---
title: "ROSeq"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{ROSeq}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
# ROSeq - A rank based approach to modeling gene expression
Author: Krishan Gupta
## Introduction
ROSeq - A rank based approach to modeling gene expression with filtered and
normalized read count matrix. Takes in the complete filtered and normalized
read count matrix, the location of the two sub-populations and
the number of cores to be used.
## Installation
The developer version of the R package can be installed with
the following R commands:
```r
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install('ROSeq')
```
or can be installed with the following R commands:
```r
library(devtools)
install_github('krishan57gupta/ROSeq')
```
## Vignette tutorial
This vignette uses a tung dataset already inbuilt in same package,
to demonstrate a standard pipeline. This vignette can be used
as a tutorial as well.
Ref: Tung, P.-Y.et al.Batch effects and the effective design of
single-cell geneexpression studies.Scientific reports7, 39921 (2017).
## Example
Libraries need to be loaded before running.
```{r setup}
library(ROSeq)
library(edgeR)
library(limma)
```
## Loading tung dataset
```{r data, message=FALSE,warning = FALSE,include=TRUE, cache=FALSE}
samples<-list()
samples$count<-ROSeq::L_Tung_single$NA19098_NA19101_count
samples$group<-ROSeq::L_Tung_single$NA19098_NA19101_group
samples$count[1:5,1:5]
```
## Data Preprocessing: cells and genes filtering then voom transformation
## after TMM normalization
```{r preprocesing, message=FALSE,warning = FALSE,include=TRUE, cache=FALSE}
samples$count=apply(samples$count,2,function(x) as.numeric(x))
gkeep <- apply(samples$count,1,function(x) sum(x>0)>5)
samples$count<-samples$count[gkeep,]
samples$count<-limma::voom(ROSeq::TMMnormalization(samples$count))
```
## ROSeq calling
```{r main, message=FALSE,warning = FALSE, include=TRUE, cache=FALSE}
output<-ROSeq(countData=samples$count, condition = samples$group, numCores=1)
```
## Showing results are in the form of pval, padj and log2FC
```{r output, message=FALSE,warning = FALSE,include=TRUE, cache=FALSE}
output[1:5,]
```