219020 1.151254 1.003280
Relapse.HR

1007_s_at -1.299526

1053_at -1.138198

117 _at 1.175962

121_at 1.100616

1255_g_at 1.093210

1294 _at 1.006512

> head(getFc(epheno))

Tumor.size.fc.[49.5,51.2) Tumor.size.fc.[51.2,54.1] lymph.node.status.positive.fc

1007_s_at -1.023749 -1.082303 1.063559
1053_at -1.099329 -1.016527 1.150192
117_at -1.030901 -1.031529 1.059324
121 _at 1.048357 -1.004493 1.056812
1255_g_at 1.008519 1.035665 1.161972
1294 _at 1.219020 1.151254 1.003280

> head(getHr (epheno))

Relapse.HR
1007_s_at -1.299526
1053_at -1.138198
117 _at 1.175962
121 _at 1.100616
1265_g_at 1.093210
1294 _at 1.006512

ExpressionPhenoTest also computes P-values. eBayes from limma pack-
age is used for continuous, categorical and ordinal phenotypes. A Cox propor-
tional hazards likelihood-ratio test is used for survival phenotypes. P-values
can be accessed with getSignif. Notice that a single P-value is reported for
each phenotype variable. For categorical variables these corresponds to the
overall null hypothesis that there are no differences between groups.

> head(getSignif (epheno))

Tumor.size lymph.node.status.positive.pval Relapse

1007_s_at 0.9518301 0.9022639 0.9801106
1053_at 0.9987049 0.7988976 0.9801106
117_at 0.9518301 0.9225719 0.9801106
121_at 0.9939789 0.8689036 0.9803989
1265_g_at 0.9732570 0.8254344 0.9803989
1294 _at 0.9159426 0.9965107 0.9907749

We can also ask for the variables we sent to the ExpressionPhenoTest
function:

> getVars2test (epheno)

$continuous
[1] "Tumor.size"

$categorical
[1] "lymph.node.status"

$survival
event time
[1,] "Relapse" "Months2Relapse"

2.3 Export an epheno

Functions export2csv and epheno2html can be used to export to a comma
separated value (csv) or an html file. The html file will have useful links to
online databases that will provide information about each known gene. For
more information about how to use these functions and examples read their
help manuals.

3 Gene set(s) association with phenotype(s)

Gene sets can be stored in a list object. Each element of the list will contain
one gene set. The names of the list will be the names of the gene sets. Here
we select genes at random to build our gene sets:

> set.seed(777)
> signl <- sample(featureNames(eset))[1:20]
> sign2 <- sample(featureNames(eset))[1:50]
> mySignature <- list(signl,sign2)
> names (mySignature) <- c('My first signature', 'Another signature')
> mySignature
$ My first signature’
[1] "200003_s_at" "200985_s_at" "200069_at" "201172_x_at" "200982_s_at" "201174_s_at"
[7] "200062_s_at" "1487_at" "201250_s_at" "201444_s_at" "201393_s_at" "200737_at"
[13] "200616_s_at" "200047_s_at" "200924_s_at" "201138_s_at" "201263_at" "201006_at"
[19] "201037_at" "201463_s_at"
$ Another signature”

[1] "200745_s_at" "200970_s_at" "200066_at" "201417_at" "200733_s_at" "200844_s_at"
[7] "201224_s_at" "201100_s_at" "201402_at" "201005_at" "201445_at" "201348_at"
[13] "200617_at" "200030_s_at" "200661_at" "200688_at" "201437_s_at" "200791_s_at"
[19] "201040_at" "200984_s_at" "200829_x_at" "200653_s_at" "201123_s_at" "200089_s_at"
[25] "201102_s_at" "201165_s_at" "200752_s_at" "200834_s_at" "200036_s_at" "201414_s_at"

[31] "201332_s_at" "201313_at" "200082_s_at" "201006_at" "201109_s_at" "201076_at"
[37] "200022_at" "200762_at" "201396_s_at" "200995_at" "200959_at" "200898_s_at"
[43] "200647_x_at" "201471_s_at" "201223_s_at" "1598_g_at" "201061_s_at" "201130_s_at"
[49] "201344_at" "200672_x_at"

