# To install scGPS from github (Depending on the configuration of the local
# computer or HPC, possible custom C++ compilation may be required - see
# installation trouble-shootings below)
devtools::install_github("IMB-Computational-Genomics-Lab/scGPS")
# for C++ compilation trouble-shooting, manual download and installation can be
# done from github
git clone https://github.com/IMB-Computational-Genomics-Lab/scGPS
# then check in scGPS/src if any of the precompiled (e.g.  those with *.so and
# *.o) files exist and delete them before recompiling
# then with the scGPS as the R working directory, manually install and load
# using devtools functionality
# Install the package
devtools::install()
#load the package to the workspace 
library(scGPS)The purpose of this workflow is to solve the following task:
# load mixed population 1 (loaded from day_2_cardio_cell_sample dataset, named it as day2)
library(scGPS)
day2 <- day_2_cardio_cell_sample
mixedpop1 <- new_scGPS_object(ExpressionMatrix = day2$dat2_counts,
    GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters)
# load mixed population 2 (loaded from day_5_cardio_cell_sample dataset, named it as day5)
day5 <- day_5_cardio_cell_sample
mixedpop2 <- new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
    GeneMetadata = day5$dat5geneInfo, CellMetadata = day5$dat5_clusters)
# select a subpopulation
c_selectID <- 1
# load gene list (this can be any lists of user selected genes)
genes <- training_gene_sample
genes <- genes$Merged_unique
# load cluster information 
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
#run training (running nboots = 3 here, but recommend to use nboots = 50-100)
LSOLDA_dat <- bootstrap_prediction(nboots = 3, mixedpop1 = mixedpop1, 
    mixedpop2 = mixedpop2, genes = genes, c_selectID  = c_selectID,
    listData = list(), cluster_mixedpop1 = cluster_mixedpop1, 
    cluster_mixedpop2 = cluster_mixedpop2, trainset_ratio = 0.7)
names(LSOLDA_dat)
#> [1] "Accuracy"          "ElasticNetGenes"   "Deviance"         
#> [4] "ElasticNetFit"     "LDAFit"            "predictor_S1"     
#> [7] "ElasticNetPredict" "LDAPredict"# summary results LDA
sum_pred_lda <- summary_prediction_lda(LSOLDA_dat = LSOLDA_dat, nPredSubpop = 4)
# summary results Lasso to show the percent of cells
# classified as cells belonging 
sum_pred_lasso <- summary_prediction_lasso(LSOLDA_dat = LSOLDA_dat,
    nPredSubpop = 4)
# plot summary results 
plot_sum <-function(sum_dat){
    sum_dat_tf <- t(sum_dat)
    sum_dat_tf <- na.omit(sum_dat_tf)
    sum_dat_tf <- apply(sum_dat[, -ncol(sum_dat)],1,
        function(x){as.numeric(as.vector(x))})
    sum_dat$names <- gsub("ElasticNet for subpop","sp",  sum_dat$names )
    sum_dat$names <- gsub("in target mixedpop","in p",  sum_dat$names) 
    sum_dat$names <- gsub("LDA for subpop","sp",  sum_dat$names )
    sum_dat$names <- gsub("in target mixedpop","in p",  sum_dat$names)
    colnames(sum_dat_tf) <- sum_dat$names
    boxplot(sum_dat_tf, las=2)
}
plot_sum(sum_pred_lasso)# summary accuracy to check the model accuracy in the leave-out test set 
summary_accuracy(object = LSOLDA_dat)
#> [1] 64.18605 59.81308 62.32558
# summary maximum deviance explained by the model 
summary_deviance(object = LSOLDA_dat)
#> $allDeviance
#> [1] "0.07144" "0.1023"  "0.06345"
#> 
#> $DeviMax
#>          dat_DE$Dfd          Deviance           DEgenes
#> 1                 0            0.1023    genes_cluster1
#> 2                 1            0.1023    genes_cluster1
#> 3                 2            0.1023    genes_cluster1
#> 4                 3            0.1023    genes_cluster1
#> 5                 4            0.1023    genes_cluster1
#> 6 remaining DEgenes remaining DEgenes remaining DEgenes
#> 
#> $LassoGenesMax
#> NULLThe purpose of this workflow is to solve the following task:
(skip this step if clusters are known)
# find clustering information in an expresion data using CORE
day5 <- day_5_cardio_cell_sample
cellnames <- colnames(day5$dat5_counts)
cluster <-day5$dat5_clusters
cellnames <-data.frame("Cluster"=cluster, "cellBarcodes" = cellnames)
mixedpop2 <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
                    GeneMetadata = day5$dat5geneInfo, CellMetadata = cellnames)
CORE_cluster <- CORE_clustering(mixedpop2, remove_outlier = c(0), PCA=FALSE)
