## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) set.seed(2) ## ----------------------------------------------------------------------------- # overdispersion = 1/size counts <- rnbinom(n = 10, mu = 5, size = 1/0.7) # size_factors = FALSE, because only a single GLM is fitted fit <- glmGamPoi::glm_gp(counts, design = ~ 1, size_factors = FALSE) fit # Internally fit is just a list: as.list(fit) ## ---- warning=FALSE, message = FALSE------------------------------------------ library(SummarizedExperiment) library(DelayedMatrixStats) ## ----------------------------------------------------------------------------- # The full dataset with 33,000 genes and 4340 cells # The first time this is run, it will download the data pbmcs <- TENxPBMCData::TENxPBMCData("pbmc4k") # I want genes where at least some counts are non-zero non_empty_rows <- which(rowSums2(assay(pbmcs)) > 0) pbmcs_subset <- pbmcs[sample(non_empty_rows, 300), ] pbmcs_subset ## ----------------------------------------------------------------------------- fit <- glmGamPoi::glm_gp(pbmcs_subset, on_disk = FALSE) summary(fit) ## ---- warning=FALSE----------------------------------------------------------- # Explicitly realize count matrix in memory pbmcs_subset <- as.matrix(assay(pbmcs_subset)) model_matrix <- matrix(1, nrow = ncol(pbmcs_subset)) bench::mark( glmGamPoi_in_memory = { glmGamPoi::glm_gp(pbmcs_subset, design = model_matrix, on_disk = FALSE) }, glmGamPoi_on_disk = { glmGamPoi::glm_gp(pbmcs_subset, design = model_matrix, on_disk = TRUE) }, DESeq2 = suppressMessages({ dds <- DESeq2::DESeqDataSetFromMatrix(pbmcs_subset, colData = data.frame(name = seq_len(4340)), design = ~ 1) dds <- DESeq2::estimateSizeFactors(dds, "poscounts") dds <- DESeq2::estimateDispersions(dds, quiet = TRUE) dds <- DESeq2::nbinomWaldTest(dds, minmu = 1e-6) }), edgeR = { edgeR_data <- edgeR::DGEList(pbmcs_subset) edgeR_data <- edgeR::calcNormFactors(edgeR_data) edgeR_data <- edgeR::estimateDisp(edgeR_data, model_matrix) edgeR_fit <- edgeR::glmFit(edgeR_data, design = model_matrix) }, check = FALSE ) ## ----message=FALSE, warning=FALSE--------------------------------------------- # Results with my method fit <- glmGamPoi::glm_gp(pbmcs_subset, design = model_matrix, on_disk = FALSE) # DESeq2 dds <- DESeq2::DESeqDataSetFromMatrix(pbmcs_subset, colData = data.frame(name = seq_len(4340)), design = ~ 1) dds <- DESeq2::estimateSizeFactors(dds, "poscounts") dds <- DESeq2::estimateDispersions(dds, quiet = TRUE) dds <- DESeq2::nbinomWaldTest(dds, minmu = 1e-6) #edgeR edgeR_data <- edgeR::DGEList(pbmcs_subset) edgeR_data <- edgeR::calcNormFactors(edgeR_data) edgeR_data <- edgeR::estimateDisp(edgeR_data, model_matrix) edgeR_fit <- edgeR::glmFit(edgeR_data, design = model_matrix) ## ----coefficientComparison, fig.height=5, fig.width=10, warning=FALSE, echo = FALSE---- par(mfrow = c(2, 4), cex.main = 2, cex.lab = 1.5) plot(fit$Beta[,1], coef(dds)[,1] / log2(exp(1)), pch = 16, main = "Beta Coefficients", xlab = "glmGamPoi", ylab = "DESeq2") abline(0,1) plot(fit$Beta[,1], edgeR_fit$unshrunk.coefficients[,1], pch = 16, main = "Beta Coefficients", xlab = "glmGamPoi", ylab = "edgeR") abline(0,1) plot(fit$Mu[,1], rowData(dds)$baseMean, pch = 16, log="xy", main = "Gene Mean", xlab = "glmGamPoi", ylab = "DESeq2") abline(0,1) plot(fit$Mu[,1], edgeR_fit$fitted.values[,1], pch = 16, log="xy", main = "Gene Mean", xlab = "glmGamPoi", ylab = "edgeR") abline(0,1) plot(fit$overdispersions, rowData(dds)$dispGeneEst, pch = 16, log="xy", main = "Overdispersion", xlab = "glmGamPoi", ylab = "DESeq2") abline(0,1) plot(fit$overdispersions, edgeR_fit$dispersion, pch = 16, log="xy", main = "Overdispersion", xlab = "glmGamPoi", ylab = "edgeR") abline(0,1) ## ----------------------------------------------------------------------------- sessionInfo()