Gene sets can also be stored in gene set collection objects. From here
on all functions have methods for gene sets stored as lists, GeneSets or
GeneSetCollections. You can use the one you feel more confortable with.
We will work with GeneSetCollection:

> library(GSEABase)

> myGeneSetA <- GeneSet(genelds=signl, setName='My first signature')
> myGeneSetB <- GeneSet(genelds=sign2, setName='Another signature')
> mySignature <- GeneSetCollection(myGeneSetA,myGeneSetB)

> mySignature

GeneSetCollection
names: My first signature, Another signature (2 total)
unique identifiers: 200003_s_at, 200985_s_at, ., 200672_x_at (69 total)
types in collection:
geneldType: NullIdentifier (1 total)
collectionType: NullCollection (1 total)

@ Down-regulated
O Up-regulated

p=1

40
|

1%} —
2 P=1
c
[]
(=2}
=l

o
a @
0
[
<4
[=%
x
[
>
s 9
E=IN
c
[
5}
ES
©
g o |

i

o

My first signature Another signature

Figure 1: barplotSignifSignatures: Number of diferentially expressed
genes in each gene set that are statistically significant. P-values test for
differences in each signature between the number of up and down regulated
genes.

3.1 Plots that use epheno as input

barplotSignifSignatures will plot the percentage of up regulated and
down regulated genes that are statistically significant in each signature. In
our random selection of genes we did not find any statistically significant
genes. Therefore, and just to show the plot we set the alpha value 0.99. The
plot can be seen in Figure [I}

> barplotSignifSignatures(ephenol, 'lymph.node.status'],mySignature,alpha=0.99)

By default barplotSignifSignatures performs a binomial test (binom.test
from package stats) for each signature to test if the proportions of up regu-
lated and down regulated genes are different. For example, Figure [l/indicates
that in the first signature the proportion of up regulated genes is higher than
the proportion of down regulated genes. The second signature shows no
significant statistical differences.

Sometimes we want to compare the proportions of up and down regulated
genes in our signature with the proportions of up and down regulated of all
genes in the genome. In this case we may provide a reference signature via the

Tumor.size

1.0

@
=)
)
s <@
I o
e
O
E=}
S
L
o X
> o
o
N
=)
o
o ~ [T T~
% N R
My first signature Another signature

Figure 2: barplotSignatures: Averge fold change or hazard ratio.

argument referenceSignature. When providing the referenceSignature
argument a chi-square test comparing the proportion of up and down regu-
lated genes in each signature with the proportion in the reference set will be
computed.

When a reference gene set is provided and parameter testUpDown is TRUE
(by default it is FALSE) the proportion of up regulated genes is compared with
those of the reference gene set. The same is done for down regulated genes.

barplotSignatures plots the average log2 fold change or hazard ratio of
each phenotype for each gene set. Figure 2| shows an example of it.

> barplotSignatures(epheno[, 'Tumor.size'],mySignature, ylim=c(0,1))

We can also cluster our samples in two clusters based on the expression
levels of one gene set of genes and then test the effect of cluster on phe-
notypes. For ordinal and continuous variables a Kruskal-Wallis Rank Sum
test is used, for categorical variables a chi-square test is used and for sur-
vival variables a Cox proportional hazards likelihood-ratio test is used. The
heatmapPhenoTest function can be used to this end. Its results can be seen

in Figure [3] and

> pvals <- heatmapPhenoTest(eset,mySignature[[1]],vars2test=vars2test[1],heat.kaplan="'heat')

> pvals

201037_at
200985_5_at
201174 5 _at
200062_5_at
200003_s_at
201393 5 at
2014635 _at
201444 5 _at
201250_s_at
201263 at
200982_s_at
1487_at
201172_x_at

201138 s_at

200616_5_at
200047_s_at

200069_at
200924 _5_at

200737_at

201006_at

|
|
T ” |||| |||| ||||| ||

Figure 3: Heatmap produced with heatmapPhenoTest function. All variables
in vars2test that are of class logical will be plotted under the heatmap.