# to update the clustering information, users can ...
key_height <- CORE_cluster$optimalClust$KeyStats$Height
optimal_res <- CORE_cluster$optimalClust$OptimalRes
optimal_index = which(key_height == optimal_res)
clustering_after_outlier_removal <- unname(unlist(
 CORE_cluster$Cluster[[optimal_index]]))
corresponding_cells_after_outlier_removal <- CORE_cluster$cellsForClustering
original_cells_before_removal <- colData(mixedpop2)[,2]
corresponding_index <- match(corresponding_cells_after_outlier_removal,
                            original_cells_before_removal )
# check the matching
identical(as.character(original_cells_before_removal[corresponding_index]),
         corresponding_cells_after_outlier_removal)
#> [1] TRUE
# create new object with the new clustering after removing outliers
mixedpop2_post_clustering <- mixedpop2[,corresponding_index]
colData(mixedpop2_post_clustering)[,1] <- clustering_after_outlier_removal(skip this step if clusters are known)
(SCORE aims to get stable subpopulation results by introducing bagging aggregation and bootstrapping to the CORE algorithm)
# find clustering information in an expresion data using SCORE
day5 <- day_5_cardio_cell_sample
cellnames <- colnames(day5$dat5_counts)
cluster <-day5$dat5_clusters
cellnames <-data.frame("Cluster"=cluster, "cellBarcodes" = cellnames)
mixedpop2 <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
                    GeneMetadata = day5$dat5geneInfo, CellMetadata = cellnames )
SCORE_test <- CORE_bagging(mixedpop2, remove_outlier = c(0), PCA=FALSE,
                                bagging_run = 20, subsample_proportion = .8)dev.off()
#> null device 
#>           1
##3.2.1 plot CORE clustering
p1 <- plot_CORE(CORE_cluster$tree, CORE_cluster$Cluster,
               color_branch = c("#208eb7", "#6ce9d3", "#1c5e39", "#8fca40", "#154975",
                                "#b1c8eb"))
p1
#> $mar
#> [1] 1 5 0 1
#extract optimal index identified by CORE
key_height <- CORE_cluster$optimalClust$KeyStats$Height
optimal_res <- CORE_cluster$optimalClust$OptimalRes
optimal_index = which(key_height == optimal_res)
#plot one optimal clustering bar
plot_optimal_CORE(original_tree= CORE_cluster$tree,
                 optimal_cluster = unlist(CORE_cluster$Cluster[optimal_index]),
                 shift = -2000)
#> Ordering and assigning labels...
#> 2
#> 162335NA
#> 3
#> 162335423
#> Plotting the colored dendrogram now....
#> Plotting the bar underneath now....
##3.2.2 plot SCORE clustering
#plot all clustering bars
plot_CORE(SCORE_test$tree, list_clusters = SCORE_test$Cluster)
#plot one stable optimal clustering bar
plot_optimal_CORE(original_tree= SCORE_test$tree,
                 optimal_cluster = unlist(SCORE_test$Cluster[SCORE_test$optimal_index]),
                 shift = -100)
#> Ordering and assigning labels...
#> 2
#> 24112NANANANANANA
#> 3
#> 24112224NANANANANA
#> 4
#> 24112224299NANANANA
#> 5
#> 24112224299335NANANA
#> 6
#> 24112224299335367NANA
#> 7
#> 24112224299335367414NA
#> 8
#> 24112224299335367414470
#> Plotting the colored dendrogram now....
#> Plotting the bar underneath now....t <- tSNE(expression.mat=assay(mixedpop2))
#> Preparing PCA inputs using the top 1500 genes ...
#> Computing PCA values...
#> Running tSNE ...
p2 <-plot_reduced(t, color_fac = factor(colData(mixedpop2)[,1]),
                      palletes =1:length(unique(colData(mixedpop2)[,1])))
p2#load gene list (this can be any lists of user-selected genes)
genes <-training_gene_sample
genes <-genes$Merged_unique
#the gene list can also be objectively identified by differential expression
#analysis cluster information is requied for find_markers. Here, we use
#CORE results.
