Package ‘ClustIRR’

April 5, 2024
Type Package
Title Clustering of immune receptor repertoires
Version 1.0.0

Description ClustIRR is a quantitative method for clustering of immune
receptor repertoires (IRRs). The algorithm identifies groups of T or B
cell receptors (TCRs or BCRs) with similar specificity by comparing their
sequences. ClustIRR uses graphs to visualize the specificity structures
of IRRs.

License GPL-3 + file LICENSE
LazyData false
Depends R (>=4.3.0)

Imports stringdist, future, future.apply, methods, stats, utils,
igraph, visNetwork

Suggests BiocStyle, knitr, testthat, ggplot2, patchwork, ggrepel
Encoding UTF-8
NeedsCompilation no

biocViews Clustering, ImmunoOncology, SingleCell, Software,
Classification

RoxygenNote 7.2.3
VignetteBuilder knitr

URL https://github.com/snaketron/ClustIRR

BugReports https://github.com/snaketron/ClustIRR/issues
git_url https://git.bioconductor.org/packages/ClustIRR

git branch RELEASE_3_18

git_last_commit 739bbff

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-04-05

https://github.com/snaketron/ClustIRR
https://github.com/snaketron/ClustIRR/issues

2 CDR3ab
Author Simo Kitanovski [aut, cre] (<https://orcid.org/0000-0003-2909-5376>),

Kai Wollek [aut] (<https://orcid.org/0009-0008-5941-9160>)

Maintainer Simo Kitanovski <simokitanovski@gmail.com>

R topics documented:

CDR3ab e 2
cluster_irr e e 3
clust irr-class e s e 6
get_graph L e e 8
get_joint_graph L 9
plot_graph 10
plot_joint_graph. 12
Index 14
CDR3ab Mock data set of complementarity determining region 3 (CDR3) se-

quences from the « and (chains of 10,000 T cell receptors

Description

Mock data set containing amino acid sequences of paired CDR3s from the « and 3 chains of 10,000
T cell receptors. All CDR3 sequences were drawn from a larger set of CDR3/ sequences from
human naive CD8+ T cells.

Usage
data(CDR3ab)

Format

data. frame with 10,000 rows and 2 columns CDR3a and CDR3b.

Value

data(CDR3ab) loads the object CDR3ab, which is a data.frame with two columns and 10,000 rows.

Source

GLIPH version 2

Examples

data("CDR3ab")

https://orcid.org/0000-0003-2909-5376
https://orcid.org/0009-0008-5941-9160
http://50.255.35.37:8080/

cluster_irr 3

cluster_irr Clustering of immune receptor repertoires

Description

This algorithm finds groups of TCRs or BCRs with similar specificity. Two clustering strategies are
employed:

1. Local clustering

2. Global clustering

Local clustering

1. CDR3 processing steps

» each row of s and r is considered as a CDR3 sequence from an individual T- or B-cell
(version = 2, default). If version=1 is specified, then we compute the set of non-redundant
CDR3s from s and r and use them for clustering.

e Trim CDR3 ends
2. Motif processing steps

» motif frequencies in data set s (f,) and r (f,.)

¢ total number of motifs in data set s (ns) and r (n,.)

* ratio of observed vs. expected motif counts using the following formula: OVE=(f,/ns)/(fr/nr)

* probability p; of finding the observed or a larger OVE for motif ¢ given that the null
hypothesis is true is computed with the Fisher’s exact test

* classify motif ¢ as pass=TRUE if the motif passes all filters specified in the user-provided
control list, otherwise as pass=FALSE

Global clustering

The default ClustIRR algorithm for global clustering is simple. For each pair of equal-length CDR3
sequences ¢ and j we compute the Hamming distance d;;. If d;; < global_max_dist (user-defined
input), then ¢ and j are globally similar.

Alternatively, the user can provide a matrix of globally similar CDR3 sequence pairs, computed by
a complementary approachs such as TCRdist.

