Package 'ClustIRR'

April 5, 2024

Title Clustering of immune receptor repertoires Version 1.0.0 **Description** ClustIRR is a quantitative method for clustering of immune receptor repertoires (IRRs). The algorithm identifies groups of T or B cell receptors (TCRs or BCRs) with similar specificity by comparing their sequences. ClustIRR uses graphs to visualize the specificity structures of IRRs. **License** GPL-3 + file LICENSE LazyData false **Depends** R (>= 4.3.0) Imports stringdist, future, future.apply, methods, stats, utils, igraph, visNetwork Suggests BiocStyle, knitr, testthat, ggplot2, patchwork, ggrepel **Encoding UTF-8** NeedsCompilation no biocViews Clustering, ImmunoOncology, SingleCell, Software, Classification RoxygenNote 7.2.3 VignetteBuilder knitr URL https://github.com/snaketron/ClustIRR BugReports https://github.com/snaketron/ClustIRR/issues git_url https://git.bioconductor.org/packages/ClustIRR git_branch RELEASE_3_18 git_last_commit 739bbff git_last_commit_date 2023-10-24 Repository Bioconductor 3.18 Date/Publication 2024-04-05

Type Package

2 CDR3ab

Author Simo Kitanovski [aut, cre] (https://orcid.org/0000-0003-2909-5376), Kai Wollek [aut] (https://orcid.org/0009-0008-5941-9160)

Maintainer Simo Kitanovski <simokitanovski@gmail.com>

R topics documented:

CDR3ab		Mock data set of complementarity determining region 3 (CDR3) quences from the α and β chains of 10,000 T cell receptors													se-	-							
Index																							14
plot_joir	nt_graph					•		•							•	•		•			•		12
	ph																						
get_join	t_graph																						9
get_grap	h																						8
clust_irr	-class																						6
cluster_i	rr																						3

Description

Mock data set containing amino acid sequences of paired CDR3s from the α and β chains of 10,000 T cell receptors. All CDR3 sequences were drawn from a larger set of CDR3 β sequences from human naive CD8+ T cells.

Usage

data(CDR3ab)

Format

data. frame with 10,000 rows and 2 columns CDR3a and CDR3b.

Value

data(CDR3ab) loads the object CDR3ab, which is a data.frame with two columns and 10,000 rows.

Source

GLIPH version 2

Examples

data("CDR3ab")

cluster_irr 3

cluster_irr

Clustering of immune receptor repertoires

Description

This algorithm finds groups of TCRs or BCRs with similar specificity. Two clustering strategies are employed:

- 1. Local clustering
- 2. Global clustering

Local clustering

- 1. CDR3 processing steps
 - each row of s and r is considered as a CDR3 sequence from an individual T- or B-cell (version = 2, default). If version=1 is specified, then we compute the set of non-redundant CDR3s from s and r and use them for clustering.
 - · Trim CDR3 ends
- 2. Motif processing steps
 - motif frequencies in data set s (f_s) and r (f_r)
 - total number of motifs in data set s (n_s) and r (n_r)
 - ratio of observed vs. expected motif counts using the following formula: OvE= $(f_s/n_s)/(f_r/n_r)$
 - probability p_i of finding the observed or a larger OvE for motif i given that the null hypothesis is true is computed with the Fisher's exact test
 - classify motif i as pass=TRUE if the motif passes all filters specified in the user-provided control list, otherwise as pass=FALSE

Global clustering

The default ClustIRR algorithm for global clustering is simple. For each pair of equal-length CDR3 sequences i and j we compute the Hamming distance d_{ij} . If $d_{ij} \leq {\tt global_max_dist}$ (user-defined input), then i and j are globally similar.

Alternatively, the user can provide a matrix of globally similar CDR3 sequence pairs, computed by a complementary approachs such as TCRdist.