#colData(mixedpop2)[,1] <- unlist(SCORE_test$Cluster[SCORE_test$optimal_index])
suppressMessages(library(locfit))
suppressMessages(library(DESeq))
DEgenes <- find_markers(expression_matrix=assay(mixedpop2),
                            cluster = colData(mixedpop2)[,1],
                            selected_cluster=unique(colData(mixedpop2)[,1]))
#the output contains dataframes for each cluster.
#the data frame contains all genes, sorted by p-values
names(DEgenes)
#> [1] NA                      NA                      NA                     
#> [4] NA                      "DE_Subpop1vsRemaining" "DE_Subpop2vsRemaining"
#> [7] "DE_Subpop3vsRemaining" "DE_Subpop4vsRemaining"
#you can annotate the identified clusters
DEgeneList_1vsOthers <- DEgenes$DE_Subpop1vsRemaining$id
#users need to check the format of the gene input to make sure they are
#consistent to the gene names in the expression matrix
#the following command saves the file "PathwayEnrichment.xlsx" to the
#working dir
#use 500 top DE genes
suppressMessages(library(DOSE))
suppressMessages(library(ReactomePA))
suppressMessages(library(clusterProfiler))
genes500 <- as.factor(DEgeneList_1vsOthers[seq_len(500)])
enrichment_test <- annotate_clusters(genes, pvalueCutoff=0.05, gene_symbol=TRUE)
#the enrichment outputs can be displayed by running
clusterProfiler::dotplot(enrichment_test, showCategory=10, font.size = 6)The purpose of this workflow is to solve the following task:
#select a subpopulation, and input gene list
c_selectID <- 1
#note make sure the format for genes input here is the same to the format
#for genes in the mixedpop1 and mixedpop2
genes = DEgenes$DE_Subpop1vsRemaining$id[1:500]
#run the test bootstrap with nboots = 2 runs
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
LSOLDA_dat <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop1,
                             mixedpop2 = mixedpop2, genes = genes, c_selectID  = c_selectID,
                             listData = list(),
                             cluster_mixedpop1 = cluster_mixedpop1,
                             cluster_mixedpop2 = cluster_mixedpop2)#get the number of rows for the summary matrix
row_cluster <-length(unique(colData(mixedpop2)[,1]))
#summary results LDA to to show the percent of cells classified as cells
#belonging by LDA classifier
summary_prediction_lda(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster )
#>                 V1               V2                                names
#> 1 30.4812834224599 77.0053475935829 LDA for subpop 1 in target mixedpop2
#> 2               75 30.7142857142857 LDA for subpop 2 in target mixedpop2
#> 3 13.5338345864662 55.6390977443609 LDA for subpop 3 in target mixedpop2
#> 4               35             52.5 LDA for subpop 4 in target mixedpop2
#summary results Lasso to show the percent of cells classified as cells
#belonging by Lasso classifier
summary_prediction_lasso(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster)
#>                 V1               V2
#> 1 64.1711229946524 26.7379679144385
#> 2 75.7142857142857 98.5714285714286
#> 3  37.593984962406  75.187969924812
#> 4             52.5               85
#>                                        names
#> 1 ElasticNet for subpop1 in target mixedpop2
#> 2 ElasticNet for subpop2 in target mixedpop2
#> 3 ElasticNet for subpop3 in target mixedpop2
#> 4 ElasticNet for subpop4 in target mixedpop2
# summary maximum deviance explained by the model during the model training
summary_deviance(object = LSOLDA_dat)
#> $allDeviance
#> [1] "0.7693" "0.318" 
#> 
#> $DeviMax
#>           dat_DE$Dfd          Deviance           DEgenes
#> 1                  0            0.7693    genes_cluster1
#> 2                  1            0.7693    genes_cluster1
#> 3                  2            0.7693    genes_cluster1
#> 4                  3            0.7693    genes_cluster1
#> 5                  5            0.7693    genes_cluster1