Usage

cluster_irr(
s!
r,
version
ks = 4,
cores = 1,
control = list(global_max_dist =
local_max_fdr = 0.05,
local_min_ove = 2

2,

Arguments

S

version
ks
cores
control

cluster_irr

local_min_o =1,
trim_flank_aa = 0,
global_pairs = NULL,
low_mem = FALSE))

data.frame, complementarity determining region 3 (CDR3) amino acid sequences
observed in an immune receptor repertoire (IRR). The data.frame can have ei-
ther one column or two columns:
* One column: s contains CDR3s from a single chain: CDR3b, CDR3a,
CDR3g, CDR3d, CDR3h or CDR3I
* Two columns: s contains CDR3s from both chains (paired), for instance:
— CDR3b and CDR3a [for o TCRs]
— CDR3g and CDR3d [for v TCRs]
— CDR3h and CDR3I [for heavy/ligh chain BCRs]
data.frame, reference (or control) repertoire of CDR3 sequences. Must have the
same structure (number of columns and column names) as s
integer, version of the algorithm: version =1 or 2 (default)
integer or integer vector, motif lengths. ks =4 (default)
integer, number of CPU cores, cores = 1 (default).
list, a named list of auxiliary parameters to control algorithm’s behavior. See the
details below:
e global_max_dist - number, Hamming distance (HD) threshold to consider
two CDR3s as globally clustered. CDR3s are globally clustered if HD(a,
b) < global_max_dist. global_max_dist = 1 (default)
e local_max_fdr - numeric, maximum False Discovery Rate (FDR) for the
detection of enriched motifs. local_max_fdr = 0.05 (default)
* local_min_ove - numeric, minimum fold change between observed and

expected relative abundances for the detection of enriched motifs. local_min_ove

=2 (default)

* local_min_o - numeric, minimum absolute frequency of a motif in the s in
order for the motif to be used in the enrichment analysis. local_min_o =1
(default)

* trim_flank_aa - integer, how many amino acids should be trimmed from

the flanks of all CDR3 sequences (only used for local clustering. trim_flank_aa

= 0 (default))

* low_mem - logical, allows low memory mode for global clustering. This
will lead to increase in the CPU time but lead to a lower memory footprint.
low_mem = FALSE (default)

e global_pairs - matrix, pre-computed global pairs. If global_pairs is
provided by the user, then global clustering is not performed. Instead the

CDR3 pairs from global_pairs are used as global clustering pairs. global_pairs

is a character matrix with 3 columns. The first two columns contain pairs
of CDR3 sequences. These are considered globally clustered. The third
column contains information about the TCR chain of each pair of CDR3s:
TRA or TRB. global_pair = NULL (default)

cluster_irr 5

Value
The output is an S4 object of class clust_irr. This object contains two sublists:

clust list, contains clustering results for each TCR/BCR chain. The results are stored
in separate sub-list named appropriately (e.g. CDR3a, CDR3b, CDR3g, etc.).
In the following we who the typical structure of these lists:
* local - list, local clustering results
— m - data.frame, motif enrichment results with columns:
x motif - motif sequence
% f_s - observed motif counts in s
% f_r - observed motif counts in r
% n_s - number of all observed motifs in s
n_r - number of all observed motifs in r
* k - motif length
* ove - mean observed/expected relative motif frequency
* ove_ci_195 - 95% confidence intervals of ove (lower boundary)
% ove_ci_h95 - 95% confidence intervals of ove (upper boundary)
% p_value - p-value from Fisher’s exact test
% fdr - false discovery rate, i.e. adjusted p-value by Benjamini &
Hochberg correction
pass - logical value indicating whether a motifs are enriched (pass=TRUE)
given the user-defined thresholds in control
— 1p - data.frame, enriched motifs are linked to their original CDR3
sequences and shown as rows in the data.frame with the following
columns:
% cdr3 - CDR3 amino acid sequence
* cdr3_core - core portion of the CDR3 sequence, obtained by trim-
ming trim_flank_aa amino acids (user- defined parameter). If trim_flank_aa
=0, then cdr3 = cdr3_core
* motif - enriched motif from cdr3_core
* global - matrix, global clustering results. Pairs of globally similar CDR3s
are shown in each row of the matrix (analogous to 1p)

inputs list, contains all user provided inputs (see Arguments)

Examples

load package input data
data("CDR3ab")

s <- data.frame(CDR3b
r <- data.frame(CDR3b

CDR3ab[1:100@, "CDR3b"1)
CDR3ab[1:5000, "CDR3b"1)

artificially enrich motif 'RQWW' inside sample dataset
base::substr(x = s$CDR3b[1:20], start = 6, stop = 9) <- "RQWW”

add an artificial clonal expansion of two sequences to the sample dataset
s <- base::rbind(s, base::data.frame(CDR3b = rep(x = c("CATSRAAKPDGLRALETQYF",

