### R code from vignette source 'RNA-seqWorkflow.Rnw' ################################################### ### code chunk number 1: synopsis0 (eval = FALSE) ################################################### ## ##step 0: setup (also need to map the reads outside R) ## source("http://bioconductor.org/biocLite.R") ## #for BioC <2.14 ## biocLite(c("pathview", "gage", "gageData", "Rsamtools", ## "TxDb.Hsapiens.UCSC.hg19.knownGene")) ## #for BioC >=2.14 ## biocLite(c("pathview", "gage", "gageData", "GenomicAlignments", ## "TxDb.Hsapiens.UCSC.hg19.knownGene")) ################################################### ### code chunk number 2: synopsis1 (eval = FALSE) ################################################### ## ##step 1: read counts ## library(TxDb.Hsapiens.UCSC.hg19.knownGene) ## exByGn <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene") ## #for BioC <2.14 ## library(Rsamtools) ## #for BioC >=2.14 ## library(GenomicAlignments) ## fls <- list.files("tophat_all/", pattern="bam$", full.names =T) ## bamfls <- BamFileList(fls) ## flag <- scanBamFlag(isNotPrimaryRead=FALSE, isProperPair=TRUE) ## param <- ScanBamParam(flag=flag) ## gnCnt <- summarizeOverlaps(exByGn, bamfls, mode="Union", ## ignore.strand=TRUE, single.end=FALSE, param=param) ## hnrnp.cnts=assay(gnCnt) ################################################### ### code chunk number 3: synopsis2 (eval = FALSE) ################################################### ## ##step 2: preprocessing ## require(gageData) #demo only ## data(hnrnp.cnts) #demo only ## cnts=hnrnp.cnts ## sel.rn=rowSums(cnts) != 0 ## cnts=cnts[sel.rn,] ## ##joint workflow with DEseq/edgeR/limma/Cufflinks forks here ## libsizes=colSums(cnts) ## size.factor=libsizes/exp(mean(log(libsizes))) ## cnts.norm=t(t(cnts)/size.factor) ## cnts.norm=log2(cnts.norm+8) ################################################### ### code chunk number 4: synopsis3 (eval = FALSE) ################################################### ## ##step 3: gage ## ##joint workflow with DEseq/edgeR/limma/Cufflinks merges around here ## library(gage) ## ref.idx=5:8 ## samp.idx=1:4 ## data(kegg.gs) ## cnts.kegg.p <- gage(cnts.norm, gsets = kegg.gs, ref = ref.idx, ## samp = samp.idx, compare ="unpaired") ################################################### ### code chunk number 5: synopsis4 (eval = FALSE) ################################################### ## ##step 4: pathview ## cnts.d= cnts.norm[, samp.idx]-rowMeans(cnts.norm[, ref.idx]) ## sel <- cnts.kegg.p$greater[, "q.val"] < 0.1 & ## !is.na(cnts.kegg.p$greater[,"q.val"]) ## path.ids <- rownames(cnts.kegg.p$greater)[sel] ## sel.l <- cnts.kegg.p$less[, "q.val"] < 0.1 & ## !is.na(cnts.kegg.p$less[,"q.val"]) ## path.ids.l <- rownames(cnts.kegg.p$less)[sel.l] ## path.ids2 <- substr(c(path.ids, path.ids.l), 1, 8) ## library(pathview) ## pv.out.list <- sapply(path.ids2, function(pid) pathview( ## gene.data = cnts.d, pathway.id = pid, ## species = "hsa")) ################################################### ### code chunk number 6: start ################################################### options(width=80) ################################################### ### code chunk number 7: install (eval = FALSE) ################################################### ## source("http://bioconductor.org/biocLite.R") ## #for BioC <2.14 ## biocLite(c("pathview", "gage", "gageData", "Rsamtools", ## "TxDb.Hsapiens.UCSC.hg19.knownGene")) ## #for BioC >=2.14 ## biocLite(c("pathview", "gage", "gageData", "GenomicAlignments", ## "TxDb.Hsapiens.UCSC.hg19.knownGene")) ################################################### ### code chunk number 8: readcount (eval = FALSE) ################################################### ## library(TxDb.Hsapiens.UCSC.hg19.knownGene) ## exByGn <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene") ## #for BioC <2.14 ## library(Rsamtools) ## #for BioC >=2.14 ## library(GenomicAlignments) ## fls <- list.files("tophat_all/", pattern="bam$", full.names =T) ## bamfls <- BamFileList(fls) ## flag <- scanBamFlag(isNotPrimaryRead=FALSE, isProperPair=TRUE) ## param <- ScanBamParam(flag=flag) ## gnCnt <- summarizeOverlaps(exByGn, bamfls, mode="Union", ## ignore.strand=TRUE, single.end=FALSE, param=param) ## hnrnp.cnts=assay(gnCnt) ################################################### ### code chunk number 9: preprocessing ################################################### require(gageData) data(hnrnp.cnts) cnts=hnrnp.cnts dim(cnts) sel.rn=rowSums(cnts) != 0 cnts=cnts[sel.rn,] dim(cnts) libsizes=colSums(cnts) size.factor=libsizes/exp(mean(log(libsizes))) cnts.norm=t(t(cnts)/size.factor) range(cnts.norm) cnts.norm=log2(cnts.norm+8) range(cnts.norm) #optional MA plot pdf("hnrnp.cnts.maplots.pdf", width=8, height=10) op=par(lwd=2, cex.axis=1.5, cex.lab=1.5, mfrow=c(2,1)) plot((cnts.norm[,6]+cnts.norm[,5])/2, (cnts.norm[,6]-cnts.norm[,5]), main="(a) Control vs Control", xlab="mean", ylab="change", ylim=c(-5,5), xlim=c(0,20), lwd=1) abline(h=0, lwd=2, col="red", lty="dashed") plot((cnts.norm[,1]+cnts.norm[,5])/2, (cnts.norm[,1]-cnts.norm[,5]), main="(b) Knockdown vs Control", xlab="mean", ylab="change", ylim=c(-5,5), xlim=c(0,20), lwd=1) abline(h=0, lwd=2, col="red", lty="dashed") dev.off() ################################################### ### code chunk number 10: gage ################################################### library(gage) ref.idx=5:8 samp.idx=1:4 data(kegg.gs) #knockdown and control samples are unpaired cnts.kegg.p <- gage(cnts.norm, gsets = kegg.gs, ref = ref.idx, samp = samp.idx, compare ="unpaired") ################################################### ### code chunk number 11: pathview ################################################### #differential expression: log2 ratio or fold change, uppaired samples cnts.d= cnts.norm[, samp.idx]-rowMeans(cnts.norm[, ref.idx]) #up-regulated pathways (top 3) visualized by pathview sel <- cnts.kegg.p$greater[, "q.val"] < 0.1 & !is.na(cnts.kegg.p$greater[,"q.val"]) path.ids <- rownames(cnts.kegg.p$greater)[sel] path.ids2 <- substr(path.ids, 1, 8) library(pathview) pv.out.list <- sapply(path.ids2[1:3], function(pid) pathview( gene.data = cnts.d, pathway.id = pid, species = "hsa")) #down-regulated pathways (top 3) visualized by pathview sel.l <- cnts.kegg.p$less[, "q.val"] < 0.1 & !is.na(cnts.kegg.p$less[,"q.val"]) path.ids.l <- rownames(cnts.kegg.p$less)[sel.l] path.ids.l2 <- substr(path.ids.l, 1, 8) pv.out.list.l <- sapply(path.ids.l2[1:3], function(pid) pathview( gene.data = cnts.d, pathway.id = pid, species = "hsa")) ################################################### ### code chunk number 12: goanalysis ################################################### library(gageData) data(go.sets.hs) data(go.subs.hs) lapply(go.subs.hs, head) #Molecular Function analysis is quicker, hence run as demo cnts.mf.p <- gage(cnts.norm, gsets = go.sets.hs[go.subs.hs$MF], ref = ref.idx, samp = samp.idx, compare ="unpaired") #Biological Process analysis takes a few minutes if you try it #cnts.bp.p <- gage(cnts.norm, gsets = go.sets.hs[go.subs.hs$BP], # ref = ref.idx, samp = samp.idx, compare ="unpaired") ################################################### ### code chunk number 13: goresults ################################################### for (gs in rownames(cnts.mf.p$less)[1:3]) { outname = gsub(" |:|/", "_", substr(gs, 12, 100)) geneData(genes = go.sets.hs[[gs]], exprs = cnts.norm, ref = ref.idx, samp = samp.idx, outname = outname, txt = T, heatmap = T, limit = 3, scatterplot = T) } ################################################### ### code chunk number 14: pergenescore ################################################### cnts.t= apply(cnts.norm, 1, function(x) t.test(x[samp.idx], x[ref.idx], alternative = "two.sided", paired = F)$statistic) cnts.meanfc= rowMeans(cnts.norm[, samp.idx]-cnts.norm[, ref.idx]) range(cnts.t) range(cnts.meanfc) cnts.t.kegg.p <- gage(cnts.t, gsets = kegg.gs, ref = NULL, samp = NULL) cnts.meanfc.kegg.p <- gage(cnts.meanfc, gsets = kegg.gs, ref = NULL, samp = NULL) ################################################### ### code chunk number 15: deseq2 ################################################### library(DESeq2) grp.idx <- rep(c("knockdown", "control"), each=4) coldat=DataFrame(grp=factor(grp.idx)) dds <- DESeqDataSetFromMatrix(cnts, colData=coldat, design = ~ grp) dds <- DESeq(dds) deseq2.res <- results(dds) #direction of fc, depends on levels(coldat$grp), the first level #taken as reference (or control) and the second one as experiment. deseq2.fc=deseq2.res$log2FoldChange names(deseq2.fc)=rownames(deseq2.res) exp.fc=deseq2.fc out.suffix="deseq2" ################################################### ### code chunk number 16: deseq2 ################################################### require(gage) data(kegg.gs) fc.kegg.p <- gage(exp.fc, gsets = kegg.gs, ref = NULL, samp = NULL) sel <- fc.kegg.p$greater[, "q.val"] < 0.1 & !is.na(fc.kegg.p$greater[, "q.val"]) path.ids <- rownames(fc.kegg.p$greater)[sel] sel.l <- fc.kegg.p$less[, "q.val"] < 0.1 & !is.na(fc.kegg.p$less[,"q.val"]) path.ids.l <- rownames(fc.kegg.p$less)[sel.l] path.ids2 <- substr(c(path.ids, path.ids.l), 1, 8) require(pathview) #view first 3 pathways as demo pv.out.list <- sapply(path.ids2[1:3], function(pid) pathview( gene.data = exp.fc, pathway.id = pid, species = "hsa", out.suffix=out.suffix)) ################################################### ### code chunk number 17: deseq (eval = FALSE) ################################################### ## library(DESeq) ## grp.idx <- rep(c("knockdown", "control"), each=4) ## cds <- newCountDataSet(cnts, grp.idx) ## cds = estimateSizeFactors(cds) ## cds = estimateDispersions(cds) ## #this line takes several minutes ## system.time( ## deseq.res <- nbinomTest(cds, "knockdown", "control") ## ) ## deseq.fc=deseq.res$log2FoldChange ## names(deseq.fc)=deseq.res$id ## sum(is.infinite(deseq.fc)) ## deseq.fc[deseq.fc>10]=10 ## deseq.fc[deseq.fc< -10]=-10 ## exp.fc=deseq.fc ## out.suffix="deseq" ################################################### ### code chunk number 18: edger ################################################### library(edgeR) grp.idx <- rep(c("knockdown", "control"), each=4) dgel <- DGEList(counts=cnts, group=factor(grp.idx)) dgel <- calcNormFactors(dgel) dgel <- estimateCommonDisp(dgel) dgel <- estimateTagwiseDisp(dgel) et <- exactTest(dgel) edger.fc=et$table$logFC names(edger.fc)=rownames(et$table) exp.fc=edger.fc out.suffix="edger" ################################################### ### code chunk number 19: limma ################################################### library(edgeR) grp.idx <- rep(c("knockdown", "control"), each=4) dgel2 <- DGEList(counts=cnts, group=factor(grp.idx)) dgel2 <- calcNormFactors(dgel2) library(limma) design <- model.matrix(~grp.idx) log2.cpm <- voom(dgel2,design) fit <- lmFit(log2.cpm,design) fit <- eBayes(fit) limma.res=topTable(fit,coef=2,n=Inf,sort="p") limma.fc=limma.res$logFC names(limma.fc)=limma.res$ID exp.fc=limma.fc out.suffix="limma" ################################################### ### code chunk number 20: cufflinks (eval = FALSE) ################################################### ## cuff.res=read.delim(file="gene_exp.diff", sep="\t") ## cuff.fc=cuff.res$log2.fold_change. ## gnames=cuff.res$gene ## sel=gnames!="-" ## gnames=as.character(gnames[sel]) ## cuff.fc=cuff.fc[sel] ## names(cuff.fc)=gnames ## gnames.eg=pathview::id2eg(gnames, category ="symbol") ## sel2=gnames.eg[,2]>"" ## cuff.fc=cuff.fc[sel2] ## names(cuff.fc)=gnames.eg[sel2,2] ## range(cuff.fc) ## cuff.fc[cuff.fc>10]=10 ## cuff.fc[cuff.fc< -10]=-10 ## exp.fc=cuff.fc ## out.suffix="cuff"