#> 6                  6            0.7693    genes_cluster1
#> 7                  8            0.7693    genes_cluster1
#> 8                  9            0.7693    genes_cluster1
#> 9                 11            0.7693    genes_cluster1
#> 10                14            0.7693    genes_cluster1
#> 11                15            0.7693    genes_cluster1
#> 12                18            0.7693    genes_cluster1
#> 13                20            0.7693    genes_cluster1
#> 14                23            0.7693    genes_cluster1
#> 15                26            0.7693    genes_cluster1
#> 16                28            0.7693    genes_cluster1
#> 17                29            0.7693    genes_cluster1
#> 18                31            0.7693    genes_cluster1
#> 19                33            0.7693    genes_cluster1
#> 20                37            0.7693    genes_cluster1
#> 21                40            0.7693    genes_cluster1
#> 22                42            0.7693    genes_cluster1
#> 23                44            0.7693    genes_cluster1
#> 24                45            0.7693    genes_cluster1
#> 25                48            0.7693    genes_cluster1
#> 26                50            0.7693    genes_cluster1
#> 27 remaining DEgenes remaining DEgenes remaining DEgenes
#> 
#> $LassoGenesMax
#> NULL
# summary accuracy to check the model accuracy in the leave-out test set
summary_accuracy(object = LSOLDA_dat)
#> [1] 75.00000 67.41071Here we look at one example use case to find relationship between clusters within one sample or between two sample
#run prediction for 3 clusters
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
#cluster_mixedpop2 <- as.numeric(as.vector(colData(mixedpop2)[,1]))
c_selectID <- 1
#top 200 gene markers distinguishing cluster 1
genes = DEgenes$DE_Subpop1vsRemaining$id[1:200]
LSOLDA_dat1 <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop2,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop2,
                        cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 2
genes = DEgenes$DE_Subpop2vsRemaining$id[1:200]
LSOLDA_dat2 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop2,
                        cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 3
genes = DEgenes$DE_Subpop3vsRemaining$id[1:200]
LSOLDA_dat3 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop2,
                        cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 4
genes = DEgenes$DE_Subpop4vsRemaining$id[1:200]
LSOLDA_dat4 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop2,
                        cluster_mixedpop2 = cluster_mixedpop2)
#prepare table input for sankey plot
LASSO_C1S2  <- reformat_LASSO(c_selectID=1, mp_selectID = 2,
                             LSOLDA_dat=LSOLDA_dat1,
                             nPredSubpop = length(unique(colData(mixedpop2)[,1])),
                             Nodes_group ="#7570b3")
LASSO_C2S2  <- reformat_LASSO(c_selectID=2, mp_selectID =2,
                             LSOLDA_dat=LSOLDA_dat2,
                             nPredSubpop = length(unique(colData(mixedpop2)[,1])),
                             Nodes_group ="#1b9e77")
LASSO_C3S2  <- reformat_LASSO(c_selectID=3, mp_selectID =2,
                             LSOLDA_dat=LSOLDA_dat3,
                             nPredSubpop = length(unique(colData(mixedpop2)[,1])),
                             Nodes_group ="#e7298a")
LASSO_C4S2  <- reformat_LASSO(c_selectID=4, mp_selectID =2,
                             LSOLDA_dat=LSOLDA_dat4,
                             nPredSubpop = length(unique(colData(mixedpop2)[,1])),
                             Nodes_group ="#00FFFF")
combined <- rbind(LASSO_C1S2,LASSO_C2S2,LASSO_C3S2, LASSO_C4S2 )
combined <- combined[is.na(combined$Value) != TRUE,]
nboots = 2
#links: source, target, value
#source: node, nodegroup