6 clust_irr-class

"CATSRAAKPDRQWWLSTQYF"),
times = 15)))

run analysis
out <- cluster_irr(s = s,
r=r,
version = 2,
ks = 4,
cores = 1,
control = list(
global_max_dist =
local_max_fdr = 0.05,
local_min_ove = 2
local_min_o = 1,
trim_flank_aa = 3,
global_pairs = NULL,
low_mem = FALSE))

output class
base::class(out)

output structure
utils::str(out)

inspect motif enrichment results
knitr::kable(utils::head(slot(out, "clust”)$CDR3b$local$m))

inspect which CDR3bs are globally similar
knitr::kable(utils::head(slot(out, "clust")$CDR3b$global))

plot graph
plot_graph(out)

clust_irr-class clust_irr class

Description

Objects of the class clust_irr are generated by the function cluster_irr. These objects are used
to store the clustering results in a structured way, such that they may be used as inputs of other
ClustIRR functions (e.g. get_graph, plot_graph, etc.). Below we provide a detailed description of
the slots of clust_irr. clust_irr objects contain two sublists:

* clust:list, contains clustering results for each TCR/BCR chain. The results are stored in sep-
arate sub-list named appropriately (e.g. CDR3a, CDR3b, CDR3g, etc.). In the following we
who the typical structure of these lists:

— local - list, local clustering results
% m - data.frame, motif enrichment results with columns:
- motif - motif sequence

clust_irr-class

- f_s - observed motif counts in s

- f_r - observed motif counts in r

- n_s - number of all observed motifs in s

- n_r - number of all observed motifs in r

- k - motif length

- ove - mean observed/expected relative motif frequency

- ove_ci_195 - 95% confidence intervals of ove (lower boundary)

- ove_ci_h95 - 95% confidence intervals of ove (upper boundary)

- p_value - p-value from Fisher’s exact test

- fdr - false discovery rate, i.e. adjusted p-value by Benjamini & Hochberg correc-

tion

- pass - logical value indicating whether a motifs are enriched (pass=TRUE) given

the user-defined thresholds in control

% lp - data.frame, enriched motifs are linked to their original CDR3 sequences and
shown as rows in the data.frame with the following columns:

- ¢dr3 - CDR3 amino acid sequence

- cdr3_core - core portion of the CDR3 sequence, obtained by trimming trim_flank_aa

amino acids (user- defined parameter). If trim_flank_aa =0, then cdr3 =cdr3_core

- motif - enriched motif from cdr3_core

— global - matrix, global clustering results. Pairs of globally similar CDR3s are shown in
each row of the matrix (analogous to 1p)

* inputs:list, contains all user provided inputs

Arguments

clust

inputs

Value

list, contains clustering results for each TCR/BCR chain. The results are stored
in separate sub-list named appropriately (e.g. CDR3a, CDR3b, CDR3g, etc.)

list, contains all user provided inputs

The output is an S4 object of class clust_irr

Accessors

To access the slots of clust_irr object we have two accessor functions. In the description below,
x is a clust_irr object.

get_clustirr_clust get_clustirr_clust(x): Extract the clustering results (slot clust)

get_clustirr_inputs get_clustirr_inputs(x): Extract the processed inputs (slot inputs)

Examples

inputs
data("CDR3ab")

s <- data.frame(CDR3b
r <- data.frame(CDR3b

CDR3ab[1:100@, "CDR3b"1)
CDR3ab[1:5000, "CDR3b"1)

8 get_graph

controls: auxiliary inputs

control <- list(global_max_dist
local_max_fdr =
local_min_ove =
local_min_o =1,
trim_flank_aa = 3,
global_pairs = NULL,
low_mem = FALSE)

|
N Sl

[

[S]

clust_irr S4 object generated by function cluster_irr
clust_irr_output <- cluster_irr(s =s, r = r, version = 2,
ks = 4, cores = 1, control = control)

clust_irr S4 object generated 'manually' from the individual results
new_clust_irr <- new("clust_irr",
clust = slot(object = clust_irr_output, name = "clust"),
inputs = slot(object = clust_irr_output, name = "inputs”))

we should get identical outputs
identical(x = new_clust_irr, y = clust_irr_output)

get_graph Get graph structure from clust_irr object

Description

The main output of this function is an igraph object.