Months2Relapse
"(P=0.1247)"

> pvals <- heatmapPhenoTest(eset,mySignature[[1]],vars2test=vars2test[1],heat.kaplan='kaplan')
> pvals

Months2Relapse
"(P=0.1247)"

3.2 GSEA (Gene Set Enrichment Analysis)

A popular way to test association between gene sets’ gene expression and
phenotype is GSEA (Subramanian| [2005]). The main idea is to test the
association between the gene set as a whole and a phenotype.

Although GSEA and several extensions are already available in other
Biconductor packages, here we implement a slightly different extension. Most
GSEA-like approaches assess statistical significance by permuting the values
of the phenotype of interest. From a statisticall point of view this tests the
null hypothesis that no genes are associated with phenotype. However in

10

o
—
©
®
f)
o ©
T o
©
S
E
2«
S]
S o
]
N
R
HR=1.642
o | P=0.1247
S)
I I I I
0 50 100 150

Time

Figure 4: Kaplan-Meier produced with heatmapPhenoTest function.

many applications one is actually interested in testing if the proportion of
genes associated with phenotype in the gene set is greater than that outside
of the gene set. As a simple example, imagine a cancer study where 25%
of the genes are differentially expressed. In this setup a randomly chosen
gene set will have around 25% of differentially expressed genes, and classical
GSEA-like approaches will tend to flag the gene set as statistically significant.
In contrast, our implementation will tend to select only gene sets with more
than 25% of differentially expressed genes.

We will use the gsea method to compute enrichment scores (see Subra-
manian [2005] for details about the enrichment scores) and simulated enrich-
ment scores (by permuting the selection of genes). The simulated enrichment
scores are used to compute P-values and FDR. We can summarize the re-
sults obtained using the summary method. The following chunk of code is an
illustrative example of it:

> my.gsea <- gsea(x=epheno,gsets=mySignature,B=1000,p.adjust="'BH')

2 gene set(s) were provided and 1000 permutations were assigned,
therefore 500 permutations will be computed on each gene set.
2 gene set(s) were provided and 1000 permutations were assigned,
therefore 500 permutations will be computed on each gene set.
2 gene set(s) were provided and 1000 permutations were assigned,
therefore 500 permutations will be computed on each gene set.

11

2 gene set(s) were provided and 1000 permutations were assigned,
therefore 500 permutations will be computed on each gene set.

> my.gsea

Object of class 'gseaData'
You can use the summary method to produce result summaries.
You can use the getEs, getlNes, getEsSim and getFcHr methods to easily acces its data.
Gam approximation was not used.
The tested variables are:
Tumor.size.fc.[49.5,561.2), Tumor.size.fc.[51.2,54.1], lymph.node.status.positive.fc, Relapse.HR
The tested gene sets (for each variable) are:
My first signature, Another signature

> summary.gseaData(my.gsea)

variable geneSet n es nes pval.es pval.nes
1 Tumor.size.fc.[49.5,51.2) My first signature 20 0.3106288 1.0027635 0.4422042 0.4559690
2 Tumor.size.fc.[49.5,51.2) Another signature 50 0.3068532 1.2532635 0.2263038 0.2846919
3 Tumor.size.fc.[51.2,54.1] My first signature 20 -0.2736552 -0.7630029 0.7854817 0.8207445
4 Tumor.size.fc.[51.2,54.1] Another signature 50 -0.3755709 -1.2209707 0.3456654 0.3912601
5 lymph.node.status.positive.fc My first signature 20 -0.4138455 -1.1779948 0.2725063 0.2701065
6 lymph.node.status.positive.fc Another signature 50 0.3190696 1.1344498 0.2725063 0.2701065
7 Relapse.HR My first signature 20 -0.3636399 -1.1201729 0.4508468 0.4530796
8 Relapse.HR Another signature 50 -0.2645231 -1.0121094 0.4508468 0.4530796
fdr
1 0.4559690
2 0.2846919
3 0.8207445
4 0.3912601
5 0.2390682
6 0.2701065
7 0.6147908
8 0.4530796

We receive one message for each phenotype we are testing.
We can produce plots as follows:

> plot.gseaData(my.gsea)
This will produce two plots (one for enrichment score and another for
normalised enrichment score) for every phenotype and gene set (in our case

12 plots). Following code shows an example on plotting only enrichment
score for variable Relapse on the first gene set of genes. Plot can be seen in

Figure [
> my.gsea <- gsea(x=epheno[, 'Relapse'],gsets=mySignature[1],B=100,p.adjust='BH')

1 gene set(s) were provided and 100 permutations were assigned,
therefore 100 permutations will be computed on each gene set.