combined_D3obj <-list(Nodes=combined[,(nboots+3):(nboots+4)],
                     Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])
library(networkD3)
Node_source <- as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_target <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_all <-unique(c(Node_source, Node_target))
#assign IDs for Source (start from 0)
Source <-combined_D3obj$Links$Source
Target <- combined_D3obj$Links$Target
for(i in 1:length(Node_all)){
   Source[Source==Node_all[i]] <-i-1
   Target[Target==Node_all[i]] <-i-1
}
# 
combined_D3obj$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup
#prepare node info
node_df <-data.frame(Node=Node_all)
node_df$id <-as.numeric(c(0, 1:(length(Node_all)-1)))
suppressMessages(library(dplyr))
Color <- combined %>% count(Node, color=NodeGroup) %>% select(2)
node_df$color <- Color$color
suppressMessages(library(networkD3))
p1<-sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
                 Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor", NodeID="Node",
                 Source="Source", Target="Target", fontSize = 22 )
p1Here we look at one example use case to find relationship between clusters within one sample or between two sample
#run prediction for 3 clusters
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
row_cluster <-length(unique(colData(mixedpop2)[,1]))
c_selectID <- 1
#top 200 gene markers distinguishing cluster 1
genes = DEgenes$DE_Subpop1vsRemaining$id[1:200]
LSOLDA_dat1 <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop1,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop1,
                        cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 2
genes = DEgenes$DE_Subpop2vsRemaining$id[1:200]
LSOLDA_dat2 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop1,
                        cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 3
genes = DEgenes$DE_Subpop3vsRemaining$id[1:200]
LSOLDA_dat3 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop1,
                        cluster_mixedpop2 = cluster_mixedpop2)
#prepare table input for sankey plot
LASSO_C1S1  <- reformat_LASSO(c_selectID=1, mp_selectID = 1,
                             LSOLDA_dat=LSOLDA_dat1, nPredSubpop = row_cluster, Nodes_group = "#7570b3")
LASSO_C2S1  <- reformat_LASSO(c_selectID=2, mp_selectID = 1,
                             LSOLDA_dat=LSOLDA_dat2, nPredSubpop = row_cluster, Nodes_group = "#1b9e77")
LASSO_C3S1  <- reformat_LASSO(c_selectID=3, mp_selectID = 1,
                             LSOLDA_dat=LSOLDA_dat3, nPredSubpop = row_cluster, Nodes_group = "#e7298a")
combined <- rbind(LASSO_C1S1,LASSO_C2S1,LASSO_C3S1)
nboots = 2
#links: source, target, value
#source: node, nodegroup
combined_D3obj <-list(Nodes=combined[,(nboots+3):(nboots+4)],
                     Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])
combined <- combined[is.na(combined$Value) != TRUE,]
library(networkD3)
Node_source <- as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_target <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_all <-unique(c(Node_source, Node_target))
#assign IDs for Source (start from 0)
Source <-combined_D3obj$Links$Source
Target <- combined_D3obj$Links$Target
for(i in 1:length(Node_all)){
   Source[Source==Node_all[i]] <-i-1
   Target[Target==Node_all[i]] <-i-1
}
combined_D3obj$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup
#prepare node info
node_df <-data.frame(Node=Node_all)
node_df$id <-as.numeric(c(0, 1:(length(Node_all)-1)))
suppressMessages(library(dplyr))
n <- length(unique(node_df$Node))
getPalette = colorRampPalette(RColorBrewer::brewer.pal(9, "Set1"))
Color = getPalette(n)
node_df$color <- Color
suppressMessages(library(networkD3))
p1<-sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
                 Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor",
                 NodeID="Node", Source="Source", Target="Target", fontSize = 22)
