--- title: "hQTL analysis with IHW-Benjamini-Yekutieli" author: "Nikos Ignatiadis" date: "`r doc_date()`" package: "`r pkg_ver('IHWpaper')`" output: BiocStyle::html_document bibliography: bibliography.bib vignette: > %\VignetteIndexEntry{"Stats paper: hQTL analysis with IHW-Benjamini-Yekutieli"} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r warning=FALSE, message=FALSE} library(ggbio) library(dplyr) library(IHW) library(fdrtool) library(cowplot) theme_set(theme_cowplot()) library(tidyr) library(scales) library(latex2exp) ``` Let us start by loading in the data: ```{r} file_loc <- system.file("extdata","real_data", "hqtl_chrom1_chrom2", package = "IHWpaper") ``` First the two tables with the p-values corresponding to the two chromosomes. Note that only p-values <= 1e-4 are stored in these. ```{r} chr1_df <- readRDS(file.path(file_loc, "chr1_subset.Rds")) chr2_df <- readRDS(file.path(file_loc, "chr2_subset.Rds")) ``` ```{r} pval_threshold <- 10^(-4) ``` Also recall each hypothesis corresponds to a peak (which we call gene below) and a SNP. Hence let us load files about each of the SNPs and peaks: ```{r} snp_chr1 <- readRDS(file.path(file_loc, "snppos_chr1.Rds")) snp_chr2 <- readRDS(file.path(file_loc, "snppos_chr2.Rds")) all_peaks <- readRDS(file.path(file_loc, "peak_locations.Rds")) peaks_chr1 <- dplyr::filter(all_peaks, chr=="chr1") peaks_chr2 <- dplyr::filter(all_peaks, chr=="chr2") ``` We can use these both to infer how many hypotheses were conducted in total (or at a given distance), but also to calculate our covariates which are a function of SNP and peak (their distance). Now let us attach the new column with the covariate (distance) to the data frames. ```{r} chr1_df <- left_join(chr1_df, select(snp_chr1, snp, pos), by=(c("SNP"="snp"))) %>% left_join(peaks_chr1, by=(c("gene"="id"))) %>% mutate( dist = pmin( abs(pos-start), abs(pos-end))) chr2_df <- left_join(chr2_df, select(snp_chr2, snp, pos), by=(c("SNP"="snp"))) %>% left_join(peaks_chr2, by=(c("gene"="id"))) %>% mutate( dist = pmin( abs(pos-start), abs(pos-end))) ``` Now let us convert the distance to a categorical covariate by binning: ```{r} my_breaks <- c(-1, seq(from=10000,to=290000, by=10000) , seq(from=300000, to=0.9*10^6, by=100000), seq(from=10^6, to=25.1*10^7, by=10^7)) myf1 <- cut(chr1_df$dist, my_breaks) myf2 <- cut(chr2_df$dist, my_breaks) ``` To apply our method despite the fact that only small p-values are available, we will count how many hypotheses there are in each of the bins. The above code is not very efficient, so we have precomputed these and do not run the below chunk. ```{r eval=FALSE} cnt = 0 ms <- rep(0, length(levels(myf1))) pb = txtProgressBar(min = 0, max = nrow(peaks_chr1), initial = 0) for (i in 1:nrow(peaks_chr1)){ setTxtProgressBar(pb,i) start_pos <- peaks_chr1$start[i] end_pos <- peaks_chr1$end[i] dist_vec <- pmin( abs(snp_chr1$pos - start_pos), abs(snp_chr1$pos - end_pos) ) ms <- ms + table(cut(dist_vec, my_breaks)) } saveRDS( ms, file = "m_groups_chr1.Rds" ) cnt = 0 ms_chr2 <- table(myf2)*0 pb = txtProgressBar(min = 0, max = nrow(peaks_chr2), initial = 0) for (i in 1:nrow(peaks_chr2)){ setTxtProgressBar(pb,i) start_pos <- peaks_chr1$start[i] end_pos <- peaks_chr1$end[i] dist_vec <- pmin( abs(snp_chr2$pos - start_pos), abs(snp_chr2$pos - end_pos) ) ms_chr2 <- ms_chr2 + table(cut(dist_vec, my_breaks)) } saveRDS( ms_chr2, file = "m_groups_chr2.Rds" ) ``` Let us load the result from the above execution: ```{r} ms_chr1 <- readRDS(file.path(file_loc, "m_groups_chr1.Rds")) ms_chr2 <- readRDS(file.path(file_loc, "m_groups_chr2.Rds")) ``` Let us put the data for the two chromosomes together: ```{r} chr1_chr2_df <- rbind(chr1_df, chr2_df) chr1_chr2_groups <- as.factor(c(myf1,myf2)) folds_vec <- as.factor(c(rep(1, nrow(chr1_df)), rep(2, nrow(chr2_df)))) m_groups <- cbind(ms_chr1, ms_chr2) ``` ```{r} m <- sum(m_groups) #total number of hypotheses m ``` # Histogram plots Get our colors: ```{r} beyonce_colors <- c("#b72da0", "#7c5bd2", "#0097ed","#00c6c3", "#9cd78a", "#f7f7a7", "#ebab5f", "#e24344", "#04738d")#,"#d8cdc9") beyonce_colors[6] <- c("#dbcb09") # thicker yellow pretty_colors <- beyonce_colors[c(2,1,3:5)] ``` ```{r} qs <- c(0.025, 0.05) cutoffs <- c(0, quantile(chr1_chr2_df$dist,qs), Inf) cov_scatter_gg <- ggplot(chr1_chr2_df, aes(x=rank(dist)/nrow(chr1_chr2_df), y=-log10(pvalue))) + geom_bin2d(bins=150, drop=TRUE) + # geom_point(alpha=0.2, col=pretty_colors[1]) + geom_vline(xintercept=qs, linetype="dashed") + ylab(expression(paste(-log[10],"(p-value)"))) + xlab(expression(paste("Quantile of distance"))) + scale_fill_gradientn(trans="log10", colors=alpha(pretty_colors[1], c(0.2,1))) cov_scatter_gg ``` ```{r eval=FALSE} ggsave(cov_scatter_gg, filename="cov_scatter_gg.pdf", width=4,height=3) ``` ```{r} chr1_chr2_df$cutoff_groups <- cut(chr1_chr2_df$dist, cutoffs) table(chr1_chr2_df$cutoff_groups) ``` First let us plot the marginal histogram: ```{r} gg_marginal_hist <- ggplot(chr1_chr2_df, aes(x=pvalue*10^4)) + geom_histogram(aes(y=..density..), alpha=0.5, binwidth=0.05, boundary = 0, colour="black",fill=pretty_colors[1]) + scale_x_continuous(expand = c(0.02, 0), breaks=c(0,0.5,1)) + scale_y_continuous(expand = c(0.02, 0), limits=c(0,2.5)) + ylab(expression(paste("Density")))+ xlab(TeX("p-value ($\\times 10^{-4}$)")) gg_marginal_hist ``` ```{r eval=FALSE} ggsave(gg_marginal_hist, filename="gg_marginal_hist.pdf", width=4,height=3) ``` ```{r} gg_stratified_hist <- ggplot(chr1_chr2_df, aes(x=pvalue*10^4)) + geom_histogram(aes(y=..density..), alpha=0.5, binwidth=0.05, boundary = 0, colour="black",fill=pretty_colors[1]) + scale_x_continuous(expand = c(0.02, 0), breaks=c(0,0.5,1)) + scale_y_continuous(expand = c(0.02, 0), limits=c(0,11)) + ylab("Density")+ xlab(TeX("p-value ($\\times 10^{-4}$)")) + facet_grid(~cutoff_groups) + theme(strip.background = element_blank(), strip.text.y = element_blank()) + theme(panel.spacing = unit(2, "lines")) gg_stratified_hist ``` ```{r