> summary.gseaData(my.gsea)

variable geneSet n es nes pval.es pval.nes fdr
1 Relapse.HR My first signature 20 -0.3636399 -1.155416 0.2977997 0.2978009 0.2978009

12

ES

Relapse.HR (log)

0.0 0.2

-0.2

ES plot/ variable:Relapse.HR / signature:My first signature (pval=0.298) *

NSNS -

1 200

00

400 600 8 1000

Gene list rank
(*) pvalue adjustment method: BH

Figure 5: GSEA plot.

13

> plot.gseaData(my.gsea,es.nes='es',selGsets='My first signature')

gsea can be used not only with epheno objects but also with objects of
class numeric or matrix. For more information read the gsea function help.

Following similar ideas to|Virtaneva| [2001] we also implemented a Wilcoxon
test. This can be used instead of the permutation test which can be slow if
we use a lot of permutations and we can not use the multicore package. The
plot we will obtain will also be different. Instead of plotting the enrichment
scores we will plot the density function and the mean log2 fold change or
hazard ratio of the genes that belong to our gene set. This will allow us to
compare how similar/different from 0 the mean of our gene set is. The plot
using Wilcoxon test can be seen in Figure [0

> my.gsea <- gsea(x=epheno[, 'Relapse'],gsets=mySignature,B=100,test="'wilcox',p.adjust="'BH')

2 gene set(s) were provided and 100 permutations were assigned,
therefore 50 permutations will be computed on each gene set.

> summary.gseaData(my.gsea)

variable geneSet n es pval
1 Relapse.HR My first signature 20 -0.03030989 0.6235886
2 Relapse.HR Another signature 50 -0.01083301 0.9691988

> plot.gseaData(my.gsea,selGsets='My first signature')

Notice that using a Wilcoxon test is conceptually very similar to the
average gene set fold change presented in figure

A current limitation of gseaSignatures is that it does not consider the
existance of dependence between genes in the gene set. This will be addressed
in future versions. Nevertheless we believe gseaSignatures is usefull in that
it targets the correct null hypothesis that gene set is as enriched as a randomly
selected gene set, opposed to testing that there are no enriched genes in the
set as is done in GSEA.

References

D.R. Cox. Regression models and life tables. Journal of the Royal Statistical
Society Series B, 34:187-220, 1972.

G.K. Smyth. Limma: linear models for microarray data. In R. Gentleman,
V. Carey, S. Dudoit, R. Irizarry, and W. Huber, editors, Bioinformatics
and Computational Biology Solutions using R and Bioconductor, pages
397-420. Springer, New York, 2005.

14

Density

Relapse.HR (log)

2.0

15

1.0

0.5

0.0

ES plot/ variable:Relapse.HR / signature:My first signature (pval=0.624) *

'
'
'
'
!
d
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

0.6 0.4 0.2 0.0 -0.2 -0.4

200 400 600 800 1000

Gene list rank
(*) pvalue adjustment method: BH

Figure 6: GSEA plot using Wilcoxon test.

15

Aravind Subramanian. Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wide expression profiles. PNAS, 102,
2005.

K. Virtaneva. Expression profiling reveals fundamental biological differences
in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics.
Proc Natl Acad Sci U S A, 98(98):1124-1129, January 2001. doi: http://
dx.doi.org/10.1073 /pnas.98.3.1124. URL http://dx.doi.org/10.1073/
pnas.98.3.1124|

16

http://dx.doi.org/10.1073/pnas.98.3.1124
http://dx.doi.org/10.1073/pnas.98.3.1124

	Introduction
	Individual gene(s) association with phenotype(s)
	Creating an epheno
	Useful methods for the epheno object
	Export an epheno

	Gene set(s) association with phenotype(s)
	Plots that use epheno as input
	GSEA (Gene Set Enrichment Analysis)