p1devtools::session_info()
#> ─ Session info ──────────────────────────────────────────────────────────
#>  setting  value                       
#>  version  R version 3.6.1 (2019-07-05)
#>  os       Ubuntu 18.04.3 LTS          
#>  system   x86_64, linux-gnu           
#>  ui       X11                         
#>  language (EN)                        
#>  collate  C                           
#>  ctype    en_US.UTF-8                 
#>  tz       America/New_York            
#>  date     2019-10-29                  
#> 
#> ─ Packages ──────────────────────────────────────────────────────────────
#>  package              * version     date       lib source        
#>  annotate               1.64.0      2019-10-29 [2] Bioconductor  
#>  AnnotationDbi        * 1.48.0      2019-10-29 [2] Bioconductor  
#>  assertthat             0.2.1       2019-03-21 [2] CRAN (R 3.6.1)
#>  backports              1.1.5       2019-10-02 [2] CRAN (R 3.6.1)
#>  Biobase              * 2.46.0      2019-10-29 [2] Bioconductor  
#>  BiocGenerics         * 0.32.0      2019-10-29 [2] Bioconductor  
#>  BiocManager            1.30.9      2019-10-23 [2] CRAN (R 3.6.1)
#>  BiocParallel         * 1.20.0      2019-10-29 [2] Bioconductor  
#>  bit                    1.1-14      2018-05-29 [2] CRAN (R 3.6.1)
#>  bit64                  0.9-7       2017-05-08 [2] CRAN (R 3.6.1)
#>  bitops                 1.0-6       2013-08-17 [2] CRAN (R 3.6.1)
#>  blob                   1.2.0       2019-07-09 [2] CRAN (R 3.6.1)
#>  callr                  3.3.2       2019-09-22 [2] CRAN (R 3.6.1)
#>  caret                * 6.0-84      2019-04-27 [2] CRAN (R 3.6.1)
#>  checkmate              1.9.4       2019-07-04 [2] CRAN (R 3.6.1)
#>  class                  7.3-15      2019-01-01 [2] CRAN (R 3.6.1)
#>  cli                    1.1.0       2019-03-19 [2] CRAN (R 3.6.1)
#>  clusterProfiler      * 3.14.0      2019-10-29 [2] Bioconductor  
#>  codetools              0.2-16      2018-12-24 [2] CRAN (R 3.6.1)
#>  colorspace             1.4-1       2019-03-18 [2] CRAN (R 3.6.1)
#>  cowplot                1.0.0       2019-07-11 [2] CRAN (R 3.6.1)
#>  crayon                 1.3.4       2017-09-16 [2] CRAN (R 3.6.1)
#>  data.table             1.12.6      2019-10-18 [2] CRAN (R 3.6.1)
#>  DBI                    1.0.0       2018-05-02 [2] CRAN (R 3.6.1)
#>  DelayedArray         * 0.12.0      2019-10-29 [2] Bioconductor  
#>  dendextend             1.12.0      2019-05-11 [2] CRAN (R 3.6.1)
#>  desc                   1.2.0       2018-05-01 [2] CRAN (R 3.6.1)
#>  DESeq                * 1.38.0      2019-10-29 [2] Bioconductor  
#>  devtools               2.2.1       2019-09-24 [2] CRAN (R 3.6.1)
#>  digest                 0.6.22      2019-10-21 [2] CRAN (R 3.6.1)
#>  DO.db                  2.9         2019-07-05 [2] Bioconductor  
#>  DOSE                 * 3.12.0      2019-10-29 [2] Bioconductor  
#>  dplyr                * 0.8.3       2019-07-04 [2] CRAN (R 3.6.1)
#>  dynamicTreeCut       * 1.63-1      2016-03-11 [2] CRAN (R 3.6.1)
#>  e1071                  1.7-2       2019-06-05 [2] CRAN (R 3.6.1)
#>  ellipsis               0.3.0       2019-09-20 [2] CRAN (R 3.6.1)
#>  enrichplot             1.6.0       2019-10-29 [2] Bioconductor  
#>  europepmc              0.3         2018-04-20 [2] CRAN (R 3.6.1)
#>  evaluate               0.14        2019-05-28 [2] CRAN (R 3.6.1)
#>  farver                 1.1.0       2018-11-20 [2] CRAN (R 3.6.1)
#>  fastcluster            1.1.25      2018-06-07 [2] CRAN (R 3.6.1)
#>  fastmatch              1.1-0       2017-01-28 [2] CRAN (R 3.6.1)
#>  fgsea                  1.12.0      2019-10-29 [2] Bioconductor  
#>  foreach                1.4.7       2019-07-27 [2] CRAN (R 3.6.1)
#>  fs                     1.3.1       2019-05-06 [2] CRAN (R 3.6.1)
#>  genefilter             1.68.0      2019-10-29 [2] Bioconductor  
#>  geneplotter            1.64.0      2019-10-29 [2] Bioconductor  