The vertices in the graph represent clones. Undirected edges are drawn between a pair of vertices
if the corresponding clones that are locally and/or globally similar.
Usage

get_graph(clust_irr)

Arguments

clust_irr S4 object generated by the function cluster_irr

Value

The main output of this function is an igraph object.

Examples

load package input data
data("CDR3ab")

s <- base::data.frame(CDR3b
r <- base::data.frame(CDR3b

CDR3ab[1:100, "CDR3b"1)
CDR3ab[1:5000, "CDR3b"1)

get_joint_graph 9

artificially enrich motif 'RWGW' inside sample dataset
base::substr(x = s$CDR3b[1:20], start = 6, stop = 9) <- "RWGW"

add an artificial clonal expansion of two sequences to the sample dataset
s <- rbind(s, base::data.frame(CDR3b = rep(x = c("CATSRADKPDGLDALETQYF",
"CATSRAAKPDGLAALSTQYF"),
times = 5)))

run ClustIRR analysis
out <- cluster_irr(s = s,
r=r,
version
ks = 4,
cores = 1,
control = list(trim_flank_aa = 3))

2’

get graph
g <- get_graph(out)

names(g)

get_joint_graph Joins two graphs obtained from two clust_irr objects

Description

As input we take two clust_irr objects generated by the function cluster_irr.

Using each clust_irr object we generate a graph (with the function get_graph) in which the
different vertices represent clones, and undirected edges are drawn between a pair of vertices if the
corresponding clones are locally and/or globally similar (see definitions of local/global clustering
in the documentation of cluster_irr.

The function get_joint_graph performs the following operation on the the two graphs:

First it performs an union of the vertices. Second, it performs global clustering between the two
graphs, i.e. it compares the CDR3 sequences of the clones between the two graphs. If two clones
have similar CDR3 sequences, then the corresponding vertices are connected by an edge.

The results is another igraph object.

Usage

get_joint_graph(clust_irr_1, clust_irr_2)

Arguments

clust_irr_1 S4 object generated by the function cluster_irr

clust_irr_2 S4 object generated by the function cluster_irr

10 plot_graph

Value

The main output of this function is an igraph object.

Examples

load package input data

data("CDR3ab")

s <- base::data.frame(CDR3b = CDR3ab[1:100, "CDR3b"1])
r <- base::data.frame(CDR3b = CDR3ab[1:5000, "CDR3b"])

artificially enrich motif 'RWGW' inside sample dataset
base: :substr(x = s$CDR3b[1:20], start = 6, stop = 9) <- "RWGW"

add an artificial clonal expansion of two sequences to the sample dataset
s <- rbind(s, base::data.frame(CDR3b = rep(x = c("CATSRADKPDGLDALETQYF",
"CATSRAAKPDGLAALSTQYF"),
times = 5)))

run ClustIRR analysis
cl <- cluster_irr(s = s,
r=r,
version
ks = 4,
cores = 1,
control = list(trim_flank_aa = 3))

2’

run ClustIRR analysis
c2 <- cluster_irr(s = s,
r=r,
version
ks = 4,
cores = 1,
control = list(trim_flank_aa = 3))

2,

get graph
g <- get_joint_graph(cl, c2)

names(g)

plot_graph Plot ClustIRR graph

Description
This this function visualizes a graph. The input is clust_irr object created by the function
cluster_irr.

Usage
plot_graph(clust_irr, as_visnet=FALSE)

plot_graph 11

Arguments
clust_irr S4 object of type clust_irr, result of clust_irr function
as_visnet logical, if as_visnet=TRUE we plot an interactive graph with visNetwork. If
as_visnet=FALSE, we plot a static graph with igraph.
Value

The output is an igraph plot.

Vertices are clones and edges represent local or global similarities. Edge attributes ’color’, ’line-
type’ and ’thickness’ can be interpreted as follows:

» Edge colors
— purple: local CDR3 similarity
— green: global CDR3 similarity
— black: local + global CDR3 similarity
» Edge linetypes
— dashed: similarity between CDR33, CDR34, CDR3H
— dotted: similarity between CDR3a, CDR3~, CDR3L
— solid: similarity between CDR3s from both chains (e.g. CDR3« and CDR33)

» Edge thickness: number of edges between two clones

The size of the vertices increases linearly as the logarithm of the degree of the clonal expansion
(number of cells per clone) in the corresponding clones.