eval=FALSE} ggsave(gg_stratified_hist, filename="gg_stratified_hist.pdf", width=7,height=3) ``` # Apply IHW-BY and BY We want to apply the Benjamini-Yekutieli at alpha=0.1, thus we will apply Benjamini-Hochberg at the corrected level: ```{r} alpha <- .01/(log(m)+1) ``` Now let us run the IHW procedure: ```{r} ihw_chr1_chr2 <- ihw(chr1_chr2_df$pvalue, chr1_chr2_groups, alpha, folds=folds_vec, m_groups=m_groups, lambdas=2000) ``` Rejections of BH: ```{r} sum(p.adjust(chr1_chr2_df$pvalue, n = m, method="BH") <= alpha) ``` Rejections of IHW-BY: ```{r} rejections(ihw_chr1_chr2) ``` So we see that we more than doubled discoveries! # Hypotheses shown in table For our table we need one hypothesis in Chr1 that gets rejected both times (by BH and IHW): ```{r} idx <- which(rejected_hypotheses(ihw_chr1_chr2) & (p.adjust(chr1_chr2_df$pvalue, n = m, method="BH") > alpha) & (covariates(ihw_chr1_chr2)==3) & (ihw_chr1_chr2@df$fold == 1)) idx_max <- which.max(pvalues(ihw_chr1_chr2)[idx]) ihw_chr1_chr2@df[idx[idx_max],] ``` ```{r} chr1_df[idx[idx_max],] ``` We need one in Chr1 that gets weight 0: ```{r} idx <- which( !rejected_hypotheses(ihw_chr1_chr2) & (p.adjust(chr1_chr2_df$pvalue, n = m, method="BH") > alpha) & (covariates(ihw_chr1_chr2)==15) & (ihw_chr1_chr2@df$fold == 1)) idx_max <- which.max(pvalues(ihw_chr1_chr2)[idx]) ihw_chr1_chr2@df[idx[idx_max],] ihw_chr1_chr2@df[idx[idx_max],] ``` ```{r} chr1_df[idx[idx_max],] ``` One which get rejected in both cases from Chr2 : ```{r} idx <- which( rejected_hypotheses(ihw_chr1_chr2) & (p.adjust(chr1_chr2_df$pvalue, n = m, method="BH") <= alpha) & (covariates(ihw_chr1_chr2)==3) & (ihw_chr1_chr2@df$fold == 2)) ``` ```{r} ihw_chr1_chr2@df[idx[9],] ``` ```{r} chr2_df[idx[9]-nrow(chr1_df),] ``` And another one that only gets rejected in one case ```{r} idx <- which( rejected_hypotheses(ihw_chr1_chr2) & (p.adjust(chr1_chr2_df$pvalue, n = m, method="BH") > alpha) & (covariates(ihw_chr1_chr2)==1) & (ihw_chr1_chr2@df$fold == 2)) idx_max <- which.max(pvalues(ihw_chr1_chr2)[idx]) ihw_chr1_chr2@df[idx[idx_max],] ``` ```{r} chr2_df[idx[idx_max]-nrow(chr1_df),] ``` # Set out to do the weight/threshold/lfdr plots First get the threshold below which BY rejects: ```{r} t_bh <- get_bh_threshold(chr1_chr2_df$pvalue, alpha, mtests = m) t_bh ``` Next write a function to estimate the local fdr at a given threshold: ```{r} get_local_fdr <- function(fold, group){ idx <- (chr1_chr2_groups == group) & (folds_vec == fold) pvals <- sort(chr1_chr2_df$pvalue[idx]) m_true <- m_groups[group,fold] gren <- IHW:::presorted_grenander(pvals, m_true) myt <- thresholds(ihw_chr1_chr2, levels_only=TRUE)[group,fold] id_ihw_myt <- which(myt < gren$x.knots)[1] local_fdr_ihw <- ifelse(myt == 0, 0, 1/gren$slope.knots[id_ihw_myt-1]) id_bh_thresh <- which(t_bh < gren$x.knots)[1] local_fdr_bh <- 1/gren$slope.knots[id_bh_thresh-1] pi0 <- (m_true - length(pvals))/(1-10^(-4))/m_true data.frame(fold=fold, group=group, pi0=pi0, t_ihw=myt, local_fdr_ihw = local_fdr_ihw, local_fdr_bh = local_fdr_bh) } ``` ```{r} fold_groups <- expand.grid(1:62, 1:2) ``` Precompute the below too because it takes a while: ```{r eval=FALSE} lfdrs <- bind_rows(mapply(get_local_fdr, fold_groups[[2]], fold_groups[[1]], SIMPLIFY = FALSE)) saveRDS(lfdrs,file="hqtl_estimated_lfdrs.Rds") ``` ```{r} lfdrs <- readRDS(file.path(file_loc, "hqtl_estimated_lfdrs.Rds")) ``` ```{r} lfdrs <- mutate(lfdrs, Chromosome=paste0("chr", fold), stratum=group, t_bh=t_bh) ``` # Start the plotting ```{r} breaks <- my_breaks/10^3 breaks <- breaks[-1] break_min <- 3000/10^3 breaks_left <- c(break_min,breaks[-length(breaks)]) stratum <- 1:62 step_df_weight <- data.frame(stratum=stratum, chr2=weights(ihw_chr1_chr2,levels_only=TRUE)[,1], chr1=weights(ihw_chr1_chr2, levels_only=TRUE)[,2] ) %>% gather(Chromosome, weight , -stratum) step_df_threshold <- data.frame(stratum=stratum, chr2=thresholds(ihw_chr1_chr2,levels_only=TRUE)[,2], chr1=thresholds(ihw_chr1_chr2, levels_only=TRUE)[,1] ) %>% gather(Chromosome, threshold , -stratum) step_df <- left_join(step_df_weight, step_df_threshold) %>% left_join(lfdrs) step_df <- step_df %>% mutate(break_left = breaks_left[stratum], break_right = breaks[stratum], break_ratio = break_right/break_left , break_left =break_left * break_ratio^.2, break_right = break_right *break_ratio^(-.2)) stratum_fun <- function(df, colname="weight"){ stratum <- df$stratum weight <- df[[colname]] stratum_left <- stratum[stratum != length(stratum)] weight_left <- weight[stratum_left] break_left <- df$break_right[stratum_left] stratum_right <- stratum[stratum != 1] weight_right <- weight[stratum_right] break_right <- df$break_left[stratum_right] data.frame(stratum_left= stratum_left, weight_left= weight_left, stratum_right = stratum_right, weight_right = weight_right, break_left = break_left, break_right = break_right) } connecting_df_weights <- step_df %>% group_by(Chromosome) %>% do(stratum_fun(.)) %>% mutate(dashed = factor(ifelse(abs(weight_left - weight_right) > 0.5 , TRUE, FALSE), levels=c(FALSE,TRUE))) weights_panel <- ggplot(step_df, aes(x=break_left, xend=break_right,y=weight, yend=weight, col=Chromosome)) + geom_segment(size=0.8)+ geom_segment(data= connecting_df_weights, aes(x=break_left, xend=break_right, y=weight_left, yend=weight_right, linetype=dashed), size=0.8)+ scale_x_log10(breaks=c(10^4, 10^5,10^6,10^7,10^8), labels = trans_format("log10", math_format(10^.x))) + xlab("Genomic distance (bp)")+ ylab("Weight")+ theme(legend.position=c(0.8,0.6)) + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) weights_panel ``` # Weights chromosome 1 ```{r} weights_panel_1 <- ggplot(filter(step_df, Chromosome == "chr1"), aes(x=break_left, xend=break_right,y=weight, yend=weight, col=Chromosome)) + geom_segment(size=0.8,lineend="round")+ geom_segment(data= filter(connecting_df_weights, Chromosome=="chr1"), aes(x=break_left, xend=break_right, y=weight_left, yend=weight_right, linetype=dashed), size=0.8,lineend="round")+ scale_x_log10(breaks=c(10, 