#>  generics               0.0.2       2018-11-29 [2] CRAN (R 3.6.1)
#>  GenomeInfoDb         * 1.22.0      2019-10-29 [2] Bioconductor  
#>  GenomeInfoDbData       1.2.2       2019-10-23 [2] Bioconductor  
#>  GenomicRanges        * 1.38.0      2019-10-29 [2] Bioconductor  
#>  ggforce                0.3.1       2019-08-20 [2] CRAN (R 3.6.1)
#>  ggplot2              * 3.2.1       2019-08-10 [2] CRAN (R 3.6.1)
#>  ggplotify              0.0.4       2019-08-06 [2] CRAN (R 3.6.1)
#>  ggraph                 2.0.0       2019-09-02 [2] CRAN (R 3.6.1)
#>  ggrepel                0.8.1       2019-05-07 [2] CRAN (R 3.6.1)
#>  ggridges               0.5.1       2018-09-27 [2] CRAN (R 3.6.1)
#>  glmnet                 2.0-18      2019-05-20 [2] CRAN (R 3.6.1)
#>  glue                   1.3.1       2019-03-12 [2] CRAN (R 3.6.1)
#>  GO.db                  3.10.0      2019-10-23 [2] Bioconductor  
#>  GOSemSim               2.12.0      2019-10-29 [2] Bioconductor  
#>  gower                  0.2.1       2019-05-14 [2] CRAN (R 3.6.1)
#>  graph                  1.64.0      2019-10-29 [2] Bioconductor  
#>  graphite               1.32.0      2019-10-29 [2] Bioconductor  
#>  graphlayouts           0.5.0       2019-08-20 [2] CRAN (R 3.6.1)
#>  gridExtra              2.3         2017-09-09 [2] CRAN (R 3.6.1)
#>  gridGraphics           0.4-1       2019-05-20 [2] CRAN (R 3.6.1)
#>  gtable                 0.3.0       2019-03-25 [2] CRAN (R 3.6.1)
#>  hms                    0.5.1       2019-08-23 [2] CRAN (R 3.6.1)
#>  htmltools              0.4.0       2019-10-04 [2] CRAN (R 3.6.1)
#>  htmlwidgets            1.5.1       2019-10-08 [2] CRAN (R 3.6.1)
#>  httr                   1.4.1       2019-08-05 [2] CRAN (R 3.6.1)
#>  igraph                 1.2.4.1     2019-04-22 [2] CRAN (R 3.6.1)
#>  ipred                  0.9-9       2019-04-28 [2] CRAN (R 3.6.1)
#>  IRanges              * 2.20.0      2019-10-29 [2] Bioconductor  
#>  iterators              1.0.12      2019-07-26 [2] CRAN (R 3.6.1)
#>  jsonlite               1.6         2018-12-07 [2] CRAN (R 3.6.1)
#>  knitr                  1.25        2019-09-18 [2] CRAN (R 3.6.1)
#>  labeling               0.3         2014-08-23 [2] CRAN (R 3.6.1)
#>  lattice              * 0.20-38     2018-11-04 [2] CRAN (R 3.6.1)
#>  lava                   1.6.6       2019-08-01 [2] CRAN (R 3.6.1)
#>  lazyeval               0.2.2       2019-03-15 [2] CRAN (R 3.6.1)
#>  lifecycle              0.1.0       2019-08-01 [2] CRAN (R 3.6.1)
#>  locfit               * 1.5-9.1     2013-04-20 [2] CRAN (R 3.6.1)
#>  lubridate              1.7.4       2018-04-11 [2] CRAN (R 3.6.1)
#>  magrittr               1.5         2014-11-22 [2] CRAN (R 3.6.1)
#>  MASS                   7.3-51.4    2019-03-31 [2] CRAN (R 3.6.1)
#>  Matrix                 1.2-17      2019-03-22 [2] CRAN (R 3.6.1)
#>  matrixStats          * 0.55.0      2019-09-07 [2] CRAN (R 3.6.1)
#>  memoise                1.1.0       2017-04-21 [2] CRAN (R 3.6.1)
#>  ModelMetrics           1.2.2       2018-11-03 [2] CRAN (R 3.6.1)
#>  munsell                0.5.0       2018-06-12 [2] CRAN (R 3.6.1)
#>  networkD3            * 0.4         2017-03-18 [2] CRAN (R 3.6.1)
#>  nlme                   3.1-141     2019-08-01 [2] CRAN (R 3.6.1)
#>  nnet                   7.3-12      2016-02-02 [2] CRAN (R 3.6.1)
#>  org.Hs.eg.db         * 3.10.0      2019-10-23 [2] Bioconductor  
#>  pillar                 1.4.2       2019-06-29 [2] CRAN (R 3.6.1)
#>  pkgbuild               1.0.6       2019-10-09 [2] CRAN (R 3.6.1)
#>  pkgconfig              2.0.3       2019-09-22 [2] CRAN (R 3.6.1)
#>  pkgload                1.0.2       2018-10-29 [2] CRAN (R 3.6.1)
#>  plyr                   1.8.4       2016-06-08 [2] CRAN (R 3.6.1)
#>  polyclip               1.10-0      2019-03-14 [2] CRAN (R 3.6.1)
#>  prettyunits            1.0.2       2015-07-13 [2] CRAN (R 3.6.1)
#>  processx               3.4.1       2019-07-18 [2] CRAN (R 3.6.1)