Examples

load package input data
data("CDR3ab")

s <- base::data.frame(CDR3b
r <- base::data.frame(CDR3b

CDR3ab[1:100@, "CDR3b"1)
CDR3ab[1:5000, "CDR3b"1)

artificially enrich motif 'RWGW' inside sample dataset
base: :substr(x = s$CDR3b[1:20], start = 6, stop = 9) <- "RWGW"

add an artificial clonal expansion of two sequences to the sample dataset
s <- rbind(s, base::data.frame(CDR3b = rep(x = c("CATSRADKPDGLDALETQYF",
"CATSRAAKPDGLAALSTQYF"),
times = 5)))

run analysis
out <- cluster_irr(s = s,
r=r,
version = 2
ks = 4,
cores = 1,
control = list(
global_max_dist = 1,
local_max_fdr = 0.05,

12 plot_joint_graph

local_min_ove = 2,
local_min_o = 1,
trim_flank_aa = 3,

global_pairs = NULL,
low_mem = FALSE))

plot graph with vertices as clones
p1 <- plot_graph(out, as_visnet=FALSE)
pl

access nodes and edges of the graph as data.frame
n <- pl1xnodes

str(n)

class(n)

head(n)

e <- plxedges
str(e)

class(e)
head(e)

plot_joint_graph Plot joint ClustIRR graph

Description

This this function creates a joint graph from two clust_irr objects, and visualizes the graph.

Usage

plot_joint_graph(clust_irr_1, clust_irr_2, as_visnet = FALSE)

Arguments

clust_irr_1 S4 object of type clust_irr_1
clust_irr_2 S4 object of type clust_irr_2

as_visnet logical, if as_visnet=TRUE we plot an interactive graph with visNetwork. If
as_visnet=FALSE, we plot a static graph with igraph.

Value

The output is an igraph plot.
Vertices are clones and edges represent local or global similarities. Edge attributes ’color’, ’line-
type’ and ’thickness’ can be interpreted as follows:

» Edge colors

— purple: local CDR3 similarity
— green: global CDR3 similarity

plot_joint_graph 13

— black: local + global CDR3 similarity
» Edge linetypes
— dashed: similarity between CDR33, CDR3§, CDR3H
— dotted: similarity between CDR3«a, CDR3~, CDR3L
— solid: similarity between CDR3s from both chains (e.g. CDR3« and CDR3/3)

» Edge thickness: number of edges between two clones

The size of the vertices increases linearly as the logarithm of the degree of the clonal expansion
(number of cells per clone) in the corresponding clones.

Examples

load package input data
data("CDR3ab")

s <- base::data.frame(CDR3b
r <- base::data.frame(CDR3b

CDR3ab[1:1000, "CDR3b"])
CDR3ab[1:5000, "CDR3b"1)

artificially enrich motif 'RWGW' inside sample dataset
base: :substr(x = s$CDR3b[1:20], start = 6, stop = 9) <- "RWGW"

add an artificial clonal expansion of two sequences to the sample dataset
s <- rbind(s, base::data.frame(CDR3b = rep(x = c("CATSRADKPDGLDALETQYF",
"CATSRAAKPDGLAALSTQYF"),
times = 5)))

run analysis

out <- cluster_irr(s = s,
r=r,
version
ks = 4,
cores = 1,
control = list(

global_max_dist

27

1

’

local_max_fdr = 0.05,
local_min_ove = 2,
local_min_o = 1,
trim_flank_aa = 3,

global_pairs = NULL,
low_mem = FALSE))

plot graph with vertices as clones
plot_joint_graph(out, out, as_visnet=FALSE)

Index

x datasets
CDR3ab, 2

CDR3ab, 2

class:clust_irr (clust_irr-class), 6
clust_irr (clust_irr-class), 6
clust_irr-class, 6

cluster_irr, 3

get_clustirr_clust (clust_irr-class), 6

get_clustirr_clust,clust_irr-method
(clust_irr-class), 6

get_clustirr_inputs (clust_irr-class), 6

get_clustirr_inputs,clust_irr-method
(clust_irr-class), 6

get_graph, 8

get_joint_graph, 9

plot_graph, 10
plot_joint_graph, 12

14

	CDR3ab
	cluster_irr
	clust_irr-class
	get_graph
	get_joint_graph
	plot_graph
	plot_joint_graph
	Index