Usage

4 cluster_irr

```
local_min_o = 1,
trim_flank_aa = 0,
global_pairs = NULL,
low_mem = FALSE))
```

Arguments

s

data.frame, complementarity determining region 3 (CDR3) amino acid sequences observed in an immune receptor repertoire (IRR). The data frame can have either one column or two columns:

- One column: s contains CDR3s from a single chain: CDR3b, CDR3a, CDR3g, CDR3d, CDR3h or CDR3l
- Two columns: s contains CDR3s from both chains (paired), for instance:
 - *CDR3b* and *CDR3a* [for $\alpha\beta$ TCRs]
 - *CDR3g* and *CDR3d* [for $\gamma \delta$ TCRs]
 - CDR3h and CDR3l [for heavy/ligh chain BCRs]

data.frame, reference (or control) repertoire of CDR3 sequences. Must have the same structure (number of columns and column names) as s

integer, version of the algorithm: version = 1 or 2 (default)

ks

integer or integer vector, motif lengths. ks = 4 (default)

cores

integer, number of CPU cores, cores = 1 (default).

control

list, a named list of auxiliary parameters to control algorithm's behavior. See the details below:

- global_max_dist number, Hamming distance (HD) threshold to consider two CDR3s as globally clustered. CDR3s are globally clustered if HD(a,b) < global_max_dist. global_max_dist = 1 (default)
- local_max_fdr numeric, maximum False Discovery Rate (FDR) for the detection of enriched motifs. local_max_fdr = 0.05 (default)
- local_min_ove numeric, minimum fold change between observed and expected relative abundances for the detection of enriched motifs. local_min_ove = 2 (default)
- local_min_o numeric, minimum absolute frequency of a motif in the s in order for the motif to be used in the enrichment analysis. local_min_o = 1
- trim_flank_aa integer, how many amino acids should be trimmed from the flanks of all CDR3 sequences (only used for local clustering. trim_flank_aa = 0 (default)
- low_mem logical, allows low memory mode for global clustering. This will lead to increase in the CPU time but lead to a lower memory footprint. low_mem = FALSE (default)
- global_pairs matrix, pre-computed global pairs. If global_pairs is provided by the user, then global clustering is not performed. Instead the CDR3 pairs from global_pairs are used as global clustering pairs. global_pairs is a character matrix with 3 columns. The first two columns contain pairs of CDR3 sequences. These are considered globally clustered. The third column contains information about the TCR chain of each pair of CDR3s: TRA or TRB. global_pair = NULL (default)

r

version

cluster_irr 5

Value

The output is an S4 object of class clust_irr. This object contains two sublists:

clust

list, contains clustering results for each TCR/BCR chain. The results are stored in separate sub-list named appropriately (e.g. CDR3a, CDR3b, CDR3g, etc.). In the following we who the typical structure of these lists:

- local list, local clustering results
 - m data.frame, motif enrichment results with columns:
 - * motif motif sequence
 - * f_s observed motif counts in s
 - * f_r observed motif counts in r
 - * n_s number of all observed motifs in s
 - * n_r number of all observed motifs in r
 - * k motif length
 - * ove mean observed/expected relative motif frequency
 - * ove_ci_195 95% confidence intervals of ove (lower boundary)
 - * ove_ci_h95 95% confidence intervals of ove (upper boundary)
 - * p_value p-value from Fisher's exact test
 - * fdr false discovery rate, i.e. adjusted p-value by Benjamini & Hochberg correction
 - * pass logical value indicating whether a motifs are enriched (pass=TRUE) given the user-defined thresholds in control
 - 1p data.frame, enriched motifs are linked to their original CDR3 sequences and shown as rows in the data.frame with the following columns:
 - * cdr3 CDR3 amino acid sequence
 - * cdr3_core core portion of the CDR3 sequence, obtained by trimming trim_flank_aa amino acids (user- defined parameter). If trim_flank_aa = 0, then cdr3 = cdr3_core
 - * motif enriched motif from cdr3_core
- global matrix, global clustering results. Pairs of globally similar CDR3s are shown in each row of the matrix (analogous to lp)

inputs

list, contains all user provided inputs (see Arguments)

```
# load package input data
data("CDR3ab")
s <- data.frame(CDR3b = CDR3ab[1:1000, "CDR3b"])
r <- data.frame(CDR3b = CDR3ab[1:5000, "CDR3b"])

# artificially enrich motif 'RQWW' inside sample dataset
base::substr(x = s$CDR3b[1:20], start = 6, stop = 9) <- "RQWW"

# add an artificial clonal expansion of two sequences to the sample dataset
s <- base::rbind(s, base::data.frame(CDR3b = rep(x = c("CATSRAAKPDGLRALETQYF","))</pre>
```