#>  prodlim                2018.04.18  2018-04-18 [2] CRAN (R 3.6.1)
#>  progress               1.2.2       2019-05-16 [2] CRAN (R 3.6.1)
#>  ps                     1.3.0       2018-12-21 [2] CRAN (R 3.6.1)
#>  purrr                  0.3.3       2019-10-18 [2] CRAN (R 3.6.1)
#>  qvalue                 2.18.0      2019-10-29 [2] Bioconductor  
#>  R6                     2.4.0       2019-02-14 [2] CRAN (R 3.6.1)
#>  rappdirs               0.3.1       2016-03-28 [2] CRAN (R 3.6.1)
#>  RColorBrewer           1.1-2       2014-12-07 [2] CRAN (R 3.6.1)
#>  Rcpp                   1.0.2       2019-07-25 [2] CRAN (R 3.6.1)
#>  RcppArmadillo          0.9.800.1.0 2019-10-09 [2] CRAN (R 3.6.1)
#>  RcppParallel           4.4.4       2019-09-27 [2] CRAN (R 3.6.1)
#>  RCurl                  1.95-4.12   2019-03-04 [2] CRAN (R 3.6.1)
#>  reactome.db            1.70.0      2019-10-28 [2] Bioconductor  
#>  ReactomePA           * 1.30.0      2019-10-29 [2] Bioconductor  
#>  recipes                0.1.7       2019-09-15 [2] CRAN (R 3.6.1)
#>  remotes                2.1.0       2019-06-24 [2] CRAN (R 3.6.1)
#>  reshape2               1.4.3       2017-12-11 [2] CRAN (R 3.6.1)
#>  rlang                  0.4.1       2019-10-24 [2] CRAN (R 3.6.1)
#>  rmarkdown              1.16        2019-10-01 [2] CRAN (R 3.6.1)
#>  rpart                  4.1-15      2019-04-12 [2] CRAN (R 3.6.1)
#>  rprojroot              1.3-2       2018-01-03 [2] CRAN (R 3.6.1)
#>  RSQLite                2.1.2       2019-07-24 [2] CRAN (R 3.6.1)
#>  Rtsne                  0.15        2018-11-10 [2] CRAN (R 3.6.1)
#>  rvcheck                0.1.5       2019-10-01 [2] CRAN (R 3.6.1)
#>  S4Vectors            * 0.24.0      2019-10-29 [2] Bioconductor  
#>  scales                 1.0.0       2018-08-09 [2] CRAN (R 3.6.1)
#>  scGPS                * 1.0.0       2019-10-29 [1] Bioconductor  
#>  sessioninfo            1.1.1       2018-11-05 [2] CRAN (R 3.6.1)
#>  SingleCellExperiment * 1.8.0       2019-10-29 [2] Bioconductor  
#>  stringi                1.4.3       2019-03-12 [2] CRAN (R 3.6.1)
#>  stringr                1.4.0       2019-02-10 [2] CRAN (R 3.6.1)
#>  SummarizedExperiment * 1.16.0      2019-10-29 [2] Bioconductor  
#>  survival               2.44-1.1    2019-04-01 [2] CRAN (R 3.6.1)
#>  testthat               2.2.1       2019-07-25 [2] CRAN (R 3.6.1)
#>  tibble                 2.1.3       2019-06-06 [2] CRAN (R 3.6.1)
#>  tidygraph              1.1.2       2019-02-18 [2] CRAN (R 3.6.1)
#>  tidyr                  1.0.0       2019-09-11 [2] CRAN (R 3.6.1)
#>  tidyselect             0.2.5       2018-10-11 [2] CRAN (R 3.6.1)
#>  timeDate               3043.102    2018-02-21 [2] CRAN (R 3.6.1)
#>  triebeard              0.3.0       2016-08-04 [2] CRAN (R 3.6.1)
#>  tweenr                 1.0.1       2018-12-14 [2] CRAN (R 3.6.1)
#>  urltools               1.7.3       2019-04-14 [2] CRAN (R 3.6.1)
#>  usethis                1.5.1       2019-07-04 [2] CRAN (R 3.6.1)
#>  vctrs                  0.2.0       2019-07-05 [2] CRAN (R 3.6.1)
#>  viridis                0.5.1       2018-03-29 [2] CRAN (R 3.6.1)
#>  viridisLite            0.3.0       2018-02-01 [2] CRAN (R 3.6.1)
#>  withr                  2.1.2       2018-03-15 [2] CRAN (R 3.6.1)
#>  xfun                   0.10        2019-10-01 [2] CRAN (R 3.6.1)
#>  XML                    3.98-1.20   2019-06-06 [2] CRAN (R 3.6.1)
#>  xml2                   1.2.2       2019-08-09 [2] CRAN (R 3.6.1)
#>  xtable                 1.8-4       2019-04-21 [2] CRAN (R 3.6.1)
#>  XVector                0.26.0      2019-10-29 [2] Bioconductor  
#>  yaml                   2.2.0       2018-07-25 [2] CRAN (R 3.6.1)
#>  zeallot                0.1.0       2018-01-28 [2] CRAN (R 3.6.1)
#>  zlibbioc               1.32.0      2019-10-29 [2] Bioconductor  
#> 
#> [1] /tmp/RtmpAdmfWj/Rinst1d6d46fbeb95
#> [2] /home/biocbuild/bbs-3.10-bioc/R/library