## ----docSetup, bootstrap.show.code = FALSE, dev = device, bootstrap.show.message=FALSE---- ## knitrBoostrap and device chunk options library('knitr') opts_chunk$set(bootstrap.show.code = FALSE, dev = device, crop = NULL) if(!outputIsHTML) opts_chunk$set(bootstrap.show.code = FALSE, dev = device, echo = FALSE) ## ----setup, bootstrap.show.message=FALSE-------------------------------------- #### Libraries needed ## Bioconductor library('DESeq2') if(isEdgeR) library('edgeR') ## CRAN library('ggplot2') if(!is.null(theme)) theme_set(theme) library('knitr') if(is.null(colors)) { library('RColorBrewer') } library('pheatmap') library('DT') library('sessioninfo') #### Code setup ## For ggplot res.df <- as.data.frame(res) ## Sort results by adjusted p-values ord <- order(res.df$padj, decreasing = FALSE) res.df <- res.df[ord, ] features <- rownames(res.df) res.df <- cbind(data.frame(Feature = features), res.df) rownames(res.df) <- NULL ## ----'PCA'-------------------------------------------------------------------- ## Transform count data rld <- tryCatch(rlog(dds), error = function(e) { rlog(dds, fitType = 'mean') }) ## Perform PCA analysis and make plot plotPCA(rld, intgroup = intgroup) ## Get percent of variance explained data_pca <- plotPCA(rld, intgroup = intgroup, returnData = TRUE) percentVar <- round(100 * attr(data_pca, "percentVar")) ## ----'sampleDist'------------------------------------------------------------- ## Obtain the sample euclidean distances sampleDists <- dist(t(assay(rld))) sampleDistMatrix <- as.matrix(sampleDists) ## Add names based on intgroup rownames(sampleDistMatrix) <- apply(as.data.frame(colData(rld)[, intgroup]), 1, paste, collapse = ' : ') colnames(sampleDistMatrix) <- NULL ## Define colors to use for the heatmap if none were supplied if(is.null(colors)) { colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255) } ## Make the heatmap pheatmap(sampleDistMatrix, clustering_distance_rows = sampleDists, clustering_distance_cols = sampleDists, color = colors) ## ----'MAplotalpha'------------------------------------------------------------ ## MA plot with alpha used in DESeq2::results() plotMA(res, alpha = metadata(res)$alpha, main = paste('MA plot with alpha =', metadata(res)$alpha)) ## ----'MAplotalphaHalf'-------------------------------------------------------- ## MA plot with alpha = 1/2 of the alpha used in DESeq2::results() plotMA(res, alpha = metadata(res)$alpha / 2, main = paste('MA plot with alpha =', metadata(res)$alpha / 2)) ## ----'MAplotalpha-nBest'------------------------------------------------------ ## MA plot with alpha corresponding to the one that gives the nBest features nBest.actual <- min(nBest, nrow(head(res.df, n = nBest))) nBest.alpha <- head(res.df, n = nBest)$padj[nBest.actual] plotMA(res, alpha = nBest.alpha * 1.00000000000001, main = paste('MA plot for top', nBest.actual, 'features')) ## ----pvalueHistogram---------------------------------------------------------- ## P-value histogram plot ggplot(res.df[!is.na(res.df$pvalue), ], aes(x = pvalue)) + geom_histogram(alpha=.5, position='identity', bins = 50) + labs(title='Histogram of unadjusted p-values') + xlab('Unadjusted p-values') + xlim(c(0, 1.0005)) ## ----pvalueSumm--------------------------------------------------------------- ## P-value distribution summary summary(res.df$pvalue) ## ----pvalueTable, results = 'asis'-------------------------------------------- ## Split features by different p-value cutoffs pval_table <- lapply(c(1e-04, 0.001, 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1), function(x) { data.frame('Cut' = x, 'Count' = sum(res.df$pvalue <= x, na.rm = TRUE)) }) pval_table <- do.call(rbind, pval_table) if(outputIsHTML) { kable(pval_table, format = 'markdown', align = c('c', 'c')) } else { kable(pval_table) } ## ----padjHistogram------------------------------------------------------------ ## Adjusted p-values histogram plot ggplot(res.df[!is.na(res.df$padj), ], aes(x = padj)) + geom_histogram(alpha=.5, position='identity', bins = 50) + labs(title=paste('Histogram of', elementMetadata(res)$description[grep('adjusted', elementMetadata(res)$description)])) + xlab('Adjusted p-values') + xlim(c(0, 1.0005)) ## ----padjSumm----------------------------------------------------------------- ## Adjusted p-values distribution summary summary(res.df$padj) ## ----padjTable, results = 'asis'---------------------------------------------- ## Split features by different adjusted p-value cutoffs padj_table <- lapply(c(1e-04, 0.001, 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1), function(x) { data.frame('Cut' = x, 'Count' = sum(res.df$padj <= x, na.rm = TRUE)) }) padj_table <- do.call(rbind, padj_table) if(outputIsHTML) { kable(padj_table, format = 'markdown', align = c('c', 'c')) } else { kable(padj_table) } ## ----'topFeatures', results = 'asis'------------------------------------------ ## Add search url if appropriate if(!is.null(searchURL) & outputIsHTML) { res.df$Feature <- paste0('<a href="', searchURL, res.df$Feature, '">', res.df$Feature, '</a>') } for(i in which(colnames(res.df) %in% c('pvalue', 'padj'))) res.df[, i] <- format(res.df[, i], scientific = TRUE) if(outputIsHTML) { datatable(head(res.df, n = nBest), options = list(pagingType='full_numbers', pageLength=10, scrollX='100%'), escape = FALSE, rownames = FALSE) %>% formatRound(which(!colnames(res.df) %in% c('pvalue', 'padj', 'Feature')), digits) } else { res.df_top <- head(res.df, n = 20) for(i in which(!colnames(res.df) %in% c('pvalue', 'padj', 'Feature'))) res.df_top[, i] <- round(res.df_top[, i], digits) kable(res.df_top) } ## ----'plotCounts'------------------------------------------------------------- plotCounts_gg <- function(i, dds, intgroup) { group <- if (length(intgroup) == 1) { colData(dds)[[intgroup]] } else if (length(intgroup) == 2) { lvls <- as.vector(t(outer(levels(colData(dds)[[intgroup[1]]]), levels(colData(dds)[[intgroup[2]]]), function(x, y) paste(x, y, sep = " : ")))) droplevels(factor(apply(as.data.frame(colData(dds)[, intgroup, drop = FALSE]), 1, paste, collapse = " : "), levels = lvls)) } else { factor(apply(as.data.frame(colData(dds)[, intgroup, drop = FALSE]), 1, paste, collapse = " : ")) } data <- plotCounts(dds, gene=i, intgroup=intgroup, returnData = TRUE) ## Change in version 1.15.3 ## It might not be necessary to have any of this if else, but I'm not ## sure that plotCounts(returnData) will always return the 'group' variable. if('group' %in% colnames(data)) { data$group <- group } else { data <- cbind(data, data.frame('group' = group)) } ggplot(data, aes(x = group, y = count)) + geom_point() + ylab('Normalized count') + ggtitle(i) + coord_trans(y = "log10") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } for(i in head(features, nBestFeatures)) { print(plotCounts_gg(i, dds = dds, intgroup = intgroup)) } ## ----'edgeR-BCV', eval = isEdgeR, echo = isEdgeR & outputIsHTML--------------- # ## Make BCV plot for edgeR results # plotBCV(dge) ## ----'edgeR-MDS', eval = isEdgeR, echo = isEdgeR & outputIsHTML--------------- # ## Make MDS plot for edgeR results # plotMDS(dge) ## ----child = customCode, eval = hasCustomCode--------------------------------- # NA ## ----thecall, echo=FALSE------------------------------------------------------ theCall ## ----reproducibility1, echo=FALSE--------------------------------------------- ## Date the report was generated Sys.time() ## ----reproducibility2, echo=FALSE--------------------------------------------- ## Processing time in seconds totalTime <- diff(c(startTime, Sys.time())) round(totalTime, digits=3) ## ----reproducibility3, echo=FALSE------------------------------------------------------------------------------------- ## Session info options(width = 120) session_info() ## ----bibliography, results='asis', echo=FALSE, warning = FALSE-------------------------------------------------------- ## Print bibliography PrintBibliography(bib, .opts = list(hyperlink = "to.doc", style = "html"))