6 clust_irr-class

"CATSRAAKPDRQWWLSTQYF"),

```
times = 15)))
# run analysis
out <- cluster_irr(s = s,</pre>
                   r = r,
                   version = 2,
                   ks = 4,
                   cores = 1,
                   control = list(
                        global_max_dist = 1,
                        local_max_fdr = 0.05,
                        local_min_ove = 2,
                        local_min_o = 1,
                        trim_flank_aa = 3,
                        global_pairs = NULL,
                        low_mem = FALSE))
# output class
base::class(out)
# output structure
utils::str(out)
# inspect motif enrichment results
knitr::kable(utils::head(slot(out, "clust")$CDR3b$local$m))
# inspect which CDR3bs are globally similar
knitr::kable(utils::head(slot(out, "clust")$CDR3b$global))
# plot graph
plot_graph(out)
```

clust_irr-class

clust_irr class

Description

Objects of the class clust_irr are generated by the function cluster_irr. These objects are used to store the clustering results in a structured way, such that they may be used as inputs of other ClustIRR functions (e.g. get_graph, plot_graph, etc.). Below we provide a detailed description of the slots of clust_irr. clust_irr objects contain two sublists:

- clust:list, contains clustering results for each TCR/BCR chain. The results are stored in separate sub-list named appropriately (e.g. CDR3a, CDR3b, CDR3g, etc.). In the following we who the typical structure of these lists:
 - local list, local clustering results
 - * m data.frame, motif enrichment results with columns:
 - · motif motif sequence

clust_irr-class 7

- · f_s observed motif counts in s
- · f_r observed motif counts in r
- · n_s number of all observed motifs in s
- · n_r number of all observed motifs in r
- · k motif length
- · ove mean observed/expected relative motif frequency
- · ove_ci_195 95% confidence intervals of ove (lower boundary)
- · ove_ci_h95 95% confidence intervals of ove (upper boundary)
- · p_value p-value from Fisher's exact test
- · fdr false discovery rate, i.e. adjusted p-value by Benjamini & Hochberg correction
- pass logical value indicating whether a motifs are enriched (pass=TRUE) given the user-defined thresholds in control
- * 1p data.frame, enriched motifs are linked to their original CDR3 sequences and shown as rows in the data.frame with the following columns:
 - · cdr3 CDR3 amino acid sequence
 - \cdot cdr3_core core portion of the CDR3 sequence, obtained by trimming trim_flank_aa amino acids (user- defined parameter). If trim_flank_aa = 0, then cdr3 = cdr3_core
 - · motif enriched motif from cdr3_core
- global matrix, global clustering results. Pairs of globally similar CDR3s are shown in each row of the matrix (analogous to 1p)
- inputs:list, contains all user provided inputs

Arguments

clust list, contains clustering results for each TCR/BCR chain. The results are stored

in separate sub-list named appropriately (e.g. CDR3a, CDR3b, CDR3g, etc.)

inputs list, contains all user provided inputs

Value

The output is an S4 object of class clust_irr

Accessors

To access the slots of clust_irr object we have two accessor functions. In the description below, x is a clust_irr object.

```
get_clustirr_clust get_clustirr_clust(x): Extract the clustering results (slot clust)
get_clustirr_inputs get_clustirr_inputs(x): Extract the processed inputs (slot inputs)
```

```
# inputs
data("CDR3ab")
s <- data.frame(CDR3b = CDR3ab[1:1000, "CDR3b"])
r <- data.frame(CDR3b = CDR3ab[1:5000, "CDR3b"])</pre>
```

get_graph

```
# controls: auxiliary inputs
control <- list(global_max_dist = 1,</pre>
                local_max_fdr = 0.05,
                local_min_ove = 2,
                local_min_o = 1,
                trim_flank_aa = 3,
                global_pairs = NULL,
                low_mem = FALSE)
# clust_irr S4 object generated by function cluster_irr
clust_irr_output <- cluster_irr(s = s, r = r, version = 2,</pre>
                                 ks = 4, cores = 1, control = control)
# clust_irr S4 object generated 'manually' from the individual results
new_clust_irr <- new("clust_irr",</pre>
                      clust = slot(object = clust_irr_output, name = "clust"),
                      inputs = slot(object = clust_irr_output, name = "inputs"))
# we should get identical outputs
identical(x = new_clust_irr, y = clust_irr_output)
```

get_graph

Get graph structure from clust_irr object

Description

The main output of this function is an igraph object.

The vertices in the graph represent clones. Undirected edges are drawn between a pair of vertices if the corresponding clones that are locally and/or globally similar.