10^2,10^3,10^4), labels = trans_format("log10", math_format(10^.x))) + scale_y_continuous(breaks=c(0,1000,2000))+ xlab(expression(paste("Distance (kbp)")))+ ylab(expression(paste("Weight")))+ theme(legend.position="none") + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) weights_panel_1 ``` ```{r eval=FALSE} ggsave(weights_panel_1, filename="chr1_weights.pdf", width=3.5,height=2.5) ``` ```{r} weights_panel_2 <- ggplot(filter(step_df, Chromosome == "chr2"), aes(x=break_left, xend=break_right,y=weight, yend=weight, col=Chromosome)) + geom_segment(size=0.8, lineend="round")+ geom_segment(data= filter(connecting_df_weights, Chromosome=="chr2"), aes(x=break_left, xend=break_right, y=weight_left, yend=weight_right, linetype=dashed), size=0.8, lineend="round")+ scale_x_log10(breaks=c(10, 10^2,10^3,10^4), labels = trans_format("log10", math_format(10^.x))) + scale_y_continuous(breaks=c(0,1000,2000))+ xlab(expression(paste("Distance (kbp)")))+ ylab(expression(paste("Weight")))+ theme(legend.position="none") + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) weights_panel_2 ``` ```{r eval=FALSE} ggsave(weights_panel_2, filename="chr2_weights.pdf", width=3.5,height=2.5) ``` ```{r} connecting_df_thresholds_ihw <- step_df %>% group_by(Chromosome) %>% do(stratum_fun(., colname="t_ihw")) %>% mutate(dashed = FALSE)#factor(ifelse(abs(weight_left - weight_right) > 10^{-7} , TRUE, FALSE), # levels=c(FALSE,TRUE))) thresholds_ihw_panel <- ggplot(step_df, aes(x=break_left, xend=break_right,y=t_ihw*10^6, yend=t_ihw*10^6, col=Chromosome)) + geom_segment(size=0.8, lineend="round")+ geom_segment(data= connecting_df_thresholds_ihw, aes(x=break_left, xend=break_right, y=weight_left*10^6, yend=weight_right*10^6, linetype=dashed), size=0.8, lineend="round")+ scale_x_log10(breaks=c(10, 10^2,10^3,10^4), labels = trans_format("log10", math_format(10^.x))) + scale_y_continuous(limits=c(0,1.8), breaks=c(0,1))+ xlab(expression(paste("Distance (kbp)")))+ ylab(expression(paste("IHW t(x) (",10^-6,")")))+ theme(legend.position=c(0.6,0.7), legend.title = element_blank()) + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) thresholds_ihw_panel ``` ```{r eval=FALSE} ggsave(thresholds_ihw_panel, filename="ihw_by_threshold.pdf", width=3.5,height=2.5) ``` ```{r} connecting_df_thresholds_bh <- step_df %>% group_by(Chromosome) %>% do(stratum_fun(., colname="t_bh")) %>% mutate(dashed = FALSE)#factor(ifelse(abs(weight_left - weight_right) > 10^{-11} , TRUE, TRUE), #levels=c(FALSE,TRUE))) scientific_10 = function(x) {ifelse(x==0, "0", parse(text=gsub("[+]", "", gsub("e", " %*% 10^", scientific_format()(x)))))} thresholds_bh_panel <- ggplot(step_df, aes(x=break_left, xend=break_right,y=10^10*t_bh, yend=10^10*t_bh, col=Chromosome)) + geom_segment(size=0.8)+ geom_segment(data= connecting_df_thresholds_bh, aes(x=break_left, xend=break_right, y=weight_left*10^10, yend=weight_right*10^10, linetype=dashed), size=0.8)+ scale_x_log10(breaks=c(10, 10^2,10^3,10^4), labels = trans_format("log10", math_format(10^.x))) + scale_y_continuous(limits=c(0,5), breaks=c(0,2,4))+ xlab(expression(paste("Distance (kbp)")))+ ylab(expression(paste("BY t(x) (",10^-10,")")))+ theme(legend.position=c(0.6,0.7), legend.title = element_blank()) + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) thresholds_bh_panel ``` ```{r} ggsave(thresholds_bh_panel, filename="by_threshold.pdf", width=3.5,height=2.5) ``` ```{r} connecting_df_lfdr_ihw <- step_df %>% group_by(Chromosome) %>% do(stratum_fun(., colname="local_fdr_ihw")) %>% mutate(dashed = FALSE) lfdr_ihw_panel <- ggplot(step_df, aes(x=break_left, xend=break_right,y=10^1*local_fdr_ihw, yend=10^1*local_fdr_ihw, col=Chromosome)) + geom_segment(size=0.8, lineend="round")+ geom_segment(data= connecting_df_lfdr_ihw, aes(x=break_left, xend=break_right, y=10^1*weight_left, yend=10^1*weight_right, linetype=dashed), size=0.8,lineend="round")+ scale_x_log10(breaks=c(10, 10^2,10^3,10^4), labels = trans_format("log10", math_format(10^.x))) + xlab(expression(paste("Distance (kbp)")))+ ylab(expression(paste("IHW fdr(t(x) | x)")))+ theme(legend.position=c(0.6,0.7), legend.title = element_blank()) + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) lfdr_ihw_panel ``` ```{r eval=FALSE} ggsave(lfdr_ihw_panel, filename="ihw_by_fdr.pdf", width=3.5,height=2.5) ``` ```{r} connecting_df_lfdr_bh <- step_df %>% group_by(Chromosome) %>% do(stratum_fun(., colname="local_fdr_bh")) %>% mutate(dashed = FALSE)#factor(ifelse(abs(weight_left - weight_right) > 0.5*10^(-6) , TRUE, FALSE), # levels=c(FALSE,TRUE))) lfdr_bh_panel <- ggplot(step_df, aes(x=break_left, xend=break_right,y=local_fdr_bh, yend=local_fdr_bh, col=Chromosome)) + geom_segment(size=0.8, lineend="round")+ geom_segment(data= connecting_df_lfdr_bh, aes(x=break_left, xend=break_right, y=weight_left, yend=weight_right, linetype=dashed), size=0.8, lineend="round")+ scale_x_log10(breaks=c(10, 10^2,10^3,10^4), labels = trans_format("log10", math_format(10^.x))) + scale_y_log10( labels = trans_format("log10", math_format(10^.x)))+ xlab(expression(paste("Distance (kbp)")))+ ylab(expression(paste("BY fdr(t(x) | x)")))+ theme(legend.position=c(0.6,0.4), legend.title = element_blank()) + theme(plot.margin = unit(c(2, 1.5, 1, 2.5), "lines"))+ theme(axis.title = element_text(face="bold" ))+ scale_color_manual(values=pretty_colors)+ guides(linetype=FALSE) lfdr_bh_panel ``` ```{r eval=FALSE} ggsave(lfdr_bh_panel, filename="by_fdr.pdf", width=3.5,height=2.5) ``` # Figure of chromosomes 1 and 2 Below we use ggbio to create the ideograms of Human chromosomes 1 and 2. ```{r eval = FALSE} #ggbio seems to be broken right now, fix later. chr1_ideo <- Ideogram(genome = "hg19", subchr="chr1")@ggplot + xlab(paste0("SNPs: ", nrow(snp_chr1), "\n", "Peaks: ", nrow(peaks_chr1))) chr2_ideo <- Ideogram(genome = "hg19", subchr="chr2")@ggplot + xlab("bla") + xlab(paste0("SNPs: ", nrow(snp_chr2), "\n", "Peaks: ", nrow(peaks_chr2))) chrs_ideo <- plot_grid(chr1_ideo, chr2_ideo, nrow=2) chrs_ideo ```