BiocNeighbors 1.14.0
The BiocNeighbors package provides several algorithms for approximate neighbor searches:
These methods complement the exact algorithms described previously.
Again, it is straightforward to switch from one algorithm to another by simply changing the BNPARAM argument in findKNN and queryKNN.
We perform the k-nearest neighbors search with the Annoy algorithm by specifying BNPARAM=AnnoyParam().
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
fout <- findKNN(data, k=10, BNPARAM=AnnoyParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 4505 4168 617 8623 4240 6847 2259 5830 4422 1608
## [2,] 1539 6123 9034 8664 9644 2079 6207 5303 2202 8149
## [3,] 2978 6267 4601 1804 5566 1079 2886 5003 8680 9352
## [4,] 2691 9637 5359 8149 5062 5112 5903 274 2143 1410
## [5,] 5874 1426 133 8065 1319 3159 7696 8543 5047 8534
## [6,] 7955 3359 549 5782 4825 6797 2841 1235 6215 7083
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.8825449 0.9915909 1.0092245 1.0188426 1.0392540 1.0516332 1.0519289
## [2,] 0.8622014 0.9186255 0.9317672 1.0342002 1.0359803 1.0780544 1.0795301
## [3,] 0.8337301 0.8998619 0.9341834 0.9551983 0.9601048 0.9736210 0.9805866
## [4,] 0.8187793 0.8193409 0.9103844 0.9208554 0.9429098 0.9466539 0.9617505
## [5,] 0.8705071 0.9711886 0.9909576 1.0005188 1.0054835 1.0277821 1.0325969
## [6,] 0.9291477 0.9332741 0.9387993 0.9396378 0.9666235 0.9844171 0.9942077
## [,8] [,9] [,10]
## [1,] 1.0579325 1.058985 1.060058
## [2,] 1.0945244 1.105723 1.114920
## [3,] 1.0039030 1.012025 1.012901
## [4,] 0.9816138 1.012709 1.028672
## [5,] 1.0444629 1.049320 1.053118
## [6,] 1.0305445 1.050729 1.057779
We can also identify the k-nearest neighbors in one dataset based on query points in another dataset.
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
qout <- queryKNN(data, query, k=5, BNPARAM=AnnoyParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 7059 7607 2129 2347 6307
## [2,] 6159 8596 6062 8976 9349
## [3,] 5669 9320 7673 6012 7089
## [4,] 4221 4691 3187 7418 4053
## [5,] 8709 1907 4231 4425 4741
## [6,] 8317 1419 849 9364 4506
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9419826 0.9975957 1.0318391 1.0445652 1.0455526
## [2,] 0.8231115 0.8697896 0.9104496 0.9648659 0.9910955
## [3,] 0.9634522 1.0049822 1.0079889 1.0189093 1.0468636
## [4,] 0.8537957 0.8811178 0.9886814 1.0454019 1.0553904
## [5,] 0.8202045 0.9335378 1.0480314 1.0797175 1.0798849
## [6,] 0.8650038 0.9380068 0.9622783 0.9756745 1.0326613
It is similarly easy to use the HNSW algorithm by setting BNPARAM=HnswParam().
Most of the options described for the exact methods are also applicable here. For example:
subset to identify neighbors for a subset of points.get.distance to avoid retrieving distances when unnecessary.BPPARAM to parallelize the calculations across multiple workers.BNINDEX to build the forest once for a given data set and re-use it across calls.The use of a pre-built BNINDEX is illustrated below:
pre <- buildIndex(data, BNPARAM=AnnoyParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
Both Annoy and HNSW perform searches based on the Euclidean distance by default.
Searching by Manhattan distance is done by simply setting distance="Manhattan" in AnnoyParam() or HnswParam().
Users are referred to the documentation of each function for specific details on the available arguments.
Both Annoy and HNSW generate indexing structures - a forest of trees and series of graphs, respectively -
that are saved to file when calling buildIndex().
By default, this file is located in tempdir()1 On HPC file systems, you can change TEMPDIR to a location that is more amenable to concurrent access. and will be removed when the session finishes.
AnnoyIndex_path(pre)
## [1] "/tmp/RtmpayapNL/file1b8bdd5f9f8fb5.idx"
If the index is to persist across sessions, the path of the index file can be directly specified in buildIndex.
This can be used to construct an index object directly using the relevant constructors, e.g., AnnoyIndex(), HnswIndex().
However, it becomes the responsibility of the user to clean up any temporary indexing files after calculations are complete.
sessionInfo()
## R version 4.2.0 RC (2022-04-19 r82224)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocNeighbors_1.14.0 knitr_1.38 BiocStyle_2.24.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.8.3 magrittr_2.0.3 BiocGenerics_0.42.0
## [4] BiocParallel_1.30.0 lattice_0.20-45 R6_2.5.1
## [7] rlang_1.0.2 fastmap_1.1.0 stringr_1.4.0
## [10] tools_4.2.0 parallel_4.2.0 grid_4.2.0
## [13] xfun_0.30 cli_3.3.0 jquerylib_0.1.4
## [16] htmltools_0.5.2 yaml_2.3.5 digest_0.6.29
## [19] bookdown_0.26 Matrix_1.4-1 BiocManager_1.30.17
## [22] S4Vectors_0.34.0 sass_0.4.1 evaluate_0.15
## [25] rmarkdown_2.14 stringi_1.7.6 compiler_4.2.0
## [28] bslib_0.3.1 stats4_4.2.0 jsonlite_1.8.0