Usage

```
get_graph(clust_irr)
```

Arguments

clust_irr S4 object generated by the function cluster_irr

Value

The main output of this function is an igraph object.

```
# load package input data
data("CDR3ab")
s <- base::data.frame(CDR3b = CDR3ab[1:100, "CDR3b"])
r <- base::data.frame(CDR3b = CDR3ab[1:5000, "CDR3b"])</pre>
```

get_joint_graph 9

```
# artificially enrich motif 'RWGW' inside sample dataset
base::substr(x = sCDR3b[1:20], start = 6, stop = 9) <- "RWGW"
# add an artificial clonal expansion of two sequences to the sample dataset
s <- rbind(s, base::data.frame(CDR3b = rep(x = c("CATSRADKPDGLDALETQYF",</pre>
                                                    "CATSRAAKPDGLAALSTQYF"),
                                             times = 5)))
# run ClustIRR analysis
out <- cluster_irr(s = s,</pre>
                   r = r,
                    version = 2,
                   ks = 4,
                    cores = 1,
                    control = list(trim_flank_aa = 3))
# get graph
g <- get_graph(out)</pre>
names(g)
```

get_joint_graph

Joins two graphs obtained from two clust_irr objects

Description

As input we take two clust_irr objects generated by the function cluster_irr.

Using each clust_irr object we generate a graph (with the function get_graph) in which the different vertices represent clones, and undirected edges are drawn between a pair of vertices if the corresponding clones are locally and/or globally similar (see definitions of local/global clustering in the documentation of cluster_irr.

The function get_joint_graph performs the following operation on the two graphs:

First it performs an union of the vertices. Second, it performs global clustering between the two graphs, i.e. it compares the CDR3 sequences of the clones between the two graphs. If two clones have similar CDR3 sequences, then the corresponding vertices are connected by an edge.

The results is another igraph object.

Usage

```
get_joint_graph(clust_irr_1, clust_irr_2)
```

Arguments

```
clust_irr_1 S4 object generated by the function cluster_irr clust_irr_2 S4 object generated by the function cluster_irr
```

plot_graph

Value

The main output of this function is an igraph object.

Examples

```
# load package input data
data("CDR3ab")
s <- base::data.frame(CDR3b = CDR3ab[1:100, "CDR3b"])</pre>
r <- base::data.frame(CDR3b = CDR3ab[1:5000, "CDR3b"])</pre>
# artificially enrich motif 'RWGW' inside sample dataset
base::substr(x = sCDR3b[1:20], start = 6, stop = 9) <- "RWGW"
# add an artificial clonal expansion of two sequences to the sample dataset
s <- rbind(s, base::data.frame(CDR3b = rep(x = c("CATSRADKPDGLDALETQYF",</pre>
                                                    "CATSRAAKPDGLAALSTQYF"),
                                             times = 5)))
# run ClustIRR analysis
c1 <- cluster_irr(s = s,</pre>
                   r = r,
                   version = 2,
                   ks = 4,
                   cores = 1,
                   control = list(trim_flank_aa = 3))
# run ClustIRR analysis
c2 <- cluster_irr(s = s,</pre>
                   r = r,
                   version = 2,
                   ks = 4,
                   cores = 1,
                   control = list(trim_flank_aa = 3))
# get graph
g <- get_joint_graph(c1, c2)</pre>
names(g)
```

plot_graph

Plot ClustIRR graph

Description

This this function visualizes a graph. The input is clust_irr object created by the function cluster_irr.

Usage

```
plot_graph(clust_irr, as_visnet=FALSE)
```

plot_graph 11

Arguments

clust_irr S4 object of type clust_irr, result of clust_irr function

as_visnet logical, if as_visnet=TRUE we plot an interactive graph with visNetwork. If

as_visnet=FALSE, we plot a static graph with igraph.

Value

The output is an igraph plot.

Vertices are clones and edges represent local or global similarities. Edge attributes 'color', 'line-type' and 'thickness' can be interpreted as follows:

- · Edge colors
 - purple: local CDR3 similarity
 - green: global CDR3 similarity
 - black: local + global CDR3 similarity
- Edge linetypes
 - dashed: similarity between CDR3 β , CDR3 δ , CDR3H
 - dotted: similarity between CDR3 α , CDR3 γ , CDR3L
 - solid: similarity between CDR3s from both chains (e.g. CDR3 α and CDR3 β)
- Edge thickness: number of edges between two clones

