## ---- warning=FALSE, message=FALSE-------------------------------------------- library(MultiAssayExperiment) library(MOFA) library(MOFAdata) ## ----------------------------------------------------------------------------- data("CLL_data") MOFAobject <- createMOFAobject(CLL_data) MOFAobject ## ---- warning=FALSE, message=FALSE-------------------------------------------- # Load data # import list with mRNA, Methylation, Drug Response and Mutation data. data("CLL_data") # check dimensionalities, samples are columns, features are rows lapply(CLL_data, dim) # Load sample metadata: Sex and Diagnosis data("CLL_covariates") head(CLL_covariates) # Create MultiAssayExperiment object mae_CLL <- MultiAssayExperiment( experiments = CLL_data, colData = CLL_covariates ) # Build the MOFA object MOFAobject <- createMOFAobject(mae_CLL) MOFAobject ## ----------------------------------------------------------------------------- plotDataOverview(MOFAobject) ## ----------------------------------------------------------------------------- DataOptions <- getDefaultDataOptions() DataOptions ## ----------------------------------------------------------------------------- ModelOptions <- getDefaultModelOptions(MOFAobject) ModelOptions$numFactors <- 25 ModelOptions ## ----------------------------------------------------------------------------- TrainOptions <- getDefaultTrainOptions() # Automatically drop factors that explain less than 2% of variance in all omics TrainOptions$DropFactorThreshold <- 0.02 TrainOptions$seed <- 2017 TrainOptions ## ----------------------------------------------------------------------------- MOFAobject <- prepareMOFA( MOFAobject, DataOptions = DataOptions, ModelOptions = ModelOptions, TrainOptions = TrainOptions ) ## ----------------------------------------------------------------------------- # MOFAobject <- regressCovariates( # object = MOFAobject, # views = c("Drugs","Methylation","mRNA"), # covariates = MOFAobject@InputData$Gender # ) ## ---- eval=FALSE-------------------------------------------------------------- # MOFAobject <- runMOFA(MOFAobject) ## ----------------------------------------------------------------------------- # Loading an existing trained model filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata") MOFAobject <- loadModel(filepath, MOFAobject) MOFAobject ## ----------------------------------------------------------------------------- # Calculate the variance explained (R2) per factor in each view r2 <- calculateVarianceExplained(MOFAobject) r2$R2Total # Variance explained by each factor in each view head(r2$R2PerFactor) # Plot it plotVarianceExplained(MOFAobject) ## ----------------------------------------------------------------------------- plotWeightsHeatmap( MOFAobject, view = "Mutations", factors = 1:5, show_colnames = FALSE ) ## ----------------------------------------------------------------------------- plotWeights( MOFAobject, view = "Mutations", factor = 1, nfeatures = 5 ) plotWeights( MOFAobject, view = "Mutations", factor = 1, nfeatures = 5, manual = list(c("BRAF"),c("MED12")), color_manual = c("red","blue") ) ## ----------------------------------------------------------------------------- plotTopWeights( MOFAobject, view="Mutations", factor=1 ) ## ----------------------------------------------------------------------------- plotTopWeights( MOFAobject, view = "mRNA", factor = 1 ) ## ----------------------------------------------------------------------------- plotDataHeatmap( MOFAobject, view = "mRNA", factor = 1, features = 20, show_rownames = FALSE ) ## ----------------------------------------------------------------------------- # Load reactome annotations data("reactomeGS") # binary matrix with feature sets in rows and features in columns # perform enrichment analysis gsea <- runEnrichmentAnalysis( MOFAobject, view = "mRNA", feature.sets = reactomeGS, alpha = 0.01 ) ## ----------------------------------------------------------------------------- plotEnrichmentBars(gsea, alpha=0.01) ## ----------------------------------------------------------------------------- interestingFactors <- 4:5 fseaplots <- lapply(interestingFactors, function(factor) { plotEnrichment( MOFAobject, gsea, factor = factor, alpha = 0.01, max.pathways = 10 # The top number of pathways to display ) }) cowplot::plot_grid(fseaplots[[1]], fseaplots[[2]], ncol = 1, labels = paste("Factor", interestingFactors)) ## ----------------------------------------------------------------------------- plotFactorScatter( MOFAobject, factors = 1:2, color_by = "IGHV", # color by the IGHV values that are part of the training data shape_by = "trisomy12" # shape by the trisomy12 values that are part of the training data ) ## ----------------------------------------------------------------------------- plotFactorScatters( MOFAobject, factors = 1:3, color_by = "IGHV" ) ## ----------------------------------------------------------------------------- plotFactorBeeswarm( MOFAobject, factors = 1, color_by = "IGHV" ) ## ----------------------------------------------------------------------------- MOFAweights <- getWeights( MOFAobject, views = "all", factors = "all", as.data.frame = TRUE # if TRUE, it outputs a long dataframe format. If FALSE, it outputs a wide matrix format ) head(MOFAweights) ## ----------------------------------------------------------------------------- MOFAfactors <- getFactors( MOFAobject, factors = c(1,2), as.data.frame = FALSE # if TRUE, it outputs a long dataframe format. If FALSE, it outputs a wide matrix format ) head(MOFAfactors) ## ----------------------------------------------------------------------------- MOFAtrainData <- getTrainData( MOFAobject, as.data.frame = TRUE, views = "Mutations" ) head(MOFAtrainData) ## ----------------------------------------------------------------------------- predictedDrugs <- predict( MOFAobject, view = "Drugs", factors = "all" )[[1]] # training data (incl. missing values) drugData4Training <- getTrainData(MOFAobject, view="Drugs")[[1]] pheatmap::pheatmap(drugData4Training[1:40,1:20], cluster_rows = FALSE, cluster_cols = FALSE, show_rownames = FALSE, show_colnames = FALSE) # predicted data pheatmap::pheatmap(predictedDrugs[1:40,1:20], cluster_rows = FALSE, cluster_cols = FALSE, show_rownames = FALSE, show_colnames = FALSE) ## ----------------------------------------------------------------------------- MOFAobject <- impute(MOFAobject) imputedDrugs <- getImputedData(MOFAobject, view="Drugs")[[1]] # training data (incl. missing values) pheatmap::pheatmap(drugData4Training[1:40,1:20], cluster_rows = FALSE, cluster_cols = FALSE, show_rownames = FALSE, show_colnames = FALSE) # imputed data pheatmap::pheatmap(imputedDrugs[1:40,1:20], cluster_rows = FALSE, cluster_cols = FALSE, show_rownames = FALSE, show_colnames = FALSE) ## ----------------------------------------------------------------------------- set.seed(1234) clusters <- clusterSamples( MOFAobject, k = 2, # Number of clusters for the k-means function factors = 1 # factors to use for the clustering ) plotFactorScatter( MOFAobject, factors = 1:2, color_by = clusters ) ## ----------------------------------------------------------------------------- sessionInfo()