The size of the vertices increases linearly as the logarithm of the degree of the clonal expansion (number of cells per clone) in the corresponding clones.

```
# load package input data
data("CDR3ab")
s <- base::data.frame(CDR3b = CDR3ab[1:1000, "CDR3b"])</pre>
r <- base::data.frame(CDR3b = CDR3ab[1:5000, "CDR3b"])</pre>
# artificially enrich motif 'RWGW' inside sample dataset
base::substr(x = sCDR3b[1:20], start = 6, stop = 9) <- "RWGW"
# add an artificial clonal expansion of two sequences to the sample dataset
s <- rbind(s, base::data.frame(CDR3b = rep(x = c("CATSRADKPDGLDALETQYF",</pre>
                                 "CATSRAAKPDGLAALSTQYF"),
                                 times = 5)))
# run analysis
out <- cluster_irr(s = s,
                   r = r,
                   version = 2,
                   ks = 4,
                    cores = 1,
                    control = list(
                         global_max_dist = 1,
                         local_max_fdr = 0.05,
```

12 plot_joint_graph

```
local_min_ove = 2,
                         local_min_o = 1,
                         trim_flank_aa = 3,
                         global_pairs = NULL,
                         low_mem = FALSE))
# plot graph with vertices as clones
p1 <- plot_graph(out, as_visnet=FALSE)</pre>
p1
# access nodes and edges of the graph as data.frame
n <- p1$x$nodes
str(n)
class(n)
head(n)
e <- p1$x$edges
str(e)
class(e)
head(e)
```

plot_joint_graph

Plot joint ClustIRR graph

Description

This this function creates a joint graph from two clust_irr objects, and visualizes the graph.

Usage

```
plot_joint_graph(clust_irr_1, clust_irr_2, as_visnet = FALSE)
```

Arguments

clust_irr_1 S4 object of type clust_irr_1 clust_irr_2 S4 object of type clust_irr_2

as_visnet logical, if as_visnet=TRUE we plot an interactive graph with visNetwork. If

as_visnet=FALSE, we plot a static graph with igraph.

Value

The output is an igraph plot.

Vertices are clones and edges represent local or global similarities. Edge attributes 'color', 'line-type' and 'thickness' can be interpreted as follows:

• Edge colors

purple: local CDR3 similaritygreen: global CDR3 similarity

plot_joint_graph 13

- black: local + global CDR3 similarity
- Edge linetypes
 - dashed: similarity between CDR3 β , CDR3 δ , CDR3H
 - dotted: similarity between CDR3 α , CDR3 γ , CDR3L
 - solid: similarity between CDR3s from both chains (e.g. CDR3 α and CDR3 β)
- Edge thickness: number of edges between two clones

The size of the vertices increases linearly as the logarithm of the degree of the clonal expansion (number of cells per clone) in the corresponding clones.

Examples

```
# load package input data
data("CDR3ab")
s <- base::data.frame(CDR3b = CDR3ab[1:1000, "CDR3b"])</pre>
r \leftarrow base::data.frame(CDR3b = CDR3ab[1:5000, "CDR3b"])
# artificially enrich motif 'RWGW' inside sample dataset
base::substr(x = sCDR3b[1:20], start = 6, stop = 9) <- "RWGW"
# add an artificial clonal expansion of two sequences to the sample dataset
s <- rbind(s, base::data.frame(CDR3b = rep(x = c("CATSRADKPDGLDALETQYF",</pre>
                                 "CATSRAAKPDGLAALSTQYF"),
                                 times = 5)))
# run analysis
out <- cluster_irr(s = s,</pre>
                   r = r,
                   version = 2,
                   ks = 4,
                   cores = 1,
                   control = list(
                         global_max_dist = 1,
                         local_max_fdr = 0.05,
                         local_min_ove = 2,
                         local_min_o = 1,
                         trim_flank_aa = 3,
                         global_pairs = NULL,
                         low_mem = FALSE))
# plot graph with vertices as clones
```

plot_joint_graph(out, out, as_visnet=FALSE)

Index

```
* datasets
    CDR3ab, 2
CDR3ab, 2
class:clust_irr(clust_irr-class), 6
clust_irr(clust_irr-class), 6
clust_irr-class, 6
cluster_irr, 3
get_clustirr_clust (clust_irr-class), 6
get_clustirr_clust,clust_irr-method
        (clust_irr-class), 6
get_clustirr_inputs (clust_irr-class), 6
get_clustirr_inputs,clust_irr-method
        (clust_irr-class), 6
get_graph, 8
get_joint_graph, 9
plot_graph, 10
\verb|plot_joint_graph|, 12|
```